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Abstract

This paper introduces a method of surveillance using deviations from
probabilistic forecasts. Realised observations are compared with proba-
bilistic forecasts and the �deviation�metric is based on low probability
events. If an alert is declared, the algorithm continues to monitor until
an all-clear is announced. Speci�cally, this article address the problem of
syndromic surveillance for in�uenza (�u) with the intention of detecting
outbreaks, due to new strains of viruses, over and above the normal sea-
sonal pattern. The syndrome is hospital admissions for �u like illness and
hence the data are low counts. In accordance with the count properties of
the observations, an integer valued autoregressive process is used to model
�u occurrences. Monte Carlo evidence suggests the method works well in
stylised but somewhat realistic situations. An application to real �u data
indicates that the ideas may have promise. The model estimated on a
short run of training data, did not declare false alarms, when used with
new observations deemed in control, ex post. The model easily detected
the 2009 H1N1 outbreak.

Keywords: real-time surveillance, early event detection, probability fore-
casts, Markov process, integer autoregressive model

1 Introduction

Seasonal in�uenza (�u) is a major cause of death among human populations and
places great demands on health care resources and infrastructure. The economic
costs of �u are also substantial. Potentially more destructive and costly are
illnesses caused by new strains of the �u virus which have the potential to create
worldwide pandemics. Hence in�uenza surveillance has been an important issue
in public health practice and as a result signi�cant e¤orts have been devoted to
the development of statistical algorithms to monitor �u data. The objective of
this paper is to propose a methodology for syndromic surveillance that detects
outbreaks of �u that are in excess of the customary seasonal cycle and that
continues to monitor until the (transient) outbreak terminates, at which point
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an all-clear is declared. Thus, we seek to use real-time leading indicators of the
�u to detect the presence of an outbreak sooner than would normally be the
case, i.e. we focus on early event detection (EED). Real-time early detection is
important as any signi�cant time delay between the disease outbreak and the
awareness of it, may mean that public health interventions cannot be e¤ectively
implemented to slow the spread of the disease. The hope here is that the
economic, social and health care costs associated with an epidemic would be
signi�cantly mitigated by early preventive action should the proposed EED
method prove e¤ective. The literature on biosurveillance is vast and a large
variety of statistical algorithms has been proposed; for a recent taxonomy and
an overview of the statistical methods used, see Fricker [1], Unkel et al. [2]
and the collection of essays in Zeng et al. [3]. We use hospital presentations
with �u like illnesses as the syndrome and hence our data consists of dependent
sequences of low counts; the surveillance literature on this topic is much more
sparse but see Section 3.2 of [2] for related references.
The outer layer of the surveillance methodology suggested here is really quite

generic and applies to a wide variety of surveillance situations. We present a
general algorithm which requires only a forecast distribution for future values of
the phenomenon under study. This forecast distribution may be model based,
Bayesian or frequentist, or even a judgemental forecast from a panel of experts.
From the forecast distribution, a rule is constructed to determine when an Alert
has taken place due to an abnormal outbreak and, if there has been an alert,
the rule also determines when the outbreak terminates. The decision rule and
the dynamics of the algorithm as time progresses are speci�ed at this stage. A
particular feature of the decision rule, is that the statistic used is based on prob-
abilistic forecasts and not on forecasts of future values. This means that the rule
is automatically coherent with the observed values under study, i.e. low counts
in the case of �u surveillance. The rule uses a very natural metric to assess the
deviance of observed values from the forecast distributions, by calculating prob-
ability, p, of seeing values as or more extreme than the ones observed. Using
p, based on the probability distribution, as a monitoring statistic is also helpful
when the support of the observations is restricted, as in the case of low counts.
This is because changes in the mean of the distribution automatically induce
changes in the variance and changes in the variance will induce changes in other
higher order moments and so on. Hence, using the full probability distribution
is much less problematic than using approximations based on the Gaussian dis-
tribution where changes in the mean do not a¤ect the variance. This part of
the methodology is described intuitively in Section 2 and in detail in Appendix
A. The methodology requires the ability to make forecasts of the probability
distribution of observations, perhaps several steps into the future. Provided
the phenomenon under study may be modelled as a, possibly nonstationary,
Markov process, it turns out that all the probabilities that are needed may be
computed using only the one-step transition matrix of the chain. These formulae
are given in Appendix B. Given the generic surveillance methodology, a strategy
for producing forecast distributions for the phenomenon under study needs to
be developed. In this paper, we focus on the detection of �u epidemics where
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the syndromic data utilised are hospital admissions, collected at relatively high
frequencies, potentially daily, weekly or monthly. We use a frequentist model
i.e. an integer valued autoregressive (INAR) process, a model class which is
speci�cally designed to model dependence in the data but also to preserve the
integer structure of low counts. This means that coherent probability forecast
distributions, as required by the methodology, are readily available as are the
one-step transition probabilities. In this class, it is straightforward to accom-
modate covariates and hence nonstationarity. In summary then, the method we
present has the following features

� the basic decision rule is intuitive, easy to understand and uses a natural
deviance metric

� transient outbreaks are seamlessly dealt with

� it may be implemented in a variety of diverse situations and all the formu-
lae necessary for the calculations are explicitly presented. The formulae
are valid under quite general conditions.

� low counts which may be dependent, when the data are collected at high
frequencies, are speci�cally accommodated

� it requires no asymptotic justi�cation

� nonstationarity is explicitly incorporated into the modelling process

� the deviance metric, which calculates the probability of extreme obser-
vations relative to a probability distribution, is also attractive when the
support of the observations is restricted, as the �u case is to the nonneg-
ative integers.

In Section 4 the performance of the EED procedure is assessed via Monte
Carlo simulations. Since the full set of outcomes is available to a researcher
when using simulations, any desired measure of performance may be computed.
We use variants of traditional run lengths to assess false alarm rates when the
system is deemed in control. A new method for simulating �u epidemics, based
on combining traditional SIR ideas and the INAR model, is introduced to
evaluate how well the algorithm performs in detecting �u outbreaks when they
occur in excess of the normal pattern.
The use of a training model as part of the methodology is not without its

di¢ culties especially in the context of detecting �u outbreaks over and above
the usual annual cycle. One of the di¢ culties is that there has to be adequate
data to estimate a su¢ ciently complex model to produce accurate forecast dis-
tributions in the presence of seasonality but at the same time the data span has
to be reasonably short so that no outbreak or other structural change has taken
place. The INAR process models the syndrome, counts of hospital admissions
with �u like illness, as the dependant variable and uses a discrete valued ar-
rivals distribution to generate new �u incidences. One method of incorporating
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nonstationarity to accommodate seasonal �u is to model the mean of the ar-
rivals distribution using monthly, say, dummy variables as covariates so that
the average number of new �u cases per month may vary. This method has
the advantage of simplicity and ease of interpretation. In addition, the covari-
ates are completely predictable and hence may be projected into the future to
produce, in turn, forecast distributions for the syndromic counts via the INAR
model. The main drawback of the approach is that the timing and duration of
seasonal �u cycles may vary year by year, rendering �xed e¤ect season dum-
mies inappropriate. An e¤ective model for forecasting the distribution of the
syndromic counts requires covariates that can account for time-varying �u sea-
sonality and at the same time, such covariates, must be predictable themselves
to serve as inputs to the INAR model. Failure to correctly predict the timing
of seasonal �u will have a serious impact on the ability of any methodology
to identify outbreaks de�ned as an excess of cases over and above the normal
pattern. Therefore, while the syndrome is deemed to be a leading indicator of
disease incidence, we need a further predictor of the syndrome itself. Finding
covariates to serve as syndrome predictors is an additional challenge. These
issues are explored in Section 5 which analyses a publicly available time series
of �u counts, where the data include the year 2009 when the H1N1 virus was
active.

2 The Monitoring Algorithm

The outer layer of the methodology is a generic algorithm for constructing a
rule to react to deviance, to deal with transience and to update the decision
making process as time progresses. The basic monitoring idea is the standard
one, i.e. produce a forecast distribution and evaluate discrepancies. The current
time is t = 0 and we make a prediction for one period t = 1 in the future. The
type of prediction we make is a forecast for the entire future distribution of
Y1, sometimes called a density forecast but for discrete data like counts it is a
forecast of the probability mass function

P [Y1 = j1jF0] (1)

for all values j1 in the support. We condition on the information available at
time t , Ft, initialised t = 0. For ease of exposition, we shall assume through-
out the paper that the observation process is strictly Markov, i.e. has only
one lag. Hence F0 just consists of the current event Y0 = y0. Unlike con-
ventional forecasts which predict future values, probabilistic forecasts predict
future probabilities, one for each speci�ed possible outcome. Such forecasts are
automatically coherent with the integer valued support of count observations.
The procedure has two sub-procedures: one to monitor for alerts (AM) and

the other to monitor for the all-clear (CM). Algorithmic details are given in
Appendix A, but the basic ideas are outlined here. We assume that we are
currently in control, a forecast distribution has been produced and we start the
procedure to monitor for an alert. The initial step evaluates (1). Next, we roll
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time forward to t = 1 and a new observation y1 becomes available. To decide
if the y1 is aberrant (out of control), we compute the probability of observing
values as or more extreme than it, i.e.

p =
1X

j1=y1

P [Y1 = j1jF0] :

The investigator then constructs a decision rule based on the value of p to
declare an alert. We choose lower and upper values pl � pu and declare an alert
(RED, R) when p < pl, declare a warning when pl � p � pu (ORANGE, O) and
continue monitoring when p > pu (GREEN, G); these values may be chosen by
the investigator to suit the application. The alert region described here only
screens for extreme observations which are large, in accordance with the practice
in syndromic surveillance. The alert monitor then continues as follows:

If R Declare an alert. Start CM
If O Construct P [Y2 = j2jF0]
If G Construct P [Y2 = j2jF1]

When an Alert is declared, the algorithm switches to checking for the all-clear
(details below). If a warning is issued, a 2-step-ahead forecast distribution con-
ditioning on the last known good information F0 is constructed. If the decision
is G, then a one-step ahead forecast is constructed using the new information
in F1, since the system is deemed in control. A new p is calculated when the
next observation y2 arrives and the decision rule is re-applied. The rule either
declares an alert or continues to monitor inde�nitely, updating the O and G
steps as required; see Appendix A.
The procedure, CM , that monitors for the all-clear is as follows. For the sake

of concreteness, assume that at period t = 3, the AM procedure issued an Alert
after an Orange at t = 2 and a Green at t = 1. We require a rule that would
declare the Alert over, i.e. we would like to know whether the observations
that follow the alert have returned to being consistent with the original model.
Noting that F1, delivered by the AM , is the latest known good information, we
construct the 3-step-ahead probability mass function

P [Y4 = j4jF1] (2)

an alert having been raised at t = 3. We then compute the p as usual when y4
arrives and apply the ROG decision rule. Action is taken as described in the
following table:

If R Continue alert, Construct P [Y5 = j5jF1]
If O Continue alert, Construct P [Y5 = j5jF1]
If G Declare all-clear and restart AM with F4
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The rule, in this illustration, is the same for R and O but re�nements are
possible where the decision will be di¤erent (see below). If the decision is R, a
prediction for four steps ahead, conditional on the last good information F1, is
produced. If an all-clear is declared, the algorithm re-enters the alert monitoring
state using F4 as the current information. When y5 is observed, we compute p
in the usual way. The Clear procedure continues to monitor new observations
until the alert is over.
It is possible that two or more successive values of p may fall marginally

above pl and thus not trigger an alert but taken together might indicate the
onset of an outbreak. In this situation, an enhanced procedure would be to
compute joint probabilities for several observed values that are suspect. The
details of the EED algorithm, incorporating this re�nement and the updating
steps, are given in Appendix A.

3 Model based Approaches

In many situations forecast distributions will be produced using a statistical
model. There is no restriction on the type of model that may be used in the
algorithm: it may be a pure time series model, a regression model, a regime
switching model or even a Bayesian construction; all that is required is that
forecasts are available from the model.
One of the key di¤erences between the present algorithm and other methods

is that we do not use the model to forecast future values of the observations
but rather future probabilities for those values. Existing model based monitor-
ing techniques (see, for example, Ser�ing [4] for a regression method or Choi
[5] for an ARMA approach) typically use a threshold for issuing an alert i.e.
if the new observed value is larger than some prespeci�ed amount, an alert is
issued. Thresholds are usually constructed by using the distribution of the fore-
cast error, i.e. the di¤erence between the new observation and its conditional
mean. For observations which are low counts (small positive integers) and a
conditional mean which is a real number this does not seem entirely natural.
In addition, there is usually an implicit normality assumption used to calculate
the size of the threshold; see the summary in Section 2.3 and also Section 3 of
Unkel et al. [2]. Algorithms speci�cally designed to deal with count data based
on, for example, a Poisson assumption, e.g. Farrington et al. [6] and Noufaily
et al. [7], recognise the fragility of simple Gaussian approximations in deter-
mining the size of a threshold. Accordingly, they use power transformations
and Taylor series approximations in an attempt to induce symmetry and near
normality. Probability forecasts avoid these di¢ culties and automatically deal
with restrictions on the support. In addition, we explicitly model the autocor-
relation structure of the data, by exploiting the Markov structure to improve
forecasting performance.
At some point it will be necessary to re-estimate the control model. A useful

strategy is to use a rolling window and re-estimate once a year, say, deleting the
�rst year�s observations and adding the current year�s; this would allow for time-
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varying data generating processes to be accommodated. For example, it may
be that with the advent of new vaccines, normal seasonal patterns may slowly
change as they also might do as known viruses mutate. Obviously, we do not
want to use any �alert�observations when the control model is being updated.
Consider the simple case where the model was estimated using observations
from n years of monthly data

�
Y�(n�12); Y�(n�12)+1;:::; Y�1; Y0

	
, following which

observations for the �rst year from Y1; :::; Y12 become available. For example, if
all the decisions were G until an alert was declared at t = a 2 (1; 12) with a value
ya while ya+1 and subsequent observations till the year end were also deemed
clear, then we replace ya by an estimate of it under the control regime. A
simple suggestion is to use the mode, written ŷa, of the predictive distribution
for ya conditional on Fa�1, the last known good information. This value is
available as a by-product of the monitoring procedure. Then we re-estimate the
model based on

�
y�(n�1)�12; :::; y0; y1; :::; ŷa; ya+1; :::; y12

	
where the �rst years

observations have been deleted and the current years added. Obviously, if the
alert lasted k periods, then we would use ŷa; ŷa+1; :::; ŷa+k�1 to impute as many
missing points as were deemed part of the outbreak episode.
Another advantage of the present approach occurs when the phenomenon

under study may be modelled as a Markov chain. In the Markov case, all the
forecast probability distributions required to implement the monitoring algo-
rithm may be computed from the �rst-order transition matrix of the chain.
For simplicity, we con�ne attention to the �rst-order case although higher or-
der processes may be accommodated by the usual device of treating chains
with multiple lags as a �rst-order vector system. To deal with the seasonal
e¤ects of �u, we need to consider the nonstationary case. De�ne the matrix
Pt to contain the individual one-step-ahead conditional forecast probabilities,
Pt[i; j] = Pt [ijj], where i; j range over the support and Pt [ijj] is the probability
of moving to state i at time t given the system is in state j at time t� 1. Then,
setting products of probabilities of the form

Q0
j=1 to unity, joint probability

forecast distributions k steps into the future are given by

P [Yt+k = st+k; :::; Yt+k�i = st+k�ijYt = yt]

=

iY
j=1

Pt+j [st+k�j+1; st+k�j ]:Pt+k�i::::Pt+1[st+k�i; yt]

=
iY

j=1

P[st+k�j+1; st+k�j ]:P
k�i[st+k�i; yt] if stationary

for i = 0; :::; (k � 1). Here Pt+k�i::::Pt+1 means (k � 1) matrix multiplications
and we extract the [i; j] element of the product, written Pt+k�i::::Pt+1[i; j].
The details are given in Appendix B. The next sub-section considers the INAR
class of parameter based models which may also be thought of as a Markov
chain.
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3.1 Integer Autoregressive (INAR) Models

In this subsection, we customise the algorithm and the probability calculations
to deal with the details of the phenomenon we wish to investigate i.e. syndromic
counts. The INAR class of models was �rst introduced by Al-Osh and Alzaid
[8] and McKenzie [9], while McKenzie [10] provides a review of the model class.
It was also used by Moriña et al. [11] to study �u behaviour at the level of the
individual hospital.
Let Y1; � � � ; Yn be a series of dependent counts generated according to the

following �rst order model

Yt = � � Yt�1 + "t; (3)

where f"tg1t=1 is a series of independently distributed integer-valued random
variables. The thinning operator ���is de�ned as follows: given Yt�1, ��Yt�1 =PYt�1

i=1 Bit, where B1t;B2t; : : : ;BYt�1t are independent and iid Bernoulli random
variables with P (Bit = 1) = 1 � P (Bit = 0) = �. Since � � Yt�1 given Yt�1 is
a sum of iid Bernoulli random variables, it follows that it has (conditionally) a
binomial distribution with parameters � and Yt�1. It is further assumed that Bjt
and "t are independent. Notice that in this model, Yt is composed of two random
components: the complement of the death (i.e. the survivorship) component
� � Yt�1jYt�1 and the arrivals component "t. Neither of these two components
are observed. It also follows that (3) has a Markov chain representation and that
E [YtjFt] = �Yt�1+E ["t]. Hence the autocorrelation function for Yt is given by
�k at lag k and the INAR class is suited to modelling dependent integer-valued
data with short memory. The transition probabilities are also available with

P[i; j] =

min(i;j)X
s=0

�
j

s

�
�s (1� �)j�s P ["t = i� s]

which is the convolution of the binomial and the disturbance distribution. Hence,
for example, the 1-step ahead forecast distribution at time t is given by

p(xjYt = yt) =
min(x;yt)X
s=0

�
yt
s

�
(�)s(1� �)yt�sP ["t+1 = x� s]

and this is used to construct the model probabilistic forecasts. Incidentally, if
asymptotic considerations were relevant, this forecast distribution is asymptoti-
cally e¢ cient (nonparametrically) for any arrivals distribution when ML estima-
tors are employed, as in McCabe et al. [12]. This would be added justi�cation
for its use as a statistic in a surveillance algorithm.
There are many choices available for modelling the "t; e.g. Poisson, negative

binomial, double Poisson and so on. They may even be treated nonparametri-
cally as in Drost et al. [13] and McCabe et al. [12]. In the current context, we
need the ability to handle covariates in a straightforward fashion and hence the
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Poisson is chosen. This gives

Pt[i; j] =

min(i;j)X
s=0

�
j

s

�
�st (1� �t)

j�s e
��t�i�st

(i� s)!

where we allow �t and �t to be functions of covariates. Speci�cally, we use

�t =
1

1 + e�at
, �t = elt (4)

where at = z0ta and lt = x
0
tl. The covariate vectors zt and xt are mapped into

(0; 1) and (0;1) using the logit and exponential transformations respectively.
The likelihood is then straightforward with

L (a; l) =
nY
t=1

Pt[yt; yt�1]

from which maximum likelihood estimators (MLEs) â and l̂ may be obtained.
Equation (4) then gives the MLEs �̂ and �̂. Simpler estimates of (a; l) may be
obtained by conditional (nonlinear) least squares applied to

E [YtjFt] = �tYt�1 + �t

and while these estimates are robust to distributional assumptions, the subse-
quent probabilistic forecasts are not. In what follows, we usually express models
in this conditional mean format both for convenience and computational sim-
plicity. Using iterated expectations, it follows that

E [Yt] = �tE [Yt�1] + �t (5)

giving an expression for the marginal means.

4 Assessment of Performance

In this section, we attempt to assess the performance of the EED �u algorithm by
Monte Carlo simulations. Many techniques have been proposed to evaluate the
performance of EED methods and it appears they are not without controversy
especially for dependent data (see, for example, Chapter 6 of Fricker [1]). The
data here are additionally nonstationary. Ideally, any surveillance system would
have the property that the number of times a false alarm is declared, is very
low (1 - speci�city), that the probability of identifying an outbreak is high
(sensitivity) and the response time of the system to an outbreak is very fast.
In addition, we would like to sound the all-clear as soon as possible after the
outbreak �nishes.
In many cases and for �u in particular, incidences are seasonal. So the �rst

step is to construct a model using �regular�seasonal data but excluding those
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years with exceptional outbreaks, e.g. due to the H1N1 virus. This has been
done by Moriña et al. [11] using monthly data based on a single hospital and
we use the estimated seasonal patterns reported in their paper (Table 1) as the
arrivals means �t in (3). This de�nes a somewhat realistic simulated benchmark
of seasonal behaviour and a challenging environment for the algorithm to assess
deviations. In the next subsection, we evaluate the performance when the model
operates under �normal�circumstances (in control) while Subsection 4.2 deals
with outbreaks.

4.1 Normal Performance

The basic assessment devices are variants of traditional run lengths. We cal-
culate the average number of clear time periods (ACL) that elapses between
(falsely) declared alerts under the condition that no outbreak occurred. We
also look at the average length of time that the system stays on alert after a
(false) alarm has been declared (AAL). In this calculation, we consider only
two outcomes: alert (R) or no alert (G). To be concrete, imagine a sequence of
observations during a normal period where the algorithm made the following
decisions:

XXXX

XXXXX
XXX


XX
where X means that the decision was G and 
 means that it was R, indicating
that a false alarm has been declared. Thus the ACL = (4 + 5 + 3 + 2) =4 = 3: 5
and AAL = (2 + 1 + 3) =3 = 2. Note once an Alert has been declared, that
state must stay for a minimum of one period.
We de�ne the GREEN and RED zones using pl = 0:01 except for the peak

months, December to April, where we set pl = 0:05. Starting in July, the
seasonal means of the Poisson arrivals were, as in Table 1 of Moriña et al. [11],

�t = (0:14; 0:32; 0:61; 1:37; 0:78;2:68;6:90;3:44;2:50;1:56; 0:83; 0:61)

where the peak �u season (December to April) is noted in bold. This is now
considered to be the �normal� seasonal cycle and the task of the surveillance
algorithm is to detect low probability occurrences relative to this pattern, declare
alerts and subsequently all-clears. We simulated the model

Yt = � � Yt�1 + "t

with "t � Pois(�t) for t = 1; 2; :::; 12 by setting y0 = 0 resulting in y1 being
a drawing from a Poisson with parameter �1 = 0:14. Then, y2 is the sum of
a drawing from a Binomial with n = y1 > 0 and p = � and a drawing from
"2, a Poisson with parameter �2 = 0:32. Should y1 = 0 we set the Binomial
value to 0. The recursion is repeated until 12 draws are obtained and then we
replicated these yearly trajectories 10; 000 times obtaining 120; 000 consecutive
observations. Then our algorithm was applied to this observation set to see the
decision for each observation, remembering that the algorithm is assumed to
know the true model and the parameters. Table 1 gives the run lengths for a
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couple of values of � based on the decisions obtained for all the observations as
above.

Table 1. Run lengths results
Run Lengths (Months)
� = 0:2 � = 0:4

ACL 72.2 85.4
AAL 2.2 1.97

The average number of months between false alarms was 72 (� = 0:2) and
85 (� = 0:4). If a false alarm was declared, the average numbers of months in
which the alert was falsely maintained was 2:2 and 1:97 for � = 0:2 and � = 0:4
respectively. In both cases, of the 120; 000 months monitored, about 0:013%
were given as false alarms.

4.2 Outbreak Performance

Motivated by the standard SIR model of epidemics, we simulate a �u outbreak
by allowing the number of new �u cases to depend on the current level of
infection, i.e. we modify the basic INAR model

Yt = � � Yt�1 + "t (6)

by making
"t � Pois (�+ �tYt�1) :

When �t = 0; this is the usual model but for �t > 0 the arrivals rate increases
with the number of cases in the previous period Yt�1. Assuming �t is a non
stochastic parameter sequence (or Ft�1 measurable), we also have

E [YtjFt�1] = (�+ �t)Yt�1 + �

which is to be compared with E [YtjFt�1] = �Yt�1 + � when no outbreak is
present. When (�+ �t) < 1; there are shifts in the conditional mean (and
marginal mean) of the process but it remains non explosive; when (�+ �t) � 1;
the conditional expectation is an explosive function of Yt�1. Thus we can turn
the epidemic on and o¤ with �t while (�+ �t) can be used as a measure of the
size of the outbreak. For the purposes of the simulation, we need a process for
�t.
Assume that the training model has been estimated (or has known parame-

ters) and that we wish to simulate a �u outbreak. The rough pattern we have
in mind is that arrivals increase in numbers, peak after some period and then
decrease back to the baseline level. Thus, to model the outbreak period we use

Yr = � � Yr�1 + "r
where "r � Pois (�+ �rYr�1) and

�r = k:xpr (1� xr)
q

xr =
r

D
; r = 0; :::; D:
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Qualitatively, �r follows the path, from left to right, of a discrete version of
the density of a beta distribution on [0; 1] ; i.e. has an inverted U shape. The
constant k controls the size of the peak, for example, k = 1 means �r peaks at
0:5 when p = q = 1. A large q � 1 (relative to p) means that �r is positively
skewed so that the outbreak starts explosively, peaks and then tapers o¤. Setting
p � 1 to be relatively large means that the outbreak gathers pace slowly, peaks
and then disappears quickly. In all cases, the �rst and last �r = 0 and the
outbreak terminates when r = D, D� 1 being the duration. In simulations, we
can control k, p, q and D which allows for quite a lot of �exibility in generating
the outbreak pattern.
In the outbreak simulations, we continue with the monthly setup of the last

section. We set D � 1 = 5, p = 1 and q = 4 and superimpose the outbreak
(starting in December and ceasing in April) on the monthly pattern, where the
�u year starts in July and ends in June. We generate 1; 000 replications of 12
monthly trajectories with the arrivals means generated by �t + �tYt�1 with �t
chosen as before. Thus we have 12; 000 consecutive observations. The number k
is used to control the size of the outbreak and we look at two cases by making the
value of (�+max�t) equal to 1:5 and 2:0 so that both processes are explosive.
The in-control model and its parameters are presumed known. Table 2

illustrates the timing response (in months) of the algorithm to an outbreak, and
its cessation, that was superimposed on the normal seasonal pattern. We look
at the cases when � = 0:2 and � = 0:4.
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Table 2. Timing response of the Alert and Clear Monitors
�+max�=1.5

AM (78.6%) CM (76.1%)
No. of months percentage No. of months percentage

Lag 2.46 62.6% 1 6.0%
� = 0:2 Exact 0 14.5% 0 13.4%

Lead 2.00 1.5% 1.54 56.8%
�+max�=2

AM (91%) CM (88.2%)
No. of months percentage No. of months percentage

Lag 1.94 66.6% 1 9.7%
Exact 0 23.9% 0 23.4%
Lead 1.57 1.4% 1.28 55.1%

�+max�=1.5
AM (73.7%) CM (63.5%)

No. of months percentage No. of months percentage
Lag 2.27 54.2% 1 8.7%

� = 0:4 Exact 0 18.5% 0 16.0%
Lead 2.30 1.0% 1.5 37.8%

�+max�=2
AM (89.3%) CM (65.4%)

No. of months percentage No. of months percentage
Lag 1.79 61.0% 1 17.5%
Exact 0 26.6% 0 19.7%
Lead 2.29 1.7% 1.25 28.2%

From Table 2 we can see that when � = 0:2 and (�+max�t) = 1:5, in 78:6%
of the 1; 000 replications of the yearly trajectories an alert was detected over the
12 months by AM procedure. The AM got the timing of the outbreak exactly
right 14:5% of the time. In 62:6% of cases that the outbreak was detected with a
lag and average number of months it was late was 2:46. In 1:5% of trajectories,
an outbreak was declared prematurely and the average lead time was 2 months.
Having declared an alert, the Clear procedure gave the all-clear, in exactly

the right month, 13:5% of the time; 6% of the time it was late by a 1 month
on average; The CM anticipated the all-clear 56:8% of the time by an average
of 1:54 months. Overall, in 76:1% of cases the all-clear was given by the end of
the �u year, June.
When the size of the outbreak is increased to 2:0; the performance of the

Alert monitor AM improves with a greater detection rate (91%) and it gets the
timing exactly right 23:9% of the time. The average length of the leads and
lags also reduces. The performance of the CM also improves. As (�+max�t)
changes from 1:5 to 2:0 when � = 0:4, the same qualitative features are evident,
i.e. the larger the size of the outbreak, the better the performances of the AM
and CM monitors. Increasing � from 0:2 to 0:4, has only a minor e¤ect on the
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AM monitor but does reduce the performance of CM . To see this, consider
Figure 1 which gives the output of the ROG decision rule (with pu = 0:2) for
each of the 12 months over the 1; 000 iterations of the yearly pattern. The
smaller rate of thinning means that �u cases take longer to exit the system
before the end of the �u year and the monitor tends to remain in the Orange
state.

5 Analysis of Flu Data

The data in Figure 2 are weekly numbers for those diagnosed with �u (106
observations) in the Region of Catalonia (Spain) between 2010 week 23 and
2013 week 17.1 The seasonal peaks, which reach around 100 cases per month
for the region, are clearly evident. These data are post the 2009 H1N1 outbreak
and we consider these observations to be representative of the current normal
seasonal pattern.

5.1 Preliminary Analysis

As mentioned earlier, one of the di¢ culties with the idea of a training model is
that there has to be adequate data to estimate a su¢ ciently complex model but
at the same time the data span has to be reasonably short so that no outbreak
or other structural change has taken place. While the span of the �u data in
Section 5 is reasonably short (2 years of weekly data) it is not feasible to estimate
the (52) parameters that weekly dummy variables would require. Accordingly,
we use 12 monthly dummies, Dt;r, r = 1; :::; 12.
The conditional mean of the INAR model is �tYt�1 + �t and a crude

dummy variable linear regression of Yt on Yt�1; Dt;1; :::; Dt;12 shows that the
coe¢ cient of Dt;3 (March dummy) is negative which is not possible in the con-
text of the model. Attempting to force the positivity restrictions by NLS using
exp fl1Dt;1 + :::+ l12Dt;12g leads to convergence problems. The reason is that
there is no suitable model with constant � that is capable of �tting this sort of
data. Essentially in conditional mean format, we have YMar = � � YFeb + �Mar

being (approximately) of the order 50 = 0:8�100+�Mar and there is no positive
� that can satisfy this. Models with time varying �t such as

Yt = Yt�1 �
�
1 + ea0+a1Dt;3+a2Dt;S

��1
+ exp fl1Dt;1 + :::+ l12Dt;12g (7)

will �t the data adequately and we can estimate by NLS. In (7), Dt;S is a
dummy variable for the Summer months June, July and August where there
are very few suspected �u cases. This model has 3 �t�s: the base line �t,
using a0, only which is estimated to be 0:78, an �t for March, using a0 and a1,
estimated to be �̂Mar = 0:4 and an �t for Summer, using a0 and a2 which was
�̂Sum = 0:6. Further details, additional parameter estimates etc. are available
on request.

1Unlike much hospital data, these are publically available and were kindly supplied by
David Moriña.
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Figure 3 shows the data as well as �tted values from the model (7). The
solid line represents the data, the dots are the estimated conditional expectations
E [YtjFt�1] (predicted values) and the dashed lines are the estimated uncondi-
tional expectations E [Yt]. The unconditional expectations are calculated using
(5) with estimated parameter values and E [Y0] = 0, since Y0 corresponds to a
Summer month with almost no �u cases. The �tted values are reasonable but
the estimated E [Yt] badly under estimate the peaks. In addition, �u season
seems to vary in its timing each year (coming early in 2011 in comparison to
2012) and hence models using �xed seasonal dummies may struggle to serve
as useful syndromic predictors. The time-varying nature of �u seasonality is
a very serious problem when attempting to detect outbreaks that are deviant
from a normal dynamic pattern. If the control model mis-times the seasonality,
it will confound normal seasonal behaviour with outbreak behaviour leading to
an excess of false alarms in periods where there are no outbreaks.

5.2 An Analysis with Covariates

It is clear that some leading indicator of the timing of seasonal �u would be
helpful in constructing a control model with an ability to forecast well. It is
well known that cold weather is somehow associated with high �u rates but
the phenomenon does not seem to be fully understood. Nevertheless, we con-
structed a proxy variable Wt = (min[0; T empt �Mean(Tempt)])2 to look at
extreme Winter deviations from the average temperature2 . In using covariates
in prediction models, it is important that the covariate is at least as predictable
as the response variable itself. Poor extrapolation of the covariate will lead
to poor predictions of the response variable. Fortunately, accurate short term
(daily, weekly, say) forecasts of many weather variables are increasingly available
for use in forecasting the syndrome.
The simple model

Yt = Yt�1 � (1 + ea0)�1 + exp fl0 + l1Wtg

was �tted with the coe¢ cient estimates of a0 and l1 being highly signi�cant.
The estimated value for � was �̂ = 0:6. Figure 4 shows the data and �tted
values. In comparison with Figure 3, we can see that theWt variable does much
better in capturing the timing of the �u outbreaks and the E [Yt] match the
data more closely.

5.3 Detecting the 2009 H1N1 Outbreak

Having seemed to obtain a reasonable control model for seasonal �u, it is of
interest to check how the EED procedure, using the parameters of the estimated

2Again the data were supplied by David Moriña. Only average monthly temperatures were
available so weekly proxies were constructed, to illustrate the ideas, by assuming the monthly
averages applied to each week of the month. Obviously di¤erent variants of temperature could
be investigated and indeed other covariates (e.g. social media indicators) be employed as well.
These issues are being looked at elsewhere.
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control model, would perform when applied to new data thought to be in control
and to other new data known to be from an outbreak. We therefore ran the
EED procedure (trained on 20011�2013) on data extracted from the years 2008
(control), 2009 (H1N1 outbreak) and 2010. We used pl and pu as in Section
4. Figure 5 plots the data. The year 2008 was a particularly mild year for �u
and cases peaked at about 50 which is half of the benchmark �gure of 100. In
contrast, 2009, with the arrival of H1N1, peaks at about 175. In addition, the
�u seems to have arrived early with extremely high values in late October and
early November. Weeks where an EED alert was issued are marked with red
squares, the warning weeks with orange triangles and all-clear with green circles.
In the top panel of Figure 5, the performance of the weather driven model is
shown while that of the dummy variable based procedure is shown in the lower
panel.
We can see that the weather based model declares no abnormal behaviour

for the �u year 2008=2009 but the Dummy variable model overreacts on sev-
eral occasions and declares false alarms. The H1N1 outbreak in 2009 is easily
detected early by both methods. Severely abnormal outbreaks will be detected
by most surveillance systems and the major problem is controlling the rate of
false alarms; in this regard, the use of, even a fairly crude, model with weather
covariates seems to be bene�cial.

6 Conclusions and Suggestions for FurtherWork

This paper has introduced a method of surveillance using deviations from prob-
abilistic forecasts. Deviations are measured by assessing the probability of ob-
served values relative to their forecasted distribution. It is shown that, when
the process under study may be modelled by a discrete Markov chain, only the
one-step ahead transition probabilities are required to implement the algorithm.
For low count dependent time series, we suggest using the INAR model class as
a control model and we note that the �rst-order transition matrices are readily
available. In a simulated environment, incorporating reasonably realistic sea-
sonality, the algorithm works well. It is not prone to excessive false alarms and
can detect easily deviations from the normal �u pattern.
In many practical applications such as the �u incidence data studied here, a

nonstationary version of the method needs to be implemented. To detect out-
breaks of new strains of the �u virus, only deviations from the normal seasonal
cycle are relevant. Thus, the search for a control model is further complicated
by the fact that the form of the nonstationarity (seasonality of �u patterns)
changes over time. This means that, in order to construct a successful control
model which is a useful syndromic predictor, relevant covariates that are them-
selves predictable need to be found. In the case of �u incidence, constructing
a successful control model is a challenging task in its own right and failure to
do so will result in excessive false alarms. One suggestion is to use temperature
data as a predictor of the timing of the seasonal �u pattern, and this idea seems
to be helpful in that weather patterns are themselves predictable and reasonable
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good predictors of normal seasonal �u. Clearly there is scope for a much more
detailed analysis of this problem.
An analysis of some regional data from Catalonia allowed control models to

be estimated using weekly observations on �u incidence and temperature, from
2010 � 2013. The estimated models were then used to monitor some earlier
data that included the 2009 H1N1 outbreak. Two forms of control model were
used to account for seasonality, one using the weather variable and the other
using �xed seasonal dummy variables. We found that both models, as expected,
identi�ed the H1N1 observations as an outbreak. For non outbreak weeks, the
dummy variable model had a tendency to declare false alarms more frequently
than the weather based one.
In the future, it would be interesting to investigate how such a monitoring

procedure might be integrated into existing real-time data bases, might operate
at the level of individual hospitals, say, as well as incorporating multivariate
and spatial dimensions.
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8 Appendix A

The algorithm needs to keep track of absolute time and time relative to the
decisions taken by the ROG rule. We use superscripts for relative time and
subscripts for absolute time. So, de�ne P it [�jFj ] to be the joint i-step ahead
forecast distribution at time t conditional on the information at time j, Fj , i.e.

P it [�jFj ] = P
�
Y it = ki; :::; Y

1
t�i+1 = k1jFj

�
: (8)

This notation allows for any number of joint distributions, i, to be evaluated at
time t, relative to conditioning information at any time j. Hence the associated
value of p of the observations yit; :::; y

1
t�i+1 is

p =
1X

ki=yit

:::
1X

k1=y1t�i+1

P
�
Y it = ki; :::; Y

1
t�i+1 = k1jFj

�
Since the joint probability tends to zero as i gets large we need to adjust p. For
example, we could just use a simple Bonferonni style modi�cation and rede�ne
p = p � i to compare with pl and pu. Assume we have an ROG rule.
The numerical requirements for the algorithm are values for i, j and t. To

initialise the AM procedure, use the information in Fj , j = 0, set i = s = 1 and
t = 0. The Alert monitor is then:
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AM 1 Time moves on t = t+ 1 and a new observation yst arrives

AM 2 Evaluate P st [�jFt�s], the joint s-step ahead forecast distribution condi-
tional on Ft�s using (8). Compute p using P st [�jFt�s] for the known
observations y1t�s+1 up to y

s
t .

AM 3 Determine the outcome of the ROG rule using p. Then

If R Declare an alert. Go to CM 1 using r = 1 and the current t, s
If O Set s = s+ 1 and go back to AM 1
If G Set s = 1 and go back to AM 1

The Clear Monitor receives the alert time t, the current good information
set Ft�s and r = 1 from the Alert Monitor. The Clear monitor is then:

CM 1 Time moves on t = t+ 1 and a new observation yrt arrives.

CM 2 Evaluate P rt [�jFt�s], the joint r-step ahead forecast distribution after the
alert at t conditional on the Ft�s as in (8). Compute p using P rt [�jFt�s]
for the known values y1t�r+1 up to y

r
t .

CM 3 Determine the outcome of the ROG rule using the p. Then

If R Continue alert, set r = 1 and go to CM 1
If O Set r = r + 1 and go to CM 1
If G Declare all-clear and go to AM 1 using s = 1 and the current time t.

The Clear Monitor passes back the absolute time t, current good informa-
tion Ft and s = 1 to the Alert Monitor. The enhanced algorithm monitors
inde�nitely and switches between states as required.

9 Appendix B

We implicitly use the Markov property of the model with just one lag through-
out.
To �x ideas set k = 3. Using the Markov property and summing out the 2

intervening variables, the usual 3 step ahead forecast is given by

P [Yt+3 = st+3jYt = yt]

=
1X
s2=0

Pt+3[Yt+3 = st+3jYt+2 = s2]
1X
s1=0

Pt+2[Yt+2 = s2jYt+1 = s1]Pt+1[Yt+1 = s1jYt = yt]

= Pt+3Pt+2Pt+1[st+3; yt]

= P3[st+3; yt] if stationary (9)
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Similarly,

P [Yt+3 = st+3; Yt+2 = st+2jYt = yt]

= Pt+3[Yt+3 = st+3jYt+2 = st+2]
1X
s1=0

Pt+2[Yt+2 = st+2jYt+1 = s1]Pt+1[Yt+1 = s1jYt = yt]

= Pt+3[st+3; st+2]Pt+2Pt+1[st+2; yt]

= P[st+3; st+2]P
2[st+2; yt] if stationary

Finally,

P [Yt+3 = st+3; Yt+2 = st+2; Yt+1 = st+1jYt = yt]
= Pt+3[Yt+3 = st+3jYt+2 = st+2]Pt+2[Yt+2 = st+2jYt+1 = st+1]Pt+1[Yt+1 = st+1jYt = yt]
= Pt+3[st+3; st+2]Pt+2[st+2; st+1]Pt+1[st+1; yt]

= P[st+3; st+2]P[st+2; st+1]P[st+1; yt] if stationary

The generalisation to k-steps is immediate, setting products of probabilities of
the form

Q0
j=1 to unity, we get

P [Yt+k = st+k; :::; Yt+k�i = st+k�ijYt = yt]

=

iY
j=1

Pt+j [st+k�j+1; st+k�j ]:Pt+k�i::::Pt+1[st+k�i; yt]

=

iY
j=1

P[st+k�j+1; st+k�j ]:P
k�i[st+k�i; yt] if stationary

for i = 0; :::; (k � 1). Setting i = (k � 1) gives the usual joint k-step ahead
forecast distributions

P [Yt+k = st+k; :::; Yt+1 = st+1jYt = yt]

=
k�1Y
j=0

Pt+j [Yt+k�j = st+k�j jYt+k�j�1 = st+k�j�1]

=
k�1Y
j=0

P [Yt+k�j = st+k�j jYt+k�j�1 = st+k�j�1] if stationary

using the de�nition of Pt[i; j] = Pt [ijj]. Similarly, setting i = 0 gives the mar-
ginal k-step-ahead forecast distributions

P [Yt+k = st+kjYt = yt] = Pt+k:::::Pt+1[st+k; yt]

= Pk[st+k; yt] if stationary

Given a joint forecast distribution and "future" observations fyt+1; :::; yt+kg ;
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we can compute p as usual, e.g.

p = P [Yt+k � yt+k; :::; Yt+1 � yt+1jYt = yt]

=
1X

s3=yt+k

:::
1X

s1=yt+1

P [Yt+k = st+k; :::; Yt+1 = st+1jYt = yt]

=
1X

s3=yt+k

:::
1X

s1=yt+1

k�1Y
j=0

P [Yt+k�j = st+k�j jYt+k�j�1 = st+k�j�1]

These formulae show that, for Markov chains, all the calculations required
by the monitoring algorithm may be computed for any system where the matrix
of �rst-order transition probabilities Pt is available.
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10 Diagrams
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