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Abstract

This thesis focuses on theoretical research of optimal and robust control theory

for a class of nonlinear stochastic systems. The nonlinearities that appear in

the diffusion terms are of a square-root type. Under such systems the following

problems are investigated: optimal stochastic control in both finite and infinite

horizon; robust stabilization and robust H∞ control; H2/H∞ control in both finite

and infinite horizon; and risk-sensitive control. The importance of this work is

that explicit optimal linear controls are obtained, which is a very rare case in the

nonlinear system. This is regarded as an advantage because with explicit solu-

tions, our work becomes easier to be applied into the real problems. Apart from

the mathematical results obtained, we have also introduced some applications to

finance.
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Notation

0: zero matrix, with appropriate dimensions;

I: identity matrix, with appropriate dimensions;

w.r.t.: with respect to;

M ′: the transpose of any matrix or vector M ;

M †: the Moore-Penrose pseudo-inverse of a matrix M ;

M > 0: the symmetric matrix M is positive definite;

M ≥ 0: the symmetric matrix M is positive semidefinite;

Rn: the n-dimensional Euclidean space;

Rn×m: the set of all n×m matrices;

Sn: the set of all n× n symmetric matrices;

Sn+: the subset of all nonnegative definite matrices of Sn;

Ŝn+: the subset of all positive definite matrices of Sn;

(Sn)l: = Sn × · · · × Sn︸ ︷︷ ︸
l

;

(Sn+)l: = Sn+ × · · · × Sn+︸ ︷︷ ︸
l

;

(Ŝn+)l: = Ŝn+ × · · · × Ŝn+︸ ︷︷ ︸
l

;

C(0, T ;Rn×m): the set of continuous functions φ : [0, T ]→ Rn×m;

C1(0, T ; (Sn)l): the set of continuously differential functions φ : [0, T ] →
(Sn)l);

Lp(0, T ;Rn×m):the set of continuous functions φ : [0, T ] → Rn×m such that∫ T
0
|φ(t)|pdt <∞ where p ∈ [1,∞);

L∞(0, T ;Rn×m):the set of essentially bounded measurable functions φ : [0, T ]→
Rn×m;
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L2
F(R+,Rl): space of nonanticipative stochastic processes y(t) ∈ Rl with

respect to an increasing σ-algebras Ft (t ≥ 0) satisfying E
∫∞

0
||y(t)||2dt <∞;

L2
F([0, T ],Rl): space of nonanticipative stochastic processes y(t) ∈ Rl with

respect to an increasing σ-algebras Ft (t ≥ 0) satisfying E
∫ T

0
||y(t)||2dt <∞;

L2[0,∞): the space of square-integrable vector functions over [0,∞);

L∞(0, T ;Rn×m):the set of essentially bounded measurable functions φ : [0, T ]→
Rn×m;

| · |: the Euclidean norm for vectors or the trace norm for matrices;

‖ · ‖2: the usual L2[0,∞) norm;

tr(M): the trace of any square matrix M ;

|M | :
√

tr(MM ′);

χA: the indicator function of a set A;

diag(a1, a2, . . . , am): m ×m diagonal matrix, in which the diagonal elements

are a1, a2, . . . , am.
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Chapter 1

Introduction

1.1 Introduction

In this chapter a short literature review of the problem of optimal and robust

control is presented. The main contributions of the thesis are outlined. A short

introduction for each chapter is given.

1.2 The Problem of Stochastic Optimal and Ro-

bust Control

We live in an era in which science and technology are developing rapidly, and new

technology has introduced higher requirements for automation, which appears in

space aircraft, artificial intelligence machinery, automobile making etc. Therefore,

the theory of system and control faces more challenges under such circumstances.

The so-called control system includes a controlled plant and a controller. If

someone is given the mathematical model of the system, a corresponding controller

can be designed according to the properties and the cost functional of the system,

and this is a control problem. Uncertainty appears in the real world almost

everywhere, and it brings some disadvantages to human beings in their activities.

The key to control theory is feedback. In modern control theory, feedback is

treated as a tool to handle uncertainty. In engineering, admissible control input
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can be adjusted according to the difference between measured output and refer-

ence quantity. By doing this, we can make sure that the systems have correct

response and dynamic activities without knowing the accurate dynamic response

of some systems or faulty response caused by external disturbance. This is a

fundamental characteristic of engineering systems, which are required to operate

reliably and efficiently. Feedback control is used to ensure the system robust-

ness under uncertain circumstances. Therefore, feedback control systems become

widely used in human beings’ daily life, for example, automobile, manufacturing

factories, communicating systems, military equipments and space systems.

The terminology optimal control theory was proposed about half a century

ago. In optimal control theory, if a given system is required to achieve a certain

optimal criterion, mathematical optimization method is used to derive certain

control laws. Among various classes of optimal control problems, Kalman [62]

has made great contributions in investigating the optimal linear quadratic (LQ)

regulator problem. Optimal LQ control is one of the fundamental problems in the

fields including mathematics, engineering, finance etc. There is a famous book on

the topic of optimal LQ control, see [7].

In finance, solutions to stochastic differential equations (SDEs) can be used to

model foreign currency exchange rates, interest rates, and stock prices. Stochastic

control systems, which are governed by Itô differential equation, appear in many

applications. For example, in real financial situation, the state variable in SDEs

is usually wealth, and the control is trading strategy.

Here we illustrate some works from literatures on practical applications of

stochastic optimal control problems as follows. The stochastic production plan-

ning problem was investigated by [12]. The continuous time portfolio consumption

model was formulated and solved in [86] and [87]. When stochastic optimal control

is applied to the field of insurance, the problems of dividend management were

studied in [101]. SDEs are also appropriate to model technology diffusion prob-

lems, see for example [71], [97], [98], and [34]. In addition, queueing systems can be

modelled by stochastic control problems, and this approach is named as diffusion

approximation, which has been explored since 1950s with relevant research out-

puts, the readers can consult [35], [55], [56], [66] and the references therein. Some

significant examples of stochastic control problems are linear quadratic Gaussian
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(LQG) problems, which are mostly applied in engineering.

There are two mathematical formulations of stochastic optimal control prob-

lems: strong formulation and weak formulation. Note that in this thesis, we

consider strong formulation of the problems. Here we present one case of stochas-

tic LQ optimal control problem with some brief explanations and comprehension.

Let (Ω,F , {Ft}t≥0,P) be a given filtered complete probability space, where there

exists a standard one-dimensional Brownian motion (W (t), 0 ≤ t ≤ T ). Consider

the following stochastic LQ optimal control problem in a finite time horizon [s, T ]

:

min J = E
{∫ T

s

[x(t)′Q(t)x(t) + u(t)′R(t)u(t)]dt+ x(T )′Hx(T )

}
,

s.t.

 dx(t) = [A(t)x(t) +B(t)u(t)]dt+ [C(t)x(t) +D(t)u(t)]dW (t),

x(s) = y ∈ Rn.
(1.1)

Given that y, s, and T are fixed data, J is the cost functional, x(·) is the state

process, u(·) is the control process. Both Q(t) and H are symmetric positive

semi-definite n× n matrices. R(t) is a symmetric positive definite m×m matrix.

In engineering, Q(t) stands for accuracy and x(t)′Q(t)x(t) penalizes the transient

state deviation; R(t) stands for energy and u(t)′R(t)u(t) penalizes the control

effort; and x(T )′Hx(T ) penalizes the finite state. The selection of Q(t) and R(t)

can be seen in [7] Section 6.3. Note that the precise way of denoting the cost

functional is J(x(s), u(·), s), and intuitively, this value depends on the initial time,

initial state, and the control during time s to T .

In general, the cost functional J in (1.1) can be written as follows:

J = Υ[X(T ), T ] +

∫ T

s

Ξ[X(t), U(t), t]dt. (1.2)

There are two parts in the above cost functional: the terminal condition Υ[X(T ), T ]

and the integral part
∫ T
s

Ξ[X(t), U(t), t]dt. When a missile intercepts a target, the

circle of the impact point is required to be minimized. Mathematically we use the

terminal condition to model the circle of the impact point. In some other control

problems, the time for a system to transit from one state to another is required

to be minimized, mathematically,
∫ T
s

Ξ[X(t), U(t), t]dt→ min.
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In the case of infinite time horizon, i.e., T → +∞, the system is time invariant,

which means Q, R, A, B, C, and D in (1.1)are constant matrices. In addition, the

terminal cost condition x(T )′Hx(T ) in (1.1) is neglected. Then the LQ problem

(1.1) becomes:

min J = E
{∫ +∞

s

[x(t)′Qx(t) + u(t)′Ru(t)]dt

}
,

s.t.

 dx(t) = [Ax(t) +Bu(t)]dt+ [Cx(t) +Du(t)]dW (t),

x(s) = y ∈ Rn.

It is known that the optimal J is always finite in the finite horizon case. However,

in the infinite case the optimal J may not be finite, which brings us difficulty. The

concept of stability is important in infinite time horizon optimal control problems.

There are several approaches to solving stochastic LQ problems, such as the

stochastic maximum principle, dynamic programming, and completion of squares.

All these methods involve Riccati equations. If there exist solutions to the Riccati

equations, then the stochastic LQ problems can be solved. In addition, we can

derive an optimal control via the solutions to the Riccati equations. The method

of solving Riccati equations in stochastic LQ problems was first introduced in [110]

and [111]. It is notable that the disadvantage of this approach is that the existence

and uniqueness of the solution to Riccati equation is difficult to be obtained in

some cases.

Due to changes of working conditions, external disturbances, modelling errors,

and various faults from the system, there exist unavoidable uncertainties in the

mathematical model of the object, and it is difficult to find a precise mathematical

model for this actual control plant. Under such circumstances, robust control was

introduced in the 1950s and has become popular over the last 20 years. When

various uncertainties exist in the system, the system can maintain its proper

attributes and still functions well. This is called robustness. If the system is

stable when it has uncertainties, then the system is said to have robust stability.

If except robust stability, the system can still keep its performance index, then

we say the system has its corresponding robust performance. When there are

parameter uncertainties and modelling errors in the system, a controller can be

designed so that the closed loop system is stable and maintains its own property.
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This is named as robust control, see [9]. Robust control focuses on designing

controllers that particularly deal with uncertainty. The modern theory of robust

control started in the late 1970s, see [14] and [138]. Controllers are designed

explicitly to achieve system stability and robust performance. Recently, the topic

of robust stability and stabilization of stochastic systems with uncertainties in

coefficients is very popular and has been widely studied, see, e.g., [84], [118],

[102], [53] [108] and [120].

In order to eliminate the effect of disturbance efficiently, H∞ control is designed

to deal with robust control problems with uncertainties. It was Zames [129] who

first formulated the H∞ control in the frequency domain. Here, H stands for

Hardy space, and ∞ stands for infinity norm. The development of robust H∞

control can be divided into two periods. In the first period it is named as classic

robust H∞ control theory. In deterministic H∞ theory, H∞ norm is defined by a

norm of the rational transfer matrix, and cannot be applied to either nonlinear or

stochastic systems, see [104] and [51]. In the second period it is called state space

robust H∞ control theory. In 1988 Glover and Doyle [49] established state space

formulae for all stabilizing controllers satisfying an H∞ norm bound. At roughly

the same time, they further developed this research together with Khargonekar

and Francis, and this is the famous work usually denoted as DGKF [36]. It is

emphasized in [26] that a norm of the transfer function equals to L2-induced

norm of the input-output operator from the view of the time domain. Due to this

feature, it is possible to develop our research of robust H∞ control theory based on

a class of stochastic nonlinear systems. Since the publication of the work DGKF,

more researches have been made, extending previous results from time invariant

system to time varying system, see [96]; from linear system to nonlinear system,

see [103] and [104]; from continuous time system to discrete time system, see [10]

and [79]; from certain system to uncertain system, see [63] and [116]; from system

without time delay to system with time delay, see [48], [72], and [50].

In engineering, we design a control u(t) in order to eliminate the effect of

disturbance. In addition, when the worst case of disturbance is involved, we

require the control u(t) to minimize the desired performance. Since both H2 and

H∞ performances are popular in engineering, the mixed H2/H∞ control problem is

considered. It is defined in [26] that a controller is designed not only to attenuate
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the external disturbance efficiently, but also to minimize the H2 performance.

Mixed H2/H∞ control problem for both deterministic and stochastic systems have

attracted many researchers’ attention over the past two decades, see [100], [78],

[113], [36], [13], [26], [135], [54], [131], [141] and the references therein.

When we are modelling a system it is common that there exist abrupt changes

in the system parameters, which are caused by sudden environmental disturbances

or component failures, and we use Markov chains to model these abrupt changes.

The studies of jumping linear systems started from [65]. There is a classic book

on continuous time Markov chains, see [6]. Here we illustrate some other related

works as follows. For stability problems, [60], [85] [37], and [82] have been stud-

ied. The problem of robust stability and stabilization was studied in [91]. Some

other literatures concerning related topics are [92], [99], [17], [28], [33], [43]. The

textbook [83] introduces SDEs with Markovian switching. The LQ control with

Markovian switching has been widely studied in the last two decades, see [1], [60],

[61], and [134].

Most of the literatures mentioned above focus on linear systems. However, in

our daily life many systems we see actually are nonlinear, and the control problems

for such systems are very complicated. Here we illustrate some recent practical

examples in which nonlinaer system is involved, see [106], [125], [41], [73], [95], and

[57]. Based on the previous research results, this thesis investigates the stochastic

optimal and robust control problems in a class of nonlinear systems.

1.3 The Main Contributions and Outlines of the

Thesis

In this section we emphasize the main contributions and outlines of the thesis.

A class of nonlinear systems are developed for the following problems: optimal

stochastic control in both finite and infinite horizon; robust stabilization and ro-

bust H∞ control problem; stochastic H2/H∞ control in both finite and infinite

horizon and stochastic risk-sensitive control. The nonlinearity is formed by a class

of square root processes. Apart from the chapter of risk-sensitive control, Marko-

vian switching is applied to system parameters in this thesis. It is highlighted
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that although the system is nonlinear, explicit solutions like the optimal controls

can still be obtained under such system, which is a very rare case. Some existing

works (e.g. [107], [130], [80], [81], [127], [24], [22], [132], [133], and [136]) only

focus on the general cases of nonlinear systems without fixing the structure of

the nonlinear terms and the results are not obtained explicitly. The advantage of

our system is that we can obtain the solutions explicitly, with which the research

outputs are easier to be applied to real problems. It is known from the literatures

on this subject of study that only some of the nonlinear SDEs can have solutions.

Even if the solution exists, it may not be unique. Note that Section 4.4 in the

book [64] provides some explicitly solvable SDEs. If the nonlinear system does

not permit a solution, the problem will be meaningless. Even if the solution to

the nonlinear SDE exists, there may be more than one solution, and then the

problem is still impractical. Therefore, in our system, it is significant to ensure

the existence and uniqueness of the solution, which is discussed in the thesis.

Next, we outline the main contents and highlight the contributions in each

chapter.

Chapter 2

In this preliminary chapter we review some literatures of optimal and robust con-

trol theory, including linear quadratic control in both finite and infinite horizon,

robust stabilization and robust H∞ control, H2/H∞ control in both finite and

infinite horizon, and risk sensitive control. We recall some definitions, lemmas,

and theorems, some of which will be used in our thesis. Attention is focused on

the most recent research outputs relating to our thesis. It is worth mentioning

that in this chapter we are not only doing literature reviews, but some new results

are also obtained. We improve some previous results without changing the spirit

of the original work,. In this case the previous results are extended into a more

general case.

Chapter 3

Chapter 3 extends optimal LQ control in [2] and [74] to a more general case, which

deals with the optimal control problems of indefinite stochastic nonlinear system

9



with Markovian switching in system coefficients. Two motivating examples are

introduced first. The nonlinearity in our system is formulated by a combination

of two different diffusion terms. The existence and uniqueness of the solution

is discussed. A new type of coupled generalized Riccati equations (CGREs) is

introduced when the problem is formulated. The solvability of CGREs is sufficient

for the well-posedness of the nonlinear optimal control problem and the existence

of optimal controls. Moreover, all the optimal control laws constructed by the

solution to the CGREs are obtained explicitly. We assume that the new CGREs

have solutions. It is shown that our new CGREs can be transformed into the

ones in [74], where the assumption of the solvability of Riccati equation is made.

Then we conclude that our assumption is feasible. An application to finance is

introduced. An illustrative example is given.

Chapter 4

After we have discussed the problem of optimal stochastic nonlinear control of

systems with Markovian switching in finite time horizon in Chapter 3, the case

in infinite time horizon is investigated with its system formulated similarly to

the one in the finite time horizon, especially the nonlinear terms. Then the sys-

tems considered in [3] and [75] can be regarded as one of the special cases in this

chapter. The mean-square stability is considered. The new coupled generalized

algebraic Riccati equations (CGAREs) are introduced. We assume that there

exists a unique solution to the CGAREs. Explicit optimal control laws can be ob-

tained, then our stochastic nonlinear problem is well-posed. Note that the optimal

control laws are linear in state. Furthermore, the value function is obtained.

Chapter 5

In Chapter 5 we consider the problem of robust stabilization and robust H∞

control for a class of nonlinear stochastic systems with Markovian switching in

coefficients. This chapter generalizes [46], which discusses the linear case in the fol-

lowing aspects. A class of nonlinear term, different from the ones used in Chapter

3 and Chapter 4, is included in the diffusion term. The existence and uniqueness

of solution is discussed. Compared with [46], this chapter includes time delay
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in the system, which is used in [120]. We include element-wise uncertainties in

switching probabilities, which is used in [46] . In [120], time delay is only permit-

ted in state, whereas here delay appears in disturbance as well. In [46] and [120],

the norm-bounded parameter uncertainty only appear in x(t), x(t−τ(t)), and u(t)

in the state equation dx(t), but not in disturbance v(t) or controlled output z(t).

Here we extend them by including norm-bounded parameter uncertainty into v(t)

and v(t− τ(t)) as well. The function of controlled output is also constructed dif-

ferently, where disturbance appears in it, which is possible in reality. In summary,

the system considered in [115], [114], [20], [120], [121], and [46] are all special cases

of the one in this chapter. In the first section, in order to achieve linear state feed-

back controllers such that the system is robustly stochastically stable, we derive

sufficient conditions in forms of matrix inequalities. In the second section, we de-

fine and formulate a new generalized robust H∞ control problem, and we derive

a sufficient condition to solve it, also in forms of matrix inequalities. It is noted

that, in comparison with the existing literatures, where disturbance attenuation

is a constant γ, here we propose a new type of disturbance attenuation denoted

as R(rt), which are symmetric matrices with Markovian switching. In this case

the disturbance attenuation itself is extended to a jumping stochastic process. In

general, all of these different kinds of uncertainties are put together into one single

system, under which the problems are still solvable.

Chapter 6

In Chapter 6, H2/H∞ control of stochastic nonlinear systems with Markovian

switching in both finite and infinite time horizon is considered. Compared with

the previous works of nonlinear H2/H∞ control that are dealt with in [127], [81],

[80], [132], [24], [22], [133], and [136], our research output has its advantage that

u∗(·) and v∗(·) are obtained not only explicitly, but also linearly with x(t), which is

very similar to the result in the problem of linear H2/H∞ control. We extend [141]

into a nonlinear case, by involving a square root process in the diffusion term. The

nonlinearity term is similar to the one in Chapter 3 and Chapter 4. In the main

results we show that the solvability of the coupled differential Riccati equations is

sufficient to solve our finite horizon nonlinear stochastic H2/H∞ control problem;
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and the solvability of coupled algebraic Riccati equations is sufficient to solve our

infinite horizon nonlinear stochastic H2/H∞ control problem. In this case, some

results in [26], [135], [54], and [141] are all special cases of our work.

Chapter 7

In Chapter 7, the problem of risk-sensitive control of stochastic nonlinear sys-

tems in finite time horizon is investigated. Based on [30], we proposed a new

nonlinear system, in which the new nonlinear term is similar to the one used in

Chapter 6. When a series of assumptions are satisfied, we prove that there exists

a unique solution to our optimal control problem, and the optimal cost functional

is obtained. We highlight the importance of this chapter by introducing two ap-

plications. When it is applied to finance, we introduce a new interest rate model,

and based on the result of our risk-sensitive control problem, we find the price of

the zero-coupon bond. Moreover, we show that the optimal investment problem

for the power utility is an example of our risk-sensitive control problem.

1.4 Notation

The list of notation for all chapters is provided at the beginning of the thesis. If

some notation is not included in the notation list, then its definition is given in

the chapter where it appears. Note that such definition is valid for that particular

chapter only. Throughout the thesis, some symbols have the same definition. For

example, x is always regarded as state, u is denoted as control, and W is defined

to be Brownian motion. However, some symbols have multiple definitions. For

example, the letter H has three different definitions given in (1.1) in Section 2.2,

(3.13) in Section 3.3.1, and (5.1) in Section 5.2.

1.5 Summary

In conclusion, we say that this thesis is of interest in optimal and robust control

theory. Aiming to extend the existing works with either linear or nonlinear systems

into more general cases, we propose several different nonlinear cases, presented by
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a class of square root processes. Under such nonlinear systems we are still able to

find explicit solutions, which is rare. In addition, our nonlinear systems are easy

to be applied to practical usage.
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Chapter 2

Preliminaries

2.1 Introduction

In this chapter we review some basic results of optimal and robust control the-

ory, including LQ control in both finite and infinite horizon, robust stabilization

and robust H∞ control, H2/H∞ control in both finite and infinite horizon and

risk-sensitive control. Previous results obtained under both deterministic and

stochastic systems are concerned. In addition, some works including Markovian

switching are discussed. We also review some previous works investigated under

some kinds of nonlinear systems, see, e.g. [30], [107], [130], [80], [81], [127], [24],

[22], [132], [133], and [136]). Advantages and disadvantages of all these previous

nonlinear systems are discussed. Finally some lemmas from the previous works

are provided, which will be used throughout this thesis. When we review the

literatures of previous works, it is discovered that some results can be further

improved to a more general case without changing the spirit of the original work,

and this is taken into account by some of the remarks in this chapter.

In addition, it is notable that the recent work [46] is one of author’s research

results. In Section 2.6, the problem formulation and its main results are provided

identically to [46], and these should be regarded as part of this thesis. The reason

why we choose to outline [46] in the preliminary chapter, rather than putting the

whole work of [46] identically in the later chapter, is that [46] is based on linear

systems, and Chapter 5 extends it into a nonlinear case. In this case, all the main
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content of this thesis is based on nonlinear systems.

2.2 Stochastic Linear Quadratic (LQ) Control

and Differential Riccati Equation in Finite

Time Horizon

In optimal LQ control theory, in order to present an optimal control, some works

use Riccati equations to achieve this target, see for example: [62], [94], [7], [110], [8]

and [32]. In the past literatures, the control weighting matrix R is usually assumed

to be positive definite, and state weighting matrix Q is usually assumed to be

positive semidefinite. Under such circumstances the solvability of the optimal LQ

control problem equals to the solvability of its corresponding Riccati equations.

Later [23], [4] and [2] generalize the above results by allowing Q and R to be

indefinite. In this case, the diffusion term dW (t) is required to depend on the

control u(·), then the stochastic LQ problem is well-posed. Further researches on

indefinite stochastic LQ control in finite time horizon were studied in [27], [76]

and [25]. Indefinite stochastic LQ control has various applications, see for example

[137], [139], [77] and [67].

One of the recent works focusing on indefinite stochastic LQ control is [23],

which proves that problem (1.1) is well posed, if the following Riccati equation

has a solution P (·),

Ṗ + PA+ A′P + C ′PC − (PB + C ′PD)(R +D′PD)−1(B′P +D′PC)

+Q = 0,

P (T ) = H,

R +D′PD > 0, a.e. t ∈ [0, T ].

(2.1)

Note that t is omitted in (2.1) for convenience. In addition, the optimal control

u∗(·) is achieved by the solution P (·). We emphasized that R + D′PD > 0 in

(2.1) is restrictive. This is improved in [2], where a generalized Riccati equation
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(GRE) is given as follows (t is omitted),

Ṗ + PA+ A′P + C ′PC − (PB + C ′PD)(R +D′PD)†(B′P +D′PC)

+Q = 0,

P (T ) = H,

(R +D′PD)(R +D′PD)†(B′P +D′PC)− (B′P +D′PC) = 0,

R +D′PD ≥ 0, a.e. t ∈ [0, T ].

(2.2)

Here, the case of R + D′PD = 0 is allowed. The difference between (2.1) and

(2.2) is that pseudo inverse and one more algebraic constraint are introduced in

(2.2).

2.3 Optimal Stochastic LQ Control of Systems

with Markovian Switching in Finite Time

Horizon

Let (Ω,F , {Ft}t≥0,P) be a given filtered complete probability space, where there

exist a standard one-dimensional Brownian motion (W (t), 0 ≤ t ≤ T ) and a

Markov chain (rt, 0 ≤ t ≤ T ), taking values in {1, . . . , δ}, with transition proba-

bilities given by

P{rt+∆t = j | rt = i} =

{
πij∆t+ o(∆t) : if i 6= j,

1 + πii∆t+ o(∆t) : if i = j,
(2.3)

where πij ≥ 0 for i 6= j while πii = −
∑

j 6=i πij. Note that the above setting

of Markovian switching will be used throughout this thesis, and we assume that

Markov chain rt is independent of all the Brownian Motions in this thesis.

Based on the results in [2], Markovian switching was included in the indefinite

stochastic LQ system by [74], in which the optimal control problem becomes:

min J(s, y, i;u(·))
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= E


∫ T

s

[x(t)

u(t)

]′ [
Q(t, rt) L(t, rt)

L(t, rt)
′ R(t, rt)

][
x(t)

u(t)

] dt

+x(T )
′
H(rT )x(T )|rs = i

}
,

s.t.


dx(t) = [A(t, rt)x(t) +B(t, rt)u(t)]dt+ [C(t, rt)x(t)

+D(t, rt)u(t)]dW (t),

x(s) = y ∈ Rn,

(2.4)

when rt = i, i = {1, . . . , δ}, we denote A(t, rt) = Ai(t). Here the matrix functions

Ai(·), etc., are given with appropriate dimensions.

Similar to the optimal LQ control problem without Markovian switching, a

new type of coupled generalized Riccati equations (CGREs) is introduced in [74],

(t is omitted for convenience)

Ṗi + PiAi + A′iPi + C ′iPiCi − (PiBi + C ′iPiDi + Li)(Ri +D′iPiDi)
†(B′iPi

+D′iPiCi + L′i) +Qi +
δ∑
j=1

πijPj = 0,

Pi(T ) = Hi,

(Ri +D′iPiDi)(Ri +D′iPiDi)
†(B′iPi +D′iPiCi + L′i)− (B′iPi +D′iPiCi

+ L′i) = 0,

Ri +D′iPiDi ≥ 0, a.e. t ∈ [0, T ], i = 1, · · · , δ.

(2.5)

Two more special cases are introduced in [74] as follows. If D′iPiDi + Ri 6= 0, for

every i, then (2.5) becomes the following,

Ṗi + PiAi + A′iPi + C ′iPiCi − (PiBi + C ′iPiDi + Li)(Ri +D′iPiDi)
−1(B′iPi

+D′iPiCi + L′i) +Qi +
δ∑
j=1

πijPj = 0,

Pi(T ) = Hi,

Ri +D′iPiDi > 0, a.e. t ∈ [0, T ], i = 1, · · · , δ.
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When D′iPiDi +Ri ≡ 0, for every i, (2.5) is reduced to the following,

Ṗi + PiAi + A′iPi + C ′iPiCi +
δ∑
j=1

πijPj +Qi = 0,

Pi(T ) = Hi,

D′iPiCi +B′iPi + L′i = 0,

D′iPiDi +Ri = 0, a.e. t ∈ [0, T ], i = 1, · · · , δ.

It is proved in [74] that the solvability of the CGREs (2.5) is not only sufficient, but

also necessary for the well-posedness of the LQ problem (2.4). Optimal controls

are found explicitly via the solution to CGREs (2.5). Here we provide one of the

main results in [74].

Theorem 2.3.1. [74] If the CGREs (2.5) have a solution, then the stochastic LQ

problem (2.4) is well-posed. Moreover, the set of all optimal controls w.r.t. the

initial (s, y) ∈ [0, T )× Rn is presented as follows:

u∗(t)

= −
δ∑
i=1

{[
[Di(t)

′Pi(t)Di(t) +Ri(t)]
†[Di(t)

′Pi(t)Ci(t) +Bi(t)
′Pi(t)

+Li(t)
′] + Yi(t)− [Di(t)

′Pi(t)Di(t) +Ri(t)]
†[Di(t)

′Pi(t)Di(t)

+Ri(t)]Yi(t)

]
x(t) + zi(t)− [Di(t)

′Pi(t)Di(t) +Ri(t)]
†[Di(t)

′Pi(t)Di(t)

+Ri(t)]zi(t)}χ{rt=i}(t),

where Yi(·) ∈ L2
F(s, T ;Rnu×n), zi(·) ∈ L2

F(s, T ;Rnu). In addition, the value func-

tion is obtained as follows:

V (s, y, i) ≡ infu(·)∈UJ(s, y, i;u(·))
= y′Pi(s)y, i = 1, · · · , l.

The proof is omitted here. The idea of involving Yi(·) ∈ L2
F(s, T ;Rnu×n), and

zi(·) ∈ L2
F(s, T ;Rnu) results in that we are able to obtain infinitely many optimal

18



control laws. This technique is going to be used in both Chapter 3 and Chapter

4. Note that the above theorem can be viewed as a special case of the main result

in Chapter 3.

2.4 Indefinite Stochastic LQ Control of Systems

in Infinite Time Horizon

Let (Ω,F , {Ft}t≥0,P) be a given filtered complete probability space, where there

exists a standard one-dimensional Brownian motion (W (t), t ≥ 0). We introduce

the notation of Lloc2 (Rk) which is defined the same way as the one in [3], as follows

Lloc2 (Rk) , φ(·) : [0,+∞)× Ω→ Rk, (2.6)

if φ(·) is Ft-adapted, measurable, and E
∫ T

0
|φ(t, ω)|2dt < +∞, ∀T ≥ 0. In [3]

the infinite time horizon stochastic LQ optimal control problem is considered as

follows:

min J = E
{∫ +∞

0

[x(t)′Qx(t) + 2x(t)′Lu(t) + u(t)′Ru(t)]dt

}
,

s.t.

 dx(t) = [Ax(t) +Bu(t)]dt+ [Cx(t) +Du(t)]dW (t),

x(s) = x0 ∈ Rn.
(2.7)

The following definitions proposed in [3] will be used in the later chapters.

Definition 2.4.1. [3] A control u(·) is called mean-square stabilizing w.r.t. x0 if

lim
t→+∞

E[x(t)′x(t)] = 0. (2.8)

A feedback control u(t) = Kx(t), where K is a constant matrix, is called stabilizing

if for x0 the corresponding state x(·) of system (2.7) satisfies (2.8).

The concept of mean-square stability is very important in infinite horizon

optimal control problems.

19



Definition 2.4.2. [3] Given x0 ∈ Rn in (2.7), we present the definition of ad-

missible controls as follows:

Uad(x0) , {u(·) ∈ Lloc2 (Rnu)}, (2.9)

provided that u(·) is mean-square stabilizing w.r.t. x0. The notation of Lloc2 (·) is

given in (2.6).

Definition 2.4.3. [3] The value function is defined as

V (x0) , inf
u(·)∈Uad(x0)

J(x0, u(·)). (2.10)

The LQ problem (2.7) is called well-posed if

V (x0) > −∞, ∀x0 ∈ Rn.

Any control u∗(·) that achieves the infimum in (2.10) is called optimal, w.r.t. x0.

We do not have differential Riccati equations in infinite time horizon opti-

mal control problems. Instead, generalized algebraic Riccati equation (GARE) is

introduced in [3] as follows,

A′P + PA+ C ′PC +Q− (PB + C ′PD + L)(R +D′PD)†(B′P

+D′PC + L′) = 0,

[I − (R +D′PD)(R +D′PD)†](B′P +D′PC + L′) = 0,

R +D′PD ≥ 0.

(2.11)

Similar to the two special cases of (2.5) in the previous section, [3] also provides

two special cases as follows,
A′P + PA+ C ′PC +Q− (PB + C ′PD + L)(R +D′PD)−1(B′P

+D′PC + L′) = 0,

R +D′PD > 0,

(2.12)

and 
A′P + PA+ C ′PC +Q = 0,

B′P +D′PC + L′ = 0,

R +D′PD = 0.

(2.13)

20



Before we introduce the main results of [3], for notation convenience, we denote

M(P ) , A′P + PA+ C ′PC +Q,

L(P ) , PB + C ′PD + L,

N (P ) , R +D′PD.

Theorem 2.4.1. [3] Assume that GARE (2.11) has a solution and there exist

Y (·) ∈ Lloc2 (Rnu×n) and z(·) ∈ Lloc2 (Rnu) such that the following control:

uY,z(t) = −[N (P )†L(P )′ + (I −N (P )†N (P ))Y (t)]x(t)

−[I −N (P )†N (P )]z(t)

is admissible w.r.t. any initial x0. Then the stochastic LQ problem (2.7) is well-

posed and uY,z(·) is an optimal control. Moreover, the value function is

V (x0) = x′0Px0.

As we mentioned in the Introduction: the difficulty of the stochastic LQ prob-

lem in the infinite time horizon is that the optimal J may not be finite, this is

considered in Definition 2.4.3 and solved by the above theorem.

2.5 Indefinite Stochastic LQ Control of Systems

with Markovian switching in Infinite Time

Horizon

Based on [3], Markovian jumps were included in the parameters of system (2.7)

by [75]. In this section, we mention the problem formulation and some of the

main contributions in [75]. Later in Chapter 4, we extend [75] to a nonlinear case.

Define the Markovian switching in the same way as (2.3), the infinite time horizon

stochastic LQ optimal control problem with Markovian switching is considered in

[75] as follows:

min J(x0, i;u(·))
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= E


∫ +∞

s

[x(t)

u(t)

]′ [
Q(rt) L(rt)

L(rt)
′ R(rt)

][
x(t)

u(t)

] dt

∣∣∣∣∣rs = i

 ,

s.t.


dx(t) = [A(rt)x(t) +B(rt)u(t)]dt+ [C(rt)x(t)

+D(rt)u(t)]dW (t),

x(s) = x0 ∈ Rn,

(2.14)

where (rt, t ≥ 0) takes values in {1, · · · , δ}.
Similar to Definition 2.4.1, Definition 2.4.2, and Definition 2.4.3, the definition

of mean-square stabilizing, admissible control and value function in the case of the

system with Markovian switching is stated in [75]. Here we omit the duplicated

statements.

The coupled generalized algebraic Riccati equations (CGAREs) are introduced

in [75] as follows
A′iPi + PiAi + C ′iPiCi +Qi +

δ∑
j=1

πijPj − (PiBi + C ′iPiDi + Li)(Ri

+D′iPiDi)
−1(B′iPi +D′iPiCi + L′i) = 0,

Ri +D′iPiDi > 0, i = 1, · · · , δ

(2.15)

with the unknown P1, · · · , Pδ.
The stability condition of system (2.14) is given in [75]. Next, we provide the

solution to optimal control problem in [75].

Theorem 2.5.1. [75] Assume that there exists solution to the CGAREs (2.15),

and Pi > 0, then the LQ problem (2.14) is well-posed and there exists an optimal

state feedback control,

u(t) = −
δ∑
i=1

(Ri +D′iPiDi)
−1(B′iPi +D′iPiCi + L′i)x(t)χrt=i(t), (2.16)

and the value function is given by V (x0, i) = x′0Pix0, ∀x0 ∈ Rn, ∀i = 1, 2, · · · , δ.
P1, · · · , Pδ is the solution to the CGAREs (2.15).
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Remark 2.5.1. In the section of problem formulation and preliminaries of [75],

the concept of pseudo inverse is introduced, which is also used in [2], [74] and [3],

but not used in the context of CGAREs (2.15) or the main results, like finding the

optimal control. Here we apply the pseudo inverse to CGAREs (2.15), without

changing the spirit of [75]. We provide some new results below. The CGAREs

become the following:

PiAi + A′iPi + C ′iPiCi − (PiBi + C ′iPiDi + Li)(Ri +D′iPiDi)
†(B′iPi

+D′iPiCi + L′i) +Qi +
δ∑
j=1

πijPj = 0,

(Ri +D′iPiDi)(Ri +D′iPiDi)
†(B′iPi +D′iPiCi + L′i)− (B′iPi +D′iPiCi

+ L′i) = 0,

Ri +D′iPiDi ≥ 0, i = 1, · · · , δ.

(2.17)

Note that in (2.17) we allow Ri + D′iPiDi = 0, which generalize the CGAREs

in (2.15). The importance of the new CGAREs in (2.17) can be seen from the

following example. Assume someone can get a solution P to the first equation

of (2.15). However, when substituting this value P into the second constraint of

(2.15), unfortunately we have Ri + D′iPiDi = 0, which is not in agreement with

Ri + D′iPiDi > 0. In this case, (2.15) has no solution. The involving of pseudo

inverse and one more algebraic constraint in (2.17) makes the CGAREs more

generalized. In addition, if we compare (2.17) with (2.11) in Section 2.4 without

Markovian switching, we see that (2.17) is quite similar to (2.11). The difference

is that in (2.17) we have each system coefficient relating to Markovian switching,

and accordingly we have one more term
∑δ

j=1 πijPj.

Following (2.12) and (2.13), we have two more similar results. If the term

D′iPiDi +Ri 6= 0, for every i, then the CGAREs (2.17) become the following,

PiAi + A′iPi + C ′iPiCi − (PiBi + C ′iPiDi + Li)(Ri +D′iPiDi)
−1(B′iPi

+D′iPiCi + L′i) +Qi +
δ∑
j=1

πijPj = 0,

Pi(T ) = Hi,

Ri +D′iPiDi > 0, a.e. t ∈ [0, T ], i = 1, · · · , δ.
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When D′iPiDi +Ri ≡ 0 for every i, the CGAREs (2.17) become the following:

PiAi + A′iPi + C ′iPiCi +
δ∑
j=1

πijPj +Qi = 0,

Pi(T ) = Hi,

D′iPiCi +B′iPi + L′i = 0,

D′iPiDi +Ri = 0, a.e. t ∈ [0, T ], i = 1, · · · , δ.

Remark 2.5.2. Similar to including Yi(·) ∈ L2
F(s, T ;Rnu×n), zi(·) ∈ L2

F(s, T ;Rnu)

in Theorem 2.3.1, and including Y (·) ∈ Lloc2 (Rnu×n), z(·) ∈ Lloc2 (Rnu) in Theo-

rem 2.4.1, we can also have infinitely many controls u(·), by including Y (·) ∈
Lloc2 (Rnu×n) and z(·) ∈ Lloc2 (Rnu) into (2.16).

If we consider Remark 2.5.1, then we can have a new result below. For notation

convenience, we denote

Mi , PiAi + A′iPi + C ′iPiCi +Qi +
δ∑
j=1

πijPj,

Li , PiBi + C ′iPiDi + Li,

Ni , Ri +D′iPiDi.

We assume that there exists a solution to the CGAREs (2.17), denoted as P1, · · · , Pδ,
then the LQ problem (2.14) is well-posed. In addition, there exist optimal controls

as follows,

u(t) = −[N †i L′i + (I −N †i Ni)Yi]x(t)− [I −N †i Ni]z(t),

with value function V (x0, i) = x′0Pix0, ∀x0 ∈ Rn, ∀i = 1, 2, · · · , δ.
The proof is straight forward, according to the previous results. Hence it is

omitted here.
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2.6 Robust Stabilization and Robust H∞ Con-

trol for Uncertain Stochastic Systems with

State Delay

Over the past two decades, H∞ control theory has been developed rapidly. Some

typical works can be found for example in [45], [36], [140] and the references

therein. When robustness is considered in H∞ control theory, [63] studies the

problem of robust stabilization. The robust H∞ control problem was studied by

[117], [124], [128] and etc. In addition, [51] studies the stochastic H∞ control

problem. Recently [46] generalizes [120] in the following aspects. One of the ad-

vantages over [120] is that in [46] the control appears in the diffusion term as well.

In addition, Markovian switching is included in system coefficients. The switching

probabilities are assumed to be known precisely in most systems with Markovian

switching. However, uncertainties may also appear in the mode transition rate

matrix because of modelling errors. There are mainly two different types of un-

certain switching probabilities, namely the poly-topic ones, see for example [29]

and [40], and the element-wise ones, see for example [11] and [18]. In [46], the

switching probabilities is assumed to have element-wise uncertainties.

Let (Ω,F , {Ft}t≥0,P) be a given filtered complete probability space, where

there exists a standard one-dimensional Brownian motion (W (t), 0 ≤ t ≤ T ), and

a Markov chain (rt, 0 ≤ t ≤ T ) taking values in a finite state-space S = 1, 2, . . . , N ,

with generator Π̂ = (π̂ij)N×N given by

P{r(t+ δ) = j | r(t) = i} =

{
π̂ijδ + o(δ) : if i 6= j,

1 + π̂ijδ + o(δ) : if i = j,

for δ > 0, and limδ→0(o(δ)/δ) = 0. Here, π̂ij ≥ 0 is the transition rate from i

to j if i 6= j while π̂ii = −
∑N

j=1,j 6=i π̂ij. We assume that Markov chain r(·) is

independent of Brownian Motion W (·). Additionally, similar to the settings in

[119], the mode transition rate matrix Π̂ is also assumed to be not exactly known

and has the element-wise uncertainties

Π̂ = Π + ∆Π,
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with Π , (πij)N×N satisfying πij ≥ 0, (i, j ∈ S, j 6= i) and πii , −
∑N

j=1,j 6=i πij

for all i ∈ S, where πij denotes the estimated value of π̂ij, and ∆Π , (∆πij) =

(π̂ij − πij) where |∆πij| ≤ εij, εij ≥ 0. ∆πij denotes the error between π̂ij and πij

for all i, j ∈ S, j 6= i and ∆πii , −
∑N

j=1,j 6=i ∆πij, ∀i ∈ S.

The following stochastic system with Markovian switching and parameter un-

certainties is considered in [46]:

dx(t) = [(A(r(t)) + ∆A(r(t)))x(t) + (B(r(t)) + ∆B(r(t)))u(t)

+G(r(t))v(t)]dt

+[(E(r(t)) + ∆E(r(t)))x(t) + (F (r(t)) + ∆F (r(t)))u(t)

+H(r(t))v(t)]dW (t), (2.18)

and

z(t) = C(r(t))x(t) +D(r(t))u(t), (2.19)

for t ≥ 0 with initial data x(0) = x0 and r(0) = i0 ∈ S. Here x(t) ∈ Rn is the

state, u(t) ∈ Rm is the control input, v(t) ∈ Rp is the disturbance input, and

z(t) ∈ Rq is the controlled output. For each mode r(t) = i ∈ S, A(i) = Ai, etc. is

denoted for simplicity.

In the above system, Ai, Bi, Ci, Di, Ei, Fi, Gi, Hi are known real constant ma-

trices. ∆Ai,∆Bi,∆Ei,∆Fi are unknown matrices representing parameter uncer-

tainties. It is assumed that[
∆Ai ∆Bi ∆Ei ∆Fi

]
= MiUi

[
Nai Nbi Nei Nf i

]
,

where Mi, Nai, Nbi, Nei, Nf i are known real constant matrices and Ui’s are un-

known matrices such that Ui
TUi ≤ I, ∀i ∈ S.

Next we present some fundamental definitions that will be used later.

Definition 2.6.1. [82] The SDE with Markovian switching (2.18) is said to be

almost surely exponentially stable if for all x0 ∈ Rn and i0 ∈ S,

lim sup
t→∞

1

t
log |x(t;x0, i0)| < 0.
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The definition of mean-square stabilizing can be found in Definition 2.4.1.

Definition 2.6.2. [120] [46] The uncertain stochastic system in (2.18) is said to

be robustly stochastically stable if the system (2.18) with u(t) = 0 and v(t) = 0 is

mean-square asymptotically stable for all admissible uncertainties ∆Ai, and ∆Ei.

Next, we provide sufficient conditions such that system (2.18) is robustly

stochastically stable. The following matrices are introduced:

A(r(t)) , A(r(t)) +B(r(t))K(r(t)),

∆A(r(t)) , M(r(t))U(r(t))Na(r(t)),

Na(r(t)) , Na(r(t)) +Nb(r(t))K(r(t)),

E(r(t)) , E(r(t)) + F (r(t))K(r(t)),

∆E(r(t)) , M(r(t))U(r(t))Ne(r(t)),

Ne(r(t)) , Ne(r(t)) +Nf (r(t))K(r(t)).

Theorem 2.6.1. [46] Let v(t) = 0, ∀t ≥ 0. Then the system (2.18) is robustly

stochastically stabilizable if there exist scalars {ε1i > 0, i ∈ S}, {ε2i > 0, i ∈ S},
{λij > 0, i, j ∈ S, i 6= j}, and matrices {Pi ∈ Sn, i ∈ S}, {Ki ∈ Rm×n, i ∈ S},
such that the following matrix inequalities hold,

Λi ∗ ∗ ∗ ∗
M ′

iPi −ε−1
1i I ∗ ∗ ∗

Nai 0 −ε1iI ∗ ∗
Nei 0 0 −ε2iI ∗
Ei 0 0 0 ε2iMiM

′
i − P−1

i


< 0, i ∈ S,

where

Λi = A
′
iPi + PiAi +

N∑
j=1,j 6=i

[
λij
4
ε2
ijI +

1

λij
(Pj − Pi)2

]
.

In this case, the state feedback controller is

u(t) = K(r(t))x(t).
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The proof is omitted, because we will deal with a more general version of the

above problem later in Chapter 5, in which general results are obtained. The idea

of proving Theorem 2.6.1 is the same as proving Theorem 5.3.1.

Next, we present a sufficient condition to solve the robust H∞ control problem

for system (2.18) to (2.19). Here, apart from the requirement of robust stabiliza-

tion, the H∞ performance must be satisfied. The definition of the H∞ performance

is given below.

Definition 2.6.3. [46] [120] Given a scalar γ > 0, the stochastic system with

u(t) = 0 is said to be robustly stochastically stable with disturbance attenua-

tion γ if it is robustly stochastically stable and under zero initial conditions,

‖z(t)‖ < γ‖v(t)‖ for all non-zero v(t) ∈ L2[0,∞) and all admissible uncertainties

∆Ai,∆Bi,∆Ei,∆Fi, where

‖z(t)‖ =

(
E
{∫ ∞

0

|z(t)|2dt
}) 1

2

.

The robust H∞ control problem for system (2.18) to (2.19) is solved by the

following theorem.

Theorem 2.6.2. [46] Given a scalar γ > 0, then this system is robustly stochas-

tically stabilizable with disturbance attenuation γ if there exist scalars {ε1i > 0, i ∈
S}, {ε2i > 0, i ∈ S}, {λij > 0, i, j ∈ S, i 6= j}, and matrices {Pi ∈ Sn, i ∈ S},
{Ki ∈ Rm×n, i ∈ S}, such that the following matrix inequalities hold,

Γi ∗ ∗ ∗ ∗ ∗
G′iPi −γ2I ∗ ∗ ∗ ∗
Nai 0 −ε1iI ∗ ∗ ∗
Nei 0 0 −ε2iI ∗ ∗
Ei Hi 0 0 ε2iMiM

′
i − P−1

i ∗
Ci 0 0 0 0 −I


< 0, i ∈ S,

where

Γi , PiAi + A
′
iPi + ε1iPiMiM

′
iPi +

N∑
j=1,j 6=i

[
λij
4
ε2
ijI +

1

λij
(Pj − Pi)2

]
,
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and

C(r(t)) , C(r(t)) +D(r(t))K(r(t))

In this case, the state feedback controller is

u(t) = K(r(t))x(t).

The proof is omitted for the same reason stated in the previous theorem.

2.7 Stochastic H2/H∞ Control

Recently [127] studies robust H2/H∞ control for a class of nonlinear stochastic

systems in discrete time case. [81] focuses on a game theory approach to mixed

H2/H∞ control for a class of stochastic time-varying systems with randomly oc-

curring nonlinearities, also in discrete time cases. Note that there are some other

works such as [80], [132], [24], [22], [133], and [136] focusing on nonlinear H2/H∞

control problems. Although some general results are obtained under such general

kind of nonlinear system, readers are not provided with any feasible cases that

can have explicit solutions.

In this section, we illustrate some basic definitions and results obtained from

previous works of stochastic H2/H∞ control problem with Markovian switching

in both finite and infinite time horizon.

2.7.1 Finite Horizon with Markovian switching

Define the Markovian switching in the same way as (2.3), and define the state

space M = {1, 2, · · · , l}. [141] considers the following linear SDEs with Markovian

switching, 

dx(t) = [A(rt)x(t) +B2(rt)u(t) +B1(rt)v(t)]dt

+ [G(rt)x(t) +H2(rt)u(t) +H1(rt)v(t)]dW (t),

z(t) =

[
C(rt)x(t)

D(rt)u(t)

]
,

(2.20)
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where x(0) = x0 and D(rt)
′D(rt) , I. Here, (W (t), 0 ≤ t ≤ T ) is a one-

dimensional standard Ft-Brownian motion. We denote x(t) ∈ Rn, z(t) ∈ Rnz ,

u(t) ∈ Rnu and v(t) ∈ Rnv as system state, controlled output, control input,

and external disturbance of the system (2.20) respectively. The finite horizon

stochastic H2/H∞ control problem is stated as follows.

Definition 2.7.1. [141] For given disturbance attenuation level γ > 0, 0 < T <

∞, the finite horizon mixed H2/H∞ control is to find a state feedback control

u∗T (t, x) = K2ix(t) ∈ L2
F([0, T ],Rnu) such that

(i) The trajectory of the closed-loop system (2.20) starting from x(0) = x0 = 0

satisfies

l∑
i=1

E
[∫ T

0

(
|C(rt)x(t)|2 + |u∗T (t)|2

)
dt|r0 = i

]

≤ γ2

l∑
i=1

E
[∫ T

0

|v(t)|2dt|r0 = i

]
(2.21)

for ∀v 6= 0, v ∈ L2
F([0, T ],Rnv).

(ii) When the worst case disturbance v∗T (t, x) ∈ L2
F([0, T ],Rnv) is implemented to

(2.20), u∗T (t, x) minimizes the output

JT2 (u, v∗T , x0, i) = E
[∫ T

0

|z(t)|2dt|r0 = i

]
, i ∈M. (2.22)

Game theory approach is used in [141] to solve the stochastic H2/H∞ control

problem.

Definition 2.7.2. [141] If we define

JT1 (u, v, x0, i) , E
[∫ T

0

(γ2|v(t)|2 − |z(t)|2)dt|r0 = i

]
, i ∈M,

and

JT2 (u, v, x0, i) , E
[∫ T

0

(|z(t)|2)dt|r0 = i

]
, i ∈M,
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then the finite horizon stochastic H2/H∞ control problem is equivalent to finding

the Nash equilibrium (u∗T , v
∗
T ) defined as

JT1 (u∗T , v
∗
T , x0, i) ≤ JT1 (u∗T , v, x0, i), ∀v ∈ L2

F([0, T ],Rnv), i ∈M,

and

JT2 (u∗T , v
∗
T , x0, i) ≤ JT2 (u, v∗T , x0, i), ∀u ∈ L2

F([0, T ],Rnu), i ∈M.

Remark 2.7.1. [141] The first Nash inequality relates to the H∞ performance,

because JT1 (u∗T , v
∗
T , x0, i) ≥ 0 implies (2.21). The second one deals with the H2

performance. If the Nash equilibrium (u∗T , v
∗
T ) exists, u∗T is our desired controller,

and v∗T is the worst case disturbance. In other words, (u∗T , v
∗
T ) is a pair of solutions

to the stochastic H2/H∞ control problem.

Next, we consider the following stochastic system in [141]:
dx(t) = [A(rt)x(t) +B1(rt)v(t)]dt

+ [G(rt)x(t) +H1(rt)v(t)]dW (t)

z(t) = C(rt)x(t), x(0) = x0 ∈ Rn

(2.23)

The perturbation operator L[0,T ] is defined in [141] as follows,

L[0,T ](v(t)) , C(rt)x(t; 0, v), ∀v(t) ∈ L2
F([0, T ],Rnv).

Its norm is defined in [141] as follows,

|L[0,T ]| , sup
v∈L2F ([0,T ],Rnv ),v 6=0,x0=0

|z(t)|[0,T ]

|v(t)|[0,T ]

, sup
v∈L2F ([0,T ],Rnv ),v 6=0,x0=0

{
∑l

i=1 E[
∫ T

0
z(t)′z(t)dt|r0 = i]} 1

2

{
∑l

i=1 E[
∫ T

0
v(t)′v(t)dt|r0 = i]} 1

2

.

Definition 2.7.3. [141] Let γ > 0, system (2.23) is said to have L2-gain less

than or equal to γ if for any nonzero v ∈ L2
F([0, T ],Rnv), |L[0,T ]| ≤ γ.

The following lemma indicates the relation between the L2-gain and the dif-

ferential Riccati equation (DRE).
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Lemma 2.7.1. [141] For system (2.23) and given disturbance attenuation γ > 0,

|L[0,T ]| ≤ γ iff there exists a solution P = (P1, P2, · · · , Pl) with Pi ≥ 0, i ∈ M ,

satisfying the following DRE

Ṗi + A′iPi + PiAi +G′iPiGi − C ′iCi +
l∑

j=1

πijPj − (PiB1i +G′iPiH1i)×

(γ2I +H ′1iPiH1i)
−1(B′1iPi +H ′1iPiGi) = 0,

γ2I +H ′1iPiH1i > 0, i ∈M.

The above lemma originates from [130], which deals with a class of nonlinear

stochastic systems. It is applied in [141] as a special case for a linear system.

Later, this lemma will also be applied in our thesis in a nonlinear case.

The following theorem presents the main result of the finite horizon stochastic

H2/H∞ control. First, some notations are introduced.

Ā(rt) , A(rt) +B2(rt)K2(rt),

Ḡ(rt) , G(rt) +H2(rt)K2(rt),

Q̄k(rt) , Qk(rt) +K2(rt)
′Rk(rt)K2(rt),

Ã(rt) , A(rt) +B1(rt)K1(rt),

G̃(rt) , G(rt) +H1(rt)K1(rt),

Q̃k(rt) , Qk(rt) +K1(rt)
′Sk(rt)K1(rt).

Theorem 2.7.1. [141] For given disturbance attenuation level γ > 0, the finite

horizon H2/H∞ control for system (2.20) has a pair of solutions (u∗T , v
∗
T ) with

u∗T (t, x) = −
l∑

i=1

K2iχrt=i(t)x(t),

v∗T (t, x) = −
l∑

i=1

K1iχrt=i(t)x(t),
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if the following four coupled DREs admit solutions (P1, P2;K1, K2) with P1 =

(P11, P12, · · · , P1l) ≥ 0, and P2 = (P21, P22, · · · , P2l) ≥ 0.
Ṗ1i + P1iĀi + Ā′iP1i + Ḡ′iP1iḠi +

l∑
i=1

πijPj − C ′iCi −K ′2iK2i

− (B′1iP1i +H ′1iP1iḠi)
′(γ2I +H ′1iP1iH1i)

−1(B′1iP1i +H ′1iP1iḠi) = 0,

γ2I +H ′1iP1iH1i > 0, i ∈M,

K1i(t) = (γ2I +H ′1iP1iH1i)
−1(B′1iP1i +H ′1iP1iḠi),


Ṗ2j + P2jÃj + Ã′jP2j + G̃′jP2jG̃j +

l∑
k=1

πjkP2k + C ′jCj

− (B′2jP2j +H ′2jP2jG̃j)
′(I +H ′2jP2jH2j)

−1(B′2jP2j +H ′2jP2jG̃j) = 0,

I +H ′2jP2jH2j > 0, j ∈M,

K2j(t) = (I +H ′2jP2jH2j)
−1(B′2jP2j +H ′2jP2jG̃j).

The proof can be found in [141] and it is omitted here. Note that this theorem

can be regarded as a special case of Theorem 6.2.1 in Chapter 6.

2.7.2 Infinite Horizon with Markovian switching

The stochastic H2/H∞ control problem in infinite time horizon with Markovian

switching is also considered in [141], in which the system is similar to (2.20).

The concept of stability is considered in [141], similar to the relevant statements

in Section 2.4. It is shown that the solvability of four coupled algebraic Riccati

equations (AREs) is sufficient to solve the infinite horizon stochastic H2/H∞ con-

trol problem with Markovian switching. The statements of the main results are

omitted here.
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2.8 Risk-sensitive Control

Risk-sensitive stochastic control was first considered by [52] and [58]. [44], [58]

and [59] study the problems of risk-sensitive control connecting with differential

games. Risk-sensitive control can be applied to financial mathematics, see for

example [89] and [30]. In addition, [39] and [49] investigates the relationship be-

tween risk-sensitive control and robust control. Recently, generalized risk-sensitive

control with full and partial state observation was investigated by [31]. By the

same author, stochastic risk-sensitive control for a class of nonlinear system was

concerned in [30], where the nonlinear term is designed in the drift part. Based

on [30], risk-sensitive control for a class of nonlinear square-root processes was

studied by [42], which includes nonlinearity in the diffusion term. In [31], [30] and

[42] the optimal control is given in an explicit form by using completion of square

method. Because the problem formulation of Chapter 7 is based on [30], here we

omit introducing the preliminary results in [30].

2.9 Some Useful Lemmas

We introduce some lemmas that are useful in this thesis.

Lemma 2.9.1. [112] Let x(t) satisfy

dx(t) = b(t, x(t), rt)dt+ σ(t, x(t), rt)dW (t),

and ϕ(·, ·, i) ∈ C2([0,∞)× Rn), i = 1, · · · , δ, be given. Then,

E{ϕ(T, x(T ), rT )− ϕ(s, x(s), rs)|rs = i}

= E
{∫ T

s

[ϕt(t, x(t), rt) + Γϕ(t, x(t), rt)]dt|rs = i

}
,

where

Γϕ(t, x, i) =
1

2
tr[σ(t, x, i)′ϕxx(t, x, i)σ(t, x, i)]

+b(t, x, i)′ϕx(t, x, i) +
δ∑
j=1

πijϕ(t, x, j).
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Lemma 2.9.2. [93] Let a matrix M ∈ Rm×n be given. Then there exists a unique

matrix M † ∈ Rn×m such thatMM †M = M, M †MM † = M †,

(MM †)′ = MM †, (M †M)′ = M †M,
(2.24)

where the matrix M † is called the Moore-Penrose pseudo inverse of M .

Lemma 2.9.3. [2] [4] For a symmetric matrix S, we have

(i)S† = (S†)′,

(ii)SS† = S†S,

(iii) S ≥ 0 if and only if S† ≥ 0.

Lemma 2.9.4. (Extended Schur’s Lemma [5]). Let matrices M = M′, N, and

R = R′ be given with appropriate dimensions. Then the following conditions are

equivalent:

(i) M− NR†N′ ≥ 0 and N(I − RR†) = 0, R ≥ 0;

(ii)

[
M N

N′ R

]
≥ 0;

(iii)

[
R N′

N M

]
≥ 0.

Lemma 2.9.5. [2] Let matrices L, M and N be given with appropriate sizes. Then

the following matrix equation

LXM = N, (2.25)

has a solution X if and only if

LL†NM†M = N. (2.26)

Moreover, any solution to (2.25) is represented by

X = L†NM† + S− L†LSMM†, (2.27)

where S is a matrix with an appropriate size.
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Lemma 2.9.6. (See, e.g., [109]) Let A,D,S,W and F be real matrices of appro-

priate dimensions such that W > 0 and F ′F ≤ I. Then we have the following.

1) For scalar ε > 0 and vectors x, y ∈ Rn

2x′DFSy ≤ ε−1x′DD′x+ εy′S ′Sy.

2)For any scalar ε > 0 such that W − εDD′ > 0

(A+DFS)′W−1(A+DFS) ≤ A′(W − εDD′)−1A+ ε−1S ′S.

2.10 Summary

In this preliminary chapter we have reviewed some basic results of optimal and

robust control theory, including LQ control in both finite and infinite horizon,

robust stabilization and robust H∞ control, H2/H∞ control in both finite and

infinite horizon and risk-sensitive control. Some previous definitions, lemmas,

and theorems that are useful to this thesis are introduced in this chapter. We

particularly focus on the most recent research results that are related to our

thesis. Note that in this chapter some new results are obtained. Some previous

results are improved without changing the spirit of the original work. In this case,

they are extended into more general cases. Most of the literatures reviewed in this

chapter investigate the linear systems. If the system is nonlinear, which is very

common in real situations, it is unknown whether the previous elegant results can

still be obtained or not. The following four chapters are going to investigate this

issue for the system with a class of nonlinearities.
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Chapter 3

Nonlinear Optimal Stochastic

Control of Systems with

Markovian Switching in Finite

Time Horizon

3.1 Introduction

This chapter extends optimal LQ control in [74] to a more general case, which deals

with the optimal control of indefinite stochastic nonlinear system with Marko-

vian switching appearing in system coefficients. Two motivating examples are

given first. Then our nonlinear optimal control problem is formulated in the next

section, where the nonlinearity is formulated by a combination of two different

diffusion terms. It is known that only some of the nonlinear SDEs have solution.

Thus in our system the existence and uniqueness of the solution is discussed.

In the problem formulation, a new type of coupled generalized Riccati equations

(CGREs) is introduced, and it is proved that if there exists solution to CGREs,

then our nonlinear optimal control problem is well-posed. Optimal control laws

constructed by the solution to the CGREs are obtained. When we solve the

optimal control problem, completion of square method is used, and there are dif-
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ficulties in dealing with the nonlinearity terms. Here it is highlighted that within

this nonlinear system an explicit solution is found, which is a very rare case. In

addition, the optimal control laws obtained are linear with state, which is very

similar to the characteristics of the results in optimal LQ control problems. The

feasibility of the assumption of the solvability of the new CGREs is discussed. An

application to finance is introduced. An illustrative example is given.

3.2 Two motivating examples

As is emphasized in the previous chapter, the important properties of the linear

systems are that they have an explicit solution, they appear in various different

applications, and several optimal control problems for such systems have explicit

closed form solutions. While nonlinear systems appear in many applications, they

in general do not have these desirable features of linear systems. Indeed, nonlinear

SDEs with an explicit solution are very rare. One such example is the following

(see equation (4.29) of [64]): dx(t) =
1

2
x(t)dt+

√
x2(t) + 1dW (t)

x(0) = x0,
(3.1)

the solution of which is x(t) = sinh(W (t) + arcsinh x0). This equation has a

square-root type of nonlinearity, and despite the fact that it admits an explicit

solution, no control problems for such an equation have been formulated until now.

Another square-root nonlinearity appears in an optimal investment problem.

Consider a market of two assets: the bank account B(t), and a stock S(t), the

equations of which are

dB(t) = B(t)r(t)dt,

dS(t) = S(t)[µ(t)dt+ σ(t)dW1(t)],

B(0) = B0 and S(0) = S0 are given.

(3.2)
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Here r(t) is the interest rate of the bank account B(t), whereas µ(t) and σ(t) are

the appreciation rate and the volatility of the stock S(t), respectively. In this

market we consider an investor endowed with the initial wealth y0. Let vB(t)

and vS(t) denote the number of shares that the investor holds in B(t) and S(t),

respectively. Then the investors wealth at time t is y(t) , vB(t)B(t) + vS(t)S(t).

If u(t) , vS(t)S(t) denotes the amount of the investor’s wealth invested in the

stock, then the equation of the self-financing portfolio is (see, e.g., [69]):
dy(t) = [r(t)y(t) + (µ(t)− r(t))u(t)]dt+ σ(t)u(t)W1(t),

y(0) = y0 > 0.

Let µ(t) be a given process and σ(t) a deterministic function, whereas for the

interest rate r(t) we assume that it follows the Cox-Ingersoll-Ross (CIR) process,
dr(t) = [ar(t) + b]dt+

√
r(t)dW2(t),

r(0) = r0,

(3.3)

for some constants a and b. Moreover, we assume that µ(t)−r(t) is a deterministic

function (note that this is typical assumption in a market with stochastic interest

rate, see, e.g. [15]). We are interested only in the controls u(t) that ensure y(t) > 0

a.s. ∀t ∈ [0, T ]. For such controls, the differential of the x(t) , log y(t) is
dx(t) = [r(t) + (µ(t)− r(t))v(t)− σ2v2(t)/2]dt+ σ(t)v(t)dW1(t),

x(0) = x0 = log y0 > 0,

(3.4)

where v(t) , u(t)/y(t). If for some x̂0 ∈ R we define the process

x̂(t) , x̂0 + x(t)− x0 +

∫ t

0

1

2
σ2v2(s)ds, (3.5)

then its differential is
dx̂(t) = [r(t) + (µ(t)− r(t))v(t)]dt+ σ(t)v(t)dW1(t),

x̂(0) = x̂0.
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The problem of optimal investment for the logarithmic utility is the optimal con-

trol problem of maximizing E[x(T )] subject to (3.3) and (3.4). From the definition

(3.5), it is clear that this is equivalent to the problem of minimizing

E

[∫ T

0

1

2
σ2v2(s)ds− x̂(T )

]
,

subject to (3.3) and (3.5). Thus, this is a nonlinear optimal control problem with

a quadratic cost.

Motivated by these two examples of nonlinear stochastic systems that either

have an explicit solution, or lead to optimal control problems with a quadratic cost,

in the next section we introduce a class of nonlinear stochastic control systems

with a square-root type of nonlinearity that contains these two examples as special

cases. Moreover, we permit for Markovian switching in system coefficients.

3.3 Problem Formulation and CGREs

3.3.1 Problem Formulation.

Let (Ω,F , {Ft}t≥0,P) be a given filtered complete probability space, where there

exist a m×1 -dimensional Brownian motion (W1(t), 0 ≤ t ≤ T ), a one-dimensional

standard Brownian motion (W (t), 0 ≤ t ≤ T ), a η × 1 -dimensional Brownian

motion (W2(t), 0 ≤ t ≤ T ), and a Markov chain (rt ∈ {1, 2, · · · , δ}, 0 ≤ t ≤ T )

with generator Π = (πij) specified in (2.3). We assume that W1(t), W (t), W2(t)

and the process rt are mutually independent.

Assumption 3.3.1. The data that appear in the nonlinear optimal control prob-
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lem (3.6)-(3.20) satisfy, for every i,

H1i(·), Lki(·) ∈ L∞(0, T ;Rm),

A1i(·), C1i(·) ∈ L∞(0, T ;Rn×m),

A2i(·) ∈ L∞(0, T ;Rn×n),

C2i(·) ∈ L∞(0, T ;Rm×m),

B1i(·), D1i(·) ∈ L∞(0, T ;Rn×nu),

Ei(·) ∈ L∞(0, T ;Rn×η),

Qki(·) ∈ L∞(0, T ;Sn),

Rki(·), Ri ∈ L∞(0, T ;Snu),

Qi(·) ∈ L∞(0, T ;Sm+n),

Li(·) ∈ L∞(0, T ;R(m+n)×nu),

Ldi(·) ∈ L∞(0, T ;Rm+n),

Lei(·) ∈ L∞(0, T ;Rnu),

H̄i ∈ Sm+n,

L̄ci ∈ Rm+n.

Considering the financial system introduced in Section 3.2, we set two separate

x1 and x2 when we formulate our nonlinear optimal control problem, where the

equation for x1 is a special case of the CIR model, whereas equation for x2 is a gen-

eralized version of (3.1). Consider the following nonlinear SDEs with Markovian

switching:

dx1(t) = [G1(t, rt)x1(t) +H1(t, rt)]dt+ Γ1(x1(t), t, rt)dW1(t)

dx2(t) = [A1(t, rt)x1(t) + A2(t, rt)x2(t) +B1(t, rt)u(t)]dt

+ [C1(t, rt)x1(t) + C2(t, rt)x2(t) +D1(t, rt)u(t)]dW (t)

+ Γ2(x1(t), x2(t), t, rt)dW2(t)

x1(0) = x10 > 0, x2(0) = x20 > 0,

(3.6)

41



where

G1(t, rt) , diag[g1(t, rt), g2(t, rt), . . . , gm(t, rt)],

i.e., a m×m diagonal matrix, in which the diagonal elements are

g1(t, rt), g2(t, rt), . . . , gm(t, rt).

Here, g1(t, rt), g2(t, rt), . . . , gm(t, rt) are all coefficients in terms of scalars. In ad-

dition,

Γ1(x1(t), t, rt) , diag[
√
x11(t),

√
x12(t), . . . ,

√
x1m(t)], (3.7)

Γ2(x1(t), x2(t), u(t), t, rt) , E(t, rt)F (x1(t), x2(t), u(t), t, rt), (3.8)

and

F (x1(t), x2(t), u(t), t, rt) , diag(
√
φ1,
√
φ2, . . . ,

√
φη). (3.9)

Among φ1, φ2, . . . , φη, we denote each of them as φk, where k = 1, 2, . . . , η. We

define

φk , x2(t)′Qk(t, rt)x2(t) + u(t)′Rk(t, rt)u(t) + x1(t)′Lk(t, rt) + Zk(t, rt). (3.10)

We assume that Qk(t, rt) ≥ 0, Rk(t, rt) ≥ 0, Zk(t, rt) > 0, and the components of

Lk(t, rt) are non-negative, for all k.

The state x1 is independent of x2, and it is a special case of the CIR model of

equation (4.1) in [38] (page 387), where the existence and uniqueness of solution

for such an equation is proved.

The equation for x2 may not have a solution for all controls u. For our pur-

poses the controls that are affine in x2 are important. Under such controls, the

term Γ2 in (3.8) has a bounded first derivative with respect to x2. Thus it satisfies

Theorem 3.13 in [83], page 89, where existence and uniqueness of general SDEs is

proved. In summary, under controls that are affine in x2, the system of equations
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(3.6) has a unique solution.

Here we discuss and explain the existence and uniqueness of x2 in a bit detail.

We are interested in investigating the property of the nonlinear term in the SDEs

of dx2, which is Γ2(x1(t), x2(t), t, rt)dW2(t). First our aim is to check whether the

term Γ2(x1(t), x2(t), t, rt) satisfies the Lipschitz condition. In order to provide an

intuitive derivation, the example illustrated here is a scalar case, which is a special

case of our original problem. Also, for simplicity we neglect Markovian switching

from Γ2(x1(t), x2(t), t, rt), because the condition for the existence and uniqueness

of solution to SDEs with and without Markovian switching is quite similar, see

[83].

Then we simplify the diagonal matrix F into a scalar, namely, define F ,
√
φ.

Then we rewrite Γ2 , EF , where E is also a scalar. In addition, we define our

special case of φ as

φ , qx2
2 + ru2 + lx1 + z.

Substituting the affine control u = ax+ b into the above equation, we have

φ = (q + ra2)x2
2 + 2abrx2 + rb2 + lx1 + z.

Next, we take the first derivative of Γ2 with respect to x2,

dΓ2

dx2

=
d(E
√
φ)

dx2

= E
d(
√
φ)

dx2

= E
d(
√
φ)

dφ

dφ

dx2

.

Then

dΓ2

dx2

=
E(q + ra2)x2 + Eabr√

(q + ra2)x2
2 + 2abrx2 + rb2 + lx1 + z

. (3.11)

Note that with our assumption of Qk(t, rt) ≥ 0, Rk(t, rt) ≥ 0, Zk(t, rt) > 0, and

the components of Lk(t, rt) are non-negative, for all k, thus here we have q ≥ 0,

r ≥ 0, l ≥ 0 and z > 0, accordingly. Then we have

φ = qx2
2 + ru2 + lx1 + z > 0,

and equivalently,

φ = (q + ra2)x2
2 + 2abrx2 + rb2 + lx1 + z > 0.
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Hence, the denominator of right side of (3.11), i.e.,
√
φ is well defined. Also, it

is straight forward that (3.11) is bounded for all x2. Then our scalar case Γ2 is

Lipschitz, since its first derivative w.r.t. x2 is bounded.

It is notable that function Γ2 = E
√
φ is different from one type of square root

function, such as
√
x because the first derivative of

√
x w.r.t. x becomes infinitely

large when x goes to 0. When the parameters in (3.11) are fixed, the plotted

function of Γ2 = E
√
φ never becomes infinitely steep whatever value x2 takes,

which means the first derivative of Γ2 w.r.t. x2 never becomes infinitely large.

This can be seen when (3.11) is plotted in software such as Matlab, the value of

(3.11) is bounded for all x2.

Additionally, it is easy to find a constant K such that the following holds:

|(E
√
φ)|2 ≤ K(1 + |x2|2),

which is the linear growth condition in [83]. Up to here, we say our special scalar

case satisfies both Lipschitz and linear growth conditions, so the existence and

uniqueness of x2 is obtained. Since the scalar case is a special case of our original

problem, we can say this result can be extended to our original system (3.6).

If we denote

x(t) ,

[
x1(t)

x2(t)

]
, (3.12)

then we can rewrite equation (3.6) into the following

dx(t) = [A(t, rt)x(t) +B(t, rt)u(t) +H(t, rt)]dt

+ [C(t, rt)x(t) +D(t, rt)u(t)]dW (t)

+ θ1(x(t), u(t), t, rt)dW1(t) + θ2(x(t), u(t), t, rt)dW2(t),

x(s) = y,

(3.13)

where

A(t, rt) ,

[
G1(t, rt) 0

A1(t, rt) A2(t, rt)

]
, B(t, rt) ,

[
0

B1(t, rt)

]
,
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C(t, rt) ,

[
0 0

C1(t, rt) C2(t, rt)

]
, D(t, rt) ,

[
0

D1(t, rt)

]
,

H(t, rt) ,

[
H1(t, rt)

0

]
, θ1(x1(t), t, rt) ,

[
Γ1(x1(t), t, rt)

0

]
,

θ2((x1(t), x2(t), u(t), t, rt) ,

[
0

Γ2(x1(t), x2(t), u(t), t, rt)

]
. (3.14)

Here, s ∈ [0, T ) is the initial time, and y ∈ Rm+n is the initial state.

Definition 3.3.1. [74] An admissible control u(·) is any Ft-adapted process under

which the equation (3.6) has a unique solution. The set of all admissible controls

is denoted by U .

We give the following notations, which will be used throughout this chapter.

We define

M ,

[
0

I

]
, (3.15)

where 0 is a m× n zero matrix, and I is a n× n identity matrix. We define ek as

an η × 1 elementary vector, whose k-th element is 1, while other elements are 0.

For simplicity, we define

Nki(t) ,MEi(t)ek. (3.16)

We define εa as an m× 1 elementary vector, whose a-th element is 1, while other

elements are 0. Then each element of vector x1 can be expressed as

x1a = ε′ax1. (3.17)

Define

ba ,
[
ε′a 0

]
, (3.18)

where 0 is a 1× n zero matrix. Define

M̃ ,

[
I

0

]
, (3.19)
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where 0 is a n×m zero matrix, and I is a m×m identity matrix. For each (s, y)

and u(·) ∈ U the cost functional is

J(s, y, i;u(·))

= E

{∫ T

s

([
x(t)

u(t)

]′ [
Q(t, rt) L(t, rt)

L(t, rt)
′ R(t, rt)

][
x(t)

u(t)

]
+ x(t)′Ld(t, rt)

+u(t)′Le(t, rt)

)
dt+ x(T )

′
H̄(rT )x(T ) + L̄c(rT )′x(T )

∣∣∣∣rs = i

}
. (3.20)

As is emphasized in [74] that since we allow symmetric matrices[
Qi Li

L′i Ri

]
, i = 1, · · · , δ,

to be indefinite, we say our stochastic nonlinear optimal control problem is an

indefinite control problem.

The aim of our optimal control problem is to minimize the cost functional

J(s, y, i;u(·)) subject to (3.13). Similar to [74] the value function is defined as

V (s, y, i) , inf
u(·)∈U

J(s, y, i;u(·)). (3.21)

We provide the following definition that originates from [74].

Definition 3.3.2. [74] The optimal control problem (3.6)-(3.21) is called well-

posed if

V (s, y, i) > −∞, ∀(s, y) ∈ [0, T )× Rn, ∀i = 1, . . . , δ.

An admissible pair (x∗(·), u∗(·)) is called optimal (w.r.t. the initial condition

(s, y, i)) if u∗(·) achieves the infimum of J(s, y, i;u(·)).
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3.3.2 Coupled Generalized Differential Riccati Equations.

First, we assume the following holds, (t is omitted)

Lci(T ) = L̄ci,

2PiHi +
m∑
a=1

b′aPaa +

η∑
k=1

N ′kiPiNkiM̃Lki + Ldi + L̇ci + A′iLci − (C ′iPiDi

+ PiBi + Li)(D
′
iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri)
†(Lei +B′iLci) = 0,

(D′iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri)(D
′
iPiDi +

η∑
k=1

N ′kiPiNkiRki

+Ri)
†(Lei +B′iLci)− (Lei +B′iLci) = 0, a.e. t ∈ [0, T ],

i = 1, · · · , δ

(3.22)

Now we introduce a new type of coupled generalized Riccati equations (CGREs)

as follows, (t is omitted)

Ṗi + PiAi + A′iPi + C ′iPiCi +
δ∑
j=1

πijPj +

η∑
k=1

N ′kiPiNkiMQkiM
′ +Qi

− (C ′iPiDi + PiBi + Li)(D
′
iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri)
†(D′iPiCi

+B′iPi + L′i) = 0,

Pi(T ) = H̄i,

(D′iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri)(D
′
iPiDi +

η∑
k=1

N ′kiPiNkiRki

+Ri)
†(D′iPiCi +B′iPi + L′i)− (D′iPiCi +B′iPi + L′i) = 0,

D′iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri ≥ 0, a.e. t ∈ [0, T ], i = 1, · · · , δ.

(3.23)

The solvability of CGREs (3.23) is discussed in Section 3.5. We assume

the CGREs have a solution. Compare our new CGREs (3.23) with (2.5) in-

troduced in [74], and we see the difference is that we have two additional terms,

47



∑η
k=1N

′
kiPiNkiMQkiM

′ and
∑η

k=1N
′
kiPiNkiRki. This is due to the nonlinearity

terms φk in (3.10). The detailed derivation can be found in Section 3.4. Note that

(2.5) is a special case of (3.23). If D′iPiDi +
∑η

k=1N
′
kiPiNkiRki +Ri 6= 0, for every

i, then the CGREs (3.23) become:

Ṗi + PiAi + A′iPi + C ′iPiCi +
δ∑
j=1

πijPj +

η∑
k=1

N ′kiPiNkiMQkiM
′ +Qi

− (C ′iPiDi + PiBi + Li)(D
′
iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri)
−1(D′iPiCi

+B′iPi + L′i) = 0,

Pi(T ) = H̄i,

D′iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri > 0, a.e. t ∈ [0, T ], i = 1, · · · , δ.

(3.24)

When D′iPiDi+
∑η

k=1N
′
kiPiNkiRki+Ri = 0 for every i, the CGREs (3.23) become:

Ṗi + PiAi + A′iPi + C ′iPiCi +
δ∑
j=1

πijPj +

η∑
k=1

N ′kiPiNkiMQkiM
′ +Qi = 0,

Pi(T ) = H̄i,

D′iPiCi +B′iPi + L′i = 0,

D′iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri = 0, a.e. t ∈ [0, T ], i = 1, · · · , δ.

3.4 Solution to Optimal Control Problem

In this section, we show that the solvability of the CGREs (3.23) is sufficient for

the well-posedness of our nonlinear optimal control problem (3.6)-(3.21). Opti-

mal linear state feedback control laws are obtained explicitly, constructed by the

solution to the CGREs (3.23).

Theorem 3.4.1. Denote Pabi(t) as each element of matrix Pi(t). If the CGREs

(3.23) have a solution, then the stochastic nonlinear optimal control problem (3.6)-
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(3.21) is well-posed. Moreover, all optimal controls are obtained explicitly as fol-

lows:

u∗(t)

= −
δ∑
i=1

{ [[Di(t)
′Pi(t)Di(t) +

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Rki(t)

+Ri(t)]
†[Di(t)

′Pi(t)Ci(t) +Bi(t)
′Pi(t) + Li(t)

′] + Yi(t)− [Di(t)
′Pi(t)Di(t)

+

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Rki(t) +Ri(t)]

†[Di(t)
′Pi(t)Di(t)

+

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Rki(t) +Ri(t)]Yi(t)

]
x(t) + zi(t)

−[Di(t)
′Pi(t)Di(t) +

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Rki(t) +Ri(t)]

†[Di(t)
′Pi(t)Di(t)

+

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Rki(t) +Ri(t)]zi(t) +

1

2
[Di(t)

′Pi(t)Di(t)

+

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Rki(t) +Ri(t)]

†[Lei(t)

+Bi(t)
′Lci(t)]}χ{rt=i}(t), (3.25)

where Yi(·) ∈ L2
F(s, T ;Rnu×(m+n)), zi(·) ∈ L2

F(s, T ;Rnu). Furthermore, the value

function is obtained as follows:

V (s, y, i) ≡ infu(·)∈UJ(s, y, i;u(·))

= y′Pi(s)y + Lci(s)
′y + E

[∫ T

s

ζ(t, rt)dt|rs = i

]
, (3.26)

where

ζi(t) =

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Zki(t) + L′ci(t)Hi(t)−

1

4
[Lei(t)

+Bi(t)
′Lci(t)]

′[Di(t)
′Pi(t)Di(t) +

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Rki(t)

+Ri(t)]
†[Lei(t) +Bi(t)

′Lci(t)], i = 1, . . . , δ. (3.27)
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Proof. Denote the solution to the CGREs (3.23) by (P1(·), . . . , Pδ(·)) ∈ C1(0, T ; (Sm+n)δ).

According to the system (3.13), by Lemma 2.9.1, we have

E[x(T )′P (rT )(T )x(T )]

= y′Pi(s)y + E
[ ∫ T

s

{x′Ṗi(t)x+
δ∑
j=1

πijx
′Pj(t)x+ 2x′Pi(t)[Ai(t)x+Bi(t)u

+Hi(t)] + [Ci(t)x+Di(t)u]′Pi(t)[Ci(t)x+Di(t)u]

+tr[θ1i(x1, t)
′Pi(t)θ1i(x1, t)]

+tr[θ2i(x1, x2, u, t)
′Pi(t)θ2i(x1, x2, u, t)

∣∣∣∣rs = i]}dt
]
. (3.28)

We work on tr[θ1i(x1, t)
′Pi(t)θ1i(x1, t)] first. Note that

tr[θ1i(x1, t)
′Pi(t)θ1i(x1, t)] = tr[Pi(t)θ1i(x1, t)θ1i(x1, t)

′], (3.29)

in which

θ1i(x1, t)θ1i(x1, t)
′ =

[
Γ1i(x1, t)Γ1i(x1, t) 0

0 0

]
, (3.30)

and according to (3.7), we have

Γ1i(x1, t)Γ1i(x1, t) = diag(x11, x12, . . . , x1m). (3.31)

As Pi(·) ∈ L∞(0, T ;Sm+n), from (3.29) to (3.31), we have

tr[θ1i(x1, t)
′Pi(t)θ1i(x1, t)] =

m∑
a=1

Paai(t)x1a. (3.32)

According to (3.17), we rewrite (3.32) as follows,

tr[θ1i(x1, t)
′Pi(t)θ1i(x1, t)] =

m∑
a=1

Paai(t)ε
′
ax1.

According to (3.12) and (3.18), we transform x1 in the above equation into forms

of x only, then

tr[θ1i(x1, t)
′Pi(t)θ1i(x1, t)]
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=
[∑m

a=1 Paai(t)ε
′
a 0

]
x

=
m∑
a=1

Paai(t)
[
ε′a 0

]
x

=
m∑
a=1

x′b′aPaai. (3.33)

Next, we work on tr[θ2i(x1, x2, u, t)
′Pi(t)θ2i(x1, x2, u, t)]. Note that

tr[θ2i(x1, x2, u, t)
′Pi(t)θ2i(x1, x2, u, t)]

= tr[Pi(t)θ2i(x1, x2, u, t)θ2i(x1, x2, u, t)
′]. (3.34)

According to (3.8) and (3.14), we have

θ2i(x1, x2, u, t)θ2i(x1, x2, u, t)
′

=

[
0 0

0 Γ2i(x1, x2, u, t)Γ2i(x1, x2, u, t)
′

]

=

[
0 0

0 Ei(t)Fi(x1, x2, u, t)Fi(x1, x2, u, t)
′Ei(t)

′

]
. (3.35)

We rewrite (3.34) as

tr[Pi(t)θ2i(x1, x2, u, t)θ2i(x1, x2, u, t)
′]

= tr[M ′Pi(t)MEi(t)Fi(x1, x2, u, t)Fi(x1, x2, u, t)
′Ei(t)

′]

= tr[Ei(t)
′M ′Pi(t)MEi(t)Fi(x1, x2, u, t)Fi(x1, x2, u, t)

′]. (3.36)

From (3.9) and (3.10), we have

Fi(x1, x2, u, t)Fi(x1, x2, u, t)
′

= Fi(x1, x2, u, t)Fi(x1, x2, u, t)

= diag(x′2Qkix2 + u′Rkiu+ x′1Lki + Zki), (3.37)

in which k = 1, 2, . . . , η. Substituting (3.37) into (3.36), using the notation intro-

duced in (3.15) and (3.16), we have

tr[Pi(t)θ2i(x1, x2, u, t)θ2i(x1, x2, u, t)
′]
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= x′2(

η∑
k=1

e′kEi(t)
′M ′Pi(t)MiEi(t)ekQki(t))x2

+u′(

η∑
k=1

e′kEi(t)
′M ′Pi(t)MiEi(t)ekRki(t))u

+x′1

η∑
k=1

e′kEi(t)
′M ′Pi(t)MiEi(t)ekLki(t)

+

η∑
k=1

e′kEi(t)
′M ′Pi(t)MiEi(t)ekZki(t)

= x′2(

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Qki(t))x2 + u′(

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Rki(t))u

+x′1

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Lki(t) +

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Zki(t). (3.38)

Again, we transform x1 and x2 in the above equation into forms of x only, using

(3.12),

tr[θ2i(x1, x2, u, t)
′Pi(t)θ2i(x1, x2, u, t)]

= x′(

η∑
k=1

Nki(t)
′Pi(t)Nki(t)MQki(t)M

′)x+ u′(

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Rki(t))u

+x′
η∑
k=1

Nki(t)
′Pi(t)Nki(t)M̃Lki(t) +

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Zki(t). (3.39)

Substituting (3.33) and (3.39) into E[x(T )′P (T, rT )x(T )] in (3.28), we have

E[x(T )′P (T, rT )x(T )]

= y′Pi(s)y + E
[ ∫ T

s

{
x′
[
Ṗi(t) + Pi(t)Ai(t) + Ai(t)

′Pi(t) + Ci(t)
′Pi(t)Ci(t)

+
δ∑
j=1

πijPj(t) +

η∑
k=1

Nki(t)
′Pi(t)Nki(t)MQki(t)M

′

]
x

+2u′[Di(t)
′Pi(t)Ci(t) +Bi(t)

′Pi(t)]x

+u′

[
Di(t)

′Pi(t)Di(t) +

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Rki(t)

]
u
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+x′

(
2Pi(t)Hi(t) +

m∑
a=1

b′aPaai(t) +

η∑
k=1

Nki(t)
′Pi(t)Nki(t)M̃Lki(t)

)

+

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Zki(t)

}
dt

∣∣∣∣rs = i

]
. (3.40)

Applying Lemma 2.9.1 to Lc(T, rT )′x(T ), we have

E[Lci(T )′x(T )]

= Lci(s)
′y + E

[ ∫ T

s

[(
L̇ci(t)

′ + Lci(t)
′Ai(t)

)
x+ Lci(t)

′Bi(t)u

+Lci(t)
′Hi(t)

]
dt

∣∣∣∣rs = i

]
. (3.41)

Combining (3.40) and (3.41), we have

E[x(T )′H̄rT (T )x(T )] + E[L̄crT (T )′x(T )]− y′Pi(s)y − Lci(s)′y
= E[x(T )′PrT (T )x(T ) + LcrT (T )′x(T )− x(s)′Prsx(s)− Lcrs (s)′x(s)|rs = i]

= E
{∫ T

s

Θϕ(t, x(t), rt)dt

∣∣∣∣rs = i

}
,

where

Θϕ(t, x(t), rt)

= x′{[Ṗi(t) + Pi(t)Ai(t) + Ai(t)
′Pi(t) + Ci(t)

′Pi(t)Ci +
δ∑
j=1

πijPj(t)

+

η∑
k=1

Nki(t)
′Pi(t)Nki(t)MQki(t)M

′]}x

+2u′[Di(t)
′Pi(t)Ci(t) +Bi(t)

′Pi(t)]x+ u′[Di(t)
′Pi(t)Di(t)

+

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Rki(t)]u+ u′Bi(t)

′Lci(t)

+x′[2Pi(t)Hi(t) +
m∑
a=1

b′aPaa(t) +

η∑
k=1

Nki(t)
′Pi(t)Nki(t)M̃Lki(t)

+L̇ci(t) + Ai(t)
′Lci(t)] +

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Zki(t) + L′ci(t)Hi(t).
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Then, the cost functional (3.20) is rewritten as follows,

J(s, y, i;u(·))

= y′Pi(s)y + Lci(s)
′y + E

{∫ T

s

[
Θϕ(t, x(t), rt) + x(t)′Q(t, rt)x(t)

+2u(t)′L(t, rt)
′x(t) + u(t)′R(t, rt)u(t) + x(t)′Ld(t, rt)

+u(t)′Le(t, rt)

]
dt

∣∣∣∣rs = i

}
. (3.42)

For simplicity, we denote

R̄i , Di(t)
′Pi(t)Di(t) +

η∑
k=1

Nki(t)
′Pi(t)Nki(t)Rki(t) +Ri(t),

X̄i , 2(Di(t)
′Pi(t)Ci(t) +Bi(t)

′Pi(t) + Li(t)
′),

Ȳi , Lei(t) +Bi(t)
′Lci(t),

S̄i , Ṗi(t) + Pi(t)Ai(t) + Ai(t)
′Pi(t) + Ci(t)

′Pi(t)Ci +
δ∑
j=1

πijPj(t)

+

η∑
k=1

Nki(t)
′Pi(t)Nki(t)MQki(t)M

′ +Qi(t)

T̄i , 2Pi(t)Hi(t) +
m∑
a=1

b′aPaa(t) +

η∑
k=1

Nki(t)
′Pi(t)Nki(t)M̃Lki(t)

+L̇ci(t) + Ai(t)
′Lci(t) + Ldi(t),

Z̄i ,
η∑
k=1

Nki(t)
′Pi(t)Nki(t)Zki(t) + L′ci(t)Hi(t). (3.43)

Then, we rewrite the terms inside the integral of equation (3.42). Applying com-

pletion of square method to u(t), we have

Θϕ(t, x, i) + x′Qi(t)x+ 2u′Li(t)
′x+ u′Ri(t)u+ x′Ldi(t) + u′Lei(t)

= u′R̄iu+ u′X̄ix+ u′Ȳi + x′S̄x+ x′T̄ + Z̄

=

[
u+

1

2
R̄†i X̄x+

1

2
R̄†i Ȳ

]′
R̄i

[
u+

1

2
R̄†i X̄x+

1

2
R̄†i Ȳ

]
− 1

4
x′X̄ ′iR̄

†
i X̄ix

−1

2
x′X̄ ′iR̄

†
i Ȳi −

1

4
ȲiR̄

†
i Ȳi + x′S̄x+ x′T̄ + Z̄.

54



As we are given Yi(·) ∈ L2
F(s, T ;Rnu×(m+n)) and zi(·) ∈ L2

F(s, T ;Rnu) for every i,

we define

Ψ1
i (t) , Yi(t)− R̄†i R̄iYi(t),

and

Ψ2
i (t) , zi(t)− R̄†i R̄izi(t).

Applying Lemma 2.9.2, Lemma 2.9.3-(ii), and CGREs in (3.23) we have for γ =

1, 2,

R̄iΨ
γ
i (t) = R̄†iΨ

γ
i (t) = 0,

and,

X̄ ′Ψγ
i (t) = 0.

Hence, we rewrite

Θϕ(t, x, i) + x′Qi(t)x+ 2u′Li(t)
′x+ u′Ri(t)u+ x′Ldi(t) + u′Lei(t)

=

[
u+

(
1

2
R̄†i X̄ + Ψ1

i (t)

)
x+ Ψ2

i (t) +
1

2
R̄†i Ȳ

]′
R̄i

[
u+

(
1

2
R̄†i X̄ + Ψ1

i (t)

)
x

+Ψ2
i (t) +

1

2
R̄†i Ȳ

]
+ x′

(
S̄i −

1

4
X̄ ′iR̄

†
i X̄i

)
x+ x′

(
T̄i −

1

2
X̄ ′iR̄

†
i Ȳi

)
+Z̄i −

1

4
Ȳ ′i R̄

†
i Ȳi.

According to the CGREs (3.23), we have S̄i− 1
4
X̄ ′iR̄

†
i X̄i = 0, and T̄i− 1

2
X̄ ′iR̄

†
i Ȳi = 0.

With ζi(t) provided in (3.27), we rewrite (3.42) as

J(s, y, i;u(·))

= y′Pi(s)y + Lci(s)
′y + E

{∫ T

s

{
[
u+

(
1

2
R̄†i X̄i + Ψ1

i (t)

)
x+ Ψ2

i (t) +
1

2
R̄†i Ȳi

]′
×R̄i [u +

(
1

2
R̄†i X̄i + Ψ1

i (t)

)
x+ Ψ2

i (t) +
1

2
R̄†i Ȳi

]
+ ζ(t, rt)}dt

∣∣∣∣rs = i

}
≥ y′Pi(s)y + Lci(s)

′y + E
[∫ T

s

ζ(t, rt)dt

∣∣∣∣rs = i

]
,

Thus, J(s, y, i;u(·)) is minimized by the control given in (3.25). The optimal value

is y′Pi(s)y + Lci(s)
′y + E[

∫ T
s
ζ(t, rt)dt|rs = i].
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We highlight that the importance of this work is that explicit optimal linear

controls are obtained, which is a very rare case in the nonlinear system.

Similar to the results in [74], we have the following statements. Any admissible

control is optimal if Di(t)
′Pi(t)Di(t)+

∑η
k=1N

′
kiPiNkiRki+Ri(t) ≡ 0, a.e. t ∈ [s, T ]

for every i. In addition, when Di(t)
′Pi(t)Di(t) +

∑η
k=1N

′
kiPiNkiRki + Ri(t) > 0,

a.e. t ∈ [s, T ] for every i, a unique optimal control is given as follows:

u(t) = −
δ∑
i=1

[(
1

2
R̄†i X̄i + Ψ1

i (t)

)
x+ Ψ2

i (t) +
1

2
R̄†i Ȳi

]
χ{rt=i}(t),

where R̄i, X̄i, and Ȳi are defined in (3.43). Both of these two statements can be

derived from Theorem 3.4.1.

3.5 Discussion of Riccati Equation

In this section we focus on discussing the solvability of Riccati equation of (3.24),

which is a special case of (3.23). Here t is omitted for convenience.

First, let us rewrite
∑η

k=1 N
′
kiPiNkiMQkiM

′, where Nki is defined in (3.16).

Define Q̄ki , MQkiM
′ and E ′iM

′PiMEi , Λi. As any matrix can be written as

the product of its square root matrix, we rewrite Q̄ki = Q̄
1
2
ki × Q̄

1
2
ki. We denote

scalar Λkki as each element of matrix Λi, then we have e′kΛiek = Λkki and

η∑
k=1

N ′kiPiNkiMQkiM
′ =

η∑
k=1

Q̄
1
2
ki × Λkki × I× Q̄

1
2
ki. (3.44)

Define a η× (m+n) dimensional matrix ξkτ , in which the element in the kth row

and the τth column is 1, whereas other elements are all 0. Then we have

Λkki × I =
m+n∑
τ=1

ξ′kτΛiξkτ . (3.45)

Substituting (3.45) into (3.44), we have

η∑
k=1

N ′kiPiNkiMQkiM
′ =

η∑
k=1

Q̄
1
2
ki

(
m+n∑
τ=1

ξ′kτΛiξkτ

)
Q̄

1
2
ki
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=

η∑
k=1

m+n∑
τ=1

Q̄
1
2
kiξ
′
kτE

′
iM
′PiMEiξkτ Q̄

1
2
ki.

We denote Ḡkτi ,MEiξkτ Q̄
1
2
ki, then

η∑
k=1

N ′kiPiNkiMQkiM
′ =

η∑
k=1

m+n∑
τ=1

Ḡ′kτiPḠkτi. (3.46)

Similarly, we can transform
∑η

k=1 N
′
kiPiNkiRki into forms of (3.46). In this case,

(3.24) can be transformed into a form similar to the Riccati equation in [74], which

is the one for the linear case, and its solvability is assumed to be held.

Remark 3.5.1. The solvability of the following type of Riccati equation, (t is

omitted),

Ṗ + PA+ A′P + C ′PC − (PB + C ′PD)(R +D′PD)−1(B′P +D′PC)

+Q = 0,

P (T ) = H,

R +D′PD > 0, a.e. t ∈ [0, T ],

(3.47)

is proved in Lemma 4.1 and Theorem 4.1 in [27]. However, the solvability of the

corresponding Riccati equation with Markovian switching in [74], which is (t is

omitted)

Ṗi + PiAi + A′iPi + C ′iPiCi − (PiBi + C ′iPiDi + Li)(Ri +D′iPiDi)
−1(B′iPi

+D′iPiCi + L′i) +Qi +
δ∑
j=1

πijPj = 0,

Pi(T ) = Hi,

Ri +D′iPiDi > 0, a.e. t ∈ [0, T ], i = 1, · · · , δ,

(3.48)

is not proved. The assumption that (3.48) is solvable is made. Since the new

type of CGREs (3.23) can be transformed into the similar form as (3.48), then its

assumption of solvability is reasonable.
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3.6 Application to Finance

In this section we use the results obtained in Section 3.4 to solve the second

motivating example provided in Section 3.2, which is the problem of optimal

investment for the logarithmic utility with CIR model involved. Using the same

notation in Section 3.4, we formulate the problem mathematically again as follows,

(where t in coefficients is omitted for convenience)

dr(t) = [ar(t) + b]dt+
√
r(t)dW2(t),

dx̂(t) = [r(t) + (µ− r(t))v(t)]dt+ σv(t)dW1(t),

r(0) = r0, x̂(0) = x̂0,

(3.49)

with cost functional J to be minimised, where

J , E

[∫ T

0

1

2
σ2v2(s)ds− x̂(T )

]
. (3.50)

By comparing our optimal control problem (3.6) with the financial problem here,

it is easy to see that the r(t) in (3.49) corresponds to state x1 in (3.6), whereas

x̂(t) corresponds to state x2 in (3.6), and we regard v(t) as control. We thus

see that the problem of minimizing (3.50) subject to (3.49) is just an example of

the nonlinear optimal control problem of this chapter, and this can be solved by

applying Theorem 3.4.1.

3.7 An Example

In this section, we give an example that originates from [74]. Similarly, we as-

sume that the Markov chain has two states, i = 1, 2. We also assume D′iPiDi +∑η
k=1N

′
kiPiNkiRki + Ri = 0. Moreover, we show that the stochastic nonlinear

optimal control problem can be well-posed when R1(t) < 0 and R2(t) < 0. We

assume x1 = 0. For simplicity, we consider one-dimensional nonlinear optimal

control problem as follows,

min J = E
{∫ T

0

[Q(t, rt)x(t)2 + 2L(t, rt)x(t)u(t) +R(t, rt)u(t)2
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+Ld(t, rt)x(t) + Le(t, rt)u(t)]dt+ H̄x(T )2

+L̄cx(T )

∣∣∣∣r0 = i

}
, (3.51)

s.t.



dx(t) = [A(t, rt)x(t) +B(t, rt)u(t) +H(t, rt)]dt

+ [C(t, rt)x(t) +D(t, rt)u(t)]dW (t)

+ E(t, rt)[Q1(t, rt)x(t)2 +R1(t, rt)u(t)2 + Z1(t, rt)]dW2(t),

x(0) = x0,

(3.52)

where A(t, rt) = Ai, B(t, rt) = Bi, H(t, rt) = Hi, C(t, rt) = Ci, D(t, rt) = Di,

E(t, rt) = Ei, Q1(t, rt) = Q1i, R1(t, rt) = R1i, Z1(t, rt) = Z1i, Q(t, rt) = Qi,

L(t, rt) = Li, Ld(t, rt) = Ldi, and Le(t, rt) = Lei are all constants, and R(t, rt) =

Ri(t) when rt = i. We assume Di 6= 0, Bi + DiCi = 0, Li = 0, Qi = 0, πii < 0

for i = 1, 2, and π11 6= π22. In addition, Ri(t) = −D2
iPi(t)− E2

iR1iPi(t), i = 1, 2.

According to CGREs (3.23) we have

Ṗ1(t) = −[2A1 + C2
1 +Q1E

2
1 + π11]P1(t) + π11P2(t),

Ṗ2(t) = π22P1(t)− [2A2 + C2
2 +Q2E

2
2 + π22]P2(t),

P1(T ) = H̄,

P2(T ) = H̄.

(3.53)

We denote

α , −(2A1 + C2
1 +Q1E

2
1 + π11),

and

β , −(2A2 + C2
2 +Q2E

2
2 + π22).

Then (3.53) is rewritten as,

Ṗ1(t) = αP1(t) + π11P2(t),

Ṗ2(t) = π22P1(t) + βP2(t),

P1(T ) = H̄,

P2(T ) = H̄.

(3.54)
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Now we have transformed this nonlinear example to the linear case stated in [74].

Similar to Section 6 in [74], (3.54) can be solved by[
P1(t)

P2(t)

]
= H̄eλ1(t−T ) · λ2 − (α + π11)√

Ξ
·

[
1

λ1−α
π11

]

+H̄eλ2(t−T ) · (α + π11)− λ1√
Ξ

·

[
1

λ2−α
π11

]
.

or [
P1(t)

P2(t)

]
= H̄eλ1(t−T ) · λ2 − (π22 + β)√

Ξ
·

[
λ1−β
π22

1

]

+H̄eλ2(t−T ) · (π22 + β)− λ1√
Ξ

·

[
λ2−β
π22

1

]
,

where 
λ1 =

1

2
[(α + β)−

√
Ξ],

λ2 =
1

2
[(α + β) +

√
Ξ],

Ξ = (α− β)2 + 4π11π22.

Here, λ1 and λ2 are solutions to λ2− (α+ β)λ+αβ − π11π22 = 0. In addition, we

have 

λ2 − (α + π11) · λ1 − α
π11

= λ2 − (π22 + β),

(α + π11)− λ1 ·
λ2 − α
π11

= (π22 + β)− λ1,

λ2 − (π22 + β) · λ1 − β
π22

= λ2 − (α + π11),

(π22 + β)− λ1 ·
λ2 − β
π22

= (α + π11)− λ1,

By Theorem 3.4.1, our nonlinear optimal control problem (3.51)-(3.52) is well-

posed. Additionally, any admissible control is optimal. The optimal cost is

Pi(0)x2
0 + Lci(0)x0 + E

[ ∫ T

0

(E2
i Z1iPi(t) + LciHi)dt

∣∣∣∣r0 = i

]
. (3.55)
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If we choose π11 and π22 when the following holds,−
√

Ξ ≤ (α− β) + 2π11 ≤
√

Ξ,

−
√

Ξ ≤ (β − α) + 2π22 ≤
√

Ξ,

then we have 

λ2 − (α + π11) ≥ 0,

(α + π11)− λ1 ≥ 0,

λ2 − (π22 + β) ≥ 0,

(π22 + β)− λ1 ≥ 0.

So, if we choose H̄ ≥ 0, then we have Pi(t) ≥ 0, i = 1, 2. Alternatively, if we

choose H̄ < 0, then we have Pi(t) < 0, i = 1, 2. In conclusion, our nonlinear

optimal control problem (3.51)-(3.52) is well-posed even if Ri(t) = −D2
iPi(t) −

E2
iR1iPi(t) ≤ 0 when Pi(t) ≥ 0.

3.8 Summary

This chapter studies the indefinite stochastic nonlinear optimal control problem

with Markovian switching in finite time horizon. Due to the nature of nonlinearity,

the existence and uniqueness of solution to SDEs of our system is discussed. A

new type of Riccati equations is introduced with its solvability discussed. Explicit

optimal linear controls are obtained, which is a very rare case when the system is

nonlinear. Moreover, the optimal cost value is obtained. An application to finance

is introduced. An illustrative example is given. Under such circumstances, some

results obtained in [74] are special cases of this chapter.
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Chapter 4

Nonlinear Optimal Stochastic

Control of Systems with

Markovian Switching in Infinite

Time Horizon

4.1 Introduction

In the previous chapter, the problem of optimal nonlinear stochastic control of

systems with Markovian switching in finite time horizon is investigated, with value

function obtained. Based on that, someone might ask, what will happen if the time

T in Chapter 3 goes to infinity? How can we formulate the new problem properly?

Can we still obtain the same results? Is there any new topics that need to be

concerned? Motivated by these questions, here we investigate the case in infinite

time horizon. The system of the problem is formulated similarly to the one in the

finite time horizon, especially the nonlinear terms. Note that one of the differences

is that in the finite case the Markov jumping parameters are time variant, whereas

in infinite case, all the Markov jumping parameters are time invariant. Due to

the nature of infinite horizon, the cost functional is constructed differently from

the one in Chapter 3. Here we no longer have the terminal coefficient H̄(rT ) or
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L̄c(rT ), which appears in the previous chapter, equation (3.20). As we mentioned

in Chapter 1 that there are several difficulties in dealing with infinity horizon

problems, one of them is that we may not have a finite optimal performance

index, see [7]. Therefore, we have to consider the mean-square stability, which

is a standard assumption in the infinite horizon control problems. We propose

the stability condition of the system. The coupled generalized algebraic Riccati

equations (CGAREs) are introduced and we assume the CGAREs have solutions.

By using some similar calculation steps that originate from Chapter 3, we derive

the solution to our optimal control problem by completion of square method, and

the difficulty appears in dealing with the nonlinearity terms. Here it is highlighted

that within this nonlinear system an explicit solution is found, which is a very

rare case. In addition, the optimal control laws obtained are linear with state,

which is very similar to the characteristics of the results in optimal LQ control

problems. Moreover, the existence and uniqueness of solution is discussed, similar

to the finite horizon case.

4.2 Problem Formulation and CGAREs

4.2.1 Problem Formulation

Let (Ω,F , {Ft}t≥0,P) be a given filtered complete probability space, where there

exist a m×1 -dimensional Brownian motion W1(t) on [0,+∞), a one-dimensional

standard Brownian motion W (t) on [0,+∞), a η× 1 -dimensional Brownian mo-

tion W2(t), t ≥ 0 on [0,+∞), and a Markov chain (rt ∈ {1, 2, · · · , δ}, t ≥ 0) with

generator Π = (πij) specified in (2.3). We assume that W1(t), W (t), W2(t) and

the process rt are mutually independent.

Assumption 4.2.1. The data that appear in the nonlinear optimal control prob-

lem (4.1)-(4.18) satisfy, for every i,

H1i, Lki ∈ Rm, A1i, C1i ∈ Rn×m, A2i ∈ Rn×n, C2i ∈ Rm×m,

B1i, D1i ∈ Rn×nu , Ei ∈ Rn×η, Qki ∈ Sn, Rki, Ri ∈ Snu ,

Qi ∈ Sm+n, Li ∈ R(m+n)×nu , Ldi ∈ Rm+n, Lei ∈ Rnu .
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Consider the nonlinear SDEs with Markovian switching as follows,

dx1(t) = [G1(rt)x1(t) +H1(rt)]dt+ Γ1(x1(t), rt)dW1(t)

dx2(t) = [A1(rt)x1(t) + A2(rt)x2(t) +B1(rt)u(t)]dt

+ [C1(rt)x1(t) + C2(rt)x2(t) +D1(rt)u(t)]dW (t)

+ Γ2(x1(t), x2(t), rt)dW2(t)

x1(0) = x10, x2(0) = x20,

(4.1)

where A1(rt) = A1i, etc., i = 1, 2, · · · , δ. Define

G1(rt) , diag[g1(rt), g2(rt), . . . , gm(rt)],

i.e., a m×m diagonal matrix, in which the diagonal elements are

g1(rt), g2(rt), . . . , gm(rt). In addition, we denote

Γ1(x1(t), rt) , diag[
√
x11(t),

√
x12(t), . . . ,

√
x1m(t)], (4.2)

Γ2(x1(t), x2(t), u(t), rt) , E(rt)F (x1(t), x2(t), u(t), rt), (4.3)

and

F (x1(t), x2(t), u(t), rt) , diag(
√
φ1,
√
φ2, . . . ,

√
φη). (4.4)

Among φ1, φ2, . . . , φη, we denote each of them as φk, where k = 1, 2, . . . , η. We

define

φk , x2(t)′Qk(rt)x2(t) + u(t)′Rk(rt)u(t) + x1(t)′Lk(rt). (4.5)

We assume that Qk(rt) ≥ 0, Rk(rt) ≥ 0, Zk(rt) > 0, and the components of Lk(rt)

are non-negative, for all k. If we denote

x(t) =

[
x1(t)

x2(t)

]
, (4.6)

then we can rewrite equation (4.1) into the following

dx(t) = [A(rt)x(t) +B(rt)u(t) +H(rt)]dt

+ [C(rt)x(t) +D(rt)u(t)]dW (t)

+ θ1(x(t), u(t), rt)dW1(t) + θ2(x(t), u(t), rt)dW2(t),

x(0) = x0 ∈ Rm+n,

(4.7)
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where

A(rt) ,

[
G1(rt) 0

A1(rt) A2(rt)

]
, B(rt) ,

[
0

B1(rt)

]
, H(rt) ,

[
H1(rt)

0

]
,

C(rt) ,

[
0 0

C1(rt) C2(rt)

]
, D(rt) ,

[
0

D1(rt)

]
,

θ1(x1(t), rt) ,

[
Γ1(x1(t), rt)

0

]
,

θ2((x1(t), x2(t), u(t), rt) ,

[
0

Γ2(x1(t), x2(t), u(t), rt)

]
. (4.8)

We give the following notations, which will be used throughout this chapter.

Define

M ,

[
0

I

]
, (4.9)

where 0 is a m× n zero matrix, and I is a n× n identity matrix. Define ek as an

η× 1 elementary vector, whose k-th element is 1, while other elements are 0. For

simplicity, we define

Nki ,MEiek. (4.10)

Define εa as an m × 1 elementary vector, whose a-th element is 1, while other

elements are 0. Then each element of vector x1 can be expressed as

x1a = ε′ax1. (4.11)

Define

ba ,
[
ε′a 0

]
, (4.12)

where 0 is a 1× n zero matrix. Define

M̃ ,

[
I

0

]
, (4.13)

65



where 0 is a n×m zero matrix, and I is a m×m identity matrix.

The discussion of existence and uniqueness of solution to the system (4.1) is

similar to the one discussed in Chapter 3. Here we omit the details.

Next, we provide two definitions which originates from [75] as follows.

Definition 4.2.1. [75] A control u(·) is called mean-square stabilizing w.r.t. a

given initial state (x0, i) if the corresponding state x(·) of (4.7) with x(0) = x0

and r0 = i satisfies limt→+∞ E[x(t)′x(t)] = 0 .

Definition 4.2.2. [75] The system (4.7) is called mean-square stabilizable if there

exists a linear control u(t) =
∑δ

i=1{Kix(t)}χ{rt=i}, where K1, · · · , Kδ are given

matrices, which is mean-square stabilizing w.r.t. any initial state (x0, i).

According to Definition 4.2.1 and Definition 4.2.2, we derive sufficient con-

ditions such that our system (4.7) is mean-square stable. First, we define the

following notations for convenience,

Ai , PiAi + A′iPi + C ′iPiCi +
δ∑
j=1

πijPj +

η∑
k=1

N ′kiPiNkiMQkiM
′ +K ′iD

′
iPiCi

+K ′iB
′
iPi + C ′iPiDiKi + PiBiKi +K ′iD

′
iPiDiKi +

η∑
k=1

K ′iN
′
kiPiNkiRkiKi,

Bi , 2PiHi +
m∑
a=1

b′aPaai +

η∑
k=1

N ′kiPiNkiM̃Lki. (4.14)

Lemma 4.2.1. Substituting the linear control u∗ = Kix into (4.7), if the following

matrix inequality Ai < 0,

1

4
B′iA−1

i Bi < 0, i = 1, · · · , δ,
(4.15)

is satisfied, then our system (4.7) is mean-square stable.

Proof. Similar to the steps from (3.28) to (3.39) in Chapter 3, applying Lemma

2.9.1 to x(T )′PrTx(T ), we have

E[x(T )′PrTx(T )]
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= x′0Pix0 + E
[ ∫ T

0

{
x′

[
PiAi + A′iPi + C ′iPiCi +

δ∑
j=1

πijPj

+

η∑
k=1

N ′kiPiNkiMQkiM
′

]
x+ 2x′K ′i[D

′
iPiCi +B′iPi]x

+x′K ′i

[
D′iPiDi +

η∑
k=1

N ′kiPiNkiRki

]
Kix

+x′

(
2PiHi +

m∑
a=1

b′aPaai +

η∑
k=1

N ′kiPiNkiM̃Lki

)}
dt

∣∣∣∣rs = i

]
. (4.16)

We rewrite the integrand in the right side of (4.16) by applying completion of

square method as follows,

x′Aix+ x′Bi = (x+
1

2
A−1
i Bi)′Ai(x+

1

2
A−1
i Bi)−

1

4
B′iA−1

i Bi. (4.17)

By Definition 4.2.1, Definition 4.2.2, and [68], [83], the matrix inequality (4.15)

ensures that our nonlinear system (4.7) is mean-square stable.

Definition 4.2.3. [75] For a given (x0, i) ∈ Rm+n × {1, 2, · · · δ}, we define the

corresponding set of admissible controls U(x0, i) where u(·) ∈ Rnu such that solu-

tion to system (4.7) exists and is unique; the cost J(x0, i;u(·)) is finite; and u(·)
is mean-square stabilizing w.r.t. (x0, i).

The cost functional is given as follows,

J(x0, i;u(·))

= E
{∫ +∞

0

([
x(t)

u(t)

]′ [
Q(rt) L(rt)

L(rt)
′
R(rt)

][
x(t)

u(t)

]

+x(t)′Ld(rt)

)
dt

∣∣∣∣r0 = i

}
. (4.18)

The value function is defined as

V (x0, i) , inf
u(·)∈U(x0,i)

J(x0, i;u(·)). (4.19)
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As is emphasized in [75] that since we allow the symmetric matrices[
Qi Li

L′i Ri

]
, i = 1, · · · , δ,

to be indefinite, we say our stochastic nonlinear optimal control problem is an

indefinite control problem.

Definition 4.2.4. [75] The nonlinear optimal control problem is called well-posed

if

−∞ < V (x0, i) < +∞, ,∀x0 ∈ Rm+n, i = 1, · · · , δ.

If there is a control u∗(·) ∈ U(x0, i) that achieves V (x0, i), then in this case the

control u∗(·) is called optimal (w.r.t.(x0, i)).

4.2.2 Coupled Generalized Algebraic Riccati Equations.

Denote Paai as each diagonal element of matrix Pi, where a = 1, · · · ,m. Now we

introduce a new type of coupled generalized algebraic Riccati equations (CGAREs)

as follows,

2PiHi +
m∑
a=1

b′aPaai +

η∑
k=1

N ′kiPiNkiM̃Lki + Ldi = 0,

PiAi + A′iPi + C ′iPiCi +
δ∑
j=1

πijPj +

η∑
k=1

N ′kiPiNkiMQkiM
′ +Qi

− (C ′iPiDi + PiBi + Li)(D
′
iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri)
†(D′iPiCi

+B′iPi + L′i) = 0,

(D′iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri)(D
′
iPiDi +

η∑
k=1

N ′kiPiNkiRki

+Ri)
†(D′iPiCi +B′iPi + L′i)− (D′iPiCi +B′iPi + L′i) = 0,

D′iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri ≥ 0, i = 1, · · · , δ.

(4.20)
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If we require D′iPiDi +
∑η

k=1N
′
kiPiNkiRki + Ri 6= 0, for every i, then the

CGAREs (4.20) becomes

2PiHi +
m∑
a=1

b′aPaai +

η∑
k=1

N ′kiPiNkiM̃Lki + Ldi = 0,

PiAi + A′iPi + C ′iPiCi +
δ∑
j=1

πijPj +

η∑
k=1

N ′kiPiNkiMQkiM
′ +Qi

− (C ′iPiDi + PiBi + Li)(D
′
iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri)
−1(D′iPiCi

+B′iPi + L′i) = 0,

D′iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri > 0, i = 1, · · · , δ.

(4.21)

When D′iPiDi +
∑η

k=1 N
′
kiPiNkiRki + Ri ≡ 0 for every i, the CGAREs (4.20)

becomes

2PiHi +
m∑
a=1

b′aPaai +

η∑
k=1

N ′kiPiNkiM̃Lki + Ldi = 0,

PiAi + A′iPi + C ′iPiCi +
δ∑
j=1

πijPj +

η∑
k=1

N ′kiPiNkiMQkiM
′ +Qi = 0,

D′iPiCi +B′iPi + L′i = 0,

D′iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri = 0, i = 1, · · · , δ.

4.3 Solution to Optimal Control Problem

Before we introduce the main theorem, let us provide some notations first, for

simplicity purposes. We denote

R̄i , D′iPiDi +

η∑
k=1

N ′kiPiNkiRki +Ri,

X̄i , 2(D′iPiCi +B′iPi + L′i),
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S̄i , PiAi + A′iPi + C ′iPiCi +
δ∑
j=1

πijPj

+

η∑
k=1

N ′kiPiNkiMQkiM
′ +Qi,

T̄i , 2PiHi +
m∑
a=1

b′aPaa +

η∑
k=1

N ′kiPiNkiM̃Lki + Ldi, i = 1, . . . , δ. (4.22)

In addition, let Yi ∈ Rnu×(m+n), and zi ∈ Rnu be given for every i. Set

Ψ1
i , Yi − R̄†i R̄iYi, (4.23)

and

Ψ2
i , zi − R̄†i R̄izi. (4.24)

Theorem 4.3.1. Assume that there exists a unique solution to the CGAREs

(4.20) such that the following control

u∗(t) = −
δ∑
i=1

{(
1

2
R̄†i X̄ + Ψ1

i

)
x+ Ψ2

i

}
χ{rt=i}, (4.25)

is admissible w.r.t. to any initial x0, then the stochastic nonlinear optimal con-

trol problem (4.7)-(4.19) is well-posed, and u∗(t) in (4.25) is the optimal control.

Furthermore, the value function is

V (0, x0) = x′0Pix0. (4.26)

Proof. Similar to the steps from (3.28) to (3.39) in Chapter 3, applying Lemma

2.9.1 to x(T )′P (rT )x(T ), we have

E[x(T )′P (rT )x(T )]

= x′0Pix0 + E
[ ∫ T

0

{
x′

[
PiAi + A′iPi + C ′iPiCi +

δ∑
j=1

πijPj

+

η∑
k=1

N ′kiPiNkiMQkiM
′

]
x+ 2u′[D′iPiCi +B′iPi]x
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+u′

[
D′iPiDi +

η∑
k=1

N ′kiPiNkiRki

]
u

+x′

(
2PiHi +

m∑
a=1

b′aPaai +

η∑
k=1

N ′kiPiNkiM̃Lki

)}
dt

∣∣∣∣r0 = i

]
. (4.27)

We rewrite the above equation (4.27) as follows,

E[x(T )′PrTx(T )] = x′0Pix0 + E
[∫ T

0

Θi(x(t), u(t))dt

∣∣∣∣r0 = i

]
,

where

Θi(x(t), u(t))

= x′
{[

PiAi + A′iPi + C ′iPiCi +
δ∑
j=1

πijPj +

η∑
k=1

N ′kiPiNkiMQkiM
′
]}

x

+2u′[D′iPiCi +B′iPi]x+ u′
[
D′iPiDi +

η∑
k=1

N ′kiPiNkiRki

]
u

+x′
[
2PiHi +

m∑
a=1

b′aPaa +

η∑
k=1

N ′kiPiNkiM̃Lki

]
.

As we have the mean-square stability,

lim
T→+∞

E[x(T )′P (rT )x(T )] = 0

Then the cost functional (4.18) can be rewritten as the following

J(x0, i;u(·))

= x′0Pix0 + E
{∫ +∞

0

[Θ(x(t), u(t), rt) + x(t)′Q(rt)x(t) + 2u(t)′L(rt)
′x(t)

+u(t)′R(rt)u(t) + x(t)′Ld(rt) + u(t)′Le(rt)]dt|r0 = i

}
. (4.28)

Using the notation in (4.22), we rewrite the terms inside the integral of equation

(4.28) and apply completion of square method to u,

Θi(x, u) + x′Qix+ 2u′L′ix+ u′Riu+ x′Ldi
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= u′R̄iu+ u′X̄ix+ x′S̄ix+ x′T̄i

=

[
u+

1

2
R̄†i X̄x

]′
R̄i

[
u+

1

2
R̄†i X̄x

]
− 1

4
x′X̄ ′iR̄

†
i X̄ix+ x′S̄ix+ x′T̄i.

Applying Lemma 2.9.2, Lemma 2.9.3-(ii), and according to CGAREs in (4.20) we

have for γ = 1, 2,

R̄iΨ
γ
i = R̄†iΨ

γ
i = 0,

and,

X̄ ′Ψγ
i = 0.

Hence, we rewrite

Θ(t, x, i) + x′Qix+ 2u′L′ix+ u′Riu+ x′Ldi

=

[
u+

(
1

2
R̄†i X̄ + Ψ1

i

)
x+ Ψ2

i

]′
R̄i

[
u+

(
1

2
R̄†i X̄ + Ψ1

i

)
x

Ψ2
i

]
+ x′

(
S̄i −

1

4
X̄ ′iR̄

†
i X̄i

)
x+ x′T̄i.

According to the CGAREs in (4.20), we have S̄i − 1
4
X̄ ′iR̄

†
i X̄i = 0, and T̄i = 0.

Then the equation (4.28) can be expressed as

J(0, x0, i;u(·))

= x′0Pix0 + E
{∫ +∞

0

{[
u+

(
1

2
R̄†i X̄i + Ψ1

i

)
x+ Ψ2

i

]′
R̄i

[
u

+

(
1

2
R̄†i X̄i + Ψ1

i

)
x+ Ψ2

i

]}
dt

∣∣∣∣rs = i

}
≥ x′0Pix0,

Thus, J(s, y, i;u(·)) is minimized by the control law given by (4.25). The optimal

value is x′0Pix0.

We highlight that the importance of this work is that explicit optimal linear

controls are obtained, which is a very rare case in the nonlinear system.

Similar to the results in [74], we have the following statements. Any admissible

control is optimal, if [Di(t)
′Pi(t)Di(t) +

∑η
k=1 N

′
kiPiNkiRki + Ri(t)] ≡ 0, a.e. t ∈
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[s, T ] for every i. In addition, when [Di(t)
′Pi(t)Di(t)+

∑η
k=1 N

′
kiPiNkiRki+Ri(t)] >

0, a.e. t ∈ [s, T ] for every i, a unique optimal control is given as follows:

u(t) = −
δ∑
i=1

1

2
R̄†i X̄ix(t)χ{rt=i}(t),

where R̄i, and X̄i are defined in (4.22). Both of these two statements can be

derived from Theorem 4.3.1.

4.4 Summary

This chapter studies the indefinite stochastic nonlinear optimal control with Marko-

vian switching in infinite time horizon. The mean-square stability for our infinite

horizon problem is considered. A new type of CGAREs is introduced, and we

assume that it is solvable. Linear optimal controls are found explicitly and we

also obtain the optimal cost value.
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Chapter 5

Robust Stabilization and Robust

H∞ Control of Uncertain

Nonlinear Markovian Switching

Stochastic Systems with

Time-Varying Delays

5.1 Introduction

The problem of robust stabilization and robust H∞ control of uncertain linear

Markovian switching stochastic systems is introduced in Section 2.6. When time

delay is included in the system, the problems of robust control and robust H∞

control has been widely studied. For example, [114] and [20] focus on systems

with Markovian switching for deterministic systems. For stochastic systems, [115]

and [120] investigates the problems of uncertain robust H∞ control with time

delays. [121] studies the problem of H∞ output feedback control for uncertain

stochastic systems with time-varying delays. Robust H∞ control for uncertain

discrete stochastic time-delay systems is studied in [122]. In [123], problems of

robust stochastic stabilization and H∞ control are studied for uncertain neutral
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stochastic time-delay systems. Note that all the literatures mentioned above work

on linear systems. For nonlinear system, [107] investigates uncertain stochastic

systems with sector nonlinearities and missing measurements in a discrete time

case. The sector nonlinearity involved in [107] is a general type of nonlinearity

that is typically seen in control analysis and problems of model reduction. In ad-

dition, [130] considers state feedback H∞ control for a class of nonlinear stochastic

systems, in which the nonlinearity term is given in a general form.

In this chapter we consider the problem of robust stabilization and robust

H∞ control for a class of nonlinear stochastic systems with time delays, which

are more general than the ones considered in [115], [114], [20], [120], [121], and

[46]. First, the nonlinear problems are formulated. We discuss the existence and

uniqueness of solution to our nonlinear SDEs. Some basic definitions and lem-

mas are introduced. There are two theorems obtained in our main results. In

the section of robust stabilization, we provide sufficient conditions such that the

linear state feedback stabilizing controllers exist. The sufficient conditions are

presented in forms of matrix inequalities. In the section of robust H∞ control,

in addition to the requirement of robust stabilization, a more generalized type of

H∞ performance is proposed, and it is required to be satisfied. Sufficient con-

ditions for solving this generalized robust H∞ control problem is proposed. The

sufficient conditions are presented in forms of matrix inequalities. The difficulty

of this chapter is that we allow parameter uncertainty, interval uncertainty, time

delay, uncertain Markovian switching and nonlinearities all included in our sys-

tem. These uncertainties appear in state, disturbance and output. Under such

circumstances, our problems are still solvable. The two theorems derived in this

chapter are very advanced, with various applications in complicated situations.

5.2 Problem Formulation

Let (Ω,F , {Ft}t≥0,P) be a given filtered complete probability space, where there

exist a one-dimensional standard Brownian motion (W (t), 0 ≤ t ≤ T ) and (W̃ζ(t), 0 ≤
t ≤ T ) for all ζ = 1, 2, · · · ,m, and a Markov chain (rt, 0 ≤ t ≤ T ). We assume

that W (t), W̃ζ(t) and the process rt are mutually independent.

Let rt, where t ≥ 0, be a right-continuous Markov chain, taking values in a
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finite state-space Λ = 1, 2, . . . , N , with generator Π̂ = (π̂ij)N×N given by

P{rt+δ = j | rt = i} =

{
π̂ijδ + o(δ) : if i 6= j,

1 + π̂ijδ + o(δ) : if i = j,

for δ > 0, and limδ→0(o(δ)/δ) = 0. Here, π̂ij ≥ 0 is the transition rate from i to

j, if i 6= j, while π̂ii = −
∑N

j=1,j 6=i π̂ij.

Consider the following stochastic system with Markovian switching and pa-

rameter uncertainties:

dx(t) = [(A(rt) + ∆A(t, rt))x(t) + (Ad(rt) + ∆Ad(t, rt))x(t− τ(t))

+(B(rt) + ∆B(t, rt))u(t)

+(G(rt) + ∆G(t, rt))v(t) + (Gd(rt) + ∆Gd(t, rt))v(t− τ(t))]dt

+[(E(rt) + ∆E(t, rt))x(t) + (Ed(rt) + ∆Ed(t, rt))x(t− τ(t))

+(F (rt) + ∆F (t, rt))u(t)

+(H(rt) + ∆H(t, rt)v(t) + (Hd(rt) + ∆Hd(t, rt)v(t− τ(t))]dW (t)

+
m∑
ζ=1

Γζ(x(t), u(t), t, rt)dW̃ζ(t), (5.1)

z(t) = (C(rt) + ∆C(t, rt))x(t) + (Cd(rt) + ∆Cd(t, rt))x(t− τ(t))

+(S(rt) + ∆S(t, rt))u(t)

+(L(rt) + ∆L(t, rt)v(t) + (Ld(rt) + ∆Ld(t, rt)v(t− τ(t)), (5.2)

x(t) = φ(t) ∀t ∈ [−µ, 0], (5.3)

where each matrix Γζ(x(t), u(t), t, rt) is defined as

Γζ(x(t), u(t), t, rt) ,

[x(t)′(Q1ζ(rt) + ∆Q1ζ(t, rt))x(t) + u(t)′(R1ζ(rt) + ∆R1ζ(t, rt))u(t)

+Z1ζ(rt) + ∆Z1ζ(rt)]
1
2

[x(t)′(Q2ζ(rt) + ∆Q2ζ(t, rt))x(t) + u(t)′(R2ζ(rt) + ∆R2ζ(t, rt))u(t)

+Z2ζ(rt) + ∆Z2ζ(rt)]
1
2

...

[x(t)′(Qnζ(rt) + ∆Qnζ(t, rt))x(t) + u(t)′(Rnζ(rt) + ∆Rnζ(t, rt))u(t)

+Znζ(rt) + ∆Znζ(rt)]
1
2


,(5.4)
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for t ≥ 0 with initial data x(0) = x0 and r(0) = i0 ∈ Λ. We assume that

Qkζ(rt) + ∆Qkζ(t, rt) ≥ 0,

Rkζ(rt) + ∆Rkζ(t, rt) ≥ 0,

Zkζ(rt) + ∆Zkζ(rt) ≥ 0,

for all k = 1, 2, · · · , n. Matrices are assumed to have appropriate dimensions.

Here x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, v(t) ∈ Rp is the

disturbance input, and z(t) ∈ Rq is the controlled output. Similar to settings of

time delay introduced in [120], we assume that τ(t) is the time-varying delay that

satisfies

0 < τ(t) ≤ µ <∞, τ̇ ≤ h < 1,

where µ and h are real constant scalars. When rt = i, we denote A(rt) = Ai,

∆A(t, rt) = ∆Ai(t), etc. for simplicity.

In the above system, Ai, Adi, Bi, Ci, Cdi, Ei, Edi, Fi, Gi, Gdi, Hi, Hdi Li, Ldi,

Si, Rσζi, Hui, Qσζi, Hxi, Zσζi, Hzi are known real constant matrices. ∆Ai(t),

∆Adi(t), ∆Bi(t), ∆Ci(t), ∆Cdi(t), ∆Ei(t), ∆Edi(t), ∆Fi(t), ∆Gi(t), ∆Gdi(t),

∆Hi(t), ∆Hdi(t), ∆Li(t), ∆Ldi(t), ∆Si(t), ∆Rσζi(t), ∆Hui(t), ∆Qσζi(t), ∆Hxi(t),

∆Zσζi(t), ∆Hzi(t) are unknown matrices and are denoted as parameter uncertain-

ties. The parameter uncertainties are assumed to have the following structures:[
∆Ai(t) ∆Adi(t) ∆Bi(t) ∆Ci(t) ∆Cdi(t) ∆Ei(t) ∆Edi(t)

]
= MiUi(t)

[
Nai Nadi Nbi Nci Ncdi Nei Nedi

]
,

[
∆Fi(t) ∆Gi(t) ∆Gdi(t) ∆Hi(t) ∆Hdi(t) ∆Li ∆Ldi ∆Si

]
= MiUi(t)

[
Nfi Ngi Ngdi Nhi Nhdi Nli Nldi Nsi

]
,

[
∆Rσζi(t) ∆Hui(t) ∆Qσζi(t) ∆Hxi(t)

]
= MiUi(t)

[
Nrσζi Nui Nqσζi Nxi

]
, (5.5)
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where Mi, Nai, Nadi, Nbi, Nci, Ncdi, Nei, Nedi, Nfi, Ngi, Ngdi, Nhi, Nhdi, Nli, Nldi,

Nsi, Nrσζi, Nui, Nqσζi, Nxi, Nzσζi, Nzi are known real constant matrices and Ui(t)’s

are unknown matrices satisfying Ui(t)
′
Ui(t) ≤ I, ∀i ∈ Λ. The elements of Ui(t)

are assumed to be Lebesgue measurable. Such uncertainty structure has been

used by many authors, e.g. [115], [53], [120], [108], [20], [114], [122], [121], [123],

[107] and [46].

Additionally, similar to the settings in [119], the mode transition rate matrix

Π̂ , (π̂ij)N×N is also assumed to be uncertain and has the element-wise uncer-

tainties

Π̂ = Π + ∆Π,

with Π , (πij)N×N satisfying πij ≥ 0, (i, j ∈ Λ, j 6= i) and πii , −
∑N

j=1,j 6=i πij

for all i ∈ Λ, where πij denotes the estimated value of π̂ij, and ∆Π , (∆πij) =

(π̂ij − πij) where |∆πij| ≤ εij, εij ≥ 0. ∆πij denotes the error between π̂ij and πij

for all i, j ∈ Λ, j 6= i and ∆πii , −
∑N

j=1,j 6=i ∆πij for all i ∈ Λ.

Similar to several definitions stated in Section 2.6 and the references therein,

here we have some similar definitions and lemmas.

Definition 5.2.1. [120] The system in (5.1) and (5.3) with u(t) = 0 and v(t) = 0

is said to be mean-square asymptotically stable if

lim
t→∞

E|x(t)|2 = 0

for any initial conditions.

Definition 5.2.2. [120] The uncertain stochastic system in (5.1) and (5.3) is

said to be robustly stochastically stable if the system associated to (5.1) and (5.3)

with u(t) = 0 and v(t) = 0 is mean-square asymptotically stable for all admissible

uncertainties ∆Ai, ∆Adi, ∆Ei, and ∆Edi.

Before we provide the definition of the generalized robust H∞ control, let us

recall the classic definition first.

Definition 5.2.3. [120] Given a scalar γ > 0, the stochastic system from (5.1)

to (5.3) with u(t) = 0 is said to be robustly stochastically stable with disturbance

attenuation γ if it is robustly stochastically stable and under zero initial conditions,
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‖z(t)‖ < γ‖v(t)‖ for all non-zero v(t) and all admissible uncertainties ∆Ai, ∆Adi,

∆Bi, ∆Ci, ∆Cdi, ∆Ei, ∆Edi, ∆Fi, ∆Gi, ∆Gdi, ∆Hi, ∆Hdi, ∆Li, ∆Ldi, ∆Si,

where

‖z(t)‖ =

(
E
{∫ ∞

0

|z(t)|2dt
}) 1

2

.

Now we briefly introduce the main idea of solving the classic robust H∞ control

problem in [20], [114], [120] and [46], where J is defined as:

J , E
{∫ t

0

[
z(s)′z(s)− γ2v(s)′v(s)

]
ds

}
. (5.6)

According to Definition 5.2.3, in order to achieve ‖z(t)‖ < γ‖v(t)‖, it is equivalent

to make J < 0. The following way of calculation is used in [20], [114], [120] and

[46].

J = E
{∫ t

0

[
z(s)′z(s)− γ2v(s)′v(s) + LV (x(s), i)

]
ds

}
− E{V (x(t), rt)}

≤ E
{∫ t

0

[
z(s)′z(s)− γ2v(s)′v(s) + LV (x(s), i)

]
ds

}
= E

{∫ t

0

([
x(s)′ x(s− τ(s))′ v(s)′

]
Υi

×
[
x(s)′ x(s− τ(s))′ v(s)′

]′)
ds

}
. (5.7)

In the above case, if we can find conditions such that Υi < 0 is achieved, then

we have J < 0. Motivated by the above idea, we generalize the term z(s)′z(s)−
γ2v(s)′v(s) by changing the constant γ2 into a matrix Ri, and rewriting z(s)′z(s)−
γ2v(s)′v(s) in (5.6) as follows:

[
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′ z(s)′

]
Ri



x(s)

x(s− τ(s))

v(s)

v(s− τ(s))

z(s)


.
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Now we provide the definition of generalized robust H∞ control problem, which

is new compared with the ones in the past literatures, see for example [115], [114],

[121], [20], [120], [122], [123], [107], and [130].

Definition 5.2.4. Given a matrix with Markovian switching R(rt) > 0, we define

J̄ , E
[ ∫ t

0

{[
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′ z(s)′

]
Ri

×
[
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′ z(s)′

]′}
ds

]
. (5.8)

The stochastic system from (5.1) to (5.3) with u(t) = 0 is said to be robustly

stochastically stable with disturbance attenuation R(rt), if it is robustly stochasti-

cally stable and J̄ < 0 for all non-zero v(t) and all admissible uncertainties ∆Ai,

∆Adi, ∆Bi, ∆Ci, ∆Cdi, ∆Ei, ∆Edi, ∆Fi, ∆Gi, ∆Gdi, ∆Hi, ∆Hdi, ∆Li, ∆Ldi,

and ∆Si.

Remark 5.2.1. The above definition involves state x(s), state with delay x(s −
τ(s)), and disturbance with delay v(s−τ(s)) in the H∞ performance. This kind of

problem formulation is new, compared with the existing works. The importance of

designing such a structure lies in the possible practical requirements. In order to

explain intuitively, here we take the motor for example. When we model a motor

mathematically, the electric current to the motor is regarded as state x(s). Heat,

magnetic field or any other interference are regarded as disturbance v(s). The

speed of rotation of the motor is regarded as output z(s). The real situation in

practice is that not only the disturbance v(s) has effect on the output z(s), but

also the state x(s) affects the output z(s) in some cases. For example, when the

electric current is too large for the motor, it will cause overheating to the coil,

and finally the motor will break down. Therefore, the magnitude of the electric

current must satisfy some criteria. Hence, we do need to consider state in the

H∞ performance. In addition, in many situations, it is assumed that the future

states of the system only depend on the present states, and are independent of the

past states. Note that in some cases past dependence is important, and cannot be

simply neglected. In order to achieve a more precise model, system with time delay

has to be considered. Thus we allow time delay to be included in formulating the

new H∞ performance. The selection of R(rt), corresponding to the γ in the classic
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definition, depends on the requirements of the real problem. It is emphasized that

Definition 5.2.4 contains Definition 5.2.3 as a special case.

From the past literatures regarding robust control problems with time delays,

see [115], [114], [120], [88], [121], [107], [20], [123], [122] and the references therein,

the control law is usually designed to be linear in state only, for example, in

forms of u(t) = kx(t). Here in this chapter, we allow time delay to be included

in the control law, which is new compared with the existing works. As we have

mentioned in Remark 5.2.1, involving time delay in the system is crucial for accu-

rate estimation. Practically, it is necessary to consider a controller that contains

state with time delay. Mathematically, for the problems of robust stochastic sta-

bilization and robust H∞ control, we design a robust controller of the following

form:

u(t) = K1(rt)x(t) +K2(rt)x(t− τ(t)). (5.9)

Note that if we choose K2(rt) = 0, then our control law is exactly the same as the

usual ones.

Similar to the previous two chapters, in the nonlinear stochastic systems, here

we have to verify the existence and uniqueness of solution. Substituting the

control (5.9) to the system (5.1), we rewrite our SDE into (5.17), in which the

term Γζ(x(t), t, rt) has a bounded first derivative with respect to x(t). This satisfies

Theorem 7.10 in [83], where existence and uniqueness of SDEs with Markovian

switching and time delay is proved.

5.3 Robust Stochastic Stabilization

In this section we provide a theorem in which sufficient conditions are derived

such that a robust controller of the form (5.9) exists. First we provide a lemma

that will be useful in the calculation of the proof for Theorem 5.3.1.

For notation simplicity, we define

Γζ(x(t), u(t), t, rt) ,
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[x(t)′(Q1ζ(rt) + ∆Q1ζ(t, rt))x(t) + u(t)′(R1ζ(rt) + ∆R1ζ(t, rt))u(t)

+Z1ζ(rt) + ∆Z1ζ(rt)]
1
2

[x(t)′(Q2ζ(rt) + ∆Q2ζ(t, rt))x(t) + u(t)′(R2ζ(rt) + ∆R2ζ(t, rt))u(t)

+Z2ζ(rt) + ∆Z2ζ(rt)]
1
2

...

[x(t)′(Qnζ(rt) + ∆Qnζ(t, rt))x(t) + u(t)′(Rnζ(rt) + ∆Rnζ(t, rt))u(t)

+Znζ(rt) + ∆Znζ(rt)]
1
2



,


a1ζi(t)

a2ζi(t)
...

anζi(t)

 . (5.10)

Rewrite the n× n matrix Pi(t) into the following:

Pi(t) =


P11i(t) P12i(t) · · · P1ni(t)

P21i(t) P22i(t) · · · P2ni(t)
...

...
...

Pn1i(t) Pn2i(t) · · · Pnni(t)

 . (5.11)

Assumption 5.3.1. We assume that the following holds:

m∑
ζ=1

[ n∑
k=2

a1ζi(t)akζi(t)P1ki(t) +
n∑

k=1,k 6=2

a2ζi(t)akζi(t)P2ki(t)

+ · · ·+
n−1∑
k=1

anζi(t)akζi(t)Pnki(t)

]
, x(t)′(Hxi + ∆Hxi(t))x(t) + u(t)′(Hui + ∆Hui(t))u(t) +Hzi

+∆Hzi. (5.12)

Note that a1ζi(t), a2ζi(t), · · · , and anζi(t) are all terms with square roots. The

above assumption allow us to cancel the square roots after multiplication. Next,

we discuss the feasibility of the above assumption.
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Remark 5.3.1. In order to verify that the above assumption is not too strong or

too conservative, we provide several cases when it holds.

(1) When we have a1ζi(t) = a2ζi(t) = · · · = anζi(t), i.e., all the the akζi(t) are

the same, the above assumption holds.

(2) When we have for example a1ζi(t) = a2ζi(t), a3ζi(t) = a4ζi(t) and a1ζi(t) 6=
a3ζi(t), in this case, the square roots are cancelled after multiplication when akζi(t) =

a(k+1)ζi(t). In the cases when the square roots cannot be cancelled, we choose the

corresponding Pσki(t) = 0, where σ = 1, 2, · · · , n. Then the above assumption

holds.

(3) Similar to Case (2), when we have some pairs of the same akζi(t), those

square roots can be cancelled after multiplication. As for the other pairs that the

square roots cannot be cancelled after multiplication, we can choose the corre-

sponding Pσki(t) that have the same absolute value but with different signs, i.e.

one positive and the other negative, where σ = 1, 2, · · · , n. In this case, those

pairs are added up with value 0. Then the above assumption holds.

Hence, with the above cases illustrated, we say our Assumption 5.3.1 is feasible

in many situations.

Lemma 5.3.1. According to the notation introduced in (5.10) and (5.11), with

Assumption 5.3.1, after a series of calculation, we have

m∑
ζ=1

tr[Pi(t)Γζi(x, u, t)Γζi(x, u, t)
′]

= x(t)′[
n∑
σ=1

m∑
ζ=1

Pσσi(Qσζi + ∆Qσζi(t)) +Hxi + ∆Hxi(t)]x(t)

+u(t)′[
n∑
σ=1

m∑
ζ=1

Pσσi(Rσζi + ∆Rσζi(t)) +Hui + ∆Hui(t)]u(t)

+
n∑
σ=1

m∑
ζ=1

Pσσi(Zσζi + ∆Zσζi) +Hzi + ∆Hzi. (5.13)

Proof. According to (5.10) and (5.11), we have

tr[Pi(t)Γζi(x, u, t)Γζi(x, u, t)
′]
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=

[ n∑
k=1

akζi(t)P1ki(t)

]
a1ζi(t) +

[ n∑
k=1

akζi(t)P2ki(t)

]
a2ζi(t)

+ · · ·+
[ n∑
k=1

akζi(t)Pnki(t)

]
anζi(t)

=

[
a1ζi(t)P11i(t) +

n∑
k=2

akζi(t)P1ki(t)

]
a1ζi(t) +

[
a2ζi(t)P22i(t)

+
n∑

k=1,k 6=2

akζi(t)P2ki(t)

]
a2ζi(t) + · · ·+

[
anζi(t)Pnni(t)

+
n−1∑
k=1

akζi(t)Pnki(t)

]
anζi(t)

= a1ζi(t)
2P11i(t) + a2ζi(t)

2P22i(t) + · · ·+ anζi(t)
2Pnni(t)

+
n∑
k=2

akζi(t)P1ki(t)a1ζi(t) +
n∑

k=1,k 6=2

akζi(t)P2ki(t)a2ζi(t)

+ · · ·+
n−1∑
k=1

akζi(t)Pnki(t)anζi(t).

Then we take the sum of the above terms, and rewrite it as follows,
m∑
ζ=1

tr

[
Pi(t)Γζi(x, u, t)Γζi(x, u, t)

′
]

=
m∑
ζ=1

[
a1ζi(t)

2P11i(t) + a2ζi(t)
2P22i(t) + · · ·+ anζi(t)

2Pnni(t)

]

+
m∑
ζ=1

[ n∑
k=2

a1ζi(t)akζi(t)P1ki(t) +
n∑

k=1,k 6=2

a2ζi(t)akζi(t)P2ki(t) + · · ·

+
n−1∑
k=1

anζi(t)akζi(t)Pnki(t)

]
.

Now it is clear that with terms like a1ζi(t)
2, a2ζi(t)

2, · · · , and anζi(t)
2, the square

roots are cancelled. In addition, we use Assumption 5.3.1 to rewrite the remaining

terms. Then we have
m∑
ζ=1

tr[Pi(t)Γζi(x, u, t)Γζi(x, u, t)
′]
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= x′
[ m∑
ζ=1

(
P11i(t)(Q1ζi + ∆Q1ζi(t)) + P22i(t)(Q2ζi + ∆Q2ζi(t)) + · · ·

+Pnni(t)(Qnζi + ∆Qnζi(t))

)
+Hxi + ∆Hxi(t)

]
x

+u′
[ m∑
ζ=1

(
P11i(t)(R1ζi + ∆R1ζi(t)) + P22i(t)(R2ζi + ∆R2ζi(t)) + · · ·

+Pnni(t)(Rnζi + ∆Rnζi(t))

)
+Hui + ∆Hui(t)

]
u

+
m∑
ζ=1

(
P11i(t)(Z1ζi + ∆Z1ζi) + P22i(t)(Z2ζi + ∆Z2ζi) + · · ·

+Pnni(t)(Znζi + ∆Znζi)

)
+Hzi + ∆Hzi

= x(t)′[
n∑
σ=1

m∑
ζ=1

Pσσi(Qσζi + ∆Qσζi(t)) +Hxi + ∆Hxi(t)]x(t)

+u(t)′[
n∑
σ=1

m∑
ζ=1

Pσσi(Rσζi + ∆Rσζi(t)) +Hui + ∆Hui(t)]u(t)

+
n∑
σ=1

m∑
ζ=1

Pσσi(Zσζi + ∆Zσζi) +Hzi + ∆Hzi. (5.14)

Remark 5.3.2. It is highlighted that the importance of the Lemma 5.3.1 is that

when calculating the term
∑m

ζ=1 tr[Pi(t)Γζi(x, u, t)Γζi(x, u, t)
′] we are able to elim-

inate the square roots that originally appear in Γζi(x, u, t).

Note that the structure of the parameter uncertainty ∆Qσζi(t), ∆Rσζi(t),

∆Hxi(t), and ∆Hui(t) in (5.14) is introduced in (5.5). Next, we introduce one

more kind of uncertainty in the following assumption, called interval uncertainty,

which is used to model ∆Zσζi and ∆Hzi.

Assumption 5.3.2. We assume that the scalars ∆Zσζi and ∆Hzi have interval

uncertainty as follows, ∆Zσζi ≤ ασζi and ∆Hzi ≤ βi.

We introduce the following matrices:

Ā(rt) , A(rt) +B(rt)K1(rt),
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Ād(rt) , Ad(rt) +B(rt)K2(rt),

∆Ā(t, rt) , M(rt)U(t, rt)N̄a(rt),

∆Ād(t, rt) , M(rt)U(t, rt)N̄ad(rt),

N̄a(rt) , Na(rt) +Nb(rt)K1(rt),

N̄ad(rt) , Nad(rt) +Nb(rt)K2(rt),

Ē(rt) , E(rt) + F (rt)K1(rt),

Ēd(rt) , Ed(rt) + F (rt)K2(rt),

∆Ē(t, rt) , M(rt)U(t, rt)N̄e(rt),

∆Ēd(t, rt) , M(rt)U(t, rt)N̄ed(rt),

N̄e(rt) , Ne(rt) +Nf (rt)K1(rt),

N̄ed(rt) , Ned(rt) +Nf (rt)K2(rt).

Theorem 5.3.1. Let v(t) = 0, ∀t ≥ 0. Let Assumption 5.3.1 and Assumption

5.3.2 hold, with Lemma 5.3.1, the system (5.1) is robustly stochastically stabilizable

if there exist scalars {ε1i > 0, i ∈ Λ}, {ε2i > 0, i ∈ Λ}, {λij > 0, i, j ∈ Λ, i 6= j},
and matrices {Pi, i ∈ Λ}, {Ki, i ∈ Λ} with appropriate dimensions, such that both

of the following two matrix inequalities (5.15) and (5.16) hold,

Mi Li N̄a
′
i N̄e

′
i Ē ′i

L′i Ni 0 0 0

N̄ai 0 −ε1iI 0 0

N̄ei 0 0 −ε2iI 0

Ēi 0 0 0 ε2iMiM
′
i − P−1

i


< 0, i ∈ Λ, (5.15)

and
n∑
σ=1

m∑
ζ=1

Pσσi(Zσζi + ασζi) +Hzi + βi < 0, i ∈ Λ, (5.16)

where

Mi , PiĀi + Ā′Pi + ε1iPiMiM
′
iPi +Qi +

1

2
φ1im

n∑
σ=1

PσσiMiM
′
i

+
1

2

n∑
σ=1

m∑
ζ=1

Pσσiφ
−1
1i N

′
qσζiNqσζi +

1

2
φ2iMiM

′
i +

1

2
φ−1

2i N
′
xiNxi
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+
1

2
φ3im

n∑
σ=1

PσσiK
′
1iMiM

′
iK1i +

1

2
φ−1

3i

n∑
σ=1

m∑
ζ=1

PσσiK
′
1iN

′
rσζiNrσζiK1i

+
1

2
φ4iK

′
1iMiM

′
iK1i +

1

2
φ−1

4i K
′
1iN

′
uiNuiK1i

+φ5im

n∑
σ=1

PσσiK
′
1iMiM

′
iK1i + φ6iK

′
1iMiM

′
iK1i

+
n∑
σ=1

m∑
ζ=1

PσσiQσζi +Hxi +
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iRσζiK1i +K ′1iHuiK1i

+
N∑

j=1,j 6=i

[
λij
4
ε2
ijI +

1

λij
(Pj − Pi)2

]
+

N∑
j=1

πijPj,

Li , PiĀdi +
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iRσζiK2i +K ′1iHuiK2i,

Ni , φ−1
5i

n∑
σ=1

m∑
ζ=1

PσσiK
′
2iN

′
rσζiNrσζiK2i + φ−1

6i K
′
2iN

′
uiNuiK2i

+
1

2
φ7im

n∑
σ=1

PσσiK
′
2iMiM

′
iK2i +

1

2
φ−1

7i

n∑
σ=1

m∑
ζ=1

PσσiK
′
2iN

′
rσζiNrσζiK2i

+
1

2
φ8iK

′
2iMiM

′
iK2i +

1

2
φ−1

8i K
′
2iN

′
uiNuiK2i

+
n∑
σ=1

m∑
ζ=1

PσσiK
′
2iRσζiK2i +K ′2iHuiK2i − (1− h)Qi.

In this case the controller can be chosen by (5.9).

Proof. Let us assume that there exist scalars {ε1i > 0, i ∈ Λ}, {ε2i > 0, i ∈ Λ},
{φ1i > 0, i ∈ Λ}, {φ2i > 0, i ∈ Λ}, {φ3i > 0, i ∈ Λ}, {φ4i > 0, i ∈ Λ}, {φ5i > 0, i ∈
Λ}, {φ6i > 0, i ∈ Λ}, {φ7i > 0, i ∈ Λ}, {φ8i > 0, i ∈ Λ}, {λij > 0, i, j ∈ Λ, i 6= j},
and matrices {Pi ∈ Sn, i ∈ Λ}, {Ki ∈ Rm×n, i ∈ Λ}, such that (5.15) and (5.16)

hold. Also let v(t) = 0, ∀t ≥ 0. Substituting the control (5.9) to the system (5.1),

we obtain the system

dx(t) = {[Ā(rt) + ∆Ā(t, rt)]x(t) + [Ād(rt) + ∆Ād(t, rt)]x(t− τ(t))}dt
+{[Ē(rt) + ∆Ē(t, rt)]x(t) + [Ēd(rt) + ∆Ēd(t, rt)]x(t− τ(t))}dW (t)

87



+
m∑
ζ=1

Γζ(x(t), t, rt)dW̃ζ(t). (5.17)

We consider V (x(t), rt) as a Lyapunov candidate for (5.17), where

V (x(t), rt) , x(t)′P (rt)x(t) +

∫ t

t−τ(t)

x(s)′Qx(s)ds. (5.18)

Denote the operator LV (x(t), i) as the drift term after applying Itô’s formula to

V (x(t), i), according to Lemma 2.9.1, we obtain

E[dV (x(t), i)] = E[LV (x(t), i)]dt,

where the operator

LV (x(t), i) , 2x(t)′Pi[(Āi + ∆Āi(t))x(t) + (Ādi + ∆Ādi(t))x(t− τ(t))]

+[(Ēi + ∆Ēi(t))x(t) + (Ēdi + ∆Ēdi(t))x(t− τ(t))]′Pi[(Ēi

+∆Ēi(t))x(t) + (Ēdi + ∆Ēdi(t))x(t− τ(t))] + x(t)′Qix(t)

−(1− τ̇(t))x(t− τ(t))′Qix(t− τ(t)) +
N∑
j=1

π̂ijx(t)′Pjx(t)

+
m∑
ζ=1

tr[PiΓζi(x, u, t)Γζi(x, u, t)
′]. (5.19)

Substituting the control (5.9) into (5.13) of Lemma 5.3.1, then we have

m∑
ζ=1

tr[PiΓζi(x, u, t)Γζi(x, u, t)
′]

= x(t)′(
n∑
σ=1

m∑
ζ=1

PσσiQσζi +Hxi +
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iRσζiK1i +K ′1iHuiK1i)x(t)

+2x(t)′(
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iRσζiK2i +K ′1iHuiK2i)x(t− τ(t))

+x(t− τ(t))′(
n∑
σ=1

m∑
ζ=1

PσσiK
′
2iRσζiK2i +K ′2iHuiK2i)x(t− τ(t))

+x(t)′
n∑
σ=1

m∑
ζ=1

PσσiMiUi(t)Nqσζx(t) + x(t)′MiUi(t)Nxix(t)
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+x(t)′
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iMiUi(t)NrσζK1ix(t) + x(t)′K ′1iMiUi(t)NuiK1ix(t)

+2x(t)′
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iMiUi(t)NrσζK2ix(t− τ(t))

+2x(t)′K ′1iMiUi(t)NuiK2ix(t− τ(t))

+x(t− τ(t))′
n∑
σ=1

m∑
ζ=1

PσσiK
′
2iMiUi(t)NrσζK2ix(t− τ(t))

+x(t− τ(t))′K ′2iMiUi(t)NuiK2ix(t− τ(t))

+
n∑
σ=1

m∑
ζ=1

Pσσi(Zσζi + ∆Zσζi) +Hzi + ∆Hzi. (5.20)

According to Lemma 2.9.6, which is used to eliminate the parameter uncertainties,

we have the following inequalities:

2x(t)′Pi[(Āi + ∆Āi(t))x(t) + (Ādi + ∆Ādi(t))x(t− τ(t))]

= 2x(t)′PiĀix(t) + 2x(t)′PiĀdix(t− τ(t)) + 2x(t)′PiMiUi(t)[N̄aix

+N̄adix(t− τ(t))]

≤ 2x(t)′PiĀix(t) + 2x(t)′PiĀdix(t− τ(t)) + ε1ix(t)′PiMiM
′
iPix(t)

+ε−1
1i [N̄aix(t) + N̄adx(t− τ(t))]′[N̄aix(t) + N̄adix(t− τ(t))],

[(Ēi + ∆Ēi(t))x(t) + (Ēdi + ∆Ēdi(t))x(t− τ(t))]′Pi[(Ēi + ∆Ēi(t))x(t)

+(Ēdi + ∆Ēdi(t))x(t− τ(t))]

= [Ēix(t) + Ēdix(t− τ(t)) +MiUi(t)(N̄eix(t) + N̄edix(t− τ(t)))]′Pi[Ēix(t)

+Ēdix(t− τ(t)) +MiUi(t)(N̄eix(t) + N̄edix(t− τ(t)))]

≤ (Ēix(t) + Ēdix(t− τ(t)))′(P−1
i − ε2iMiM

′
i)
−1(Ēix(t) + Ēdix(t− τ(t)))

+ε−1
2i (N̄eix(t) + N̄edix(t− τ(t))′(N̄eix(t) + N̄edix(t− τ(t)),

x(t)′
n∑
σ=1

m∑
ζ=1

PσσiMiUi(t)Nqσζx(t)

≤ x(t)′(
1

2
φ1im

n∑
σ=1

PσσiMiM
′
i +

1

2

n∑
σ=1

m∑
ζ=1

Pσσiφ
−1
1i N

′
qσζiNqσζi)x(t),
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x(t)′MiUi(t)Nxix(t) ≤ x(t)′(
1

2
φ2iMiM

′
i +

1

2
φ−1

2i N
′
xiNxi)x(t),

x(t)′
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iMiUi(t)NrσζK1ix(t)

≤ x(t)′(
1

2
φ3im

n∑
σ=1

PσσiK
′
1iMiM

′
iK1i

+
1

2
φ−1

3i

n∑
σ=1

m∑
ζ=1

PσσiK
′
1iN

′
rσζiNrσζiK1i)x(t),

x(t)′K ′1iMiUi(t)NuiK1ix(t)

≤ x(t)′(
1

2
φ4iK

′
1iMiM

′
iK1i +

1

2
φ−1

4i K
′
1iN

′
uiNuiK1i)x(t),

2x(t)′
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iMiUi(t)NrσζK2ix(t− τ(t))

≤ x(t)′(φ5im
n∑
σ=1

PσσiK
′
1iMiM

′
iK1i)x(t)

+x(t− τ(t))′(φ−1
5i

n∑
σ=1

m∑
ζ=1

PσσiK
′
2iN

′
rσζiNrσζiK2i)x(t− τ(t)),

2x(t)′K ′1iMiUi(t)NuiK2ix(t− τ(t))

≤ φ6ix(t)′K ′1iMiM
′
iK1ix(t) + φ−1

6i x(t− τ(t))′K ′2iN
′
uiNuiK2ix(t− τ(t)),

x(t− τ(t))′
n∑
σ=1

m∑
ζ=1

PσσiK
′
2iMiUi(t)NrσζK2ix(t− τ(t))

≤ x(t− τ(t))′(
1

2
φ7im

n∑
σ=1

PσσiK
′
2iMiM

′
iK2i

+
1

2
φ−1

7i

n∑
σ=1

m∑
ζ=1

PσσiK
′
2iN

′
rσζiNrσζiK2i)x(t− τ(t)),

x(t− τ(t))′K ′2iMiUi(t)NuiK2ix(t− τ(t))
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≤ x(t− τ(t))′(
1

2
φ8iK

′
2iMiM

′
iK2i +

1

2
φ−1

8i K
′
2iN

′
uiNuiK2i)x(t− τ(t)). (5.21)

Following (5.19) with a series of inequalities to (5.21), we have

LV (x(t), i)

≤ 2x(t)′PiĀix(t) + 2x(t)′PiĀdix(t− τ(t)) + ε1ix(t)′PiMiM
′
iPix(t)

+ε−1
1i [N̄aix(t) + N̄adx(t− τ(t))]′[N̄aix(t) + N̄adix(t− τ(t))]

+(Ēix(t) + Ēdix(t− τ(t)))′(P−1
i − ε2iMiM

′
i)
−1(Ēix(t) + Ēdix(t− τ(t)))

+ε−1
2i (N̄eix(t) + N̄edix(t− τ(t))′(N̄eix(t) + N̄edix(t− τ(t))

+x(t)′(
n∑
σ=1

m∑
ζ=1

PσσiQσζi +Hxi +
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iRσζiK1i +K ′1iHuiK1i)x(t)

+2x(t)′(
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iRσζiK2i +K ′1iHuiK2i)x(t− τ(t))

+x(t− τ(t))′(
n∑
σ=1

m∑
ζ=1

PσσiK
′
2iRσζiK2i +K ′2iHuiK2i)x(t− τ(t))

+x(t)′(
1

2
φ1im

n∑
σ=1

PσσiMiM
′
i +

1

2

n∑
σ=1

m∑
ζ=1

Pσσiφ
−1
1i N

′
qσζiNqσζi)x(t),

+x(t)′(
1

2
φ2iMiM

′
i +

1

2
φ−1

2i N
′
xiNxi)x(t)

+x(t)′(
1

2
φ3im

n∑
σ=1

PσσiK
′
1iMiM

′
iK1i

+
1

2
φ−1

3i

n∑
σ=1

m∑
ζ=1

PσσiK
′
1iN

′
rσζiNrσζiK1i)x(t)

+x(t)′(
1

2
φ4iK

′
1iMiM

′
iK1i +

1

2
φ−1

4i K
′
1iN

′
uiNuiK1i)x(t)

+x(t)′(φ5im
n∑
σ=1

PσσiK
′
1iMiM

′
iK1i)x(t)

+x(t− τ(t))′(φ−1
5i

n∑
σ=1

m∑
ζ=1

PσσiK
′
2iN

′
rσζiNrσζiK2i)x(t− τ(t))

+φ6ix(t)′K ′1iMiM
′
iK1ix(t) + φ−1

6i x(t− τ(t))′K ′2iN
′
uiNuiK2ix(t− τ(t))
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+x(t− τ(t))′(
1

2
φ7im

n∑
σ=1

PσσiK
′
2iMiM

′
iK2i

+
1

2
φ−1

7i

n∑
σ=1

m∑
ζ=1

PσσiK
′
2iN

′
rσζiNrσζiK2i)x(t− τ(t))

+x(t− τ(t))′(
1

2
φ8iK

′
2iMiM

′
iK2i +

1

2
φ−1

8i K
′
2iN

′
uiNuiK2i)x(t− τ(t))

+
n∑
σ=1

m∑
ζ=1

Pσσi(Zσζi + ∆Zσζi) +Hzi + ∆Hzi

+x(t)′Qix(t)− (1− τ̇(t))x(t− τ(t))′Qix(t− τ(t))

+
N∑
j=1

π̂ijx(t)′Pjx(t).

According to Assumption 5.3.2 and the definition stated in the previous sec-

tion, and [119], we have the following

N∑
j=1

∆πijPj =
N∑

j=1,j 6=i

[
1

2
∆πij(Pj − Pi) +

1

2
∆πij(Pj − Pi)

]

≤
N∑

j=1,j 6=i

[
λij
4
ε2
ijI +

1

λij
(Pj − Pi)2

]
, (5.22)

where λij ∈ R+. Then we have

LV (x(t), i)

≤ x(t)′(PiĀi + Ā′Pi + ε1iPiMiM
′
iPi +Qi +

1

2
φ1im

n∑
σ=1

PσσiMiM
′
i

+
1

2

n∑
σ=1

m∑
ζ=1

Pσσiφ
−1
1i N

′
qσζiNqσζi +

1

2
φ2iMiM

′
i +

1

2
φ−1

2i N
′
xiNxi

+
1

2
φ3im

n∑
σ=1

PσσiK
′
1iMiM

′
iK1i +

1

2
φ−1

3i

n∑
σ=1

m∑
ζ=1

PσσiK
′
1iN

′
rσζiNrσζiK1i

+
1

2
φ4iK

′
1iMiM

′
iK1i +

1

2
φ−1

4i K
′
1iN

′
uiNuiK1i

+φ5im

n∑
σ=1

PσσiK
′
1iMiM

′
iK1i + φ6iK

′
1iMiM

′
iK1i
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+
n∑
σ=1

m∑
ζ=1

PσσiQσζi +Hxi +
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iRσζiK1i +K ′1iHuiK1i

+
N∑

j=1,j 6=i

[
λij
4
ε2
ijI +

1

λij
(Pj − Pi)2

]
+

N∑
j=1

πijPj)x(t)

+2x(t)′(PiĀdi +
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iRσζiK2i +K ′1iHuiK2i)x(t− τ(t))

+x(t− τ(t))′(φ−1
5i

n∑
σ=1

m∑
ζ=1

PσσiK
′
2iN

′
rσζiNrσζiK2i + φ−1

6i K
′
2iN

′
uiNuiK2i

+
1

2
φ7im

n∑
σ=1

PσσiK
′
2iMiM

′
iK2i +

1

2
φ−1

7i

n∑
σ=1

m∑
ζ=1

PσσiK
′
2iN

′
rσζiNrσζiK2i

+
1

2
φ8iK

′
2iMiM

′
iK2i +

1

2
φ−1

8i K
′
2iN

′
uiNuiK2i

+
n∑
σ=1

m∑
ζ=1

PσσiK
′
2iRσζiK2i +K ′2iHuiK2i − (1− h)Qi)x(t− τ(t))

+ε−1
1i [N̄aix(t) + N̄adx(t− τ(t))]′[N̄aix(t) + N̄adix(t− τ(t))]

+(Ēix(t) + Ēdix(t− τ(t)))′(P−1
i − ε2iMiM

′
i)
−1(Ēix(t) + Ēdix(t− τ(t)))

+ε−1
2i (N̄eix(t) + N̄edix(t− τ(t))′(N̄eix(t) + N̄edix(t− τ(t)),

+
n∑
σ=1

m∑
ζ=1

Pσσi(Zσζi + ασζi) +Hzi + βi.

We rewrite the above inequality as follows,

LV (x(t), i)

≤ x(t)′Mix(t) + 2x(t)′Lix(t− τ(t)) + x(t− τ(t))′Nix(t− τ(t))

+ε−1
1i [N̄aix(t) + N̄adx(t− τ(t))]′[N̄aix(t) + N̄adix(t− τ(t))]

+(Ēix(t) + Ēdix(t− τ(t)))′(P−1
i − ε2iMiM

′
i)
−1(Ēix(t) + Ēdix(t− τ(t)))

+ε−1
2i (N̄eix(t) + N̄edix(t− τ(t))′(N̄eix(t) + N̄edix(t− τ(t)),

+
n∑
σ=1

m∑
ζ=1

Pσσi(Zσζi + ασζi) +Hzi + βi.

The above inequality can be rewritten into forms of matrices as follows,

LV (x(t), i)
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≤
[
x(t)′ x(t− τ(t))′

] [Mi Li
L′i Ni

][
x(t)

x(t− τ(t))

]

+ε−1
1i

[
x(t)′ x(t− τ(t))′

] [ N̄ ′ai
N̄ ′adi

] [
N̄ai N̄adi

] [ x(t)

x(t− τ(t))

]

+
[
x(t)′ x(t− τ(t))′

] [ Ē ′i
Ē ′di

]
(P−1

i − ε2iMiM
′
i)
−1
[
Ēi Ēdi

] [ x(t)

x(t− τ(t))

]

+ε−1
2i

[
x(t)′ x(t− τ(t))′

] [ N̄ ′ei
N̄ ′edi

] [
N̄ei N̄edi

] [ x(t)

x(t− τ(t))

]

+
n∑
σ=1

m∑
ζ=1

Pσσi(Zσζi + ασζi) +Hzi + βi

=
[
x(t)′ x(t− τ(t))′

]
Ψi

[
x(t)

x(t− τ(t))

]

+
n∑
σ=1

m∑
ζ=1

Pσσi(Zσζi + ασζi) +Hzi + βi, (5.23)

where

Ψi =

[
Mi Li
L′i Ni

]
+ ε−1

1i

[
N̄ ′ai

N̄ ′adi

] [
N̄ai N̄adi

]
+

[
Ē ′i

Ē ′di

]
(P−1

i − ε2iMiM
′
i)
−1
[
Ēi Ēdi

]
+ε−1

2i

[
N̄ ′ei

N̄ ′edi

] [
N̄ei N̄edi

]
.

From (5.15), and Lemma 2.9.4, Ψi < 0 is achieved. Note that there is a

constant term

n∑
σ=1

m∑
ζ=1

Pσσi(Zσζi + ασζi) +Hzi + βi

in (5.23). According to inequality (5.16), we have

LV (x(t), rt) < 0. (5.24)

94



By Definition 5.2.1, Definition 5.2.2, and [83], [68], (5.24) is a sufficient condition

such that the system (5.1) is robustly stochastically stable.

5.4 Robust H∞ Control

In this section we derive a sufficient condition that solves the robust H∞ control

problem for nonlinear uncertain stochastic systems with Markovian switching and

time delay. We first introduce the following several matrices:

C̄(rt) , C(rt) + S(rt)K1(rt),

C̄d(rt) , Cd(rt) + S(rt)K2(rt),

N̄c(rt) , Nc(rt) +Ns(rt)K1(rt),

N̄cd(rt) , Ncd(rt) +Ns(rt)K2(rt),

∆C̄(rt) , M(rt)U(t, rt)N̄c(rt),

∆C̄d(rt) , M(rt)U(t, rt)N̄cd(rt).

Theorem 5.4.1. Let Assumption 5.3.1 and Assumption 5.3.2 hold, with Lemma

5.3.1, the system (5.1), (5.2) is robustly stochastically stabilizable with disturbance

attenuation Ri, where the symmetric matrix Ri is split into

Ri =



R11i ∗ ∗ ∗ ∗
R21i R22i ∗ ∗ ∗
R31i R32i R33i ∗ ∗
R41i R42i R43i R44i ∗
R51i R52i R53i R54i R55i


, (5.25)

if there exist scalars {ε1i > 0, i ∈ Λ}, {ε2i > 0, i ∈ Λ}, {ε3i > 0, i ∈ Λ}, {ε4i >
0, i ∈ Λ}, {ε5i > 0, i ∈ Λ}, {φ1i > 0, i ∈ Λ}, {φ2i > 0, i ∈ Λ}, {φ3i > 0, i ∈ Λ},
{φ4i > 0, i ∈ Λ}, {φ5i > 0, i ∈ Λ}, {φ6i > 0, i ∈ Λ}, {φ7i > 0, i ∈ Λ}, {φ8i >

0, i ∈ Λ}, {λij > 0, i, j ∈ Λ, i 6= j}, and matrices {Pi, i ∈ Λ}, {Ki, i ∈ Λ} with

appropriate dimensions, such that the following two matrix inequalities (5.26) and

95



(5.27) hold,

Y11i ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
Y21i Y22i ∗ ∗ ∗ ∗ ∗ ∗ ∗
Y31i Y32i Y33i ∗ ∗ ∗ ∗ ∗ ∗
Y41i Y42i Y43i Y44i ∗ ∗ ∗ ∗ ∗
N̄ci N̄cdi Nli Nldi γ1i ∗ ∗ ∗ ∗
C̄i C̄di Li Ldi 0 γ2i ∗ ∗ ∗
N̄ai N̄adi Ngi Ngdi 0 0 γ3i ∗ ∗
Ēi Ēdi Hi Hdi 0 0 0 γ4i ∗
N̄ei N̄edi Nhi Nhdi 0 0 0 0 γ5i



< 0, i ∈ Λ, (5.26)

and

n∑
σ=1

m∑
ζ=1

Pσσi(Zσζi + ασζi) +Hzi + βi < 0, i ∈ Λ, (5.27)

where

Y11i = R11i + 2R15i + 2PiĀi + ε1iPiMiM
′
iPi +Qi

+
N∑

j=1,j 6=i

[
λij
4
ε2
ijI +

1

λij
(Pj − Pi)2

]
+

N∑
j=1

πijPj

+
1

2
φ1im

n∑
σ=1

PσσiMiM
′
i +

1

2

n∑
σ=1

m∑
ζ=1

Pσσiφ
−1
1i N

′
qσζiNqσζi

+
1

2
φ2iMiM

′
i +

1

2
φ−1

2i N
′
xiNxi

+
1

2
φ3im

n∑
σ=1

PσσiK
′
1iMiM

′
iK1i +

1

2
φ−1

3i

n∑
σ=1

m∑
ζ=1

PσσiK
′
1iN

′
rσζiNrσζiK1i

+
1

2
φ4iK

′
1iMiM

′
iK1i +

1

2
φ−1

4i K
′
1iN

′
uiNuiK1i

+φ5im

n∑
σ=1

PσσiK
′
1iMiM

′
iK1i + φ6iK

′
1iMiM

′
iK1i

+
n∑
σ=1

m∑
ζ=1

PσσiQσζi +Hxi +
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iRσζiK1i +K ′1iHuiK1i,
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Y21i = R21i + C̄ ′diR
′
15i +R25iC̄i + Ā′diPi +

n∑
σ=1

m∑
ζ=1

PσσiK
′
1iRσζiK2i

+K ′1iHuiK2i,

Y31i = R31i + L′iR
′
15i +R35iC̄i +G′iPi,

Y41i = R41i + L′diR
′
15i +R45iC̄i +G′diPi,

Y22i = R22i + 2R25iC̄di + 2ε5iR25iMiM
′
iR52i + (h− 1)Qi

+φ−1
5i

n∑
σ=1

m∑
ζ=1

PσσiK
′
2iN

′
rσζiNrσζiK2i + φ−1

6i K
′
2iN

′
uiNuiK2i

+
1

2
φ7im

n∑
σ=1

PσσiK
′
2iMiM

′
iK2i +

1

2
φ−1

7i

n∑
σ=1

m∑
ζ=1

PσσiK
′
2iN

′
rσζiNrσζiK2i

+
1

2
φ8iK

′
2iMiM

′
iK2i +

1

2
φ−1

8i K
′
2iN

′
uiNuiK2i

+
n∑
σ=1

m∑
ζ=1

PσσiK
′
2iRσζiK2i +K ′2iHuiK2i,

Y32i = R32i + L′iR
′
25i +R35iC̄di,

Y42i = R42i + L′diR
′
25i +R45iC̄di,

Y33i = R33i + 2R35iLi + 2ε6iR35iMiM
′
iR53i,

Y43i = R43i + L′diR
′
35i +R45iLi,

Y44i = R44i + 2R45iLdi + 2ε7iR45iMiM
′
iR54i,

γ1i = −[ε−1
3i +

1

2
(ε−1

4i + ε−1
5i + ε−1

6i + ε−1
7i )]I,
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γ2i = (ε3iMiM
′
i −R−1

55i)
−1,

γ3i = −ε−1
1i I,

γ4i = (ε2iMiM
′
i − P−1

i )−1,

γ5i = −ε−1
2i I.

In this case the controller can be chosen by (5.9).

Proof. Let us assume that there exist scalars {ε1i > 0, i ∈ Λ}, {ε2i > 0, i ∈ Λ},
{λij > 0, i, j ∈ S, i 6= j}, and matrices {Pi ∈ Sn, i ∈ Λ}, {Ki ∈ Rm×n, i ∈ Λ},
such that (5.26) holds. By (5.26), matrix inequalities (5.15) hold. In addition,

the requirement of (5.27) also appears in Theorem 5.3.1. Therefore, from Theo-

rem 5.3.1, the system is robustly stochastically stable. We consider (5.18) as a

Lyapunov candidate for (5.17). Denote the operator LV (x(t), i) as the drift term

after applying Itô’s formula to V (x(t), i).

By Lemma 2.9.1, we have

E[V (x(t)), rt] = E
[∫ t

0

LV (x(s), r(s))ds

]
. (5.28)

Let us recall the definition of J̄ in (5.8) from Definition 5.2.4. According to

(5.28) and a series of derivation steps shown in (5.7), we have

J̄(t) = E
{∫ t

0

[ [
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′ z(s)′

]
Ri

×
[
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′ z(s)′

]′
+LV (x(s), r(s))

]
ds

}
− E {V (x(t), rt)}

≤ E
{∫ t

0

[ [
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′ z(s)′

]
Ri

×
[
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′ z(s)′

]′
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+LV (x(s), r(s))

]
ds

}
.

Hence, we are looking for a condition such that the following inequalities hold,

E
[ ∫ t

0

{[
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′ z(s)′

]
Ri

×
[
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′ z(s)′

]′
+LV (x(t), i)

}
ds

]
≤ 0. (5.29)

Note that (5.29) is sufficient for J̄ < 0. Substituting (5.9) to (5.1) and (5.2), we

have

LV (x(t), i)

= 2x(t)′Pi[(Āi + ∆Āi)x(t) + (Ādi + ∆Ādi)x(t− τ(t)) + (Gi + ∆Gi)v(t)

+(Gdi + ∆Gdi)v(t− τ(t))] + [(Ēi + ∆Ēi)x(t) + (Ēdi + ∆Ēdi)x(t− τ(t))

+(Hi + ∆Hi)v(t) + (Hdi + ∆Hdi)v(t− τ(t))]′Pi[(Ēi + ∆Ēi)x(t)

+(Ēdi + ∆Ēdi)x(t− τ(t)) + (Hi + ∆Hi)v(t) + (Hdi + ∆Hdi)v(t− τ(t))]

+x(t)′Qix(t)− (1− τ̇(t))x(t− τ(t))′Qix(t− τ(t)) +
N∑
j=1

π̂ijx(t)′Pjx(t)

+
m∑
ζ=1

tr[PiΓζi(x, u, t)Γζi(x, u, t)
′],

and

z(t) = (C̄i + ∆C̄i)x(t) + (C̄di + ∆C̄di)x(t− τ(t)) + (Li + ∆Li)v(t)

+(Ldi + ∆Ldi)v(t− τ(t))

= C̄ix(t) + C̄dix(t− τ(t)) + Liv(t) + Ldiv(t− τ(t))

+MiUi(t)[N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t)

+Nldiv(t− τ(t))]. (5.30)
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Substituting Ri with forms of (5.25), then we have

[
x(t)′ x(t− τ(t))′ v(t)′ v(t− τ(t))′ z(t)′

]
Ri



x(t)

x(t− τ(t))

v(t)

v(t− τ(t))

z(t)


= x(t)′R11ix(t) + x(t− τ(t))′2R21ix(t) + x(t)′2R13iv(t)

+x(t− τ(t))′2R23iv(t) + x(t− τ(t))′R22ix(t− τ(t)) + x(t)′2R14iv(t− τ(t))

+v(t)′R33iv(t) + v(t)′2R34iv(t− τ(t)) + v(t− τ(t))′R44iv(t− τ(t))

+[x(t)′2R15i + x(t− τ(t))′2R25i + v(t)′2R35i + v(t− τ(t))′2R45i]z(t)

+z(t)′R55iz(t) + x(t− τ(t))′2R24iv(t− τ(t)). (5.31)

Substituting z(t) from (5.30) to (5.31), we have

[x(t)′2R15i + x(t− τ(t))′2R25i + v(t)′2R35i + v(t− τ(t))′2R45i]z(t)

= x(t)′2R15iC̄ix(t) + x(t)′2R15iC̄dix(t− τ(t)) + x(t)′2R15iLiv(t)

+x(t)′2R15iLdiv(t− τ(t)) + x(t− τ(t))′2R25iC̄ix(t)

+x(t− τ(t))′2R25iC̄dix(t− τ(t)) + x(t− τ(t))′2R25iLiv(t)

x(t− τ(t))′2R25iLdiv(t− τ(t)) + v(t)′2R35iC̄ix(t)

+v(t)′2R35iLiv(t) + v(t)′2R35iLdiv(t− τ(t)) + v(t− τ(t))′2R45iC̄ix(t)

+v(t− τ(t))′2R45iC̄dix(t− τ(t)) + v(t− τ(t))′2R45iLiv(t)

+v(t− τ(t))′2R45iLdiv(t− τ(t))

+x(t)′2R15iMiUi(t)[N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t) +Nldiv(t− τ(t))]

+x(t− τ(t))′2R25iMiUi(t)[N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t)

+Nldiv(t− τ(t))] + v(t)′2R35iC̄dix(t− τ(t))

+v(t)′2R35iMiUi(t)[N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t) +Nldiv(t− τ(t))]

+v(t− τ(t))′2R45iMiUi(t)[N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t)

+Nldiv(t− τ(t))].

According to Lemma 2.9.6, which is used to eliminate the parameter uncertainties,
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we have the following inequalities:

2x(t)′Pi[(Āi + ∆Āi)x(t) + (Ādi + ∆Ādi)x(t− τ(t)) + (Gi + ∆Gi)v(t)

+(Gdi + ∆Gdi)v(t− τ(t))]

= 2x(t)′Pi[Āix(t) + Ādix(t− τ(t)) +Giv(t) +Gdiv(t− τ(t))]

+2x(t)′PiMiUi(t)[N̄aix(t) + N̄adix(t− τ(t)) +Ngiv(t) +Ngdiv(t− τ(t))]

≤ 2x(t)′Pi[Āix(t) + Ādix(t− τ(t)) +Giv(t) +Gdiv(t− τ(t))]

+ε1ix(t)′PiMiM
′
iPix(t) + ε−1

1i [N̄aix(t) + N̄adix(t− τ(t)) +Ngiv(t)

+Ngdiv(t− τ(t))]′[N̄aix(t) + N̄adix(t− τ(t)) +Ngiv(t)

+Ngdiv(t− τ(t))],

[(Ēi + ∆Ēi)x(t) + (Ēdi + ∆Ēdi)x(t− τ(t))

+(Hi + ∆Hi)v(t) + (Hdi + ∆Hdi)v(t− τ(t))]′Pi[(Ēi + ∆Ēi)x(t)

+(Ēdi + ∆Ēdi)x(t− τ(t)) + (Hi + ∆Hi)v(t) + (Hdi + ∆Hdi)v(t− τ(t))]

= [Ēix(t) + Ēdix(t− τ(t)) +Hiv(t) +Hdiv(t− τ(t)) +MiUi(t)(N̄eix(t)

+N̄edix(t− τ(t)) +Nhiv(t) + N̄hdiv(t− τ(t)))]′Pi[Ēix(t)

+Ēdix(x− τ(t)) +Hiv(t) +Hdiv(t− τ(t)) +MiUi(t)(N̄eix(t)

+N̄edix(t− τ(t)) +Nhiv(t) + N̄hdiv(t− τ(t)))]

≤ [Ēix(t) + Ēdix(t− τ(t)) +Hiv(t) +Hdiv(t− τ(t))](P−1
i − ε2iMiM

′
i)
−1

×[Ēix(t) + Ēdix(t− τ(t)) +Hiv(t) +Hdiv(t− τ(t))] + ε−1
2i [N̄eix(t)

+N̄edix(t− τ(t)) +Nhiv(t) + N̄hdiv(t− τ(t))]′[N̄eix(t) + N̄edix(t− τ(t))

+Nhiv(t) + N̄hdiv(t− τ(t))],

z(t)′R55iz(t)

≤ [C̄ix(t) + C̄dix(t− τ(t)) + Liv(t) + Ldiv(t− τ(t))]′(R−1
55i − ε3iMiM

′
i)
−1

×[C̄ix(t) + C̄dix(t− τ(t)) + Liv(t) + Ldiv(t− τ(t))] + ε−1
3i [N̄cix(t)

+N̄cdx(t− τ(t)) +Nliv(t) +Nldiv(t− τ(t))]′[N̄cix(t) + N̄cdx(t− τ(t))

+Nliv(t) +Nldiv(t− τ(t))],
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x(t)′2R15iMiUi(t)[N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t) +Nldiv(t− τ(t))]

≤ 2ε4ix(t)′R15iMiM
′
iR15ix(t) +

1

2
ε−1

4i [N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t)

+Nldiv(t− τ(t))]′[N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t)

+Nldiv(t− τ(t))],

x(t− τ(t))′2R25iMiUi(t)[N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t)

+Nldiv(t− τ(t))]

≤ 2ε5ix(t− τ(t))′R25iMiM
′
iR25ix(t− τ(t)) +

1

2
ε−1

5i [N̄cix(t) + N̄cdx(t− τ(t))

+Nliv(t) +Nldiv(t− τ(t))]′[N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t)

+Nldiv(t− τ(t))],

v(t)′2R35iMiUi(t)[N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t) +Nldiv(t− τ(t))]

≤ 2ε6iv(t)′R35iMiM
′
iR35iv(t) +

1

2
ε−1

6i [N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t)

+Nldiv(t− τ(t))]′[N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t)

+Nldiv(t− τ(t))],

v(t− τ(t))′2R45iMiUi(t)[N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t)

+Nldiv(t− τ(t))]

≤ 2ε7iv(t− τ(t))′R45iMiM
′
iR45iv(t− τ(t)) +

1

2
ε−1

7i [N̄cix(t) + N̄cdx(t− τ(t))

+Nliv(t) +Nldiv(t− τ(t))]′[N̄cix(t) + N̄cdx(t− τ(t)) +Nliv(t)

+Nldiv(t− τ(t))].

Based on (5.20), by Lemma 2.9.6, we have

m∑
ζ=1

tr[PiΓζi(x, u, t)Γζi(x, u, t)
′]

≤ x(t)′(
1

2
φ1im

n∑
σ=1

PσσiMiM
′
i +

1

2

n∑
σ=1

m∑
ζ=1

Pσσiφ
−1
1i N

′
qσζiNqσζi

+
1

2
φ2iMiM

′
i +

1

2
φ−1

2i N
′
xiNxi
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+
1

2
φ3im

n∑
σ=1

PσσiK
′
1iMiM

′
iK1i +

1

2
φ−1

3i

n∑
σ=1

m∑
ζ=1

PσσiK
′
1iN

′
rσζiNrσζiK1i

+
1

2
φ4iK

′
1iMiM

′
iK1i +

1

2
φ−1

4i K
′
1iN

′
uiNuiK1i

+φ5im

n∑
σ=1

PσσiK
′
1iMiM

′
iK1i + φ6iK

′
1iMiM

′
iK1i

+
n∑
σ=1

m∑
ζ=1

PσσiQσζi +Hxi +
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iRσζiK1i +K ′1iHuiK1i)x(t)

+2x(t)′(
n∑
σ=1

m∑
ζ=1

PσσiK
′
1iRσζiK2i +K ′1iHuiK2i)x(t− τ(t))

+x(t− τ(t))′(φ−1
5i

n∑
σ=1

m∑
ζ=1

PσσiK
′
2iN

′
rσζiNrσζiK2i + φ−1

6i K
′
2iN

′
uiNuiK2i

+
1

2
φ7im

n∑
σ=1

PσσiK
′
2iMiM

′
iK2i +

1

2
φ−1

7i

n∑
σ=1

m∑
ζ=1

PσσiK
′
2iN

′
rσζiNrσζiK2i

+
1

2
φ8iK

′
2iMiM

′
iK2i +

1

2
φ−1

8i K
′
2iN

′
uiNuiK2i

+
n∑
σ=1

m∑
ζ=1

PσσiK
′
2iRσζiK2i +K ′2iHuiK2i)x(t− τ(t))

+
n∑
σ=1

m∑
ζ=1

Pσσi(Zσζi + ασζi) +Hzi + βi.

Next, we rewrite[
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′ z(s)′

]
Ri

×
[
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′ z(s)′

]′
+ LV (x(s), r(s))

=
[
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′

]
Υi

×
[
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′

]′
+

n∑
σ=1

m∑
ζ=1

Pσσi(Zσζi + ασζi) +Hzi + βi, (5.32)
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where

Υi , Yi + Θi.

Here, Yi can be split into 4× 4 matrix as follows:

Yi =


Y11i ∗ ∗ ∗
Y21i Y22i ∗ ∗
Y31i Y32i Y33i ∗
Y41i Y42i Y43i Y44i

 ,

and

Θi =
[
N̄ci N̄cdi Nli Nldi

]′
[ε−1

3i +
1

2
(ε−1

4i + ε−1
5i + ε−1

6i + ε−1
7i )]

×
[
N̄ci N̄cdi Nli Nldi

]
+
[
C̄i C̄di Li Ldi

]′
(R−1

55i − ε3iMiM
′
i)
−1
[
C̄i C̄di Li Ldi

]
+
[
N̄ai N̄adi Ngi Ngdi

]′
ε−1

1i

[
N̄ai N̄adi Ngi Ngdi

]
+
[
Ēi Ēdi Hi Hdi

]′
(P−1

i − ε2iMiM
′
i)
−1
[
Ēi Ēdi Hi Hdi

]
+
[
N̄ei N̄edi Nhi Nhdi

]′
ε−1

2i

[
N̄ei N̄edi Nhi Nhdi

]
.

Following (5.26) and Lemma 2.9.4, we have Υi < 0, i ∈ Λ. We can now rewrite

the inequality for J(t) as

J̄(t) ≤ E
{∫ t

0

[
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′

]
Υi

×
[
x(s)′ x(s− τ(s))′ v(s)′ v(s− τ(s))′

]′
ds

}
+

n∑
σ=1

m∑
ζ=1

Pσσi(Zσζi + ασζi) +Hzi + βi. (5.33)

Together with (5.27), we have J̄(t) < 0, ∀t > 0. In this case, the H∞ performance

defined in Definition 5.2.4 is achieved.
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5.5 Summary

The problems of robust stochastic stabilization and robust H∞ control for uncer-

tain nonlinear stochastic systems with time delay and Markovian switching have

been studied in this chapter. Sufficient conditions for the solvability of these two

problems have been proposed, presented by matrix inequalities. In this case, the

systems considered in [115], [114], [20], [120], [121], and [46] are all special cases

of the system we discuss in this chapter.
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Chapter 6

Nonlinear H2/H∞ Control of

Stochastic Systems with

Markovian Switching in Finite

and Infinite Time Horizon

6.1 Introduction

After introducing the nonlinear H2 problems in Chapter 3 and Chapter 4, and the

nonlinear H∞ problem in Chapter 5, naturally we will consider the situation of the

mixed nonlinear H2/H∞ control problems, which is investigated in this chapter.

We solve our problems under the stochastic nonlinear systems with Markovian

switching in both finite and infinite time horizon. The nonlinearity part is similar

to the one in Chapter 3 and Chapter 4, different from the one in Chapter 5. Based

on Nash game approach, we formulate our problem similarly to the linear case

with Markovian switching [141]. Following the two Nash inequalities introduced in

Section 2.7.1, one associated with the H∞ performance, and the other related with

the H2 performance, we are seeking a pair of solutions (u∗T , v
∗
T ), which is a Nash

equilibrium. Finally a sufficient condition for solving our nonlinear stochastic

H2/H∞ control problem is presented by using the completion of square method.
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The difficulty appears in dealing with the nonlinearity terms. Here it is highlighted

that within this nonlinear system, explicit solutions are found, which is a very

rare case. In addition, the optimal control laws obtained are linear with state,

which is very similar to the characteristics of the results in linear H2/H∞ control

problems. We demonstrate our work within two main sections: finite time horizon

and infinite time horizon respectively. Note that in the infinite time horizon, when

we consider the admissible control, we have to take the concept of mean-square

stability into account.

6.2 Finite Time Horizon

6.2.1 Introduction

In Section 6.2, we formulate the problem of nonlinear stochastic H2/H∞ control

in finite horizon. Then we present a sufficient condition to solve our problem in

Section 6.2.3.

6.2.2 Problem Formulation.

Let (Ω,F , {Ft}t≥0,P) be a given filtered complete probability space, where there

exist a one-dimensional standard Brownian motion (W (t), 0 ≤ t ≤ T ), a η × 1

-dimensional Brownian motion (W̃ (t), 0 ≤ t ≤ T ), and a Markov chain (rt ∈
M, 0 ≤ t ≤ T ) with generator Π = (πij) specified in (2.3) and state space defined

as M , {1, 2, · · · , l}. We assume that W (t), W̃ (t) and the process rt are mutually

independent. The following basic assumption will be used throughout the section

of finite time horizon.

Assumption 6.2.1. The data that appear in system (6.1)-(6.3) satisfy, for every
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i, 

Ai(·), Gi(·) ∈ L∞(0, T ;Rn×n),

B2i(·), H2i(·) ∈ L∞(0, T ;Rn×nu),

B1i(·), H1i(·) ∈ L∞(0, T ;Rn×nv),

Ei(·) ∈ L∞(0, T ;Rn×η),

Q1i(·), . . . , Qηi(·) ∈ L∞(0, T ;Sn),

R1i(·), . . . , Rηi(·) ∈ L∞(0, T ;Snu),

S1i(·), . . . , Rηi(·) ∈ L∞(0, T ;Snv).

Consider the following nonlinear SDEs with Markovian switching,

dx(t) = [A(t, rt)x(t) +B2(t, rt)u(t) +B1(t, rt)v(t)]dt

+ [G(t, rt)x(t) +H2(t, rt)u(t) +H1(t, rt)v(t)]dW (t)

+ E(t, rt)F (x(t), u(t), t, rt)dW̃ (t),

z(t) =

[
C(t, rt)x(t)

D(t, rt)u(t)

] (6.1)

where x(0) = x0 and D(t, rt)
′D(t, rt) , I, and

F (x(t), u(t), t, rt) , diag(
√
φ1,
√
φ2, . . . ,

√
φη). (6.2)

Among φ1, φ2, . . . , φη, we denote each of them as φk, where k = 1, 2, . . . , η. We

define

φk , x(t)′Qk(t, rt)x(t) + u(t)′Rk(t, rt)u(t) + v(t)′Sk(t, rt)v(t). (6.3)

We assume that Qk(t, rt) ≥ 0, Rk(t, rt) ≥ 0, Sk(t, rt) ≥ 0, for all k.

Define ek ∈ Rη as an elementary vector, whose k-th element is 1, while other

elements are 0.

Here, in system (6.1) x(t) ∈ Rn is state, z(t) ∈ Rnz is controlled output,

u(t) ∈ Rnu is control input and v(t) ∈ Rnv is external disturbance, respectively.

The discussion of existence and uniqueness of solution to the system (6.1) is the

similar to the one discussed in Chapter 3. Here we omit the details. Similar to
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Definition 2.7.1 that originates from [141], the finite horizon stochastic H2/H∞

control problem can be stated as follows.

Definition 6.2.1. [141] For given disturbance attenuation level γ > 0, 0 < T <

∞, the finite horizon mixed H2/H∞ control is to find a state feedback control

u∗T (t, x) = K2i(t)x(t) ∈ L2
F([0, T ],Rnu) such that

(i) The trajectory of the closed-loop system (6.1) starting from x(0) = x0 = 0

satisfies

l∑
i=1

E
[∫ T

0

(
|C(t, rt)x(t)|2 + |u∗T (t)|2

)
dt|r0 = i

]

≤ γ2

l∑
i=1

E
[∫ T

0

|v(t)|2dt|r0 = i

]
(6.4)

for ∀v 6= 0, v ∈ L2
F([0, T ],Rnv).

(ii) When the worst case disturbance v∗T (t, x) ∈ L2
F([0, T ],Rnv), if existing, is

implemented to (6.1), u∗T (t, x) minimizes the output energy

JT2 (u, v∗T , x0, i) = E
[∫ T

0

|z(t)|2dt|r0 = i

]
, i ∈M.

We are going to solve our finite horizon stochastic H2/H∞ control problem

based on Nash game approach. This requires us to find the Nash equilibria

(u∗T , v
∗
T ), which is defined in Section 2.7.1.

6.2.3 Main Result

Consider the stochastic nonlinear system as follows:

dx(t) = [A(t, rt)x(t) +B1(t, rt)v(t)]dt

+ [G(t, rt)x(t) +H1(t, rt)v(t)]dW (t)

+ E(t, rt)F (x(t), u(t), t, rt)dW̃ (t),

z(t) = C(t, rt)x(t).

(6.5)
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Following (6.2), we have

φk = x(t)′Qk(t, rt)x(t) + v(t)′Sk(t, rt)v(t).

Similar to Lemma 2.7.1 in Chapter 2, Lemma 2.1 in [141], and Lemma 4.1 in

[130], we provide the following lemma, which is useful in deriving Theorem 6.2.1.

Lemma 6.2.1. [130] [141] For system (6.5) and given disturbance attenuation

γ > 0, |L[0,T ]| ≤ γ iff there exists a solution P = (P1, P2, · · · , Pl) with Pi ≥ 0,

i ∈M , satisfying the following differential Riccati equations (DREs):

Ṗi(t) + Ai(t)
′Pi(t) + Pi(t)Ai(t) +Gi(t)

′Pi(t)Gi(t)− Ci(t)′Ci(t)

+

η∑
k=1

e′kEi(t)
′Pi(t)Ei(t)ekQki(t) +

l∑
j=1

πijPj(t)− [Pi(t)B1i(t)

+Gi(t)
′Pi(t)H1i(t)]× [γ2I +H1i(t)

′Pi(t)H1i(t)

+

η∑
k=1

e′kEi(t)
′Pi(t)Ei(t)ekSki(t)]

−1[B1i(t)
′Pi(t) +H1i(t)

′Pi(t)Gi(t)] = 0,

γ2I +H ′1iPi(t)H1i(t) +

η∑
k=1

e′kEi(t)
′Pi(t)Ei(t)ekSki(t) > 0, i ∈M.

The proof is similar to Lemma 2.7.1 in Chapter 2, Lemma 2.1 in [141], and

Lemma 4.1 in [130], so the details are omitted here.

The following theorem presents the main result of our finite horizon stochastic

nonlinear H2/H∞ control problem. First, some notations are introduced.

Ā(t, rt) , A(t, rt) +B2(t, rt)K2(t, rt),

Ḡ(t, rt) , G(t, rt) +H2(t, rt)K2(t, rt),

Q̄k(t, rt) , Qk(t, rt) +K2(t, rt)
′Rk(t, rt)K2(t, rt),

Ã(t, rt) , A(t, rt) +B1(t, rt)K1(t, rt),

G̃(t, rt) , G(t, rt) +H1(t, rt)K1(t, rt),

Q̃k(t, rt) , Qk(t, rt) +K1(t, rt)
′Sk(t, rt)K1(t, rt). (6.6)
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Theorem 6.2.1. For given disturbance attenuation level γ > 0, the finite hori-

zon stochastic nonlinear H2/H∞ control for system (6.1) has a pair of solutions

(u∗T , v
∗
T ) with

u∗T (t, x) = −
l∑

i=1

K2i(t)χrt=i(t)x(t)

v∗T (t, x) = −
l∑

i=1

K1i(t)χrt=i(t)x(t)

if the following four coupled DREs have solutions (P1(t), P2(t);K1(t), K2(t)) with

P1(t) = (P11(t), P12(t), · · · , P1l(t)) ≥ 0, P2(t) = (P21(t), P22(t), · · · , P2l(t)) ≥ 0.Li(t)− βi(t)′αi(t)−1βi(t) = 0,

αi(t) > 0, i ∈M,

K1i(t) = αi(t)
−1βi(t), (6.7)

Tj(t)−Nj(t)
′Zj(t)

−1Nj(t) = 0,

Zj(t) > 0, j ∈M,

K2j(t) = Zj(t)
−1Nj(t), (6.8)

where

Li(t) , Ṗ1i(t) + P1i(t)Āi(t) + Āi(t)
′P1i(t) + Ḡi(t)

′P1i(t)Ḡi(t)

+

η∑
k=1

e′kEi(t)
′P1i(t)Ei(t)ekQ̄ki(t) +

l∑
i=1

πijPj(t)− Ci(t)′Ci(t)

−K2i(t)
′K2i(t),

βi(t) , B1i(t)
′P1i(t) +H1i(t)

′P1i(t)Ḡi(t),

αi(t) , γ2I +H1i(t)
′P1i(t)H1i(t) +

η∑
k=1

e′kEi(t)
′P1i(t)Ei(t)ekSki(t),

Tj(t) , Ṗ2j(t) + P2j(t)Ãj(t) + Ãj(t)
′P2j(t) + G̃j(t)

′P2j(t)G̃j(t)

+

η∑
k=1

e′kEj(t)
′P2j(t)Ej(t)ekQ̃kj(t) +

l∑
j=1

πijP2j(t) + Cj(t)
′Cj(t),
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Nj(t) , B2j(t)
′P2j(t) +H2j(t)

′P2j(t)G̃j(t),

Zj(t) , I +H2j(t)
′P2j(t)H2j(t) +

η∑
k=1

e′kEj(t)
′P1j(t)Ej(t)ekRkj(t).

Proof. Substituting u = u∗T (t, x) = −
∑l

i=1K2i(t)χrt=i(t)x(t) into (6.1), we have

dx(t) = [Ā(t, rt)x(t) +B1(t, rt)v(t)]dt

+ [Ḡ(t, rt)x(t) +H1(t, rt)v(t)]dW (t)

+ E(t, rt)F (x(t), u(t), t, rt)dW̃ (t),

z(t) =

[
C(t, rt)x(t)

D(t, rt)K2(t, rt)x(t)

]
,

(6.9)

where x(0) = x0.

Applying Lemma 6.2.1 to our system (6.1) to (6.3), with (6.7), |L[0,T ]| ≤ γ

can be achieved immediately, which makes the first condition in Definition 6.2.1

satisfied. Next, we show that v = v∗T (t, x) is the worst case disturbance. Following

(6.2) and (6.3), we have

φk = x(t)′Q̄k(t, rt)x(t) + v(t)′Sk(t, rt)v(t). (6.10)

In addition,

JT1 (u∗T , v, x0, i)

= E
[∫ T

o

(γ2v′v − z′z)dt

∣∣∣∣r0 = i

]
= x′0P1i(t)x0 + E

[∫ T

o

(γ2v′v − z′z + d[x′P1i(t)x])dt

∣∣∣∣r0 = i

]
.

Applying Lemma 2.9.1 into x′P1rT (t)x, we have

E[x(T )′P1rT (T )x(T )|r0 = i]

= x′0P1r0(0)x0 + E
[ ∫ T

0

{x′Ṗ1i(t)x+ 2x′P1i(t)[Āi(t)x+B1i(t)v]

[Ḡi(t)x+H1i(t)v]′P1i(t)[Ḡi(t)x+H1i(t)v]

+tr[Fi(x, t)
′Ei(t)

′P1i(t)Ei(t)Fi(x, t)] +
l∑

i=1

πijx
′P1j(t)x}dt

∣∣∣∣r0 = i

]
.
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Similar to the steps from (3.34) to (3.38) in Chapter 3, we have

tr[Fi(x, t)
′Ei(t)

′P1i(t)Ei(t)Fi(x, t)]

= x′

[
η∑
k=1

e′kEi(t)
′P1i(t)Ei(t)ekQ̄ki(t)

]
x

+v′

[
η∑
k=1

e′kEi(t)
′P1i(t)Ei(t)ekSki(t)

]
v.

Then we have

γ2v′v − z′z + d(x′P1i(t)x)

= x′[Ṗ1i(t) + P1i(t)Āi(t) + Āi(t)
′P1i(t) + Ḡi(t)

′P1i(t)Ḡi(t)

+

η∑
k=1

e′kEi(t)
′P1i(t)Ei(t)ekQ̄ki(t) +

l∑
i=1

πijP1j(t)− Ci(t)′Ci(t)

−K2i(t)
′K2i(t)]x+ 2v′[B1i(t)

′P1i(t) +H1i(t)
′P1i(t)Ḡi(t)]x

+v′[γ2I +H1i(t)
′P1i(t)H1i(t) +

η∑
k=1

e′kEi(t)
′P1i(t)Ei(t)ekSki(t)]v.

Following the notation in (6.6) and using completion of square method, we have

γ2v′v − z′z + d(x′P1i(t)x)

= v′αi(t)v + 2v′βi(t)x+ x′Li(t)x

= [v + αi(t)
−1βi(t)x]′αi(t)[v + αi(t)

−1βi(t)x]

+x′[Li(t)− βi(t)′αi(t)−1βi(t)]x

When RDE Li(t) − βi(t)′αi(t)−1βi(t) = 0 is satisfied, we can see v = v∗T (t, x) =

−
∑l

i=1 K1i(t)χrt=i(t)x(t) = −αi(t)−1βi(t)x is the worst case disturbance. In this

case,

JT1 (u∗T , v;x0, i) ≥ JT1 (u∗T , v
∗
T ;x0, i) = x′0P1i(t)x0.
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Next, substituting v = v∗T (t, x) = −
∑l

i=1K1i(t)χrt=i(t)x(t) into (6.1), we have

dx = [Ã(t, rt)x+B2(t, rt)u]dt

+ [G̃(t, rt)x+H2(t, rt)u]dW

+ E(t, rt)F (x(t), u(t), t, rt)dW̃ (t),

z =

[
C(t, rt)x(t)

D(t, rt)u(t)

]
,

(6.11)

where x(0) = x0. Following (6.2) and (6.3), we have

φk = x(t)′Q̃k(t, rt)x(t) + u(t)′Rk(t, rt)u(t). (6.12)

Now minimizing JT2 (u, v∗T ;x0, i) is similar to the optimal control problem that we

study in Chapter 3. We rewrite JT2 (u, v∗T ;x0, i) as follows,

JT2 (u, v∗T ;x0, i)

= E
[∫ T

o

(z′z)dt|r0 = i

]
= x′0P2i(t)x0 + E

[∫ T

o

(z′z + d[x′P2i(t)x])dt|r0 = i

]
.

Applying Lemma 2.9.1 into x′P2rT (t)x, we have

E[x(T )′P2rT (T )x(T )|r0 = i]

= x′0P2r0(0)x0 + E
[∫ T

0

{x′Ṗ2i(t)x+ 2x′P2i(t)[Ãi(t)x+B2i(t)u]

[G̃i(t)x+H2i(t)u]′P2i(t)[G̃i(t)x+H2i(t)u]

+tr[Fi(x, t)
′Ei(t)

′P2i(t)Ei(t)Fi(x, t)] +
l∑

i=1

πijx
′P2j(t)x}dt

∣∣∣∣r0 = i

]
.

Similar to the steps from (3.34) to (3.38) in Chapter 3, we have

tr[Fi(x, t)
′Ei(t)

′P2i(t)Ei(t)Fi(x, t)]

= x′

[
η∑
k=1

e′kEi(t)
′P2i(t)Ei(t)ekQ̃ki(t)

]
x
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+u′

[
η∑
k=1

e′kEi(t)
′P2i(t)Ei(t)ekRki(t)

]
u.

Then we have

z′z + d[x′P2i(t)x]

= x′[Ṗ2i(t) + P2i(t)Ãi(t) + Ãi(t)
′P2i(t) + G̃i(t)

′P2i(t)G̃i(t)

+

η∑
k=1

e′kEi(t)
′P2i(t)Ei(t)ekQ̃ki(t) +

l∑
i=1

πijP2j(t) + Ci(t)
′Ci(t)]x

+2u′[B2i(t)
′P2i(t) +H2i(t)

′P2i(t)G̃i(t)]x

+u′[I +H2i(t)
′P2i(t)H2i(t) +

η∑
k=1

e′kEi(t)
′P1i(t)Ei(t)ekRki(t)]u.

Following the notation in (6.6), and using completion of square method, we have

z′z + d[x′P2i(t)x]

= u′Zi(t)u+ 2u′Ni(t)x+ x′Ti(t)x

= [u+ Zi(t)
−1Ni(t)x]′Zi(t)[u+ Zi(t)

−1Ni(t)x]

+x′[Ti(t)−Ni(t)
′Zi(t)

−1Ni(t)]x.

When RDE Ti(t) − Ni(t)
′Zi(t)

−1Ni(t) = 0 is satisfied, we can see u = u∗T (t, x) =

−
∑l

i=1K2i(t)χrt=i(t)x(t) = −Zi(t)−1Ni(t)x is the optimal control. In this case,

JT2 (u, v∗T ;x0, i) ≥ JT2 (u∗T , v
∗
T ;x0, i) = x′0P2i(t)x0.

6.3 Infinite Time Horizon

6.3.1 Introduction

In Section 6.3.2, we formulate the problem of nonlinear stochastic H2/H∞ control

in infinite horizon. The mean-square stability condition for our infinite horizon

problem is obtained in Section 6.3.3. Then we present a sufficient condition to

solve our problem in Section 6.3.4.
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6.3.2 Problem Formulation.

Let (Ω,F , {Ft}t≥0,P) be a given complete probability space, where there exist a

one-dimensional standard Brownian motion W (t) on [0,+∞), a η×1 -dimensional

Brownian motion W̃ (t) on [0,+∞), and a Markov chain (rt ∈ M, t ≥ 0) with

generator Π = (πij) specified in (2.3) and state space defined as M , {1, 2, · · · , l}.
We assume that W (t), W̃ (t) and the process rt are mutually independent. The

following basic assumption will be used throughout the section of infinite time

horizon.

Assumption 6.3.1. The data appearing in the nonlinear H2/H∞ control problem

(6.13)-(6.15) satisfy, for every i,

Ai, Gi ∈ Rn×n, B2i, H2i ∈ Rn×nu , B1i, H1i ∈ Rn×nv , Ei ∈ Rn×m,

Q1i, . . . , Qηi ∈ Sn, R1i, . . . , Rηi ∈ Snu , S1i, . . . , Rηi ∈ Snv ,

Consider the following nonlinear SDEs with Markovian switching

dx(t) = [A(rt)x(t) +B2(rt)u(t) +B1(rt)v(t)]dt

+ [G(rt)x(t) +H2(rt)u(t) +H1(rt)v(t)]dW (t)

+ E(rt)F (x(t), u(t), rt)dW̃ (t),

z(t) =

[
C(rt)x(t)

D(rt)u(t)

]
.

(6.13)

where x(0) = x0 and D(t, rt)
′D(t, rt) , I, and

F (x1(t), x2(t), u(t), rt) , diag(
√
φ1,
√
φ2, . . . ,

√
φη). (6.14)

Among φ1, φ2, . . . , φη, we denote each of them as φk, where k = 1, 2, . . . , η. We

define

φk , x(t)′Qk(rt)x(t) + u(t)′Rk(rt)u(t) + v(t)′Sk(rt)v(t). (6.15)

We assume that Qk(rt) ≥ 0, Rk(rt) ≥ 0, Sk(rt) ≥ 0, for all k.

Define ek ∈ Rη as an elementary vector, whose k-th element is 1, while other

elements are 0.
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We denote x(t) ∈ Rn, z(t) ∈ Rnz , u(t) ∈ Rnu and v(t) ∈ Rnv as state,

controlled output, control input, and external disturbance of our system (6.13),

respectively. The discussion of existence and uniqueness of solution to the system

(6.13) is the similar to the one discussed in Chapter 3. Here we omit the details.

Define

J∞1 (u, v;x0, i) = E
[∫ ∞

0

[γ2v(t)′v(t)− z(t)′z(t)]dt|r0 = i

]
, i ∈M.

and

J∞2 (u, v;x0, i) = E
[∫ ∞

0

z(t)′z(t)dt|r0 = i

]
, i ∈M.

The infinite horizon stochastic nonlinear H2/H∞ control problem can be stated

similarly to the one in [141] as follows.

Definition 6.3.1. [141] For given disturbance attenuation level γ > 0, if we can

find u∗(t)× v∗(t) ∈ L2
F([0,∞),Rnu)× L2

F([0,∞),Rnv), such that

(i) When v(t) = 0, u = u∗, the state trajectory of (6.13) with any initial value

(x0, i) ∈ Rn ×M satisfies the mean-square stability

lim
t→∞

E[x(t)′x(t)|r0 = i] = 0.

(ii) |Lu∗|∞ < γ, where

|Lu∗|∞ = sup
v∈L2F

(
[0,∞),Rnv

)
,v 6=0,u=u∗,x0=0

{∑l
i=1 E

[ ∫∞
0
z(t)′z(t)dt|r0 = i

]} 1
2{∑l

i=1 E
[ ∫∞

0
v(t)′v(t)dt|r0 = i

]} 1
2

.

(iii) When the worst case disturbance v∗(t) ∈ L2
F([0,∞),Rnv), if existing, is im-

plemented to (6.13), u∗(t) minimizes the output:

J∞2 (u, v∗;x0, i) = E
[∫ ∞

0

z(t)′z(t)dt
∣∣r0 = i

]
, i ∈M. (6.16)

Then we say that the infinite horizon stochastic nonlinear H2/H∞ control problem

has a pair of solutions (u∗, v∗).

We are going to solve our infinite horizon stochastic nonlinear H2/H∞ con-

trol problem based on Nash game approach. This requires us to find the Nash

equilibria (u∗T , v
∗
T ), which is defined in Section 2.7.1.
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6.3.3 Stability Condition

Mean-square stability is a standard assumption in an infinite time horizon non-

linear H2/H∞ control problem. In this section we derive conditions such that

Definition 6.3.1-(i) is satisfied. We denote

A1i , Ai +B2iKi,

G1i , Gi +H2iKi,

Tki , Qki +K ′iRkiKi.

Lemma 6.3.1. Substituting v(t) = 0 and u(t) =
∑l

i=1Kiχrt=ix(t) into system

(6.13), if the following matrix inequality holds,

PiA1i + A′1iPi +G′1iPiG1i +

η∑
k=1

e′kE
′
iPiEiekQ̃ki +

l∑
i=1

πijPj < 0, (6.17)

then the system (6.13) is mean-square stable.

Proof. Substituting v(t) = 0 and u(t) =
∑l

i=1 Kiχrt=ix(t) into system (6.13), then

we rewrite system (6.13) as follows:
dx(t) = A1(rt)x(t)dt+G1(rt)x(t)dW (t) + E(rt)F (x(t), rt)dW̃ (t),

z(t) =

[
C(rt)x(t)

D(rt)K(rt)x(t)

]
, x(0) = x0,

where

F (x(t), rt) , diag(
√
φ1,
√
φ2, . . . ,

√
φη).

Following (6.2) and (6.3), we have

φk = x(t)′Tk(rt)k(t, rt)x(t).

Applying Lemma 2.9.1 to x(T )′Pix(T ), we have

E[x(T )′Pix(T )] =

(
PiA1i + A′1iPi +G′1iPiG1i +

η∑
k=1

e′kE
′
iPiEiekQ̃ki
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+
l∑

i=1

πijPj

)
dt. (6.18)

If (6.17) is satisfied, then by Definition 4.2.1, Definition 4.2.2, and [68], [83], our

nonlinear system (6.13) is mean-square stable.

Note that the above matrix inequality (6.17) holds for both P1(rt) and P2(rt).

6.3.4 Main Result

Consider the stochastic nonlinear system as follows,

dx(t) = [A(rt)x(t) +B1(rt)v(t)]dt

+ [G(rt)x(t) +H1(rt)v(t)]dW (t)

+ E(rt)F (x(t), u(t), rt)dW̃ (t),

z(t) = C(rt)x(t).

(6.19)

Following (6.14), we have

φk = x(t)′Qk(t, rt)x(t) + v(t)′Sk(t, rt)v(t).

Similar to Lemma 2.7.1 in Chapter 2, Lemma 2.1 in [141], and Lemma 4.1 in

[130], we provide the following lemma, which is useful in deriving Theorem 6.3.1.

Lemma 6.3.2. [130] [141] Given disturbance attenuation level γ > 0, we have

|L[0,∞]| ≤ γ iff there exists a solution P = (P1, P2, · · · , Pl) with Pi ≥ 0, i ∈ M

that satisfies the following algebraic Riccati equations (AREs):

A′iPi + PiAi +G′iPiGi − C ′iCi +

η∑
k=1

e′kE
′
iPiEiekQki +

l∑
j=1

πijPj − [PiB1i

+G′iPiH1i]× [γ2I +H ′1iPiH1i +

η∑
k=1

e′kE
′
iPiEiekSki]

−1[B′1iPi +H ′1iPiGi] = 0,

γ2I +H ′1iPiH1i +

η∑
k=1

e′kE
′
iPiEiekSki > 0, i ∈M.
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The proof is similar to Lemma 2.7.1 in Chapter 2, Lemma 2.1 in [141], and

Lemma 4.1 in [130], so the details are omitted here.

The following theorem presents the main result of the infinite horizon stochas-

tic nonlinear H2/H∞ control problem. First, some notations are introduced.

Ā(rt) , A(rt) +B2(rt)K2(rt),

Ḡ(rt) , G(rt) +H2(rt)K2(rt),

Q̄k(rt) , Qk(rt) +K2(rt)
′Rk(rt)K2(rt),

Ã(rt) , A(rt) +B1(rt)K1(rt),

G̃(rt) , G(rt) +H1(rt)K1(rt),

Q̃k(rt) , Qk(rt) +K1(rt)
′Sk(rt)K1(rt).

Theorem 6.3.1. We assume the mean-square stability condition (6.17) holds for

both P1(rt) and P2(rt). For given disturbance attenuation level γ > 0, the infinite

horizon H2/H∞ control for system (6.1) has a pair of solutions (u∗T , v
∗
T ) with

u∗T (t, x) = −
l∑

i=1

K2iχrt=ix(t),

v∗T (t, x) = −
l∑

i=1

K1iχrt=ix(t),

if the following four coupled AREs have solutions

(P1, P2;K1, K2)

with P1 = (P11, P12, · · · , P1l) ≥ 0, P2 = (P21, P22, · · · , P2l) ≥ 0.Li − β′iα−1
i βi = 0,

αi > 0, i ∈M,

K1i = α−1
i βi,Tj −N ′jZ−1

j Nj = 0,

Zj > 0, j ∈M,

K2j = Z−1
j Nj,
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where

Li , P1iĀi + Ā′iP1i + Ḡ′iP1iḠi +

η∑
k=1

e′kE
′
iP1iEiekQ̄ki

+
l∑

i=1

πijPj − C ′iCi −K ′2iK2i,

βi(t) , B′1iP1i +H ′1iP1iḠi,

αi , γ2I +H ′1iP1iH1i +

η∑
k=1

e′kE
′
iP1iEiekSki,

Tj , P2jÃj + Ã′jP2j + G̃′jP2jG̃i +

η∑
k=1

e′kE
′
jP2jEjekQ̃kj

+
l∑

j=1

πjσP2σ + C ′jCj,

Nj , B′2jP2j +H ′2jP2jG̃j,

Zj , I +H ′2jP2jH2j +

η∑
k=1

e′kE
′
jP1jEjekRkj.

The proof is similar to the previous case in finite time horizon. Here we omit

the details.

6.4 Summary

This chapter investigates the problem of stochastic H2/H∞ control for a class

of nonlinear systems with Markovian switching in both finite and infinite time

horizon. In the main results we show that the solvability of the coupled DREs is

sufficient to solve the finite horizon stochastic nonlinear H2/H∞ control problem.

In addition, we show that the solvability of the coupled AREs is sufficient to solve

the infinite horizon stochastic nonlinear H2/H∞ control problem.
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Chapter 7

Risk-sensitive Control of

Stochastic Nonlinear Systems in

Finite Time Horizon

7.1 Introduction

Based on [30], in which the nonlinearity is in the drift term, we formulate the

problem of risk-sensitive control of stochastic nonlinear systems in finite time

horizon with one additional nonlinearity in the diffusion term. In this case, our

new system includes two different types of nonlinearity in both drift and diffusion

terms. In this case, the system considered in this chapter is more generalized then

the one in [30]. The problem is formulated in Section 7.2. When the assumptions

in Section 7.3 are satisfied, we present our main results in Section 7.4, where we

proved that there exists a unique solution to our optimal control problem. We

also obtain the optimal cost functional. When we solve the risk-sensitive control

problem, completion of square method is used, and the difficulty arises in dealing

with the nonlinearity terms. The other difficulty is that we have to make sure

that the control law is admissible, because in risk-sensitive control problems the

criterion is given in an exponential form, which is different from the cases of LQ

optimal control problems, and this is paid attention to in Section 7.3. Here it is
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highlighted that within this nonlinear system an explicit solution is found, which

is a very rare case. In addition, the optimal control law obtained is linear with

state, which is very similar to the characteristics of the results in [31] dealing with

linear stochastic risk-sensitive control problems. We highlight the importance of

this chapter by introducing its applications to finance, which are discussed in

Section 7.5.

7.2 Problem Formulation

Let (Ω,F ,P) be a filtered complete probability space, where there exist a one-

dimensional standard Ft-Brownian motion (Wj(t), 0 ≤ t ≤ T ), and a η-dimensional

Brownian motion (W̃ (t), 0 ≤ t ≤ T ), which is independent of W (t). Following the

structure of the nonlinear stochastic system in [30], we define our new nonlinear

stochastic system by including one more nonlinear term similar to the one used

in (6.1) as follows:

dx1(t) = [Ax1(t) +Bu(t)]dt+
n∑
j=1

CjdWj(t),

dx2(t) = [A1x1(t) + A2x2(t) +D(x1(t), u(t)) +B1u(t)]dt

+
n∑
j=1

[A3jx1(t) +B2ju(t) + C1j]dWj(t)

+ EF (x1(t), u(t))dW̃ (t),

x1(0) = x10, x2(0) = x20.

(7.1)

where

A(·) ∈ L∞(0, T ;Rn1×n1),

B(·) ∈ L∞(0, T ;Rn1×m),

C1(·) · · · , Cn(·) ∈ L∞(0, T ;Rn1),

A1(·), A31(·), · · · , A3n(·) ∈ L∞(0, T ;Rn2×n1),
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A2(·) ∈ L∞(0, T ;Rn2×n2),

B1(·), B21(·), · · · , B2n(·) ∈ L∞(0, T ;Rn2×m),

C11(·), · · · , C1n(·) ∈ L∞(0, T ;Rn2),

E(·) ∈ L∞(0, T ;Rn2×η).

The vector D(x1(t), u(t)) is defined the same with [30], where

D(x1(t), u(t)) =


x1(t)′Q1x1(t) + u(t)′X1x1(t) + u(t)′R1u(t)

· · ·
x1(t)′Qn2x1(t) + u(t)′Xn2x1(t) + u(t)′Rn2u(t)

 ,
where

Q1(·), · · · , Qn2(·) ∈ L∞(0, T ;Sn1),

X1(·), · · · , Xn2(·) ∈ L∞(0, T ;Rm×n1),

R1(·), · · · , Rn2(·) ∈ L∞(0, T ;Sm).

We define F (x(t), u(t)) as

F (x1(t), u(t)) , diag(
√
φ1,
√
φ2, . . . ,

√
φη). (7.2)

Among φ1, φ2, . . . , φη, we denote each of them as φk, where k = 1, 2, . . . , η. We

define

φk , x1(t)′Q̃k(t)x1(t) + u(t)′R̃k(t)u(t), (7.3)

where

Q̃1(·), · · · , Q̃η(·) ∈ L∞(0, T ;Sn1),

R̃1(·), · · · , R̃η(·) ∈ L∞(0, T ;Sm).

We assume that matrices Q̃k, R̃k, k = 1, · · · , η satisfy Q̃k(t) ≥ 0, R̃k(t) ≥ 0.

Define ek ∈ Rm as an elementary vector, whose k-th element is 1, while other

elements are 0.

In summary, compare the system (7.1) with the one in [30], the difference is

that we involve one more nonlinear term EF (x1(t), u(t))dW̃ (t) in the system with

the other settings unchanged.
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The discussion of existence and uniqueness of solution to the system (7.1) is

similar to the one discussed in Chapter 3. Here we omit the details.

The criterion is given the same with [30] as follows:

J(u(·)) = γE
{
exp

[
γ

2
x1(T )′Sx1(T ) +

γ

2

∫ T

0

[x1(t)′Qx1(t) + u(t)′Ru(t)]dt

+
γ

2
S ′1x1(T ) +

γ

2
S ′2x2(T ) +

γ

2

∫ T

0

[L′1x1(t) + L′2x2(t) + L′uu(t)

+ u(t)′Xx1(t)]dt

]}
,

where

L1(·) ∈ L∞(0, T ;Rn1), L2(·) ∈ L∞(0, T ;Rn2),

Lu(·) ∈ L∞(0, T ;Rm), X(·) ∈ L∞(0, T ;Rm×n1),

S1 ∈ Rn1 , S2 ∈ Rn2 .

and γ ∈ R, γ 6= 0, is a given constant. Our aim is to minimize the cost functional

J(u(·)) subject to our system (7.1).

7.3 Problem Assumptions

For the notation convenience, we define

R̄ , R +

n2∑
i=1

p2i(t)Ri +
γ

4

n∑
j=1

B′2jp2(t)p2(t)′B2j

+
γ

4

η∑
k=1

e′kE
′p2(t)p2(t)′EekR̃k,

X̄ , X + 2B′P (t) +

n2∑
i=1

p2i(t)Xi +
γ

4

n∑
j=1

2B′2jp2(t)[2C ′jP (t)

+p2(t)′A3j],

Ȳ , Lu +B′p1(t) +B′1p2(t) +
γ

4

n∑
j=1

2B′2jp2(t)[C ′jp1(t) + C ′1jp2(t)],

Z̄ ,
n∑
j=1

[2P (t)Cj + A′3jp2(t)][C ′jp1(t) + C ′1jp2(t)]. (7.4)
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Assumption 7.3.1. R̄(t) > 0, a.e. t ∈ [0, T ].

Assumption 7.3.2. The following Riccati equation has a unique solution.

Q+ A′P (t) + P (t)A+ Ṗ +

n2∑
i=1

p2i(t)Qi +
γ

4

n∑
j=1

[2P (t)Cj

+ A′3jp2(t)][2C ′jP (t) + p2(t)′A3j] +
γ

4

η∑
k=1

e′kE
′p2(t)p2(t)′EekQ̃k

− 1

4
X̄ ′R̄−1X̄ = 0.

P (T ) = S.

(7.5)

Remark 7.3.1. The conditions for Assumption 7.3.2 to be held can be found

similarly to the way discussed in [30], because our equation (7.5) is very similar

to equation (2.4) in (7.5). The only difference is that in equation (7.5) we have

one more term γ
4

∑η
k=1 e

′
kE
′p2(t)p2(t)′EekQ̃k, which has nothing to do with P (t),

thus will not affect the later steps in [30]. Here we do not duplicate the derivation.

Under Assumption 7.3.2 we introduce the following linear differential equation ṗ2(t) + A′2p2(t) + L2 = 0,

p2(T ) = S2,
(7.6)

 ṗ1(t) + L1 + A′p1(t) + A′1p2(t)− 1

2
X̄ ′R̄−1Ȳ +

γ

2
Z̄ = 0,

p1(T ) = S1,
(7.7)

and
ṗ+

n∑
j=1

C ′jP (t)Cj +
γ

4

n∑
j=1

[p1(t)′Cj + p2(t)′C1j][C
′
jp1(t) + C ′1jp2(t)] = 0,

p(T ) = 0.

(7.8)

We denote the solution to (7.6) by

p2(t) =
[
p21(t), · · · , p2n2(t)

]′
.
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Assumption 7.3.3. We assume that the control process u(t) is such that the term

G(t)

[
x1(t)′

(
2P (t)Cj + A′3jp2(t)

)
+ p2(t)′B2ju(t) + p1(t)′Cj + p2(t)′C1j

]
(7.9)

is a square integral process, i.e.,∫ T

0

E
{
G(t)2

[
x1(t)′

(
2P (t)Cj + A′3jp2(t)

)
+ p2(t)′B2ju(t) + p1(t)′Cj

+p2(t)′C1j

]2}
dt <∞.

Assumption 7.3.4. We assume that the control process u(t) is such that the term

G(t)p2(t)′EF (x1(t), u(t)) (7.10)

is a square integral process, i.e.,∫ T

0

E[G(t)2p2(t)′EF (x1(t), u(t))F (x1(t), u(t))′E ′p2(t)]dt <∞.

Definition 7.3.1. When Assumption 7.3.3 and Assumption 7.3.4 are satisfied,

the control u(·) is defined to be admissible.

Remark 7.3.2. In [30] the control is proved to be admissible in details under some

conditions. Here, we do not prove the control is admissible due to some technical

difficulties. In this chapter, we suppose that Assumption 7.3.3 and Assumption

7.3.4 hold. Such similar assumptions have been made by many researchers so far,

see for example [90], [47] and [21].

7.4 Main Result

Define

dv(t) , [x1(t)′Qx1(t) + u(t)′Ru(t) + u(t)′Xx1(t) + L′1x1(t) + L′2x2(t)
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+L′uu(t)]dt,

where v(0) = 0.

Define

H(t) , v(t) + x1(t)′P (t)x1(t) + p(t) + p1(t)′x1(t) + p2(t)′x2(t).

Theorem 7.4.1. Let the Assumption 7.3.1, Assumption 7.3.2, Assumption 7.3.3,

and Assumption 7.3.4 hold. There exists a unique solution to our optimal control

problem. The optimal control is given by

u∗(t) = −1

2
R̄−1(X̄x1(t) + Ȳ ).

The optimal cost functional is obtained as follows,

J∗ = γE
[
exp

{
γ

2
[x′10P (0)x10 + p(0) + p1(0)′x10 + p2(0)′x20]

}]
,

where P , p1, p2 and p are solutions to (7.5), (7.7), (7.6), and (7.8), respectively.

Proof. The proof is similar to the one in [30]. Here we outline the main idea. The

differential of H(t) is

dH(t) = [x1(t)′Qx1(t) + u(t)′Ru(t) + u(t)′Xx1(t) + L′1x1(t) + L′2x2(t)

+L′uu(t)]dt+ d[x1(t)′Px1(t)] + d[p′1x1(t)] + d[p′2x2(t)],

where d[x1(t)′Px1(t)] and d[p′1x1(t)] have been obtained by [30], here we focus on

d[p′2x2(t)],

d[p′2x2(t)] = ṗ2
′x2dt+ p′2[A1x1(t) + A2x2 +D(x1(t), u(t)) +B1u(t)]dt

+
n∑
j=1

[p′2A3jx1 + p′2B2ju(t) + p′2C1j]dWj(t)

+p′2EF (x1(t), u(t))dW̃ (t).

We rewrite dH(t),

dH(t)
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=

[
x1(t)′Qx1(t) + u(t)′Ru(t) + u(t)′Xx1(t) + L′1x1(t) + L′2x2(t)

+L′uu(t) + x1(t)′Ṗ (t)x1(t) + x1(t)′
(
A′P (t) + P (t)A

)
x1(t)

+2u(t)′B′P (t)x1(t) +
n∑
j=1

C ′jP (t)Cj + ṗ(t) + ṗ′1(t)x1(t) + p′1(t)

(
Ax1(t)

+Bu(t)

)
+ ṗ′2(t)x2(t) + p′2(t)

(
A1x1(t) + A2x2(t) +D(x1(t), u(t)

+B1u(t)

)]
dt+

n∑
j=1

[
x1(t)′

(
2P (t)Cj + A′3jp2(t)

)
+ p2(t)′B2ju(t)

+p1(t)′Cj + p2(t)′C1j

]
dWj(t) + p2(t)′EF (x1(t), u(t))dW̃ (t).

We define

G(t) , exp[
γ

2
H(t)].

According to the definition of J(u(·)), we have

J(u(·)) = γE[G(T )].

We apply Itô’s formula to dG(t). With

∂

∂H(t)
G(t) = exp(

γ

2
H(t))

γ

2
=
γ

2
G(t),

and

∂2

∂H2(t)
G(t) = (

γ

2
)2G(t),

we have

dG(t)

=
γ

2
G(t)

[
x1(t)′Qx1(t) + u(t)′Ru(t) + u(t)′Xx1(t) + L′1x1(t) + L′2x2(t)

+L′uu(t) + x1(t)′Ṗ (t)x1(t) + x1(t)′
(
A′P (t) + P (t)A

)
x1(t)
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+2u(t)′B′P (t)x1(t) +
n∑
j=1

C ′jP (t)Cj + ṗ(t) + ṗ′1(t)x1(t) + p′1(t)

(
Ax1(t)

+Bu(t)

)
+ ṗ′2(t)x2(t) + p′2(t)

(
A1x1(t) + A2x2(t) +D(x1(t), u(t)

+B1u(t)

)]
dt+

G(t)

2

(
γ

2

)2 n∑
j=1

[
x1(t)′

(
2P (t)Cj + A′3jp2(t)

)(
2C ′jP (t)

+p2(t)′A3j

)
x1(t) + 2u(t)′B′2jp2(t)

(
2C ′jP (t) + p′2A3j

)
x1(t)

+2x1(t)′
(

2P (t)Cj + A′3jp2(t)

)(
C ′jp1(t) + C ′1jp2(t)

)
+u(t)′B′2jp2(t)p2(t)′B2ju(t) + 2u(t)′B′2jp2(t)

(
C ′jp1(t) + C ′1jp2(t)

)
+

(
p1(t)′Cj + p2(t)′C1j

)(
C ′jp1(t) + C ′1jp2(t)

)]
dt

+
G(t)

2

(
γ

2

)2

tr

[
F (x1(t), u(t))′E ′p2(t)p2(t)′EF (x1(t), u(t))

]
dt

+
n∑
j=1

γ

2
G(t)

[
x1(t)′

(
2P (t)Cj + A′3jp2(t)

)
+ p2(t)′B2ju(t) + p1(t)′Cj

+p2(t)′C1j

]
dWj(t) +

γ

2
G(t)p2(t)′EF (x1(t), u(t))dW̃ (t). (7.11)

The calculation of p2(t)′D(x1(t), u(t)) can be found in [30], here we omit the

details. Similar to the derivation steps from (3.34) to (3.38) in Chapter 3, we

have

tr

[
F (x1(t), u(t))′E ′p2(t)p2(t)′EF (x1(t), u(t))

]
= x1(t)′

[
η∑
k=1

e′kE
′p2(t)p2(t)′EekQ̃k

]
x1(t)

+u(t)′

[
η∑
k=1

e′kE
′p2(t)p2(t)′EekR̃k

]
u(t).

After rewriting dt terms in (7.11), we focus on the terms containing u(t), which

is,

u(t)′R̄u(t) + u(t)′X̄x1(t) + u(t)′Ȳ
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=

[
u(t) +

1

2
R̄−1(X̄x1(t) + Ȳ )

]′
R̄

[
u(t) +

1

2
R̄−1(X̄x1(t) + Ȳ )

]
−1

4
[X̄x1(t) + Ȳ ]′R̄−1[X̄x1(t) + Ȳ ],

where R̄, X̄, Ȳ is given in (7.4). In the drift terms of (7.11), due to Assumption

7.3.2, we have

x1(t)′Qx1(t) + x1(t)′(A′P (t) + P (t)A)x1(t) + x1(t)′Ṗ x1(t)

+

n2∑
i=1

p2i(t)x1(t)′Qix1(t) + x1(t)′
{
γ

4

n∑
j=1

[2P (t)Cj + A′3jp2(t)][2C ′jP (t)

+ p2(t)′A3j]

}
x1(t) + x1(t)′

γ

4

η∑
k=1

e′kE
′p2(t)p2(t)′EekQ̃kx1(t)

− 1

4
x1(t)′X̄ ′R̄−1X̄x1(t) = 0.

Due to (7.7), we have

L′1x1(t) + ṗ′1x1(t) + p1(t)′Ax1(t) + p2(t)′A1x1(t)− 1

2
x1(t)′X̄ ′R̄−1Ȳ

+ x1(t)
γ

4

n∑
j=1

2[2P (t)Cj + A′3jp2(t)][C ′jp1(t) + C ′1jp2(t)] = 0.

Due to (7.6), we have

L′2x2(t) + ṗ′2(t)x2(t) + p2(t)′A2x2(t) = 0.

Due to (7.8), the remaining terms independent of both x1(t) and u(t) equal to

zero. Finally, we rewrite the cost functional for all the admissible controls as

follows,

J(u(·)) = γE[G(0)] +
γ2

2
E
∫ T

0

G(t)

[
u(t) +

1

2
R̄−1(X̄x1(t) + Ȳ )

]′
R̄

[
u(t)

+
1

2
R̄−1(X̄x1(t) + Ȳ )

]
≥ γE[G(0)].

We obtain the lower bound γE[G(0)] iff

u(t) = u∗(t) = −1

2
R̄−1(X̄x1(t) + Ȳ ).
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7.5 Applications

Recall the financial market of Section 3.2, which consists of a bank account and

a stock, the prices of which we repeat here for convenience:

dB(t) = B(t)r(t)dt,

dS(t) = S(t)[µ(t)dt+ σ(t)dW1(t)],

B(0) = B0 and S(0) = S0 are given.

The zero-coupon bond is a contract with the terminal payoff of 1, i.e. such a

contract guarantees a payment of 1 unit at maturity date T to the holder. This

is one of the simplest contracts, and yet it is fundamental since the prices of

other contracts, such as swaps, caps, floors, or swaptions, are expressed in terms

of the zero-coupon bond price (see, e.g., [16]). Thus, by pricing such a contract

we solve the pricing problem for various other contracts. In [30] the price of a

zero-coupon bond for a particular interest rate model was found as a special case

of the risk-sensitive control problem considered there. In this section we introduce

a new interest rate model, and based on our result on the risk-sensitive control,

we find the price of the zero-coupon bond. Moreover, we show that the optimal

investment problem for the power utility is an example of our risk-sensitive control

problem.

Let f1 and f2 be the factor processes with equations the same as the states x1

and x2 with u(t) = 0, i.e.

df1(t) = Af1(t)dt+
n∑
j=1

CjdWj(t),

df2(t) = [A1f1(t) + A2f2(t) +D(f1(t))]dt

+
n∑
j=1

[A3jf1(t) + C1j]dWj(t) + EF (f1(t))dW̃ (t),

f1(0) = f10, f2(0) = f20.

(7.12)
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We introduce the following interest rate model:

r(t) , f1(t)′Qf1(t) + L′1f1(t) + L′2f2(t).

This model appears to be new due to the square-root nonlinearity of our model.

The motivation for introducing this model is that it admits an explicit closed form

formula for the price of a zero-coupon bond. Indeed, the price of such a contract

is (see, e.g., [16]):

p(0, T ) , E[e
∫ T
0 r(τ)dτ ].

However, this is just our cost functional with u(t) = 0 and without any terminal

cost, i.e. S = 0, S ′1 = 0, S ′2 = 0. Let the assumptions of Theorem 7.4.1 hold, and

γ = 2. Then from that theorem we immediately have

p(0, T ) = J∗/2 = E
[
exp

{
[f ′10P (0)f10 + p(0) + p1(0)′f10 + p2(0)′f20]

}]
.

Another application is in the problem of optimal investment. Recall from Section

3.2 that the equation of the self-financing portfolio is
dy(t) = [r(t)y(t) + (µ(t)− r(t))u(t)]dt+ σ(t)u(t)dW1(t),

y(0) = y0 > 0.

(7.13)

The problem of optimal investment with the power utility is the problem of max-

imizing

E[yβ(T )], (7.14)

with β ∈ (0, 1). The solution to (7.13) is

y(T ) = y0 exp

[∫ T

0

[r(s) + (µ(s)− r(s))v(t)− σ2(s)v2(s)/2]

+

∫ T

0

σ(s)v(s)dW1(s)

]
, (7.15)

where v(t) = u(t)/y(t). We assume that h(t) , µ(t) − r(t) is a deterministic

function (note that this is typical assumption in a market with stochastic interest
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rate, see, e.g. [15]). The expected power utility can thus be written as

E

{
yβ0 exp

[
β

∫ T

0

[f1(s)′Qf1(s) + L′1f1(s) + L′2f2(s) + h(t)v(t)− σ2(s)v2(s)/2]

β +

∫ T

0

σ(s)v(s)dW1(s)

]}
, (7.16)

The equation for x(t) = log y(t) is
dx(t) = [f1(t)′Qf1(t) + L′1f1(t) + L′2f2(t) + h(t)v(t)− σ2v2(t)]dt

+σ(t)v(t)dW1(t),

x(0) = x0 = log y0 > 0,

(7.17)

Note that the cost (7.16) contains a noise dependent penalty. By introducing a

new state variable x̃(t) with equation
dx̃(t) = σ(t)v(t)dW1(t),

x̃(0) = 0,

(7.18)

we see that such a noise dependent penalty in (7.16) is just a linear penalty in

x̃(t). We thus see that the problem of maximizing (7.16) subject to (7.12), (7.17),

(7.18), is just an example of the risk-sensitive control problem of this chapter, and

can be solved by applying Theorem 7.4.1.

7.6 Summary

This chapter investigates the problem of risk-sensitive control of stochastic non-

linear systems in finite time horizon. When a series of assumptions are satisfied,

a unique solution to our optimal control problem is found, and the optimal cost

functional is obtained. We emphasize the importance of this chapter by introduc-

ing its applications to finance.
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Chapter 8

Conclusion

8.1 Introduction

We summarize the main contributions of this thesis in this last chapter . We also

point out some interesting open problems for future research.

8.2 Chapter 3

Chapter 3 deals with the finite horizon optimal control of stochastic nonlinear

system with indefinite state and control cost weighting matrices with Markovian

switching appearing in system coefficients. A new type of CGREs is introduced.

The solvability of CGREs is proved to be sufficient to solve our nonlinear optimal

control problem. Moreover, under such a nonlinear system, all the optimal controls

are obtained explicitly and linearly with state, constructed by the solution to the

CGREs. The existence and uniqueness of the solution is discussed. The feasibility

of the assumption of the solvability of the new CGREs is discussed. An application

to finance is introduced. An illustrative example is given.

Here we list some open problems related to this chapter as follows:

• The solvability of CGREs with Markovian switching in [74] is not proved.

If this can be proved in the future work, then the solvability to our new

CGREs (3.23) can also be proved without difficulty.
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• The necessity of the solvability to our new CGREs for the well-posedness of

our nonlinear optimal control problem is still unsolved.

• More applications to finance can be introduced.

8.3 Chapter 4

Chapter 4 deals with the infinite horizon optimal control of stochastic nonlin-

ear system with indefinite state and control cost weighting matrices and with

Markovian switching appearing in system coefficients. The mean-square stability

is considered. The new CGAREs are introduced. We assume that there exists a

unique solution to the CGAREs such that the linear optimal control is admissible

w.r.t. to any initial state, then our stochastic nonlinear optimal control problem

is well-posed. Furthermore, the value function is obtained. Here we list some

open problems related to this chapter as follows:

• The proof of the solvability of our new CGAREs is still an open problem.

• We have not reformulated our new CGAREs to LMIs (linear matrix inequal-

ities) yet. After this reformulation, the problem can be solved in polynomial

time based on solving a SDP (semidefinite programming) [19] [105].

• We have not reformulated the mean-square stability condition to LMI ,

which is easier for numerical computation.

• Due to the difficulty in computation caused by the complexity of problem

formulation, numerical example is not given.

8.4 Chapter 5

In Chapter 5 we consider the problem of robust stabilization and robust H∞

control for a class of nonlinear stochastic systems with Markovian switching in

coefficients. The new system that we investigate in Chapter 5 generalizes the

system considered in [115], [114], [20], [120], [121], and [46] in many aspects. Suf-

ficient conditions in forms of matrix inequalities are obtained such that the linear
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stabilizing controllers exist. In addition, a new type of disturbance attenuation

formed by symmetric matrices with Markovian switching is involved. Then we

formulate our generalized robust H∞ control problem. A sufficient condition for

the solvability of our generalised robust H∞ control problem is proposed.

Some open problems are listed as follows.

• In both sections of robust stabilization and robust H∞ control, we obtained

sufficient conditions for the solvability of our problems. Someone may ask

whether these sufficient conditions are too strong or not, and whether there

are any better conditions that are not so strong, but can still solve our

problems.

• In both two theorems the reformulation of our matrix inequalities into LMIs

is not dealt with. After this formulation, the controller can be constructed

via a convex optimization problem, which can be checked numerically, see

[19].

• Due to the difficulty in computation caused by the complexity of problem

formulation, numerical example is not given.

• Although we focus on theoretical research, it is better to find some applica-

tions in which our new system can be used.

8.5 Chapter 6

In Chapter 6, stochastic H2/H∞ control for a class of nonlinear systems with

Markovian switching in both finite and infinite time horizon is considered. In the

main results we show that the solvability of the coupled DREs is sufficient to solve

the finite horizon stochastic nonlinear H2/H∞ control problem. In addition, we

show that the solvability of the coupled AREs is sufficient to solve the infinite

horizon stochastic nonlinear H2/H∞ control problem.

There are still some unsolved problems based on this work. In addition, there

are also some ideas for future research. Here they are listed as follows:

• In [135], it is pointed out that although sufficient conditions are presented

for the solvability of stochastic nonlinear H2/H∞ control problems in both
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finite and infinite horizons, how to solve those four cross coupled DREs and

AREs is still an open problem. This problem also appears in Chapter 6.

When nonlinear term and Markovian switching is included, this problem

becomes even more difficult. This can be viewed as a pure mathematical

calculus problem.

• We can apply our work into descriptor systems, which is used in [126],

focusing on infinite horizon H2/H∞ control for descriptor systems. In this

case, we might be able to extend [126] into a nonlinear H2/H∞ control for

descriptor systems with Markovian switchings in both finite and infinite

horizons.

8.6 Chapter 7

In Chapter 7, the problem of risk-sensitive control for a class of stochastic non-

linear systems in finite time horizon is investigated. Following a series of as-

sumptions, it is proved that there exists a unique solution to our optimal control

problem. The optimal cost functional is obtained. We highlight the importance

of this chapter by providing applications to finance.

However, although we extend the system in [30] into a more general type, this

chapter has some restrictions. Additionally, some future works can be investi-

gated. Here these problems are listed as follows.

• As we mentioned in Remark 7.3.2, future work can be focused on proving

the control to be admissible.

• This is the only chapter that Markovian switching is not applied, due to

some technical difficulties. This can be left for future study.

• A generalized risk-sensitive control was studied in [30], where noise depen-

dent penalties on the control u(t) and x1(t) is introduced. In [30] the cost

functional becomes:

J̃(u(·)) = γE
{
exp

[
γ

2
x1(T )′Sx1(T ) +

γ

2

∫ T

0

[x1(t)′Qx1(t) + u(t)′Ru(t)]dt
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+
γ

2
S ′1x1(T ) +

γ

2
S ′2x2(T ) +

γ

2

∫ T

0

[L′1x1(t) + L′2x2(t) + L′uu(t)

+ u(t)′Xx1(t)]dt+
γ

2

∫ T

0

[x1(t)′Qx + u(t)′Ru]dW (t)

]}
,

where

Qx(·) ∈ L∞(0, T ;Rn1), Ru(·) ∈ L∞(0, T ;Rn2).

This cost functional can also be adopted in our new system for future re-

search.

• Recently risk-sensitive control for infinite horizon was investigated by [47],

which is a motivation for us to extend this chapter into the case of infinite

time horizon in the future.

8.7 Summary

In this chapter we conclude the main contributions of this thesis. We also point

out some restrictions and open problems. In addition, we give some possible ideas

to future work.
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