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Abstract:   25 

A post-plasma catalysis system has been developed for the removal of methanol over Mn-Ce oxide 26 

catalysts with different Mn/Ce molar ratios at low temperatures. The Mn50Ce50 oxide catalyst 27 

(Mn/Ce=1:1) shows the best performance in terms of methanol removal efficiency and energy 28 

efficiency of the plasma-catalytic process. The maximum methanol removal efficiency of 99.8% can 29 

be achieved at a discharge power of 16.5 W, while the highest energy efficiency of the plasma-30 

catalytic process is 47.5 g/kWh at 1.9 W. The combination of plasma and Mn-Ce catalysts 31 

significantly reduces the formation of major by-products (methane, formaldehyde and formic acid) 32 

based on the Fourier transform infrared spectra. Possible reaction mechanisms and pathways of the 33 

post-plasma catalytic removal of methanol are also proposed. A three-layer back propagation artificial 34 

neural network (ANN) model has been developed to get a better understanding of the roles of different 35 

process parameters on methanol removal efficiency and energy efficiency in the post-plasma catalytic 36 

process. The predicted data from the ANN model show a good agreement with the experimental 37 

results. Catalyst composition (i.e. Mn/Ce ratio) is found to be the most important factor affecting 38 

methanol removal efficiency with a relative importance of 31.53%, while the discharge power is the 39 

most influential parameter for energy efficiency with a relative weight of 30.40%. These results 40 

indicate that the well-trained ANN model provides an alternative approach for accurate and fast 41 

prediction of the plasma-catalytic chemical reactions.  42 
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1. Introduction 51 

Volatile organic compounds (VOCs) emitted by human activities are one of the major sources 52 

for the formation of photochemical smog and haze [1]. Due to their negative effects on both the 53 

environment and human health, air pollution of VOCs has become a global environmental issue. 54 

However, conventional technologies, such as adsorption, absorption, thermal catalytic oxidation and 55 

combustion, are not cost-effective when dealing with dilute VOCs in high volume gas streams [2].  56 

Over the past decades, non-thermal plasma (NTP) technology has been considered as an 57 

attractive and promising alternative for the removal of a wide range of VOCs at atmospheric pressure 58 

and low temperatures [3]. A hybrid technology combining the use of non-thermal plasma with 59 

catalysis, known as “plasma-catalysis”, has gained increased attention to overcome the disadvantages 60 

of NTP processes such as the formation of hazardous by-products. The synergistic effect resulting 61 

from the interactions between the plasma and catalysts can lower the operating temperature of 62 

catalytic reactions, improve the decomposition of environmental pollutants and change the selectivity 63 

of the plasma process to minimize unwanted by-products, as well as enhance the energy efficiency 64 

of the plasma process [4].  65 

Plasma-catalysis technology has been demonstrated to be promising for the removal of a wide 66 

range of dilute VOCs in waste gas streams [5]-[11]. Mn-based catalysts have been widely used in 67 

plasma-catalytic processes especially in the post-plasma catalysis configuration due to their ability to 68 

efficiently decompose ozone at ambient temperature. This leads to the formation of reactive oxygen 69 

species for further oxidation of residual pollutants in the effluent, and consequently increases the 70 

removal efficiency of VOCs. Jarrige et al. reported that the combination of a pulsed corona discharge 71 

with MnOx-Al2O3 post-treatment improved the removal efficiency of propane (200 ppm) by over 40% 72 

at a specific energy density (SED) of 200 J/L, while the yield of CO2 was 15% higher than that using 73 

plasma alone [12]. Li et al. found that the removal of acetaldehyde was enhanced by over 20% in the 74 

presence of MnO2/γ-Al2O3 compared to that using plasma alone at the SED of 8 J/L, while α-MnO2/γ-75 

Al2O3 catalyst exhibited the best activity among all tested catalysts [13]. Cerium oxide (CeO2) is 76 



known as a good promoter for Mn-based catalysts due to its oxygen storage capacity (OSC). Mn-Ce 77 

oxides have shown excellent activity in thermal-catalytic processes such as selective catalytic 78 

reduction of NOx and catalytic oxidation of VOCs [14][15]. The addition of Ce to MnOx can enhance 79 

catalyst performance due to the increased surface area and Mn dispersion, and higher reducibility 80 

with the involvement of surface oxygen species in reactions [16][17]. However, very limited work 81 

has been carried out using Mn-Ce catalysts in plasma-catalytic oxidation of VOCs [18]. In addition, 82 

previous works were mainly focused on the plasma-catalytic removal of low concentration (10-1000 83 

ppm) gas pollutants in high volume waste streams, while the destruction of VOCs with higher 84 

concentration (e.g. several thousand ppm) using plasma-catalysis is more challenging and has 85 

attracted considerable interest from industry, especially the industry in China due to serious 86 

environmental pollutions. Removal of dilute methanol of either low or high concentration over Mn-87 

Ce catalysts in a plasma-catalysis system has not been reported before. 88 

Plasma-catalysis is a complex process and the reaction performance of the process is controlled 89 

by a wide range of process parameters [18]-[22]. Most of the previous work has mainly focused on 90 

experimental investigations to evaluate the effect of individual process parameters on the plasma 91 

reaction performance [7][23], while a fundamental understanding of the contribution of each factor 92 

and the interaction of different factors to plasma-catalytic reactions is almost nonexistent, making it 93 

difficult to optimize the process parameters and predict the plasma reaction performance theoretically. 94 

Numerical modeling of plasma-assisted VOC decomposition has been proposed to solve this problem 95 

[24][25]. Aerts et al. developed a global kinetic 0D model which consisted of 113 species (electrons, 96 

atoms, ions and molecules) and 1639 reactions, even without a catalyst to investigate the removal of 97 

ethylene in an air dielectric barrier discharge reactor [26][27]. However, although model calculations 98 

can be fast, depending on the type of model, the development of a comprehensive model takes time, 99 

and is thus not always desirable for the fast and cost-effective prediction and optimization of highly 100 

complex and non-linear plasma processes. A recent review article has pointed out that it is still a 101 



challenge to develop a comprehensive model involving plasma physics, plasma chemistry and surface 102 

science to deal with the entire plasma-catalytic process [25]. 103 

Artificial neural networks (ANNs) are considered as a promising tool for process modeling and 104 

optimization. Due to their ability of self-learning, modeling and prediction, ANNs are able to 105 

reproduce a mapping of the input and output variables based on limited experimental samples with 106 

sufficient process units (neurons). As a data-driven model, ANNs are able to predict the performance 107 

of complex processes, which are often not represented by mathematical formulas.  More importantly, 108 

less time is needed for the training and optimization of the ANN model [28]. The developed and well-109 

trained ANN model can precisely predict the output performance of complex nonlinear systems as a 110 

function of suitable input variables. Such a mapping can subsequently be used to predict desired 111 

outputs as a function of suitable input variables, even out of the trained regions. For example, 112 

multiple-layer ANNs have been used for forecasting a wide range of industrial processes such as the 113 

prediction of electrical demand for the national grid. However, there are very few studies on the 114 

application of ANNs in the simulation and prediction of plasma chemical reactions, especially 115 

plasma-catalytic processes [29][30].  116 

In this work, methanol is chosen as a model environmental pollutant since it is a toxic and 117 

volatile alcohol that has been widely used industrially as a solvent, pesticide, and alternative fuel 118 

source. Inhalation or ingestion of methanol may result in blurred vision, headache, dizziness, and 119 

nausea. A post-plasma catalytic process has been developed for the removal of dilute methanol over 120 

the Mn-Ce catalysts with different Mn/Ce molar ratios. The effect of a wide range of plasma process 121 

parameters including the discharge power, Mn percentage, gas flow rate and initial methanol 122 

concentration on the reaction performance has been investigated in terms of methanol removal 123 

efficiency and energy efficiency of the plasma-catalytic process. Possible reaction mechanisms and 124 

pathways involved in the plasma-catalytic process are discussed and proposed based on the identified 125 

gas products. A well-trained back propagation (BP) artificial neural network model has been 126 

developed for the modeling of the post-plasma catalytic process to get new insights into the effect 127 



and relative importance of different plasma process parameters on the plasma reaction performance 128 

and to predict the post-plasma catalytic processing of methanol in terms of methanol removal 129 

efficiency and energy efficiency. 130 

 131 

2. Materials and methods 132 

2.1 Experimental Setup 133 

 134 

Fig. 1. Schematic diagram of the experimental setup 135 

 136 

The experiment was carried out in a coaxial dielectric barrier discharge (DBD) reactor, as shown 137 

in Fig. 1. A 60 mm-long aluminum foil (ground electrode) was wrapped over a quartz tube with an 138 

inner diameter of 8 mm and wall thickness of 1 mm. A stainless steel rod with an outer diameter of 4 139 

mm was placed in the quartz tube and acted as a high voltage electrode. As a result, the discharge 140 

volume was 2.26 cm3, while the residence time of the mixture gas was 0.14 s at an air flow rate of 1 141 

L/min. The reactor was connected to an AC power supply with a maximum peak voltage of 30 kV 142 

and frequency of 10 kHz. Air was used as carrier gas (BOC, zero grade, moisture less than 5 ppm), 143 

while methanol (Alfa Aesar) was introduced into the DBD reactor by passing a dry air flow (10 144 

mL/min) through a bubbler kept in a thermostatic ice-water bath (0 oC). High concentration of 145 

methanol (1500-4500 ppm) was chosen for the modeling of the ANN. All gas streams were premixed 146 



prior to the DBD reactor. An online power measurement system was used to monitor and control the 147 

discharge power (P) of the DBD reactor in real time. The discharge power of the DBD was calculated 148 

using Lissajous method [31]. The gas temperature in the center of the discharge area was measured 149 

by using a fiber optical thermometer (Omega, FOB102). The maximum gas temperature in the DBD 150 

was less than 150 oC.  151 

 152 

2.2 Catalysts preparation and characterizations 153 

Mn-Ce oxide catalysts with different Mn contents were synthesized using the citric-acid method 154 

[8]. Desired amount of manganese nitrate, ceria nitrate and citric acid (Alfa Aesar) were dissolved in 155 

deionized water. The stoichiometric ratio of citric acid to metal salts was 1.5. The obtained solution 156 

was vigorously stirred at room temperature for 2 h. After that, the solution was stirred in a water bath 157 

at 80 °C to get wet gel, followed by further drying overnight at 110 °C and calcination at 500 °C for 158 

5 h. Pure manganese oxide and ceria oxide were prepared in the same way. All catalysts were denoted 159 

as MnxCe100-x, where x is the molar percentage (%) of Mn. All the samples were sieved to 35-60 160 

meshes. The catalyst pellets (100 mg) were packed into the discharge gap at 50 mm downstream of 161 

the plasma zone, as a post-plasma catalysis configuration. There is no extra heating for the catalyst 162 

bed.  163 

 164 

2.3 Gas analysis 165 

       Gas compositions before and after the catalyst bed were analyzed using a Fourier transform infra-166 

red (FTIR) spectrometer (Jasco FTIR-4200) with a resolution of 2 cm-1. The FTIR spectrometer was 167 

equipped with a 1-16 m variable gas cell (PIKE Technologies), while the effective path length used 168 

in this study was 5.3 m.  Measurements were carried out after running the plasma reaction for about 169 

40 minutes, when a steady-state was reached. All experimental data were obtained by averaging 128 170 

scans and repeating 3 times, with the average value of the three measurements being presented.  171 

  172 



The removal efficiency (RE) of methanol (CH3OH) is defined as: 173 
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where inc  and outc  are the methanol concentrations in the untreated gas and effluent, respectively.  175 

 The energy efficiency (EE) for the removal of methanol in the plasma-catalytic process can be 176 

defined as: 177 
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where 
3CH OHM  is the molecular weight of methanol (g/mol), Q is the total gas flow rate (L/min), P is 179 

the discharge power (W), and Vm is the molar volume (L/mol).  180 

 181 

2.4 Artificial neural network 182 

A three-layer (input, hidden and output layers) ANN model has been developed for the modeling 183 

and prediction of the plasma-catalytic removal of methanol by using MATLAB neural network 184 

toolbox. Four key process parameters: discharge power, total gas flow rate, initial methanol 185 

concentration and catalyst composition (Mn percentage) are identified as the input variables of the 186 

ANN, while methanol removal efficiency and energy efficiency of the process are used as the output 187 

variables. Therefore, the input and output layer consist of 4 and 2 neurons, respectively.  188 

The experimental samples were split into two groups: an input group (X) and a target output 189 

group (T). 70 sets of experimental data were randomly divided into training (70%), validation 190 

(~15.7%) and test (~14.3%) groups; each contains 49, 11 and 10 data sets, respectively. The ANN 191 

model learns by manipulating the connection weights. The weights are adjusted to minimize the mean 192 

square error (MSE) and standard deviation error (SDE). Each network topology was trained for 20 193 

times to counteract the effect of random weights initialization of the network. 194 

BP training algorithm is one of the most popular supervised learning algorithms for the training 195 

of feed-forward ANN [30]. The combination of Levenberg–Marquardt (LM) training algorithm with 196 



a TANSIG transfer function at both the hidden and output layers (TT) is chosen for the ANN due to 197 

its best accuracy among the tested cases using orthogonal experiments (see Table S1 in Supporting 198 

Information).  199 

        The optimal neuron number at the hidden layer was determined to be 12 as the minimum training 200 

error was obtained (see Fig. S1 in Supporting Information). The optimized configuration of the ANN 201 

for plasma-catalytic methanol decomposition is shown in Fig. 2. Finally, the validation of ANN model 202 

shows a perfect agreement between the predicted and experimental results with a correlation 203 

coefficient (R2) of 0.99662 (Fig. S2 in Supporting Information). 204 

 205 

 206 

Fig. 2. Optimized three-layer ANN model 207 

 208 

 209 

3. Results and discussion 210 

3.1 Catalyst characterization 211 

The material characteristics of the fresh catalyst samples are listed in Table 1. Compared to the 212 

specific surface area (SBET) of MnOx (15.0 m2 g-1) and CeO2 (23.8 m2 g-1), the combination of Mn 213 

and Ce species resulted in the formation of a large specific surface area (46.5 m2 g-1 to 88.9 m2 g-1) of 214 

the Mn-Ce catalysts, which could provide more active sites on the catalyst surface for the oxidation 215 



of methanol. The Mn50Ce50 catalyst has the highest SBET of 88.9 m2 g-1, while further increasing the 216 

amount of Mn or Ce resulted in a decrease of the SBET of the Mn-Ce catalysts. 217 

Fig. 3 shows the XRD patterns of the fresh catalysts. For the MnOx catalyst, typical diffraction 218 

peaks of Mn2O3 phase (JCPDS 78-0390) can be clearly observed. The XRD spectra of the CeO2 and 219 

Mn-Ce catalysts show a typical diffraction pattern of cubic fluorite-type oxide structure (JCPDS 34-220 

0394). No obvious peaks of manganese oxides are observed in the Mn50Ce50 and Mn25Ce75 samples, 221 

which might be attributed to the effective dispersion of manganese oxides on the catalyst surface or 222 

the incorporation of Mn species into CeO2 lattice. Further increasing the Mn content leads to the 223 

formation of bulk Mn3O4 (JCPDS 024-0734) and Mn2O3, which can be confirmed by the diffraction 224 

peaks in the XRD pattern of the Mn75Ce25 catalyst. Moreover, the introduction of Mn into CeO2 225 

results in broad diffraction peaks, indicating the formation of the amorphous structure and smaller 226 

crystalline size of the catalysts, which favours the removal of methanol.  227 

 228 

Table 1. Material properties of Mn-Ce catalysts 229 

Sample 

Specific 

surface area 

(m2 g-1) 

Total pore 

volume 

(cm3 g-1) 

Average 

pore size 

(nm) 

MnOx 15.0 0.049 8.35 

Mn75Ce25 71.0 0.144 5.99 

Mn50Ce50 88.9 0.222 4.76 

Mn25Ce75 46.5 0.201 6.17 

CeO2 23.8 0.106 7.62 

 230 

 231 



 232 

Fig. 3.  XRD patterns of Mn-Ce catalysts. 233 

 234 

 235 

3.2 Plasma-catalytic removal of methanol 236 

3.2.1 Effect of discharge power 237 

 Fig. 4 shows a comparison between the experimental and predicted results for the plasma-238 

catalytic removal of methanol over different Mn-Ce catalysts in the discharge power range of 1.9 - 239 

15 W. The simulated results obtained from the ANN model are in good agreement with the 240 

experimental data. The discharge power significantly influences the reaction performance of the 241 

plasma-catalytic removal of methanol regardless of the catalysts used. Taking the Mn50Ce50 catalyst 242 

as an example, methanol removal efficiency increases almost linearly from 34.6% to 95.4% with the 243 

increase of the discharge power from 1.9 W to 15.0 W, as shown in Fig. 4a. The well-trained ANN 244 

model could predict the performance of the plasma-catalysis system under other operating conditions. 245 

For example, the predicted methanol removal efficiency at the discharge power of 7.0 W and 16.5 W 246 

is 65.4% and 97.8%, respectively. In contrast, increasing the discharge power from 1.9 W to 15.0 W 247 

decreases the energy efficiency by a factor of 2.88. In this study, the maximum energy efficiency of 248 

47.5 g/kWh is obtained at the lowest discharge power of 1.9 W (Fig. 4b). These results suggest that 249 

a balance between the destruction of pollutants and energy efficiency of the plasma-catalytic process 250 

should be considered when developing a cost-effective plasma-catalytic technology.   251 



 252 

 253 

(a) 254 

 255 

(b) 256 

Fig. 4. Effect of discharge power on the plasma-catalytic removal of methanol over Mn-257 

Ce catalysts: (a) removal efficiency; (b) energy efficiency (Q: 1 L/min, C: 3000 ppm). 258 

 259 

3.2.2 Effect of Mn percentage 260 

Catalyst composition is one of the key factors affecting the plasma-catalytic process of methanol 261 

removal. The effect of Mn percentage on methanol removal efficiency and energy efficiency at 262 

different discharge powers has also been investigated, as presented in Fig. 4. Both predicted removal 263 



efficiency and energy efficiency are in good agreement with the experimental data inside and outside 264 

of the catalyst composition range. In this study, pure MnOx is the least active catalyst for the plasma 265 

removal of methanol followed by pure CeO2 in the tested discharge power range. The interaction of 266 

Mn and Ce species significantly enhances the reaction performances and the activity of Mn-Ce 267 

catalysts follow the order of Mn50Ce50 > Mn75Ce25 > Mn25Ce75. This agrees with the properties of the 268 

Mn-Ce catalysts given in Table 1 which show that the Mn50Ce50 sample has the largest specific 269 

surface area. At the discharge power of 9.4 W, the maximum methanol removal efficiency and energy 270 

efficiency of the system can be achieved at 73.5% and 20.1 g/kWh, respectively, in the presence of 271 

the Mn50Ce50 catalyst. Previous work also reported that Mn-Ce oxide catalyst with a molar ratio of 272 

1:1 exhibited the best performance for thermal catalytic oxidation of toluene, ethanol and ethyl acetate 273 

[16]. The influence of Mn content on the energy efficiency of the process follows the similar trend as 274 

the removal efficiency. These results suggest that the catalyst composition significantly affects the 275 

oxidation process in the catalyst bed. Due to the smaller radius of Mn ions (Mn2+ = 0.83 Å, Mn3+ = 276 

0.65 Å and Ce4+ = 0.97 Å), the partial substitution of Ce4+ by Mn cations results in the formation of 277 

Mn-Ce solid solutions. Meanwhile, Ce3+, oxygen vacancies and unsaturated chemical bonds could be 278 

formed on the catalyst surface to maintain the electroneutrality, which contributes to the formation of 279 

active O species for oxidation reactions [32]. When the Mn content is lower than 50%, Mn particles 280 

are well dispersed on the surface of CeO2 and facilitate oxygen mobility in the redox cycles, which 281 

enhances the reducibility of the Mn-Ce catalysts [33]. The oxygen storage capacity is determined by 282 

the redox couple of Ce4+/Ce3+. Further increasing the content of Mn leads to the formation of separated 283 

bulk Mn, and the Mn-O-Mn connections would become more abundant, which may inhibit the 284 

formation of oxygen vacancies on the catalyst surface [34], and in turn decrease the oxidation capacity 285 

of the Mn-rich catalysts (i.e., Mn75Ce25 and pure MnOx). As a result, both removal efficiency and 286 

energy efficiency are decreased when using the Mn-rich samples.  287 

 288 

 289 

3.2.3 Effect of gas flow rate  290 



Fig. 5 shows the effect of the gas flow rate and Mn-Ce catalyst composition on the removal 291 

efficiency of methanol and energy efficiency of the plasma-catalytic process. There is a perfect match 292 

between the experimental results and predicted data. The removal efficiency of methanol decreases 293 

from 99.5% to 73.3% over the tested flow rate range for the Mn50Ce50 catalyst. The gas flow rate 294 

shows a significant effect on the reaction performance. Increasing the gas flow rate leads to the 295 

decrease of the residence time of pollutants in the plasma region, reducing the possibility of the 296 

collisions between methanol molecules and reactive species, and consequently decreasing the 297 

removal efficiency of methanol. The optimized ANN model predicts the removal efficiency of 89.5% 298 

and 69.3% at the gas flow rate of 0.7 and 1.2 L/min, respectively. However, increasing the flow rate 299 

leads to a significant enhancement in the energy efficiency of the process even though the removal 300 

efficiency is much lower at a high gas flow rate.  301 

 302 

(a) 303 



 304 

(b) 305 

Fig. 5. Effect of gas flow rate on the plasma-catalytic removal of methanol over Mn-Ce 306 

catalysts: (a) removal efficiency; (b) energy efficiency (P: 9.4 W, C: 3000 ppm). 307 

 308 

 309 

3.2.4 Effect of initial concentration of methanol 310 

The influence of the initial methanol concentration on the plasma-catalytic removal of methanol 311 

over different Mn-Ce catalysts is shown in Fig. 6a. The experimental results are well matched by the 312 

ANN simulation. It is clear that the removal efficiency of methanol increases with decreasing initial 313 

methanol concentration in the gas flow regardless of the catalysts used. For the Mn50Ce50 catalyst, 314 

the experimental removal efficiency decreases from 82.7% to 63.3% when the initial concentration 315 

of methanol increases from 1500 ppm to 4500 ppm. For a given plasma-catalytic system, the number 316 

density of plasma-generated reactive species and active sites could be similar at a same working 317 

condition. At this point, only limited number of reactive species and active sites are available for the 318 

oxidation of methanol molecules at higher initial concentration, which subsequently reduces the 319 

removal efficiency. In contrast, the energy efficiency of the plasma-catalytic process changes from 320 

11.3 g/kWh to 26.0 g/kWh as the concentration of methanol rises from 1500 ppm to 4500 ppm (Fig. 321 

6b). Note that the energy efficiency at 4500 ppm is only 2.3 times of that at 1500 ppm, which is in 322 



line with the results of reduced removal efficiency at high initial concentration. The ANN model 323 

predicts that the energy efficiency of the process increases to 27.3 g/kWh at an initial concentration 324 

of methanol of 5500 ppm.  325 

 326 

(a) 327 

 328 

(b) 329 

 330 

Fig. 6. Effect of initial concentration of methanol on the plasma-catalytic process: (a) 331 

removal efficiency; (b) energy efficiency (P: 9.4 W, Q: 1 L/min). 332 

 333 

3.3 Contribution of different process parameters 334 



Net weight matrix and Garson equation were used in this work to evaluate the relative importance 335 

of each process parameter on the plasma chemical reactions [35]. The weight matrix produced by the 336 

well-trained ANN model is listed in Table S2 in the Supporting Information, while the calculated 337 

relative importance of each process parameter is plotted in Fig. 7. Both gas flow rate and catalyst 338 

composition (Mn percentage) show a significant impact on the removal efficiency of methanol with 339 

a relative weight of ~31%, while the initial concentration of methanol plays a very weak role in the 340 

plasma-catalytic abatement of methanol, which suggests that the plasma system is suitable for the 341 

removal of methanol with a wide range of concentration. The discharge power is found to be the most 342 

important factor affecting the energy efficiency of the process, while the relative importance of other 343 

process parameters on the energy efficiency is similar, ranging from 20.99% to 24.62%. 344 

 345 

 346 

(a) 347 



 348 

(b) 349 

Fig. 7. Relative importance (%) of processing parameters on plasma-catalytic removal of methanol: 350 

(a) removal efficiency; (b) energy efficiency. 351 

 352 

3.4 Reaction mechanisms and pathways  353 

 354 

Fig. 8. FTIR spectra of plasma-catalytic removal of methanol over Mn50Ce50 catalyst (P: 15.0 W, Q: 355 

1 L/min, C: 3000 ppm). 356 

 357 

Fig. 8 shows the distribution of the gas products in the plasma-catalytic removal of methanol 358 

over the Mn50Ce50 catalyst. The main gas products sampled before the catalyst bed were CO, CO2 359 



and H2O, while small amount of CH4, HCHO, HCOOH, N2O and NO2 were also detected. Ozone was 360 

not detected since it could be consumed in the oxidation reactions or decomposed by the local heating 361 

in the plasma. Similar gas products were detected at the outlet of the plasma reactor after the catalyst 362 

bed. However, the intensity of most gas products (CO, CH4, HCHO, HCOOH, N2O and NO2) is 363 

significantly decreased except CO2 and H2O at the exit of the DBD reactor. These results suggest that 364 

the catalyst bed placed after the plasma region plays an important role in the further oxidation of 365 

methanol and by-products in this post-plasma catalysis system.  366 

In this post-plasma catalysis system, the catalyst bed is located at 5 cm downstream of the plasma 367 

region. Only long-lived species (e.g. methanol and intermediates) can reach the surface of the Mn-Ce 368 

catalysts, while most short-lived species such as O and OH could be quenched before reaching the 369 

catalyst surface due to their extremely short lifetime and high chemical activity. Thus, the dominant 370 

reaction pathways of methanol removal in the two-stage post-plasma catalytic process without extra 371 

heating can be identified as two separate steps: plasma reaction in the discharge region and catalytic 372 

reaction in the catalyst bed, as shown in Fig. 8. 373 

It is well known that abatement of dilute VOCs in air plasmas is initiated by direct electron impact 374 

dissociation of carrier gas (nitrogen and oxygen) to form chemically reactive species such as O, O 375 

(1D), N and N2 (A) for the stepwise decomposition and oxidation of pollutants and/or intermediates 376 

into CO, CO2, H2O and other by-products. The formation of these reactive species allows methanol 377 

decomposition or oxidation through the following reactions (R1-R5) [36]: 378 

 1

3 2CH OH  O,  O D   CH OH   OH                                                                R1 379 

                                       3 CH O   OH                 R2 380 

 3 2 3 2CH OH  N,  N A   CH   OH   N,  N                                                            R3 381 

                                      3 2 CH O   H  N,  N                                                            R4 382 

                                      2 2 CH OH   H  N,  N                                                     R5 383 



Hydroxyl radicals (OH∙) generated from R1, R2 and R3 can also oxidize methanol molecules via 384 

[37]:   385 

3 2 2CH OH  OH   CH OH   H O                                                                           R6 386 

3 3 2CH OH  OH   CH O   H O                                                                               R7 387 

Hamdane et al. reported that the reaction between OH∙ and CH3OH is a major pathway for 388 

methanol oxidation [37]. However, the effect of electron impact dissociation could be weak or 389 

negligible for the dissociation of methanol and other by-products due to the relatively low 390 

concentration of these products compared to carrier gas.  391 

CH3∙, CH2OH∙ and CH3O∙ radicals are the main intermediates of methanol decomposition and 392 

oxidation in the air DBD. Previous works also reported that CH2OH∙ and CH3O∙ are very important 393 

radicals for the oxidation of higher hydrocarbons and oxygenates [38]. H-abstractions of CH2OH∙ and 394 

CH3O∙ radicals are also likely to occur via reactions with O, H and OH∙, forming CH2O and HCO∙. 395 

In the air plasma removal of methanol, CH3∙ radicals can be reacted with O and OH to form CH2∙ 396 

radicals, while some of the CH3∙ radicals recombine with H atoms to form CH4 (Fig. 8). In the 397 

presence of oxidative radicals, CH2∙ radicals can also be converted to CH2O and HCO∙. Both CH2O 398 

and HCO∙ can react with O and OH radicals, and form HCOOH [39]. The intermediates and by-399 

products could be further oxidized to form end-products such as CO, CO2 and H2O. 400 

In the catalyst bed, methanol and by-products in the gas mixture were adsorbed onto the surface 401 

active sites prior to catalytic reactions. It is generally recognized that the oxidation of VOCs on Mn 402 

catalysts proceeds via the classical Mars-van Krevelen (MVK) mechanism [40][41]. According to 403 

this mechanism, adsorbed VOC molecules were oxidized by active surface oxygen species, while the 404 

resultant oxygen vacancies could be replenished by gas phase oxygen. The alternative oxidation and 405 

reduction of metal active sites on the catalyst surface in the whole catalytic reaction makes the supply 406 

of oxygen species as a rate-determining step [42]. CeO2 acted as a reservoir for the release and storage 407 

of oxygen as a result of the Ce4+/Ce3+ redox cycle in the Mn-Ce oxide catalysts. The interactions 408 

between Mn and Ce oxides in the Mn-Ce catalysts shows a synergistic effect in oxygen activation, 409 



which enhances the oxygen mobility on the catalysts and accelerates the conversion of oxygen from 410 

chemisorbed and lattice oxygen to active oxygen species (O*) on the oxygen vacancies and active 411 

metal sites. These processes lead to the deep oxidation of methanol and intermediates by surface 412 

active oxygen in the catalyst bed [43]. Finocchio et al. reported that methanol adsorbed onto the 413 

surface of Mn-based catalysts can be dissociated and resulted in the break of O-H bonds [44]. The 414 

formed CH3O∙ can be further dissociated to HCHO and H with the aid of O* [45]. The conversion of 415 

HCHO to HCOOH via HCO∙ on the surface of Mn catalysts was also reported [46]. A fraction of 416 

these intermediates and by-products can be further oxidized by O* and finally desorbed as CO and 417 

CO2. The inhibition of NOx formation in a post-plasma catalysis system are mainly attributed to the 418 

oxidation of NOx to HNOx and surface adsorbed NO2
- or NO3

- cations [10]. 419 

 420 

 421 

(a) 422 

 423 

(b) 424 



Fig. 9. Plausible major reaction pathways of methanol removal in the post-plasma catalysis system: 425 

(a) Plasma induced chemical reactions in the discharge region; (b) Catalytic reactions on the 426 

catalyst surface. The ‘square’ symbol represents oxygen vacancies on the surface of the Mn-Ce 427 

catalysts.  428 

 429 

 430 

4. Conclusions 431 

In this study, effective removal of methanol over Mn-Ce oxide catalysts with different Mn/Ce 432 

molar ratios has been achieved in a post-plasma catalysis system. Compared to pure MnOx and CeO2 433 

oxide catalysts, the combination of plasma and binary Mn-Ce catalysts significantly enhances both 434 

methanol removal efficiency and energy efficiency of the plasma-catalytic process, while the 435 

Mn50Ce50 catalysts exhibits the best performance among all the tested catalysts. The presence of these 436 

Mn-Ce catalysts in the plasma process also inhibits the formation of various by-products including 437 

CH4, HCHO and HCOOH. Possible reaction pathways have been proposed based on the detected by-438 

products. A well-trained and optimized three layer neural network has been used to get a better 439 

understanding of the effect and importance of different processing parameters and catalyst 440 

composition on the plasma chemical reaction. Sensitivity analysis shows that catalyst composition 441 

(Mn percentage) is the most important factor affecting the removal efficiency of methanol, while the 442 

discharge power plays a crucial role in the energy efficiency of the plasma-catalytic process. The 443 

good agreements between experimental and predicted results indicate ANN model can be an effective 444 

approach for fast and reliable simulation and prediction of the complex plasma-catalytic process. 445 
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