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Abstract

This paper investigates the stability of linear systems with a time-varying delay. The key problem concerned is

how to effectively estimate single integral term with time-varying delay information appearing in the derivative of

Lyapunov-Krasovskii functional. Two novel integral inequalities are developed in this paper for this estimation task.

Compared with the frequently used inequalities based on the combination of Wirtinger-based inequality (or Auxiliary

function-based inequality) and reciprocally convex lemma, the proposed ones can provide smaller bounding gap

without requiring any extra slack matrix. Four stability criteria are established by applying those inequalities. Based

on three numerical examples, the advantages of the proposed inequalities are illustrated through the comparison of

maximal admissible delay bounds provided by different criteria.
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1. Introduction

Time-varying delays are frequently introduced into control loops during implementing of practical control systems

through communication networks [1]. The stability, as the basic requirement of control systems, may be destroyed due

to the presence of time delays. Hence, the stability analysis of systems with time-varying delays has been becoming

a hot topic in the past few decades [2, 3, 4, 5, 6].

The important objective of stability analysis is to find the maximal admissible delay region such that time-delay

system remains stable for the time-varying delay within this region [7]. The determination of such region requires

suitable stability criteria. Benefit from the advantages of wide applications and easy extension of Lyapunov-Krasovskii

functional (LKF) method and the convenient tractability of the linear matrix inequality (LMI), the delay-dependent

stability criterion derived in the framework of the LKF and the LMI is the most effective criterion to provide admissible

region of the time-varying delay [8].

In order to obtain delay-dependent criteria via the LKF method, the following double integral term is usually

applied in the LKF [9]:

Vr(t) =
∫ 0

−h

∫ t

t+θ
ẋT (s)Rẋ(s)dsdθ (1)
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where R > 0 is the Lyapunov matrix to be determined, h is upper bound of time-varying delay (Note that this paper

discusses the time-varying delay with zero low bound, i.e., 0 ≤ d(t) ≤ h), and x(t) is the system state. Then its

derivative includes the following single integral terms with time-varying delay information:

S(t) :=−
∫ t

t−d(t)
ẋT (s)Rẋ(s)ds −

∫ t−d(t)

t−h
ẋT (s)Rẋ(s)ds (2)

In order to obtain the LMI-based criterion, a challenging problem is how to find the upper bound of S(t) [9].

Before 2004, model transformations, together with Park or Moon inequality [10], were generally applied to handle

S(t) [11, 12]. The model transformation may result in additional dynamics and the inequality-based cross term

bounding leads to conservatism [13]. The free-weighting-matrix (FWM) approach was proposed in 2004to overcome

those drawbacks [14, 15]. However, the second single integral term,
∫ t−d(t)

t−h
ẋT (s)Rẋ(s)ds, was ignored based on the

above methods. Later, the improved FWM approaches [16, 17, 18] without ignoring such term were developed and

used to be the most popular method for studying of different time-delay systems [19, 20, 21]. However, the drawback

of the FWM-based method is that many slack matrices bring heavy computation complexity, and it is a bit difficult to

judge how to introduce slack matrices reasonably [22].

An alternative type of method that estimates S(t) using bounding inequalities is applied to avoid introducing too

many slack matrices. The estimation of S(t) based on this type of method includes two key steps, namely, 1) two

integral terms in S(t) are estimated respectively via suitable bounding inequalities; and 2) the d(t) with the form, 1
d(t)

and 1
h−d(t) , appearing in the transformed quadratic terms is handled via suitable techniques. For the first step, Jensen

inequality [23] is commonly used in the early researches. Later, some tighter inequalities, such as Wirtinger-based

inequality [9] and auxiliary function based inequality [24], are developed to improve the results. Recently, Bessel-

Legendre inequality, which contains the above ones as spacial cases, further increases the estimation accuracy [25].

For the second step, the simplest treatment is to directly replace d(t) with its bounds [26], while the enlargement leads

to obvious conservatism. Another way for this task is to use the convex combination method [27] after moving the

d(t) in the denominator to the numerator of the quadratic terms via some FWM-based inequalities [8, 28], simple

enlargement treatment [29, 36], and vector-redefined method [30], but it usually requires the introducing of many

slack matrices and/or the enlargement treatment. The reciprocally convex lemma [31] directly handling the d(t) in

the denominator is the most effective method since it leads to least conservatism while only introduces a few slack

matrices.

Due to the characteristic of few slack matrices introducing and small conservatism, the combination of the bound-

ing inequality and the reciprocally convex lemma is becoming the most popular framework for estimating S(t) during

the investigation of the systems with time-varying delay. To the best knowledge of the authors, most current researches

following this framework still focus on the development of new bounding inequalities for the aforementioned first step

task [32, 33, 34, 35]. However, there is no reported research that discusses the tighter estimation of S(t) considering

two steps together. This motivates the present research.

This paper develops two relaxed integral inequalities to estimate S(t) by considering two integral terms together,

instead of the two-step estimation method applied in the existing work. The first (or second) proposed inequality is

tighter than the one, obtained via the combination of the Wirtinger-based inequality (or the auxiliary function based

inequality) and the reciprocally convex lemma, without requiring any extra slack matrix. Four stability criteria of

a linear system with a time-varying delay are established by applying those inequalities. Finally, three numerical

examples are given to illustrate the effective of the proposed inequalities and the corresponding criteria.
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The reminder of paper is organized as follows. Section 2 gives problem formulation and preliminaries. In Section

3, two novel inequalities are given and the comparison with the commonly used ones is discussed. Section 4 gives

several new stability criteria of a linear system with a time-varying delay. Section 5 illustrates the advantages of the

proposed method via numerical examples. Conclusions are given in Section 6.

Notations: Throughout this paper, the superscripts T and −1 mean the transpose and the inverse of a matrix,

respectively; Rn denotes the n-dimensional Euclidean space; ‖ · ‖ refers to the Euclidean vector norm; P > 0 (≥ 0)

means P is a real symmetric and positive-definite (semi-positive-definite) matrix; I and 0 stand for the identity matrix

and the zero-matrix, respectively; diag{·} denotes the block-diagonal matrix; and symmetric term in the symmetric

matrix is denoted by ∗.

2. Problem Formulation and Preliminaries

Consider the following linear system with a time-varying delay:

⎧⎪⎪⎨⎪⎪⎩
ẋ(t) = Ax(t) + Adx(t − d(t)), t ≥ 0

x(t) = φ(t), t ∈ [−h, 0]
(3)

where x(t) ∈ Rn is the system state, A and Ad are the system matrices, the initial condition φ(t) is a continuously

differentiable function, and d(t) is the time-varying delay satisfying

0 ≤ d(t) ≤ h (4)

and

μ1 ≤ ḋ(t) ≤ μ2 (5)

where h, μ1, and μ2 are constant.

This paper aims to derive new delay-dependent stability criteria for analyzing the stability of system (3). In this

paper, the key problem to be concerned during the criterion-deriving is how to estimate the following single integral

term with time-varying delay information:

S(t)=−
∫ t

t−d(t)
ẋT (s)Rẋ(s)ds −

∫ t−d(t)

t−h
ẋT (s)Rẋ(s)ds (6)

This paper will develop two new inequalities for the above estimation task.

The Wirtinger-based integral inequality [9] and the auxiliary function based inequality [24] to be used are given

in the following lemma, shown as inequalities (7) and (8), respectively.

Lemma 1. [9, 24] For symmetric matrix R > 0, scalars a and b with a < b, and vector ω such that the integration
concerned are well defined, the following inequalities hold

(b − a)
∫ b

a
ω̇T (s)Rω̇(s)ds ≥ χT

1 Rχ1 + 3χT
2 Rχ2 (7)

(b − a)
∫ b

a
ω̇T (s)Rω̇(s)ds ≥ χT

1 Rχ1 + 3χT
2 Rχ2 + 5χT

3 Rχ3 (8)
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where

χ1 =ω(b) − ω(a)

χ2 =ω(b) + ω(a) − 2
b − a

∫ b

a
ω(s)ds

χ3 =ω(b) − ω(a) +
6

b − a

∫ b

a
ω(s)ds − 12

(b − a)2

∫ b

a

∫ b

s
ω(u)duds

The reciprocally convex lemma proposed in [31] is reformulated as the following simple form [9].

Lemma 2. ([31, 9]) For vectors β1 and β2, real scalar α ∈ (0, 1), symmetric matrix R > 0, and any matrix S satisfying[
R S
∗ R

]
≥ 0, the following inequality holds

1
α
βT

1 Rβ1 +
1

1 − αβ
T
2 Rβ2 ≥

[
β1
β2

]T [
R S
∗ R

] [
β1
β2

]
(9)

3. New inequalities for estimating S(t)

This section discusses the methods of estimating S(t). The commonly used method based on the bounding in-

equality and the reciprocally convex lemma is reviewed and two inequalities are summarized following the two-step

estimation procedure as mentioned in Section I. Then two relaxed inequalities are developed by directly considering

two parts of S(t) together and their advantages compared with the existing ones are briefly discussed.

Firstly, by combining the Wirtinger-based inequality (7) and the reciprocally convex lemma (9), the following

inequality is summarized:

Lemma 3. For a symmetric matrix R > 0 and any matrix S 1 satisfying

[
R1 S 1

∗ R1

]
≥ 0 with R1 = diag{R, 3R}, the S(t)

defined in (6) can be estimated as:

S(t)≤−1
h
ζT1 (t)

[
E1

E2

]T [
R1 S 1

∗ R1

] [
E1

E2

]
ζ1(t) (10)

where

ζ1(t)= [xT (t), xT (t − d(t)), xT (t − h), vT
1 (t), vT

2 (t)]T (11)

E1 =

[
ē1 − ē2

ē1 + ē2 − 2ē4

]

E2 =

[
ē2 − ē3

ē2 + ē3 − 2ē5

]

ēi = [0n×(i−1)n, I, 0n×(5−i)n], i = 1, 2, · · · , 5
v1(t)=

∫ t

t−d(t)

x(s)
d(t)

ds

v2(t)=
∫ t−d(t)

t−h

x(s)
h − d(t)

ds

Proof: By estimating two parts of S(t) respectively via Writinger-based inequality, combining the obtained terms via

the reciprocally convex lemma, and following the same lines as in [9], inequality (10) can be easily obtained. The

details are omitted here. �
Inequality (10) is obtained by following two steps. By considering two parts of S(t) together, the following

inequality can be obtained.

4



Lemma 4. For a block symmetric matrix R1 = diag{R, 3R} with R > 0 and any matrix S 1, the S(t) defined in (6) can
be estimated as:

S(t)≤−1
h
ζT1 (t)

[
E1

E2

]T ([
R1 S 1

∗ R1

]
+

[ h−d(t)
h T1 0
0 d(t)

h T2

]) [
E1

E2

]
ζ1(t) (12)

where ζ1(t), E1, and E2 are defined in (10), T 1 = R1 − S 1R−1
1 S T

1 , and T2 = R1 − S T
1 R−1

1 S 1.

Proof: By setting λ1(s, a, b) = 2s−b−a
b−a , the following equations can be obtained via simple calculations [18, 24]:

∫ b

a
ẋ(s)ds = x(b) − x(a) (13)

∫ b

a
λ1(s, a, b)ẋ(s)ds = x(b) + x(a) − 2

b − a

∫ b

a
x(s)ds (14)

∫ b

a
λ1(s, a, b)ds = 0 (15)

∫ b

a
λ2

1(s, a, b)ds =
b − a

3
(16)

For a symmetric matrix R > 0 and any matrices, Mi, i = 1, 2, 3, 4, with appropriate dimension, the following holds

based on Schur complement: ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M1R−1MT

1 M1R−1MT
2 M1

∗ M2R−1MT
2 M2

∗ ∗ R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≥ 0 (17)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M3R−1MT

3 M3R−1MT
4 M3

∗ M4R−1MT
4 M4

∗ ∗ R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≥ 0 (18)

which lead to

Π1 = −
∫ t

t−d(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
g1

f1g1

ẋ(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M1R−1MT

1 M1R−1MT
2 M1

∗ M2R−1MT
2 M2

∗ ∗ R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
g1

f1g1

ẋ(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ds ≤ 0 (19)

Π2 = −
∫ t−d(t)

t−h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
g1

f2g1

ẋ(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
M3R−1MT

3 M3R−1MT
4 M3

∗ M4R−1MT
4 M4

∗ ∗ R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
g1

f2g1

ẋ(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ds ≤ 0 (20)

where

g1 = [ET
1 , ET

2 ]T ζ1(t), f1 = λ1(s, t − d(t), t), f2 = λ1(s, t − h, t − d(t))

For any matrices, Li, i = 1, 2, 3, 4, with appropriate dimension, define the following notations:

M1 =−1
h

[
R, 0, LT

1

]T
, M2 = −1

h

[
0, 3R, LT

2

]T

M3 =−1
h

[
LT

3 ,R, 0
]T
, M4 = −1

h

[
LT

4 , 0, 3R
]T

R1 =

⎡⎢⎢⎢⎢⎢⎢⎣R 0

0 3R

⎤⎥⎥⎥⎥⎥⎥⎦ , S 1 = [L1, L2]T = [L3, L4]
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Carrying out simple algebraic calculation based on (13)-(16) yields

−
∫ t

t−d(t)

⎡⎢⎢⎢⎢⎢⎢⎣ g1

f1g1

⎤⎥⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎢⎢⎣

M1R−1MT
1 M1R−1MT

2

∗ M2R−1MT
2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣ g1

f1g1

⎤⎥⎥⎥⎥⎥⎥⎦ ds=−d(t)
h2
ζT1 (t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R 0 LT
1

0 3R LT
2

L1 L2 L1R−1LT
1 + L2(3R)−1LT

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ζ1(t)

=
1
h
ζT1 (t)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
T ⎛⎜⎜⎜⎜⎜⎜⎜⎝−d(t)

h

⎡⎢⎢⎢⎢⎢⎢⎣R1 S 1

∗ S T
1 R−1

1 S 1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ζ1(t) (21)

−2
∫ t

t−d(t)

⎡⎢⎢⎢⎢⎢⎢⎣ g1

f1g1

⎤⎥⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎢⎢⎣

M1

M2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ẋ(s)ds=
1
h
ζT1 (t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2R 0 LT
1

0 6R LT
2

L1 L2 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ζ1(t)

=
1
h
ζT1 (t)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎢⎣2R1 S 1

∗ 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ζ1(t) (22)

−
∫ t−d(t)

t−h

⎡⎢⎢⎢⎢⎢⎢⎣ g1

f2g1

⎤⎥⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎢⎢⎣

M3R−1MT
3 M3R−1MT

4

∗ M4R−1MT
4

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣ g1

f2g1

⎤⎥⎥⎥⎥⎥⎥⎦ ds=−h − d(t)
h2

ζT1 (t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L3R−1LT
3 + L4(3R)−1LT

4 L3 L4

LT
3 R 0

LT
4 0 3R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ζ1(t)

=
1
h
ζT1 (t)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
T ⎛⎜⎜⎜⎜⎜⎜⎜⎝d(t) − h

h

⎡⎢⎢⎢⎢⎢⎢⎣S 1R−1
1 S T

1 S 1

∗ R1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎟⎠ ζ1(t) (23)

−2
∫ t−d(t)

t−h

⎡⎢⎢⎢⎢⎢⎢⎣ g1

f2g1

⎤⎥⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎢⎢⎣

M3

M4

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ẋ(s)ds=
1
h
ζT1 (t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 L3 L4

LT
3 2R 0

LT
4 0 6R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ζ1(t)

=
1
h
ζT1 (t)

⎡⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎢⎣0 S 1

∗ 2R1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣
E1

E2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ ζ1(t) (24)

Using (21)-(24) yields

Π1 + Π2 = S(t) +
1
h
ζT1 (t)

⎡⎢⎢⎢⎢⎢⎢⎣E1

E2

⎤⎥⎥⎥⎥⎥⎥⎦
T ⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣R1 S 1

∗ R1

⎤⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎣

h−d(t)
h T1 0

0 d(t)
h T2

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎣E1

E2

⎤⎥⎥⎥⎥⎥⎥⎦ ζ1(t) (25)

The holding of (19) and (20) leads to Π 1 + Π2 ≤ 0. Thus,

S(t) ≤ −1
h
ζT1 (t)

⎡⎢⎢⎢⎢⎢⎢⎣E1

E2

⎤⎥⎥⎥⎥⎥⎥⎦
T ⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣R1 S 1

∗ R1

⎤⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎣

h−d(t)
h T1 0

0 d(t)
h T2

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎣E1

E2

⎤⎥⎥⎥⎥⎥⎥⎦ ζ1(t) (26)

This completes the proof of inequality (12). �
The relationship between the existing inequality (10) and the proposed inequality (12) is given as the following

remark.

Remark 1. The advantages of the proposed inequality (12), compared with inequality (10), can be shown from the
following two aspects:

1) On one hand, it is obvious that the slack matrices included in two inequalities are identical, which means that
they will introduce the same number of decision variables into the final criteria.

6



2) On the other hand, the estimation gaps (calculated by subtracting the left-hand side of inequality from the
right-hand side one) of (10) and (12) are respectively denoted by J 1 and J2, then the following holds

J1 − J2 =
1
h
ζT1 (t)

[
E1

E2

]T [ h−d(t)
h T1 0
0 d(t)

h T2

] [
E1

E2

]
ζ1(t) (27)

Based on Schur complement, the holding of
[
R1 S 1∗ R1

]
≥ 0 leads to T1 ≥ 0 and T2 ≥ 0. Thus, J1 − J2 ≥ 0, which

means inequality (12) provides a closer estimated value of S(t) and has less conservatism.

Therefore, compared with inequality (10), the proposed inequality (12) has potential to lead to a criterion with less
conservatism but without requiring any extra decision variable.

Secondly, by combining the auxiliary function based inequality (8) and the reciprocally convex lemma (9), the

following inequality is summarized:

Lemma 5. For a symmetric matrix R > 0 and any matrix S 2 satisfying

[
R2 S 2

∗ R2

]
≥ 0 with R2 = diag{R, 3R, 5R}, the

S(t) defined in (6) can be estimated as:

S(t)≤−1
h
ζT2 (t)

[
E3

E4

]T [
R2 S 2

∗ R2

] [
E3

E4

]
ζ2(t) (28)

where

ζ2(t)= [xT (t), xT (t − d(t)), xT (t − h), vT
1 (t), vT

2 (t), vT
3 (t), vT

4 (t)]T (29)

E3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
e1 − e2

e1 + e2 − 2e4

e1 − e2 + 6e4 − 12e6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

E4 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
e2 − e3

e2 + e3 − 2e5

e2 − e3 + 6e5 − 12e7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
ei = [0n×(i−1)n, I, 0n×(7−i)n], i = 1, 2, · · · , 7

v1(t)=
∫ t

t−d(t)

x(s)
d(t)

ds (30)

v2(t)=
∫ t−d(t)

t−h

x(s)
h − d(t)

ds (31)

v3(t)=
∫ t

t−d(t)

∫ t

s

x(u)
d2(t)

duds (32)

v4(t)=
∫ t−d(t)

t−h

∫ t−d(t)

s

x(u)
(h − d(t))2

duds (33)

Proof: Inequality (28) can be easily obtained by using the auxiliary function based inequality (8) and Lemma 2 and

following the same lines as in [9]. The details are omitted here. �
Similar to Lemma 4, by considering two parts of S(t) together, the following inequality can be obtained.

Lemma 6. For a block symmetric matrix R2 = diag{R, 3R, 5R} with R > 0 and any matrix S 2, the S(t) defined in (6)
can be estimated as:

S(t)≤−1
h
ζT2 (t)

[
E3

E4

]T ([
R2 S 2

∗ R2

]
+

[ h−d(t)
h T3 0
0 d(t)

h T4

]) [
E3

E4

]
ζ2(t) (34)

where ζ2(t), E3, and E4 are defined in (28), T 3 = R2 − S T
2 R−1

2 S 2, and T4 = R2 − S 2R−1
2 S T

2 .
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Proof: By setting λ1(s, a, b) = 2s−b−a
b−a and λ2(s, a, b) = 6s2−6(a+b)s+b2+4ab+a2

(b−a)2 , the following equations can be obtained

based on the integral by parts of calculus [24, 32]:

∫ b

a
λ2(s, a, b)ẋ(s)ds = x(b) − x(a) +

6
b − a

∫ b

a
x(s)ds − 12

(b − a)2

∫ b

a

∫ b

s
x(u)duds (35)

∫ b

a
λ2

2(s, a, b)ds =
b − a

5
(36)

∫ b

a
λ1(s, a, b)λ2(s, a, b)ds = 0 (37)

∫ b

a
λ2(s, a, b)ds = 0 (38)

For any matrices, Li, i = 5, 6, · · · , 10, with appropriate dimension, define the following notations:

g2 =
[
ET

3 , ET
4

]T
ζ2(t), S 2 = [L5, L6, L7]T = [L8, L9, L10] (39)

N1 =−1
h

[
R, 0, 0, LT

5

]T
, N2 = −1

h

[
0, 3R, 0, LT

6

]T
(40)

N3 =−1
h

[
0, 0, 5R, LT

7

]T
, N4 = −1

h

[
LT

8 ,R, 0, 0
]T

(41)

N5 =−1
h

[
LT

9 , 0, 3R, 0
]T
, N6 = −1

h

[
LT

10, 0, 0, 5R
]T

(42)

f3 = λ2(s, t − d(t), t), f4 = λ2(s, t − h, t − d(t)) (43)

Using (13)-(16), (35)-(43) and following the similar procedure of the proof of inequality (12) yield

S(t) +
1
h
ζT2 (t)

⎡⎢⎢⎢⎢⎢⎢⎣E3

E4

⎤⎥⎥⎥⎥⎥⎥⎦
T ⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣R2 S 2

∗ R2

⎤⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎣

h−d(t)
h T3 0

0 d(t)
h T4

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎣E3

E4

⎤⎥⎥⎥⎥⎥⎥⎦ ζ2(t)

=−
∫ t

t−d(t)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g2

f1g2

f3g2

ẋ(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N1R−1NT
1 N1R−1NT

2 N1R−1NT
3 N1

∗ N2R−1NT
2 N2R−1NT

3 N2

∗ ∗ N3R−1NT
3 N3

∗ ∗ ∗ R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g2

f1g2

f3g2

ẋ(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ds

−
∫ t−d(t)

t−h

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g2

f2g2

f4g2

ẋ(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

N4R−1NT
4 N4R−1NT

5 N4R−1NT
6 N4

∗ N5R−1NT
5 N5R−1NT

6 N5

∗ ∗ N6R−1NT
6 N6

∗ ∗ ∗ R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g2

f2g2

f4g2

ẋ(s)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ds

≤ 0 (44)

Therefore, inequality (34) can be obtained. �

Remark 2. Similar to the discussion shown in Remark 1, it can be find that, compared with inequality (28), the
proposed inequality (34) has potential to lead to a criterion with less conservatism but without requiring any extra
decision variable.

Remark 3. It is worthy pointing out that the proposed inequalities (12) and (34) are developed for estimating two
integral terms with time-varying delay information, i.e., S(t). That is, the advantages of the proposed inequalities can
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be found for studying the system with time-varying delays. For a system with constant delay, the proposed inequalities
(12) and (34) will reduce to Wirtinger-based inequality (7) and auxiliary function based inequality (8). Specifically, it
can be easily obtained that E2 = 0 for the case of constant delay (d(t) ≡ h), then the following holds

S(t)≤−1
h
ζT1 (t)

[
E1

E2

]T ([
R1 S 1

∗ R1

]
+

[ h−d(t)
h T1 0
0 d(t)

h T2

]) [
E1

E2

]
ζ1(t) (45)

=−1
h
ζT1 (t)ET

1 R1E1ζ1(t) (46)

That is, the proposed inequality (12) reduces to Wirtinger-based inequality (7). Similarly, the proposed inequality
(34) reduces to auxiliary function based inequality (8) for the case of constant delay.

Remark 4. In [25], a Bessel-Legendre inequality is proposed based on Legendre polynomials and Bessel inequality.
Considering the Bessel-Legendre inequality with N = 1 and N = 2 respectively leads to the Wirtinger-based inequality
(7) and the auxiliary function based inequality (8). By extending the idea of deriving of inequalities (12) and (34)
(i.e., the idea of improving (10) and (28), respectively), a series of new integral inequalities that are tighter than the
ones obtained by combining the Bessel-Legendre inequality with N > 2 and the reciprocally convex lemma can be
developed. Moreover, the proposed inequalities in this paper are applied for the time-varying delay with zero low
bound, and the corresponding inequality for the time-varying delay with non-zero low bound can be obtained by
following the similar idea. The details are omitted here.

Remark 5. Very recently, several Wirtinger-based summation inequalities with the similar form of Wirtinger-based
inequality (7) have been developed for discrete-time system with time-varying delay [39, 40, 41, 42]. It is expected that
the corresponding tighter summation inequalities can be obtained based on the similar idea of deriving of inequalities
(12) and (34).

4. Application to a linear system with time-varying delay

In this section, the inequalities mentioned in Section 3 are used to derive the stability criteria of system (3). The

stability criteria obtained via inequalities (10) and (12), together with their comparison, are given at first. Then, the

stability criteria obtained via inequalities (28) and (34), together with their comparison, are discussed.

The stability criteria obtained via inequalities (10) and (12) are summarized as follows.

Theorem 1. For given scalars h and μ1 ≤ 0 ≤ μ2, system (3) is asymptotically stable if one of the following conditions
holds

C1: [Derived by (10)] there exist a 3n× 3n matrix P1 > 0, n× n matrices Q > 0, R > 0, Z > 0, and a 2n× 2n matrix
S 1, such that the following LMIs hold for ḋ(t) ∈ {μ1, μ2}:

[
R1 S 1

∗ R1

]
≥ 0 (47)

Ψ1 < 0 (48)

C2: [Derived by (12)] there exist a 3n× 3n matrix P1 > 0, n× n matrices Q > 0, R > 0, Z > 0, and a 2n× 2n matrix
S 1, such that the following LMIs hold for ḋ(t) ∈ {μ1, μ2}:

Φ1 =

[
Ψ2|d(t)=0 ET

1 S 1

∗ −R1

]
< 0 (49)

Φ2 =

[
Ψ2|d(t)=h ET

2 S T
1∗ −R1

]
< 0 (50)
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where

Ψ1 = Ξ̄1 + Ξ̄
T
1 − Ξ̄2a + Ξ̄3 (51)

Ψ2 = Ξ̄1 + Ξ̄
T
1 − Ξ̄2b + Ξ̄3 (52)

Ξ̄1 =E
T
1 P1E2

Ξ̄2a =

[
E1

E2

]T [
R1 S 1

∗ R1

] [
E1

E2

]
, R1 =

[
R 0
0 3R

]

Ξ̄2b =

[
E1

E2

]T [ 2h−d(t)
h R1 S 1

∗ h+d(t)
h R1

] [
E1

E2

]

Ξ̄3 = ēT
1 (Q + Z)ē1 − (1 − ḋ(t))ēT

2 Qē2 − ēT
3 Zē3 + h2ēT

s Rēs

ēs = [A, Ad, 0, 0, 0]

ēi = [0n×(i−1)n, I, 0n×(5−i)n], i = 1, 2, · · · , 5
Ei =

[
ēi − ēi+1

ēi + ēi+1 − 2ēi+3

]
, i = 1, 2

E1 =
[
ēT

1 , d(t)ēT
4 , (h − d(t))ēT

5

]T

E2 =
[
ēT

s , ēT
1 − (1 − ḋ(t))ēT

2 , (1 − ḋ(t))ēT
2 − ēT

3

]T

Proof: Construct the following candidate LKF:

V1(t)= ηT
1 (t)P1η1(t) +

∫ t

t−d(t)
xT (s)Qx(s)ds +

∫ t

t−h
xT (s)Zx(s)ds + h

∫ 0

−h

∫ t

t+θ
ẋT (s)Rẋ(s)dsdθ (53)

where

η1(t)=

[
xT (t),

∫ t

t−d(t)
xT (s)ds,

∫ t−d(t)

t−h
xT (s)ds

]T

and P1 > 0, Q > 0, Z > 0, and R > 0. It is easily found that the LKF satisfies V1(t) ≥ ε1||x(t)||2 with ε1 > 0.

Calculating the derivative of V1(t) yields

V̇1(t)= 2ηT
1 (t)P1η̇1(t) + xT (t)(Q + Z)x(t) − (1 − ḋ(t))xT (t − d(t))Qx(t − d(t)) − xT (t − h)Zx(t − h)

+h2 ẋT (t)Rẋ(t) − h
∫ t

t−d(t)
ẋT (s)Rẋ(s)ds − h

∫ t−d(t)

t−h
ẋT (s)Rẋ(s)ds

= ζT1 (t)(Ξ̄1 + Ξ̄
T
1 + Ξ̄3)ζ1(t) − hS(t) (54)

where Ξ̄1 and Ξ̄3 are defined in (51).

On the one hand, if applying inequality (10) to estimate S(t) appearing in (54), the V̇1(t) can be estimated as

V̇1(t)≤ ζT1 (t)

⎧⎪⎪⎪⎨⎪⎪⎪⎩Ξ̄1 + Ξ̄
T
1 + Ξ̄3 −

⎡⎢⎢⎢⎢⎢⎢⎣E1

E2

⎤⎥⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎢⎣R1 S 1

∗ R1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣E1

E2

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ζ1(t)

= ζT1 (t)Ψ1ζ1(t) (55)

where ζ1(t) is defined in (11) and Ψ1 is defined in (51). Therefore, Ψ1 < 0 leads to V̇1(t) ≤ −ε2||x(t)||2 for a sufficient

small scalar ε2 > 0. Hence, the holding of (47) and (48) ensures the asymptotical stability of system (3). This

completes the proof of Theorem 1.C1.
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On the other hand, if applying inequality (12) to estimate S(t) appearing in (54), the V̇1(t) can be estimated as

V̇1(t)≤ ζT1 (t)

⎧⎪⎪⎪⎨⎪⎪⎪⎩Ξ̄1 + Ξ̄
T
1 + Ξ̄3 −

⎡⎢⎢⎢⎢⎢⎢⎣E1

E2

⎤⎥⎥⎥⎥⎥⎥⎦
T ⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣R1 S 1

∗ R1

⎤⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎣

h−d(t)
h T1 0

0 d(t)
h T2

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎣E1

E2

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ζ1(t)

= ζT1 (t)(Ψ2 + Ξa)ζ1(t) (56)

where Ψ2 is defined in (52), and

Ξa =
h − d(t)

h
ET

1 S 1R−1
1 S T

1 E1 +
d(t)
h

ET
2 S T

1 R−1
1 S 1E2 (57)

Therefore, Φi < 0, i = 1, 2, which is equivalent to Ψ2 + Ξa < 0 based on Schur complement and convex combination

method, leads to V̇1(t) ≤ −ε2||x(t)||2 for a sufficient small scalar ε2 > 0. Hence, the holding of (49) and (50) ensures

the asymptotical stability of system (3). This completes the proof of Theorem 1.C2. �
Theorem 1.C1 (same to Theorem 7 of [9]) and Theorem 1.C2 are derived by respectively using the existing

inequality (10) and the proposed inequality (12) to estimate the S(t) arising in the derivative of the same LKF. That is,

the only difference is that two different inequalities are used to achieve the estimation task. Therefore, the advantage

of inequality (12) compared with inequality (10) can be found through the comparison of the results provided by

those two criteria. Furthermore, it can be proved that Theorem 1.C2 is less conservative than Theorem 1.C1, as

representation in the following theorem.

Theorem 2. Theorem 1.C2 is less conservative than Theorem 1.C1 for the time-varying delay case (μ i � 0), namely,

• When there exist feasible solutions of (47) and (48) for any given scalars h and μ 1 ≤ 0 ≤ μ2, there must exist
feasible solutions of (49) and (50) for the same h and μ 1 ≤ 0 ≤ μ2; and

• When there does not exist feasible solutions of (47) and (48) for some given scalars h and μ 1 < 0 < μ2, there
may still exist feasible solutions of (49) and (50) for the same h and μ 1 < 0 < μ2.

That is, for any fixed μ1 ≤ 0 ≤ μ2, Theorem 1.C2 will provide bigger maximal admissible delay upper bounds, h max,
in compared with Theorem 1.C1,

Proof: For the conditions,Φ i < 0, i = 1, 2, of Theorem 1.C2, the following relationship is true:

Φi < 0, i = 1, 2⇔ Φ = Ψ1 −
⎡⎢⎢⎢⎢⎢⎢⎣E1

E2

⎤⎥⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎢⎣

h−d(t)
h T1 0

0 d(t)
h T2

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣E1

E2

⎤⎥⎥⎥⎥⎥⎥⎦ < 0 (58)

On the one hand, for any given scalars h and μ 1 ≤ 0 ≤ μ2, the feasible solutions, (P1, Q, R, Z, S 1), of (47) and

(48) lead to
⎡⎢⎢⎢⎢⎢⎢⎣R1 S 1

∗ R1

⎤⎥⎥⎥⎥⎥⎥⎦ ≥ 0⇒ T1 ≥ 0, T2 ≥ 0

Ψ1 < 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
⇒ Φ < 0⇒ Φi < 0, i = 1, 2 (59)

Thus, the matrices (P1, Q, R, Z, S 1) must be the feasible solutions of (49) and (50).

On the other hand, when there is no feasible solution of (47) and (48) for some given scalars h and μ 1 < 0 < μ2.

That is, for all possible combinations of matrices (P1, Q, R, Z, S 1), no one can lead to

Ψ1 < 0 (60)
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However, for the time-varying delay case (μ i � 0), there may still exist one or more sets of matrices, (P1, Q, R, Z, S 1),

satisfying the following condition

Ψ1 <

⎡⎢⎢⎢⎢⎢⎢⎣E1

E2

⎤⎥⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎢⎣

h−d(t)
h T1 0

0 d(t)
h T2

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣E1

E2

⎤⎥⎥⎥⎥⎥⎥⎦ (61)

which means Φ < 0, thus, Φi < 0, i = 1, 2. Therefore, those matrices are the feasible solutions of (49) and (50). This

completes the proof. �
The stability criteria obtained via inequalities (28) and (34) are summarized as follows.

Theorem 3. For given scalars h and μ1 ≤ 0 ≤ μ2, system (3) is asymptotically stable if one of the following conditions
holds

C1: [Derived by (28)] there exist a 5n× 5n matrix P2 > 0, n× n matrices Q > 0, R > 0, Z > 0, and a 3n× 3n matrix
S 2 such that the following LMIs hold for ḋ(t) ∈ {μ1, μ2}:[

R2 S 2

∗ R2

]
≥ 0 (62)

Ψ3 < 0 (63)

C2: [Derived by (34)] there exist a 5n× 5n matrix P2 > 0, n× n matrices Q > 0, R > 0, Z > 0, and a 3n× 3n matrix
S 2 such that the following LMIs hold for ḋ(t) ∈ {μ1, μ2}:

Φ3 =

[
Ψ4|d(t)=0 ET

3 S 2

∗ −R2

]
< 0 (64)

Φ4 =

[
Ψ4|d(t)=h ET

4 S T
2∗ −R2

]
< 0 (65)

where

Ψ3 =Ξ1 + Ξ
T
1 − Ξ2a + Ξ3 (66)

Ψ4 =Ξ1 + Ξ
T
1 − Ξ2b + Ξ3 (67)

Ξ1 =E
T
3 P2E4

Ξ2a =

[
E3

E4

]T [
R2 S 2

∗ R2

] [
E3

E4

]
, R2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
R 0 0
0 3R 0
0 0 5R

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ξ2b =

[
E3

E4

]T [ 2h−d(t)
h R2 S 2

∗ h+d(t)
h R2

] [
E3

E4

]

Ξ3 = eT
1 (Q + Z)e1 − (1 − ḋ(t))eT

2 Qe2 − eT
3 Ze3 + h2eT

s Res

es = [A, Ad, 0, 0, 0, 0, 0]

ei = [0n×(i−1)n, I, 0n×(7−i)n], i = 1, 2, · · · , 7

Ei+2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ei − ei+1

ei + ei+1 − 2ei+3

ei − ei+1 + 6ei+3 − 12ei+5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ , i = 1, 2

E3 =
[
eT

1 , d(t)eT
4 , (h − d(t))eT

5 , d(t)eT
6 , (h − d(t))eT

7

]T
E4 =

[
eT

s , eT
1 − (1 − ḋ(t))eT

2 , (1 − ḋ(t))eT
2 − eT

3 , eT
1 − eT

4 + ḋ(t)(e4 − e6)T , eT
2 − eT

5 + ḋ(t)(e7 − e2)T
]T

Proof: Construct the following candidate LKF:

V2(t)= ηT
2 (t)P2η2(t) +

∫ t

t−d(t)
xT (s)Qx(s)ds +

∫ t

t−h
xT (s)Zx(s)ds + h

∫ 0

−h

∫ t

t+θ
ẋT (s)Rẋ(s)dsdθ (68)
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where

η2(t)=

[
xT (t),

∫ t

t−d(t)
xT (s)ds,

∫ t−d(t)

t−h
xT (s)ds,

∫ t

t−d(t)

∫ t

s

xT (u)
d(t)

duds,
∫ t−d(t)

t−h

∫ t−d(t)

s

xT (u)
h − d(t)

duds

]T

and P2 > 0, Q > 0, Z > 0, and R > 0. It is easily found that the LKF satisfies V2(t) ≥ ε3||x(t)||2 with ε3 > 0.

Calculating the derivative of V2(t) yields

V̇2(t)= 2ηT
2 (t)P2η̇2(t) + xT (t)(Q + Z)x(t) − (1 − ḋ(t))xT (t − d(t))Qx(t − d(t)) − xT (t − h)Zx(t − h)

+h2 ẋT (t)Rẋ(t) − h
∫ t

t−d(t)
ẋT (s)Rẋ(s)ds − h

∫ t−d(t)

t−h
ẋT (s)Rẋ(s)ds

= ζT2 (t)(Ξ1 + Ξ
T
1 + Ξ3)ζ2(t) − hS(t) (69)

where Ξ1 and Ξ3 are defined in (66).

On the one hand, if applying inequality (28) to estimate S(t) appearing in (69), the V̇2(t) can be estimated as

V̇2(t)≤ ζT2 (t)

⎧⎪⎪⎪⎨⎪⎪⎪⎩Ξ1 + Ξ
T
1 + Ξ3 −

⎡⎢⎢⎢⎢⎢⎢⎣E3

E4

⎤⎥⎥⎥⎥⎥⎥⎦
T ⎡⎢⎢⎢⎢⎢⎢⎣R2 S 2

∗ R2

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣E3

E4

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ζ2(t)

= ζT2 (t)Ψ3ζ2(t) (70)

where ζ2(t) is defined in (29) and Ψ3 is defined in (66). Therefore, Ψ3 < 0 leads to V̇2(t) ≤ −ε4||x(t)||2 for a sufficient

small scalar ε4 > 0. Hence, the holding of (62) and (63) ensures the asymptotical stability of system (3). This

completes the proof of Theorem 3.C1.

On the other hand, if applying inequality (34) to estimate S(t) appearing in (69), the V̇2(t) can be estimated as

V̇2(t)≤ ζT2 (t)

⎧⎪⎪⎪⎨⎪⎪⎪⎩Ξ1 + Ξ
T
1 + Ξ3 −

⎡⎢⎢⎢⎢⎢⎢⎣E3

E4

⎤⎥⎥⎥⎥⎥⎥⎦
T ⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣R2 S 2

∗ R2

⎤⎥⎥⎥⎥⎥⎥⎦ +
⎡⎢⎢⎢⎢⎢⎢⎣

h−d(t)
h T3 0

0 d(t)
h T4

⎤⎥⎥⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎟⎟⎠
⎡⎢⎢⎢⎢⎢⎢⎣E3

E4

⎤⎥⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ζ2(t)

= ζT2 (t)(Ψ4 + Ξb)ζ2(t) (71)

where Ψ4 is defined in (67), and

Ξb =
h − d(t)

h
ET

3 S 2R−1
2 S T

2 E3 +
d(t)
h

ET
4 S T

2 R−1
2 S 2E4 (72)

Therefore, Φi < 0, i = 3, 4, which is equivalent to Ψ4 + Ξb < 0 based on Schur complement and convex combination

method, leads to V̇2(t) ≤ −ε4||x(t)||2 for a sufficient small scalar ε4 > 0. Hence, the holding of (64) and (65) ensures

the asymptotical stability of system (3). This completes the proof of Theorem 3.C2. �
Theorem 3.C1 and Theorem 3.C2 are derived by respectively using the existing inequality (28) and the proposed

inequality (34) to estimate the S(t) arising in the derivative of the same LKF. That is, the only difference is that two

different inequalities are used to achieve the estimation task. Therefore, the advantage of inequality (34) compared

with inequality (28) can be found through the comparison of the results provided by those two criteria. Similar to

Theorem 2, it can be proved that Theorem 3.C2 is less conservative than Theorem 3.C1, as representation in the

following theorem.

Theorem 4. Theorem 3.C2 is less conservative than Theorem 3.C1 for the time-varying delay case (μ i � 0), namely,

• When there exist feasible solutions of (62) and (63) for any given scalars h and μ 1 ≤ 0 ≤ μ2, there must exist
feasible solutions of (64) and (65) for the same h and μ 1 ≤ 0 ≤ μ2; and
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• When there does not exist feasible solutions of (62) and (63) for some given scalars h and μ 1 < 0 < μ2, there
may still exist feasible solutions of (64) and (65) for the same h and μ 1 < 0 < μ2.

That is, for any fixed μ1 ≤ 0 ≤ μ2, Theorem 3.C2 will provide bigger maximal admissible delay upper bounds, h max,
in compared with Theorem 3.C1,

Proof: The above theorem can be obtained by following similar procedure of the proof of Theorem 2. �

Remark 6. It is easy to find that Theorem 3.C1 (Theorem 3.C2) is less conservative than Theorem 1.C1 (Theorem
1.C2), since the later is included by the former as a special case. In fact, Theorem 3.C1 (Theorem 3.C2) will reduce
to Theorem 1.C1 (Theorem 1.C2) by following two steps:

• Set P2 =

[
P1 0
0 0

]
, S 2 =

[
S 1 0
0 0

]
;

• Delete the columns and the rows with all zero elements in the conditions of Theorem 3.C1 (or Theorem 3.C2).

On the other side, Theorem 1.C2 and Theorem 3.C1 improve the Theorem 1.C1 by following different ways. However,
it cannot be determined which one is less conservative between them. The LKF applied for Theorem 3.C1 (V 2(t)) is
better than the one for Theorem 1.C2 (V1(t)) due to more augmented vectors included, while, for inequalities (12) and
(28) respectively used for Theorem 1.C2 and Theorem 3.C1, it is difficult to judge which inequality is better. In fact, it
will show that, in the numerical examples, Theorem 1.C2 may lead to less conservative results for some cases or more
conservative results for other cases than Theorem 3.C1 does.

Remark 7. Except for the vectors, vi(t), i = 1, 2, · · · , 4, many other state-based vectors, such as x(t−d(t)), x(t−h/2),
x(t − h), and ẋ(t), were used to construct more general form of augmented LKFs in literature [17, 18, 26, 30]. Among
those vectors, the time-varying delay based vector, x(t − d(t)), introduced into the non-integral term of LKF seems to
be very helpful to reduce the conservatism [18]. However, the criterion (see e.g., Theorem 1 of [18]) derived based on
such type of LKF is no longer suitable for the system with fast-varying delay or unmeasurable delay changing rate.
Therefore, this paper does not derive the criterion via such LKF.

5. Examples

Three numerical examples listed in Table 1 are used to verify the advantages of the proposed inequalities and

the corresponding stability criteria. The conservatism of the criteria is checked based on the calculated maximal

admissible delay upper bounds (MADUPs). Moreover, the index of the number of decision variables (NoV) is applied

to show the complexity of criteria.

Table 1: Systems used as numerical examples

Examples System parameters

1 ẋ(t) =

⎡⎢⎢⎢⎢⎢⎢⎣−2 0

0 − 0.9

⎤⎥⎥⎥⎥⎥⎥⎦ x(t) +

⎡⎢⎢⎢⎢⎢⎢⎣−1 0

−1 − 1

⎤⎥⎥⎥⎥⎥⎥⎦ x(t − d(t))

2 ẋ(t) =

⎡⎢⎢⎢⎢⎢⎢⎣ 0 1

−1 − 1

⎤⎥⎥⎥⎥⎥⎥⎦ x(t) +

⎡⎢⎢⎢⎢⎢⎢⎣0 0

0 − 1

⎤⎥⎥⎥⎥⎥⎥⎦ x(t − d(t))

3 ẋ(t) =

⎡⎢⎢⎢⎢⎢⎢⎣ 0 1

−1 − 2

⎤⎥⎥⎥⎥⎥⎥⎦ x(t) +

⎡⎢⎢⎢⎢⎢⎢⎣ 0 0

−1 1

⎤⎥⎥⎥⎥⎥⎥⎦ x(t − d(t))

The MADUPs with respect to various μ calculated by Theorems 1 and 3, as well the ones reported in some

existing literature, are listed in Tables 2-4. The NoVs are also given to compare the computation complexity, where

14



Table 2: MADUPs for various μ = −μ1 = μ2 (Example 1).

Methods μ = −μ1 = μ2 NoVs

0 0.1 0.5 0.8 1.0 1000

Corollary 3 [27] 4.472 3.669 2.337 1.934 1.868 1.868 31.5n 2 + 7.5n

Theorem 1 [8] 4.975 3.869 2.337 1.934 1.868 1.868 49n 2 + 5n

Theorem 2 [37] 5.120 4.081 2.528 2.152 1.991 35.5n 2 + 3.5n

Theorem 3 [38] 6.117 4.794 2.682 1.957 1.602 NoV [38]

Corollary 1 [18] 6.059 4.710 2.459 2.212 2.186 2.180 54n 2 + 9n

Theorem 7 [9] 6.059 4.703 2.420 2.137 2.128 2.113 10n 2 + 3n

Theorem 1.C1 6.059 4.703 2.420 2.137 2.128 2.113 10n 2 + 3n

Theorem 1.C2 6.059 4.707 2.428 2.205 2.204 2.205 10n 2 + 3n

Theorem 2.C1 6.165 4.713 2.570 2.281 2.232 2.113 23n 2 + 4n

Theorem 2.C2 6.165 4.714 2.608 2.375 2.319 2.205 23n 2 + 4n

Table 3: MADUPs for various μ = −μ1 = μ2 (Example 2).

Methods μ = −μ1 = μ2 NoVs

0 0.05 0.10 0.50 3.00 1000

Corollary 3 [27] 2.52 1.81 1.75 1.61 1.60 1.60 31.5n 2 + 7.5n

Theorem 1 [8] 2.523 2.166 2.028 1.622 1.608 1.608 49n 2 + 5n

Corollary 1 [18] 3.034 2.553 2.372 1.713 1.634 1.634 54n 2 + 9n

Theorem 7 [9] 3.034 2.551 2.369 1.700 1.648 1.648 10n 2 + 3n

Theorem 1.C1 3.034 2.551 2.369 1.700 1.648 1.648 10n 2 + 3n

Theorem 1.C2 3.034 2.553 2.373 1.706 1.652 1.652 10n 2 + 3n

Theorem 2.C1 3.136 2.590 2.386 1.775 1.655 1.648 23n 2 + 4n

Theorem 2.C2 3.136 2.598 2.397 1.787 1.665 1.652 23n 2 + 4n

Table 4: MADUPs for various μ = −μ1 = μ2 (Example 3).

Methods μ = −μ1 = μ2 NoVs

0.1 0.5 0.7 1.0 3.0 1000

Theorem 1 [8] 5.876 1.430 1.239 1.225 1.176 1.139 49n 2 + 5n

Theorem 2 [30] 5.57 1.35 1.06 1.06 1.06 1.06 12n 2 + 4n

Corollary 1 [18] 6.601 1.549 1.406 1.316 1.206 1.202 54n 2 + 9n

Theorem 7 [9] 6.590 1.411 1.300 1.245 1.199 1.196 10n 2 + 3n

Theorem 1.C1 6.590 1.411 1.300 1.245 1.199 1.196 10n 2 + 3n

Theorem 1.C2 6.602 1.447 1.320 1.256 1.208 1.208 10n 2 + 3n

Theorem 2.C1 6.604 1.573 1.387 1.294 1.221 1.196 23n 2 + 4n

Theorem 2.C2 6.610 1.687 1.462 1.329 1.223 1.208 23n 2 + 4n
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NoV[38] = 2[(1+ nφ)2 + (6+ 2nφ)(7+ 2nφ)+ 2]n2 + (3+ nφ)n > 90n2 + 3n with n being the order of system matrix and

nφ > 0 being the order of the filter system.

Based on the results listed in three tables, three observations can be summarized. Firstly, the advantages of the

proposed inequality (12) (or (34)) compared with the existing inequality (10) (or (28)) can be found.

• On one hand, the results show that Theorem 1.C2 provides bigger MADUPs than Theorem 1.C1 (i.e., Theorem

7 of [9]) does, which verifies the less conservatism of inequality (12). Similarly, the less conservatism of

inequality (34) compared with inequality (28) is verified based on the comparison of the MADUPs provided by

Theorem 3.C1 and Theorem 3.C2.

• On the other hand, the NoV of Theorem 1.C2 (or Theorem 3.C2) is the same as that of Theorem 1.C1 (or

Theorem 3.C1), which means that the former improves the results but does not require extra decision variables.

Secondly, the results also show the statements of Remarks 3 and 6.

• For the case of constant delay, μ = 0, Theorem 1.C1 and Theorem 3.C1 lead to the same MADUPs, and

Theorem 1.C2 and Theorem 3.C2 also lead to the same MADUPs. It verifies the statement of Remark 3.

• On one hand, compared with Theorem 1.C1 (Theorem 1.C2), Theorem 3.C1 (Theorem 3.C2) can lead to bigger

(or the same) MADUPs, which means the former is less conservative. On the other hand, based on the com-

parison of the results provided by Theorem 1.C2 and Theorem 3.C1, it can be found that Theorem 1.C2 is less

conservative for some cases (μ = 1000) but is more conservative for other cases in compared with Theorem

3.C1, which means that it is difficult to directly determine Theorem 1.C2 or Theorem 3.C1 is better. Those

observations verify the statement of Remark 6.

Finally, Theorem 2.C2 is less conservative between two criteria derived by using the proposed inequalities (i.e.,

Theorem 1.C2 and Theorem 2.C2), and its advantages in compared with the existing ones can be found.

• Compared with the criteria obtained by different inequalities (Jensen inequality [27], Wirtinger-based inequality

[9], free-matrix-based inequality [18]), the new type of LKF [8], and the augmented system model [37], the

proposed Theorem 2.C2 provides bigger MADUPs but requires a smaller NoV.

• Although the NoV of Theorem 2.C2 is bigger than that of Theorem 2 of [30], the MADUPs provided by

Theorem 2.C2 are obviously larger than those reported in [30]. Theorem 3 of [38] leads to bigger MADUPs for

some cases (see Table 2), but its NoV is greatly bigger than the NoV of Theorem 2.C2.

6. Conclusions

This paper has proposed two novel integral inequalities for the stability analysis of linear systems with a time-

varying delay. Compared with two inequalities in literature, obtained by combining the widely used Wirtinger-based

inequality (or the recently developed auxiliary function based inequality) and the reciprocally convex lemma, the

proposed inequalities reduce the estimation gap arising from the estimation of single integral term with time-varying

delay information while does not require any extra slack matrix. Four stability criteria of linear system with a time-

varying delay have been established by applying those inequalities. Finally, three numerical examples have been given

to verify the advantages of the proposed inequalities and the related stability criteria.
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