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Abstract

Wind turbine uses a pitch angle controller to reduce the power captured

above the rated wind speed and release the mechanical stress of the drive train.

This paper investigates a nonlinear PI (N-PI) based pitch angle controller, by

designing an extended-order state and perturbation observer to estimate and

compensate unknown time-varying nonlinearities and disturbances. The pro-

posed N-PI does not require the accurate model and uses only one set of PI

parameters to provide a global optimal performance under wind speed changes.

Simulation verification is based on a simplified two-mass wind turbine model and

a detailed aero-elastic wind turbine simulator (FAST), respectively. Simulation

results show that the N-PI controller can provide better dynamic performances

of power regulation, load stress reduction and actuator usage, comparing with

the conventional PI and gain-scheduled PI controller, and better robustness

against of model uncertainties than feedback linearization control.
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Figure 1: Wind turbine operation modes versus wind speed [1]

1. Introduction

Wind power is one of the most promising renewable energy sources and has

received tremendous progress at the past decade. Most wind power generation

system uses variable speed wind turbine with variable pitch to achieve an effi-

cient and reliable conversion of wind power to electrical power. According to5

wind speed range, wind turbine has three operation modes and control objec-

tives, as shown in Figure 1 [1]. Region I starts from the cut-in wind speed to

wind speed when the rotor speed reaches its rated value and its’ control objective

is to capture the maximum available power from the wind flow, using variable

speed operation of wind turbine [2]. In region III, the wind speed is above its10

rated value and below the cut-out speed, in which the wind power forced on

the blade is larger than the nominal power of the wind turbine and must be

limited by pitch angle control, while minimizing the load stress on drive-train

shaft at the same time. Between these two regions, the rotor speed can reach

its rated value and must be kept constant until the generated power reaches the15

rated power. This buffer region is called Region II, whose control objective is

to smoothly connect Region I and III [3].

Efficient and reliable operation of a WPGS heavily relies on the control

systems applied on the WT operating at different regions. At the high speed

region III, pitch angle control is applied to limit the wind power captured by20

the wind turbine. Numerous control methods have been applied to design pitch

angle controllers to, such as PI-type controller [1][4]. The wind turbine is a
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highly non-linear system due to its nonlinear aerodynamics [5][6]. As the wind

turbine contains strong aerodynamic nonlinearities and operates under time-

varying wind power inputs, the linear PI with fixed gains cannot provide con-25

sistently satisfactory performance in the whole wind speed region. Advanced

control methodologies have been applied to tackle this problem, such as the gain

scheduling PI (GSPI) [1][4], digital robust control [7], neural-network-based con-

trol [8], model predictive control [9], and feedback linearization control [10][6].

However, most control methods, such as the feedback linearization control, are30

designed based on the accurate wind turbine model, which is difficult to be

obtained accurately in practical.

Extended-order state and perturbation (or disturbance) observer (ESPO)

has been proposed to estimate system state and perturbation term for nonlinear

system which can be represented as an chained-integrator system and matched35

nonlinearities and disturbances. By defining perturbation as a lumped term to

include all unknown nonlinearities, parameter uncertainties and external dis-

turbance [11], ESPO can be implemented using nonlinear observer [12][13][14],

linear observers [15][16], sliding mode observers [17], fuzzy observers [18], and

neural-network-based observers [19]. ESPO-based controller use the estimate40

of perturbation to compensate its real perturbation and achieve the adaptive

feedback linearizing control, without requiring a detailed and accurate system

model in conventional feedback linearization (FL) control [10][6]. They have

been applied in robotic systems [20], power systems [15][21], PMSM systems

[11], induction motor [22], doubly-fed induction generator wind turbine [23].45

This paper designs a Nonlinear PI (N-PI) controller for wind turbine pitch

angle control. It consists of an ESPO and a classic PI controller. The ESPO

is used to estimate the unknown time-varying nonlinearities and disturbance,

which are defined in a lumped perturbation term. The N-PI uses the esti-

mated perturbation to compensate the real one for linearizing the nonlinear50

system. The procedure is similar to the feedback linearization (FL) method,

which requires a detailed and accurate system model to calculate the nonlin-

earities [6][10]. The N-PI is proposed to provide global and consistent optimal
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performance across the whole operation range only based on one set of PI gains

tuned around the mean wind speed, and avoid the rapidly switching of gains55

of the gain-scheduled PI (GSPI) type controllers. Two types of gain scheduled

PI controllers, wind speed switching and pitch-angle switching ones are com-

pared using simulation tests based on simplified two mass model and a detailed

aero-elastic wind turbine simulator, FAST [24].

2. Nonlinear Wind Turbine Modeling60

The configuration of a simplified two-mass model of wind turbine and its

nonlinear power coefficient Cp is shown in Figure 2. The model is presented in

a generalized nonlinear form as follows [26]:

ẋ = F(x) +Bu =

⎡
⎢⎢⎢⎢⎢⎢⎣

f1

f2

f3

f4

⎤
⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0

0

g4

⎤
⎥⎥⎥⎥⎥⎥⎦
u (1)

The state vector x, control input u and nonlinear vector F(x) are defined

as:

x = [ωr ωg δ β]
T

u = βr

(2)

F(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

f1

f2

f3

f4

⎤
⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎣

Pr(x1,x4,V )
x1Jr

− x1Ds

Jr
+ x2Ds

NgJr
− x3Ks

Jr

x1Ds

NgJg
− x2Ds

N2
gJg

+ x3Ks

NgJg
− Tg

Jg

x1 − x2

Ng

− 1
τβ
x4

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

B =
[
0 0 0 g4

]T
g4 =

1

τβ

where ωr is rotor speed, ωg is generator speed, δ is twist angle, and β is pitch

angle. τβ is time constants of pitch actuator, and βr is the pitch angle control.
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Figure 2: Two-mass variable speed wind turbine model and nonlinear power coefficient Cp

[25]
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Tg is generator torque, Jr and Jg are rotor and generator inertia, Ng is gear

ratio, Ds and Ks are drive-train damping and spring constant, respectively.

The mechanical power Pr captured by the wind turbine is:

Pr =
1

2
πρR2V 3Cp(x1, x4, V ) (4)

where R is the rotor radius, ρ is the air density, V is the wind speed. Cp is

the power conversion coefficient of wind turbine and is a nonlinear function of β

and λ. This paper uses Controls Advanced Research Turbine (CART) located

at National Renewable Energy Laboratory USA and its function is given as [5]:

Cp = 0.22(116λt − 0.4x4 − 5)e−12.5λt (5)

where

λt =
1

λ+ 0.08β
− 0.035

β3 + 1

λ =
ωrR

V

where λ is tip-speed ratio and λt is a intermediate variable.65

Control objective of this paper is to design a nonlinear pitch angle control

for wind turbine operating at Region III, using limiting the power captured by

the wind turbine to maintain the rotor rotation speed ωr, or the system output

power Pe, at its rated value.

3. Conventional PI and Gain-scheduled PI Controller70

3.1. PI Controller

The conventional PI(D) based pitch angle controller is used to regulate the

rotor speed or the output power of wind turbine [4]. To get the optimal con-

trol gain under the rated operating point, particle swarm optimization (PSO)

method is used [27][28]. The integral time absolute error (ITAE) of rotor speed

is used as the optimization objective and defined as

ITAE =

∫ ∞

0

t|e(t)|dt (6)
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The PSO method is implemented following the reference [27][28]. The the

velocity for searching a new best position of each swarm in PSO is given as:

v = w · v + c1 · rand(2, N)× (Pl,best − Pcurrent)

+c2 · rand(2, N)× (Pg,best − Pcurrent)

where N is the number of units, M is the maximum number of swim length,

w is the momentum or inertia of PSO, Pl,best is the local best position, Pg,best

is the global best position, and Pcurrent is the current position; rand(2, N) is to

generate a 2 × N matrix with random values, c1 and c2 are the coefficient for75

random values. The special parameters of PSO used in this paper are given as

N = 50, M = 20, w = 0.9, c1 = 0.12 and c2 = 1.2.

Control gains of the PI controller is optimized at the nominal operation

point under mean wind speed, where V0 = 18 m/s, ωr0 = 2.1428 rad/s, and

β0 = 25◦. The optimized gains of the PI pitch controller are kp = 140 and ki =80

52, respectively.

3.2. Gain Scheduled PI Controller

Due to the high aerodynamic nonlinearities of wind turbine and time-varying

wind speed, the PI controller using one set of gains optimized based on one

operation point cannot provide consistent optimal performance when operation85

points shifts from that normal point. To tackle this problem, gain scheduled PI

pitch control has been proposed [1].

3.2.1. Wind-speed Based Switching

A GSPI controller requires the wind speed measuremeasent to schedule the

controller gains [26]. An anemometer can be used but it can only measure the90

wind speed at a special point, which is not accurate for representing the effective

wind speed in large wind turbines. To achieve a more accurate estimation of

the effective wind speed, the wind turbine itself can be used as a sensor and the

estimation can be solved by Newton-Raphson method [6].
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The wind speed estimator is realized by minimizing the cost function J(t, V )95

J(t, V ) = (Pr(t)− fr(V ))
2

(7)

fr(V ) =
1

2
πρR2V 3Cp(β, λ) (8)

where Pr(t) is a measurement of rotor power at time t, which is assumed known;

fr(V ) is the aerodynamic power function of wind speed V .

The problem is equivalent to find the solution of

I(t, V ) = Pr(t)− 1

2
πρR2V 3Cp(β, λ) = 0 (9)

From the partial derivative equation

ΔPr =
∂Pr

∂V
ΔV (10)

the iteration form of the estimator can be written as:

̂̇V = ΔPr

(
∂Pr

∂V

)−1

(11)

where
∂Pr

∂V
= −3

2
πρR2V 2Cp(β, λ) − 1

2
πρR2V 3 ∂Cp

∂V

∂Cp

∂V
= − 0.22

ωrR

178.5− 1450λt + 5x4

(λ + 0.08x4)2
e−12.5λt

At time t, using the measured rotor power Pr(t), the iteration will be per-

formed until

I(t, V̂t) = Pr(t)− fr(V̂t) < ε (12)

where ε is a small value. The estimation of wind speed at time t is then V̂t.

Since the rotor power Pr is unmeasurable in practice, the assumption is

made that the rotor power is equal to electrical power Pe, which is measurable,100

divided by the wind turbine power conversion efficiency η. Then the estimated

wind speed can be used in the GSPI controller to switching the scheduled gains

by look-up-table for the pitch controller.
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(a)

(b)

Figure 3: Block diagram of (a) conventional PI or gain-scheduling PI (GS PI) controller, (b)

proposed Nonlinear PI (N-PI) controller.

3.2.2. Pitch-angle Based Switching

As wind speed based switching requires a complex estimation of the real-105

time wind speed and also may result in fast switching between gains due to the

fast change of wind speed, an improved GSPI based on pitch angle switching

has been proposed [29][30][31]. The control block diagram of the PI and gain-

scheduled PI controller is shown in Figure 3(a), where the Kβ is set to be 1 in

the PI controller. Under different wind speeds, optimal gains are obtained using110

the PSO method with the performance index of ITAE. The optimal gains of kp

and ki under different wind speed and the correspondent pitch angle are given

in Table 1.

To obtain a continuous pitch angle based switching, the scheduled gain pairs

are obtained as the product of a constant PI gain pair multiplied by a scheduled

gain K(β) which is a function of pitch angle [30]. The scheduled gain K(β) is

proposed to compensate the variation of the aerodynamic sensitivity, ∂Pr/∂β,

9



Table 1: Optimal Gains under Corresponding Wind Speed and Pitch Angle using PSO Opti-

mization Method

V (m/s) βrated(
◦) kp,opt(

◦·s/rad) ki,opt(
◦·s2/rad)

12 3.6 186 70

14 14.1 178 66

16 20.6 160 60

18 25.1 140 52

20 28.6 124 46

and is obtained using the trend line of the optimal gains versus pitch angle is

given as [30]

u = K(β)

(
kp +

ki
s

)
(x1 − ω∗

r ) (13)

where

K(β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1.6, for −1◦ < β ≤ 0◦

−0.001β2 + 0.01β + 1.6, for 0◦ < β ≤ 30◦

1, for β > 30◦

(14)

and the constant proportional and integral gains, kp = 116, and ki = 42.

4. ESPO-based Nonlinear PI Pitch Angle Controller115

4.1. Input-output Linearization

The input-output relationship between the system output, the rotor speed

as y = x1, and the system input, the pitch angle control as u = βr, can be

obtained using differentiating the output till the control input appearing. From

system (1)-(3), the rotor speed dynamic is given as:

ẋ1 =
Pr(x1, x4, V )

x1Jr
− x1Ds

Jr
+

x2Ds

NgJr
− x3Ks

Jr
(15)

Its second-order derivative can be obtained as

d2x1

dt2
= Lf(x) + Lg(x)u (16)
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where

Lf(x) =

4∑
i=1

(
∂f1
∂xi

· fi
)
+

∂f1
∂V

· V̇

∂f1
∂x1

= − 1

Jrx1

[
Pr

x1
+ 0.11πρR3V 2 178.5− 1450λt + 5x4

(λ+ 0.08x4)2
e−12.5λt

]
− Ds

Jr
∂f1
∂x2

=
Ds

NgJr
∂f1
∂x3

= −Ks

Jr
∂f1
∂x4

=
0.11πρR2V 3

x1Jr

{
(178.5− 1450λt + 5x4)

[ −0.08

(λ+ 0.08x4)2
+

0.105x2
4

(x3
4 + 1)2

]
− 0.4

}
e−12.5λt

∂f1
∂V

=
0.11πρR3V

Jr(λ+ 0.08x4)2
(178.5− 1450λt + 5x4)e

−12.5λt

Lg(x) =
∂f1
∂x4

g4

=
0.11πρR2V 3

x1Jrτβ

{
(178.5− 1450λt + 5x4)

[ −0.08

(λ + 0.08x4)2
+

0.105x2
4

(x3
4 + 1)2

]
− 0.4

}
e−12.5λt

where V̇ is the derivative of wind speed.

When nonlinearities Lf(x) and system input gain Lg(x), and wind speed

dynamic V̇ are known, a feedback linearized control (FLC) can be obtained as

u =
1

Lg(x)
(v − Lf (x)) (17)

where Lg(x) �= 0 for all operation points and v is the control of the linearized

second-order system
d2x1

dt2
= v (18)

and is designed as PI-type controller in this paper, for the convenience of com-

parison with PI-type controller and GSPI controller.

4.2. Perturbation Definition and Extended-order State Space Model120

Assume all nonlinearities represented as Lf (x) and Lg(x) in system (16) are

unknown, define a perturbation term Ψ(x) to include all system nonlinearities,

and the time-varying wind dynamics as:

Ψ(x) = Lf (x) + (Lg(x)− b0)u (19)
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where b0 = Lg(x0) is the nominal constant control gain which can be chosen as

the mean value of Lg(x). Then system (16) becomes

d2x1

dt2
= Ψ(x) + b0u (20)

4.3. Extended-order States and Perturbation Observer

Define z1 = x1, z2 = ẋ1 and an additional state variable z3 = Ψ(x, z), an

extended-order model is obtained as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ż1 = z2

ż2 = z3 + b0u

ż3 = Ψ̇(x, t)

(21)

Define z̃1 = z1 − ẑ1, a linear ESPO is designed as:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂z1 = ẑ2 + k01z̃1

˙̂z2 = ẑ3 + b0u+ k02z̃1

˙̂z3 = k03z̃1

(22)

where ẑi, i = 1, 2, 3, is the estimate of zi; and z̃1 is the estimation error of z1.

k0i are observer gains that can be parameterized as [22]:

[k01 k02 k03] =
[
3α0 3α2

0 α3
0

]
(23)

where α0 is the observer bandwidth and the only parameter to be tuned.

Similarly, to improve the estimation performance, a nonlinear ESPO (NE-

SPO) can also be designed based on [12] as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

˙̂z1 = ẑ2 + k01z̃1

˙̂z2 = ẑ3 + b0u+ k02fal(z̃1, 0.5, h)

˙̂z3 = k03fal(z̃1, 0.25, h)

(24)

fal(χ, σ, h) =

⎧⎨
⎩

σ2

h(1−σ)χ |χ| ≤ h

sign(χ) · σ2|χ|σ |χ| > h
(25)

where χ is the input error of the nonlinear function, σ is the precision index

from 0 to 1, h is the width of linear area of the nonlinear function.
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Comparing with the linear ESPO, the NESPO can accelerate the estimation125

speed, with the cost of a complex nonlinear observer, which increases the dif-

ficulties of stability analysis of the closed-loop system. Note that other types

of ESPO, such as sliding mode observer, can also been applied, though they all

provide similar performance [15].

4.4. N-PI based Pitch Angle Controller130

By using real-time estimate of perturbation Ψ̂(x) from the third-order ESPO

to compensate the real perturbation, the control input u can be obtained as

u =
1

b0

(
v − Ψ̂(x)

)
(26)

where v is the control of the linearized second-order system and is designed as a

classic PI controller with error between rotor speed reference ω∗
r and the system

output x1:

v =

(
kp +

ki
s

)
(ω∗

r − x1) (27)

Finally, the N-PI pitch angle control can be expressed as

u =
1

b0

(
kp +

ki
s

)
(ω∗

r − x1)− 1

b0
Ψ̂(x) (28)

The whole diagram of the N-PI pitch angle control is given in Figure 3(b).

Note the N-PI controller uses only one pair of gains rather than several scheduled

gain pairs like GSPI, due to the compensation of all system nonlinearities and

disturbances.

4.5. Stability Analysis135

Stability analysis of the observer (22) and the closed-loop system inlcuding

controller and observer can be investigated by using Lyapunov stability similarly

to [17]. Thus only stability results are summarized in this ppaer and detailed

steps can follow [17]. Error dynamic of the observer can be obtained from system

(21) and (22) as:⎡
⎢⎢⎢⎣

˙̃z1

˙̃z2

˙̃z3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

−k01 1 0

−k02 0 1

−k03 0 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

z̃1

z̃2

z̃3

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0

0

Ψ̇(·)

⎤
⎥⎥⎥⎦ (29)
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Define tracking error of rotor speed as e2 = ω∗
r − x1, its integration as

e1 =
∫ t

0
(ω∗

r − x1)dt, and its differentiation as e3 = ω̇∗
r − ẋ1. From (20) and (28),

the dynamics of the closed-loop system is represented by the tracking errors as⎡
⎢⎢⎢⎣

ė1

ė2

ė3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0

0 0 1

ki kp 0

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

e1

e2

e3

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

0

0

z̃3

⎤
⎥⎥⎥⎦ (30)

where z̃3 = Ψ(·)− Ψ̂(·) is the estimation error of the perturbation.

Based on [17], assume perturbation functions Ψ(·) and Ψ̇(·) are bounded

over the domain of interest as:

|Ψ(·)| ≤ γ1 |Ψ̇(·)| ≤ γ2 (31)

where γ1 and γ2 are positive constants; then the error dynamic of ESPO (29)

and the closed-loop system (30) are ultimately bounded. Furthermore, if per-

turbations Ψ(·) and Ψ̇(·) are locally Lipschitz in their arguments, the observer

error and the closed-loop tracking error can be obtained exponential converged140

as well.

The internal dynamic of the nonlinear system is analysed using zero-dynamic

technique. When the rotor speed and its time derivative are well controlled, i.e.

e2 = 0 and e3 = 0, then the corresponding states are controlled to their reference

values, such as β = β∗, ωr = ω∗
r , ω̇r = 0 and Pr(ω

∗
r , β

∗) = P ∗
r = P ∗

e /η, where η

is the entire output power efficiency. A relation expression can be obtained as

P ∗
r

ω∗
r

− ω∗
rDs +

ωgDs

Ng
− δKs = 0 (32)

then the other two dynamics can be obtained as

ω̇g ≡ 0 (33)

lim
t→∞ δ(t) =

P ∗
e /η

ω∗
rKs

(34)

The zero-dynamic of the internal system is stable, and therefore, the closed-

loop system error dynamic is stable.
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5. Simulation Results

The simulation tests were performed based on a real experimental wind145

turbine, Controls Advanced Research Turbine (CART) located at National Re-

newable Energy Laboratory USA and whose parameters are given in Table 2.

The CART is a flexible, variable speed & pitch controlled wind turbine with

1.5 MW nominal power rating. This turbine was modeled using a two-mass

model and a validated aeroelastic simulator called FAST: fatigue, aerodynam-150

ics, structures, and turbulence [24]. As only pitch angle control in Region III is

considered, the wind speed is chosen in the range from 12 m/s to 24 m/s with

different mean value and turbulence intensity. The wind parameters are gen-

erated from TurbSim, which is a stochastic, full-field, turbulent-wind simulator

and numerically simulates 3-dimensional wind velocity vectors by time series at155

points in a vertical rectangular grid [32]. The proposed N-PI, a conventional PI

Table 2: Two-mass model parameters of the 1.5 MW experimental wind turbine.

Wind Turbine Parameters: Value:

Rotor radius (Rb) 35 m

Air density (ρ) 1.225 kg/m
3

Rotor inertia (Jr) 2.96×106 kg·m2

Generator inertia (Jg) 53.0 kg·m2

Drive-train spring factor (Ks) 5.6×109 N·m/rad

Drive-train damping factor (Ds) 1.0×107 N·m·s/rad
Gearbox ratio (Ng) 87.965

Pitch actuator time constant (τβ) 1 s

Nominal power output (Pe) 1.5 MW

Rated rotor speed (ωr,rated) 2.1428 rad/s

Rated generator torque (Tg,rated) 8376.6 N·m
Pitch angle limit (βmin ∼ βmax) −1◦ ∼ 90◦

Pitch rate limit (β̇lim) ±10◦/s

Wind turbine efficiency (η) 0.95

15



and a GSPI are tested based on the simplified two-mass model of the CART at

first. The parameters of the N-PI controller are given in Table 3.

Table 3: Parameters of FLC and N-PI controller.

Parameters: Value:

FLC/N-PI Proportional gain (1/s2): kp 6.3

FLC/N-PI Integral gain (1/s): ki 0.26

ESPO equivalent input gain (◦·s3/rad): b0 -0.04

ESPO nonlinear coefficient (rad/s): h 0.001

ESPO observer bandwidth: α0 40

ESPO estimation gain (1/s): k01 1.2× 102

ESPO estimation gain (1/s2): k02 4.8× 103

ESPO estimation gain (1/s3): k03 6.4× 104

5.1. Simplified Two-mass Wind Turbine Model

5.1.1. Step Wind Speed Test160

The pitch angle controller is designed to maintain the rotor speed under

wind disturbance. The performance of the three controllers obtained under

different step wind disturbance is shown in Figure 4, which is simulated on the

simplified two-mass model. When wind speed is increased in steps, it is clear

that the PI controller (dotted line) cannot provide consistently optimal dynamic165

performance when wind speed changes. The GSPI controller (dashed line) with

the entire-region optimal gains can eliminate the effect of the shift of operating

points caused by the change of wind speed. The N-PI (solid line) provides

better transient response with smaller overshoot and faster settling time, over

the whole operation range.170

The performance of the ESPO in N-PI is given in Figure 5. Note that the

observer needs a short period to track the variation of operating point, it will

have transient error under step wind, but will eliminate to zero in a short time
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Figure 4: Response of PI, GSPI and N-PI under step wind test. (a) wind speed, (b) rotor

speed, (c) drive train shaft twist angle.
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Figure 5: Perturbation estimation result under step wind speed. a) Real and estimated

perturbation comparison; b) Estimation error in percentage.

period. There is no steady-state error between the real perturbation and the

estimated value.175

Furthermore, dynamic response under step wind speed change from 12 m/s

to 24 m/s are compared in terms of settling time, overshoot and ITAE for

different controllers. As shown in Figure 6, it can be found that the N-PI has

about 18% less settling time, 15% less overshoot, and 20% less ITAE value than

the other two when the wind speed above 16 m/s. At lower wind speed, the180

N-PI performs better than the PI but no obvious improvement than the GSPI.

Overall, the N-PI has the best performance with the least ITAE value among

the three controllers.

5.1.2. Random Wind Speed Test

The simulation results under random wind with 18 m/s mean speed and185

15% turbulence intensity are presented in Figure 7, which contains wind speed,

response of rotor speed, and drive train shaft twist angle. All controllers control

the pitch angle and the generator torque is held as a constant in its rated

value. The control performances are compared under cases with combination of

18



(a)

(b)

(c)

Figure 6: Performance comparison in metrics of: (a) settling time (s), (b) overshoot (rad/s),

and (c) ITAE (rad·s) under step change wind speed.
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Figure 7: Response of N-PI compared with PI and GSPI under random wind speed. (a)

Random wind speed, (b) rotor speed, (c) drive train shaft twist angle.
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different mean wind speed and turbulence intensity, based on the RMS value of190

the regulation error of the following four dynamic variables: the rotor speed ωr

for the control performance, the twist angle δ as the second control objective,

the actuator usage in terms of the pitch acceleration β̇, and the controller output

change rate β̇r. Their performances are presented using bar chart in Figure 8.

The PI controller performs worst under the random wind speed as shown in195

the comparison bar charts. This is because that the PI controller is a linear

controller with its control gain is optimized at one operation point, while the

other three controllers are nonlinear controllers whose control gains are suitable

for the whole wind speed region, based on the cancellation of nonlinearities or

gain scheduled technique.200

On the other hand, the GSPI gain pairs are switching rapidly under the

random wind speed. Its entire control performance is not as good as the FLC

and the N-PI. Due to the system model and parameters are known accurately

in simulation, the FLC has absolutely the best performance among the four

controllers. N-PI performs as good as FLC, but the perturbation observer has a205

small time delay and estimation error by the ESPO estimation before compen-

sate the real ones. The rotor speed regulation error of N-PI is 20% less than the

PI controller and 10% less than the GSPI. The reduction of twist angle change

is 12% better than the PI and GSPI. In addition, the actuator usage of N-PI is

4% less than that of GSPI and 9% less than that of FLC, in terms of the pitch210

change rate and control output acceleration.

The estimation performance of the linear ESPO in the N-PI controller is

shown in Figure 9, whose average estimation error is around 7.5%.

Due to the high change rate of the random wind speed with high turbulence,

the estimated perturbation from ESPO should be filtered before used to com-215

pensate the real perturbation. Moreover, the N-PI controller using a nonlinear

ESPO is compared a N-PI with a linear ESPO. As the observer gains of both ES-

POs are chosen to be far greater than the upper bound of the time derivative of

perturbation, there is no obvious improvement obtained by the nonlinear ESPO.

Thus this paper uses a high-gain linear ESPO for perturbation estimation [17].220
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(a)

(b)

(c)

(d)

Figure 8: Performance comparison for PI, GSPI, FLC and N-PI under random wind speed

with different mean value (m/s) and turbulence intensity (%). (a) RMS Rotor Speed Error;

(b) RMS Twist Angle Change; (c) RMS Pitch Actuator Usage; (d) RMS Controller Output

Acceleration.

22



0 10 20 30 40 50 60 70 80 90 100
−0.5

0

0.5

1

1.5

Time (s)

Pe
rt

ur
ba

tio
n 

te
rm

:  
Ψ

(x
)

 

 

real
estimated

 

 

(a)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

Time (s)

E
st

im
at

io
n 

E
rr

or
  (

%
)

(b)

Figure 9: Perturbation estimation result under random wind speed. a) Real and estimated

perturbation comparison; b) Estimation error in percentage.
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(b) N-PI

Figure 10: Dynamic response comparison under the power coefficient change to 70% its rated

value. (a) Dynamic response of FLC; (b) Dynamic response of N-PI.

The proposed N-PI pitch controller has better control performance in the

whole wind speed region, especially at high turbulence intensity. Moreover, to

extend the service life of equipment, high actuator usage should be avoided in

practise. The GSPI requires to tune several set of gains around several operating

points, while the N-PI only needs to tune one pair of gains of PI the whole wind225

speed region, which make it be much easier to comprise the control performance

and the actuator usage.

5.1.3. Robustness of Model Uncertainties

When the accurate system model is available, the FLC provides the best

results. However, in practical application, there are many model uncertainties,230

such as air density change caused by different weather condition, dust effect [33],

and ice accretion [34][35], which will affect the aerodynamic power coefficient

of the wind turbine. Figure 10 shows the dynamic response when the power

coefficient is reduced to 70% of its rated value. As the FLC requires an accurate

model and parameters, it cannot maintain the rated rotor speed. As the N-PI235

based controller do not need the accurate system model and can compensate
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Figure 11: Configuration of test N-PI pitch angle controller using FAST.

the perturbation caused by the variation of system model uncertainties, it can

provide much better and robust response. The PI and GSPI can also provide

similar robust performance than the N-PI and their results are not presented.

5.2. Validation on FAST Simulator240

As the two-mass model is a simplified wind turbine model that neglects

many dynamic behavior, the N-PI controller is also validated on a more detailed

model, the Fatigue, Aerodynamics, Structures, and Turbulence (FAST ) model,

which is capable of predicting both the extreme and fatigue loads of two and

three-bladed horizontal-axis wind turbines and suitable for verify and test of245

wind turbine control. Figure 11 shows the configuration of the N-PI and the

FAST in Simulink.

As suggested in the FAST user manual, the FAST model does not include the

pitch angle actuator dynamics and the blade base can rotate to the reference

angle without any delay. An additional actuator dynamic block is added to250

regulate the pitch angle. Furthermore, the FAST model has no direct output

of the twist angle value like in the two-mass model, as it uses a full flexible

dynamic model with segmented elastic model in the entire drive train shaft.

The low speed shaft damage equivalent load (LSS DEL) is used to display the

equivalent performance of the twist angle of the drive train shaft.255

In the simulation on FAST model, RMS value of the following three variables

are used to compare the controller performance: the rotor speed regulation error,

and the pitch acceleration of the pitch angle (in ◦/s). The dynamic responses

under random wind input with 18 m/s mean speed and 15% turbulence intensity
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is presented in Figure 12. Comparing with the response of two mass model, the260

FAST simulation result includes many authentic dynamics and high frequency

noise. The comparison performs in the bar chart shows that the N-PI has the

rotor speed regulation error 25%∼30% less than the PI and 5%∼15% less than

the GSPI as shown in Figure 13(a). And in the RMS of LSS DEL, the N-PI has

approximate 7% less than both the PI and the GSPI as shown in Figure 13(b).265

In the FAST simulation, the pitch angle response time constant depends on

many conditions, such as wind speed at different height, yaw angle, and tower

shadow, etc. Therefore, the pitch angle control response in FAST simulation

is worse under higher wind speed and greater turbulence intensity as shown in

Figure 13(c). Nevertheless, the results under both low and high turbulence wind270

show that the N-PI controller has approximate 13% less actuator usage than

the GSPI and gets about 10% better performance, and it has approximate 6%

more actuator usage to get a 28% improvements comparing with PI controller

in wind turbine pitch control.

6. Conclusion275

A Nonlinear PI (N-PI) pitch angle controller has been designed to regulate

the wind turbine to capture the rated wind power when the wind speed ex-

ceeds the rated value. Based on the two-mass nonlinear wind turbine model,

an extended-order state and perturbation observer is designed to estimate the

unknown and time-varying nonlinearities and external disturbances. The esti-280

mated perturbation dynamic is used to compensate the real unknown dynamics

and a PI type controller is designed for the linearized system. Only one set

of PI parameters are needed to be tuned for covering the whole operation re-

gion. The N-PI avoids the requirement of tuning and switching of controller

gains in GSPI and the requirement of accurate system model in the feedback285

linearization control. The proposed N-PI pitch angle controller is verified on the

two-mass simplified model and then the detailed FAST simulator under step and

random wind speed tests. Simulation results show that the N-PI based pitch
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Figure 12: Simulation verification result on FAST model. (a) wind speed, (b) rotor speed, (c)

LSS DEL.
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(a)

(b)

(c)

Figure 13: Performance comparisons of PI, GSPI and N-PI controllers using FAST simulator

under different wind input: (a) RMS rotor speed error; (b) RMS LSS DEL; (c) RMS pitch

change rate.
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angle controller performs better in constant power regulation and drive-train

stress minimization, with less actuator usage comparing with the conventional290

PI and gain-scheduled PI controllers, and better robustness than FLC in the

model uncertainties.
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