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FACTS Devices Allocation via Sparse Optimization
Chao Duan, Student Member, IEEE, Wanliang Fang, L. Jiang, Member, IEEE, Shuanbao Niu

Abstract—Although there are vast potential locations to install
FACTS devices in a power system, the actual installation number
is very limited due to economical consideration. Therefore the
allocation strategy exhibits strong sparsity. This paper formu-
lates FACTS device allocation problem as a general sparsity-
constrained OPF problem and employs Lq(0 < q ≤ 1) norms to
enforce sparsity on FACTS devices setting values to achieve solu-
tions with desirable device numbers and sites. An algorithm based
on alternating direction method of multipliers is proposed to solve
the sparsity-constrained OPF problem. The algorithm exploits
the separability structure and decomposes the original problem
into an NLP subproblem, an Lq regularization subproblem,
and a simple dual variable update step. The NLP subproblem
is solved by the interior point method. The Lq regularization
subproblem has a closed-form solution expressed by shrinkage-
threholding operators. The convergence of the proposed method
is theoretically analyzed and discussed. The proposed method is
successfully tested on allocation of SVC, TCSC and TCPS on
IEEE 30-, 118- and 300-bus systems. Case studies are presented
and discussed for both single-type and multiple-type FACTS
devices allocation problems, which demonstrates the effectiveness
and efficiency of the proposed formulation and algorithm.

Index Terms—Flexible AC transmission system, sparse opti-
mization, optimal power flow, Lq norm, alternating direction
method of multipliers.

I. INTRODUCTION

FACTS devices can be utilized to increase transmission
capability and improve stability in modern power systems. In
order to maximize the benefits of installing FACTS devices,
their types, location, capacity, and even initial settings, should
be systematically determined. Usually this problem is called
a FACTS devices allocation problem and has attracted much
attention in the past two decades [1]–[5]. Various formu-
lations and algorithms have been put forward to deal with
this problem. Different objective functions are proposed from
the perspectives of system economy and/or security, such as
investment costs [1], [2], transmission losses [3], generator
fuel costs [4], voltage stability index [5], voltage profile [2]
and system loadability [6].

In fact, this problem is theoretically a mixed integer non-
linear programming (MINP) problem, and still there are no
general and effective mathematical techniques to solve such
problem, especially when the scale of the problem is large.
To handle the difficulty of MINP, sensitivity analysis [7],
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intelligent optimization algorithms [8], [9] and mixed integer
linear programming (MILP) have been extensively investigated
in previous literatures [1], [10], [11].

The basic idea of sensitivity analysis methods is to find
some indicators to determine the most critical transmission
lines or buses for installing the FACTS devices [7]. Sen-
sitivity analysis methods have their advantages over other
optimization-based methods in computing efficiency. However,
their computation accuracy is partly lost, because the nonlin-
earity of the power flow model is neglected. Moreover, they
can not simultaneously optimize the device number, location
as well as initial settings.

Intelligent optimization algorithms have their merits in
dealing with discrete variables and finding the global optimal
solution, so they have been widely applied to FACTS devices
allocation problems [8], [9]. Unfortunately the demerits of this
type of algorithms are their high computational burden.

MILP based algorithms either relax or approximate the
original nonlinear formulation to a linear model and they
can be classified into two groups: the relaxation group and
the approximation group. In the relaxation group, decompo-
sition techniques are employed successively to reformulate
the original MINP into MILP [1], [10], [11]. However, re-
cursively solving MILP is too time-consuming for large-scale
systems. In the approximation group, the nonlinear power flow
is approximated to simpler models such as the DC model
[12] and the simplified LFB (line flowed based) model [2].
Though algorithms in the approximation group have relatively
high computational efficiency, the approximation nature of the
problem formulation makes those algorithms merely suitable
for initial analysis in power system planning, and their results
need to be further refined by a full AC power flow model.

Problems in various science and engineering fields motivate
the need for a sparse solution [13]. In 2012, R. A. Jabr et
al. applied sparse optimization for the first time in power
system VAR planning [14] , where L1 regularization was
combined with successive conic programming to achieve a
sparse solution vector, i.e. a VAR allocation strategy with
minimum installation sites.

In fact, FACTS devices allocation problems possess follow-
ing features: 1) large-scale mixed integer nonlinear program-
ming problems; 2) a large number of transmission lines and
buses which implies a large quantity of potential locations to
install FACTS devices; 3) limited actual number of FACTS
devices to be installed due to economical consideration. Con-
sidering those features, in this paper, FACTS devices allocation
problems are considered as a sparse optimization problem, by
introducing an extra constraint, i.e. the solution vectors must
be sparse [15].

A new algorithm is proposed to solve these sparse optimiza-
tion problems, which consists of the following four parts: 1)
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sparsity-inducing norms [13], 2) alternating direction method
of multipliers (ADMM) [16], 3) interior point method (IPM)
[17], [18] and 4) shrinkage-thresholding operators (STO) [19]–
[21], and named as ADMM-IPM-STO. The objective function
(system loadability) is regularized by several sparsity-inducing
norms. L1/2 and L2/3, recently developed in [20] and [21],
are firstly introduced in power system optimization in this
paper. Additionally, L1 norm is also employed in the numerical
experiments. The features of different sparsity-inducing norms
is discussed. The sparse optimization problem is decomposed
into two sub-problems by ADMM, namely a nonlinear pro-
gramming (NLP) sub-problem and an Lq regularization sub-
problem. Then the NLP sub-problem is solved by IPM, while
the Lq regularization sub-problem has a closed-form analytic
solution expressed by STO. The theoretical convergence of the
proposed method is analyzed. A weak result that guarantees
the optimality of the practical solutions of all q ∈ (0, 1] and a
strong result that substantiates the convergence for q = 1 are
obtained.

Within above framework, the state-of-art method for sparse
optimization is combined with one of the most successful
methods for optimal power flow to form a novel FACTS device
allocation algorithm. The numbers, locations, initial settings
and even types of FACTS devices are simultaneously deter-
mined by this algorithm. Its computation precision is relatively
higher than that of DC or LFB based algorithms, because
the exact AC flow model is adopted. On the other hand,
the proposed algorithm has relatively higher computational
efficiency than intelligence optimization algorithms which also
use AC flow model. Furthermore, this algorithm is adaptive to
various types of FACTS allocation problems and possesses the
flexibility to use different sparsity-inducing norms to achieve
desirable sparse features.

Case studies are carried out on IEEE test systems from 9
buses to 300 buses, respectively, which demonstrates validity
and above mentioned advantages of the proposed algorithm.

The rest of this paper is organized as follows. Notations
used in this paper are defined in section II. The mathemat-
ical formulation of general sparse optimization problem and
the ADMM-IPM-STO algorithm, along with the convergence
analysis of ADMM-IPM-STO are introduced in section III.
The sparse optimization model for general FACTS devices
allocation problems is presented in Section IV. Case studies are
reported in Section V. Finally, Section VI draws conclusions
and gives suggestions on future research.

II. NOTATION

The imaginary unit is denoted by j. Boldface lower case
letter a represents a real vector and its ith element is denoted
by ai. Hatted boldface lower case letter b̂ represents a complex
vector with its ith element denoted by b̂i. The set of real and
complex n-vectors are denoted by Rn and Cn.The conjugate
of a complex number b̂ is denoted by b̂c. Re(b̂) and Im(b̂)
denote the real and imaginary part of b̂. We denote the
gradient and hessian of the function f(x) in the point x∗

as ∇f(x∗) and ∇2f(x∗), respectively. ∇2f(x∗) < 0 denotes
the hessian matrix of f at x∗ is semidefinite. The directional

derivative of f(x) in the point x∗ toward direction d is
denoted by f ′(x∗;d). Vector and scalar sequences are denoted
with superscript like xk and αk. The δ-neighborhood of vector
x ∈ Rn is denoted as B(x, δ) = {y ∈ Rn| ∥y − x∥2 < δ}.
We use parentheses to construct vectors from comma separated
lists as (x1, . . . ,xk) = [xT

1 , . . . ,x
T
k ]

T .
In addition, the following special symbols are used in our

problem formulation:
nb number of buses
ng number of generators
nl number of lines
ŷ series admittance of a line
jb shunt admittance of a line
v̂ complex voltage at a bus
e real part of the voltage at a bus
f imaginary part of the voltage at a bus
îg complex current injection of a generator
ag real part of the current injection of a generator
bg imaginary part of the current injection of a generator
bsh susceptance of a shunt compensator
κ compensation rate of a series compensator
φ angle of a phase shifter
τ ratio of a controllable transformer

III. FORMULATION AND ALGORITHM FOR GENERAL
SPARSE OPTIMIZATION

A. Sparse Optimization Problems

A standard nonlinear optimization problem usually is ex-
pressed as

min
(x,u)∈S

f(x,u) (1)

where f(·) is a nonlinear scalar objective function, x ∈ Rm

and u ∈ Rn are two sub-decision vectors. S is the feasible set
of the decision variables, and it will be specified by equality
and inequality constraints later on.

In some applications, e.g. FACTS devices allocation prob-
lems, decision vector u is expected to be very sparse after
optimization. This expectation can be considered an extra
constraint in above original optimization problem (1). This
kind of problem is named the sparsity-constrained optimiza-
tion problem which is intuitively transformed into the so-called
L0 regularization problem [22]:

min
(x,u)∈S

f(x,u) + λ∥u∥0 (2)

where ∥·∥0, called L0 norm, is the number of nonzero compo-
nents of u . The non-negative parameter λ, given by decision-
makers, balances the two objective terms. Obviously, the larger
λ is, the sparser induced u will be. However, L0 regularization
problem is NP hard [23] due to the discrete nature of L0

norm. Actually, it can be seen from (4) that discrete L0 norm
is the limit of the q power of continuous Lq norm when q
approaches 0. A natural way to overcome the difficulty in
solving the L0 regularization problem is to consider the so-
called Lq regularization problem

min
(x,u)∈S

f(x,u) + λ∥u∥qq (3)
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where

∥u∥q = (

n∑
i=1

|ui|q)1/q (0 < q ≤ 1) (4)

According to the definition (4), Lq norms, to some extent,
are approximations to L0 norm. As q approaches 0, Lq norm
mainly exerts penalty on the number of nonzero components
of the solution vector. Comparatively, as q reaches 1, Lq

norm penalizes the sum of absolute values of the solution
vector components. When q lies somewhere between 0 and
1, Lq norm exerts penalty on both the number of nonzero
components and the sum of absolute values to a certain
degree. In other words, for a certain λ, the sparsity of the
solution vector to the Lq regularization problem increases as
q decreases. The special importance of L1/2 regularization
is highlighted in [24] by showing the representativeness of
L1/2 regularization among all Lq regularizations. This work
basically reveals that the sparsity of the Lq solution signif-
icantly increases as q decreases when 1/2 < q ≤ 1 but is
insignificantly affected by q when 0 < q ≤ 1/2. In addition,
thresholding representation theories have been developed for
Lq regularization problems when q = 1/2, 2/3 and 1 [19]–
[21], which leads to efficient algorithms for solving those Lq

regularization problems. Therefore, L1/2, L2/3 and L1 norms
are so far the best sparsity-inducing norms to obtain desirable
sparse solutions.

B. ADMM-IPM-STO Algorithm for Sparse Optimization

Consider the Lq regularization problem (3). The objective
function consists of two terms and the second term is a
continuous, non-smooth, non-lipschitz function of u. Conven-
tional joint minimization methods are incapable to tackle this
problem.

ADMM is one of the state-of-art methods for sparse op-
timization. A comprehensive account of ADMM appears in
[16] and its applications in sparse optimization are reported in
[25]. ADMM is actually a version of the method of multipliers
where Gauss-Seidel iterations are used to separately minimize
two terms in the objective function instead of conventional
joint minimization. ADMM utilizes the separability structure
of the objective in (3) and decomposes problem (3) into two
simpler sub-problems.

In order to make the objective separable, first an auxiliary
vector v and an auxiliary equality constraint are introduced,
and then problem (3) can be equivalently transformed into

min
(x,u)∈S,v∈Rn

f(x,u) + λ∥v∥qq
s.t. u− v = 0

(5)

The augmented Lagrangian function with respect to the aux-
iliary equality constraint is given by

Lρ(x,u,v,y) = f(x,u)+λ∥v∥qq+yT (u−v)+ρ/2∥u−v∥22
(6)

where y is an n dimensional Lagrangian multiplier vector
related to the auxiliary equality constraint, ρ is a positive
penalty parameter.

ADMM-IPM-STO algorithm consists of the following iter-
ations:

(xk+1,uk+1) := arg min
(x,u)∈S

Lρ(x,u,v
k,yk) (7)

vk+1 := arg min
v∈Rn

Lρ(x
k+1,uk+1,v,yk) (8)

yk+1 := yk + ρ(uk+1 − vk+1) (9)

Note that problem (7) is a conventional continuous nonlinear
optimization problem whose decision vectors are only x and
u. Various methods have been proposed to solve this NLP
problem, among which IPM has experienced great success.
Specially, IPM has almost become a standard method to solve
optimal power flow problems in recent years. Hence, IPM
is chosen to solve the NLP sub-problem. When problem (7)
solved, xk+1 and uk+1 are obtained. Problem (8) thus can be
equivalently stated as

vk+1 := arg min
v∈Rn

(λ/ρ)∥v∥qq + (1/2)∥uk+1 − v+ (1/ρ)yk∥22
(10)

So far, there is no general theoretical understanding and
efficient algorithms to arbitrary q ∈ (0, 1], because Lq norm in
(10) is non-convex, nonsmooth and non-Lipschitz. Fortunately,
at special points of q = 1/2, 2/3, and 1, closed-form analytic
solutions have been established in [19]–[21] which give global
optimum for (10). They all can be expressed as shrinkage-
thresholding operators. Though the exact forms vary with
different sparsity-inducing norms, they are uniformly given
by

vk+1 = Shrink
(
uk+1 + (1/ρ)yk, λ/ρ

)
(11)

Specific results for L1/2, L2/3 and L1 norms are presented
in the Appendix A. The computation burden of obtaining
vk+1 can almost be omitted since above closed-form solu-
tions involve no iterations. Then according to the method of
multipliers, dual variable yk needs to be updated to yk+1 as
in (9). The iteration terminates when the primal error (12) and
dual error (13) are both small enough.

∥uk+1 − vk+1∥2 < ϵprimal (12)

∥vk+1 − vk∥2 < ϵdual (13)

C. Convergence Analysis of ADMM-IPM-STO

The convergence of ADMM is well-established for convex
problems in [16]. So far, there is no global convergence result
of ADMM for general non-convex optimization problems.
Even so, ADMM has been extensively applied to non-convex
problems [26], [27], including OPF problems [28], [29] and
shown robust performance in practice. The convergence anal-
ysis of an optimization algorithm can be divided into two
questions. First, whether does the algorithm generate a limit
point? Second, whether is the limit point an optimum? Both
questions are of crucial importance to substantiate the algorith-
m. In engineering application, the second question is to some
extent more important than the first one because emergence
of a limit point can be directly observed through numerical
computation while optimality is not obviously available. Since
the proposed problem formulation is non-convex, and even
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non-lipschitz, the above two questions are in doubt. In this
part, we establish a weak result for problem (5) with 0 < q ≤ 1
to answer the second question and a strong result with q = 1
to partly answer the first one. In the weak result, we basically
adopt the same approach as in [26] and [27], whereas the
strong result is essentially based on [16].

Because |xi|q regularization term in problem (5) is non-
lipschitz at 0 when 0 < q < 1 [20], Lagrange multipliers
lose their geometric meaning and therefore KKT optimality
condition in standard smooth and non-smooth optimization
theories cannot apply to its analysis. But note that the first-
order directional derivative of |xi|q at 0 still exists if it is
allowed to take infinite value, i.e. limt→0+ tq−1|di|q = +∞.
Denote the second term in the objective function of problem
(5) as g(v). Thus the following analysis will be based on the
first-order directional derivatives.

We first give a sufficient optimality condition for prob-
lem (5) in the context of ADMM. For simplicity, define
h(x,u) = f(x,u) + g(u). We say an optimization problem
min f(x) s.t. x ∈ S is generic if the first-order necessary
optimality condition f

′
(x;d) ≥ 0, ∀d ∈ TS(x) is also

sufficient for x to be a local minimum. Requesting a problem
to be generic is equivalent to asking that the problem is
solvable in the sense of finding a local minimum by first-
order optimality condition based algorithms, e.g. IPM which
are known robust to deal with OPF non-convexity in practice.

Theorem 1: (x,u,v) is a local minimum of problem (5) if
given ρ > 0, there exists y, such that ¬ (x,u) is a local
minimum of Lρ(x,u,v,y);  v is a global minimum of
Lρ(x,u,v,y); ® u− v = 0; ¯ problem (3) is generic.

Remark 1: Theorem 1 acts as the first-order sufficient opti-
mality condition in the context of ADMM. It allows us to ana-
lyze the algorithm without considering the detailed optimality
conditions of two sub-problems. The following convergence
analysis will be based on this optimality condition.

Then we present a weak result for ADMM-IPM-STO con-
vergence with 0 < q ≤ 1 in the following theorem.

Theorem 2: Let {(xk,uk,vk,yk)} be a sequence gener-
ated by ADMM-IPM-STO. Assume that ¬ problem (3) is
generic;  the sequence {yk} converges to a point, i.e.
limk→+∞yk = y. Then {(xk,uk,vk)} converge to a limit
point (x,u,v) which is a local minimum of problem (5).

Remark 2: Theorem 2 actually reveals that if the conver-
gence of the dual variable yk is observed, it is safe to say
that ADMM-IPM-STO achieves a local minimum of problem
(5). This theorem substantiates the optimality of the solutions
obtained by ADMM-IPM-STO in practice.

Finally, since g(v) is convex for q = 1, we can obtain
stronger convergence result under proper assumptions. We
present the strong result in the following theorem.

Theorem 3: Let {(xk,uk,vk,yk)} be a sequence generat-
ed by ADMM-IPM-STO. (x,u,v,y) satisfies the sufficient
optimality in Theorem 1. Assume that, for sufficient large
k: ¬ problem min f(x,u) +

(
yk

)T
u, s.t. (x,u) ∈ S

is generic;  (xk,uk) is in the attraction basin of local
minimum (x,u) of Lρ(x,u,v,y), i.e. Lρ(x,u,v,y) ≤
Lρ(x

k,uk,v,y) always holds; ® (x,u) is in the attraction
basin of local minimum (xk+1,uk+1) of Lρ(x,u,v

k,yk),

i.e. Lρ(x
k+1,uk+1,vk,yk) ≤ Lρ(x,u,v

k,yk) always holds.
Then {(xk,uk,vk,yk)} converges to (x,u,v,y).

Remark 3: Theoretically, the IPM algorithm for OPF prob-
lems can only achieve a local minimum. So assumption  and
® in theorem 3 actually ensure that all the local minimums
are in a single attraction basin and thus the inequality relations
do not compromise.

IV. GENERAL FACTS DEVICES ALLOCATION PROBLEMS

In our formulation, current mismatch equations are chosen
as equality constraints instead of power mismatch equations.
Bus voltages and generator current injections are taken as state
variables. Consequently, generators and loads are modeled
as complex current injections at their buses. All FACTS
devices are modeled as parametric complex current injections
at related buses. The reasons for these choices are as follows.
At first, three series controllable parameters relate to one line
in general FACTS devices allocation problems, which leads
to a very high-order power balance equation. Subsequently,
solving the second-order derivatives is far more difficult in
power balance equations than that in current balance equations.
Secondly, as every bus or line can be a candidate location for
FACTS devices implies a very large number of controllable
parameters, and solving the second-order derivatives in con-
ventional formulation thus becomes rather impractical.

A. Branch and FACTS Devices Modeling

Without loss of generality, every bus or line in power
systems is considered as a candidate location for FACTS
device placement. A general branch model is shown in Fig.1
which is similar to that in [30]. r, x and b are transmission line
parameters. v̂f , v̂t, îf and ît are complex voltage and current
at ”from” and ”to” ends of the branch. The series controllable
parameters κ, φ and τ are used to describe the effect of
TCSC (thyristor control led series capacitor), TCPS (thyristor
controlled phase shifter) and ULTC (under load tap changer),
respectively. In addition, Shunt compensation devices can be
simply modeled as extra susceptance at certain buses which
are not shown in Fig. 1. Because this model contains all
network parameters, other types of FACTS devices can be
equivalently transformed into this model. In particular, the
models of STATCOM [31], SSSC [32] and UPFC [33] are
special cases of the general model used in this paper.

r jx:
je

jb jb

ˆ
fi

ˆ
fv

ˆ
ti

t̂v

x

Fig. 1. General Branch Model
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From Fig. 1, the relationship between complex voltages and
currents at both ends is given by[

îf
ît

]
=

[
τ2(ŷ∗ + jb) −τejφŷ∗

−τe−jφŷ∗ ŷ∗ + jb

] [
v̂f
v̂t

]
(14)

where ŷ∗ = 1/ (r + j(1− κ)x).
To facilitate optimization computation, the equivalent cur-

rent injection model is derived and adopted. In this model, the
effects of all the controllable parameters are represented by the
current injections at the “from” and “to” ends of the branch
and this model possesses the versatility to adapt to various
types of FACTS devices. Assume that Fig. 1 is equivalent to
Fig. 2 in which equivalent complex current injections ∆îf and
∆ît are introduced to depict the effects of all FACTS devices
and ŷ = 1/ (r + jx) . The following equation holds:[

îf +∆îf
ît +∆ît

]
=

[
ŷ + jb −ŷ
−ŷ ŷ + jb

] [
v̂f
v̂t

]
(15)

Combining (14) with (15), we can acquire parametric complex

jb jb

r jxˆ
fi ˆ

ti

ˆ
fi

ˆ
ti

ˆ
fv t̂v

Fig. 2. Equivalent Current Injection Model

current injections as[
∆îf
∆ît

]
=

[
ŷ − τ2ŷ∗ + jb(1− τ2) −ŷ + τejφŷ∗

−ŷ + τe−jφŷ∗ ŷ − ŷ∗

] [
v̂f
v̂t

]
(16)

Equation (16) shows that ∆îf and ∆ît are the functions of
series controllable parameters and complex voltages at both
ends of the line and they can completely represent the effect
of controllable devices.

B. Sparsity-constrained OPF Model

In the sparsity-constrained OPF problems, decision vari-
ables are divided into two groups and denoted by two vectors.
Decision vector u consists of setting values of all the candidate
FACTS devices, i.e.

u = (bsh, φ, κ) (17)

where bsh ∈ Rnb denotes the susceptance of shunt compen-
sation devices at every bus; φ ∈ Rnl and κ ∈ Rnl denote
the shift angle and series compensation rate at every line,
respectively. Certain component of u being zero indicates
no corresponding device is installed. Vector x contains bus
voltages, generator current injections and UTLC ratios, i.e.

x = (e, f , ag, bg, τ ) (18)

where e ∈ Rnb and f ∈ Rnb denote the real and imaginary
parts of bus voltages; ag ∈ Rng and bg ∈ Rng denote the

real and imaginary parts of generator current injections; τ ∈
Rnl denotes the transformer ratio at every line. Between them,
vector u is expected to be very sparse after optimization due
to economic consideration.

The equality constraints of OPF formulation in this paper
are the network current mismatch equations. Let ĥ ∈ Cnb

denotes the complex current mismatch at every bus. Its ith

elment is given by

ĥi(x,u) =
∑

k∈Ngi

(agk + jbgk) +

(
pli + jqli
ei + jfi

)c

+∆îi

−
nb∑
k=1

ŷik(ek + jfk) (19)

where Ngi is the index set of generators installed at bus i;
pli and qli denote the active and reactive power of load at
bus i, respectively; ŷik is the (i, k)th element of the nodal
admittance matrix of the original network shown in Fig. 2. ∆îi
is the complex current injection induced by all the controllable
equipments related to bus i. Define Nfi (Nti) as the index set
of branches which takes bus i as their “from” (“to”) end. Then
∆îi is expressed as

∆îi =
∑

k∈Nfi

∆îfk +
∑

k∈Nti

∆îtk − jbshi(ei + jfi) (20)

where ∆îfk (∆îtk) is the complex current injection induced
by related controllable devices at the “from” (“to”) end of the
branch k which is given by (16). The last term in (20) denotes
the complex current injection induced by shunt compensation
devices at bus i. Therefore, the equality constraints can be
written in a compact form as

h(x,u) =
(

Re
(
ĥ(x,u)

)
, Im

(
ĥ(x,u)

))
= 0 (21)

The inequality constraints are steady state security con-
straints, including current magnitude limit for every line and
voltage magnitude limit for every bus

∥(ŷ + jb)(ef + jff )− ŷ(et + jft)∥22 ≤ (imax)
2 (22)

(vmim)2 ≤ ∥ei + jfi∥22 ≤ (vmax)
2 (23)

and physical limits of devices, including generator active and
reactive power output:

pkmim ≤ Re ((ei + jfi)(agk + jbgk)
c) ≤ pkmax (24)

qkmim ≤ Im ((ei + jfi)(agk + jbgk)
c) ≤ qkmax (25)

where generator k is installed at bus i; setting value limits of
ULTC, SVC, TCPS and TCSC:

τkmim ≤ τk ≤ τkmax (26)

bshkmim ≤ bshk ≤ bshkmax (27)

φkmim ≤ φk ≤ φkmax (28)

κkmim ≤ κk ≤ κkmax (29)

Thus inequality constraints are written in a compact form as

gmim ≤ g(x,u) ≤ gmax (30)
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In the proposed formulation, it is certainly free to choose
various kinds of objective functions. Without loss of generality,
system loadability is taken as objective function in our case
studies to test the proposed algorithm. The complex power
injection of loads at bus i is modified as

pli + jqli = η(pli0 + jqli0) (31)

where η is the loadability factor and pli0 + jqli0 is the initial
complex power injection of loads at bus i. Hence, the objective
function is given by

f(x,u) = −η (32)

To sum up, the sparsity-constrained OPF formulation for
general FACTS devices allocation problems can be written in a
compact form as (3) where feasible set S are specified by (21)
and (30). Objective function is defined in (32). Problem (3)
can be solved with the ADMM-IPM-STO algorithm discussed
in Section II.

V. CASE STUDIES

To validate the algorithm proposed, single-type and
multiple-type FACTS devices allocation problems have been
tested on standard IEEE 30-buses, 118-buses and 300-buses
system, respectively. The system data is extracted from Mat-
power 4.1. ADMM-IPM-STO algorithm was programmed in
MATLAB running on a Win7 PC with Intel Core i5 1.80-GHz
CPU and 4 GB of RAM.

A. Parameter Settings

The value of q of Lq norms is an economical parameter
related to the investment cost of different types of FACTS
device. For practical application, Lq norms can choose three
values, L1/2, L2/3 and L1. If the investment cost of a certain
type of FACTS devices is dominated by the number of devices,
L1/2 norm is a better choice. If the setting value of the FACTS
devices play a major role in the investment cost, L1 norm
is preferred. L2/3 norm acts as a compromise between L1/2

norm and L1 norm. In our experiment, L1/2 norm is used in
multiple-type FACTS devices allocation and single-type TCPS
allocation; L1 norm is applied to single-type SVC allocation
and TCSC allocation.

The physical meaning of regularization parameter λ repre-
sents the cost of per unit FACTS devices measured in Lq norm
and its value should be decided by the decision maker based
on their specification. To test the robustness of the algorithm
proposed, the sparsity-constrained OPF problems are solved
with decreasing values of λ, which means system loadability
is increased through installation of an increasing number of
FACTS devices. In other words, every λ value is associated
with a devices allocation strategy. Due to space limitation, only
under a certain device number, the allocation strategy with the
largest loadability factor is given to illustrate the relationship
among device numbers, total installed capacity and system
loadability.

Theoretically, the value of the augmented Lagrangian pa-
rameter ρ will not affect the result of the algorithm only if it
surpasses a threshold value which is problem-dependent and

unknown before the problem solved. Nevertheless, the value
of ρ affects the convergence process of the algorithm. Large
values of ρ place a severe penalty on violations of primal
feasibility and thus tend to produce small primal residuals.
Conversely, small values of ρ tend to reduce the dual residual
at the cost of the primal residual. Therefore, an ideal value of ρ
should keep the primal and the dual residuals within moderate
difference as they both converge to zero. ρ is usually chosen
by cross-validation.

In addition, the decision variable u is usually rescaled by
multiplying its components with some factors. For example,
considering different line distances, every κ is multiplied by
the reactance of the related line. In multi-type FACTS devices
allocation problems, to reflect the price differences among
different types of FACTS devices, bsh, κ and φ are multiplied
by different factors αc, ακ and αφ, respectively. In our study,
the allowable range of the compensation rate of TCSCs, the
shift angle of TCPSs and the ratio of UTLCs are 0% ∼ 50%,
−15◦ ∼ +15◦ and 0.9 ∼ 1.1, respectively. The setting values
of SVC are unbounded. ϵprimal and ϵdual are both set to be
10−4.

B. Multiple-type FACTS Devices Allocation

Multiple-type FACTS devices allocation is conducted on
IEEE 30-bus system. The candidate FACTS devices are SVC,
TCSC and TCPS. In this problem, x is 72 dimensional and u
is 112 dimensional. By running a conventional OPF without
FACTS devices, the maximum loadability of IEEE 30-bus
system is 1.020. Regardless of device costs, i.e. setting λ = 0
in our algorithm, the theoretical maximum loadability by
FACTS device installation is 1.735, and the results under this
condition are taken as the initial values of decision variables in
problems with other values of λ. Thus, during the optimization
process, the loadability factor η, the device number, setting
values decrease from the original values to achieve primal
and dual convergence of the ADMM-IPM-STO algorithm. The
convergence processes of primal and dual errors are shown in
Fig. 3, and the changing process of the loadability factor is
shown in Fig. 4 with λ = 0.29, ρ = 500, αc = 0.1, ακ = 20
and αφ = 200.
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Fig. 3. Primal and Dual Residuals Convergence Process

Fig.3 shows that the primal residual stops decreasing after
about 10 iterations, as the NLP sub-problem precision restric-
tion is set to be 10−5. The dual convergence is much slower
than the primal convergence. Essentially, the reason for this
phenomenon is that, in the method of multipliers, the primal
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TABLE I
MULTIPLE-TYPE FACTS DEVICES ALLOCATION STRATEGY ON 30-BUS

SYSTEM

λ No. η Allocation Strategy
3.38 1 1.539 TCSC:10(50%)a

2.67 2 1.608 SVC:8(90.5)b; TCSC:10(50%)
0.30 3 1.723 SVC:8(33.1); TCSC:10(36.0%),29(49.5%)
0.29 4 1.728 SVC:8(46.0),28(25.2); TCSC:10(34.1%),29(50%)
aLine number (compensation rate)
bBus number (Var compensation capacity in MVar)

problem is solved with a second-order method (IPM) whereas
the dual problem with a first-order method (steepest ascent)
[34]. Fig. 4 shows the loadability factor declines from the
initial value and finally reaches the steady value 1.728 as
convergence achieved. After optimization, only two SVCs and
two TCSCs, among 112 candidates, are selected and installed
in the network, shown in the last row of Table I.

Furthermore, the allocation strategies with device number
from 1 to 4 are listed in Table I. It is obvious that, with only
4 FACTS devices installed, the loadability factor can reach
1.728, up to 99.6% of the theoretical maximum. This validates
the sparse feature of FACTS devices allocation problem. In
other words, a large number of FACTS devices are not only
uneconomical but also unnecessary.

C. Single-Type FACTS Devices Allocation

SVC, TCSC and TCPS allocation problems are conducted
on IEEE 118- and 300-bus systems. The basic information of
all the six problems is summarized in Table II.

Results of all the six problems are shown in Fig.5 to Fig.
7, which illustrate the evolution of system loadability as the
device number and total installed capacity increase. In all three
types of FACTS allocation problems studied in this paper, the
maximum loadability saturates after several devices installed
(typical number of devices is 3), and the marginal utility of
FACTS devices significantly diminishes.

TABLE II
SINGLE-TYPE FACTS DEVICES ALLOCATION PROBLEMS

Problems Dim. x Dim. u ηmax no device theoretical ηmax

SVC118 353 118 1.859 2.124
TCSC118 353 186 1.859 2.283
TCPS118 353 186 1.859 1.867
SVC300 845 300 1.116 1.243

TCSC300 845 411 1.116 1.236
TCPS300 845 411 1.116 1.120

(a) 118-bus system

(b) 300-bus system

Fig. 5. Loadability enhancement by optimal allocation of SVCs on 118 and
300 bus systems

TABLE III
SVC ALLOCATION STRATEGY ON 118-BUS SYSTEM

No. η Allocation Strategy η/ηmax

1 2.103 76(40.12)a 99.0%
2 2.113 76(33.96), 118(8.89) 99.5%
3 2.114 76(34.06), 95(1.28), 118(8.82) 99.5%

aBus number (Var compensation capacity in MVar)

Detailed allocation strategies for SVC allocation on IEEE
118-bus system, TCSC allocation on IEEE 300-bus system
and TCPS allocation on IEEE 118-bus system are listed
in Table III, Table IV and Table V, respectively. Only the
parameters and locations for the first 3 devices are given, as
it is clearly shown in Fig.5 to Fig. 7 that the enhancement
of loadability will saturate with more than 3 devices. This
again demonstrates the sparsity of FACTS devices allocation
problems.

TABLE IV
TCSC ALLOCATION STRATEGY ON 300-BUS SYSTEM

No. η Allocation Strategy η/ηmax

1 1.213 177(37%)a 98.1%
2 1.226 177(50%), 367(26%) 99.2%
3 1.227 1(12%), 177(50%), 367(31%) 99.3%

aLine number (compensation rate)
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(a) 118-bus system

(b) 300-bus system

Fig. 6. Loadability enhancement by optimal allocation of TCSCs on 118
and 300 bus systems

TABLE V
TCPS ALLOCATION STRATEGY ON 118-BUS SYSTEM

No. η Allocation Strategy η/ηmax

1 1.864 123(-5.418)a 99.8%
2 1.865 121(3.448), 123(-4.189) 99.9%
3 1.865 121(1.932), 122(1.590), 123(-4.113) 99.9%

aLine number (shift angle in degree)

VI. RESULT DISCUSSION

A. Comparisons with Other Methods

Full AC power flow model has been used in our problem
formulation. This certainly improves the quality of the solution
compared to other methods employing simplified power flow
models. The DC flow used in MILP method [12] neglects
the nonlinearity of the power flow and constraints on voltage
magnitude and cannot precisely reflect the limits on line ca-
pacity. The LFB flow used in MIQP method [2] has also been
simplified by transforming the quadratic equality constraints
into linear inequality constraints. Therefore the nonlinearity
of power flow is not completely represented. The modeling
of limits on line capacity is also deficient. The GA method
in [8] uses a simplified version of AC flow by neglecting
transverse conductance of transmission lines. The motivation
for all those simplifications is either convenience of adopting
certain methods or simplifying numerical computation. But
this will inevitably affect the quality of the solutions. For
example, we have observed in our experiment, the constraints
of voltage magnitude and line capacity often act as binding

(a) 118-bus system

(b) 300-bus system

Fig. 7. Loadability enhancement by optimal allocation of TCPSs on 118 and
300 bus systems

constraints at the final solution which indicates that defects
in representing these constraints surely change the optimal
solution. These simplified methods are, to some extent, eli-
gible for preliminary planning, but their results need to be
verified by the full AC model. Although the different problem
formulations have complicated influence on the final solutions,
we would like to make some rough comparison as follows.
For SVC allocation on 300-bus system, we install 3 SVCs
to improve the loadability to 1.217 while [6] improves the
loadability to 1.207 with 5 SVCs. For TCSC allocation on
300-bus system, the loadability is improved to 1.227 with 3
TCSCs in this paper compared to 1.081 with 19 TCSCs in
[2]. For TCPS allocation on 118-bus system, the loadability
achieves 1.865 with 3 TCPSs by our approach compared to
1.76 with 13 TCPSs in [12]. These comparisons show that our
approach is generally more effective to identify the optimal
locations and setting values of FACTS devices.

To roughly evaluate the efficiency of the proposed algorith-
m, we continue the comparison originally conducted in [2] and
list the results in Table VI. At first, the proposed ADMM-
IPM-STO employs the full AC power flow model rather
than simplified models such as the DC model and the LFB
model used in MILP [12] and MIQP [2], which improves the
accuracy and reliability of the computation results. Secondly,
the ADMM-IPM-STO is far more computationally efficient
than GA [8] and also offers faster or at least comparable
performance compared with MIQP [2].
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TABLE VI
ALGORITHM EFFICIENCY COMPARISON

Methods Network Device Model Machine Time

GA [8] 200-bus TCPS AC Sun SPARC
Workstation 1.5h

MILP [12] 300-bus TCPS DC PC 450MHz
128MB RAM 2.5s

MIQP [2] 300-bus TCSC LFB Dell OptiPlex
GX520 218s

Proposed 300-bus TCPS AC PC 1.80GHz
3.85GB RAM 63s

The major competitors of the proposed method are those
mixed-integer programming based methods, including MILP
[12], MIQP [2] and MINP [6]. In those methods, branch-
and-cut or benders decomposition are involved to tackle the
binary variables and form a series of continuous subproblems.
The continuous subproblems can be linear programming,
quadratic programming or nonlinear programming according
to their problem formulations. In those methods, the number
of continuous subproblems is strongly related to the number of
binary variables. Thus the computation time will significantly
increase as the allowable device number or the system scale
increase. We compare the computation time of the proposed
method with MINP and MIQP in Fig.8 and Fig.9 as allowable
device number and system scale increase, respectively. These
two graphs show that the computation time of mixed-integer
programming based methods are very sensitive to allowable
device number and system scale. Whereas the computation
time of ADMM-IPM-STO is almost irrelevant to allowable
device number and far less sensitive to problem scale.
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Fig. 8. Computation time comparison between ADMM-IPM-STO and MINP
as allowable device number increase for SVC allocation on 300-bus system
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Fig. 9. Computation time comparison between ADMM-IPM-STO and MIQP
as system scale increase for TCSC allocation problem

B. Convergence and Non-convexity

Although so far general convergence result of ADMM-
IPM-STO for all q ∈ (0, 1] has not been established, our
analysis shows the optimality of solutions obtained in practice
is theoretically substantiated, and the convergence for q = 1
is quite well guaranteed. Furthermore, the convergence of
proposed algorithm is very robust in practice for each value
of q with closed-form solutions, including q = 1/2, q = 2/3
and q = 1. In our experiment, ADMM-IPM-STO can achieve
convergence for every type of FACTS allocation problems as
long as the parameter ρ is adjusted to a proper range. The rule
of thumb of finding the proper ρ, in our experience, is to make
the primal convergence a little faster than dual convergence.
Actually, by only several trial-and-error processes a suitable
parameter can then be found because the range of applicable
ρ is usually very wide and the dependency of the algorithm
performance on the value of ρ is pretty loose.

Theoretically, ADMM-IPM-STO can only achieve local
minimum due to the non-convex problem formulation. Note
that there are two sources of non-convexity: the original non-
convexity of OPF problems and the non-convexity of Lq

norms. For the non-convexity of OPF problems, because we
have applied IPM to solve the OPF subproblems, ADMM-
IPM-STO shares the same limitation of the IPM, and therefore
only local minimum can be expected. Recently, there have
been some attempts to obtain global solution of OPF problems.
The author of [35] established a sufficient condition for zero
duality gap of the semi-definite programming formulation of
the dual problem of OPF, which leads to global solution to
OPF problems. But this sufficient condition does not always
hold in every network [36]. None of the current methods
can guarantee the global optimum solution of general OPF
problems. The proposed ADMM-IPM-STO thus is also inca-
pable of guaranteeing global solution. For the additional non-
convexity of Lq norms, a natural question is that whether this
additional non-convexity will produce additional local opti-
mums. We have conducted a series of numerical experiments
to answer this question. For all tests, we fix the initial value of
x and randomly select different initial value of u. This means
the initial condition of the original network is fixed while the
initial guess of the FACTS device allocation strategy changes.
Test results show that all different initial values of u result in a
common optimal solution. This shows that the non-convexity
brought by Lq does not produce additional local minimum.
The fundamental reason for this is that the STOs give global
optimal solutions to Lq regularization problems.

VII. CONCLUSION

This paper has proposed a novel formulation and algo-
rithm for FACTS devices allocation problems. Based on the
sparse characteristics of device placement, FACTS allocation
problems have been formulated as a sparsity-constrained OPF
problem. An ADMM-IPM-STO algorithm, which combines
the state-of-art algorithms in both sparse optimization and
OPF, has been proposed to simultaneously determine the num-
bers, locations, setting values and types of FACTS devices.
Lq(0 < q < 1) norms have been firstly introduced to represent
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sparsity in FACTS devices allocation problems, in which q
is an economical parameter related to the investment cost of
different types of FACTS device. The proposed method has
been tested on several IEEE standard systems in both multiple-
type allocation problem as well as single-type problems,
respectively. Case studies demonstrate the effectiveness and
efficiency of this method.

In addition, the proposed formulation and algorithm can
be easily applied to other objective functions since we have
presented a general sparsity-constrained OPF model and the
same calculating process of the ADMM-IPM-STO can be
used no matter what objective function is chosen. Moreover,
the proposed approach can be extended to FACTS alloca-
tion problems considering multiple contingencies by further
incorporating the ideas of ”security-constrained OPF” [29]
and ”group sparsity” [37]. FACTS devices allocation problem
considering multiple contingencies can be formulated as

min
(xc,uc):∀c∈C

f(x0,u0) + λ

n∑
k=1

∥wk∥qp (33a)

hc(xc,uc) = 0 ∀c ∈ C (33b)
gmim ≤ gc(xc,uc) ≤ gmax ∀c ∈ C (33c)

where C = {0, 1, 2, . . . , t} is the set of prespecified t + 1
contingencies with c = 0 representing the base case; for
each contingency, uc, xc, hc(·) and gc(·) share the same
definition as (17), (18), (21) and (30), respectively; wk =
(u0k, u1k, . . . , utk) are the setting values of the k-th device
in all contingencies. The regularization term in the objective
function is referred as Lq,p norm with q ∈ (0, 1] and p ∈
[2,+∞]. This regularizer leads the setting values of the same
FACTS device in different contingencies to be zeros or non-
zeros simultaneously which enforces sparsity on installation
sites.

APPENDIX A
SHRINKAGE-THRESHOLDING OPERATORS

The specific expression of STOs for L1/2 [20], L2/3 [19]
and L1 [21] norms are presented here. They are all diagonally
nonlinear operators uniformly expressed as

Shrink(z, β) = [Hβ(z1) Hβ(z2) . . . Hβ(zn)]
T (34)

For q = 1/2,

Hβ(zi) =


2
3 |zi|

(
1 + cos

(
2π
3 − 2φβ(zi)

3

))
zi > p(λ)

0 |zi| ≤ p(λ)

− 2
3 |zi|

(
1 + cos

(
2π
3 − 2φβ(zi)

3

))
zi < −p(λ)

(35)

where φβ(zi) = arccos

(
β
8

(
|zi|
3

)− 2
3

)
and p(λ) =

3√54
4 (β)

2
3 .

For q = 2/3,

Hβ(zi) =



(
m+

√
2|zi|/m−m2

2

)3

zi > p(β)

0 |zi| ≤ p(β)

−
(

m+
√

2|zi|/m−m2

2

)3

zi < −p(β)

(36)

where m = 2√
3
β

1
4

(
cosh

(
ϕ
3

)) 1
2

, ϕ = arccosh
(

27z2
i

16 β− 3
2

)
and p(β) = 2

3 (3β
3)

1
4 .

For q = 1,

Hβ(zi) = sgn(zi)max{|zi| − β, 0} (37)

APPENDIX B
A LEMMA

We present a Lemma which will be frequently used in
Appendix C, D and E.

Lemma 1: Assume that x is a local minimum of
min h1(x) + h2(x), s.t. x ∈ S; the first-order directional
derivative h′

1(x;d) exists; h2(x) is continuously differentiable
and ∇2h2(x) = 0; If problem min h1(x), s.t. x ∈ S is
generic, then x is also a local minimum of h1(x), s.t. x ∈ S.

Proof: Since x is a local minimum of h1(x) +
h2(x), s.t. x ∈ S, we have h′

1(x;d)+∇h2(x)
T d ≥ 0, ∀d ∈

TS(x) where TS(x) denotes the tangent cone of S at x. It
follows from ∇h2(x) = 0 that h′

1(x;d) ≥ 0,∀d ∈ TS(x).
Because problem min h1(x), s.t. x ∈ S is generic, x is also
a local minimum of h1(x), s.t. x ∈ S.

APPENDIX C
PROOF OF THEOREM 1

Proof: Under condition ¬ and , considering condition
®, there exists δ > 0, ∀(x,u,v) ∈ F ∩ B ((x,u,v), δ) such
that Lρ(x,u,v,y) ≥ f(x,u) and Lρ(x,u,v,y) ≥ g(v).
Adding the two inequalities and again noticing condition ®,
we have h(x,u)+ρ∥u−u∥22 ≥ h(x,u), i.e. (x,u) is a local
minimum of h(x,u) + ρ∥u − u∥22. Considering assumption
¯ and using Lemma 1, (x,u) is also a local minimum of
h(x,u).

APPENDIX D
PROOF OF THEOREM 2

Proof: Note that (xk+1,uk+1) is a strictly local minimum
of Lρ(x,u,v

k,yk) due to the existence of the quadratic
term and assumption ¬. Therefore there exists α > 0
such that Lρ(x

k,uk,vk,yk) − Lρ(x
k+1,uk+1,vk,yk) ≥

α
(
∥xk − xk+1∥22 + ∥uk − uk+1∥22

)
. Since vk+1 is the glob-

al minimum of Lρ(x
k+1,uk+1,v,yk), in the same way,

there exists β > 0 such that Lρ(x
k+1,uk+1,vk,yk) −

Lρ(x
k+1,uk+1,vk+1,yk) ≥ β∥vk − vk+1∥22. Considering

above two inequalities and noticing (9) and denoting c =
min{α, β}, we have

Lρ(x
k,uk,vk,yk)− Lρ(x

k+1,uk+1,vk+1,yk+1)

=Lρ(x
k,uk,vk,yk)− Lρ(x

k+1,uk+1,vk,yk)+

Lρ(x
k+1,uk+1,vk,yk)− Lρ(x

k+1,uk+1,vk+1,yk)+

Lρ(x
k+1,uk+1,vk+1,yk)− Lρ(x

k+1,uk+1,vk+1,yk+1)

≥c
(
∥xk − xk+1∥22 + ∥uk − uk+1∥22 + ∥vk − vk+1∥22

)
− (1/ρ)∥yk − yk+1∥22 (38)



11

Taking summation of above inequalities and noticing
Lρ(x,u,v,y) is bounded below, it gives

c
+∞∑
k=0

(
∥xk − xk+1∥22 + ∥uk − uk+1∥22 + ∥vk − vk+1∥22

)
− (1/ρ)

+∞∑
k=0

∥yk − yk+1∥22 < +∞ (39)

According to assumption , we have
∑+∞

k=0∥yk − yk+1∥22 <
+∞. Therefore
+∞∑
k=0

(
∥xk − xk+1∥22 + ∥uk − uk+1∥22 + ∥vk − vk+1∥22

)
< +∞

(40)
which implies the convergence of {(xk,uk,vk)}. We then
denote the limit point as (x,u,v). In other words, (x,u,v,y)
is a stationary point of ADMM-IPM-STO. Therefore, condi-
tion ¬,  and ® in Theorem 1 are satisfied. Furthermore,
assumption ¬ directly leads to condition ¯ in Theorem 1. So
(x,u,v) is a local minimum of problem (5).

APPENDIX E
PROOF OF THEOREM 3

Proof: Since (x,u) is a local minimum of Lρ(x,u,v,y)
and (xk+1,uk+1) is in its attraction basin by assumption ,
we have Lρ(x,u,v,y) ≤ Lρ(x

k+1,uk+1,v,y). Considering
assumption ¬ and using Lemma 1, we obtain

f(x,u) + yTu ≤ f(xk+1,uk+1) + yTuk+1 (41)

Similarly, v is the global minimum of Lρ(x,u,v,y), so we
have Lρ(x,u,v,y) ≤ Lρ(x,u,v

k+1,y). Considering the
convexity of g(v) and using Lemma 1, we obtain

g(v)− yTv ≤ g(vk+1)− yTvk+1 (42)

Add (41) and (42) and notice u− v = 0 to obtain

f(x,u)+g(v) ≤ f(xk+1,uk+1)+g(vk+1)+yT
(
uk+1 − vk+1

)
(43)

According to ADMM-IPM-STO, (xk+1,uk+1) is the local
minimum of Lρ(x,u,v

k,yk). Considering assumption ®,
substituting yk = yk+1 − ρ(uk+1 − vk+1) and again using
Lemma 1, we obtain

f(xk+1,uk+1) +
(
yk+1 + ρ(vk+1 − vk)

)T
uk+1

≤ f(x,u) +
(
yk+1 + ρ(vk+1 − vk)

)T
u (44)

Similarly, noticing vk+1 is the global minimum of
Lρ(x

k+1,uk+1,v,yk), substituting yk = yk+1 − ρ(uk+1 −
vk+1) and using Lemma 1 yields

g(vk+1)−
(
yk+1

)T
vk+1 ≤ g(v)−

(
yk+1

)T
v (45)

In the same way, we also have

g(vk+1)−
(
yk+1

)T
vk+1 ≤ g(vk)−

(
yk+1

)T
vk (46)

g(vk)−
(
yk

)T
vk ≤ g(vk+1)−

(
yk

)T
vk+1 (47)

We add (46) and (47) to obtain

(yk+1 − yk)T (vk+1 − vk) ≥ 0 (48)

Adding (43), (44) and (45), rearranging (see Appendix F), and
noticing (48), we can obtain

wk − wk+1 ≥ ρ∥uk+1 − vk+1∥22 + ρ∥vk+1 − vk∥22 (49)

where wk = (1/ρ)∥yk−y∥22+ρ∥vk+1−vk∥22. This shows that
wk monotonously decreases in each iteration until the residuals
vanish. Therefore {(xk,uk,vk,yk)} → (x,u,v,y).

APPENDIX F
PROOF OF (49)

Adding (43), (44) and (45) and multiplying by 2, we obtain

2
(
yk+1 − y

)T
rk+1 + 2ρ

(
vk+1 − vk

)T (
uk+1 − u

)
≤ 0

where rk+1 = uk+1−vk+1. By noticing yk+1 = yk+ρrk+1

and u − v = 0, we rewrite the left hand side (LHS) of the
above inequality as follows:

LHS =2
(
yk + ρrk+1 − y

)T
rk+1 + 2ρ

(
vk+1 − vk

)T (
rk+1

+vk+1 − v
)

=
{
2
(
yk − y

)T
rk+1 + ρ∥rk+1∥22

}
+

{
ρ∥rk+1∥22+

2ρ
(
vk+1 − vk

)T
rk+1 + 2ρ

(
vk+1 − vk

)T (
vk+1 − vk

)
+2ρ

(
vk+1 − vk

)T (
vk+1 − v

)}
=
1

ρ

(
∥yk+1 − y∥22 − ∥yk − y∥22

)
+ ρ

(
∥vk+1 − v∥22

−∥vk − v∥22
)
+ ρ∥rk+1 + (vk+1 − vk)∥22

Noticing the positivity of (rk+1)T (vk+1 − vk) according to
(48), LHS ≤ 0 directly leads to (49).
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