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ABSTRACT 
 
We describe the synthesis of new low molecular weight gelators based on three 

different photoresponsive molecules functionalised with amino acids or dipeptides. 

Photoresponsive gels are interesting from the perspective of patterning. The gelation 

ability of the new gelators is explored using different methods two different methods 

of changing the pH. The photoresponse of these gels is investigated and the 

rheological properties measured to determine how the gel has changed. 

A coumarin based dipeptide gel is formed electrochemically and by GdL. By using 

UV light, the dimer of the coumarin is formed in the gel and in solution, which is 

then investigated. Interestingly, this gel is an extremely rare example where the 

strength of the gel increases on irradiation. Most others examples become a solution 

when irradiated.  

The gelation of a stilbene-based gelator is carried out using GdL. Upon UV 

irradiation, stilbene isomerises from trans to cis. This is examined in both the gel and 

the solution. The stilbene molecule is then used as part of a multi-component system 

to investigate self-assembly or co-assembly of different molecules upon gelation. 

This system allows us to prove that the second network is completely independent of 

the self-assembled stilbene network, which is the first time that this has been proven. 

A series of gelators based on perylene bisimides are synthesised and the assembly of 

the gelators in solution and the gel are investigated. The two systems are dried down 

between two electrodes to monitor the change in electronic properties when 

irradiated with light. We have then aligned these materials to give better conductive 

properties. The perylene thin films are further examined with the properties of the 

films being measured in the presence of different hole scavengers. The perylene and 

stilbene gelators are then used in a multi-component gelator systems, and again the 

self-assembly or co-assembly is explored. The two-components are gelled in 

different ratios to each other and the conductive response under light again is 

investigated to see whether they could be used as a p-n heterojunction material. We 

show that the stilbene is able to act as a hole scavenger and affect the wavelength at 

which the photoconductivity is most effective. This provides evidence that we have 

managed to prepare two networks that are able to interact with one another, and 

hence are likely to effective as a bulk heterojunction. 
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1. 1. Low Molecular Weight Gels 
 

Hydrogels are a class of soft materials that have a wide range of applications.1, 2 

These include use in cosmetics,3 medicine,4 food5 and electronics.6 Gels consist of a 

dilute cross-linked network that consists mainly of liquid. Some examples are made 

up of up to 99.9 % water, however they still exhibit many properties of a solid. This 

composition gives the gels interesting physical properties. Most gels are formed from 

long fibres that are in a solution. These then entangle and cross-link, trapping the 

solution and forming a self-supporting gel matrix. When the solvent is an organic 

solvent these are called organogels. When the solvent is water, these gels are called 

hydrogels, which are the focus of this Thesis. The high water content of these 

materials leads to increased biocompatibility and, as a result, hydrogels can be used 

in biological applications such as drug delivery, therapeutics and cell culture.7-11 

Hydrogels can be made from high molecular weight polymers that occur naturally, 

such as pectin and collagen, and also from synthetic polymers.12, 13 In the latter case, 

the polymer fibres are cross-linked irreversibly via covalent bonds. This makes 

gelation irreversible and results in stiff gels as bonds are less easily broken by force 

or other stimuli (Fig. 1.1a).12, 14-16 Another class of non-polymeric hydrogels is 

formed by low molecular weight gelators (LMWG), which are molecules that are 

typically less than 1000 Daltons.1, 2 These LMWG self-assemble through non-

covalent interactions such as hydrogen bonding, π-π stacking and ion pairing to form 

fibres, which entangle (Fig. 1.1b).17  

 
Figure 1.1 Gelation using (a) polymers and (b) low molecular weight gelators. 
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LMWGs can be peptides, quaternary ammonium salts, functionalized sugars, 

metallic soaps and aliphatic hydrocarbons.1, 10, 18, 19 These gelators can have a wide 

variety of structures, and so can have many functions. To form hydrogels, typically 

the LMWG are initially dissolved or suspended in water (Fig. 1.2a). These molecules 

then self-assemble in water when a suitable trigger is applied, which results in the 

LMWG becoming significantly less soluble. As the molecules become less soluble, 

they assemble into long fibres in order to minimize their interactions with the 

surrounding water (Fig. 1.2b). These fibres then interact further with each other by 

cross-linking and entanglement resulting in the gel network (Fig. 1.2c). This self-

assembly of fibres is still poorly understood, but the use of circular dichroism and X-

ray scattering gives us some insight into the fibre structure,20, 21 while rheology can 

be used to gain some information about the entanglement of the network.22, 23 

 

 
Figure 1.2 Scheme showing self-assembly of LMWG into a self-supporting 

hydrogel. (a) Molecules are freely dissolved in solution until a gelation trigger is 

applied. (b) Molecules start to assemble into 1D structures to minimise their 

interaction with the solution and (c) further assembly occurs forming long fibres that 

entangle and trap water forming a self-supporting 3D matrix of fibres. 

 

An advantage of gels formed from LMWG compared to cross-linked polymeric 

hydrogelators is that gelation can be reversible. This is owing to the gel structure 

being held together by non-covalent interactions. This reversibility is important when 

thinking about applications of the gels such as the controlled release of guest 

molecules or as use in sensors in logic gates.24, 25 The weak covalent forces holding 

fibres together can also allow the gels to quickly recover back to their original 

strength upon breaking. This so-called thixotropic behaviour means that the gels are 
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often suitable for injection or other processing allowing them to be processed for the 

use in devices.26 

1. 2. Gelation Triggers 
 

As mentioned previously, the LMWGs discussed in this Thesis require a trigger in 

order to self-assemble. There are several potential triggers that have been described 

such as a solvent switch,27 pH change,28 temperature change,29 shear force,30 addition 

of a salt31 and addition of enzymes.32 All of these methods work by making the 

LMWG less soluble and so inducing self-assembly. The method used is critically 

important as it controls the bulk properties of the gel. Even within one type of trigger 

there are different methods and rates at which they occur, gain leading to different 

bulk properties of the gel.33-35 Due to rate of gelation being an important factor in the 

gel properties, it is important to find a reproducible method of gelation to insure that 

each gel made has the same properties and therefore will function the same. This is 

especially important when using the gels in applications. The way in which gelation 

is triggered often leads to the gels being unsuitable for an application. For example, 

organogels cannot be used for cell culturing.36 

 

1. 2. 1. Change in pH 
A pH trigger can be used when the gelator molecule has a functional group that can 

be deprotonated and protonated, for example carboxylic acids or amines. In the case 

of carboxylic acids, the LMWG can be freely dissolved in water above the pKa. 

However, when acid is added and the pH is adjusted to below the pKa, the 

carboxylate is re-protonated, decreasing the solubility of the LMWG and inducing 

self-assembly leading to gelation.37-39 In the case of an amine, when the pH is raised 

above the pKa of the LMWG, deprotonation of the amine reduces the solubility, 

again resulting in self-assembly of the molecules. There are different ways that the 

pH can be lowered giving different rheological properties.35, 40 A mineral acid such 

as hydrochloric acid (HCl) can be directly added to a high pH solution of gelator to 

quickly lower pH. This often leads to irreproducible gels due to the solution gelling 

very quickly at the top of the solution and the acid having to then diffuse through the 

gel to lower the pH of the rest of the solution.41 Other ways of lowering pH exploit 
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the hydrolysis of sugars or anhydrides, which results in an acid being formed (this is 

discussed in more detail in Chapter 3). This often happens more slowly and allows 

the acid to be dispersed uniformly throughout the solution and a more uniform drop 

in pH occurs.41, 42 This slow hydrolysis gives more reproducible and homogeneous 

gels, but of course depends on the solubility and rate of hydrolysis of the anhydride 

or sugar.  

 

The drop in pH can be spatially controlled by using electrochemical methods or by 

using a photoacid. Hydroquinone can be easily oxidised to quinone43 which releases 

a proton by applying a current.44-46 This results in a drop in pH at the surface of an 

electrode and so gelation will occur on a surface rather than in the bulk (this is 

described in more detail in Chapter 2). This method of gelation also gives 

reproducible gels when formed using the same conditions. The use of a photoacid 

allows a drop in pH only where the sample has been irradiated with a light source.43 

By using a mask this gives spatial control over gelation. This method does not give 

reproducible gels due to diffusion of the light through the samples and other 

variables. 

 

1. 2. 2. Solvent Switch 
A common assembly method is a solvent switch approach. This is where molecules 

are first dissolved in an organic solvent, followed by the rapid addition of a miscible 

anti-solvent, again reducing solubility and inducing self-assembly.34, 47-49 Gelation 

usually occurs in a few minutes and so is quicker than using the slower pH switch 

method. This method of gelation if a useful method of forming hydrogel from 

molecules that are not soluble in water, as they can be first added to an organic 

solvent and water can be added as the anti-solvent. The final gel properties are 

determined by the ratio of the two solvents used as well as the concentration of the 

gelator.47 

 

1. 2. 3. Temperature Switch 

Change in temperature is also a common method of gelation. This method relies on 

the gelator being soluble in a solvent (or solvent mixture) at higher temperatures but 
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not when the temperature is lowered. This change in solubility at the colder 

temperature drives the self-assembly.29 Rheological properties of gels formed using 

this gelation trigger depend on how quickly the temperature is lowered and again on 

the solvents used and concentration of the gelator.50 

1. 2. 4. Use of an Enzyme 

Enzymes work in two ways, by making or breaking bonds. Enzymatic triggers for 

LMWG work by synthesizing the gelator in situ, either by cleaving a solubilizing 

group from a precursor molecule or by forming the LMWG via reaction between two 

soluble precursors (Fig. 1.3).51-53 Enzymatic triggers are useful as they are highly 

specific and can be used in biological systems.54 They can be used in both 

intracellular and extracellular environments and in complex fluids such as blood.55 

Other conditions need to be considered when using enzymes as triggers, such as pH 

and temperature. The enzyme’s normal function can be slowed or the enzyme even 

denatured if not in a suitable environment. 

 

 
Figure 1.3 Schematic showing enzymatic self-assembly by (a) bond breaking and 

(b) bond making. 

 

1. 2. 5. Addition of a Salt 

Metal-ion triggers for gelation such as calcium and zinc ions work by enhancing 

ionic strength of interactions between fibres. Metal-ions can bind to specific groups 

on gelator molecules and encourage self-assembly.56-58 This type of gelation can only 

occur when there are worm-like micelles present in solution. For example, Ca2+ 

gelation works by bridging fibres together through acid groups via positively charged 

metal-ions. Ca2+ binds together the negatively charged carboxylic acid groups on 
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neighbouring worm like micelles (Fig. 1.4).31, 50, 59 This cross-linking assembles the 

fibrous network and traps the solvent forming the gel. Metal ion triggered gels are 

advantageous as they are able to form in biological pH and can be tuned using 

temperature and strengthened by use of salts. 

 

 
Figure 1.4 Gelation by the use of Ca2+ ions. 

 

For this Thesis, a pH switch will be used throughout as the gelation trigger. This is 

due to the pH triggers being more reproducible and versatile than the other 

methods.41 This means that the gels will have to be hydrogels. Hydrogels are more 

biocompatible, less likely to dry out as the solvent is not volatile and can be used for 

many applications.12 There are fewer examples of low molecular weight hydrogels 

than organogels and so more research needs to be done on these types of materials 

 

1. 3. Photoresponsive Gelators 
 

Gels can be responsive to external stimuli.36, 60, 61 This can be used to alter the 

material after gelation has happened.16 Gels can respond to temperature,62 

mechanical stress,30 light,63 chemical stimulus,64 enzymes,65 pH61 etc. Responses 

include a change in colour, gel-sol transitions, gel-to-gel transitions, isomerisation, 

dimer formation, morphology, change in electronic properties to name a few.66 This 

makes gels ideal for the use in applications such as sensors, logic gates, organic 

electronics and organic photovoltaic devices.1 Post-modification of gels allows 

tuning of gel properties. The use of light to modify gels is of particular interest due to 
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the possibility to target a specific area of the gel leading to patterned gel surfaces.67, 

68 This is useful for such applications as microfluidics, cell culture and differentiation 

and electronic materials such as p-n heterojunctions.69 The use of light to alter the gel 

is clean and controllable way of modifying the gel as when the light source is 

switched off the reaction causing the change stops. This means the change can be 

spatially located, unlike for most other stimuli such as chemical or temperature. 

 

Photoresponsive gelators usually contain a chromophore, which is the 

photoresponsive group, attached to other groups that aid with gelation.70 

Chromophores are conjugated system that absorbs light. The conjugated systems can 

also aid self-assembly by π-π stacking and forming 1D fibres. The chromophores 

collect light of a specific wavelength and covert it leading to a photoreaction.71 These 

photoreactions include isomerisation, dimerization, bond formation, bond cleavage 

and exciton formation depending on the chromophore present.36, 72 The diversity in 

reactions allows for different applications. 

 

1. 3. 1. Photoisomerisable Gels 

Photoisomerisation is the changing of a cis isomer to a trans isomer or vice versa 

(Fig. 1.5).73, 74 The trans isomers of the molecule often is the gelator and whereas the 

cis isomer is the non-gelator. The cis isomer does not form gels due to change in 

polarisation and the lack of preferential stacking of the molecules in solution. This 

isomerisation leads to a gel-sol transition.75 This type of response is useful for 

removing part of the gel to create a patterned surface.76 This could be especially 

useful when using a multicomponent system so that the integrity of the gel remains 

but one gelator is removed from a specific area leading to different properties on 

specific part of the gel. Gel-sol transitions or sol-gel transitions can also be used in 

sensors such as logic gates.77, 78 
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Figure 1.5 Two isomers of the same molecule (a) the trans isomer and (b) the cis 

isomer. 

1. 3. 1. 1. Azobenzenes 

Azobenzene-based gelator molecules have been extensively studied.63, 73, 75, 79-81 

Azobenzene consists of two benzene rings connected by a diazo group (Fig. 1.6). 

The benzene rings can then functionalised to make a range of different gelators with 

different properties. The diazo group allows the cis to trans transitions and the 

benzene rings aid with self-assembly.  

 
Figure 1.6 Molecular structure of trans-azobenzene  

 

Zhang and co-workers developed short peptide functionalised azobenzene gelator 

molecules. 81 They investigated varying the peptide sequence and the length of the 

peptide chain. They concluded that if the molecule contained a phenylalanine or 

tyrosine moiety it would more likely gel, whereas arginine and other cationic 

functionalities did not promote gelation. The gelator molecules were dissolved in 

water and the pH was adjusted a heat cool method was then used as the gelation 

trigger. The use of buffers was used to see if salts affected gelation, which a few did. 

Different salt concentrations and peptide sequences gave gels with different gel 

strengths. A UV light was used to irradiate the gels and changed the yellow gels to a 

yellow liquid due to the cis isomer being a non-gelator. This was found to be 

reversible with the use of visible light. The different strength gels had different 

sensitivities to the UV light. They used this gel-sol transition to look at a method of 

controlled release of vitamin B12. This method allowed all the vitamin B12 to be 
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released within 5 hours, as opposed to only 30 % of the vitamin being released by the 

non-irradiated gel. 

 

Moriyama et al. mixed a discotic liquid crystal (Fig. 1.7a 1) with a hydrogen-bonded 

photoresponsive gelator based on two azobenzenes (Fig. 1.7a 2) to give a liquid 

crystalline gel.82 The mixed gel system was heated to 160 °C and then cooled to a 

different temperature. Two things happened as a result of this change in temperature: 

gelation of molecule 2 occurred and the liquid crystal phase of 1 also formed. When 

the system was cooled under UV light the cis-2 was formed along with liquid 

crystals. The trans-2 was then formed when the system was heated allowing gelation 

to occur after liquid crystal formation. This could be used to give two different 

processes, where gelation either happens first then liquid crystal formation or where 

the liquid crystals are formed first and gelation happens second. The use of the the 

photoresponisve gelator allows two different templated materials to be made from 

the same molecules. The also managed to photopattern this system using a mask and 

irradiating the sample. They found where the sample was irradiated there were 

aligned liquid domains whereas were the mask covered there was no alignment (Fig. 

1.7b). The alignment was fixed by the aggregates of 2. This alignment of liquid 

crystals could be of use in organic electronic materials as aligned liquid cystals have 

been shown to have enhanced hole mobility.83 

 

 
Figure 1.7 (a) Molecular structures of 1 and 2 (b) Optical polarized light microscope 

image of a patterned sample of 1,2 at 65 °C prepared by cooling under UV light 

using a photomask. Adapted from ref 82 Huang et al. 
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A problem when using azobenzene gelators is the reversibility of the trans to cis 

isomerisation. The samples do not go completely trans or cis and so normally there 

is a mixture of the two isomers in the gel or in the solution, leading to irreproducible 

results.66, 84 The research into these materials often claim they will undergo a cis to 

trans transition with the use a visible light, although many groups also heat and 

sonicate the solutions before doing this, meaning that they are actually just reformed 

the gel through heat. This implies that it is not a truly reversible photoresponse.85 

 

1. 3. 1. 2. Stilbenes 

Stilbenes are similar in structure to azobenzenes as seen above; they differ by having 

a C=C instead of a N=N bond (Fig. 1.8). They act similarly to the azobenzene, with 

the trans to cis isomerisation occurring upon irradiation with UV light. Again, these 

have been extensively studied in the literature.71, 86, 87 The cis-stilbene is less 

thermally stable than the trans-stilbene and so in the dark the cis-isomer will convert 

to the trans-isomer. The wavelength needed for the trans to cis isomeriation is 

shorter than for azobenzene, and the cis-stilbene is more stable than cis-

azobenzene.74 This reversibility and stability makes them ideal for sensing 

applications.  

 
Figure 1.8 Molecular structure of trans-stilbene. 

  

Heenan and co-workers made organogels based on a stilbene with a gemini photo-

surfactant (Fig. 1.9a).84 They refluxed the gelator in toluene and 0.4 % N,N’-

dimethylaminedodecylamine. The solution was then cooled to room temperature to 

form the organogel. This method of gelation gave reproducible gels, even when 

changing the amount of gelator in solution and the amount of N,N’-

dimethylaminedodecylamine. These gels were opaque when formed (Fig. 1.9b). 

Upon irradiation with a mercury lamp, the gels changed to a clear solution (Fig. 

1.9c). 1H NMR showed that the isomerisation went 100 % to the non-gelling cis-

isomer. They then used mask and selectively de-gelled parts of the gel (Fig. 1.9d). 

This selective removal could be used to create patterned surfaces. 
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Figure 1.9 (a) Molecular structure of stilbene gemini surfactant gelator. Photographs 

of (a) the organogel (b) after irradiation (c) selective removal of part of the gel. 

Adapted from ref 84 Eastoe et al. 

Miljanić et al. looked at the gelation ability of an oxamide-based gelator bearing a 

stilbene functional group. They varied the substituents on the stilbene and 

investigated the gelation abilities. They made a series of symmetric and asymmetric 

gelators, with some bearing two oxamide groups and some bearing one oxamide and 

one long alkyl chain. They tried all the molecules in a variety of solvents and 

reported whether they were soluble, formed gels or precipitates. The molecule 

containing the long alkyl chains were more likely to gel, but not all the molecules 

with the alkyl chains formed gels. This shows that the substituents is important, but 

there does not seem to be any design rules for what makes a gelator, which is has 

been seen by many research groups.88 They then investigated whether the 

corresponding cis-molecules still gelled. Most of the cis-iomers did not gel, but one 

of the cis-molecules that was functionalized with an oxalamide and an alkyl chain 

gelled in toluene and tetralin. This is very unusual, as normally the cis-isomer does 

not gel, but for this particular molecule both isomers gel when using the same 

solvent. Stilbenes can be functionalized with many different groups to give gels that 

can be used in different applications.66 Although there is a lot of literature on these 

systems, there are very few examples of these molecules forming hydrogels. This is 

most likely due to them being less soluble than azobenzenes in water. 

 

1. 3. 2. Photocleavable Gelators 

Instead of isomerisation, another photoreaction can be the making or breaking of 

bonds. In photoresponsive gelators, this is most likely a ring opening or ring closing 

reaction.89, 90 This ring opening or ring closing can have several responses; these 

include a change in colour,91 change in electronic properties92 and gel-sol 
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transitions.93 This response to light makes them ideal for applications such as 

sensors, optical switches and displays.66 Molecules that can undergo ring opening 

reactions under UV light are often referred to as the ‘open’ molecule and ‘closed’ 

molecule depending on whether the ring is open or not. 

 

1. 3. 2. 1. Dithienylethenes  

Dithienylethenes are a type of molecule which have two thienyl group attached via 

cyclopentene. The cyclopentene and thienyl groups can be functionalised to give a 

range of different molecules with different functions.94, 95 The open form of the 

molecule can be converted to the closed form with the use of UV light. This is 

reversible, with the open molecule being formed on irradiation with visible light 

(Fig. 1.10). When the molecule is closed, this restricts rotation around the 

cyclopentene and the thienyl groups are conjugated, giving very different electronic 

properties and flexibility to the open form.96 This change in conjugation and 

electronic properties gives interesting responses from the molecules, often leading to 

a change in colour.97 Furthermore, this reversible photoresponse can be carried out 

hundreds of times without loss of efficiency.94 Photochromic response to light and 

efficiency of this reaction makes these molecules useful for devices such as photo 

switches.97  

 
Figure 1.10 Molecular structure of dithienylethene in (a) the open form and (b) the 

closed form. 

 

Feringa and co-workers functionalised a ring open dithienylethene with various 

dipeptides on the 3-position of the cyclopentene.76 This changed the polarity of the 

molecule and allowed it to be soluble in water. Therefore, it was able to be used in a 

hydrogel. By changing the amino acids in the dipeptide, the polarity of the molecules 

could be tuned. They found if the dipeptide contained a phenylalanine group, it 
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would not be soluble due its hydrophobicity. The gelator molecules were dissolved at 

different concentrations in a phosphate buffer, or in water with the pH adjusted. The 

solution were heated and sonicated to give a clear solution and, when cooled, formed 

weak gels which were frequency dependent. They also tried a solvent switch by 

dissolving the molecules in DMSO and then adding water. Only some of the 

molecules could gel this way, but gave inhomogeneous hydrogels that were not 

suitable for analysis. The lysine-glycine functionalised ring-open dithienylethene 

was then irradiated with 312 nm to form the ring-closed dithienylethene. This 

resulted in a change in colour of the gel from yellow to red, without a change in the 

rheological properties of the gel. This ring closing was reversible when using visible 

light >500 nm and the gel returned to the original yellow colour. This change in 

colour arises due to the molecule being more conjugated and so has a change in the 

highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital 

(LUMO) gap. They were also able to selectively change the colour by using a photo 

mask. These molecules are promising for the use as a photo switch, owing to it 

maintaining its gel structure. 

 

A naphthalimide and cholesterol-appended dithienylethene was synthesised by 

functionalising both the thienyl groups by Wang et al.98 This gave extra fluorescent 

properties to the molecule due to the naphthalimde group and the cholesterol group 

aiding with gelation. Again, when gelled, there was a photochromic response with 

the gel changing from a yellow to a red colour when irradiated with UV light (Fig. 

1.11a and b). Unlike the example above, the authors showed that this molecule also 

responded to heat, fluoride ions and protons in both the open and closed form of the 

molecule. Both the open and closed form of the gel went through a gel-sol transition 

when heated. They showed that there was also a photochromic response when the 

molecule was in solution, again showing a yellow to red transition when irradiated 

with UV light (Fig. 1.11c and d). In the presence of fluoride ions, the open yellow 

solution changes to an orange colour due to the fluoride ion deprotonating the amide 

group giving a negative charge on the nitrogen and promoting a internal charge 

transfer and the change in colour, this was reversible upon the addition of protons 

(Fig. 1.11c and e). This orange solution also responds to the UV light and then 

orange colour deepens to a dark orange colour (Fig. 1.11e and f). This multi-

responsive system would be ideal for the use in sensors and logic gates. 
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Figure 11.1 Colour change and state change upon different stimuli for a 

naphthalimide and cholesterol appended dithienylethene gelator. Figure taken from 

ref 98 Tian and co-workers. 

 

Dithienylethene gels are very interesting materials due to them being able to 

maintain their rheological properties but still responding to visible and UV light. 

They show little fatigue after multiple cycles of ring opening/closing. The ability to 

be responsive to multiple stimuli also makes it possible for these materials to be used 

for many different applications. 

 

1. 3. 2. 2. Spiropyrans and Spironaphthoxazines 

Another photoresponsive gelator molecule that undergoes cleavage is spiropyrans. 

These molecules have a reversible photochemical cleavage of their C-O bond in the 

spiro unit.99 These are very closely related to spironaphthoxazines, which also have 

the same photochemical cleavage of the C-O bond.100, 101 Under visible light or heat, 

there is a cyclisation and the C-O bond is formed, this is referred to as the closed 

form (Fig. 1.12b) and is the most stable form. This can then be ring opened using UV 

light and is referred to as the open form (Fig, 1.12a). The open form is normally 

more soluble and the ring is closed. The consequence of the ring closure is a sol-gel 

transition as the closed form is planar, less flexible and has unfavourable π-stacking. 

This differs from the photoisomerisable gelators where there is gel-sol transition 

under UV light rather than a sol-gel transition as for this group of gelators. There are 
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many examples of spiropyran incorporated into polymers systems, but few for low 

molecular weight gelators. 

 

 
Figure 1.12 Molecular structure of a spiropyran molecule (a) in the open form and 

(b) the closed form. 

 

Zhang and co-workers functionalised a spiropyran with dipeptide containing to 

alanine amino acids.93 The dipeptide promotes self-assembly with H-bonding and 

Van der Waals interactions. The open form of the molecule was dissolved at neutral 

pH and formed a dark red gel when the pH was lowered to 3 using HCl (Fig. 1.13a). 

The closed form was unable to form a gel this way and remained as a yellow liquid. 

The gels formed from the open form needed to be kept away from visible light, as 

they became unstable. This sensitivity to visible light is not ideal for the use in 

applications. The gel could be irradiated with wavelengths of light >400 nm to form 

a yellow gelatinous precipitate (Fig. 1.13b), and the pH had to be altered to get a 

solution, meaning this is not truly photoreversible. The yellow solution could then be 

irradiated with UV light to get a red gelatinous precipitate; again, the pH had to 

adjusted to form a gel. They also added vancomycin to the gel, which resulted in a 

gel-sol transition. This change in state is due to the ligand specific vancomycin 

binding to the dipeptide and increasing the solubility. Hence, this spiropyran 

molecule shows a multiple responses to pH, light and vancomycin. 

 

 
Figure 1. 13 Photographs of (a) open spiropyran gel and (b) closed spiropyran 

solution open irradiated with different light sources.  Adapted from ref 93 Qui et al. 



Chapter 1 

 17 

A gelator molecule based on spironaphthoxazines was prepared by Li et al.102 It was 

functionalised with gallic acid, aiding with gelation by providing more 

intermolecular forces between π-π stacked molecules. This also allowed the molecule 

to be sensitive to pH. Gelation was carried out is different organic solvents and a 

heat-cool method was used initiate gelation. Samples were heated to 50 °C until all 

the gelator was dissolved and the samples were cooled to room temperature. Closed 

forms of the spironaphthoxazines gave a colourless gel. When irradiated with UV 

light they became blue in colour, which could be monitored by UV-Vis absorption 

spectroscopy. This was due to an increased conjugation through the molecule due to 

the ring opening. The change in colour did not last long, due to the open form being 

thermally unstable. When dissolved in ethanol, these molecules were responsive to 

the addition of p-toluenesulfonic acid, which changed the sample from colourless to 

purple. These samples could be gelled using the heat-cool method to form purple 

gels. Spiropyrans and spironaphthoxazines are excellent candidates for the use in 

sensing applications due to their multi-responsive behaviour.100 They would also be 

used in optical devices due to the ability to tune the colour by changing the molecule. 

The biggest problem is the thermal and visible light instability. 

 

1. 3. 2. 3. 2H-Chromene 

2H-Chromenes go through a photocleavage of a C-O bond upon the irradiation with 

UV light and ring opening the molecule (Fig. 1.14). This ring-opening is reversible 

upon heating due to the ring-closed molecule being more thermally stable than ring-

opened molecule.89, 91, 103  

 

 
Figure 1.14 Molecular structure change of 2H-chromene from (a) closed to (b) 

open. 



Chapter 1 

 18 

This ring-closure occurs through an electrocyclisation. These two forms of the 

molecule are again referred to as the open and the closed form. The closed form is 

usually colourless and the ring-closed form is coloured. This change in colour makes 

these molecules of interest due the resistance to fatigue over multiple cycles.66 

Despite this photochromic behaviour, there are only a few examples of these 

molecules being used as gelators. 

 

A series of 2H-chromene N-acylamino acid conjugates were reported by both Shanab 

and Pozzo.89, 91 Both dissolved the ring open molecules in an organic solvent and 

heated whilst stirring until the solution was clear; they then cooled the solution to 25 

°C using ice to give a colourless gel. The different molecules showed different 

gelation abilities and solubility in different solvents. Molecules with a longer chain 

length of the acylamino group were more likely to gel. They also found that if the 

molecule contained a dipeptide rather than a single amino acid group then it was able 

to gel in some solvents at low temperature and at room temperature gave a gelatinous 

precipitate. The molecules that did gel were irradiated with 366 nm light. This 

caused a colour change of the gel to yellow, due to the formation of the ring open 

2H-chromene. When irradiation was stopped, then the gel quickly converted back to 

the colourless state due to the instability of the closed form. The gel was disrupted by 

this irradiation; this was probably due to the closed form of the molecule not being a 

gelator and so breaking the gel structure and therefore did not fully go into solution 

due to insufficient penetration depth of the UV light into the bulk sample. The 

authors did note that they were able to reform the gel upon heating and cooling 

again. This group of molecules also showed sensitivity to the presence of sodium 

ions as the protonated amino acid of the open form of the molecule did not gel, but 

the sodium salts did. This shows that the there is a delicate balance of molecular 

interactions needed for gelation to occur.  

 

1. 3. 3. Photodimerisation 
Photodimerisations is when two of the same molecules that are close enough or in 

the right position with respect to each other form covalent bonds between them when 

irradiated with light to form a dimer.104, 105 This normally happens in conjugated 

molecules.106 In solution, this can be very difficult due to the molecules being able to 
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freely move around and so are less likely to be in the right position for this 

photodimerisation to occur. However, in the gelled state the molecules are very close 

to each other due to π-π stacking of the molecules, making it more likely that the 

molecules are close enough to each other for dimerisation to occur. Dimerisation of 

the gelator molecule often leads to the molecules being less soluble due to the 

molecule doubling in size and so becoming more hydrophobic. This decrease in 

solubility can lead to destruction of the gel or a decrease in the rheological properties 

due to the gel network being disruption of the gel network.107 This gel – sol transition 

or change in gel properties makes them good candidates for use in sensing 

applications.66 

 

1. 3. 3. 1. Coumarins 

Coumarins are class of molecules based on a dye molecule that is often found in 

plants. They have been studied for their photoresponsive behaviour in materials and 

for biological applications.36 Dimerisation of the coumarin molecule occurs upon 

irradiation with light >300 nm (Fig. 1.15).  

 

 
Figure 1.15 The reversible photodimerisation of a coumarin from (a) the monomer 

to (b) the dimer. 

 

Dimersisation is where two coumarin molecules (or monomers) form covalent bonds 

between them to form a new molecule called the dimer.104 This dimerisation of 

coumarins is reversible when light with a wavelength of <260 nm is used. The [2+2] 

photodimerisation of coumarins is known to occur both in solution and in the solid 
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state,108-110 often to give a mixture of syn-syn, syn-anti, anti-syn and anti-anti 

cyclobutanes depending on how the molecules are orientated to each other.111 

Coumarin can then be functionalised to give different gelation properties.112, 113 110 

 

Parquette and co-workers designed a coumarin dipeptide hydrogelator containing 

two coumarin groups connected by a dipeptide.113 The two coumarin groups allowed 

each gelator to react with two other gelator molecules to increase the amount of 

cross-linking upon irradiation. Gels were prepared in water, saline or buffer and left 

for 24 hours before any rheology tests were done on the system. They saw that the 

buffer increased the amount of bundling of the fibres due to salt-induced electrostatic 

screening due to lysine side chains on the gelator. Photoisomerisation with 365 nm 

light was explored. The hydrogel not exposed to UV light was stable for up to 3 

weeks. However, upon irradiation with 365 nm light, a dark yellow precipitate was 

formed. After 7 days under the UV light, this precipitate became insoluble in water 

due to the gelators becoming cross-linked. The precipitate could be then collected by 

centrifugation. This cross-linked precipitate was soluble in trifluoroethanol and could 

be analysed. Analysis revealed the presence of uniform nanofibres (Fig. 1.16) around 

15 nm in diameter. Rheology and microscopy revealed that two different 

dimerisations were occurring within the system, there were intra-fibre dimerisation 

within the fibres and inter-fibre dimerisation of coumarin molecules. This cross-

linking stiffened the fibres and so could be used for post-modification of the 

hydrogel surfaces for applications such as surface patterning. 

 

 
Figure 1.16 Diagram showing the possible cross-linking within a fibre due to 

coumarin dimerisation of the dipepetide functionalised hydrogelator. Figure taken 

from ref 113 Parquette et al. 

 



Chapter 1 

 21 

Organogels based on coumarin molecules were made by Yu et al.114 They 

investigated the gelation properties of the coumarin molecules with different length 

alkyl chains in a variety of solvents. A heat-cool method was used to test whether 

gelation could occur. They then looked at how the different solvents, and different 

length alkyl chain affected the morphology of the fibres formed. They observed 

different morphologies such as helical ribbons and spheres depending on which 

solvents were used, showing that the solvent used is critical to gel properties. A gel 

formed in cyclohexane was chosen to be studied under irradiation with >300 nm and 

>280 nm light. Upon irradiation with 300 nm light, the gel structure was maintained 

and the dimerisation was monitored by UV-Vis absorption spectroscopy, as was the 

reverse reaction with 280 nm. Scanning electron microscopy (SEM) revealed that 

morphology of the fibres changed from helical fibres to lumps upon irradiation with 

>300 nm and then changed to a sponge like morphology when irradiated with <280 

nm. Throughout irradiation, the gel maintained its structure whilst the morphologies 

drastically changed.  

 

1. 3. 3. 2. Anthracenes 

Anthracene is a molecule made of three fused benzene rings. Anthracenes undergo a 

reversible photodimerisation under UV light.115, 116 They undergo a [4 + 4] 

cycloaddition reaction when irradiated with >300 nm light and the reverse reaction 

when irradiated with light of <300 nm or with heat (Fig. 1.17a). 

 

 
Figure 1.17 Dimerisation using >300 nm of anthracene from the (a) monomer to (b) 

the dimer. 
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117, 118 It has been found that this reaction is affected by the presence of oxygen.119 

Like coumarin, there are different isomers of dianthracene that can be formed due to 

the position of the anthracenes with respect to each other when the cylcoaddition 

occurs. These are the anti head to tail, syn head to tail, anti head to head and syn 

head to head stereodimers (Fig. 1.17b). The photodimerisation of anthracene gels 

often leads to a gel-sol transition due to the dimer disrupting the gel network.120, 121 

There are many examples of these used for organogels, but very few for hydrogel 

systems. 

 

An anthracene modified with urea was investigated as a gelator in organic 

solvents.122 Several solvents were tested but the molecule was only able to gel using 

dichloroethane. A heat-cool method was used to form an opaque gel. This method 

was reversible with several heat-cool cycles (Fig, 1.18). Upon gelation, there was a 

ten times increase in fluorescence as compared to the solution and so this could have 

potential use as a thermal sensor. When irradiated with >300 nm light, the gel 

remained stable and, by NMR spectroscopy, it was seen that little dimer was formed. 

This could be due to the molecules not being the right orientation to each other. 

Photodimerisation of the urea-modified anthracene molecule in solution was 

monitored by 1H NMR spectroscopy and UV-Vis absorption spectroscopy. From 1H 

NMR spectroscopy, the change from a monomer to dimer resulted in a head to tail 

dimerisation. The dimer was able to form a transparent gel in cyclohexane, n-hexane, 

and n-heptane and shows greater gelation ability than the monomer. In addition, 

these dimers we stable to heat and <300 nm light and only a small portion of the gel 

changed to solution. 

 
Figure 1.18 Gelation of urea functionalised anthracene molecule in dichloroethane 

using a heat-cool method. Adapted from ref 122 Wang et al. 
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Dawn et al. also investigated anthracene as organogelators.123 They used 2-

anthracenecarboxylic acid to control the stereochemical formation of exclusively the 

head to head dimer. Gelation was achieved by the noncovalent attachment with a 

gelator component containing the gallic acid backbone coupled with D-alanine. This 

was chosen as it should enhance gelation through H-bonding and π-π stacking; it 

would also allow the anthracene to be close enough to allow dimerisation to occur. 

The incorporation of the chiral D-alanine could also induce enantioselectivity in the 

anthracene photoproducts via perturbation of the pre- orientation in the ground state. 

Cyclohexane was chosen as it had a low critical gelation concentration and was 

thermally reversible. The lower concentration of gelator allowed more efficient 

photodimerisation. When irradiated with 366 nm light, there was a gel-sol transition 

and from high-pressure liquid chromatography, it was shown only the head to head 

isomer was present. They also investigated this process at a higher temperature were 

they found the head to head in excess. In the solid state no isomerisation occurred 

and in tetrahydrofuran the head to tail isomer was formed. This system shows 

stereochemical control in a supramolecular assembly created by organogel systems.  
 

1. 3. 4. Photoconductivity 
Semi-conductor molecules can exhibit photoconductive behaviour upon the 

irradiation with UV, visible or infrared light.124 This increase in free electrons and 

holes increases the electrical conductivity of the semi-conductor.125 The light must 

have the right energy to promote an electron from the HOMO to the LUMO. This 

HOMO-LUMO gap is also referred to as the band gap and the electron is promoted 

from a valance band to the conductance band. This promotion of an electron creates 

free holes and electrons. The increase of free electrons and holes increases the 

electrical conductivity of the semi-conductor. This change electrical conductivity due 

to the absorption of light is called photoconductivity. Photoconductivity is dependent 

on the concentration of holes and electrons and their mobility. Materials that have 

photoconductive properties can be used in application such as organic solar cells 

(OPVs), organic light emitting diodes (OLEDs), photoresistors and organic field-

effect transistors (OFETs) as n-type materials.66, 126 
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1. 3. 4. 1. Perylene Bisimides 

Perylene bisimides (PBIs), also referred to as perylene diimides (PDI), are based on 

perylenetetracarboxylic dianhydrides which are polycyclic aromatic hydrocarbons 

(Fig. 1.19).126 They come from the rylene family of dyes. These molecules are 

commonly used a dyes and pigments and can be functionalised to give a range of 

coloured materials.127 They are useful as they have a high stability, high quantum 

yields and intense light absorption.128 They also exhibit photoconductive behaviour 

due to the formation of a radical anion upon irradiation, and with further irradiation 

can even form the dianion.129 The anion and dianion are stabilised by the aromatic 

core of the molecule. The HOMO-LUMO gap can be tuned by substituting in the bay 

area and so can tune the light energy needed for photoconductivity but also the 

amount of light it emits.130 PBIs exhibit π-π stacking that allows electrons to pass 

through the stacked molecules easily. This stacking also allows them to be used as 

gelators.131 Gelation of these molecules has been used to drive the self-assembly of 

these molecules and so enhance the photoconductive properties of the materials.132 A 

problem with these molecules is low solubility, making them more difficult to work 

with. These molecules often show different absorption spectra in different solvents 

and at different concentration.133 

 

 
Figure 1.19 Molecular structure of perylene bisimides. 

 

An amino acid functionalised PBI was prepared by Banerjee and co-workers.132 As 

the PBI molecule was functionalised with L-tyrosine, this allowed the molecule to be 

water soluble at pH 9 due to the carboxylic acid of the amino acid. The PBI gelator 

was then dissolved in different buffers from pH 9 to pH 5, and then heated to 80 °C 

and cooled to room temperature to form a gel (Fig. 1.20a). It was found that the 

minimum gelation concentration was higher at pH 9 than for pH 5, showing it was 

pH dependent. They reported the gels were frequency independent with a storage 

modulus (G´) of 6 x102 Pa and loss storage (G˝) of 24 Pa. They then took the gel and 

dried it in between two gold electrodes to allow them to measure the conductivity 
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properties of the xerogels. The tyrosine-functionalised PBI showed 

photoconductivity under white and visible light (Fig. 1.20b). The sample also 

showed good photo-switching behaviour, as the current increased as soon as the light 

source was switched on and then decreased when the light was switched off again. 

Although there are many examples of self-assembled PBIs in the literature, there are 

fewer examples of these as hydrogelators134 and even fewer looking at the 

photoconductivity of these materials. 

 

 
Figure 1.20 (a) Photograph of tyrosine-functionalised PBI gel (b) Photoresponse 

under visible light (yellow data), white light (blue data) and in the dark (purple data) 

of the xerogels. Adapted from ref 132 Banerjee and co-workers. 

 

1. 3. 4. 2. Naphthalene Diimides 

Naphthalene diimides (NDIs) are based on naphthalenes and are prepared by the 

oxidation of pyrene (Fig. 1.21).135 They also belong to the rylene dyes. These 

materials are similar to PBIs but less conjugated, smaller quantum yields and are 

more soluble.136 They show a photoresponse with light and are able to form a radical 

anion upon irradiation due to an electron being accepted into the conjugated core. 

NDIs are also able to gel to π-π stacking of their conjugated core.137-139  

 

 
Figure 1.21 Molecular structure of naphthalene diimide. 
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They are fluorescent and the fluorescence can be tuned by the substituents on the 

naphthalene rings.140 These materials have also shown photochromic responses upon 

the irradiation with light as well as being photoconductive.141 NDIs have been used 

in charge transfer complexes with crown ethers due to its electron accepting 

properties.142 Zheng et al. used NDIs to make near-infrared electrochromic and 

chiroptical switching materials.141 They used an NDI that was functionalised with 

two sugar groups. It was able to form gels via the heat-cool method in n-butanol with 

J-aggregates of the fibres determined by circular dichroism (CD) and UV-Vis 

absorption spectroscopy. Cyclic voltammetry (CV) was performed on the system to 

show that the gel could undergo a two-electron reduction, when light was used to 

create the anion. The gel was dried to form a thin film, which was also able to 

undergo a two-electron reduction. Upon radical anion formation, the film appeared 

light brown and showed new peaks in the infrared region unlike in solutions. The 

dianion film appeared purple and showed peaks at 406 nm and others at 537 and 579 

nm. This electrochromic behaviour makes them useful for optical switches. Again, 

there are few examples of naphthalene diimides used in hydrogels and not much 

literature on the photoresponse of the NDI hydrogels. 

 

1. 4. Applications  
 

Photoresponsive gelators can have a variety of applications. In biomedical 

applications, they are a particularly interesting option to advance drug delivery 

systems and tissue engineering.1, 36, 66, 143 Gels have been made that can be used for 

drug release upon irradiation by using gelators that undergo a gel-sol transition.15, 74 

For example, when using an isomerisible group like azobenzene, Kros and co-worker 

showed controllable release of proteins from the gel.144 Another way 

photoresponsive gels have been used is to 3D photopattern gels using a coumarin 

moiety.145 The photoresponsive unit was used to spatially resolve the gel network to 

be used as a cell culture medium.143, 146 Different strength gels can be used to support 

the cells growth and be used for cell differentiation, which is essential for 

regenerative medicine.147 For biomedical application, only hydrogels can be used for 

biocompatibility reasons.  
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Multi-responsive gelators have use in sensors such as logic gates.25, 77, 78, 148 Song’s 

group has constructed LMWGs that can be used to make supramolecular logic gates 

that respond to multiple stimuli.149 Logic gates are devices that use one or more 

inputs (in this case stimuli) to produce a single response.150 These can be used for 

intelligent soft materials to perform functions in response to various stimuli, and so 

could be used in sensors, drug delivery and organic electronics.151, 152 The LMWG 

were based on sorbitol and naphthalene-based salicylideneanilines. These gels were 

found to respond to copper by a reversible sol-to-gel transition with a colour change 

from yellow to colourless. The gels also showed a response to UV light, anions and 

temperature, again resulting in a gel-sol transition. The photoresponse resulted from 

an isomerisation upon irradiation that destroyed the gel state. When returned to 

visible light, a gel re-formed. The response from anions comes from the 

deprotonation of the phenolic group leading to dissolution of the gel. Again, this is 

reversible upon re-protonation. From these responses, an OR logical gate was 

constructed where only one of the stimuli is needed to cause a response. The 

presence of the stimulus was represented as 1 and if not present 0. This showed that 

one or more of these stimuli caused a response in which the gel dissolved which is 

represented by 1. 

 

Organic materials for the use in electronic applications are a popular area of research 

owing to them being cheaper alternatives to crystalline silicon currently used. They 

also can be more versatile due to the variety in structures and functionalities.152 Gels 

are a promising material for this due to the self-assembly of the molecules as well as 

their electronic and photonic properties.126 Gels also offer the opportunity to process 

the materials into thin films. Applications include OPVs and OFETs.153 Most organic 

electronic devices use p-n heterojunctions, which contain two materials (a p-type and 

n-type); where these materials meet is the heterojunction. n- and p-type materials are 

defined by the nature of their primary charge carriers. The p-type material can donate 

an electron to the n-type material and become positively charged and so contain the 

holes. The n-type material then becomes negatively charged and carries the 

electrons. The use of photoresponsive gelators have been used in these materials, as 

they have a good absorption spectra and so can absorb light and convert it into an 

electrical response in the p-n heterojunction.66 The molecules can be tailored so they 

can absorb different wavelengths of light. The gelators are π-π stacked so electrons 
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and holes can travel these gel fibres like a wire where they can be collected at the 

electrodes.154 Gels can also be used to give a well-defined heterojunctions that has 

been a problem in some bulk heterojunctions. This problem could be avoided by 

using a self-sorted multi-component gelator system.155,156 By using a 

photoresponsive multi-component systems where one gelator can go through gel-sol 

transition, one gelator could be selectively removed again giving a well-defined p-n 

heterojunction. There are many examples of polymers systems being used in for 

these applications but not as many examples of LMWGs being used.157 

 

OPVs are a type of solar cell and so use light to produce electricity.126 Unlike 

traditional solar cells these use organic based materials rather than crystalline silicon, 

which is expensive. Using organic materials also allows better processing therefore 

cells can be thinner and can be used over a large area.158, 159 Perylene bisimides have 

been used in OPV devices as a n-type material as they can accept an electron, have 

good spatial HOMO/LUMO overlap and a high quantum yield.153, 160, 161 Many 

groups have used self-assembled perylene bisimide in OPVs combined with a p-type 

material such as oligophenylvinylenes, oligothiophenes and stilbenes.156, 162-164 There 

are not many examples of these being used in multi-component gelator systems. 

OFETs are transistors that use an electric field to control the electrical conductivity 

of a channel of one type of charge carrier in a semiconductor material.165 They are 

used as components in flexible circuits, sensors electric papers and active matrix 

displays. Self-assembling molecules have been used in these materials to reduce cost 

due them being to be processed at room temperature rather than expensive vacuum 

sublimation and vapor deposition techniques.166 Photoresponsive LMWGs such as 

NDIs, PBIs and dithienylethenes could be used in OFETs for sensors as they become 

more conductive when a certain wavelength of light is used.167 There are already 

several examples of organogels being used in OFETs.167, 168 

 

Gels that show photochromism can be used in applications such as optical switches 

due to their change in colour when a light stimulus is used.169 Optical switches are 

made form a photoemitter (e.g. LED) and a photodetector (e.g. photodiode) mounted 

in a component so that the photoemitter illuminates the photodetector, but an opaque 

object can be inserted in a slot between them so as to break the beam. A change in 

the beam would give an electrical response.170, 171 These systems are used in printers 
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and computer mice. Gelators such as 2H-chromene, dithienylethenes, NDIs and PBIs 

can all be functionalised to give different colours.1, 172 The reversible 

photoresponsive behaviour means that they could be used in used for these 

applications. Overall, photoresponsive gels show great potential for the use in a wide 

range of applications. This is due to their absorption properties, possibility of post-

modification and HOMO/LUMO overlap. The use of LMWGs allows a variety of 

responses due to the many different molecules that can be used to make them. These 

gelator molecules can be further tuned by functionalising them making them very 

versatile molecules. The use of light to get a response from a system is preferable 

due to the speed of response, the different wavelengths giving different responses 

and the ability to spatially resolve this response in the material. 

 

1. 5. Rheology  
 

Rheology is used as the main characterisation tool in this Thesis. Gels are initially 

characterised by a vial inversion test, known as table top rheology. If the material 

does not flow upon inversion, then it can be then be further analysed using a 

rheometer.1 Two different tests are then performed on the gel, a strain sweep and a 

frequency sweep. Both tests measure the storage modulus, how solid like the 

material is (G´) and the loss storage, how liquid like the material is (G˝). When G´ is 

approximately and order of magnitude larger than G˝, and the G´/G˝ value (defined 

as tanδ) is less than 0.1 the material is a true gel.2, 88 The strain tests then measures 

how much strain is needed to break the gel, and so can be used to determine how 

strong the gel is. The strain percentage at which the gel breaks is defined as where G´ 

deviates from linearality. Complete breakdown of the gel is where G˝ has become 

larger than G´, and the sample is now more liquid-like than solid-like. Frequency 

tests can then be used see how the gels react under increasing frequency and so can 

be used to determine how stiff the gel is. The larger G´ and G˝ are the stiffer the gel, 

as it has a more solid like properties. It should be noted that rheological properties of 

different gels can only be compared if the gels have been measured using the same 

measuring system, and prepared in the same ways. This makes interpreting the 

literature difficult. It can be seen that polymer gels generally have a larger G´ and G˝ 
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than LMWG, but each have a wide overlapping reported values for G´ and G˝ and 

types of gels cannot be defined by their G´ and G˝.33 

 

1. 6. Introduction to Work in this Thesis 
 

The overall aim of this Thesis was to synthesis new LMWGs which respond to light 

in different ways. The new gelators are each based on different chromophores 

functionalised with amino acids or dipeptides. The different chromosphores leads to 

the materials responding in different ways. The gels are then formed by a change in 

pH by using GdL of electrochemistry. The change in the gels upon irradiation with 

light was then analysed by rheology and UV-Vis absorption spectroscopy. This 

irradiation was done to either strengthen, pattern or change the electronic properties 

of the gels with the use of UV light. Further work was carried out looking at mixed 

gelator systems containing one or more photoresponsive units. The use of GdL leads 

to self-sorting of the gel fibres giving a well-defined system. These self-sorted 

materials are then measured for their photoconductive properties under different 

wavelength of light. The ultimate aim for these self-sorted gelator systems are for the 

use in p-n heterojunctions. 
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2. 1. Introduction 
 

Low molecular weight gelators (LMWGs) self-assemble in a solvent to form 

fibres. At a sufficiently high concentration, the fibres entangle and cross-link 

to form a network, immobilising the solvent.1-3 The mechanical properties of 

the gel arise from the average thickness and mechanical properties of the 

fibres, the degree of branching (i.e. the distance between the cross-linking 

points), the type of cross-link (i.e. branching or entanglements) and how the 

fibres are distributed across the whole gel.4 These properties are difficult to 

control and there is limited information available for these systems.3, 5  

 

The self-assembly is driven by non-covalent interactions. This means that the 

gels are often reversible as (for example) heating is often sufficient to break 

these non-covalent bonds and so the LMWG re-dissolves.6 The cross-links 

between fibres are also such that the gels often break at relatively low strains 

as compared to polymeric gels.7, 8 As a result, stretching for example is often 

impossible. For some applications, these properties can be desirable, but for 

others they can be a drawback. Hence, it is of interest to be able to covalently 

cross-link or post-modify a gel once formed to lock in the structure.  

 

A number of methods have been used to post – modify LMWGs after gel 

formation. For example, tyrosine-containing gelators can be cross-linked by 

the formation of dityrosine, which has been shown to enhance the mechanical 

properties of the gels.9 An increase in the rheological properties of gels has 

also been reported by the reaction of an amine-containing LMWG with 

glutaraldehyde post-gel formation.10 Click chemistry has also been used to 

cross-link LMWG fibres post gelation, and this cross-linking was shown to 

affect the rate of release of a drug entrapped in the network.11  

 

There are a number of photo reactive moieties, (as discussed in detail in 

Chapter 1) including conjugated diyne units,12, 13 alkynes, and diazides,14 

which have been used to strengthen materials post-gelation. There are also 

many examples of photoisomerising groups such as stilbene15 and 
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azobenzene.16-18 These often lead to a conformational change of the molecules 

from the gelling trans-isomer to the non-gelling cis-isomer or vice versa. This 

post-gelation modification is useful for surface photopatterning applications.19 

Anthracene and coumarins are known to photodimerise when irradiated with 

light > 280 nm.20, 21 The dimerisation of coumarins is reversible when light 

with a wavelength of less than 260 nm is used. The [2+2] photodimerisation of 

coumarins is known to occur both in solution and in the solid state, often to 

give a mixture of syn-syn, syn-anti, anti-syn and anti-anti cyclobutanes shown 

respectively in Fig. 2.1.21, 22  

 

	

 

Figure 2.1 Possible isomers resulting from the dimerisation of coumarin. 

 

It was hypothesised that incorporating coumarin into a LMWG would allow 

dimerization within a self-assembled fibre to stiffen the fibre rather than 

reaction between different fibres, as the coumarin molecules would not be 

close enough to each other to allow the dimerization to happen (Fig. 2.2). This 

dimerisation within the fibres should lead to a change in the rheological 

properties of the fibres and hence a controllable change in the mechanical bulk 

properties of the gel, without destruction of the fibrous network.  

 

It is noted that Kim et al. have recently shown that by incorporating two 

coumarin groups into a β-sheet forming LMWG that the gel properties can be 

modified post-gelation with the use of UV light.23 This change in properties of 

the gel arises from the cross-linking of both coumarin units, which ultimately 

results in destruction of the gel due to disruption of fibres and formation of an 

insoluble network. Feng and coworkers have also recently incorporated a 

coumarin group into a LMWG to be used in cell imaging due to the 

fluorescence of the coumarin moeity.24  
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Figure 2.2 Schematic showing possible stacking of gelator molecules in the gel before and 

after irradiation with UV light. Only one isomer of the coumarin dimer has been shown for 

clarity. 

 

2. 2. Results and Discussion 
 

The LMWG is related to the many other dipeptide-based hydrogelators, where a 

large aromatic group is attached to the N-terminus (Fig. 2.3).25 The full synthetic 

procedure is described in section 2. 4. 1. The large aromatic group allows π-π 

stacking for fibre formation26 and allows the coumarin moieties to be close enough 

for the [2+2] photodimerisation to occur. The diphenyalanine make the molecule 

sufficiently hydrophobic as well as providing other intermolecular interactions such 

as H-bonding to aid gelation.  

 

 
Figure 2.3 Molecular structure of coumarin-diphenylalanine gelator. 
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Gels were prepared by dissolving the gelator at high pH (typically > 10), followed by 

reducing the pH by the addition of glucono-δ-lactone (GdL). GdL hydrolyses slowly 

over time to gluconic acid (Fig. 2.4), resulting in a homogeneous drop in pH as 

shown previously for related gelators.27, 28 This approach leads to homogeneous and 

reproducible gelation. This homogeneity is due to the fast dissolution of the GdL in 

the solution, followed by slow hydrolysis and acidification, resulting in a uniform pH 

drop.  

 

 
 

Figure 2.4. Scheme showing the hydrolysis of glucono-d-lactone to gluconic acid in water. 

 

Using this approach, transparent, self-supporting gels are formed at a gelator 

concentration of 5 mg/mL when 8 mg/mL of GdL is used. The properties of this gel 

are entirely consistent with gels of this type with breakage of the gel occurring at low 

strain (1 %, Fig. 2.5a) and G´ and G˝ being independent of frequency (Fig. 2.5b). 

The storage modulus (Gʹ, 82,000 Pa) is approximately an order of magnitude higher 

than the loss modulus (Gʺ, 10,000 Pa). 

 

 
Figure 2.5 Rheology data for GdL triggered gels (a) strain sweep performed at 10 rad/s and 

(b) frequency sweeps performed at 0.5 % strain. Full symbols are Gʹ and open shapes are 

Gʺ. 
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Scanning electron microscopy (SEM, carried out by Dr. T. McDonald, University of 

Liverpool) shows that the gel arises from a network of fibres (Fig. 2.6a) with an 

average diameter of 42 nm ± 20 nm as seen by the distributions in Fig. 2.6b. The 

diameter of the fibres was calculated from over 90 fibres using the SEM images 

using ImageJ analysis software. Analysis of SEM images of gels, such as 

morphology of fibres, may not accurately represent the gel network and so should be 

done with caution.29, 30 SEM images are of dried gels, whereas tests such as rheology 

are carried out on wet gels. Therefore, the structures observed by SEM could be due 

to drying effects.31 

 

 
Figure 2.6 (a) SEM image of GdL-triggered gel, scale bar represents 500 nm. (b) Graph 

showing distribution fibres widths from SEM images of gels formed using GdL 

 

Fluorescence measurements show that the coumarin molecules in solution at a 

concentration of 1.25 mg/mL have a maximum emission of 390 nm when excited at 

340 nm. A different concentration is used for fluorescence as at 5 mg/mL the 

solution was too concentrated and upon gelation the fluoresence was quenched.  

When gelled, the same molecules now have a maximum emission at 380 nm (Fig. 

2.7). This blue shift in the spectrum upon gelation shows H-aggreagtion of the 

coumarin gelator molecules. 
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Figure 2.7 Fluorescence spectra of gelator in solution (solid line) and gelled using GdL 

(dashed line). Both at a concentration of 1.25 mg/mL and excited at 340 nm. (a) has not 

been normalised and (b) has been normalised 

 

UV-Vis absorption measurements show a maximum absorption at 320 nm with a 

shoulder at 290 nm. Irradiating the solution at high pH using a 365 nm LED placed 1 

cm away from he sample shows that the absorbance at 320 nm readily reduces in 

intensity, consistent with photodimerisation (Fig. 2.8a).32 After 260 minutes of 

irradiation, the intensity of this peak has halved (Fig. 2.8b). 

 

 
Figure 2.8 (a) UV-vis absorption spectra of solution (solid line) and after 15 minutes (dashed 

line) and 120 minutes (dotted line) of irradiation with 365 nm LED. (b) Graph showing 

decrease of absorption of solution at 320 nm with time on irradiation with 365 nm LED. 

 

UV-vis measurement of the gel formed at low pH from the coumarin shows a broad 

peak with a maxiumum intensity at 320 nm (Fig. 2.9a). After irradiation with UV 

light for 30 minutes, the intensity of the peak at 320 nm had decreased by 70 % (Fig. 

2.9.b).  
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Figure 2.9 (a) UV-vis absorption spectra of gel (solid line) and after 15 minutes (dashed line) 

and 30 minutes (dotted line) of irradiation with 365 nm LED. (b) Graph showing decrease of 

absorption at 320 nm with time after irradiation with 365 nm LED. 

 

In the gel state, the photodimerisation is significantly faster. It was hypothesised that 

this is due to the coumarin molecules being closer to each other when self-assembled 

into and so dimerisation can more easily occur in the fibres as compared to when 

dispersed at high pH (Fig. 2.10).  

 

 
Figure 2.10 Decrease in UV-vis absorption at 320 nm with time on irradiation with a 365 nm 

LED showing dimerisation of gelator in a high pH solution (open circles) and in a gel at low 

pH (full circles). 

 

Photodimersation of the coumarin gelators was further confirmed by mass 

spectrometry of the irradiated samples (Fig. 2.11). The data show the [M-H]- peak for 
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both the monomer at 513.2 m/z and the dimer at 1027.2 m/z. Mass spectrometry 

showed the dimer to be in excess of the monomer indicating that the majority of the 

sample was dimerised after 4 hours of irradiation with the 365 nm LED. 

 

 
Figure 2.11 Mass spectrum of an air dried gel formed by GdL after 4 hours of irradiation with 

a 365 nm LED showing [M-H]-  peaks for coumarin gelator and the coumarin dimer. 

 

The degree of photodimerisation relates to the time over which the gel is exposed to 

UV light, as seen in the UV-vis absorption measurements above. The gel becomes 

slightly turbid on being exposed to UV light, with the turbidity being most 

pronounced at the front of the gel that is directly exposed to the LED (Fig. 2.12).  

This is due to photodimerisation only being able to occur where the light can 

penetrate. The light intensity at the far side of the gel is significantly less than at the 

front where the light is, and so the whole sample cannot be uniformly irradiated in 

this way. 
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Figure 2.12 Photograph showing gel (a) before irradiation (b) after 2 hours of irradiation 

viewed from the front (c) and viewed from the side showing irradiation of gel is not 

homogeneous and is more pronounced at the front of the gel. (d) Photograph showing the 

inhomogeneity of the irradiated sample in natural light and (e) under UV light. Scale bar 

represents 1 cm. 

 

This lack of homogeneity presents difficulties for analysing the effect of the 

irradiation on the rheological properties of the gels. This inhomogeneous change in 

gel network is also shown in the SEM images (collected by Dr. T. McDonald, 

University of Liverpool) of the irradiated sample shown in Fig. 2.13a, with an 

average fibre diameter of 39 nm ± 22 nm with the distribution of the fibres becoming 

broader as seen in Fig. 2.13b. The shift in distribution shows that there are smaller 

fibres present than before irradiation. There are still larger fibres present, showing 

change in fibres is not uniform throughout the sample. 

 

 
Figure 2.13 (a) An SEM image of the air-dried coumarin gel after irradiation for 2 hours. 

Scale bar represents 500 nm. (b) Graph showing distribution fibres widths from SEM. 
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Fourier Transformed Infra-Red (FTIR) spectroscopy for GdL formed gels show 

peaks in the amide I region at 1620 and 1650 cm-1 which can be characteristic for 

anti-parallel β-sheets and random coil secondary structures respectively (Fig. 2.14).33 

When irradiated with UV light the spectra does not show a change in the amide I 

region and shows the secondary structure has not changed upon dimerisation. 

However, interpreting this data for short dipeptide molecules is often difficult as has 

been seen with other LMWGs.34 

 

 
Figure 2.14 FTIR spectra of gel formed with GdL before irradiation (black line) and after 

irradiation (red line) (a) shows the whole spectra and (b) shows the peaks in the amide I 

region between 1500-1750 cm-1. 

 

Hence, thin hydrogel films were prepared (of the order of 2 mm thick) utilising an 

electrochemical approach, which have been previously reported.35-37 Hydroquinone 

(HQ) is electrochemically oxidised to 1,4-benzoquinone by applying a current to an 

electrode. The oxidation of HQ releases protons close surface of the electrode, as 

only hydroquinone close enough to the electrode surface can be oxidised. This 

creates a pH gradient at the surface of the cathode (Fig. 2.15a) 
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Figure 2.15 (a) Scheme showing the pH gradient at the electrode surface from the oxidation 

of hydroquinone. Adapted from ref. 35, Johnson et al. (b) Diagram showing the setup of the 

electrochemical gelation apparatus.  

 

When a gelator is placed in the hydroquinone solution, this results in a gel being 

formed only at the electrode as opposed to in the bulk (Fig. 2.15b), with the thickness 

of the gel being controlled by both the current used and the time for which the 

current is applied.37 The electrochemical gelation is essentially a pH switch the same 

as GdL, but allowing spatial control over gelation. Using this approach, films could 

be formed on ITO-coated glass slides (Fig. 2.17a). The gels were carefully removed 

off the slide and the rheological properties measured. The absolute gel properties 

were weaker than those formed in the bulk (G´, 6,100 Pa and G˝, 510 Pa), but were 

consistent in behaviour, with the gels breaking at relatively low strain (5 %) and Gʹ 

being independent of frequency (Fig. 2.16).  

 

 
Figure 2.16 Three sets of rheology data for electrochemically grown gels (a) strain sweep 

performed at 10 rad/s and (b) frequency sweeps performed at 0.5 % strain. Full symbols are 

Gʹ and open symbols are Gʺ. Different shapes represent data for different gels. 
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This method of gelation was also found to give gels with very reproducible 

rheological properties as shown by the multiple repeats shown in Fig. 2.16.To probe 

the effect of irradiation on the rheological properties, the gels were removed from the 

bulk liquid and sealed in a hydrated chamber. The gel was then irradiated by a 365 

nm LED through a small hole in the top of the chamber. The gel was moved 

periodically to ensure uniform exposure of the entirety of the sample to the LED. As 

the sample was irradiated, it became slightly more turbid (Fig. 2.17b). After one hour 

of irradiation the gel was more opaque (Fig. 2.17c). Using this thin film method, 

irradiation appeared more uniform over the entire gel. This can be seen clearly when 

the gels are viewed under UV light (Fig. 2.17d, e and f). 

 

 
Figure 2.17 Photographs of electrochemically grown gels taken under natural light (a) before 

irradiation, (b) after 15 minutes irradiation with 365 nm LED and (c) after 1 hour of irradiation. 

Photographs of gels taken under UV light (d) before irradiation, (e) after 15 minutes 

irradiation and (f) after 2 hours irradiation with 365 nm LED. Scale bars represent 1 cm. 

 



Chapter 2 

 50 

This more homogenous dimerisation method was also demonstrated using UV-Vis 

absorption spectroscopy. An electrochemically grown gel was irradiated under UV 

light for 1 hour then divided into four equal parts (Fig. 2.18b). The four different 

parts were then removed from the glass slide and re-dissolved in DSMO. These 

solutions were diluted equally and the UV-Vis absorption spectra recorded showing 

similar amounts of dimer present (Fig. 2.18a). 

 

 
Figure 2.18 UV-vis spectra of different parts of the gel dissolved in DMSO. (b) Photograph 

of electrochemically formed gel after irradiation for 1 hour. The dotted lines show how the gel 

was divided for the UV-vis measurements. The brown colour of the gel is due to the 

oxidation of hydroquinone. The scale bar represents 1 cm. 

 

FTIR of formed gels electrochemically also show peaks in the amide I region at 1620 

and 1650 cm-1 which again can be characteristic for anti-parallel β-sheets and 

random coil secondary structures respectively (Fig. 2.19).33 This suggests the 

secondary structure for both gels formed by the GdL method and the electrochemical 

method have the same secondary structure. As with gels formed with GdL, the 

electrochemically formed gel after being irradiated with UV light the spectra do not 

show a change in the amide I region.33 This lack of change again shows the 

secondary structure has not changed upon dimerisation, but as previously mentioned 

FTIR of gels is often difficult to interpret.34, 38 
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Figure 2.19 FTIR spectra of gel formed electrochemically before irradiation (black line) and 

after irradiation (red line) (a) shows the whole spectra and (b) shows the peaks in the amide 

I region between 1500-1750 cm-1. 

 

Measuring the rheological properties of the gels shows that after 15 minutes of 

irradiation with a 365 nm LED, Gʹ increased to 9000 Pa and Gʺ to 1000 Pa (Triangle 

data Fig. 2.20). This is significantly stronger than before irradiation with UV light 

(circle data Fig. 2.20). The point at which the gel network breaks remains similar for 

both irradiated and non-irradiated gels, showing that the way the fibres entangle and 

interact with each has not changed. This rules out dimerisation happening between 

the coumarin moieties in different fibres.39 

 

 
Figure 2.20 Rheological strain sweep data for electrochemically grown gels before 

irradiation (circles) and after 15 minutes of irradiation with a 365 nm LED (triangles).  Gʹ 

(open symbols) and Gʺ (full symbols). Measurements recorded at 10 rad/s. 
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Further irradiation time resulted in a decrease in the gel strength compared to that 

after 15 minutes, but the gels were still stiffer than before irradiation (Fig. 2.21). 

Similar effects have recently been reported by Kim et al.23 After 60 minutes 

irradiation, there was no further decrease in Gʹ, but the turbidity of the gel noticeably 

increased (Fig. 2.17c). Samples were not irradiated for longer than 2 hours as 

samples will start drying out after this time, so any change in rheology would be due 

to that rather than a real change in the system. The increase in the rheological 

properties after 15 minutes was attributed to the photodimerisation of the coumarin 

on the gelator molecules. This dimerisation strengthens the fibres in the network due 

to the formation of covalent bonds between molecules rather than just non-covalent. 

Since we have only one coumarin group per gelator, complete polymerisation of the 

fibres is not possible. It was rather envisaged that this photodimerisation leads to an 

increase in stiffness of the individual fibres rather than a change in the network. 

Upon further irradiation of the gels resulted in a decrease Gʹ is an interesting 

observation. The fibres are though to stiffen to a sufficient degree that the network is 

disrupted or strained, and so leading to a weaker network. The irradiation of the gels 

was reproducible as shown by the small error bars in Fig. 2.21 from four repeat 

measurements. 

 

 
Figure 2.21 Graph showing the change in Gʹ of electrochemically grown gels after 

increasing time under 365 nm. Error bars are calculated from an average of four repeat 

measurements. 
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Before irradiation, SEM images (collected by Dr. T. McDonald, University of 

Liverpool) of electrochemically formed gels show a random fibrous network (Fig. 

2.22a), similar to that seen for gels formed by the GdL method. After an hour of 

irradiation, SEM images show that the network has changed, instead showing less 

defined structure, again as for gels formed with GdL (Fig. 2.22b). Electrochemically 

grown gels show a more uniform change in the structure as also seen in the change in 

transparency of the gels. Both gels show significant change in the morphology of the 

gel with smooth featureless areas that could be due to surface effects. 

 

 
Figure 2.22 SEM of gels formed electrochemically before (a) and after irradiation with a 365 

nm LED for an hour (b). Scale bar represents 1 µm. 

 

As the dimerisation of the coumarin molecule is reversible with wavelengths < 260 

nm, the irradiated samples were then irradiated with 254 nm light in a quartz cuvette 

for 5 hours. There was no change in the samples visibly or by NMR (Fig. 2.23), but 

this could be due to the power output of the light source used, and the light being 

unable to penetrate through the gel. 

 

 
Figure 2.23(a) Photograph showing a gel formed using GdL irradiated with 365 nm for 2 

hours and its NMR spectra when dried down and re-dissolved in deuterated DMSO. (b) 

Photograph of (a) after being irradiated with 254 nm for 5 hours and again its NMR spectra. 
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The effect of light intensity of the 365 nm LED was also investigated. This was done 

by moving the lamp to various distances away from the sample and irradiating for 15 

minutes. The further away the lamp from the sample, the less intense the light. 

Results showed that the more intense the light, the greater the increase in Gʹ after 15 

minutes of irradiation (Fig. 2.24). This is due to the dimerisation being slower due to 

the lower light intensity.  

 

 
Figure 2.24 (a) Rheology data collected when placing the 365 nm LED at different distances 

away from the gel and irradiating for 15 minutes. Full symbols are Gʹ and open symbols are 

Gʺ. Black data is before irradiation; square data is 1 cm away from the sample, diamond 

data is 2.5 cm away, hexagon data is 5 cm away and triangle data is 10 cm away. Strain 

sweeps were performed at 10 rad/s. (b) Graph showing Gʹ at 5 % strain against distance 

away from the sample. 

 

As a control, drying effects were ruled out by placing a gel in the same chamber used 

for the irradiation; after 2 hours, the appearance (Fig. 2.25b and c) and rheological 

properties (Fig. 2.25a) of the gel were not changed compared to a fresh gel. The 

temperature of the gel during irradiation was also monitored. A 2 °C rise was 

measured, and hence it is unlikely that the changes in the rheological properties are 

due to an increase in temperature.  
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Figure 2.25 (a) Rheology strain sweeps of sample in hydrated chamber after two hours 

(circles) and sample irradiated with 365 nm LED for two hours (squares). Tests performed at 

10 rad/s. Full symbols are Gʹ and open symbols are Gʺ. (b) Photograph from the front of gel 

after two hours in chamber showing no increase in turbidity. (c) Photograph of same gel as 

viewed from the side showing the gel has not dried out. Scale bar represents 1 cm. 

 

The dimer was ruled out being able to self-assemble and increase the Gʹ of the gel by 

forming the dimer in solution by irradiation for two hours (Fig. 2.26a). The pH was 

then lowered using GdL. Instead of gelation occurring, a precipitate was formed 

(Fig. 2.26b). The dimer does not form a gel and so is unlikely to be self-assembling 

and strengthening the gel (for example, as a second independent, self-sorted 

network).40 

 

 
Figure 2.26 Photograph of a solution after irradiation (a) at high pH and (b) at low pH, 

showing no gel is formed due to the presence of the dimer. Scale bars represent 0.5 cm. 

 

An irradiated gel formed by GdL was also re-dissolved using a small amount of 

sodium hydroxide solution (Fig. 2.27a), and the same was done for a gel that had not 

been irradiated. The UV-Vis spectrum was recorded for both solutions (Fig 2.27c 
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and e). The pH of both these solutions was then lowered again using GdL to a pH 

where a gel ought to form from the data above. The irradiated gel did not gel (Fig. 

2.27b) but the non-irradiated gel did (Fig. 2.27d). This again demonstrates that the 

dimer is not a low molecular weight gelator and so does not form a gel. 

 

 
Figure 2.27 (a) Photograph showing an irradiated gel of gelator formed by GdL re-dissolved 

at high pH to form a transparent solution. (b) Photograph of when the pH is lowered again 

using GdL and no gel is formed. (c) UV-vis of solution in (a) showing that the dimer is 

present. (d) Control showing when a gel is not irradiated and the dimer is present that 

gelation is reversible with change in pH giving a transparent gel. (e) UV-Vis spectrum of gel 

that was not irradiated and then re-dissolved at high pH showing no dimerisation had 

occurred. Scale bars in all photographs represent 1 cm. 

 

2. 3. Conclusions 
 

In summary, a coumarin-based dipeptide gelator was synthesised that is able to form 

hydrogels using a pH switch, using both GdL and electrochemistry. Both gels can be 

photodimerised after irradiation with a 365 nm LED. Irradiation of gels formed 

electrochemically is more homogeneous due to the gel being thinner and the light 

being able to penetrate through the sample better than the bulk GdL formed gels. 

This irradiation leads to an increase in the rheological properties, this is believed to 

be caused by the dimerisation within fibres stiffening them, rather than cross-links 
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being formed between fibres. Irradiation for 15 minutes gave the greatest increase in 

rheological properties. When irradiated for more than 15 minutes with 365 nm LED 

the rheological strength did increase but not as much as for shorter irradiation times. 

This decrease in gel strength was attributed to fibres stiffening and disrupting the gel 

network. This opens up the possibilities to enhance gels post-gelation, or the locking 

in a structure by the covalent dimerization. The use of UV light could also be used to 

photopattern surfaces for applications such as cell culture and differentiation.41-43  

 

2.4. Experimental 
 

2. 4. 1. Synthetic Procedures 

 

All chemicals were obtained from Sigma Aldrich and were used as received. 

Deionized water was used throughout. 

The LMWG was prepared using the following synthetic route: 

 
To a solution of 7-hydroxycoumarin (5.36 g, 0.033 mol) in acetone (100 mL) was 

added chloro-tert-butylacetate (5.21 mL, 0.036 mol) and potassium carbonate (13.8 

g, 0.099 mol). The mixture was heated to 70 °C for 9 hours. After cooling, 

chloroform (200 mL) was added and the organic layer washed four times with water 

(200 mL). The organic layer was dried with magnesium sulphate and the solvent 

removed in vacuo to give a clear oil.  
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1H NMR (CDCl3) 7.63 (d, C=CH, 1H, JHH = 9.5 Hz), 7.39 (d, ArH, 1H, JHH = 8.6 

Hz), 6.87 (dd, ArH, 1H, JHH = 8.6 Hz, JHH = 2.5 Hz), 6.76 (d, ArH, 1H, JHH = 2.5 

Hz), 6.27 (d, C=CH, 1H, JHH = 9.5 Hz), 4.58 (s, OCH2, 2H), 1.49 (s, (CH3)3, 9H) 

ppm. 13C NMR (CDCl3) 167.0, 161.1, 155.7, 143.3, 128.9, 113.7, 113.2, 112.9, 

101.6, 83.1, 65.7, 41.9, 28.1 ppm. MS (ES) 299 ([M+Na]+). Accurate mass 

calculated for C15H16O5Na: 299.0895. Found: 299.0891. 

The corresponding acid was formed by deprotecting the above product. The product 

was dissolved in chloroform (20 mL) and trifluoroacetic acid was added (10 mL). 

The solution was stirred overnight. Diethyl ether (200 mL) was added to precipitate a 

white solid, which was collected by filtration, washed well with ether. The solid was 

suspended in chloroform (100 mL), stirred for 1 hour to remove traces of the starting 

material and collected by filtration. The final product was isolated as a white solid in 

an overall 47 % yield for both steps. 

 
1H NMR (DMSO) 7.99 (d, ArH, 1H, JHH = 9.5 Hz), 7.64 (d, ArH, 1H, JHH = 9.1 Hz), 

6.96 (m, ArH, 2H), 6.31 (d, ArH, 1H, JHH = 9.5 Hz), 4.83 (s, OCH2, 2H) ppm. 13C 

NMR (DMSO) 169.6, 160.8, 160.2, 155.2, 129.5, 112.8, 112.7, 112.6, 101.4, 64.8 

ppm. MS (CI) 221 ([M+H]+). Accurate mass calculated for C11H8O5: 221.0444. 

Found: 221.0453. 

 

To a solution of the coumarin (1.07 g, 0.0049 mol) in chloroform (50 mL) was added 

N-methylmorpholine (0.60 mL, 0.0054 mol). The solution was cooled using an ice 

bath. To this solution was added isobutylchloroformate (0.64 mL, 0.0049 mol), 

followed by a mixture of the trifluoroacetate salt of diphenylalanine ethyl ester (2.24 

g, 0.0049 mol) and  N-methylmorpholine (0.60 mL, 0.0054 mol).44 The solution was 

stirred overnight, before being washed with water (100 mL), dilute hydrochloric acid 

(0.1 M, 100 mL) and water (100 mL). The organic layer was dried using magnesium 

sulphate. The solvent was removed in vacuo to give a white solid, which was washed 

with methanol and dried. The final product was collected in an 87 % yield.  

 
1H NMR (CDCl3) 7.64 (d, ArH, 1H, JHH = 9.4 Hz), 7.40 (d, ArH, 1H, JHH = 8.6 Hz), 

7.16 (m, ArH and NH, 10H), 6.98 (m, ArH, 3H), 6.81 (dd, ArH, 1H, JHH = 8.6 Hz, 

JHH = 2.5 Hz), 6.76 (d, ArH, 1H, JHH = 2.5 Hz), 6.31(m, ArH and NH, 3H), 4.73 (m, 
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CHNH, 2H), 4.46 (d, OCH, 1H, JHH = 14.8 Hz), 4.41 (d, OCH, 1H, JHH = 14.8 Hz), 

4.12 (m, CH2, 2H), 3.08 (m, CH2Ph, 4H), 1.24 (t, CH3, 3H, JHH = 7.1 Hz) ppm. 13C 

NMR (CDCl3) 170.8, 169.8, 167.0 160.7, 159.8, 155.7, 140.1, 135.9, 135.6, 129.3, 

129.2, 129.2, 128.8,128.7, 128.6, 128.5, 127.1, 128.1, 114.2, 113.8, 112.3, 102.2, 

67.3, 61.6, 53.8, 53.4, 37.9, 37.8, 14.1 ppm. MS (ES) 565 (M+Na]+). Accurate mass 

calculated for C31H30N2O7Na: 565.1951. Found: 565.1939. 

 

The above product was dissolved in THF (20 mL). After dissolution, water was 

added (10 mL), followed by lithium hydroxide (0.25 g). Periodically, small samples 

were removed and added to excess water. When no precipitate was observed 

(typically after around 20 minutes), water was added (200 mL). The solution was 

filtered and then hydrochloric acid (1 M) was added until the pH of the solution was 

around 4. The solid product was collected by filtration, washed well with water and 

dried under vacuum to give the pure product in a 75 % yield. 

 
1H NMR (DMSO) 8.41 (d, NH, 1H, JHH = 7.8 Hz), 8.18 (d, NH, 1H, JHH = 8.6 Hz), 

7.98 (d, ArH, 1H, JHH = 9.5 Hz),7.60 (d, ArH, 1H, JHH = 8.4 Hz), 7.16 (m, ArH, 

11H), 6.83 (m, ArH, 2H), 6.31 (d, ArH, 1H, JHH = 9.5 Hz), 4.63 (m, CHNH, 1H), 

4.55 (s, OCH2, 2H), 4.46 (m, CHNH, 1H), 3.09 (dd, CHPh, 1H, JHH = 13.9 Hz, JHH 

= 5.1 Hz), 3.02 (dd, CHPh, 1H, JHH = 13.9 Hz, JHH = 5.1 Hz), 2.93 (dd, CHPh, 1H, 

JHH = 8.7 Hz, JHH = 8.7 Hz), 2.81 (dd, CHPh, 1H, JHH = 9.9 Hz, JHH = 9.8 Hz) ppm. 
13C NMR (DMSO) 172.8, 170.7, 166.6, 160.7, 160.2, 155.1, 144.2, 137.5, 137.4, 

129.4, 129.2, 129.1, 128.1, 127.9, 126.4, 126.2, 112.8, 112.6, 101.5, 66.8, 53.6, 53.3, 

37.4, 36.7 ppm. MS (ES) 537 ([M+Na]+). Accurate mass calculated for C29H26N2O7-

Na: 537.1638. Found: 537.1635. 

 

2. 4. 2. Instruments and Procedures 

 

Mass Spectroscopy  

Measurements were carried out using a Micromass LCT Mass Spectrometer in 

positive mode at 40 V in methanol. Samples were run by the University of Liverpool 

mass spectrometry service. 
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Nuclear Magnetic Resonance (NMR) Spectroscopy  

NMR spectra were recorded using a Bruker DPX-400 spectrometer operating at 400 

MHz for 1H NMR and 100 MHz for 13C, in deuterated DMSO.  

 

Hydrogel Formation      

Gels formed using a pH switch were prepared at a concentration of 5 mg/mL of 

gelator unless otherwise stated. Glucono-δ-lactone (GdL) was used to lower the pH. 

The gelator was added to 2 mL of water with an equimolar amount of sodium 

hydroxide (NaOH) (0.1 M, aqueous). The solution was stirred until all the gelator 

was dissolved. This solution was then transferred to a vial containing 8 mg/mL of 

GdL and shaken gently. This was then left to stand to allow gelation to occur within 

a few hours. Rheological properties of these gels were measured around 16 hours 

after the GdL was added. 

 

For gels formed electrochemically, the gelator was added to 20 mL of water at a 

concentration of 5 mg/mL. After the gelator was fully dissolved using an equimolar 

amount of 0.1 M sodium hydroxide solution the pH was adjusted to pH 9 using 0.1 

M aqueous hydrochloric acid. A background electrolyte of 0.1 M sodium chloride 

(100 µL per 10 mL solution) was then added to the gelator solution and then 7.2 

mg/mL of hydroquinone. The solution was stirred until the hydroquinone was fully 

dissolved. Gels were formed on an indium doped tin oxide (ITO) covered glass slide 

working electrode cut to 2.5 cm by 5 cm. The counter and reference electrode used 

were Dropsens printed electrodes. The working, counter and reference electrodes 

were placed in the gelator solution and a current of 1 µA was applied for 800 seconds 

using a Dropsens potentiostat. This current reduced the pH at the glass slide by 

oxidising the hydroquinone to quinone. The glass slide with the now formed gel 

could be removed from solution. The same solution was then used to form the gels. 

 

Rheological Measurements 

Dynamic rheological measurements were performed using an Anton Paar Physica 

MCR101 rheometer and MCR301. For electrochemically formed gels, measurements 

were carried out using a parallel plate system with a gap of 1 mm. A 25 mm plate 

was used for both strain and frequency sweeps. Gels were formed electrochemically 

on ITO as described above. These gels were carefully removed from the glass and 
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onto the plate so that measurements could be performed. For gels formed by GdL a 

vane and cup measuring system was used with a gap of 1 mm. All experiments were 

performed at 25 °C.  

 

Strain sweep: Strain scans were performed from 0.1 – 1000% strain at a frequency of 

10 rad/s.  Gel breakdown was quoted as the strain at which the storage modulus (Gʹ) 

deviates from linearity. 

 

Frequency sweep: Frequency scans were performed at 1 rad/s to 100 rad/s under a 

strain of 0.5 %. The shear modulus (storage modulus (Gʹ) and loss modulus (Gʺ)) are 

read at 10 rad/s. These measurements were done within the viscoelastic region were 

Gʹ and Gʺ are independent of strain amplitude. 

 

UV-Vis Absorption Measurements  

Solution UV-Vis absorption data were measured using a Thermo Scientific 

Nanodrop 2000/2000c spectrophotometer. The spectrophotometer was used in 

cuvette mode where samples were prepared in plastic cuvettes with a pathlength of 

1.0 cm. Aqueous samples were prepared at high pH using equimolar amounts of 0.1 

M aqueous NaOH solution to gelator and made up to 2 mL with distilled water. The 

solution was then diluted with basic water until the absorbance was visible in the 

spectrum. The cuvette top was then sealed with parafilm before being irradiated with 

365 nm LED and the absorption measured again.  

 

UV-Vis absorption spectra of electrochemically formed gels were recorded by 

removing the gel from glass slides and dissolved in DMSO and diluted until a 

spectrum could be recorded. For pieces of the same gel, samples were diluted by the 

same amount each time. 

 

UV-Vis absorption measurements of gelled samples were prepared at a concentration 

of 1.25 mg/mL in a 1 mm pathlength quartz cuvette. Measurements were recorded 

using a Shimadzu UV-2550 UV−Vis spectrophotometer running the UV Probe 

software, version 2.34 with a slit width of 5 nm. Again, the cuvette top was sealed 

before being irradiated. 
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Fluorescence Measurements   

Fluorescence was carried out on the gels formed by GdL and solutions at a 

concentration of 1.25 mg/mL using 1 mm pathlength plastic cuvettes with a 

pathlength of 1 cm. Measurements were recorded using a Perkin Elmer LS 55 

Fluorescence Spectrometer with 5 nm slit widths and at an excitation of 340 nm.  

 

Fourier Transformed Infra-Red (FTIR) Spectroscopy 

IR spectra were collected on a Bruker Tensor 27 FTIR spectrometer at a resolution of 

2 cm-1 with spectral averaging over 64 scans. Measurements were collected using the 

ATR accessory. Both GdL and electrochemically formed samples were measured 

wet and measured before and after irradiation with UV light. 

 

Irradiating Samples 

Gels were kept on the ITO glass electrode and placed inside a plastic petri dish with 

a wet paper towel in to keep the air saturated with water and to prevent the gel drying 

out. The lid of the petri dish had a hole around 3 cm x 3 cm cut out to allow the LED 

to be able to irradiate the sample. A 365 nm LED (LedEngin Inc, LZ1-10U600) light 

source powered by a TTi QL564P power supply operating at 1.0 W was used to 

irradiate gel samples. The sample was moved around to ensure whole sample was 

exposed to the UV light. Samples were exposed for different set time times before 

their rheological properties were measured. Samples for UV-vis were prepared in 

cuvettes and again left for set times before measurements were recorded. 

 

Scanning Electron Microscopy (SEM) Imaging 

SEM images were obtained using a Hitachi S-4800 FE-SEM at 3 keV. Gel was 

deposited onto glass cover slips that were fixed onto aluminium SEM stubs with 

carbon tabs and left to dry for 24 hours. The samples were gold coated for 3 minutes 

at 15 mA prior to imaging using a sputter coater (EMITECH K550X). Fibre widths 

were measured from the SEM images. The diameter of at least 90 fibres were 

measured using the ImageJ line tool (version 1.49) and a frequency distribution 

obtained. SEM images and image analysis were done by Dr. Tom McDonald. 

 

 

 



Chapter 2 

 63 

Temperature Measurements 

The temperature of the gels was recorded before and after irradiation with 365 nm 

LED using a Precision Gold N85FR infrared thermometer with dual laser targeting. 

The temperature of the gels before irradiation was typically around 18 °C and after 

irradiation for 2 hours the temperature of the gels rose to 20 °C. 
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3. 1. Introduction 
 

Low molecular weight hydrogels are responsive materials, where the self-assembled 

small molecule gelators are held together by non-covalent forces such as π-π 

stacking, H-bonding and hydrophobic forces.1-3 These gels can be responsive to 

changes in their environment such as temperature or pH, going back and forth 

between a gel and a liquid.4 This gel-sol transition is due to a disruption in the non-

covalent forces that are holding the gel network together making the gelator 

molecules more soluble. These forces can be restored and then gelation occurs 

again.5 For example, with pH responsive gelators at high pH the molecules are 

soluble and so are in solution. When the pH is lowered, a gel is formed. The pH can 

be raised again to form a solution (Fig 3.1). This can go through many cycles, often 

with the strength of the gel unchanged.6 This reversibility of gelation makes these 

materials useful for responsive materials such as sensors7 and logic gates.8-10  

 

 
Figure 3.1 Scheme showing pH cycling sol-gel-sol process 

 

Typically, single molecules self-assemble into one-dimensional fibres, which form 

the gel matrix. However, using two different molecules, each of which can 

individually form a gel, presents the opportunity to tune the properties of the gels 

further.11, 12 When there are two gelators present in the system three types of co-

assembly can occur (Fig. 3.2). The first is called narcissistic self-sorting where the 

molecules only form fibres with like molecules, so there are fibres consisting only of 

one type of molecule. Another way gelator molecules can assemble is called social 

self-sorting (or specific co-assembly) where there are different molecules in the same 

fibre but have sorted themselves into a pattern, for example ABAB. The third is 
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random co-assembly where there is no order in which the molecules sort themselves 

within the fibres.13 

 

 
Figure 3.2 The three possible types of co-assembled fibres from a two component system. 

 

Specific functionality could be placed within the gelators and controlled fibrous 

architectures suitable for bulk heterojunctions14, 15 and cell culture16 could be formed. 

Such systems could be extremely useful if the internal spatial structure of the gel 

could be controlled such that both networks existed in some regions, but only one 

network existed elsewhere. For this type of system we would need narcissistic self-

sorting to occur, as social and random co-assembly would not allow one fibre to have 

one specific property. In the case of bulk heterojunctions, this would allow 

recombination of charges to happen, this is not preferential when designing a bulk 

heterojunction system. Narcissistic self-sorting could allow gels to be formed with 

specific functional groups presented only within certain areas of the gel.  

 

To build such multi-component networks requires that we are able to control both the 

primary fibres and their assembled structures in space. This is difficult enough for a 

single component system, where there are few reliable design rules17,18 and it is 

becoming more and more clear that the process of self-assembly is critical to the 

final gel properties.19 For a two-component self-assembled system, the fibres could 

interact in different ways. Fibres of different molecules could interact with each 

other like for example in Fig 3.3a where they have coiled around each other. 

Alternatively, fibres could have little interaction with other, only in the entangling 

like in Fig. 3.3b. For both of these systems, it is difficult to analyse and determine 

what structures are present.12 
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Figure 3.3 Diagrams of two self-sorted fibres systems in a gel (a) fibres interacting with each 

other (b) fibres with little interaction with each other. 

 

Analysis of all these systems is difficult in the bulk and on smaller length scales. 

Often rheology of the mixed systems is dominated by the strongest network, but even 

when self-assembly or co-assembly has been proven the rheology can be stronger 

than expected.20 Scattering techniques such as small angle neutron scattering (SANS) 

can be used to probe the primary fibre width and the structure of this fibre, but is 

unable to show what molecules make up the fibre.21 In a multicomponent system, if 

the fibres have a significant difference in width or structure then two different signals 

can be seen. However, if fibres have the similar structures or width then an average 

of the two fibres would be seen. Microscopy techniques such as scanning electron 

microscopy (SEM), transmission electron microscopy (TEM), atomic force 

microscopy (AFM) and confocal microscopy all show fibre widths and structures. 

These numbers often differ than that found by scattering techniques. This is thought 

to be due to these microscopy techniques showing the hierarchally aggregated 

assembly of the primary fibres, rather than the primary fibres themselves.12 Again 

this technique cannot show how the molecules are assembled, but like in the 

scattering analysis might show differences in structure and fibre width if they are 

significantly different to each other.20 As previous mentioned in Chapter 2, it is 

important to consider how these samples are processed to do the image analysis, for 

example, in SEM samples are dried down and so my not represent the system 

accurately anymore.22, 23 Other techniques such as Fourier transformed infrared 

(FTIR) spectroscopy show very little different for co-assembled and self-assembled 

gels and often look the same.24, 25 1H nuclear magnetic resonance (NMR) 

spectroscopy also is not useful for determining whether the fibres are co-assembled 

or self-assembled, or what structures are present. When the molecules are assembled 

they become NMR invisible due to them being unable to diffuse.26 Now the signal 
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from the protons becomes so broad due to anisotropy of all the molecules it cannot 

be distinguished from the baseline. Samples would need to be re-dissolved, but this 

would not provide any information about the systems. 

 

A more informative way is instead looking at the assembly process as it happens by 

using a combination of these techniques. We have previously looked at the assembly 

process over time using rheology, 1H NMR, change in pH, SEM and SANS.20, 21, 26 

Using these techniques we were able to distinguish between a self-assembled and co-

assembled network, but were unable to understand how the fibres were arranged. To 

understand more about how the fibres interact, we hypothesised we could design one 

of the gelators to be responsive. The responsive gelator could be switched from gel-

to-sol (degelation) and removed from the network to leave one gelator in the 

network. What happens to the remaining network would give us information about 

how the two different fibres were interacting with each other. This also gives the 

opportunity to create spatially resolved gels where both the fibres would be present 

in one area of the gel and only one in another. 

 

Conceptually, these spatially resolved multi-component networks could be generated 

if we could form two independent self-assembled networks, and then selectively 

remove one of these networks only at specific points using a trigger such as, pH, 

light and heat. Selective melting of one network in a two-component system has been 

shown previously,27 but is difficult to get accurate removal of one of the gelator in a 

specific area. Similarly, it is difficult to selectively remove one network using a 

change in pH without changing the other network or removing an area which were 

not targeted. To optimize spatial resolution, light-responsive gelators are a clear 

choice as one of the component of the system, as a mask can be used to cover parts 

of gel. The light will then be able to only remove the fibres exposed to the light. A 

number of such gelators exist such as stilbene and azobenzenes as discussed in 

Chapter 1. However, in all cases these have been investigated as single component 

systems, where the light-triggered degelation results in a spatially resolved system 

where one region is a gel and the other a liquid.28-36 One example exists where the 

spectral properties of the gel can be altered using a light-sensitive gelator, with a gel 

being maintained throughout.37 Light-responsive polymeric gel networks have also 

been reported.37, 38 In order to incorporate a light-sensitive gelator as one component 
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of two-gelator system, we need to be able to assemble and then disassemble such a 

network in the presence of a second gelator network. 

 

3. 2. Results and Discussion  
 

We have recently shown that self-sorted networks can be formed by the slow 

acidification of a solution containing two different pH-triggered gelators.20, 21, 26 To 

ensure that the system is self-assembled, the gelators need to have different pKas. As 

the pH decreases slowly, the gelator with the highest pKa assembles first, buffering 

the system before the pH reaches the pKa of the second gelator. The slow 

acidification is achieved by using glucono-δ-lactone (GdL) as discussed in Chapter 

2. 2. This method most often leads to the assembly of self-sorted fibres, where each 

fibre only contains one of the two gelators. This has already been shown that this was 

the case using a combination of SANS and fibre X-ray diffraction.21 We 

hypothesized therefore that if one of the gelators was not only pH-triggered, but also 

light-triggered, this method could be used to form our required network (Fig. 3.4).  

 

 
Figure 3.4 Schematic showing self-assembly of a two-component system. From left to right, 

both gelators at high pH, the pH then decreases to the pKa of the first gelator and self-

assembly occurs. The pH then decreases to that of the second gelator pKa and then 

assembles. The first network can then be selectively removed using UV light, leaving the 

second network undisturbed. 
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A stilbene gelator, (1), was chosen to be part of the two-component system as it is 

light responsive.39 Under 365 nm light, the trans-isomer (Fig. 3.5a) is changed to the 

cis-isomer (Fig. 3.5b).40 Gelator-1 was synthesized by the reaction of the acid 

chloride of 4,4’-stilbene dicarboxylic acid with phenylalanine ethyl ester, followed 

by deprotection with lithium hydroxide (for the full synthetic procedure see Section 

3. 3). The gelator was functionalised with L-phenylalanine as it enabled the gelator to 

be pH responsive as the carboxylic acid is able to be deprotonated at high pH and 

reprotonated at low pH. The L-phenylalanine also allows extra stabilisation of self-

assembled structures through π-π stacking and hydrophobic interactions. Other 

amino acid functionalised stilbene molecules were synthesised (L-alanine, L-tyrosine, 

L-leucine and L-valine functionalised stilbenes) but did not form gels. This is most 

likely be due to them being less hydrophobic moieties and may not provide 

favourable interactions. The reason for molecules being able to gel is still a poorly 

understood subject. 

 

 
 

Figure 3.5 Isomerisation of (1) from the (a) trans-stilbene to the (b) cis-stilbene using a 365 

nm LED. 

 

The trans-isomer formed hydrogels when the pH of a solution at a concentration of 5 

mg/mL of 1 is decreased from 10 to 4. To controllably lower the pH in a uniform 

manner throughout the sample, the slow hydrolysis of GdL to gluconic acid41 was 

used as described in Chapter 2. 2. 5 mg/mL of GdL was used to give a translucent 

hydrogel (Fig. 3.6, referred to as gel-1 throughout).42 Gels were prepared in two 

ways, in a Sterilin vial (Fig. 3.6b) and using a 20 mL syringe mould (Fig. 3.6a). As 

discussed in Chapter 2, gels prepared in a vial could not be irradiated fully. Gel-1 

could not be formed electrochemically and so gels were prepared in a mould to give 

gels around 2 mm thick and 2 cm in diameter (method shown in detail in Section 3. 

4. 2). Gels were prepared in this way throughout this Chapter. 
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Figure 3.6 Photographs of gel-1 prepared (a) in a mould and (b) in a vial. Scale bar 

represents 1 cm in both photographs.  

 

Gel-1 has rheological properties that are typical of this type of low molecular weight 

hydrogel. The storage modulus (Gʹ) and loss modulus (Gʺ) are relatively independent 

of frequency, with Gʹ being approximately an order of magnitude higher than Gʺ 

(9500 Pa and 700 Pa respectively) (Fig. 3.7b). Gels break at relatively low strain (~6 

%) shown in Fig. 3.7a). 

 
Figure 3.7 Graphs showing the rheology of gel-1 (a) strain sweep performed at 10 rad/s and 

(b) frequency sweep performed at 0.5 % strain Different symbols (just seen) are for repeat 

experiments. All tests were carried out at 25 °C. Full symbols represent G´ and open 

symbols represent G˝. 

 

The apparent pKa of 1 is 5.8 and, in agreement with our previous work, 1 forms gels 

when the pH is below this pKa.43 The apparent pKa was determined monitoring the 

pH overtime when acid was added. This was done using GdL and recording the pH 

every minute until a gel was formed. The pKa was then quoted as where the pH 

plateaued (Fig. 3.8a). This plateau is due to the carboxylic acid on the molecule 
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becoming protonated, and it buffers the system. This pKa was further confirmed by 

adding 5 µL of 0.1 M aqueous hydrochloric acid (HCl) and then recording the pH, 

again this was continued until a gel was formed. (Fig 3.8b) 

 

 
Figure 3.8 Apparent pKa measurements of 1 using (a) GdL and (b) HCl 

 

The corresponding cis-isomer of gelator 1 was formed by irradiation of a solution of 

1 with a 365 nm LED at pH 10 which could be seen by UV-Vis of the solution (Fig. 

3.9a).40 The trans-1 shows a peak with a maximum absorption at 340 nm (solid line) 

and the cis-1 shows a maximum absorption at 310 nm (dashed line).39 The attempts 

to carry out its gelation in a similar manner to that of trans-isomer 1 – by slowly 

decreasing the pH of the cis-isomer containing solutions – resulted in a precipitate 

rather than a gel (Fig. 2.9b), showing that the cis-isomer is not an effective gelator. 

Instead of showing a fibrous network, the SEM (Fig. 2.9c, Collected by Dr. T. 

McDonald, University of Liverpool.) shows spherical, undefined aggregates, again 

showing that cis-1 is not an effective gelator.  
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Figure 3.9 Formation of the cis-1 isomer (a) UV/vis of trans-1 in solution (solid line) and after 

30 minutes irradiation with a 365 nm LED to form the cis-1 isomer (dashed line), both at a 

concentration of 1.25 mg/mL in pH 10 water. (b) Photograph of 5 mg/mL solution of cis-1 at 

pH 3. Scale bar represents 1 cm. (c) SEM image of dried down solution of solution in (b). 

Scale bar represents 500 nm. SEM collected by Dr. T. McDonald, University of Liverpool. 

 

When the gel prepared using trans-isomer 1 was irradiated with the 365 nm LED, it 

converted to a liquid (Figure 3.10a). The rheology also shows that 1 is no longer a 

gel (Fig. 3.10b). A gel-sol transition has occurred due to cis-1 being formed in the 

gel, as it is no longer an effective gelator, the gel falls apart. 

 

 
Figure 3.10 (a) Photograph of gel-1 after irradiation with a 365 nm LED for 30 mins. (b) 

Strain sweep, full symbols represent G´ and open symbols represent G˝. 
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When a mask was used, selective spatial conversion of the gel to a liquid could be 

achieved, similar to other light-triggered gelators (Fig. 3.11). Where the mask was 

not covering the gel, the trans-1 molecule is isomerised to cis-1 and no longer forms 

a gel. This looks slightly turbid in Fig. 3.11a. The area of gel where cis-1 is present 

then becomes a liquid and is removed from the gel without affecting the rest of the 

gel (Fig. 3.11b).  

 

 
Figure 3. 11 Photographs of gel-1 after irradiation with a 365 nm LED using a mask as 

viewed from (a) the top and from (b) the side. A line of removal of the gelator where the 

mask was not covering the gel can be seen from on top but more clearly from the side. 

 

Xerogels of gel-1 were imaged using SEM (collected by Dr. T. McDonald, 

University of Liverpool). The images showed that the gels are a result of the self-

assembly of the gelator into a network of fibres (Fig. 3.12a). After irradiation, the 

fibres are transformed into ill-defined spherical aggregates (Fig. 3.12b). These 

aggregates are similar to those formed on lowering a pH of solutions containing cis-1 

using GdL (Fig. 3.9a). 

 

 
Figure 3.12 SEM images of xerogels-1 (a) before irradiation and (b) after irradiation with a 

365 nm LED. Scale bar in both pictures represents 1 µm. Collected by Dr. T. McDonald, 

University of Liverpool. 
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1 was then combined with a second gelator, 2 (Fig. 3.13). Gelator 2 was chosen on 

the basis of a significantly different molecular structure and the apparent pKa of the 

terminal carboxylic acid (5.0);44 our previous data suggested that both of these 

factors should encourage self-sorting. 20, 21 

 

 
 

Figure 3.13 Molecular structure of gelator 2. 

 

Gelator 2 formed translucent gels at a gelator concentration of 5 mg/mL prepared the 

same was as for 1-gel but using 8 mg/mL of GdL. Gel-2 forms stable gels with G´ = 

21,000 Pa and G˝ = 6100 Pa, which break at low strain (~ 1 % strain) and are 

frequency independent. These gels have been reported previously (Fig. 3.14).44 

 

 
Figure 3.14 Graphs showing the rheology of gel-2 (a) strain sweep performed at 10 rad/s 

and (b) frequency sweep performed at 0.5 % strain Different symbols are for repeat 

experiments. All tests were carried out at 25 °C. Full symbols represent G´ and open 

symbols represent G˝. 

 

Control experiments showed that gels formed from 2 alone (gel-2) were not affected 

by irradiation by the 365 nm LED for two hours, either visually (Fig. 3.15b) or 

rheologically (Fig. 3.15). Hence, it was expected that any changes in the two-

component network would be due to gelator-1 rather than gelator-2. 

 



Chapter 3 

 77 

 
Figure 3.15 Photographs of gel-2 (a) before irradiation and (b) after irradiation with a 365 nm 

LED for two hours. Scale bars represent 1 cm. (c) Rheology strain sweeps of gel-2 before 

irradiation (triangle data) and after irradiation with a 365 nm LED for 2 hours (circle data). 

Full symbols are G´ and open symbols are G˝. Strain sweep were performed at a frequency 

of 10 rad/s and at 25 °C. 

 

A mixed solution of gelator 1 and 2 was prepared at pH 10. Each gelator was 

prepared at 10 mg/mL at pH 10 as previously described, these solutions were then 

added in equal ratio to give each gelator a final concentration of 5 mg/mL and hence 

a total concentration of 10 mg/mL. Gels were formed from the mixed solution again 

by the addition of GdL, and are referred to as gel-1,2 throughout. Gel-1,2 formed 

translucent gels with 13 mg/mL GdL. The gels were again reproducible and stable 

that broke at low strain and were frequency independent with a G´ of 36,000 Pa and 

G˝ of 3500 Pa (Fig. 3.15a and b). Gel-1,2 has a higher G´ and G˝ than either gel-1 or 

gel-2. This is due to there being more material present in gel-1,2 which has a total 

concentration of 10 mg/mL compared to 5 mg/mL of gel-1 and gel-2. 

 
Figure 3.16 Rheology of gel-1,2 (a) strain sweep performed at 10 rad/s and (b) frequency 

sweep performed at 0.5 % strain Different symbols are for repeat experiments. All tests were 

carried out at 25 °C. Full symbols represent G´ and open symbols represent G˝. 
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The use of GdL and the therefore slow pH change allows us to monitor the gelation 

process with time.21, 42 The pH change over time can be used to see the stages of the 

gelation process. If the molecules are self-assembling, then two different plateaus 

should be seen for 1 and 2. If co-assembly occurs then there would be a broader 

blurred plateau between the two different pKas,20 or no plateau at all. Fig. 3.16 show 

the change in pH during the gelation of 1,2 system. Two small plateaus can be seen 

at pH 5.8 and pH 5.0, with the final pH of the gel being pH 3.6. This would suggest 

the gelator assembling at different pH and could suggest they are self-assembled. 

This in formation alone does not allow us to determine how they are assembling, but 

gives us a clue. It also allows us to see what stage in the gelation process is at when 

using other techniques due to GdL high reproducibility.19 

 

 
Figure 3.17 Graph showing the change in pH overtime during the gelation of 1,2. 

 

Characterization by 1H NMR spectroscopy can be used to monitor gelation; as the 

molecules self-assemble and form fibres, the structures become NMR-invisible due 

to the structures becoming immobile and the signal disappearing into the baseline. A 
1H NMR spectrum of the solution at pH 10 was recorded and the integrals from each 

gelator recorded. The pH was then lowered using GdL and the spectra were recorded 

overtime until gelation of both molecules had occurred. An ethanol standard was 

added to the solution to integrate the peaks from the gelators against. This NMR data 

was collected by Edward Eden, University of Liverpool. The change in integral of 
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the peaks from each gelator was recorded overtime. In Fig. 3.17 the disappearance of 

CH2 from the phenylalanine was plotted for gelator 1 (blue data), and the CH3 peak 

from the valine for gelator 2 (red data). The evolution of 1H NMR spectra throughout 

the reaction clearly demonstrates that a sequential assembly process occurs, with 1 

becoming NMR-invisible before 2. This was expected due to the differences in pKa. 

Again, this data alone cannot be used to confirm absolutely whether the system is 

self-assembled or co-assembled. 

 

 
Figure 3.18 Graph showing the disappearance of 1H NMR signal during gelation overtime. 

Blue data corresponds to the CH2 from the phenylalanine on molecule-1. Red data 

corresponds to the CH3 groups on the valine from molecule-2. Data is normalised to an 

ethanol standard in the sample. (Data collected by Edward Eden, University of Liverpool). 

 

In a parallel experiment, the evolution of the rheological properties can be measured 

(Fig. 3.18). Rheology shows the evolution of structures in the solution. Between 0 

and 8 minutes, G˝ is greater than G´ (which is so low it is not recorded) showing that 

sample is liquid and self-assembly of the molecules has not yet occurred. After 

around 8 minutes, there is an increase in both Gʹ and Gʺ, with a second increase 

occurring at around 20 minutes. Such a two-stage development in the moduli is 

common for this kind of gelator when using GdL to trigger the gelation.42, 45 There is 
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a third increase in Gʹ and Gʺ and then a plateau after 3 hours when the sample has 

finished assembling.  

 
Figure 3.19 Rheological data for the evolution of gel-1,2 network overtime. G´ is the black 

data and G˝ is the grey data. Measurements were performed under a strain of 0.5 %, a 

frequency of 10 rad/s and at 25 °C. 

 

As previously mentioned, the hydrolysis of GdL is highly reproducible. The pH of a 

separate solution can be correlated with the NMR data and rheology data. It is not 

until this data is looked at as a whole that it can be determined what it happening 

(Fig. 3.19) during assembly of the molecules. It shows at 8 minutes when the pH is 

5.8 (pKa of gelator-1) Gʹ and Gʺ increase and intensity of 1H NMR peak for gelator-1 

starts to decrease. This shows that 1 is starting assemble before 2 which remains in 

solution. As the pH drops further 1 continues to disappear in NMR and Gʹ and Gʺ 

increase further. Then the pH drops to around 5 at around 90 minutes, 2 also starts to 

become NMR-invisible, as expected from the pKa of this gelator. Concurrently, there 

is a significant further increase in both Gʹ and Gʺ. This correlates with gel-2 formed 

in a single component system being significantly stronger than gel-1. It is noticeable 

that Gʹ at the point where only 1 has self-assembled is lower than might be expected 

from the data for 1 alone (Fig. 3.7). This may be due to the network forming in the 

presence of 2, which may be acting as a surfactant above its apparent pKa. Indeed, 
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Ulijn and co-workers have shown that similar gels can be affected by the presence of 

surfactant-like gelators.46 

 
Figure 3.20 Evolution of pH (purple), G′ (black) and G′′ (grey), and 1H NMR integrals with 

time for a mixture of 1 and 2 (data for 1 in blue and for 2 in red). The sequential assembly of 

1 and 2 can be seen from the changes in the NMR integrals, with the concurrent changes in 

the gel rheology, as each gelator assembles into fibres. The sequential assembly is 

controlled by the pH of the system.  

 

It is clear that the self-assembly of 1 and 2 is a sequential process across multiple 

length scales. The final gel-1,2 formed from the self-sorting mixture is both 

translucent and homogeneous (Fig. 3.20a). Under a hand-held UV lamp, the 

fluorescence from the gel is uniform in colour and intensity (Fig. 3.20b), indicating 

that there is no bulk phase separation or segregation of the gelators over these longer 

length scales. Based on our previous work, it is proposed that the sequential 

assembly leads to a self-sorted two-component network.20, 21 
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Figure 3.21 From left to right, photographs of gel-2, gel-1,2 and gel-1 (a) under natural light 

and (b) under UV light showing homogeneous two-component self-sorted networks. 

 

Proving that the two networks are independent from each other is difficult, as the 

fibres from both networks look very similar, making differentiation by microscopy 

impossible (Fig. 3.21).  

 

 
Figure 3.22 SEM images of (a) xerogel-1,2 (b) xerogel-1 and (c) xerogel-2. Scale bar on all 

images is 1 µm. Collected by Dr. T. McDonald, University of Liverpool. 

 

However, if the networks are truly self-sorted then selective removal of one network 

should leave the other intact (Fig. 3.18). Unlike the gel-1, when a self-sorted gel-1,2 

is irradiated using the 365 nm LED, the gel retains its structural integrity, (Fig. 3.23) 

even after 2 hours irradiation with the 365 nm LED. There is change in turbidity in 

the gel. This is due to the now cis-1 being unable to leave the gel and is now 

(a) 
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scattering the light more due to large spherical aggregates as seen in the SEM of cis-

1 (Fig. 3.12b). 

 

 
Figure 3.23 Photographs of gel-1,2 (a) as initially formed (b) after irradiated for 30 minutes 

and (c) after irradiation for 2 hours under 365 nm LED. 

 

The mechanical properties of the irradiated gels were then measured. There was a 

slow decrease in the rheological data for the irradiated gel compared to the as-

prepared gel when the irradiation was carried out over time, with Gʹ decreasing from 

approximately 3.8 x 104 Pa to 1.9 x 104 Pa (Fig. 3.24a). After 2 hours irradiation, the 

rheological data then stabilised, with Gʹ and Gʺ being significantly lower than for the 

initially as-prepared gel (Fig. 3.24b). The data was in close agreement with that for 

the gel-2.  

 

 
Figure 3.24 Irradiation of gel-1,2 with 365 nm LED (a) rheology strain sweeps of gel-1,2 as 

formed (black data) and after 2 hours irradiation (red data). G´ is full symbols and G˝ is open 

symbols. Strain sweeps were performed at a frequency of 10 rad/s at 25 °C. (b) Graph 

showing the change of G´ at 1 %, after irradiation for up to 3 hours. Black circles represents 

gel-1,2 and dashed data is gel-2. 
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As can be seen from the control experiments (Fig. 3.15a and b), the rheological 

properties of gel-2 are essentially unaffected by light irradiation, whilst those from 

gel-1 are strongly affected. The implication of this data is that under irradiation the 

fibres formed from 1 have been selectively removed as 1 is isomerised and that the 

remaining network is essentially that which would have formed in the absence of 1. 

This shows a high degree of control over the fibre networks in a supramolecular gel. 

It should be noted that the temperature of the gels only rose by 2 °C after being 

irradiated for one hour, so drying out or increased temperature of the gels is unlikely 

to be a factor in the changes in the rheology of the system. This data suggests that the 

two interpenetrating networks have little interaction with each other, like in Fig. 3. 

3b, as when gelator-1 leaves the gel it does not affect gel-2. If the two different fibres 

were interacting with each other, as in Fig. 3.3a, it would be expected that when gel-

1 was removed from the network it would destroy the other gel network as it did. 

 

Further spatial patterning was achieved by combining the irradiation step with a 

mask. Photographs are shown in Fig. 3.25a and b, where a star-shaped mask (shown 

in Fig. 3.25c) has been used to pattern the gel. Here, only the star shape was exposed 

to UV light for 2 hours. As can be seen, the bulk gel structure is maintained, but 

(most clearly under UV light), it is clear that the network formed by 1 has only been 

disrupted where the mask was not covering the gel. 

 

 
Figure 3.25 Photographs of gel-1,2 after irradiation with a 365 nm LED for 2 hours using a 

mask as viewed under (a) UV light and (b) natural light. (c) Photograph of the mask used in 

(a) and (b). Scale bar represents 1 cm. 

 

SEM of the dried sample shows that the areas not irradiated by the LED are still 

composed of fibres (Fig. 3.26a), which are similar to the networks formed by 1 and 

2. However, in the centre of the star where the self-sorted gel has been irradiated, a 
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dense network was found, where fibres covered in spheres can be seen in Fig. 3.26b. 

This is consistent with the spherical structures formed by cis-1 being deposited on 

the fibres formed by the self-assembly of 2. 

 

 

Figure 3.26 SEM images of gel-1,2 from Fig. 3. 25. (a) is the part of the gel under the mask 

and so not exposed to the 365 nm LED. (b) is the centre of the star which was exposed to 

the 365 nm LED. Scale bars represent 1 µm. Collected by Dr. T. McDonald, University of 

Liverpool. 

 

To further prove spatial resolution, a gel was freeze-dried where one half had been 

irradiated and the other not, again using a mask. The data (Fig. 3.27) clearly shows 

that where the gel was exposed to UV light, both cis-1 and trans-1 are present. The 

region of the gel not exposed to irradiation only contains trans-1. In all cases, the 

gels were freeze-dried before being dissolved in d6-DMSO. Hence, all of the gelators 

are NMR-visible. From this data in Fig. 3.27a, it is clear that the cis-1 has a doublet 

at approximately 8.34 ppm, whilst the trans-1 has a doublet at 8.43 ppm. Before 

irradiation, the mixture only shows the presence of the trans-1. After irradiation, 

there is clearly a mixture of the cis-1 and trans-1. This shows that 2 hours irradiation 

is not sufficient for complete isomerization, although it is sufficient for the 

destruction of the gel. For the gel where only one half was irradiated using a mask 

(Fig. 3.27b), it can clearly be seen that the side that has not been irradiated only 

contains the trans-1, whereas the irradiated side again contains a mixture of cis-1 and 

trans-1. Hence, this shows that our hypothesis is correct: the mask allows spatial 

resolution. 
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Figure 3.27 NMR data for irradiated and non-irradiated gels. (a) Data for a gelled mixture of 

1 and 2 before irradiation (black data), a gelled mixture of 1 and 2 after irradiation for 2 hours 

(purple data), a gel of 1 alone after irradiation for 2 hours (blue data), and a gel of 2 alone 

after irradiation for 2 hours (red data). (b) shows the data for the non-irradiated side in black, 

compared to the irradiated side in red. Also shown again the irradiated mixed gel (as in (a)) 

in purple. 

 

3. 3. Conclusions 
 

It has been shown how the concept of self-sorted low molecular weight gels can be 

combined with photo-responsive gelators to allow a high degree of control over the 

rheological properties of bulk gels. Spatially resolved gels can also be prepared; one 

network can be selectively removed, which is a huge step forward from the state of 

the art. This demonstrates that the two networks initially formed must be truly 

independent, in close analogy with interpenetrating polymer hydrogels.47 To the best 

of our knowledge, this is the first example of this type of control over multiple-

component low molecular weight gels. This methodology opens up the possibility of 

spatially controlling the rheological properties of a gel, and allows a significant 

advance over the simple gel / no-gel switch that is normally observed with 

photoswitchable gelators. It is envisaged that this methodology could be used to 

prepare complex structured gels, such as p-n heterojunctions, microfluidic devices 

and logic gates. 
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3. 4. Experimental 
 

3. 4. 1. Synthetic Procedures  

 
All chemicals were purchased from Sigma Aldrich and were used as received unless 

otherwise stated. Deionized water was used throughout. 

 

 
 

4,4’-Stilbene diphenylalanine ethyl ester 

0.8 g (0.003 mol) of 4,4’-stilbene dicarboxylic acid was added to an excess of thionyl 

chloride (5 mL). This was refluxed at 70 °C for 90 minutes to form 4,4’-stilbene 

diacylchloride. Excess thionyl chloride was removed in vacuo. A sodium hydroxide 

pellet trap was used to neutralise any hydrochloric acid produced. The 4,4’-stilbene 

diacylchloride was suspended in 20 mL of dichloromethane (DCM) at 0 °C. A 

solution of 1.4 g (0.006 mol) L-phenylalanine ethyl ester hydrochloride and 3.3 mL 

(0.03 mol) N-methylmorpholine in 30 mL DCM was then added dropwise to the 

4,4’-stilbene diacylchloride. This was then left to react for 16 hours. The solution 

was then filtered to remove any unreacted 4, 4’-stilbene dicarboxylic acid. The 

filtered solution was then washed in 3 x 100 mL water and 1 x 10 mL acidic water. 

The DCM was then removed in vacuo to give 4,4’-stilbene diphenylalanine ethyl 

ester. A typical yield was around 60 – 73 %. 1H NMR (400 MHz, d6-DMSO): 8.82 

(d, 2H, NH, J = 9 Hz), 7.82 (d, 4H, ArH, J = 9 Hz), 8.75 (d, 4H, ArH, J = 9 Hz), 7.42 

(s, 2H, CH), 7.22 – 7.35 (m, 10H, ArH), 4.64 (m, 2H, CH), 4.17 (q, 4H, CH2, J = 5 

Hz), 3.21 (m, 4H, CH2) and 1.21 (t, 6H, CH3, J = 5 Hz) ppm. 13C (101 MHz, d6-

DMSO): 174.9 (O-C=O), 166.0 (C=O), 137.9 (ArC), 135.6 (ArC), 133.8 (ArC), 
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130.0 (ArC), 129.4 (ArC), 128.6 (ArC), 128.1 (ArC), 126.5 (ArC), 54.1 (CH), 36.2 

(O-CH2), 32.2 (CH2) and 25.2 ppm (CH3). MS: ES-: [M-H]-. Accurate mass 

calculated: 617.2780. Found 617.2781. 

 

4, 4’-Stilbene diphenylalanine (1) 

Deprotection of the L-phenylalanine was carried out by dissolving 4,4’-stilbene 

diphenylalanine ethyl ester in a THF: water mixture of 30 mL: 10 mL. Lithium 

hydroxide (LiOH) (0.35 g) was then added and the solution allowed to react for two 

hours until no precipitate was formed when a small portion was added into water. 

Then, 100 mL of water was added and the solution was then filtered to remove any 

starting material. The pH of the filtered solution was then lowered to between 3 and 

4 until a white precipitate was formed. This solid was removed by filtration and dried 

under vacuum to give a white solid. This was then washed chloroform to remove any 

impurities. A typical yield was around 80 %.1H NMR (400 MHz, d6-DMSO): 12.80 

(bs, 2H, OH), 7.85 (d, 4H, ArH, J = 9 Hz), 7.75 (d, 4H, ArH, J = 9 Hz), 7.44 (s, 2H, 

CH), 7.20-7.47 (m, 10H, ArH), 4.63 (m, 2H, CH) and 3.10-3.25 (m, 4H, CH2) ppm. 
13C (101 MHz, d6-DMSO): 174.5 (O-C=O), 162.3 (C=O), 138.2 (ArC), 135.1 (ArC), 

132.9 (ArC), 129.4 (ArC), 129.0 (ArC), 128.2 (ArC), 127.8 (ArC), 136.4 (ArC), 54.0 

(CH) and 32.1 ppm (CH2). MS: ES-: [M-H]-. Accurate mass calculated: 561.2104. 

Found 561.2028. 

 

Stepwise synthesis procedure for 2 is shown below: 
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Tert-butyl 2-(naphthalen-2-yloxy)acetate 

10.0 g (45.2 mmol) of 2-napthol was dissolved in 150 mL acetone before adding 30 

g (226 mmol) potassium carbonate and then followed by 7.1 mL (49.7 mmol) of tert-

butyl chloroacetate, The solution was heated to reflux for 24 hours. When cooled to 

room temperature, 100 mL of chloroform was added and the solution was washed 

with 4 x 100 mL water, dried with magnesium sulphate and the solvent removed in 

vacuo to afford a white powder. The crude product was directly used in the next step 

of the reaction. 1H NMR (CDCl3): 7.77 (d, ArH, 1H, J = 8.0 Hz), 7.76 (d, ArH, 1H, J 

= 9.0 Hz), 7.70 (d, ArH, 1H, J = 8.2 Hz), 7.43 (t, ArH, 1H, J = 6.9 Hz), 7.34 (t, ArH, 

1H, J = 7.0 Hz), 7.23 (dd, ArH, 1H, J = 9.0 Hz, J = 2.6 Hz) , 7.06 (d, ArH, 1H, J = 

2.4 Hz), 4.63 (s, OCH2, 2H), 1.49 (s, C(CH3)3, 9H) ppm. 

 

2-(Naphthalen-2-yloxy)acetic acid 

The tert-butyl protecting group was then removed by dissolving tert-butyl 2-

(naphthalen-2-yloxy)acetate from previous step in 30 mL chloroform. Around 10 mL 

trifluoroacetic (TFA) acid was added and the solution was left to stir overnight. Next 

200 mL of hexane was added to precipitate out the solid product. The white solid 

material was washed with hexane to give the product with a yield of ~87%. 1H NMR 

(d6-DMSO): 7.85 (d, ArH, 1H, J = 9.1 Hz), 7.79 (d, ArH, 1H, J = 8.1 Hz), 7.46 (t, 

ArH, 1H, J = 6.7 Hz), 7.36 (t, ArH, 1H, J = 6.9 Hz), 7.27 (d, ArH, 1H, J  = 2.5 Hz), 

7.22 (dd, ArH, 1H, J = 8.9 Hz, J = 2.6 Hz), 4.81 (s, OCH2, 2H) ppm. 

 

2-(Naphthalen-2-yloxy)valine ethyl ester 

N-methylmorpholine (1.7 ml, 15.5 mmol) and isobutylchloroformate (2.2 mL, 17.0 

mmol) were added to a solution of 2-(naphthalen-2-yloxy)acetic acid (5.21 g, 15.5 

mmol) in 100 mL chloroform and stirred for 5 min at 0 ºC. A solution of L-valine 

methyl ester (2.5 g, 16.3 mmol) and N-methylmorpholine (1.7 mL, 15.5 mmol) in 

chloroform (25 mL) was added. The solution was allowed to warm to room 

temperature with stirring overnight. The solution was washed with 4 x 100 mL water 

1 x 30 mL 0.1 M HCl and dried with magnesium sulphate before removing the 

solvent in vacuo to give a white powder. 1H NMR (d6-DMSO): 8.23 (m, NH, 1H), 

8.20 (d, ArH, 1H, J = 8.6 Hz), 7.88 (d, ArH, 1H, J = 6.6 Hz), 7.54 (m, ArH, 3H), 

7.40 (t, ArH, 1H, J = 8.0 Hz), 6.90 (d, ArH, 1H, J = 7.7 Hz), 4.82 (d, OCH2, J = 3.9 

Hz), 4.26 (dd, CHNH, 1H, J = 5.6 Hz, J = 8.6 Hz), 2.50 (m, CH(CH3)2, 1H), 0.92 (d, 
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CH3, 3H, J = 4.0 Hz), 0.89 (d, CH3, 3H, J = 4.0 Hz) ppm. 13C NMR (DMSO) 173.1, 

168.0, 153.6, 134.4, 127.9, 126.9, 126.4, 125.8, 125.2, 121.9, 120.9, 106.0, 67.3, 

57.2, 30.3, 19.5, 18.3 ppm. MS (CI) 319 ([M+NH4]
+). Analysis calculated for 

C17H19NO4: C, 67.76 %; H, 6.36 %; N, 4.65 %. Found: C, 67.69 %; H, 6.37 %; N, 

4.63 %.  
 

2-(Naphthalen-2-yloxy)valine 

Deprotection of 2-(naphthalen-2-yloxy)valine methyl ester was dome by dissolving 

in in a THF: water mixture of 30 mL: 10 mL. LiOH (0.35 g) was then added and the 

solution allowed to react for two hours until no precipitate was formed when a small 

portion was added into water. Then, 100 mL of water was added and the solution 

was then filtered to remove any starting material. The pH of the filtered solution was 

then lowered to between 3 and 4 until a white precipitate was formed. This solid was 

removed by filtration and dried under vacuum to give a white solid. This was then 

washed chloroform to remove any impurities. A typical yield was around 85 %. 1H 

NMR (DMSO) 8.23 (m, NH, 1H), 8.20 (d, ArH, 1H, J = 8.6 Hz), 7.88 (d, ArH, 1H, J 
= 6.6 Hz), 7.54 (m, ArH, 3H), 7.40 (t, ArH, 1H, J = 8.0 Hz), 6.90 (d, ArH, 1H, J = 

7.7 Hz), 4.82 (d, OCH2, J = 3.9 Hz), 4.26 (dd, CHNH, 1H, J = 5.6 Hz, J = 8.6 Hz), 

2.50 (m, CH(CH3)2, 1H), 0.92 (d, CH3, 3H, J = 4.0 Hz), 0.89 (d, CH3, 3H, J = 4.0 

Hz) ppm. 13C NMR (DMSO) 173.1, 168.0, 153.6, 134.4, 127.9, 126.9, 126.4, 125.8, 

125.2, 121.9, 120.9, 106.0, 67.3, 57.2, 30.3, 19.5, 18.3 ppm. MS (CI) 319 

([M+NH4]+). Analysis calculated for C17H19NO4: C, 67.76 %; H, 6.36 %; N, 4.65 %. 

Found: C, 67.69 %; H, 6.37 %; N, 4.63 %.  
 

2-(Naphthalen-2-yloxy)valine glycine methyl ester 

N-methylmorpholine (1.7 ml, 15.5 mmol) and isobutylchloroformate (2.2 mL, 17.0 

mmol) were added to a solution of 2-(naphthalen-2-yloxy)valine (5.21 g, 15.5 mmol) 

in 100 mL chloroform and stirred for 5 min at 0 ºC. A solution of L-glycine methyl 

ester (2.5 g, 16.3 mmol) and N-methylmorpholine (1.7 mL, 15.5 mmol) in 

chloroform (25 mL) was added. The solution was allowed to warm to room 

temperature with stirring overnight. The solution was washed with 4 x 100 mL water 

1 x 30 mL 0.1 M HCl and dried with magnesium sulphate before removing the 

solvent in vacuo to give a white powder. 1H NMR (CDCl3) 7.78 (m, ArH and NH, 
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2H), 7.73 (d, ArH, 1H, J = 8.2 Hz), 7.46 (dt, ArH, 1H, J = 6.9 Hz, J = 1.2 Hz), 7.38 

(dt, ArH, 1H, J = 6.9 Hz, J = 1.2 Hz), 7.22 (dd, ArH, 1H, J = 9.0 Hz, J = 2.6 Hz), 

7.17 (m, ArH, 2H), 6.49 (d, NH, 1H, J = 5.0 Hz), 4.68 (d, OCH, 1H, J = 14.9 Hz), 

4.64 (d, OCH, 1H, J = 14.9 Hz), 4.41 (dd, CHNH, 1H, J = 6.9 Hz, J = 6.7 Hz), 4.19 

(q, CH2CH3, 2H, J = 7.2 Hz), 3.99 (dq, CH2NH, 2H, J = 11.0 Hz, J = 5.6Hz), 2.18 

(m, CH(CH3)2, 1H), 1.27 (t, CH2CH3, 3H, J = 7.2 Hz), 0.97 (d, CH3, 3H, 3J = 6.8 

Hz), 0.93 (d, CH3, 3H, J = 6.8 Hz) ppm. 13C NMR (CDCl3) 170.8, 169.4, 168.4, 

154.9, 134.2, 129.9, 129.5, 127.7, 126.9, 126.7, 124.4, 118.2, 107.6, 67.3, 61.6, 58.0, 

41.3, 30.9, 19.2, 18.0, 14.1 ppm. MS (ES) 409 ([M+Na]+). Accurate mass calculated 

for C21H26N2O5Na: 409.1739. Found: 409.1719.  

 

2-(Naphthalen-2-yloxy)valine glycine(2) 

Deprotection of 2-(naphthalen-2-yloxy)valine, glycine ethyl ester was dome by 

dissolving in in a THF: water mixture of 30 mL: 10 mL. LiOH (0.35 g) was then 

added and the solution allowed to react for two hours until no precipitate was formed 

when a small portion was added into water. Then, 100 mL of water was added and 

the solution was then filtered to remove any starting material. The pH of the filtered 

solution was then lowered to between 3 and 4 until a white precipitate was formed. 

This solid was removed by filtration and dried under vacuum to give a white solid. 

This was then washed chloroform to remove any impurities. A typical yield was 

around 85 %. 1H NMR (d6-DMSO) 12.60 (s, COOH, 1H), 8.46 (t, NH, 1H, J = 5.7 

Hz), 8.03 (d, ArH, 1H, J = 9.0 Hz), 7.86 (d, ArH, 1H, J = 4.8Hz), 7.84 (d, ArH, 1H, J 
= 3.9 Hz), 7.75 (d, ArH, 1H, J = 8.2 Hz), 7.47 (dt, ArH, 1H, J = 7.0 Hz, J = 1.2 Hz), 

7.36 (dt, ArH, 1H, J = 8.0 Hz, J = 1.0 Hz), 7.28 (m, NH, 1H), 7.24 (dd, ArH, 1H, J = 

8.8 Hz, J = 2.4 Hz), 4.76 (d, OCH, 1H, J = 14.7 Hz), 4.70 (d, OCH, 1H, J = 14.7 Hz), 

4.31 (dd, CHNH, 1H, J = 8.6 Hz, J = 6.5 Hz), 3.75 (dq, CH2NH, 2H, J = 14.7 Hz, J = 

5.9 Hz), 2.04 (m, CH(CH3)2, 1H), 0.88 (d, CH3, 3H, J = 6.7 Hz), 0.84 (d, CH3, 3H, 

J = 6.8 Hz) ppm. 13C NMR (DMSO) 171.1, 171.0, 167.3, 155.5, 133.9, 129.4, 128.6, 

127.5, 126.6, 126.5, 123.8, 118.5, 107.1, 66.6, 57.0, 30.8, 19.1, 17.8 ppm. MS (ES) 

381 ([M+Na]+). Analysis calculated for C19H22N2O5: C, 63.68 %; H, 6.19 %; N, 7.82 

%. Found: C, 63.63 %; H, 6.19 %; N, 7.78 %.  
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3. 4. 2 Instruments and Procedures 
 

Nuclear Magnetic Resonance Spectroscopy (NMR) 

NMR spectra were recorded using a Bruker DPX-400 spectrometer operating at 400 

MHz for 1H NMR and 101 MHz for 13C NMR, in d6-DMSO or D2O.  

For monitoring gelation with time NMR spectra were recorded on a Bruker DPX-400 

spectrometer, operating at 400 MHz for 1H NMR. The gelator solution was mixed 

with glucono-δ-lactone (GdL) and then directly loaded into an NMR tube to gel. 

During this time, NMR spectra were collected every 90 seconds for the first 70 

acquisitions, and then typically every 5 minutes for the remaining experiment time 

(typically 14 hours total). The experiments were carried out at 25 °C. For the samples 

for NMR spectroscopy studies, ethanol (1 µL/mL) was added as an internal standard. 

A 1H NMR spectrum of the solution was recorded prior to adding GdL to ensure that 

the ethanol present was accurately known relative to the dipeptides. This ensured any 

slight variations in weighing were taken into account for each sample. 

Hydrogel Formation      

A pH switch method was used to form the hydrogels. Single component gels were 

prepared at a concentration of 5 mg/mL. The gelator was dissolved at high pH in 2 

mL of water. In the case of gelator 1 2 molar equivalents of 0.1 M sodium hydroxide 

was used and for gelator 2 one molar equivalent of 0.1 M sodium hydroxide was 

used. The solution was stirred until all the gelator was dissolved. This solution was 

then transferred to a vial containing a 10 mg of GdL and shaken gently. 1 mL was 

then transferred to a 20 mL plastic syringe with the top removed (Fig. 3. 28 a and b). 

The open syringe was covered with Parafilm and the solution was left to gel 

overnight (Fig. 3. 28c). The gel was removed from the syringe by pushing the 

plunger (Fig. 3. 28d).  
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Figure 3. 28 Photographs showing gelation in a syringe mould. (a) Empty syringe with top 

removed. (b) 1 mL of gelator solution with GdL added to the mould. (c) Top of syringe is 

covered with Parafilm and left overnight. (d) When gel is formed gel can be removed by 

gently pushing on the plunger to reveal gel which then can be used. 

 

For mixed component gels, separate solutions of each gelator were prepared at 10 

mg/mL. 1 mL of each solution was then added together to get 2 mL with each gelator 

at 5 mg/mL. This was then added to 20 mg of GdL and again allowed to gel the same 

as previously described. 

For NMR experiments, solutions are prepared as reported above except using D2O 

and NaOD. An ethanol standard of 1 µL/mL was also added before transferring the 

gelator/GdL solutions into an NMR tube and allowed to gel inside the NMR 

spectrometer. 

 

Rheological Measurements 

Dynamic rheological measurements were performed using an Anton Paar Physica 

MCR101 rheometer. A parallel measuring system was used to perform all tests. For 

strain tests the gels were prepared as described above and transferred onto the bottom 

plate for measurement. For time sweeps, 1 mL of gel was prepared on the plate and, 

once the top plate was lowered, mineral oil was placed around the plate to prevent 

solution from drying out. All experiments were performed at 25 °C. 
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Time sweeps: Time sweeps were performed with a 25 mm sandblasted plate with a 

plate gap of 0.8 mm. Tests were performed at an angular frequency of 10 rad/s and 

with a strain of 0.1 %. 

 

Strain sweeps: Strain scans were performed with a 25 mm plate from 0.1 % to 100 % 

with a frequency of 10 rad/s. The critical strain was quoted as the point that G' starts 

to deviate for linearity and ultimately crosses over the Gʺ, resulting in gel 

breakdown. 

 
pH Measurements 

A FC200 pH probe (HANNA instruments) with a 6 mm × 10 mm conical tip was 

used for pH measurements. The stated accuracy of the pH measurements is ±0.1. The 

pKa values of the gelators were determined via the addition of GdL as reported 

previously.20 Measurements were recorded every 5 minutes. The temperature was 

maintained at 25 °C during the titration by using a circulating water bath. 

 

SEM Imaging 

SEM images were obtained using a Hitachi S-4800 FE-SEM at 3 keV. Gel was 

deposited onto glass cover slips which were fixed onto aluminium SEM stubs with 

carbon tabs and left to dry for 24 hours. The samples were gold coated for 3 minutes 

at 15 mA prior to imaging using a sputter coater (EMITECH K550X). 

 

Mass Spectroscopy  

Measurements were carried out using a Micromass LCT Mass Spectrometer in 

negative mode at 40 V in methanol. Samples were run by the University of Liverpool 

mass spectrometry service. 

 

UV-Vis Absorption Measurements  

Solution UV-Vis absorption data was measured using a Thermo Scientific Nanodrop 

2000/2000c spectrophotometer. The spectrophotometer was used in cuvette mode 

were samples were prepared in PMMA plastic cuvettes with a pathlength of 1.0 cm. 

Aqueous samples were prepared at high pH using equimolar amounts of 0.1 M 

aqueous NaOH solution to gelator and made up to 2 mL with distilled water. The 

solution was then diluted until the absorbance was visible in the spectrum.  
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Irradiating Samples 

Gels were placed onto a glass microscope slide and placed inside a plastic petri dish 

with a wet paper towel in to keep the air saturated with water and to prevent the gel 

drying out. The lid of the petri dish had a hole cut out to allow the LED to be able to 

irradiate the sample (Fig 3.29a and b). A 365 nm LED (LedEngin Inc, LZ1-10U600) 

with a light source powered by a TTi QL564P power supply operating at 1.0 W was 

used to irradiate gel samples (set up shown in Fig. 3.29d). When using a mask, a 

shape was cut out of a sheet of opaque plastic and placed over the sample prior to 

irradiation (Fig. 3.29c). 

 

 
Figure 3.29 Photographs showing the irradiation set up and hydration chamber. (a) Empty 

hydration chamber (b) hydration chamber with a gel visible through the cut out window (c) 

hydration chamber with a mask used for spatially resolved removal of 1 (d) gel sample in the 

hydration chamber being irradiated with a 365 nm LED. 

 

Temperature Measurements 

The temperature of the gels was recorded before and after irradiation with 365 nm 

LED using a Precision Gold N85FR infrared thermometer with dual laser targeting. 

The temperature of the gels before irradiation was typically around 18 °C and after 
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irradiation for an hour, the temperature of the gels rose to 20 °C. This was recorded 

using the infrared thermometer measuring at the centre of the sample every 20 

minutes during irradiation. The sample was removed from under the LED whilst this 

measurement was done. 
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4. 1. Introduction 
 

Chapter 3 discussed the use of a stilbene-based gelator in a spatially resolved 

multicomponent self-assembled system. This molecule was ideal for use in such a 

system due to its ability to isomerise and become a non-gelator. Stilbenes have also 

been used in p-n heterojunctions as p-type materials.1 p-n heterojunctions are used in 

electronic devices, including solar cells and light emitting diodes.2 P-type materials 

are able to donate electrons and become positively charged and n-type materials are 

able to accept an electron and so become negatively charged (hence the terms p and 

n). p-n heterojunctions are discussed in more detail in Chapter 5. This Chapter 

discusses the synthesis and use of a π-conjugated n-type material for the use in 

electronic devices. Self-assembly is a simple method of organizing optoelectronically 

active π-conjugated molecules in a defined manner with precise control at both the 

nano- and micro-scale.3 Efforts have been made in aligning these materials to create 

more defined and reproducible coating of the materials.4 One self-assembly route is 

to exploit low molecular weight gelators (LMWG).3 Gelation using suitably designed 

LMWG results from self-assembly of the gelator into well-defined one-dimensional 

structures, which then can entangle or cross-link. When the LMWG contain π-

conjugated groups, the result of this assembly is the stacking of these groups, which 

can be exploited to form conductive pathways for electronic devices.5 Electrons are 

able to pass along the electron accepting conjugated self-assembled structures.6  

 

The assembly of LMWG based around perylene bisimides (PBIs) is of great interest 

from the perspective of electronic materials, since PBIs are n-type materials.5, 7, 8 

PBIs have strong absorption, long fluorescence lifetimes, high quantum yields and 

are very stable to heat. They are considered to be the best alternative to fullerenes in 

organic solar cells9, 10 or in field-effect transistors.5 There are a growing number of 

reports showing the formation of self-assembled wires and fibres from PBI-based 

gelators.6, 7, 11, 12 This is because PBIs have a large conjugated centre that enables π-

stacking into one-dimensional fibres.13 These large aromatic PBIs are often quite 

insoluble in many solvents, which also promotes self-assembly.11, 14 PBIs can also be 

(photo)conductive and have been suggested as candidates for many organic 

electronic devices.15, 16 PBIs are readily sequentially reduced to the radical anion and 
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dianion by light, electrochemically17 or by the use of a reducing agent.18, 19 This 

radical anion has been shown to be the cause of the conductivity, with the anion 

being more conductive than the dianion.20 Electron diffusion has been shown to 

occur in one-dimension in PBI-aggregates, again showing their use for electronic 

devices.21 A significant amount of work has been done on the formation of one-

dimensional structures based on PBIs, for example showing supramolecular 

chirality22 and the formation of liquid crystallinity23. A key point is that the 

optoelectronic performance of such materials can depend not only on the chemical 

structure, but also on the morphology and uniformity of the aggregates formed.24-26 

PBI aggregates formed are critically controlled by functional group, solvent, or 

concentration.26-28 The majority of the reported PBI-based LMWG gel organic 

solvents, due to the high hydrophobicity of the perylene group.29-31 Examples have 

been used in light harvesting and also in bulk heterojunctions, formed from self-

sorted gel fibres.30  

 

Recently, PBI-based hydrogelators have been reported. For example, an amino acid-

based PBI was shown to form photoconductive xerogels.13, 32 The LUMO level of an 

aspartic acid-based PBI has been suggested to be suitable for use as an electron 

acceptor in a solar cell; however the reduced PBI solution formed was highly 

sensitive to the presence of O2, which is not promising for organic photovoltaics 

(OPV) applications.20 It is therefore highly desirable to have reduced PBI species in 

thin films that are resistant to anion oxidation by O2.33 Such devices are normally 

formed using deposition or coating routes that can lead to the formation of 

aggregates with different size and shape distributions, which can influence the 

electronic properties. Conductivity of the thin films is a balance between crystallinity 

and flexibility of the molecules34, so alignment of one-dimensional aggregates might 

be the best way to produce highly conductive reproducible thin films.35 Alignment of 

materials in general can be achieved through spin-coating,35 shear,36 electrical 

currents,37 gravity38 and magnetic fields39 to name a few techniques. 
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4. 2. Results and Discussion 
 

4. 2. 1. Gel Properties 

 

Four amino acid functionalised PBIs were prepared by the reaction of 3,4:9,10-

perylenetetracarboxyldianhydride as described in Section 4. 4. PBIs were 

functionalised with L-alanine (1), L-histidine (2), L-phenylalanine (3) and L-valine (4) 

(Fig. 4.1). 1 and 2 have been previously reported, but not used as LMWGs.40, 41 

 

 

 
Figure 4.1 Molecular structure of PBIs functionalised with L-alanine (1), L-histidine (2), L-

phenylalanine (3) and L-valine.(4). 

 

1-4 all form deep red solutions at high pH (above pH 9) at a concentration of 5 

mg/mL (photographs are shown in Fig. 4.2) using 0.1 M aqueous sodium hydroxide 

as described in Section 4. 4.  
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Figure 4.2 Photographs of PBI solutions at a gelator concentration of 5 mg/mL at high pH 

(a) 1, (b) 2, (c) 3 and (d) 4. Scale bar represents 1 cm. 

 

Viscosity measurements of solutions of 1-4 at high pH show them to be shear 

thinning (Fig. 4.3). The decrease in viscosity with increasing shear rate suggests that 

there are structures present in solution, rather than single molecules. The decrease in 

viscosity is due to the structures aligning at high shear causing the lower viscosity.42 

Solutions of 3 have much higher viscosity than the other LMWG. It has been 

previously noted that certain hydrophobic LMWG with similar molecular structures 

form worm-like micelles at high pH, leading to viscous solutions.43, 44 Since all of the 

solutions are shear thinning and so it is likely that worm-like micelles are formed at 

high pH from 1-4. Phenylalanine is the most hydrophobic of the amino acids used 

here and so 3 would most likely form the most viscous solutions due to worm-like 

micelles having different persistence lengths and properties.38, 42 
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Figure 4.3 Graphs showing change in viscosity with increasing shear rate for solutions of (a) 

1, (b) 2, (c) 3 and (d) 4. 

 

The dried solutions generally showed the presence of long one-dimensional 

structures by scanning electron microscopy (SEM, performed by Dr. T. McDonald, 

University of Liverpool) as shown in Fig. 4.4. To the best of our knowledge, this is 

the first observation of such structures formed from a pre-hydrogel solution state for 

PBIs. Dried solutions of 1, 2 and 4 show similar fibre-like structures with fibres 

widths of around 10 nm. Dried solutions of 3 however only showed disordered 

structures, but as previously mentioned in Chapters 3 and 4 this could be due to 

drying effects.45 
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Figure 4.4 SEM images of a dried solution of (a) 1, (b) 2, (c) 3 and (d) 4. Scale bar 

represents 500 nm. 

 

The solutions formed self-supporting dark red gels on lowering the pH (shown in 

Fig. 4.5). The pH was lowered by adding glucono-δ-lactone (GdL), which 

hydrolyses slowly to gluconic acid discussed in Chapter 3. 2.46 Solutions of 2, 3 and 

4 formed gels using 3 mg/mL of GdL. Solutions of 1 formed gels with 5 mg/mL and 

took a longer time to form a self-supporting gel as compared to the other PBIs. On 

gelation, 1, 2, and 4 formed red, optically transparent gels while 3 forms gels that are 

turbid. Turbid gels suggest larger aggregates which scatter light more making them 

opaque. 
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Figure 4.5 Photographs of gels formed from (a) 1, (b) 2, (c) 3 and (d) 4. Scale bar represent 

1 cm. (b), (c) and (d) are formed with 3 mg/mL GdL and (a) with 5 mg/mL. 

 

The rheological properties of these gels are similar for those formed from related 

LMWG. All gels break at low strain (Fig. 4.6 and Table 4.1). Gel-3 shows a different 

strain sweep compared to the other gels. Gels-1, 2 and 4 all show a single break point 

(where the storage modulus (G´) and loss modulus (G˝) deviate from linearity as the 

gel network starts to break) at around 4-5 % strain. This is followed by a sharp 

decrease in G´ and G˝ until they cross over and the gel is completely broken and so is 

now acting as a liquid rather than a gel. Gel-3 still has a break point at around 5 % 

strain, but then does not have a sharp decrease in G´ and G˝. Instead, G´ and G˝ 

slowly decrease in steps until 500 % strain and then rapidly decrease until the gel is 

completely broken. This suggests that gel-3 has a different gel network than 1, 3 and 

4 as it has two break points. Multiple break points either suggests that either there are 

two different types of network with the weakest breaking first, or a more complex 

structured network.47, 48 This agrees with gel-3 being turbid whilst the others are 

transparent. 
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Figure 4.6 Strain sweeps performed at a frequency of 10 rad/s at 25 °C. Full symbols 

represent G´ and open symbols G˝ (a) gel-1, (b) gel-2, (c) gel-3 and (d) gel-4. 

 

Again, frequency sweeps show the rheological properties of these gels are similar for 

those formed from related LMWG, with G' and G'' being only weakly dependent on 

frequency (Fig. 4.7). Gel-3 has the highest G' and G''. Gel-1 is the weakest gel, and 

gel-2 and gel-4 have similar gel strength. This shows that the functional group on the 

perylene has a significant effect on rheological properties of the gels formed. This is 

most likely due to the amino acid functionalities having different hydrophobicity and 

molecular interactions with each other. 

 

 Gel-1 Gel-2 Gel-3 Gel-4 

Break (%) 4 5 5 4 

G´ (Pa) 400 1500 7300 1900 

G˝ (Pa) 30 149 680 85 

 

Table 4.1 Table showing rheological properties G´, G˝ and the strain at which Gels-1, 2, 3 

and 4 break. Break defined as when Gʹ deviates from linearality in the strain sweeps. Gʹ and 

Gʺ are quoted at 10 rad/s in the frequency sweeps. 
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Figure 4.7 Frequency sweeps performed at 0.5 % strain and at 25 °C. Full symbols 

represent G´ and open shapes G˝ (a) gel-1, (b) gel-2, (c) gel-3 and (d) gel-4. 

 

The gels were then dried down in air at room temperature until the water was 

removed; this method maintains the fibrous network, but removing the solvent and 

collapsing the structure upon itself. These are referred to as xerogels. SEM of the 

xerogels of 1, 2 and 4 showed the presence of thin entangled fibres (Fig. 4.8a, b and 

d) with widths of around 30 nm (SEM images were collected by Dr. T. McDonald, 

University of Liverpool). These fibres are thicker than that seen in the corresponding 

dried films showing further assembly has taken place upon gelation (or possibly 

drying). Xerogel-3 shows large undefined shapes, this my be due to drying effects or 

due to there being larger aggregates in gel-3 that dry down to form these large shapes 

seen in the SEM images (Fig. 4.8c). Within the large aggregates, more structure can 

be seen. These could be the primary fibres, which have then further assembled into 

these larger aggregates. This difference in xerogel-3 could account for the difference 

in appearance and rheological properties of gel-3. 
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Figure 4.8 SEM images of xerogels (a) 1, (b) 2, (c) 3 and (d) 4. The scale bar represents 

500 nm. 

 

In all cases, powder X-ray diffraction (pXRD) data shows both the dried solutions 

(Fig 4.9) and xerogels (Fig. 4.10) contain a low degree of crystallinity. The most 

intense peak in all samples is at 2θ = ~ 25.5°, corresponding to approximately 3.5 Å, 

arising from π-π stacking. The dried solution powder patterns look very similar to 

each other apart from dried solution 3, which has two sharp peaks at around 20° and 

23°. However, upon gelation the powder pattern looks the same as those for the other 

gels. It has been shown that pXRD gives little information about the gel structures or 

fibres, as does the crystal structures of the gelators.49 It does however give us 

information about the thin film formed when drying the solution and the gels. 
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Figure 4.9 Powder X-ray diffraction patterns of the dried solution of (a) 1, (b) 2, (c) 3 and (d) 

4. 

 

 
Figure 4.10 Powder X-ray diffraction patterns of the xerogels of (a) 1, (b) 2, (c) 3 and (d) 4. 
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The absorption spectra of these materials in solution (5 mg/mL) are typical of PBI-

LMWG. UV-Vis data at high pH (Fig. 4.11 solid line) showed a shoulder at 470 nm, 

and peaks at 490 nm and 540 nm, attributed to the 0-0 and 0-1 vibronic bands of the 

S0 → S1 transitions.50 The ratio of the peak intensities at 490 nm and 540 nm 

indicates a significant degree of aggregation.13, 51 In the gel state, the UV-Vis data 

showed strong absorption at 470 nm and 590 nm, with the peak at 470 nm now being 

dominant (Fig. 4.11 dashed line). This change in relative intensity suggests a change 

in the aggregation of the perylenes.13 The spectra for both the solution and gel 

showed peaks at 325 nm and 380 nm, corresponding to the electronic S0 → S2 

transition.50 The spectra for the different gelators all have varying peak intensities 

showing slightly different packing and structures, but the overall peak positions from 

the perylenes are the same. This shows that changing the functionality of the amino 

acid does not change the electronic properties of the perylene core. 

 
Figure 4.11 UV-vis absorption spectra for (a) 1, (b) 2, (c) 3 and (d) 4. Solid lines show data 

for the solutions at high pH and the dashed line data for the gels. 

 

Fluorescence data showed fine structure emission with maxima at 540 nm and 595 

nm for the solution on excitation at 365 nm or 490 nm (Fig. 4.12). The fluorescence 
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intensity of the gel is significantly lower due to self-quenching, with the peak 

maxima slightly shifted to shorter wavelength. Again, this is due to a change in 

aggregation. This bathochromic shift in the spectra also suggests the formation of H-

aggregates. The decrease in the intensity of the peaks upon gelation is due to 

fluorescence quenching as the perylenes are now closer together in solution. 

 

 
Figure 4.12 Fluorescence spectra of (a) 1, (b) 2, (c) 3 and (d) 4. The solid line shows data 

for the solutions and the dashed line data for the gels. Fluorescence spectra were collected 

at an excitation of 365 nm and at a gelator concentration of 0.05 mg/mL. 

 

4. 2. 2. Photoconductivity Measurements 

 

To investigate the photoconductivity of these materials, we dried both the solution 

and gel phases. Films were readily obtained from both the solutions and gels of 1, 2 

and 4 simply by drying in air (final water content ~6 wt% as determined by 

thermogravimetric analysis (TGA) in all samples, Fig. 4.13). Samples of the same 

volume were cast between two silver electrodes which were attached to a 

potentiostat, which used to perform the two electrode experiment. This set up is 

discussed and shown in more detail in Section 4. 4. 
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Figure 4.13 Thermogravimetric analysis of (a) a dried solution 1 and (b) a xerogel-1 to 

determine the percentage of water in the films. 

 

Photographs in Fig. 4.14 show the xerogel when dried on a glass substrate. For 

xerogel-3, drying led to an inhomogenous film that did not adhere well to the 

substrate (Fig. 4.14c). This correlates with the SEM data which also showed large 

aggregates (Fig. 4.8).  

 

 
Figure 4.14 Photographs of thin films of a xerogel on glass for (a) 1, (b) 2, (c) 3 and (d) 4. 

Scale bar represents 1 cm. 
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There are fundamental changes in the UV-Vis absorption spectra on drying. For both 

dried solutions and xerogels, the UV-Vis data showed an increase of absorbance in 

the UV region where there is a change in the intensity ratio of the peaks at 375 nm 

and those in the region of 470-590 nm (Fig. 4.15). This suggests a difference in the 

arrangement of the perylene aggregates upon drying. The xerogels were considerably 

darker in colour than the dried solution and so spectra were difficult to collect. 

Hence, the samples were moved several times in the detector to collect an average 

spectrum. For the case of xerogel-3, this was especially difficult as the film did not 

form an even film and flaked off. The spectrum was therefore quite noisy. The most 

intense peak at around 420-450 nm in the dried solution red shifts in the xerogel 

compared to the gel to around 460 nm in all samples, with xerogel-2 shifting the 

least. The other peaks in the spectra do not appear to shift. This shift of the most 

intense peak is different than comparing the solution to the dried solution, where the 

most intense peak blue shifts upon gelation.  

 
Figure 4.15 UV-Vis spectra of dried samples on glass of (a) 1, (b) 2, (c) 3 and (d) 4. Black 

data is for the dried solutions and the red data is for the xerogels. 

 

The macroscopic conductivity of the dried solutions and gels was measured both in 

the dark and under illumination with a xenon lamp. Both showed Ohmic response 

and a significantly increased current under illumination. This is assigned to the 
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samples becoming photoconductive (see Fig. 4.16), with symmetric data during the 

voltage sweep.  

 
Figure 4.16 I-V curves showing the conductivity of thin film samples in the dark (solid lines) 

and under a 150 W xenon lamp (dashed line is for the xerogels and dotted line for the dried 

solutions). (a) and (b) are 1, (c) and (d) are 2, (e) and (f) are 3, and (g) and (h) are 4. 
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In general, the dried solutions were more conductive than the xerogels. 1 showed the 

highest current under illumination of the LMWG, and the photo-response was 

significantly greater for the dried solution than for the dried gel. 3 showed a very 

weak response, which we attribute primarily to the poor film quality. 

 

The photoconductivity of these films was further investigated by varying the 

wavelength of light used to irradiate the samples. As the xenon lamp used above 

includes UV, visible and near IR wavelengths, it was unclear which energy of light 

was giving the response. This information could give us an insight to what is causing 

the conductivity. The wavelength of light used to irradiate the samples was varied by 

using a stabilized 75 W Xenon lamp coupled to a monochromator. The change in 

current resulting from irradiation of the sample by each selected wavelength was 

recorded. Samples were allowed to recover back to the dark current before the next 

wavelength was used. The intensity of the light was also recorded and the response 

was then scaled to the amount of photons present and then normalised. In all cases, 

despite the expected correlation between absorption spectrum of the perylene group 

and the proposed photoconductivity, both the dried gel and solution remain highly 

resistive when irradiated with light above 400 nm. Instead, a significant photocurrent 

was only induced when irradiated with wavelengths shorter than 400 nm (Fig. 4.17). 

The onset wavelength of the photoresponse of the dried solution and xerogel varied. 

For 1, 2 and 4, the xerogel resistance decreased significantly with irradiation of 

wavelengths shorter than 400 nm, whereas the dried solutions only became active 

when irradiated at wavelengths of 375 nm or shorter. Due to the poor film quality it 

was not possible to collect this data for 3.  

 

This response to UV light is different to other perylene bisimides discussed in the 

literature, where it is common to use visible light for photoconductivity 

measurements, or a xenon lamp.5, 32, 52 The lowest energy required for light to be 

absorbed in a material is referred to as the optical gap. Absorption of light of this 

energy results in the formation of excitons; excited electron-hole pairs bound through 

electrostatic interaction. Photoconductivity, however, requires free charge carriers 

(free electrons, free holes or both) and not bound excitons. The minimum energy 

needed to generate such free charge carriers is the transport (or quasiparticle) gap. 53 

This transport gap is always larger or equal to the optical gap, with the difference 
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between the two equal to the exciton binding energy Eebe; the amount of energy by 

which excitons are stabilized with respect to free electrons and holes.53 Eebe can be 

very small but for organic materials is typically in the order of tenths of an eV. 

Hence, the difference between absorption and photoconductivity onset to the Eebe 

represents the extra energy required to form free electrons and holes from excitons 

and keep them separated long enough so recombination does not occur. This 

wavelength dependence is also rarely discussed, as is the difference between a gelled 

and pre-gelled sample. 

 

 
Figure 4.17 Graphs showing wavelength dependence of the conductivity of samples 

compared to their UV-vis spectrum. (a) xerogel-1, (b) dried solution 1, (c) xerogel-2, (d) dried 

solution 2, (e) xerogel-4 and (f) dried solution 4. The solid line is the UV-Vis spectrum and 

the circles are the wavelength response. The dashed lines connecting the circles have been 

added for clarity. 
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Irradiation of samples of 1, 2 and 4 with 365 nm LED irradiation again showed a 

significant decrease in resistance, indicating photoconductivity (Fig. 4.18). For 1 and 

4, the dried solution was found to be approximately one order of magnitude less 

resistive under irradiation than the xerogels.  

 
Figure 4.18 I-V curves showing the conductivity of thin film samples in the dark (solid lines) 

and under a 365 nm LED (dashed line is for the xerogels and dotted line for the dried 

solutions). (a) xerogel-1, (b) dried solution 1, (c) xerogel-2, (d) dried solution 2, (e) xerogel-4 

and (f) dried solution 4. 

 

This may be due to the packing in the solution versus gel state, but could also be due 

to differences in fibre thicknesses, density, and orientation. However, the 

photocurrents measured in the two electrode experiment were consistently greater 

with both the dried solutions and xerogels of 1 than for 2 and 4, indicating a greater 
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degree of photoconductivity. The conductivity for PBIs has been related to well-

ordered π-stacking and the morphology has also been shown to be key.26 The UV-

Vis and pXRD data for 1, 2 and 4 are similar; hence, we ascribe the higher 

conductivity of 1 to differences in fibre morphology over molecular packing. 

 

As mentioned earlier, the response varied slightly from sample to sample. As 

experimental set up was kept the same as far as possible (light intensity, 

measurement distance, copper wire thickness and amount of material deposited), the 

sample thickness was measured. This was done using a profilometer, which works 

like atomic force microscopy by dragging a cantilever across the sample and 

measuring the difference in height. Measurements were performed with help from 

Dr. L. Phillips, University of Liverpool. As a mask was used to cast the films of both 

the xerogel and dried solution, the films had a sharp edge that could be measured. 

Film thicknesses of xerogels and dried solutions of 1 were measured and compared 

to the photoresponse. Three xerogel films were compared (Fig. 4.20a and b). Two 

had a thickness of around 1.5 µm and the third was thicker at around 4.5 µm. All the 

films seem to be uniform in height across the sample. The thickest film shows a 

much lower conductivity than the other two samples. This could be due to light not 

being able to penetrate the sample. The two other samples with similar thickness 

show different conductivities to each other. This data suggests that film thickness 

does not have any major effects until the film becomes too thick. 

 

For the dried solutions (Fig. 4.19c and d), the height of the samples is not uniform 

with the sample being thicker on the edge. This could be due to the sample edge 

drying quicker than the centre and so drawing material to the edge of the samples. 

Focusing on the centre of the samples, two of the samples were similar in height at 

around 1.8 µm and another sample had a height of 3 µm. There is no significant 

difference in conductivity of these samples, and it does not seem to vary according to 

sample thickness. The xerogel and the dried solution sample thickness are both 

around the same height, but the photoresponse is very different. This again illustrates 

that differences in conductivity would appear to be due to fibre morphology rather 

than sample thickness. 
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Figure 4.19 Photoresponse of (a) xerogel-1 (c) dried solution of 1 when irradiated at 365 

nm. Profilometry of (b) xerogel-1 (d) dried solution of 1. Different coloured data is for different 

samples. Colours from I-V curves correspond to the same data in the profilometry data. 

 

Focusing on 1, on irradiating a dried solution in a two electrode cell (2 V) with 365 

nm light, the photocurrent increases with time (Fig. 4.20a). On switching off the 

light, the photocurrent persists for typically 1-8 hours, with the decay shown in Fig. 

4.20a being fitted to a single exponential process, with a lifetime of ca. 5300 s. This 

indicates that the photo-induced conductivity is remarkably long-lived in air. There is 

variability from sample to sample, presumably due to differences in fibre density and 

orientation, but the films show lifetimes consistently > 3000 s. Switching the light on 

and off demonstrated the stability of the films (Fig. 4.20b). Similar behaviour was 

observed for the xerogel (Fig. 4.20c and d).  
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Figure 4.20 (a) Photoresponse for a dried solution of 1, initially in the dark, then irradiated 

with 365 nm light, followed by the lamp being turned off. (b) Transient photoresponse for a 

dried solution of 1 by turning on and off the 365 nm light for multiple cycles. (c) 

Photoresponse of xerogel-1 showing the change in conductivity when a 365 nm LED is 

turned on and off allowing conductivity to return back to off state. (d) Transient 

photoresponse for xerogel-1 by turning on and off the 365 nm light for multiple cycles  

 

It was observed that during and after irradiation with 365 nm light, both the xerogel 

(Fig. 4.21a) and dried solution (Fig. 4.21b) changed colour. The films changed from 

a red colour to a purple colour on irradiation. This colour change was reversible over 

several hours. The photos are only shown for xerogel-1 and dried solution of 1, but 

all other PBIs showed the same colour change. 
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Figure 4.21 Photographs showing the colour of the thin films before irradiation (left), 

immediately after irradiation (middle) and 18 hours after irradiation (right) for (a) xerogel-1 

and (b) dried solution 1. The scale bar represents 3 mm for all photographs. 

 

For the xerogel-1, the samples were irradiated with 365 nm LED and the UV-Vis-

NIR spectrum recorded (data collected by Dr. J. Walsh, University of Liverpool). 

After irradiation, the formation of a new absorption feature with maxima at 735 nm, 

820 nm and 1000 nm (Fig 4.22a) could be observed, in good agreement with data for 

the formation of the radical anion.19 Samples were irradiated until these peaks 

stopped increasing in intensity. This varied from sample to sample. For the dried 

solution 1, similar absorptions were observed, albeit with a higher relative intensity, 

in addition to an increase in the relative intensity of the shoulder at 615 nm (Fig. 

4.22b), as expected for the dianion.20 This correlates with the conductivity of the 

dried solution being greater than that of the xerogel. For the dried solution 2 (Fig. 

4.22d) and xerogel-2 (Fig. 4.22c), the UV-Vis absorption spectra again show the 

appearance of these peaks upon irradiation. Only two of the three peaks 

corresponding to the radical anion can be seen here due to the wavelength range of 

the spectrometer used. There is little difference seen in the intensity of these peaks 

between the dried solution and xerogel, which again correlates with the observations 
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from the conductivity measurements. Spectra for xerogel-4 (Fig. 4.22e) and dried 

solution 4 (Fig. 4.22f) again show the peaks for the presence of the radical anion 

with them being more intense for the dried solution than for the xerogels. This also 

agrees with the conductivity measurements mentioned earlier. Data for xerogel and 

dried solution 3 were unable to be collected due to poor film quality. Overall, this 

data suggests that the more radical anion present in the thin film, the more 

conductive the sample is. 

 
Figure 4.22 UV-Vis-NIR/UV-Vis absorption spectra showing the formation of the radical 

anion in the film. Data before irradiation (solid lines) and after irradiation (dashed lines) for 

(a) xerogel-1, (b) dried solution 1, (c) xerogel-2, (d) dried solution 2, (e) xerogel-4 and (f) 

dried solution 4. 
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It was confirmed that these peaks were characteristic of these species by reduction of 

1 in solution using sodium dithionite (Fig. 4.23a).18 The radical anion is seen with 

same three distinctive extra peaks and the solution is purple in colour (Fig. 4.23d). 

The dianion does not have the same peaks as the radical anion but has a more intense 

peak at 580 nm and a smaller peak at 605 nm and appears pink in solution (Fig. 

4.23e). When exposed to air this peak disappears within 25 seconds (Fig. 4.23b) 

unlike in the film which takes hours. On the basis of these data, we suggest that the 

higher anion concentration in the dried solution explains the higher conductivity of 

the dried film over the dried gel. The possible presence of the dianion in the dried 

solution may also contribute, but the overlap of the spectral features with the ground 

state and anion prevent definitive assignment. 

 
Figure 4.23 (a) UV-Vis showing absorbance of 1 in solution after with various amounts of 

sodium dithionite added. Solid line represents before sodium dithionite was added 

(photograph (c)), dashed line is after 20 mg of sodium dithionite was added (photograph (d)) 

and the dotted line is after 40 mg of sodium dithionite was added (photograph (e)). (b) 

Change of absorbance in the peak in UV-Vis at 710 nm of the dashed line after being 

exposed to air. 

 

For the dried films, simultaneously measuring the UV-Vis spectrum and 

photocurrent after switching off the LED showed that the initial decay was similar in 

air or under argon (Fig. 4.24 a), and that the conductivity was essentially zero at the 

point where approximately 20 % of the intensity for the peak at 730 nm remained 
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(these data were collected by Dr. J. Walsh, University of Liverpool). This is 

unsurprising; for conductivity a contiguous percolation pathway is required, and 

hence bulk conductivity is expected to decay before the presence of any conductive 

species.  

 
Figure 4.24 (a) Comparison of the rate of decrease in conductivity (b) Change of 

absorbance at 730 nm with time after the 365 nm LED was turned off of dried solution 1. The 

broken line is in air and solid line is under argon. 

 

The slow rate of decay of the photocurrent is surprising. The PBI radical anion in 

solution can be used as a sensitive probe for O2.20, 54 Our materials behave similarly 

when in solution as shown in Fig. 4.23b, where the radical anion and dianion are 

quickly oxidised in air. However, when dried as a film, it is clear that the O2 

sensitivity is significantly reduced. Indeed, all of the data in Section 4. 2. 2. are for 

measurements carried out in air. Under an argon atmosphere, the rate of decrease 

was similar to that in air; this shows that O2 has little effect on the recovery of the 

dried sample (Fig 4.24 b). An issue with many n-type semiconductors is the lack of 

stability in air. For example, photoconductive PBI-based nanofibers have been 

shown to be highly sensitive to the presence of O2, where the photoconductivity was 

found to be three times higher under argon than under air.15 This was ascribed to 

high surface area available due to the morphology and the scavenging ability of O2. 

However, in other cases, the morphology can result in a kinetic barrier to the 

intrusion of water or O2, for example by using PBIs containing perfluorinated 

substituents.55, 56 It has also been reported that aggregation stabilizes the radical 

anion. When incorporated in a film, the stability of the radical anion to oxygen was 

found to be higher, taking 20 minutes to be re-oxidized, as opposed to being 

immediately re-oxidized when in homogeneous solution.57 This was attributed to 
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slow diffusion of O2 into the film. It is likely that our films are behaving similarly, 

with a slower oxidation time a result of the decreased diffusion rates of O2 through 

the films. 

 

Importantly, no changes in the UV-Vis spectra were observed when the samples 

were irradiated at 450 nm (Fig. 4.25), and hence the lack of photocurrent when 

irradiated at higher wavelengths can be ascribed to the lack of formation of either 

radical anion or dianion. 

 

 
Figure 4.25 UV-Vis spectra showing the absorbance of xerogel 1 in the dark (solid line) and 

after 45 minutes irradiation under a 465 nm LED (dashed red line) 

 

The correlation between conductivity and the presence of the radical anion is 

expected. For example, a thin film of a PBI has been shown to form the radical anion 

by a self-doping mechanism on dehydration in air.10 A concomitant increase in 

conductivity was observed. What are perhaps surprising are both the wavelength 

dependence of the conductivity found here and the O2 tolerance of the 

photoconductivity. 

 

As a self-doping mechanism was suggested elsewhere for the formation of the 

radical anion, this was investigated further.10 As the perylene becomes negatively 

charged, the source of the electron was considered. It could be the amino acid 

breaking down in the UV light, which then donates an electron into the perylene 

core. If this were to happen, a degradation of the film would likely occur and so a 

decrease in conductivity over time may be seen. Fig. 4.20b already shows the films 
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to be recoverable after many cycles of on-off irradiation. This was further tested by 

placing the film under 365 nm light for many hours and measuring if there was a 

decrease in current overtime due to a breakdown of the PBIs. Fig. 4.26 shows that 

the current does not decrease after 3 hours under the UV light. A dried solution of 1 

was used in this experiment as it gave the greatest conductivity and so a change in 

current would be easier to be seen. 

 
Figure 4.26 Photoresponse graph showing the conductivity of the dried solution of 1 during 

3 hours of illumination under 365 nm LED. 

 

The film may have broken down, but not significantly enough to affect the 

conductivity (as the electron will take the shortest path, some film degradation could 

still leave a pathway for the current to flow). The sample’s conductivity could not be 

measured under illumination for longer than 3 hours due to instrument limitations 

and also for safety reasons due to heat produced from the 365 nm LED. 1H nuclear 

magnetic resonance (NMR) was used to try and probe if there was degradation of the 

amino acid functionalised PBI. This was done by redissolving the films before and 

after irradiation in deuterated dimethyl sulfoxide (d6-DMSO). However, the films 

were not completely soluble in the d6-DMSO, or in any deuterated solvent and so 

spectra were difficult to interpret. Instead, to investigate film breakdown infrared 

(IR) spectroscopy of the films was used. An IR spectrum of dried solution 1 was 

recorded before any irradiation. The sample was then irradiated for a total of 3 days. 

The spectrum was then recorded immediately (Fig. 4.27). There is no change in the 

spectrum, apart from a new peak at 1520 cm-1 that corresponds to the radical anion 

vibration.58 This again suggests that film is not breaking down, so is unclear where 
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the electron is coming from. Solubility and the high absorption co-efficient of these 

dried samples make them very difficult to analyse by spectroscopy. 

 

 
Figure 4.27 FTIR spectrum of dried solution 1 before irradiation (black data) and after 

irradiation with 365 nm LED for 3 days (red data). 

 

An enhancement in conductivity for a PBI has been found previously on generation 

of the radical anion using hydrazine vapour.59 Other groups used diethylamine to 

increase the conductivity of the PBI fibres.13 In both these cases, these are strong 

electron donors, also known as hole scavengers (discussed in more detail in Chapter 

5). In this work, no such donor is present (it is also not known what the donor is as 

discussed above) explaining the greater Eebe here. If the PBI were itself to donate an 

electron, the simultaneous formation of the radical cation would be expected. The 

presence of this cation is not clear. Whilst there is significant data available on the 

radical anion and dianion for a range of PBIs, there is significantly less on the radical 

cation. Much of the data is contradictory or unclear so direct comparison to our 

materials is difficult.60-62 A broad peak above 1200 nm in the UV-Vis spectrum for 

the dried solution of 1 after illumination with 365 nm LED is observed (Fig. 4.22b). 

On the basis of the solution phase chemical reduction experiment, this cannot be 

assigned to the radical anion or dianion (Fig. 4.23a). This feature grows in under UV 

illumination with a maximum at ~1700 nm, and decays at the same rate as the radical 

anion. It is possible that the NIR absorption is due to the radical cation, although this 

would represent a remarkably long-lived charge separated state. Further investigation 
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could be done using transient absorption spectra (TAS).63 This would give more 

information on excited states created and how longed lived UV created species such 

as the radical anion and cation. Again, the literature on these systems gives different 

information and is often carried out on highly diluted systems and so would not 

necessarily be representative of our films, as concentration massively affects PBIs. 

 

As noticed earlier, the dried solutions are more conductive than the xerogels. As the 

same amount of material is used for each of the experiments, we hypothesise that this 

is to do with how the fibres are arranged and/or the morphology of the fibres. 

Sodium hydroxide and GdL were ruled out from causing the differences in 

conductivity between the samples by looking at other gelators that form worm-like 

micelles in solution and measuring the conductivity of these samples. Fig 4.28 shows 

that other gelators are not conductive either as a xerogel or dried solution. The data 

are very noisy due the sample not being conductive and having no ohmic contact. 

 

Figure 4.28 Photoresponse of naphthalene diphenylalanine (a) xerogel (b) dried solution. 

Black data is in the dark and red data is when irradiated using a xenon lamp. 
 

4. 2. 3. Aligned Thin Films 
 

The films were examined more closely by viewing under cross-polarized light under 

an optical microscope. Cross-polarised light is composed of only light travelling in a 

north to south direction and an east to west direction. Under cross-polarised light 

only structures with birefringement (alignment) will show up brightly coloured. For 

perfectly aligned structures, such as crystals, a Maltese cross is observed. This is due 

to the two refracted light rays recombining at the back focal plane of the objective; 

they then interfere and produce a characteristic Maltese cross shape. Xerogel-1 and 
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dried solution of 1 will be focused on here to for clarity. Xerogel-1 and dried 

solutions of 1 were viewed under cross-polarised light. Fig. 4.29 shows that the two 

samples look very different. The dried solution of 1 (Fig. 4.29a) shows bright rings 

whereas xerogel-1 (Fig. 4.29b) shows very little colour. These microscope images 

show that the dried solution shows aligned structures, whereas the xerogel does not. 

These rings seen for the dried solutions could be due to the coffee ring effect.64 

When the sample is deposited onto the glass, the drop sits on the glass with more of 

the sample in the middle. This results in different evaporation rates and leads to 

capillary flow. The liquid evaporating from the edge is replaced by liquid from the 

middle of the drop. The resulting edgeward flow can carry nearly all the dissolved 

material to the edge and leads to the coffee ring shape. As there are worm-like 

micelles in solution, these align along edge of the rings. This has been used as 

method of alignment previously.65, 66 Samples cast using the mask technique 

described in Section 4.4 did not show this coffee-ring, as samples were not circular 

and so dried different.67 Only samples drop cast showed this alignment. 

 

 
Figure 4.29 Microscope images taken under cross-polarised light of (a) dried solution of 1 

and (b) xerogel-1. Scale bar represents 50 µm. 

 

These images agree with the SEM images shown in Fig. 4.4 and Fig. 4.8, where the 

solutions show a greater alignment than the xerogels. A more aligned sample would 

show increased conductivity as the path the electron has to travel is shorter and so 

there is less chance of recombination of the charges. To test this, the conductivity 

was measured with the alignment and against the alignment. This was done by 

placing silver electrodes either side of the alignment and above and below the 

alignment (described in detail in Section 4.4). For xerogel-1, this was done by 



Chapter 4 

 131 

placing electrodes left and right, and top and bottom of the sample. Fig. 4.30a shows 

the conductivity of xerogel-1 is very similar in both directions, whereas Fig. 4.30b 

shows the dried solution has a significantly higher conductivity along the alignment 

than against. This was highly reproducible. The absolute values of conductivity were 

slightly different, but the outcome was the same. To quantify this directional 

dependence on photoresponse, the value at -4 V taken for the measurement against 

alignment was divided by the value at -4 V for the measurement with alignment. 

This way, the closer to zero the number is the greater the alignment. This value will 

be used throughout this Chapter to determine the degree of alignment. For xerogels 

this was typically around 0.95 and for the dried drop-cast solutions this was around 

0.32. 

 
Figure 4.30 Photoconductivity of (a) xerogel-1, solid black line is in measured in the dark, 

dashed red line is measured from left to right and solid red line is measured from top to 

bottom and (b) dried solution of 1, solid line is measured in the dark, dashed red line is 

measured with the alignment and solid read line against the alignment. Profilometry 

measurements of (c) xerogel-1, left to right (red) and top to bottom (black) and (d) dried 

solution of 1, black data is with alignment and red data is against alignment. 

 

As the dried solution samples were drop cast as a film first and then a 3 mm x 3 mm 

section was used for the measurements, concentration effects were investigated. This 
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was done by preparing many samples and also selecting several sections from the 

same sample and measuring the conductivity along the alignment. The sample 

between the electrodes was then removed and redissolved in basic water. The 

concentration could then be determined by UV-Vis spectrometry by comparing to a 

calibration curve. The concentration of each of the samples was then plotted against 

the current at 4 V with and against alignment (Fig. 4.31). This illustrated that the 

conductivity of the sample was not due to slight variations in concentration. The 

observed variation in concentration could be due to the rate at which the samples 

dried down and so how aligned the samples are. The rate at which the samples dry 

down is due to humidity and temperature. Drying of the samples was done in the 

open lab at room temperature and so could not be controlled. 

 

 
Figure 4.31 Current at 4 V under 365 nm LED compared to the concentration of sample 

between the silver electrodes for dried solution of 1 (a) against alignment and (b) with 

alignment. 

 

To further control the concentration and film thickness of the dried solution samples, 

samples were cast in a mould using sellotape. However, this method removed the 

coffee-ring effect and the samples showed no directional dependence with a 

difference in photoresponse of around 0.98 (Fig. 4.32b). This is due to the solution 

not being spherical and not being able to dry the same as the samples shown in Fig. 

4.32a.67 
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Figure 4.32 (a) Optical microscope image taken under cross-polarised light of a dried 

solution of 1 using a mask. The scale bar represents 500 nm. (b) Photoresponse of the 

sample in (a) showing no directional dependence in current. Black data is take in the dark, 

red data is under 365 nm light. Dashed red data is measurements recorded from left to right 

of the sample and solid red data recorded from the top to the bottom of the sample. 

 

Anisotropic samples give greater control of the orientation of the fibres and the 

direction of the conductivity. This is important when designing material to be used in 

electronic devices. Other methods of alignment were investigated. Potential methods 

of alignment include shear alignment,68 spin coating,69 magnetic alignment,70 

gravitational alignment71, 72 and doctor blading to name a few. All these methods rely 

on the solvent in which the material is dissolved evaporating quickly enough to keep 

the alignment created. As the samples are dissolved in water, this would be difficult 

to do; changing the solvent would change the morphologies of structures in solution 

and in the gel.  

 

Spin coating was attempted using solution of 1 at different concentrations and at 

different rotation speeds. Fig 4.33 shows solutions at 5 mg/mL (Fig 4.33a and b) and 

50 mg/mL (Fig. 4.33c and d) both at a rotation speed of 1800 rpm for 30 seconds as 

examples, but films looked similar at various speeds and time of spin coating. 

Solutions at 5 and 10 mg/mL did not give a continuous film and did not show any 

alignment. Solutions at 20 and 50 mg/mL gave a continuous film but when viewed 

under the optical microscope the samples had started to crystallise (Fig. 4.33d). 

Hence, these films were not suitable for their photoresponse to be measured. Spin 

coating may not have been successful due to the glass being hydrophobic and the 

water being unable to evaporate quickly enough. 
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Figure 4.33 Photographs of spin coated films of solution of 1 (a) at 5 mg/mL (c) at 50 

mg/mL. Scale car represents 1 cm. Spin coated films microscope images under cross-

polarised light (b) at 5 mg/mL and (d) at 50 mg/mL. Scale bar represent 0.5 mm. Spin 

coating was performed at 1800 rpm for 30 seconds. 

 

The glass surface was made more hydrophilic by rubbing with cotton wool to create 

a charged surface. Spin coating was tried again, varying the concentration and speed 

of rotation. The spin coating was performed at up to 10,000 rpm for 60 seconds to try 

and remove all of the solvent. This time a more homogeneous film was achieved 

(Fig. 4.34a), but again when examining under cross-polarised light there was no 

alignment (Fig. 4.34b). This spin coating was performed by Dr. D. Toolan, 

University of Sheffield. These results illustrated that spin coating of this material in 

water was not appropriate for aligning the material. Other methods of alignment, 

doctor blading and gravitational alignment were also attempted, but had the same 

result as spin coating due to the water not evaporating quickly and the 

hydrophobicity of the glass. 
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Figure 4.34 (a) Photograph of spin coated solution of 1 at 50 mg/mL at a rotation speed of 

10,000 rpm for 60 seconds. Scale bar represents 1 cm. (b) Microscopy image of (a) under 

cross polarised light. Scale bar represents 50 µm. 

 

Previous work by Wallace et al. demonstrated that worm-like micellar structures 

could be aligned under a magnetic field.39 They proposed that the structures align 

perpendicular to the magnetic field due to the fibres being slightly negatively 

charged. They were able to do this with solutions and then gel the samples under the 

magnetic field using GdL. The gels kept their alignment when taken out of the field 

due to their alignment being locked in by gelation. This alignment was shown by 2H 

and 23Na NMR (residual sodium from NaOH used in preparation of the solutions), as 

they associated with the fibres and so showed anisotropic behaviour when the fibres 

were aligned. This resulted in a splitting of the peaks due to residual quadrupolar 

coupling of the 2H and 23Na. The amount of splitting is comparative to how aligned 

the structures are.73 This method is also useful owing to the fibres themselves cannot 

be seen using conventional 1H NMR, but the effect on the probes placed in solution, 

in this case 23Na, associate with the NMR invisible structures can be seen. What 

happens to the probes can be used to monitor what is happening to the structures. 

 
23Na NMR spectroscopy was performed on solutions of 1 at concentrations ranging 

from 5 to 50 mg/mL by M. Wallace, University of Liverpool. The data showed 

splitting in the 23Na peak, which is indicative of alignment of the worm-like fibres in 

solution (Fig. 4.35). The extent of splitting in the data increases proportionally to the 

concentration, except for at 50 mg/mL. This could be due to crowding of the material 

or liquid crystal formation.74, 75 
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Figure 4.35 23Na NMR spectra showing splitting of the peak in solutions of 1 after 20 

minutes under the magnetic field. Black data is at 5 mg/mL, red data at 10 mg/mL, blue at 20 

mg/mL, pink data at 30 mg/mL, light blue data at 40 mg/mL and green data at 50 mg/mL. 

 

This method of alignment was carried out using solutions of 1, but instead of gelling 

under the field, they were allowed to dry under the magnetic field. This method 

allows the alignment of the fibres whilst the water evaporates. These experiments 

were performed by placing 20 µL of solution onto a glass cover slip, then lowering 

the slide into a NMR spectrometer and allowing it to dry overnight in the magnetic 

field with the help of M. Wallace, University of Liverpool. This method is discussed 

in more detail in Section 4.4.  Fig. 4.36 shows optical microscope images under 

cross-polarised of the solution at different concentrations, dried under the magnetic 

field. Fig. 4.36 a, b and c show alignment of the sample. Fig. 4.36d at 50 mg/mL 

seems to show liquid crystalline behaviour at the edge of the sample, this is due to 

the solution being highly concentrated, this agrees with data shown in Fig. 4.35. 

 



Chapter 4 

 137 

 
Figure 4.36 Optical microscope images of dried solution of 1 under cross-polarised showing 

magnetic alignment. Dried solutions from a concentration of (a) 10 mg/mL (b) 20 mg/mL (c) 

30 mg/mL and (d) 50 mg/mL. Scale bar represents 50 µm.  

 

SEM images (collected by Dr. T. McDonald, University of Liverpool) of samples 

dried under a magnetic field also showed this alignment (Fig 4.37c and d) compared 

to samples not dried in the field (Fig. 4.37a and b). Samples dried out of the field 

show a more random orientation of the worm like fibres whereas sample dried under 

the field show a more ordered arrangement. 
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Figure 4.37 SEM images of a 50 mg/mL dried solutions solution (a) and (b) dried away from 

the magnetic field and, (c) and (d) dried under a magnetic field. Scale bar for (a) and (c) 

represents 500 nm. Scale bar represents 2.5 µm. 

 

Conductivity measurements were performed as described previously with and 

against alignment (Fig. 4.38). All samples showed a directional dependence. In the 

case of a solution at 30 mg/mL (Fig. 4.38c), there is a significant directional 

dependence. The aligned sample showed a value 0.06 for directional dependence, 

with measurements against alignment being comparable to that of measurements 

performed in the dark. The samples gave similar directional dependence at 5 mg/mL 

(Fig. 4.38a), 10 mg/mL (Fig. 4.38b) and 50 mg/mL (Fig. 4.38d). They all have a 

directional dependence values between 0.25 – 0.28. They therefore have a better 

directional dependence value than the coffee-ring samples and so would indicate that 

the samples are more aligned. 
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Figure 4.38 Photoresponse of samples dried under a magnetic field of a solution of 1 at (a) 

5 mg/mL (b) 10 mg/mL, (c) 30 mg/mL and (d) 50 mg/mL. Black data is in the dark and red 

data is under 365 nm light. Solid red data is against alignment and red dashed data is with 

alignment. 

 

Unfortunately, this method of alignment was not always reproducible. Some samples 

would show no alignment (Fig. 4.39a) or some alignment (Fig. 4.39b). These 

samples would give less directionally dependent photoresponse measurements (Fig. 

4.39c) compared to the very aligned samples (Fig. 4.39d). They also had different 

absolute current values. This irreproducibility could be due to a number of variables. 

The strength of the magnet field could be one factor as the strength varied inside the 

spectrometer. The temperature and humidity of the air could also not be controlled 

inside the spectrometer and so rate of evaporation would vary. This could also affect 

the alignment of the material. 
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Figure 4.39 (a) and (b) Optical microscope images under cross-polarised light of two 

different solutions of 1 at 5 mg/mL dried under a magnetic field. Scale bar represents 50 µm. 

(c) and (d) Photoresponse of the different samples dried under a magnetic field of a solution 

of 1 at 30 mg/mL on different days. Black data is in the dark and red data is under 365 nm 

light. Solid red data is against alignment and red dashed data is with alignment. 

 

A more reproducible method of alignment is therefore needed, with less variable 

parameters. Shear alignment was investigated. Shear happens when you apply stress 

parallel to a solution. There are several ways of applying shear to a solution; shear 

flow,76 mechanical shear,77 oscillatory shear78 etc. As worm-like micellar fibres are 

present in the PBI solutions, if enough shear is applied to the sample then the fibres 

should align parallel with shear.  

 

To see whether the solutions would shear align, a rheo-optics set-up was used.79, 80 

Here, a rheometer where the bottom plate is glass is used, with a camera and a cross-

polarised light source attached used to image the sample. This set up allows us to 

visually monitor what is happening to the solution under shear. The solution was 

placed between the two parallel plates on the rheometer and shear applied by rotating 

the top plate. As the plate rotates, the camera records what is happening. If the 
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solution is bright then alignment has occurred. When the solution is perfectly 

aligned, a Maltese cross is visible. The light intensity of the image is proportional to 

the degree of alignment, as well as the concentration of sample used. This 

measurement was performed on solutions at 5, 10, 20, 30, 40 and 50 mg/mL of 

gelator (Fig. 4.40). These measurements were performed with Dr. O. Mykhaylyk, 

University of Sheffield.  

 

 
Figure 4.40 Images of solution of 1 under cross-polarised light under 100 s-1 shear using a 

25 mm parallel plate with a 0.2 mm gap distance at 25 °C (a) 5 mg/mL, (b) 10 mg/mL, (c) 20 

mg/mL, (d) 30 mg/mL, (e) 40 mg/mL and (f) 50 mg/mL. Scale bar represent 5 cm. 

 

When a maximum shear of 100 s-1 was applied to the samples for 30 seconds using a 

25 mm parallel plate, alignment occurred in all samples. The solution at 5 mg/mL 

(Fig. 4.40a) showed the least alignment under these conditions, with the dullest 

picture, whereas the 40 mg/mL (Fig. 4.40e) showed the most alignment with the 
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brightest, most defined Maltese cross. Less alignment at the lower concentrations 

could be because there is not enough material in solution for optimum alignment, 

whereas at 50 mg/mL has more material and may be too crowded.  

 

The shear alignment images can be further analysed and processed using the image 

analysis software ImageJ. A slice of each image at a 45° angle to the Maltese cross 

was taken and then combined to produce one image (Fig. 4.41c). The parallel plate 

applies a different shear rate to each part of the sample (Fig. 4.41a). This is because 

the outside edge is travelling faster than the middle of the plate, as it has further to 

travel in order to make one rotation.  

 

 
Figure 4.41 Cartoon showing alignment of a solution using (a) parallel plate and (b) using 

cone and plate geometries on a rheometer. (c) A time sliced image of a solution of 1 at 10 

mg/mL under a maximum shear of 100 s-1 for 30 seconds. 

 

Hence, on analysing the images as described, the vertical axis is shear rate and the 

horizontal axis is time. From Fig. 4.41c, it can be seen a shear rate of 10 s-1 is needed 

for alignment as that is where the image is consistently bright. This image also shows 

that alignment happens very quickly from when shear is applied, but also shows 

alignment is lost in milliseconds after the shear is stopped. This loss in alignment is 
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seen more clearly when viewing the images as a video. This quick recovery rules out 

such alignment method as doctor blading, gravitational alignment and spin coating as 

the sample recovers quicker than the solvent can evaporate. It also explains why 

other literature states that alignment of the perylene bisimides is not possible.81 

 

The time sliced image shown in Fig 4.41c is for a solution at 10 mg/mL but all 

concentrations showed very similar results with different intensity of light. To 

overcome the problem of the solution recovering quickly after shear, it was proposed 

that the solution could be gelled slowly under a constant shear using a cone and plate 

geometry shown in Fig. 4.41b. When the shear stopped, the structure would be 

locked in by gelation and all of the sample would have the same alignment. This 

method would remove the variables seen for the magnetic alignment as temperature 

can be set on the rheometer bottom plate, and due to the top plate covering the 

sample, evaporation of water will be slowed down allowing gelation enough time to 

occur. By using cone and plate geometry to perform this shear, the viscosity of the 

sample can be measured, so gelation can be also be monitored. This method could 

also be used to prepare aligned dried solutions by letting the solution completely dry 

whilst under shear. 

 

A solution of 1 at a concentration of 10 mg/mL was used in these experiments as it 

was the lowest concentration that gave a clear Maltese cross (Fig. 4.40). For an 

aligned dried solution, a piece of glass was sellotaped on to the bottom plate of the 

rheometer. The solution was placed on the glass and a 25 mm cone geometry was 

lowered onto the solution so the all the bottom of the geometry was covered. The 

excess solution was removed. A shear of 10 s-1 was applied, as from Fig. 4.41a, this 

was the lowest shear rate that resulted in alignment. A higher shear was not use to 

reduce the chance of damaging the film as the film dried. The shear was applied 

overnight whilst all the water evaporated from the sample. After the solution was 

dry, the glass could be removed from the rheometer and the sample could be viewed 

on the microscope under cross-polarised light. Fig. 4.42a shows a photograph where 

aligned rings of material can be seen. Under cross-polarised light (Fig. 4. 42b, c and 

d), these aligned rings are clearer and more brightly coloured showing alignment of 

the material. This method of shear alignment was very reproducible and gave similar 

images each time performed. 
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Figure 4.42 (a) Photograph of dried solution of 1 after shearing for 16 hours. Scale bar 

represents 1 cm. (b)-(d) Optical microscope images of (a) viewed under cross-polarised 

light. In (b) the scale bar represent 0.5 mm, in (c) the scale represent 0.2 mm and in (d) the 

scale bar represent 50 µm. 

 

Photoresponse measurements were then performed on these samples as described 

previously. Fig. 4.43 shows that the sample has a directional dependence of around 

0.60. This is lower than seen for both the magnetically aligned and coffee-ring 

aligned samples, which have an average directional dependence of 0.32 and 0.25 

respectively. This method however was found to be much more reproducible and 

always gave aligned structures, and the same directional dependence value. This is 

due to there being fewer variables when drying.  
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Figure 4.43 Photoresponse of a shear aligned dried solution of 1. Black data is in the dark 

and red data is under 365 nm light. Solid red data is against alignment and red dashed data 

is with alignment. 

 

Due to this slow evaporation of water, is now possible to try and gel the solution 

under shear. This would result in an aligned gel and therefore would answer whether 

it was alignment of structures giving a lower photoresponse for the dried gels 

compared to the solutions, rather than morphology of the fibres.  

 

When lowering the pH of the sample under shear, a few things need to be taken into 

consideration. The sample needs sufficient time under shear to gel but not too long a 

time that it disrupts the gel structures. The sample does not need to dry under shear 

as gelation should lock in any aligned structures formed. The method of gelation is 

important as shown by Raeburn et al. and Draper et al., who showed not only does it 

matter what type of trigger is used (e. g. pH, solvent switch, metal salts etc.) but even 

within a type of trigger it matter how this is done (e. g. anhydrides, HCl, GdL, 

hydroquinone etc.).46, 82-86  The time a trigger takes to form gel can be monitored by 

pH and rheology. When the pH is below the pKa of this type of gelator, then a gel is 

formed.46 Rheology can be used to see when G´ is approximately an order of 

magnitude above G˝, which is indicative of gelation.87 The time where both these 

occur can be used as a rough guide to when gelation has happened. They will 

however be slightly different to the situation where a constant shear is applied, as a 

different geometry is used to measure the rheology, and also clearly there is an 

applied shear. By shearing on the rheometer using the cone and plate geometry, the 



Chapter 4 

 146 

viscosity of the samples can also be measured. As gelation occurs, the solution 

becomes more viscous as the worm-like fibres extend, thicken and lose charge so are 

able to interact with each other more.88 As these long fibres align, there should be a 

viscosity overshoot where viscosity drops.89 This is seen in polymer solutions as well 

as when performing viscosity measurements on solutions with worm-like micelles,42 

where upon increasing shear rate the viscosity of the samples drops due to the 

structures aligning and fibres interact less with each other.90 As the solution further 

gels, the viscosity data will have little meaning as the sample is no longer a liquid. 

 

Initially, acetic anhydride was investigated as a pH trigger. This trigger works 

similarly to GdL by hydrolysing in water to give an acid.91 Using acetic anhydride 

resulted in the solution gelling too quickly and the shear made them aggregate (Fig. 

4.44a). This was unsuitable for our desired application and so a pH trigger with a 

longer gelation time was needed. GdL was therefore used as it has a slower gelation 

time and so gels did not aggregate upon shear (Fig. 4.44b). As described previously, 

the pH drop was also reproducible and so pH and gelation overtime could be 

compared as seen in Chapter 3. 

 

 
Figure 4.44 Photographs of gels of 1 made at 10 mg/mL prepared on the rheometer plate 

using (a) acetic anhydride and (b) GdL as triggers. The scale bar represents 1 cm. 

 

When using GdL for gelling under shear, the change in viscosity was measured. 

Viscosity data is useful as it shows there is a development of structures in solution 

before any Gʹ and Gʺ values can be recorded (Fig 4.45). Fig 4.45 shows that the 

solution remains roughly the same viscosity as water until 65 minutes when the 

viscosity rapidly increases. During this time, the solution has reached the first pKa at 
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pH 6.7 of the gelator (see Section 4.4 and Fig. 4.49). As pH drops further to the 

second pKa at pH 5.4, the viscosity sharply increases as larger structures start to 

form. At 90 minutes, Gʹ and Gʺ start to increase and gelation occurs. In the viscosity 

data, there is then a decrease in viscosity as the gelling fibres start to align under the 

shear (the viscosity overshoot). The viscosity then increases again as the gel is 

developing further until 130 minutes. After 130 minutes, the viscosity data is not 

reliable due to gelation occurring (viscosity measurements cannot be performed 

meaningfully on gels). From the gelation time sweep data at around 300 minutes, Gʹ 

is an order of magnitude larger than Gʺ and the pH is 3.6 showing gelation has 

occurred. From these data, it can be seen that there are larger structures starting to be 

formed after 60 minutes and gelation has occurred after 300 minutes. Alignment of 

these structures can be seen in the viscosity data at 130 minutes. This means shear 

alignment experiments need to be performed for between 130 and 300 minutes. 

 
Figure 4.45 Development of Gʹ (black data) and Gʺ (grey data) over time during the gelation 

of 1 at a strain of 0.5 % and a frequency of 10 rad/s, compared to change in viscosity (red 

data) and change in pH (purple data) over time. 

 

A shear was therefore applied for samples for between 120 and 180 minutes. When 

they were sheared for less time than this, then gelation had not occurred and the 

sample was still liquid (Fig. 4.46a). Applying the shear for longer than 210 minutes 

resulted in the gel sample being damaged by the shear (Fig. 4.46b). 
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Figure 4.46 Photographs of shear aligned xerogel-1 after shearing for (a) 1 hour 30 minutes 

and (b) 4 hours. Scale bar represents 1 cm. 

 

Gels sheared for 150 minutes showed the same ringed pattern as seen with the dried 

solutions (Fig. 4.47b) but also had denser area of gel in the middle. These samples 

were allowed to dry in air to give shear aligned xerogels. When viewed under cross-

polarised light, they showed aligned structures (Fig. 4.47b to c). This is very 

different to samples not formed under shear (Fig. 4.29b). 

 

 
Figure 4.47 (a) Photograph of the edge of the xerogel 1 after shearing for 2 hours. Scale bar 

represents 1 cm. (b)-(d) Optical microscope images of (a) under cross-polarised light. In (b) 

the scale bar represent 0.5 mm, in (c) the scale represent 0.2 mm and in (d) scale bar 

represent 50 µm. 



Chapter 4 

 149 

When photoresponse measurements were performed on shear-aligned xerogels, they 

showed directional dependence (Fig. 4.48a). This again is different to when they are 

not gelled under shear (Fig. 4.48b). Shear aligned xerogels have a directional 

dependence of between 0.06 and 0.12, compared to xerogels not gelled under shear 

which show a directional dependence of 0.95. This method gave very reproducible 

samples. Not only do shear aligned xerogels show much better directional 

dependence than non-shear aligned xerogels, but they show a better and more 

reproducible directional dependence than magnetically aligned, shear aligned and 

drop-cast dried solutions. This is believed to be due to the fibres being longer than in 

solution state and so are more able to align, as seen in polymers systems. The 

absolute conductivity of the shear aligned xerogels remains similar to non-aligned 

xerogels. This means that alignment of the samples is not why the dried solution is 

more conductive than the xerogels. Hence, the difference in the photoresponse is due 

to different fibre morphology or how densely packed the fibres are rather than how 

aligned the fibres are. This although this needs further work to determine exactly 

what these morphologies are, as well as film thickness and concentration of material. 

These factors could contribute to how far the light can penetrate the sample and how 

much radical anion is generated. 

 

 

Figure 4.48 Photoresponse of xerogel-1 at a concentration of 10 mg/mL (a) gelled under 

shear and (b) not under shear. Black data is in the dark and red data is under 365 nm light. 

Solid red data is against alignment and red dashed data is with alignment. 
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4. 3. Conclusions 
 

Four different PBIs functionalised with L-alanine, L-phenylalanine, L-histidine and L-

valine were synthesised, all of which formed hydrogels at a gelator concentration of 

5 mg/mL. At high pH, each of the gelators forms worm-like micelles in solution. 

When gels and solutions were dried, they formed films that were photoconductive, 

apart from gelator-3 that did not form uniforms films and so measurements could not 

be carried out. The xerogels and dried solution were conductive due to the formation 

of a radical anion that was stable in air for many hours. The dried solutions were 

more conductive than the xerogels. This is thought to be due to a difference in the 

fibre morphologies at high and low pH. The dried solution also showed directional 

dependence due to alignment in the sample. Xerogels and dried solutions could be 

aligned which gave them varying directional dependence depending on which 

method was used. Alignment under a magnetic field was the best method for 

alignment in solution, but was not reproducible. Shear of solution showed that 

solutions aligned very quickly, but then dealigned very quickly after the shear was 

stopped so methods of alignment such as spin coating and doctor blading are 

unsuccessful. Gelling under mechanical shear was the best method of alignment for 

the xerogels, being highly reproducible. This alignment gives a well-defined 

structure that could be used in electronic devices. If another component were added 

to the system, such a p-type gelator like 4,4’-stilbene diphenylalanine discussed in 

Chapter 3, then a well-defined p-n heterojunction could be potentially designed. This 

will be discussed in Chapter 5. 

 

4. 4. Experimental 
 

4. 4. 1 Synthetic Procedures  

 

Typical Synthesis, [N, N’-di(L-valine)-perylene-3,4:9,10-tetracarboxylic acid 

bisimide] (4). 

In a 100 mL Schlenk flask, 0.79 g (1 mmol) of 3,4:9,10-

perylenetetracarboxyldianhydride (PTCDA), 0.47 g (2 mmol) of L-valine and 2.80 g 
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(20 mmol) of imidazole were added. These were mixed and purged with nitrogen for 

10 minutes. The mixture was then heated to 120 °C under nitrogen and left stirring 

for 5 hours at this temperature. The reaction was then cooled to 90 °C and 3 mL of 

deionised water was added. The reaction was left for an hour and then cooled to 

room temperature before filtering to remove unreacted PTCDA. 50 mL of 2 M HCl 

was then added to lower the pH to between 2 and 3. The acidified mixture was 

stirred at 60 °C for 4 hours. The precipitate was then collected by suction-filtration 

and washed thoroughly with acidified water. The dark red solid was dried overnight 

in a vacuum oven and then freeze dried to remove any remaining water. A typical 

yield obtained for all PBIs was between 80-90 %. 

 

The same method was used to synthesise [N, N’-di(L-alanine)-perylene-3,4:9,10-

tetracarboxylic acid bisimide] (1), [N, N’-di(L-histidine)-perylene-3,4:9,10-

tetracarboxylic acid bisimide] (2), and [N, N’-di(L-phenylalanine)-perylene-3,4:9,10-

tetracarboxylic acid bisimide] (3).  

 

Around 2 µL of TFA was added to 1H NMR samples of 2, and 13C NMR samples of 

2, 3 and 4 to improve solubility and visibility in NMR. 

 

1: 1H NMR 400 MHz, (DMSO-d6, 25 ˚C): δ (ppm) = 12.80 (br, 2H;–OH); 8.29 (d, 4 

H); 8.21 (d, 4 H); 5.59 (q, 2 H, J = 7.0 Hz); 1.68 (q, 6 H, J = 7.0 Hz). 13C (100 MHz, 

DMSO-d6, 25 ˚C): δ (ppm) = 171.2 (COOH); 161.9 (C=O); 134.2, 133.4, 130.7, 

127.8, 123.6, 121.8, 119.2 (perylene core C); 48.6 (CH); 14.4 (CH2). MALDI-TOF 

MS: calculated 534.11 Da for [C30H18N2O8]+, found 535.3 Da.  

 

2: 1H NMR 400 MHz, (DMSO-d6 and TFA, 25 ˚C): δ (ppm) = 8.93 (bd, 4 H, J = 

8.3); 8.56 (bd, 4 H, 8.3 Hz); 7.47 (s, 4 H); 5.85 (t, 2 H); 3.73 (d, 2 H, J = 15.0 Hz); 

3.45 (d, 2 H, J = 15.0 Hz). 13C (100 MHz, DMSO-d6 and TFA, 25 ˚C): δ (ppm) = 

169.7 (COOH); 162.3 (C=O); 133.9, 131.3, 129.9, 128.3, 125.2, 123.9, 121.8 

(perylene core C); 52.6 (CH); 23.7 (CH2). MALDI-TOF MS: calculated 666.15 Da 

for [C36H22N6O8]+, found 665.2 Da.  

 

3: 1H NMR 400 MHz, DMSO-d6, 25 ˚C): δ (ppm) = 8.3 (d, 4H); 8.1 (d, 4H); 7.3 (d, 

4H, J = 7.5 Hz); 7.2 (t, 4H, J = 7.5 Hz); 7.1 (t, 2H, J = 7.5); 5.9 (t, 2H, J = 5.3 Hz); 
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3.7 (d, 3.5, J = 5.3 Hz); 3.5 (d, 2H, J = 5.3 Hz). 13C (100 MHz, DMSO-d6 and TFA, 

25 ˚C): δ (ppm) = 170.6 (COOH); 162.1 (C=O); 133.6, 130.9, 129.1, 125.0, 123.4, 

121.6 (perylene core C); 137.9, 128.2, 127.9, 126.4 (aromatic C); 46.6 (CH); 14.4 

(CH2). MALDI-TOF MS: calculated 686.2 Da for [C42H26N2O8]+, found 686.3 Da. 

 

4: 1H NMR 400 MHz, (DMSO-d6, 25 ˚C): δ (ppm) = 8.50 (d, 4 H, J = 8.2 Hz); 8.37 

(d, 4 H, J = 8.2 Hz); 5.20 (d, 2 H, J = 1.3 Hz); 2.75 (qd, 2 H, J = 7.0, J = 1.3 Hz); 

1.29 (d, 6 H, J = 7.0 Hz); 0.81 (d, 6 H, J = 7.0 Hz). 13C (100 MHz, DMSO-d6 and 

trifluoroacetic acid (TFA), 25 ˚C): δ (ppm) = 170.6 (COOH); 162.3 (C=O); 133.4, 

130.9, 127.9, 124.8, 123.3, 121.4, 119.3 (perylene core C); 58.1 (CH); 27.0 (CH2); 

19.1 (CH3); 19.0 (CH3). MALDI-TOF MS: calculated 590.17 Da for [C34H26N2O8]+, 

found 590.0 Da.  

 

4. 4. 2 Instruments and Procedures 
 

Nuclear Magnetic Resonance Spectroscopy (NMR) 

NMR spectra were recorded using a Bruker DPX-400 spectrometer operating at 400 

MHz for 1H NMR and 101 MHz for 13C NMR, in d6-DMSO or D2O. TFA was added 

to some of the samples to increase the solubility as noted above in synthetic 

procedures. 

 
23Na spectra were recorded by Matthew Wallace at 105.86 MHz (23Na) with 1024 

scans, a sweep width of 10 kHz, a 33 us pulse (90 degrees) and a signal acquisition 

time of 0.3 s, giving a total acquisition time of 6 minutes. All samples were freshly 

pipetted from the vials into 5 mm NMR tubes and the spectra taken at 298 K, 20 

minutes after magnetic field exposure. No significant changes were apparent in 

the spectra taken after 5 and 90 minutes magnetic field exposure, so structural 

alignment occurs happens quickly. 

 

Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry 

(MALDI-TOF)  

MALDI-TOF mass spectrometry was carried out within the University of Liverpool 

Biosciences Department using a Waters Micromass M@LDI bench top mass 



Chapter 4 

 153 

spectrometer with a-cyano-4-hydroxy-cinnamic acid matrix. A saturated solution of 

the matrix was made up in 50 % acetonitrile, before applying 2 mL to the target 

followed by a 2 ml of sample followed by a further 2 mL of matrix. The pulse 

voltages used was 3400 V and the source voltage used was 16,000 V. 

 

Preparation of LMWG Solutions  

The gelator was added to 2 mL of water with an equimolar amount of sodium 

hydroxide (0.1 M, aqueous) to a concentration of 5 mg/mL. The solution was stirred 

until all the gelator was dissolved. 

 

Hydrogel Formation  

A pH switch method was used to form the hydrogels. Solutions were prepared as 

above. The solution was then transferred to a vial containing a pre-weighed amount 

of glucono-δ-lactone (GdL) and shaken gently. The sample was then left to stand 

overnight to allow gelation to occur. For 1, 5 mg/mL of GdL was used and for 2, 3 

and 4 3 mg/mL of GdL was used. For gels formed with acetic anhydride, 3 µL of 

acetic anhydride was added to solutions prepared as described above.  

 

Preparation of samples on glass slides  

Samples were prepared by dropping 20 µL of the LMWG solution onto a glass 

microscope slide and then leaving overnight to dry in air. Xerogel samples were 

prepared by forming gels as described above using GdL inside a 1 mL mould. Once 

gelation had occurred, the gel was then removed from the mould and approximately 

0.05 mL of the gel was removed using a scalpel, placed onto a glass microscope slide 

and allowed to dry in air overnight. 

 

Rheological Measurements  

Dynamic rheological and viscosity measurements were performed using an Anton 

Paar Physica MCR101 and MCR301 rheometer. A cup and vane measuring system 

was used to perform frequency and strain sweeps. A cone and plate measuring 

system was used to perform viscosity measurements and gelling under shear. A 

parallel palate measuring system was used for time sweeps. For frequency and strain 

tests, 2 mL of the gels were prepared in 7 mL Sterilin vials and left for 24 hours at 

room temperature before measurements were performed. For viscosity 
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measurements, samples were prepared at high pH as previously mentioned.  For time 

sweeps and gelling under constant shear, the gels were prepared in a vial and 

transferred onto the bottom plate. All experiments were performed at 25 °C.  

 

Frequency sweep: Frequency scans were performed from 1 rad/s to 100 rad/s under a 

strain of 0.5 %. The shear modulus (storage modulus (Gʹ) and loss modulus (Gʺ)) 

were read at 10 rad/s. These measurements were done within the viscoelastic region 

were Gʹ and Gʺ  were independent of strain amplitude. 

 

Strain sweep: Strain scans were performed from 0.1 % to 100 % with a frequency of 

10 rad/s. The critical strain was quoted as the point that Gʹ starts to deviate for 

linearity and ultimately crosses over the Gʺ, resulting in gel breakdown. From this 

data, a strain of 0.5 % used for measuring the frequency sweep was in the 

viscoelastic region. 

 

Viscosity measurements: Viscosity measurements were performed using a 75 mm 

cone and plate. 1 mL solutions were transferred onto the plate for measurement. The 

viscosity of each solution was recorded under the rotation shear rate varying from 1 

to 100 s-1.  

 

Gelling under shear and shear aligning: Shear aligning experiments were performed 

using a 25 mm cone geometry. A constant shear rate of 10 s-1 was applied to the 

samples and a viscosity measurement recorded every 30 seconds. For shear aligned 

solutions these measurements were done for 16 hours. For shear aligned gels this was 

done for between 2 and 3 hours. 

 

Time sweeps: Time sweeps were performed with a 50 mm plate with a plate gap of 

0.8 mm. Tests were performed at an angular frequency of 10 rad s-1 and with a strain 

of 0.5 %. The top plate was flooded with mineral oil to prevent the sample from 

drying. 

 

Rheo-Optics: Measurements were performed using a RheoOptics- Rheo Micrsocope 

form Anton Paar at the University of Sheffield. They were performed using a 25 mm 

parallel plate with a gap distance of 0.2 mm at a maximum shear rate of 100 s-1 for 
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30 seconds. A total of 320 frames were taken at 0.2 seconds per frame. The light 

source was at a dial of 270 degrees with a gain of 23 and an exposure of 65 ms. 

These measurements were carried out at the University of Sheffield with Dr. O. 

Mykhaylyk. 

 

pH Measurements 

A FC200 pH probe (HANNA instruments) with a 6 mm x 10 mm conical tip was 

used for pH measurements. The stated accuracy of the pH measurements is ±0.1. For 

pH measurement during gelation pH was recorded every minute until a gel was 

formed. The temperature was maintained at 25 °C during the titration by using a 

circulating water bath. 

 

“Apparent” pKa Measurements 

A FC200 pH probe (HANNA instruments) with a 6 mm x 10 mm conical tip was 

used for pH measurements. The stated accuracy of the pH measurements is ±0.1. The 

pKa values of the gelators were determined via the additions of aliquots of 0.1 M 

aqueous hydrochloric acid. Measurements were recorded after each addition of HCl 

and a stable value was reached. To prevent a gel forming, the solutions were gently 

stirred using a stirrer bar, so keeping the sample a liquid during the “titration” 

process. The plateaus of the pH indicates the two pKa of this gelator (Fig. 4.49). 

Temperature was kept at 25 °C during the titration by using a water bath. 

 
Figure 4.49 Decrease in pH of 1 after addition of HCl (0.1 M). Plateaus show the two pKas of 

the gelator. 
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Scanning Electron Microscopy 

SEM images were obtained using a Hitachi S-4800 FE-SEM. Gels and solutions at 

high pH were deposited onto glass cover slips which were stuck onto aluminium 

SEM stubs and left to dry for 24 hours. The images were collected by Dr. Tom 

McDonald. 

 

Powder X-Ray Diffraction (pXRD)  

Gel samples were prepared via the pH switch method and left to dry completely in 

air. The samples were ground before being measured. Solution samples were also 

dried in air and ground before being measured. 

 

Fluorescence Spectroscopy  

Fluorescence spectra were collected using a Perkin Elmer Fluorescence Spectrometer 

LS55. Emission and excitation spectra were recorded in 1.0 cm pathlength cuvettes 

with slit widths of 2.5 nm and 2.5 nm at a scan rate of 100 nm/min. Emission spectra 

were collected between 200 nm and 800 nm, exciting at 490 nm and 365 nm. Spectra 

were recorded at pH 11 and pH 3 at a concentration of 0.05 mg/mL. 

 

Profilometry  

Profilometry measurements were carried out using an Ambios XP-200 profilometer. 

Samples were prepared using a mask, or by cutting the sample with a scalpel to get a 

clean edge. 

 

UV-Vis-NIR Absorption Measurements  

Solution UV-Vis absorption data was measured using a Thermo Scientific Nanodrop 

2000/2000c spectrophotometer. The spectrophotometer was used in cuvette mode 

were samples were prepared in PMMA plastic cuvettes with a pathlength of 1.0 cm. 

Aqueous samples were prepared at high pH using equimolar amounts of 0.1 M 

aqueous NaOH solution to gelator and made up to 2 mL with distilled water. A 

concentration of 5 mg/mL of a gelator was used for aqueous solutions and a dilution 

series was made for measurements. Gels were made by the pH switch method and 

pipetting around 100 µL of the solution whilst still liquid into a cuvette. The open 

cuvette top was then covered and laid on its side whilst it gelled overnight. This 

formed a thin layer of gel on one side of the cuvette which could be measured. 
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Solid UV-Vis-NIR absorption data were obtained using a Shimadzu UV-2550 

UV−Vis spectrophotometer running the UV Probe software, version 2.34. Spectra 

were measured either up to 700 or 1400 nm, with scan speed set to medium and 

using a slit width of 5.0 nm in transmission mode. Samples were prepared as 

previously mentioned with GdL. This gel was then transferred onto a glass slide and 

allowed to dry in air overnight in air to form a thin film xerogel.  

 

For solution UV-Vis-NIR measurements samples were prepared in a sealed degassed 

quartz cuvette with a pathlength of 1 mm.  

 

Thermogravimetric analysis (TGA)  

TGA was carried out on a TA Instruments SDT Q600 TGA machine using a constant 

air flow of 100 mL/min. Samples were heated to 120 ºC with a heating rate 10 

ºC/min. The samples were kept at 120 ºC for 20 minutes to remove any water, then 

ramped to 200 ºC at a heating rate of 10 ºC/min. 

 

Fourier Transformed Infrared Spectroscopy (FTIR)  

IR spectra were collected on a Bruker Tensor 27 FTIR spectrometer at a resolution of 

2 cm-1 with spectral averaging over 64 scans. Measurements were collected using the 

ATR accessory before and after irradiation of UV light. Samples were irradiated for 

a total of 3 days. 

 

Optical Microscopy under Cross-Polarised Light 

Optical microscope images were collected using a Nikon Eclipse LV100 microscope 

with a Nikon TU Plan ELWD 50x/0.60 lens attached to an Infinity2-1C camera, with 

both polariser on. Samples for optical microscopy were prepared on glass 

microscope slides and allowed to dry for 24 hours before imaging. 

 

Photoconductivity Measurements  

Photoconductivity measurements were performed using a Palmsens3 Potentiostat 

operating in a two electrode configuration in the absence of a supporting electrolyte. 

An Applied Photophysics 150 W Xenon arc lamp was used for the ‘light’ 

experiments with a spot size of 2 cm2. A 365 nm LED (LedEngin Inc, LZ1-10U600) 

with a light source powered by a TTi QL564P power supply operating at 1.0 W was 
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also used as a light supply. A 10 mL quartz cuvette filled with water was used as an 

IR filter. Dark experiments were performed in an enclosure in air. Linear sweep 

measurements were recorded from -4 V to 4 V at a scan rate of 0.05 V/s and a 

preconditioning step at 0.002 V for 2 seconds. Xerogels were prepared via the pH 

switch method as previously described. Once the gels were formed approximately 

the same volume of each gel could be placed onto a glass slide between two silver 

electrodes spaced 3 mm apart. The silver electrodes were made using silver paste 

which attached copper wires to the glass slide. The gel was then allowed to dry in air 

overnight to form a xerogels, shown in Fig. 4.50. Epoxy resin glue was placed over 

the silver electrodes. Again, this was left to dry overnight. 

 
Figure 4.50 Experimental set up for measuring the photoconductivity of xerogels and dried 

solutions. 

 

The counter and reference electrode clips were connected to one copper wire and the 

working on the other copper wire to make a two-electrode experiment. Dried 

solutions at pH 10 were prepared as previously mentioned but placed between the 

copper wires on the glass slide. For ‘on-off’ experiments, a cover was placed over 

the lamp for ‘off’ and then removed for ‘on’. 

 

For directional dependence measurements silver electrodes were placed 3 mm apart 

with and against the alignment of the samples, this was determined using the optical 

microscope to place the electrodes. For not aligned samples electrodes were places 

left and right of the sample and at the top and the bottom of the sample as shown in 

the Fig. 4.51. 
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Figure 4.51 Experimental set up of conductivity of aligned samples. Silver electrodes are 

placed on all sides of the sample. Arrows indicate the direction of the measurement taken. 

 

Wavelength Response Measurements  

Samples were prepared on microscope slides between to two silver electrodes as 

previously mentioned. The light source used was a stabilized 75 W Xenon lamp 

coupled to a monochromator (OBB Corp., set to 4 nm resolution). Current was 

measured using a Palmsens3 potentiostat operating with a two using electrode 

configuration in the absence of a supporting electrolyte. Measurements were ran at 

0.05 V/s for 2000 seconds. The light source was switched on at 100 seconds and the 

current was allowed to reach a plateau so that a change in current could be recorded. 

The sample was then put back in the dark and allowed to return to the ‘off’ state 

before another measurement was recorded. The intensity of the light at each 

wavelength was measured using a photodiode so that results could be scaled.  

 

Photochromism  

A 365 nm LED with a light source powered by a TTi QL564P power supply 

operating at 1.0 W was used as the light supply. Samples were placed inside the UV-

Vis-NIR spectrometer and the light was placed around 5 cm away from the samples 

whilst spectra were recorded. The incident light intensity on the sample was 

measured to be approximately 1 mW/cm2. Samples were irradiated until intensity of 

the new peaks plateaued. The lamp was switched of and spectra were taken every 

minute for the first half an hour, and then 5 minutes until peaks in the spectra had 

returned to original intensity.  

 

Chemical Reduction of PBIs  

Chemical reduction of 1 in solution was carried out by adding sodium dithionite. 40 

mL of 0.125 mg/mL of LMGW 1 in pH 10 water were added to a 100 mL round 

bottom flask and sealed with a subaseal. The solution was degassed with argon for 

15 minutes. Sodium dithionite was added in 10 mg portions by carefully removing 
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the seal and quickly adding it to the solution and replacing the seal whilst under 

argon. Samples for UV-Vis-NIR were taken by removing 100 µL of solution with a 

syringe and placed in a sealed degassed quartz cuvette with a pathlength of 1 mm. 

 

Spin Coating 

The spin coater used was a Laurell Technologies Corporation WS-650 Series Spin 

Processor. Spin coating was performed using 50 µL of solution 1 at varies 

concentrations on glass cut to size. Samples were span at 800-10,000 rpm for 30-60 

seconds. 

 

Magnetic Alignment 

The superconducting magnet used is a wide bore 9.4 T magnet of a Bruker Avance II 

spectrometer. The shim stack was removed to widen the effective bore of the magnet 

and allow the sample to be brought closer to the magnet centre. The cradlein which 

the samples were placed is a 65 mm diameter plastic lid which is suspended by nylon 

threads (Fig. 4.52a and b below). A styrofoam insert is used to provide a level base. 

Glass slides were cut to length and stuck onto the Styrofoam with sticky tape, 

typically three at a time. 10 uL of PBI-A solution was pipetted and dropped onto 

slide from height of ca. 2 cm. The sample was lowered down until it rested on the top 

of the NMR probe (Fig. c below). The samples were left to dry for at least two hours 

in field. They were in magnet within three minutes of transferring solutions to 

slides. There was no temperature control so samples were dried at room temperature. 

 
Figure 4.52 Photographs of (a) cradle with samples placed on glass slides. (b) cradle 

attached to fishing wire (c) cradle being lowered into the spectrometer. 
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5. 1. Introduction 
 

Organic photovoltaic (OPV) devices and other photovoltaic devices work by using p-

n heterojunctions.1 Heterojunctions consist of two semi-conducting materials with 

different bands gaps.2 These two different materials are a positively doped material 

(p), also known as an acceptor, and a negatively doped material (n), also known as a 

donor. When these are combined, they can be used to convert light energy into a 

direct current. This happens by light energy exciting an electron in the highest 

occupied molecular orbital (HOMO) in the n-type material to its lowest unoccupied 

molecular orbital (LUMO) (Fig. 5.1a).3 This can be called an exciton, which is 

considered as an electron hole pair. This electron hole pair is separated by an 

effective field, which is created by the p-n heterojunction and diffuses across the p 

type material (Fig. 5.1b). The electron can then cross the junction to the lower energy 

conductance band of the n-type material, leaving a positive charge or hole in the p-

type. This creates a negative charge in the n-type (Fig. 5.1c). As a result, a space 

charge region is created as charges build up on either side of the junction leading to 

an electric field as electrons and holes are transported through the materials (Fig. 

5.1d) and then are collected at the electrodes (Fig. 5.1e).4 It should be noted that 

absorption of a photon can happen in both the p and n-type materials depending on 

their optical properties. 

 
Figure 5.1 A simplified cartoon of a p-n heterojunction showing how a current is 

generated (a) exciton formation, (b) exciton diffusion, (c) charge separation, (d) 

charge transport and then (e) charge collection. 
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OPVs can be classified by what makes up these heterojunctions, the three most 

common being small molecules, polymers and inorganic-organic hybrids which are 

made up of polymers or dye molecules with an inorganic semi-conductor.5 The two p 

and n materials need to be tuned so that this process can occur easily and efficiently. 

By tuning the band gap of the material, more light can be used to create the exciton 

and so light conversion increases. The conduction band in the acceptor material (n-

type) needs to be lower than that of the donor material (p-type) so that electrons can 

cross the heterojunction.6-8 Electron and holes need to be able to move easily through 

the materials to the electrodes without recombination and materials should be kept as 

thin films to give short electron diffusion pathways. Using small molecules and 

polymers that are conjugated allows electron transfer via alternating double bonds.3, 

9, 10                            

 

These p-n heterojunctions can be further classified as flat-heterojunction solar cells, 

bulk-heterojunctions and dye sensitised solar cells (Fig. 5.2). Flat-heterojunctions are 

where the p and n materials exist in two separate layers that are deposited onto 

indium tin oxide (ITO) coated glass and topped with a metal electrode.11 Bulk-

heterojunction solar cells (BHJs) are where a blend of p and n materials is deposited 

onto the ITO coated glass and again topped with a metal electrode.12, 13 Dye 

sensitized solar cells consist of a fluorine-doped tin oxide (FTO) coated with 

mesoporous inorganic semiconductor such as titanium dioxide and a single layer of 

dye molecules. This dye layer is then covered in another platinum coated FTO 

substrate and an electrolyte injected between the two substrates.13, 14 

 

 
Figure 5.2 Different types of p-n heterojunctions. 
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Problems with these organic solar cells have been the photo- and chemical stability 

of the cells and overall efficiency to convert light.10, 12, 15, 16 Combating these 

problems can be done a number of ways, such as by tailoring the small molecules or 

polymers used to make up the p and n-type materials for better charge transfer, 

charge transport and light harvesting. The use of self-assembly has been used to 

overcome some of these problems. Self-assembled structures have good 

HOMO/LUMO overlap due to π-stacking and so increased charge transfer and 

mobility.17, 18 Dye based gelator molecules self-assembled so can increase light 

harvesting by tuning the molecules.19-21 By using self-sorted systems of 

multicomponent p- and n-type type gelators, well defined π-stacked fibres could 

provide a well-defined bulk p-n heterojunction.22, 23 

 

As PBIs form long fibres in solution and can gel at low pH as shown in Chapter 4, by 

using a mixed gelator system with something that could act as a p-type material, such 

as the stilbene based gelator in Chapter 3, then it could be possible to create a self-

assembled p-n heterojunction hydrogel. This could be achieved whereby the two 

fibres meet in the entangled network.22 By using GdL for a slow pH switch method 

with an n-type gelator and p-type gelator both with different pKas,24-26 it should be 

possible to form a multicomponent self-assembled bulk-heterojunction as shown in 

Chapter 3. These fibres could then interact in different ways. The two different fibres 

could wrap around each due to hydrophobicity of both fibres, creating a large surface 

area heterojunction (Fig. 5.3a). Alternatively, fibres could have little interaction with 

each and so would only have a p-n heterojunction where the two fibres meet (Fig. 

5.3b).22 It has been shown that having the donor and acceptor material too close to 

each other prevents long range order and efficient electron transfer through the 

material so the interactions in Fig. 5.3b would be more preferable.23  
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Figure 5.3 Cartoon showing the possible interactions of two self-assembled fibres, 

(a) shows lots of interaction and (b) little interaction. Where the two fibres meet is a 

possible p-n heterojunction. 

 

There are many examples of PBIs being used within polymer based gels, but few 

using low molecular weight gelators (LMWGs).9, 23, 27, 28 Polymer systems often have 

poor monodispersity and defects that affect the conducting properties.23 By using 

self-assembled small molecules, it is possible to create more monodisperse fibres and 

good HOMO/LUMO overlap. The few examples using LMWGs are based on 

organogels, again due to the insolubility of the PBIs. Sugiyasu et al. used PBI and 

thiophene based gelators.22 They used a heat-cool method to prepare a self-sorted 

organogel using chloroform. Another organogel based system used by 

Prasanthkumar et al. used PBI and trithienylenevinylene, again using a heat-cool 

method for self-assembly.29 Lu and co-workers used 2,3-dimethyl-5,8-di(thiophen-2-

yl)quinoxaline and aminocarbazole units to prepare a donor – acceptor organogelator 

systems.30 These non perylene based gels were prepared using tetrahydrofuran 

(THF), (dimethylsulphoxide) DMSO and dimethylformamide (DMF) and a heat cool 

method, again demonstrating water solubility is an issue. To increase solubility, large 

alkyl chains are often used, but these are often attributed to poor performance due to 

them being insulating.31 Martin and co-workers co-assembled a perylene bisimide 

and a �-extended tetrathiafulvalene into a hydrogel using opposing charges on the 

molecules.32 They reported these co-assembled structures give long lived separated 

charge states due to supressed recombination by the structures. 
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By using a water-soluble PBI gelator (Chapter 4) (Fig. 5.4 (1)) and a stilbene-based 

gelator (Chapter 3) (Fig. 5.4 (2)), a pH switch method can be used to form hydrogels. 

This would allow self-assembly of the two molecules into individual fibres using the 

slow hydrolysis using GdL. As the two molecules have carboxylic acid groups to 

improve the solubility in water rather than long alkyl chains this should help improve 

the performance of the p-n heterojunctions.  

 
Figure 5.4 Molecular structure of gelator 1 and 2. 

 

5. 2. Results and Discussion 
 

5. 2. 1. Using hole scavengers 

 

Hole scavengers can also be used to test whether the n-type material can be used 

within a p-n heterojunction. This is due to the hole scavenger being able to act as an 

electron donor, and therefore testing whether the n-type material is able to accept an 

electron which is a crucial property of the n-type material. Hole scavengers have also 

been used in PBI films to improve the performance of conductive films.33 They have 

also been used to reduce the energy needed to cause a response from the sample due 

to better charge separated states.34, 35 This would potentially allow less energetic 

wavelengths to be used, and so be visible light responsive rather than UV responsive, 

which is needed for OPVs. Hole scavengers work by providing electrons which fill 

the hole created by the exciton formation. These are most commonly used in H2 

evolution.36, 37 This prevents recombination of the electron hole pair and so a greater 

conductivity.36 It also allows a less energetic wavelength to be used as the exciton 

created does not to be as physical separated as the hole scavenger prevents 

recombination of the charges. If hole scavengers work to improve the wavelength 
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preference and performance of the n-type perylene film, then so would a p-type 

material. 

 

A film of dried solution of 1 from Chapter 4 was prepared at 5 mg/mL and cast using 

a mask as described in Section 4. 3. They were prepared on glass small enough to fit 

a quartz cuvette that could be sealed with a rubber seal. Silver electrodes were placed 

either side of the thin film and copper wires were attached that were sufficiently long 

to fit out of the cuvette to be connected to a potentiostat. The sealed cuvette allows 

the films to be under an atmosphere of a hole scavenger. The film can then be 

irradiated with different wavelengths of light and the photoresponse measured. The 

response under air was measured for wavelengths from 365 nm to 628 nm. The film 

was then placed under an atmosphere of diethylamine, triethylamine, 

diethanolamine, or triethanolamine and the response under various wavelengths 

recorded. Different hole scavengers will have different effects on the systems due to 

the volatility of the hole scavenger, the ability to penetrate the film and the ease of 

the electron donation to the sample. Fig 5.5 shows the wavelength response under 

diethylamine (Fig. 5.5a), triethylamine (Fig. 5.5b), diethanolamine (Fig. 5.5c), and 

triethanolamine (Fig. 5.5d). The response in air was measured at different 

wavelengths and then the same sample was exposed to the hole scavenger and again 

response under different wavelength was measured. All samples under a hole 

scavenger atmosphere show the greatest response at 400 nm. They all allowed a 

greater current to pass across them, showing that the hole scavenger works.33 
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Figure 5.5 Wavelength response of dried solution of 1 under an atmosphere of 

different hole scavengers compared to the same sample in air (green data), (a) 

diethylamine, (b) triethylamine. (c) diethanolamine and (d) triethanolamine  

 

When comparing all the data under an atmosphere of the different hole scavengers 

and in air (Fig. 5.6) the response under different wavelengths was then scaled by the 

number of photons and then normalised. Ethanolamine gave the greatest response at 

400 nm than the other samples, compared to 325 nm under air. Diethanolamine also 

gives a response at 470 nm, whereas in air the sample gave no response at this 

wavelength.  Triethylamine and triethanolamine gave similar responses to each other 

and diethylamine gave the smallest response at 400 nm. This is due to the different 

electron donating properties of the different hole scavengers.37 
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Figure 5.6 Wavelength response of dried solution of 1 under air (green data), 

diethylamine (red data), triethylamine (pink data) diethanolamine (blue data) and 

triethanolamine (black data). Data has been scaled to the number of protons and 

then normalised. 

 

Unlike in Chapter 4, when comparing the wavelength response to the UV-Vis 

absorption of the dried solution of 1, the data look more like what is expected (Fig. 

5.7). The maximum absorption is more similar to the wavelength giving the largest 

response. This also is encouraging as it suggests that by using a p-type material, then 

it would possibly be able to donate an electron into the n-type and so creating a p-n 

heterojunction. The shift in wavelength preference into the visible region is 

promising for the use in OPVs.14 By tailoring the p-type material, the wavelength 

preference may also be changed. 
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Figure 5.7 Dashed data is the wavelength response of dried solution of 1 under air 

(green data), diethylamine (red data), triethylamine (pink data) diethanolamine (blue 

data) and triethanolamine (black data). Solid data is UV-vis absorption spectra of a 

dried solution of 1. 

 

After the samples had been exposed under the hole scavenger atmosphere, they were 

placed back in air. The response under 365 nm was recorded again to check whether 

the films had been altered by the hole scavenger. Fig. 5.8 shows that the sample 

gives the same response before and after being placed under an atmosphere of the 

hole scavenger and then allowed to recover in air. 

 
Figure 5.8 Response of a dried solution of 1 to 365 nm LED before the use of 

triethanolamine (solid red data), after triethanolamine and then allowed to recover in 

air (dashed red data) and in the dark (black data). 
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5. 2. 2. Self-sorted p and n-type gelator systems 

 

A solution at high pH of 1 at 10 mg/mL was added in equal volume to a solution of 2 

at 10 mg/mL to give a solution of 1 + 2 at a total concentration of 10 mg/mL (5 

mg/mL of each gelator). 10 mg/mL of GdL was then added to slowly lower the pH to 

around 3.8 and left to gel overnight to give a self-supporting gel.38 Gel-1,2 showed 

properties typical of LMWGs, which broke at low strain and Gʹ and Gʺ being 

independent of frequency. The gel broke at a strain of 1.5 % strain (Fig. 5.9a). Gel-

1,2 had a Gʹ of ~9000 Pa and Gʺ of ~ 1200 Pa (Fig 5.9b). Repeat measurements gave 

similar results. 

 

 
Figure 5.9 Rheology of gel 1,2 (a) strain sweep performed at 10 rad/s and (b) 

frequency sweep performed at 0.5 % strain. Both tests were performed at 25 °C. 

Full circles represent Gʹ and open circles represent Gʺ. 

 

The strength of gel-1,2 differed from gel-1 and gel-2 (Fig. 5.10). Gel-1,2 gave a gel 

with properties stronger than gel-1 but weaker than gel-2. It might be expected that 

the gel would be dominated by the stronger network. It could also be that the gelators 

have co-assembled rather than self-assembled, but it is unclear just from rheological 

properties of the final gels.24 This difference in gel strength does demonstrate that the 

networks are influenced by each other. Differences in gel properties may also be due 

to there being a total of 10 mg/mL rather than 5 mg/mL. 
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Figure 5.10 Frequency sweeps of gel-1 (blue data), gel-2 (red data) and gel-1,2 

(black data). Tests were performed at a strain of 0.5 % strain and at 25 °C. Full 

circles represent Gʹ and open circles represent Gʺ. 

 

When looking at all three of these gels under the SEM (images collected by Dr. T. 

McDonald, University of Liverpool) small differences could be seen in the 

multicomponent gel (Fig. 5.11a) compared to the single component gels (Fig. 5.11b 

and c). Gel-1 seems to have thicker fibres (33 nm ± 10 nm) than gel-2 (18 nm ± 5 

nm). Whereas fibres with different thicknesses can be seen in gel-1,2 (33 nm ± 3 nm 

and 15 nm ± 4 nm, shown by arrows in Fig. 5.11a), but this is not conclusive and 

could be due to drying effects.39 This was also the case in Chapter 3.  

 

 
Figure 5.11 SEM images of (a) gel-1,2, (b) gel-1 and (c) gel-2. Scale bars represent 

500 nm. 
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To further investigate whether the two gelators were self-assembled or co-assembled, 

the same experiments were carried out as done in Chapter 3. Rheological time 

sweeps, change in pH and 1H NMR were utilised to investigate this. 

 

Rheology time sweeps and change in pH (Fig. 5.12) during gelation shows that at 

around 12 minutes there is an increase in Gʹ and Gʺ as the pH reaches 6.6. This 

corresponds to the first pKa of gelator-1 shown in Chapter 4. At this point, weak 

structures must be forming which are not strong enough to form a gel. Gʹ and Gʺ 

further increase when the pH reaches 5.8 after 35 minutes; this is the pKa of gelator-2 

as shown in Chapter 3. At the point Gʹ is approximately an order of magnitude larger 

than Gʺ and so gelation is occurring.40 This increase in rheological properties slows 

down and plateaus until 120 minutes when the pH has reached 5.4. There is then 

another increase in Gʹ and Gʺ until 700 minutes were it plateaus again. Fig. 5.12 

shows there are multiple stages in the gelation of 1,2. This could be due to the 

different gelators assembling at different times.  

 
Figure 5.12 Monitoring Gʹ (black data), Gʺ (grey data) and pH (purple data) over 

time. Time sweeps were performed at a strain of 0.5 %, 10 rad/s and at 25 °C. 

 

When comparing the development of Gʹ and Gʺ over time for the different systems 

(Fig. 5.13), the gelation of gel-1,2 occurs quicker than for that of the single 

component gels. This may be due to there being more material in solution. The 
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gelation of gelator 1 is much slower than for 1,2 or 2, but there is an increase in Gʹ 

and Gʺ in gel-1,2 at the time gel-1 is gelling. This could indicate there are self-sorted, 

but again this data is not conclusive by itself. 

 

 
Figure 5.13 Comparison of change in Gʹ and Gʺ over time for gel-1,2 (black data is 

Gʹ and grey data is Gʺ), gel-1 (dark blue data is Gʹ and light blue data is Gʺ) and gel-

2 (dark red data is Gʹ and red data is Gʺ). Time sweeps were performed at a strain 

of 0.5 %, 10 rad/s and at 25 °C. 

 

A closer look at change in pH was carried out by small additions of 0.1 M HCl rather 

than GdL. When using GdL, a plateau is not often seen as the change is pH is quite 

slow and there is buffering from the systems. If the gelators are self-sorting, then 

separate plateaus should be seen for each of the gelators.24 Fig. 5.14a shows that that 

there are three different plateaus at pH 6.6, 5.8 and 5.4 corresponding to the two pKas 

of gelator 1and the one pKa for gelator 2. This becomes more clear when time is 

plotted on a log scale (Fig. 5.14b). 
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Figure 5.14 Change in pH upon the addition of 0.1 M HCl in a solution of 1,2 (a) on 

a linear scale and (b) on a log time scale. Dashed lines have been added to make 

the plateaus more clear. 

 

When looking at gelation of gel-1,2 using 1H NMR, the disappearance of peaks 

corresponding to each gelator can be monitored, (data collected by Edward Eden, 

University of Liverpool) so the time at which each molecule gels and recorded and 

compared to pH. Gelator-1 (Fig. 5.15a) starts to assemble at 40 minutes at a pH of 

around 6.5 (around the first pKa of gelator-1) and the integral decreases slowly until 

250 minutes at a pH of 5.4 (the second pKa of gelator). After this point there is a 

larger decrease until 430 minutes and pH 5.0. After 430 minutes, there is a sharp 

decrease in the integral intensity and so gelation is happening. The integral has 

almost completely disappeared at 760 minutes and pH 4.3. For gelator-2, the 

intensity of its integral starts to sharply decrease after 75 minutes and at pH 5.8 (the 

pKa of gelator-2) as seen in Fig. 5.15b). The intensity continues to decrease until 420 

minutes and pH 3.7. 

 
Figure 5.15 Change in intensity of peaks 1H NMR during gelation of 1,2 of (a) CH3 

peak at 1.60 ppm from gelator-1 (blue data) and (b) CH2 at 3.05 ppm from gelator-2 

(red data) compared to change in pH during gelation of 1,2 (purple data). 
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When comparing the change in the integrals from each gelator on a log time scale 

(Fig. 5.16), it can be seen that gelator-1 is starting to assemble before gelator-2 but 

does not seem to be gelling. This could be due to the formation of some self-

assembled structure which is still NMR visible. Gelator-2 starts to gel at its pKa 

before gelator-1. Gelator-1 then starts to gel after gelator-2. This data again suggests 

that the molecules are self-sorting rather than co-assembling.24 

 
Figure 5.16 Change in intensity of peaks 1H NMR during gelation of 1,2 of CH3 peak 

at 1.60 ppm from gelator-1 (blue data) and CH2 at 3.05 ppm from gelator-2 (red 

data) compared to change in pH during gelation of 1,2 (purple data). 

 

The assembly of aggregates seen by 1H NMR of gelator-1 before gelation was 

occurring was further investigated by measuring the viscosity during gelation. If 

aggregates are formed, then the solution is expected to become more viscous. Fig. 

5.17 shows the solution becomes more viscous before any Gʹ or Gʺ can be recorded 

and so before gelation has occurred. This means that structures are assembling before 

gelation has occurred and agrees with 1H NMR data for gelator-1. This self-assembly 

could be the formation of the worm-like micelles as seen in Chapter 4. The viscosity 

overshoot at around 100 minutes also suggests that these systems could be shear 

aligned as in Chapter 4. 
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Figure 5.17 Comparison of change in Gʹ and Gʺ over time for gel-1,2 (black data is 

Gʹ and grey data is Gʺ to change in viscosity (green data) whilst gelling. Time 

sweeps were performed at a strain of 0.5 %, 10 rad/s and at 25 °C. Viscosity 

measurements were performed at 5 s-1. 

 

To make sure that the increase in viscosity was due to gelator-1 rather than gelator-2 

or a co-assembled aggregate of 1 and 2, the single component systems’ viscosity 

whilst gelling were also compared to the rheology (Fig. 5.18). Fig. 5.18a shows that 

gelator-1 assembles before rheology can be measured. The viscosity data for gelator-

2 (Fig. 5.18b) shows an increase at the same point as as Gʹ and Gʺ do. This indicates 

that the increase in viscosity in the gel-1,2 is due to gelator 1 assembling into 

aggregates before gelling. 

 
Figure 5.18 Comparison of change in Gʹ and Gʺ over time for gel-1 (dark blue data 

is Gʹ and light blue data is Gʺ) and gel-2 (dark red data is Gʹ and red data is Gʺ) to 

the increase in viscosity of the gelling system (black data). Time sweeps were 

performed at a strain of 0.5 %, 10 rad/s and at 25 °C. Viscosity measurements were 

performed at 5 s-1. 
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When all this data is compared and looked at as a whole, it seems to be that the 

molecules are self-sorting rather than co-assembling (Fig. 5.19). Gelator-1 assembles 

into aggregates first at its first pKa. This does not cause an increase in rheological 

properties but does increase viscosity and makes them less visible in the 1H NMR. 

Gelator-2 assembles at its pKa and viscosity increases and it rapidly disappears from 

the 1H NMR as it gels. Gelator-1 then starts the gel at its second pKa and then 

disappears from the 1H NMR and the rheology increases further. 

 

 
Figure 5.19 Monitoring gelation of 1,2 over time. Change in intensity of peaks 1H 

NMR during gelation of 1,2 of CH3 peak at 1.70 ppm from gelator-1 (blue data) and 

CH2 at 3.05 ppm from gelator-2 (red data) compared to change in pH during gelation 

of 1,2 (purple data). Change in Gʹ and Gʺ over time for gel-1,2 (black data is Gʹ and 

grey data is Gʺ), Time sweeps were performed at a strain of 0.5 %, 10 rad/s and at 

25 °C. 

 

5. 2. 3. Photoresponse of multi-component system 

 

Solutions and gels were prepared at various ratios of gelator-1 to gelator-2. These 

were prepared at 1:1, 4:3, 2:1 and 4:1 to see how much of gelator-2 was needed to 

change the photoresponse of the films. Thin films were prepared using a mask as 

done in Section 5. 2. 1. and measured in air. Silver electrodes were placed either side 

of the sample and attached to a potentiostat using copper wires. The samples were 
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viewed under SEM (collected by Dr. T. McDonald, University of Liverpool). Fig. 

5.11 shows that the gels mixed well and there is not obvious phase separation of the 

two networks. However for the solutions of 1,2, phase separation occurred upon 

drying (Fig. 5.20). This shows that the dried solutions would be unsuitable for 

photoconductivity measurements as the two systems are not interpenetrating and so 

may not interact with one another. 

 

 
Figure 5.20 SEM images of a mixed solution of 1 and 2 (a) scale bar represents 1 

µm and (b) scale bar represents 5 µm. 

 

For each of the ratios of gelator-1 to gelator-2 xerogels, the photoresponses were 

measured (Fig. 5.21). All ratios of gelator-1 to gelator-2 now show the greatest 

response at 400 nm. Ratios of 4:3 and 4:1 show similar responses to each other (Fig. 

5.21b and d). They show the greatest response at 400 nm and very little response at 

365 nm and at 450 nm and negligible responses at the other wavelengths. The ratio 

of 2:1 (Fig. 5.21c) again showed the greatest response to 400 nm and a very small 

response to 365 nm. This sample also showed responses at 450 nm and 470 nm that 

were larger than the response at 365 nm. The ratio of 1:1 also showed little response 

at 365 nm and the largest response 400 nm (Fig. 5.21a) but, unlike the other ratios, 

there is a significant response at 450 nm and a smaller response at 470 nm. The ratio 

at 1:1 is more visible light responsive than the other ratio samples. 
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Figure 5.21 Wavelength response of gel-1,2 at different ratios (a) 1:1, (b) 4:3, (c) 

2:1 and (d) 4:1. 

 

When comparing all the different ratios to the data for xerogel-1 (Fig. 5.22), there is 

a clear change in behaviour of the samples when gelator-2 is added. Samples with a 

ratio of 4:3, 2:1 and 4:1 of gelator-1 to gelator-2 all show a greater conductivity at 

400 nm than the xerogel-1 at 365 nm. The sample with a ratio of 1:1 of gelator-1 to 

gelator-2 showed the smallest photoresponse but the greatest response at 450 nm and 

470 nm. All samples still showed no response to wavelengths ≥528 nm. The samples 

containing gelator-2 all showed no response to 365 nm. This is very different to 

xerogel-1, which showed the greatest response to 365 nm. This change in behaviour 

is also different to when a hole scavenger is added (Fig. 5.5 in Section 5. 2. 1.) which 

increased the response at 365 nm and 400 nm. The lack of response to 365 nm for the 

mixed systems is due to gelator-2 having an absorption peak in its UV-Vis spectrum 

at 365 nm (Fig. 3.9, Chapter 3) and therefore the light is being absorbed by gelator-2 

and not exciting gelator-1. This data shows that gelator-2 is acting as a p-type 

material and donating an electron to gelator-1 the n-type material, although more 

analysis of this process needs to be done, for example by transient adsorption 

spectroscopy. 
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Figure 5.22 Comparison of wavelength response of mixed gelator system of 1 and 

2 at a ratio of 1:1 (red data), 4:3 (black data), 2:1 (blue data) and 4:1 (pink data) to 

xerogel-1 (green data). 

 

With the mixed system with a ratio of 1:1 of gelator-1 to gelator-2 now being visible 

light responsive, the UV-Vis absorption spectra was recorded. The xerogel-1,2 

showed peaks for both gelator-1 at 450-600 nm and gelator-2 300-380 nm (Fig. 

5.23a). When xerogel-1,2 was irradiated with 450 nm for 10 minutes, the UV-Vis 

spectrum showed a new peak at 710 nm (Fig. 5.23b). From Chapter 4 this is the 

attributed to the radical anion peak in gelator-1. Unlike xerogel-1 this was not 

formed using 365 nm light but by using 450 nm, showing the photoconductivity is 

now caused by visible light. 

 

 
Figure 5.23 UV-Vis absorption spectra of (a) xerogel-1,2 (black data) compared to 

xerogel-1 (blue data) and xerogel-2 (red data). (b) xerogel-1,2 before irradiation 

(dashed data) and after irradiation with a 450 nm LED (solid data). 
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5. 3. Conclusions 
 

Hole scavengers can be used to increase the photoconductivity of dried solution of 1 

and also change the wavelength preference of the samples from 365 nm to 400 nm. A 

self-sorted multicomponent gel using a 1:1 mixture of gelator-1 and gelator-2 can be 

formed using the slow hydrolysis of GdL. This was confirmed using 1H NMR, 

rheological time sweeps, change in pH and change in viscosity over time. The ratio 

of gelator of gelator-1 and gelator-2 was altered and the and dried down to give 

xerogels with a ratio of 1:1, 4:3, 2:1 and 4:1 of gelator-1 to gelator-2. These mixed 

systems changed the wavelength preference again from 365 nm to 400 nm, this couls 

be due to now supressed charge recombination due to the presence of the p-type 

material. Furthermore, the presence of gelator-2 made the xerogels unresponsive to 

365 nm and more responsive to wavelengths of 450 nm and 470 nm. Xerogel-1,2 at 

1:1 forms the radical anion upon irradiation with 450 nm. These results show 

promising results that gelator-1 and gelator-2 can be used for bulk p-n 

heterojunctions, although more detailed analysis of the process needs to be carried 

out, for example by transient absorption spectroscopy. 

 

5. 4. Experimental 
 

Preparation of LMWG Solutions  

Gelator-1 was added to 2 mL of water with an equimolar amount of sodium 

hydroxide (0.1 M, aqueous) to a concentration of 5 mg/mL. The solution was stirred 

until all the gelator was dissolved. For gelator-2, two molar equivalents of sodium 

hydroxide were used. 

 

Hydrogel Formation  

A pH switch method was used to form the hydrogels. Solutions were prepared as 

above. The solution was then transferred to a vial containing a pre-weighed amount 

of glucono-δ-lactone (GdL) and shaken gently. The sample was then left to stand 

overnight to allow gelation to occur. For gelator-1 and gelator-2 5 mg/mL of GdL 

was used. 
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For the different ratios of gelator-1 to gelator-2, the amount of gelator-1 was kept 

constant (10 mg/mL) and was added to different concentration of gelator-2. For 1:1, 

1 mL of a 10 mg/mL solution of 1 was added to 1 mL of a 10 mg/mL solution  of 2 

to give a solution with a total concentration of 10 mg/mL. 10 mg/mL of GdL was 

then added. For a ratio of 4:3, 1 mL of a 10 mg/mL solution of 1 was added to 1 mL 

of a 8.75 mg/mL solution of 2 to give a solution with a total concentration of 10 

mg/mL. 8.75 mg/mL of GdL was then added. For a ratio of 2:1, 1 mL of a 10 mg/mL 

solution of 1 was added to 1 mL of a 5 mg/mL solution of 2 to give a a solution with 

a total concentration of 7.5 mg/mL. 7.5 mg/mL of GdL was then added. For a ratio of 

4:1, 1 mL of a 10 mg/mL solution of 1 was added to 1 mL of a 2.5 mg/mLsolution of 

2 to give a solution with a total concentration of 6.25 mg/mL. 6.25 mg/mL of GdL 

was then added. 

 

Preparation of samples on glass slides  

Samples were prepared by dropping 20 µL of the LMWG solution on to a glass 

microscope slide and then left overnight to dry in air. Xerogel samples were prepared 

by forming gels as described above using GdL inside a 1 mL mould. Once gelation 

had occurred, the gel was then removed from the mould and approximately 0.05 mL 

of the gel was removed using a scalpel, placed onto a glass microscope slide and 

allowed to dry in air overnight. Two silver electrodes spaced 3 mm apart. The silver 

electrodes were made using silver paste which attached copper wires to the glass 

slide. The gel was then allowed to dry in air overnight to form a xerogels, shown in 

Fig. 4.50. Epoxy resin glue was placed over the silver electrodes. Again, this was left 

to dry overnight. 

 

Photoresponse Measurements  

Photoconductivity measurements were performed using an Autolab Potentiostat 

operating in a two electrode configuration in the absence of a supporting electrolyte. 

A 365 nm, 400nm, 450 nm, 470 nm, 528 nm, 590 nm and 628 nm LEDs (LedEngin 

Inc, LZ1-10U600) with a light source powered by a TTi QL564P power supply 

operating at 3.9 V were used as a light supply. Dark experiments were performed in 

an enclosure in air. Linear sweep measurements were recorded from -4 V to 4 V at a 

scan rate of 0.05 V/s and a preconditioning step at 0.002 V for 2 seconds. The 
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current recorded a 4 V was then used as a value for photoresponse value at each 

wavelength.  

 

Hole Scavenger Measurements 

Samples were prepared on glass slides and copper wires were attached as described 

above, but the glass was cut small enough to fit into a large quartz cuvette with a 

pathlength of 1.5 cm and a opening that could be sealed with a B24 rubber seal. The 

copper wires were pushed through the seal so that it could be attached to the 

potentiostat and the current measured. The wavelength response was measured in air 

for each of the wavelengths. 1 mL of the hole scavenger (diethylamine, 

triethylamine, diethanolamine or triethanolamine) was added to the bottom of the 

cuvette and the top was sealed. The atmosphere became saturated after 10 minutes 

and then the sample was irradiated with the LED for 5 minutes and then the current 

was measured. The sample was then allowed to recover in air for at least 24 hours 

before the measurement was repeated using a different wavelength. 

 

UV-Vis absorption spectroscopy 

Solid UV-Vis absorption data were obtained using a Shimadzu UV-2550 UV−Vis 

spectrophotometer running the UV Probe software, version 2.34. Spectra were 

measured either up to 700 or 1400 nm, with scan speed set to medium and using a 

slit width of 5.0 nm in transmission mode. Samples were prepared as previously 

mentioned with GdL. This gel was then transferred onto a glass slide and allowed to 

dry in air overnight in air to form a thin film xerogel.  

 

Scanning Electron Microscopy 

SEM images were obtained using a Hitachi S-4800 FE-SEM. Gels and solutions at 

high pH were deposited onto glass cover slips which were stuck onto aluminium 

SEM stubs and left to dry for 24 hours. The images were collected by Dr. Tom 

McDonald. 

 

pH Measurements 

A FC200 pH probe (HANNA instruments) with a 6 mm x 10 mm conical tip was 

used for pH measurements. The stated accuracy of the pH measurements is ±0.1. For 

pH measurement during gelation pH was recorded every minute until a gel was 
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formed. The temperature was maintained at 25 °C during the titration by using a 

circulating water bath. For “apparent” pKa measurements pH were recorded after 

each addition of HCl and a stable value was reached. To prevent a gel forming, the 

solutions were gently stirred using a stirrer bar, so keeping the sample a liquid during 

the “titration” process. The plateaus of the pH indicates the two pKa of this gelator. 

Temperature was kept at 25 °C during the titration by using a water bath. 

 

Rheological Measurements  

Dynamic rheological and viscosity measurements were performed using an Anton 

Paar Physica MCR101 and MCR301 rheometer. A cup and vane measuring system 

was used to perform frequency and strain sweeps. A cone and plate measuring 

system was used to perform viscosity measurements and gelling under shear. A 

parallel palate measuring system was used for time sweeps. For frequency and strain 

tests, 2 mL of the gels were prepared in 7 mL Sterilin vials and left for 24 hours at 

room temperature before measurements were performed. For viscosity 

measurements, samples were prepared at high pH as previously mentioned.  For time 

sweeps and gelling under constant shear, the gels were prepared in a vial and 

transferred onto the bottom plate. All experiments were performed at 25 °C.  

 

Frequency sweep: Frequency scans were performed from 1 rad/s to 100 rad/s under a 

strain of 0.5 %. The shear modulus (storage modulus (Gʹ) and loss modulus (Gʺ)) 

were read at 10 rad/s. These measurements were done within the viscoelastic region 

were Gʹ and Gʺ were independent of strain amplitude. 

 

Strain sweep: Strain scans were performed from 0.1 % to 100 % with a frequency of 

10 rad/s. The critical strain was quoted as the point that Gʹ starts to deviate for 

linearity and ultimately crosses over the Gʺ, resulting in gel breakdown. From this 

data, a strain of 0.5 % used for measuring the frequency sweep was in the 

viscoelastic region. 

 

Viscosity measurements: Viscosity measurements were performed using a 25 mm 

cone and plate. Around 0.2 mL solutions were transferred onto the plate for 

measurement after GdL was added. The viscosity of each solution was recorded 

under the rotation shear rate of 5 s-1 during gelation. 
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Time sweeps: Time sweeps were performed with a 50 mm plate with a plate gap of 

0.8 mm. Tests were performed at an angular frequency of 10 rad s-1 and with a strain 

of 0.5 %. The top plate was flooded with mineral oil to prevent the sample from 

drying. 

 

Nuclear Magnetic Resonance Spectroscopy 

For monitoring gelation with time, NMR spectra were recorded on a Bruker DPX-

400 spectrometer, operating at 400 MHz for 1H NMR. The gelator solution was 

mixed with GdL and then directly loaded into an NMR tube to gel. During this time, 

NMR spectra were collected every 90 seconds for the first 70 acquisitions, and then 

typically every 5 minutes for the remaining experiment time (typically 14 hours 

total). The experiments were carried out at 25 °C. For the samples for NMR 

spectroscopy studies, ethanol (1 µL/mL) was added as an internal standard. A 1H 

NMR spectrum of the solution was recorded prior to adding GdL to ensure that the 

ethanol present was accurately known relative to the dipeptides. This ensured any 

slight variations in weighing were taken into account for each sample. This data was 

collected by E. Eden, University of Liverpool. 
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In this Thesis, three different classes of photoresponsive gelators were synthesised, 

all of which gave very different responses when irradiated with a 365 nm LED. The 

gelation ability of these new gelators was reported; all gave stable self-supporting 

hydrogels with varying rheological strength. The effect of irradiation with light on 

the gels or xerogels, and in solution or as a dried solution was investigated. 

 

In Chapter 2 a coumarin molecule was functionalised with diphenylalanine. This 

molecule gelled at a concentration of 5 mg/mL using glucuno-δ-lactone (GdL) as a 

pH gelation trigger. When irradiation with UV light was performed on the bulk gel, 

dimerisation of the coumarin molecules occurred making the gel opaque, this was 

monitored by UV-Vis absorption spectrsocopy. Unfortunately, light was unable to 

penetrate the gel very far and this resulted in the response in the bulk gel not being 

uniform and so the effect was unable to be measured rheologically. The coumarin 

was then gelled using an electrochemical method that used hydroquinone to lower 

the pH on the surface of an electrode. This allowed thin films of gel to be formed 

rather than bulk gelation. The rheological data showed this method of gelation to be 

very reproducible. The irradiation of UV light could be achieved uniformly 

throughout the thin film of gel. The rheological properties of the gel increased upon 

irradiation due to dimerisation of the coumarin molecules stiffening the fibres. Upon 

further irradiation, the gel strength continued to increase up till an hour where the 

increase stopped. This is a highly unusual behaviour. All previous gels described in 

the literature become weaker or become a solution on irradiation. This post-gelation 

strengthening of the gel could be used to pattern surfaces for cell growth and 

differentiation or be used to make microfluidic devices. 

 

A gelator based on a stilbene molecule was reported in Chapter 3. This was 

functionalised on both sides with a phenylalanine. This molecule was able to form a 

gel at 5 mg/mL when the pH was lowered from around pH 10 to 3 using GdL. Again 

bulk irradiation of the gel with UV light proved difficult, so thinner gels needed to be 

prepared. Gelation of this molecule using electrochemical method was not possible, 

so gels were formed in moulds to make them thin enough to be uniformly exposed to 

the light source. When 365 nm LED was used to irradiate the gel, this caused the 

isomerisation of stilbene moiety from trans to cis, which led to destruction of the gel. 

A solution of the stilbene gelator at high pH was also irradiated to form the cis, and 
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when the pH was lowered it did not gel, meaning the cis-stilbene was a non-gelator 

whereas the trans-stilbene was. This gel-sol transition was then used to investigate 

mixed gelator systems. It was hypothesised that if a non-photoisomerisable gelator (a 

naphthalene-dipeptide) was gelled with the stilbene gelator, then whether the system 

was self-sorted or co-assembled could be investigated. The assembly of these 

molecules was monitored using rheology, 1H NMR spectroscopy and changes in pH. 

From these data, it was concluded that the systems were self-sorted. This is the first 

time that the presence of two interpenetrated networks has been conclusively proven. 

This was further shown by removing the stilbene gelator from the system with UV 

light, leaving the naphthalene gel intact. The rheological data showed that the system 

with the stilbene removed had the same properties as that of the naphthalene gel by 

itself, demonstrating the gelation of the stilbene had little influence on the 

naphthalene gelation. By using a photo mask, parts of the gel could have the stilbene 

gelator selectively removed. This could be useful in the fabrication of p-n 

heterojunction to give well-defined interfaces of different materials. 

 

In Chapter 4, perylene bisimide (PBI) gels were formed using a pH switch method. 

Four different gelators were made with different gel properties, with the 

phenylalanine functionalised PBI being the most different from the other three. It 

was also shown that at high pH the gelators were already self-assembled into worm-

like micelles. The photoconductive properties of both dried solution and xerogels 

were then investigated to see whether self-assembly via gelation changed the 

properties of the thin films. The PBI functionalised with phenylalanine did not form 

uniform films when dried down and so could not be used for this study. It was found 

that the thin films of both dried solution and xerogels were photoconductive upon 

irradiation with light <400 nm. This differs to that reported in the literature, and more 

work on this wavelength needs to be investigated by transient absorption 

spectroscopy (TAS). The conductivity of these samples arises from the formation of 

a radical anion, which can be seen by a change in colour and by new peaks in the 

UV-Vis absorption spectra. This radical anion was stable in air for many hours. The 

dried solutions were more conductive than the xerogels with the PBI functionalised 

with alanine being the most conductive. Alignment of the solutions was then 

investigated as a reason why the solutions were more conductive. It was found that 

drop casting, magnetic alignment and shear alignment were able to align the 
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solutions giving them a directional dependence in the conductivity, with magnetic 

alignment being the best but not the most reproducible. Gels could also be aligned 

using shear, again giving them a directional dependence in conductivity that could 

not be achieved when drop cast. When comparing shear-aligned xerogels to shear-

aligned solutions, the dried solution still gave a greater conductivity, showing that 

alignment was not the reason for the difference. Therefore, more work needs to be 

carried out on these two systems to determine why there are differences in the 

conductivity. Small angle neutron scattering (SANS) could be used to tell whether 

the primary fibres of the worm-like micelles are different to that of the gelled fibres, 

and whether fibre thickness has an effect. The absolute conductivity of these 

different samples also needs to be carried out using a three-point probe to remove 

any variable such as sample thickness from the measurements. 

 

In Chapter 5, the perylene films were investigated further as the use as n-type 

materials and whether the wavelength dependence could be altered. Four different 

hole scavengers were used which increased the conductivity of all samples by 

different amounts, depending on which hole scavenger was used. The use of a hole 

scavenger also changed the wavelength preference from 365 nm to 400 nm. With the 

use of triethanolamine as a hole scavenger, there was a photoresponse under 470 nm 

light. These results showed that an electron donating p-type material could be used in 

the system that would allow a less energetic wavelength to cause a response from the 

sample. This change in wavelength preference change is more useful when the 

sample is used in solar cell applications. When mixed with the p-type stilbene gelator 

from Chapter 3, a mixed p-n system could be made. The assembly of the mixed-

gelator was again investigated using 1H NMR spectroscopy, rheology and change in 

pH. It suggested that the systems were self-sorted rather than co-assembled, but 

further work could be carried out to determine this conclusively. For example, 

fluorescence microscope techniques such as confocal microscopy could be used to 

see whether the fibres were made only of PBIs or stilbenes. Time-resolved 

fluorescence could also be used to monitor the fluorescence lifetimes of the two 

molecules to determine whether they are co-assembled. SANS could also be used to 

determine whether the fibres are self-sorted or co-assembled if the fibres are different 

enough to each other. The introduction of the p-type materials changed the 

wavelength preference of the thin films to 400 nm, suggesting that the stilbene has an 
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effect on the system. Whether these films are acting as p-n heterojunctions could be 

further investigated using TAS, but the first results seem promising for the use in p-n 

heterojunction device.  

 

In conclusion, we have used light to induce a range of responses in low molecular 

weight gels. Many of the described behaviours are novel or are beyond the state of 

the art and demonstrate that we have a high degree of control and understanding over 

our systems. The ability to align gels for example is necessary if we are to be able to 

effectively use these materials for optoelectronic applications. Whilst others have 

suggested this, few have been able to show how this could be achieved. Future work 

will therefore exploit this understanding for the use in p-n heterojunctions. 


