
Multiphysics Computational Modelling of High-Speed

Partially-Rarefied Flows

by
Simone Colonia

Supervisors :
Rene Steijl

Geroge Barakos

School of Engineering - University of Liverpool

September 2015



Abstract

Hypersonic flows of practical importance often involve flow fields having continuum and rarefied re-

gions. It is well known that Boltzmann equation based methods can provide more physically accurate

results in flows having rarefied and non-equilibrium regions than continuum flow models. However, these

methods are extremely computational expensive in near-equilibrium regions, which prohibits their appli-

cation to practical problems with complex geometries and large domains where continuum and rarefied

regions coexist. On the other hand, Navier-Stokes (or Euler) based methods are computationally efficient

in simulating a wide variety of flow problems, but the use of continuum theories for the flow problems

involving rarefied gas or very small length scales produces inaccurate results due to the breakdown of

the continuum assumption and occurrence of strong thermal non-equilibrium. A practical approach for

solving flow fields having continuum to rarefied regions is to develop numerical methods combining ap-

proaches able to compute the continuum regime and/or the rarefied (or thermal non-equilibrium) regime.

The aim of this thesis is to investigate and develop new methods for the calculation of hypersonic flow

fields that contain both continuum and rarefied flow regions.

The first part of the work is dedicated to the continuum regime. Among the different numerical invis-

cid flux functions available in the literature, the AUSM-family has been shown to be capable of solving to

a good accuracy flow fields at a wide range of Mach regime including high-speed flows. For this reason an

implicit formulation of the AUSM+ and AUSM+up schemes, with a Jacobian defined fully analytically,

has been implemented in the Helicopter Multi-Block CFD code (HMB2), developed at the University of

Liverpool, to predict continuum high-speed flow. The original form of the schemes lead to the presence

of different branches in the computational algorithm for the Jacobian since do not guarantee the fluxes

to be continuously differenciable functions of the primitive variables. Thus, a novel formulation of the
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AUSM+ and AUSM+up schemes is proposed in chapter 2. Here, a blending is introduced by means of

parametric sigmoidal functions at the points of discontinuity in the schemes formulations. Predictions

for wide range of test cases obtained employing the proposed formulation are compared with results

available in the literature in chapter 3 to show that the reliability of the schemes has been preserved in

the proposed formulation.

Later on, the work focuses on partially-rarefied high-speed flows. At the University of Liverpool, this

kind of flows are simulated using the hybrid approach available in the Multi-Physics Code (MΦC) where

a discrete velocity method for kinetic Boltzmann equations is coupled with a traditional Navier-Stokes

solver. Firstly, the discrete velocity method has been improved with the implementation of kinetic mod-

els for diatomic gases in the framework. A validation of the correctness of the implemented models is

discussed in chapter 6. However, employing a discrete velocity method in hybrid simulation leads to high

computational and memory cost. In this context, gas-kinetic schemes have been identified by the author,

in the related literature, as efficient approaches, relative to discrete velocity methods, capable of mod-

elling complex gas flows with moderate rarefaction effects but with significant thermal non-equilibrium.

Thus, two gas-kinetic schemes, analytically defined on the basis of the Chapman-Enskog expansion of

non-dimensional Shakhov and Rykov models, have been proposed in chapter 5. Compared with similar

gas-kinetic schemes available in the literature, the presented schemes differ in the approach employed to

evaluate the terms of Chapman-Enskog solutions and in the kinetic models used as mathematical foun-

dations of the schemes. In chapters 6 and 7 the scheme is tested for various cases and Mach numbers,

including complex 3D flows, proving to be a viable way to improve the performance of hybrid simulations,

maintaining an acceptable level of reliability, if used in place of more complex methods for weakly rarefied

flows. Finally, chapter 8 includes a summary of the findings as well as suggestions for future works.
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Chapter 1

Introduction

1.1 Motivation

Until its last flight in 2011, the Space Shuttle has been the only manned lifting body re-entry vehicle,

while among ballistic re-entry capsules the Russian Soyuz, whose program started in the late 1960’s, and

the Chinese Shenzhou, from early 2000’s, are still operational. However, in the United States, works on

unmanned hypersonic and re-entry vehicles has continued since the early 2000’s with recent examples

being the Boeing X-37 Orbital Test Vehicle (OTV) and X-51 Waverider still under development. More-

over, in these years, the NASA Orion Multi-Purpose Crew Vehicle (MPCV) and the SpaceX Dragon

V2 spacecraft are being developed with the intend to facilitate space human exploration as well as to

provide means to deliver or retrieve crews to or from the International Space Station (ISS), mission at

the moment accomplished by the Soyuz. On the European front, at the beginning of 2015, the European

Space Agency (ESA) has successfully launched the Intermediate eXperimental re-entry Vehicle (IXV) to

validate European reusable lifting body technologies.

Regarding the United Kingdom, nowadays an important ongoing project sees the country as primary

investor. The program is led by Reaction Engines Limited and it aims to develop a single-stage-to-orbit

space-plane named Skylon and its engine SABRE, a combined air-breathing rocket propulsion system.

In July 2013 the British government pledged 60m to support the production of a full-scale prototype of

the SABRE engine.

Development of new hypersonic and re-entry vehicles demands accurate predictions of pressure, heat

flux and shear stress distributions along the entire vehicle and across all possible flight environments.
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Indeed, these quantities define the aerothermodynamic performance of the vehicle necessary to design

the structure as well as the navigation, control and thermal protection systems.

A gas is composed of atoms and molecules in continuous motion colliding with each other. Molecules

in a gas contain translational, rotational and vibrtional energy (as well as chemical and electrical energy)

and an important aspect in modelling hypersonic flows involves predicting the energy transfer between

these different modes. When perturbed, the molecular collisions in the gas change the macroscopic quan-

tities and push the flow towards local thermodynamic equilibrium 1. However, a redistribution of energy

among the internal degrees of freedom requires a certain number of molecular collisions and thus a char-

acteristic time depending on temperature and density of the gas. If a very large amount of collisions take

place over a change in the state of the gas, the flow energy is instantaneously distributed equally among

all modes and the fluid can be considered continuum. On the other hand, if very few collisions occur,

significant non-equilibrium can take place such that the flow must be considered rarefied.

The Navier-Stokes equations (NS) provide the conventional mathematical model to represent at

macroscopic level a continuum fluid. However, the conservation equations do not form a determinate

set unless it is possible to define a constitutive equation for the fluid which links the shear stress tensor

and the deformation of the fluid. When the gradients of the macroscopic variables become so steep that

their length scale is of the same order as the average distance travelled by molecules between collisions,

the number of impacts is not enough to drive the fluid towards a local thermodynamic equilibrium. At

these conditions the flow can no longer be considered a continuum and the transport terms in the Navier-

Stokes equations fail since the constitutive relation is not valid. The mathematical model at molecular

level is the Boltzmann equation (BTE) [11] which recognizes the particle structure of the gas as a system

of n discrete molecules and is valid in the whole range of Knudsen numbers [12]. The Boltzmann equation

describes the behaviour of a gas by a distribution function representing the probability of particles with

certain position and particle-velocity at time t. The macroscopic quantities at each position at time t

are given by the moments of the distribution function in the velocity, or phase, space, a Cartesian space

having the particle-velocity components as coordinates.

1over the time scale of interest all particle degrees of freedom are in equilibrium with each other and can be described
by a single temperature.
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The parameter that is generally employed to describe the degree of rarefaction in a flow is the Knudsen

number, Kn.

Kn =
λ∞
Lref

. (1.1)

Indeed, the latter represents the ratio between the mean-free-path 2 (λ∞) and a reference length (Lref )

of the problem. Locally it can be expressed by means of local mean-free-path and gradients’ scale as

KnQ =
λ

Q

∣∣∣∣dQdl
∣∣∣∣ (1.2)

where Q represents a generic flow quantity. As Kn → 0 a sufficiently large amount of collisions take

Figure 1.1: The Knudsen number limits on the mathematical models.

place so that even in presence of a perturbation the particles distribution function presents only a small

departure from the equilibrium Maxwellian distribution. At this condition, the Navier-Stokes equations

can be obtained as hydrodynamic limit of the Boltzmann equation [13]. In contrast, when Kn → ∞,

the gas particles experience very few collisions when perturbed and the velocity distribution function is

far from the equilibrium Maxwellian. The traditional requirement for the Navier-Stokes equations to be

valid is that the Knudsen number should be less than 0.05.

As can be seen from the example in figure 1.2 for the Orion and Apollo re-entry capsules, hypersonic

vehicles experience flow fields that can range from being completely free molecular to continuum. At

very high altitudes (90Km and up) the flow around these vehicles can be considered entirely rarefied

whereas at low altitudes (70Km or below) the flow field could be considered predominantly continuum.

At intermediate altitudes, the flow around hypersonic aircraft can be characterised as mainly continuum

with localised areas, generated by the rapid expansion in the wake of the vehicle as well as by strong

2The distance travelled by a particle between successive collisions.
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Figure 1.2: Knudsen number as a function of the altitude for the Orion and Apollo re-entry vehicles,
from [1].

gradients in shock waves and boundary layers, that display rarefaction effects.

Moreover, it is well known that, due to the high free stream enthalpies and steep flow field gradients,

hypersonic flows may display different forms of non-equilibrium processes. At low temperatures (< 800K)

air can be modelled as a mixture of calorically perfect gases having constant specific heats since only

translational and rotational modes are fully excited; above 800K the specific heats become functions of the

temperature due to the gradual excitation of the vibrational degrees of freedom. As the air temperature

increases to 2500K also chemical reactions occur. The classical continuum approach to model flows in

chemical non-equilibrium employs N species continuity equations (where N is the number of species

considered), 3 momentum equations, and 3 energy equations describing the conservation of vibrational,

electronic, and total energies [14, 15]. Alternatively, a reduced two-temperature model can be obtained

by combining the equations for vibrational energy conservation and electronic energy conservation into

a single relation for vibrational-electronic energy conservation. The latter approximation may be invalid

in the viscous boundary layer adjacent to the wall (where the physically correct boundary conditions

on the vibrational and electronic energies are inconsistent with a single temperature) but it allows for a
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computationally more appealing formulation [14]. Regarding the reaction rates required by the source

terms of the continuity equations, several chemical kinetic models, based on Arrhenius formulations of

the reaction rates, for air are available in the literature [16]. In contrast, rarefied simulations of flows

using the BTE can intrinsically account for the effects of both chemical and thermal non-equilibrium,

provided the gas components are modeled with the appropriate degrees of freedom [17].

Thus, the development of present and future hypersonic and re-entry vehicles requires predictions for

a wide range of conditions and flow regimes. Wind tunnel facilities can not reproduce realistic simulations

of many of these flow conditions and regimes, and for this reason numerical approaches are becoming

more and more relevant in the design of high-speed vehicles. As an example, the aerodynamic design

of the Space Shuttle was based on experimental data from cold hypersonic wind tunnels and, since high

temperature effects could not be modelled properly, they were extrapolated to flight condition using

simplified models. This led in the first flight of the STS-1 to an unpredicted increase in the nose-up

pitching moment that almost caused the loss of the aircraft.

In this context, the purpose of the current dissertation is to deliver an improvement among the

current available numerical approaches for partially-rarefied, high-speed, flows involving temperatures

at which translational and rotational modes can be considered fully excited and vibrational-chemical

non-equilibrium does not occur. This kind of flows are often encountered by hypersonic vehicles, for

commercial and defense applications, in their flight path.
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1.2 Literature Survey About Methods for Partially-Rarefied Flow

Because the Navier-Stokes equations are an accurate model of the flow for Kn < 0.05 [12] traditional

continuum computational fluid dynamics models can simulate gas flows only if their Knudsen number

is below this limit. On the other hand the mathematical model at molecular level is the Boltzmann

equation and for flow fields where strong rarefaction effects occur the Direct Simulation Monte Carlo

method (DSMC) [17, 18, 19] is typically employed to statistically estimate the solution of the BTE.

Alternatively a discrete velocity method (DVM) [20, 21, 22, 23, 24] can be used to solve a kinetic model

approximation of the BTE such as the Bhatnagar-Gross-Krook (BGK) model [25], the Shakhov model

[26] and Ellipsoidal-Statistical (ES) model [27] for monoatomic gases or the Rykov model [28] and ES

model [29] for diatomic gases with rotational non-equilibrium. Recently an alternative method has been

presented in [30] where inelastic collisions are the same as in the Rykov model, but elastic collisions are

modelled by the Boltzmann collision operator for monoatomic gases.

Numerical approaches based on the BTE can represent well any regime, but incur a cost in computa-

tional time and memory that is considerably higher than continuum flows methods by several orders of

magnitude, due to the larger number of degrees of freedom that the BTE involves, and become rapidly

too expensive, often impossible, as the Knudsen number becomes smaller. For this reason, various nu-

merical methods for partially-rarefied flows have been proposed in the literature.

For almost continuum flows, to overcome the limitation of the NS equations the standard procedure

is to use slip velocity and temperature jump boundary conditions [31, 32, 33], but the constants which

are involved are hard to identify and their validity is still questionable.

It is well known that in the limit of a continuum flow the BTE leads to the Euler or the NS equations

when a zeroth or first order Chapman-Enskog (CE) expansion [34] is employed to represent the distribu-

tion function, respectively [13]. Different sets of equations, called Burnett and Super-Burnett equations

are obtained when higher order CE expansions are used [35]. The Burnett equations provide greater

accuracy than the NS equations for shock structures [36]. However, this improvement is achieved only

for cases in which the NS equations still represent an adequate model and the Burnett and super-Burnett
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equations exhibit also instabilities in transient processes so that small wavelength fluctuations could blow

up in time [37].

Another particular class of solutions of the BTE is the one obtained employing a moment method.

As example the Grad’s 13-moment equations is a set of moments of the BTE in which closure is achieved

assuming a Grad-type polynomial series expansions form for the distribution function [38]. In [39] the

so-called regularized Grads 13-moment equations are proposed employing a different closure method to

add some terms of Super-Burnett order to the usual 13 equations. The latter has been extensively em-

ployed in [40] to successfully predict shock wave structures in a monoatomic gas for a wide range of Mach

numbers. Alternatively, moment equations can be generated employing the maximum-entropy moment

closures as addressed in [41] for one-dimensional normal shock structures in monoatomic gases.

However, the most commonly used approach to simulate partially-rarefied flows is probably repre-

sented by hybrid techniques. Firstly introduced in [42, 43, 44, 45], these methods propose to employ the

expensive approach only where strictly required, leaving the rest of the domain to a traditional continuum

approach. An extensive discussion about this kind of methods is presented in section 1.2.1.

A different but similarly successful approach is the Unified Gas-Kinetic Scheme (UGKS) presented in

[46, 47]. The UGKS uses a finite-volume method where the numerical fluxes are based on the solution

of the Shakhov model for a monoatomic gas, or the Rykov model for a diatomic gas with rotational

non-equilibrium. Its particular formulation allows the scheme to simulate flows in both rarefied and

continuum regimes. The latter will be discussed in more detail in section 1.2.2.

1.2.1 Hybrid Methods

To simulate flow fields where continuum and rarefied regimes coexist, hybrid techniques have been

introduced in [42, 43, 44, 45]. In these methods, the expensive approach is employed only in regions of

the domain where rarefaction effects become predominant and it is coupled with a finite-volume scheme

for the NS equations used where the flow can be considered continuum.

A first main challenge of these approaches is how to accurately identify the different regions. The
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following continuum breakdown parameter for expanding flows has been proposed firstly in [48]

P =M

√
πγ

8

∣∣∣∣dpds
∣∣∣∣ (1.3)

where s is the curvilinear coordinate along the streamline and a value P of about 0.05 has been indicated

for the limit of the continuum approach. Subsequently, in [49] an expensive numerical investigation of one-

dimensional normal shock waves and two-dimensional bow shocks comparing DSMC and NS results has

been carried out with the purpose of determining an appropriate and more general breakdown parameter

represented by the local Knudsen number (1.2). This led in [50] to state the following breakdown criteria

Knmax = max(Knρ,KnV ,KnT ) > 0.05 (1.4)

where the gradients of all the macroscopic variables are considered. In [51] it has been noticed that, when

rotational non-equilibrium is considered, equation (1.4) fails to predict the position of the interfaces

between continuum and rarefied domains in the post-shock region where the fluid is still in thermal

non-equilibrium. Thus, in [52] a new criterion has been suggested to also consider the latter effect

Knmax = max(Knρ,KnV ,KnT , 5×
Tt − Tr
Tr

) > 0.05; (1.5)

the new parameter switches on in a compression region where TTRA > TROT more than 1%. Finally in

[53] an improvement on the results has been noticed when also the magnitude of the energy transferred

by the rotation-translation relaxation processes compared with the total amount of energy stored in

rotational energy was taken into account. This, led to the following revised version of the breakdown

criteria

Knmax = max(Knρ,KnV ,KnT ,
|Tt − Tr|

2Tr
) > 0.05. (1.6)

Since vibrational-translational relaxation is much slower than rotational-translational relaxation, no ad-

ditional breakdown parameter is needed when also vibrational excitation models are considered [54].

While the most widely used breakdown criteria remains to evaluate the set of local Knudsen numbers

based on the characteristic length scales for the local macroscopic quantities shown in equations (1.5)

and (1.6) [2, 55, 56, 54, 57]; other more elaborated criteria such as the ratio between the heat flux and
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the equilibrium energy flux [58], the residual of the Grad13 moments equations 3 [43] and an indicator

function only of density, temperature, heat flux and stress tensor [59] have been proposed.

In hybrid techniques the coupling between the two different simulation methods is achieved by means

of an exchange of information among the parts of the domain where they are employed. In recent works,

this has been achieved exchanging, between the two solvers, numerical fluxes at the interface, figure 1.3a,

or flow state variables throughout an overlap region, figure 1.3b,[2, 55, 56, 54]. Alternatively, a buffer re-

(a) State-based coupling (b) Flux-based coupling

Figure 1.3: Coupling techniques, adapted from [2].

gion where the two models are blended at equation level has been employed [58, 57, 59]. The flux-coupling

approach when used to couple a continuum solver and the DSMC suffers from a main disadvantage that

reduce its efficiency as reported in [56] and [2]. This is due to the statistical scatter, that affect DSMC

results. Indeed, in [60] the statistical error, E, in the flux quantities has been shown to scale as

Eflux ∼ Estate

Kn
(1.7)

meaning that the state-coupling is a preferable choice when the DSMC method is employed in the hybrid

approach. However, the scattering error also affects this approach and a sampling procedure is needed.

Different efforts have been done to reduce the statistical errors that affect the DSMC. Among them the

ones proposed in [61] and [62] have been used in the context of hybrid simulations.

3Moments of the BTE that correspond to mass, momentum, and energy conservation laws and moment equations for
heat flux and viscous stress tensor
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Regarding the macroscopic and microscopic numerical methods employed in a hybrid approach, dif-

ferent choices have been made. The most common and mature approach is to couple a DSMC and a

standard continuum solver [2, 56, 54, 57, 59] for which also vibrational non-equilibrium has been consid-

ered [1]. Nonetheless, alternative options have been explored such as in [58], in which a DVM for the

BGK model has been used instead of the DSMC, and [59], where a DVM for the ES model is employed

as mid-stage between DSMC and continuum solver. Furthermore, in [55] a direct numerical simulation of

the full collision term of the BTE has been coupled with the BGK-NS gas-kinetic scheme [63] (for further

information see section 1.2.2). A common aspect in all these works, except [1], is that, due to the choice

of the continuum approach, the interfaces between the two domain have to be placed where the flow is

close to thermal-equilibrium. In [1] a multitemperature continuum approach is employed to overcome

this limitation. Another hybrid method is the ’all particle’ hybrid scheme presented in [64, 65, 66], where

particles type methods are employed throughout the whole domain. This method can handle very strong

coupling between the two flow regimes and allows a simpler code development due the similarity between

continuum and rarefied simulation schemes. However, the latter has been considered not relevant for the

present work being more suitable for cases in which a mainly rarefied flow shows small continuum regions

due to the higher computational cost of the particle approach to the NS equations. Finally, the majority

of the works cited are focused on steady state simulations and only few works have successfully simulated

unsteady flows [67, 56, 68].

1.2.2 Gas-Kinetic Schemes, the BGK-NS Method and the Unified Gas-Kinetic Scheme

Upwind shock-capturing schemes for the numerical solution of the Euler equations can use two dif-

ferent methods to evaluate the numerical fluxes at the interface [69]. One is based on the method of

characteristics and solves a local Riemann problem, the other locally reconstructs a kinetic problem and

integrates the gas distribution function over the phase space. Indeed, the latter uses a conventional dis-

continuous reconstruction and a Chapman-Enskog expansions truncated at Euler of Navier-Stokes level

to model the two gas states on either side of an interface. For the NS equations the classical approach

estimates the inviscid fluxes employing a Riemann solver and the viscous fluxes with a central discreti-
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sation scheme while gas-kinetic schemes can evaluate both contributions as a single entity.

First examples of gas-kinetic schemes are the Equilibrium Flux Method (EFM) [70] and the Ki-

netic Flux Vector Splitting (KFVS) [71] based on the collisionless BTE. Due to this, the EFM and the

KFVS suffer a high dissipative behaviour as well as a high computational cost, relative to traditional

upwind-based schemes, since error and exponential functions arise from the half integrals of the interface

distribution function. This is due to the fact that both schemes split the flux vector according to the

sign of the particle velocity and thus taking moments of the distribution function in the velocity space

require the evaluation of left and right half integrals. To improve the efficiency, by avoiding error and ex-

ponential functions, the Kinetic Wave/Particle Splitting method (KWPS) has been developed in [72, 73]

combining both the particle and the wave propagation models 4 of fluid flows. However, the KWPS

is even more dissipative than the EFM and KFVS schemes. For this reason in an effort to reduce the

numerical dissipation, the modified EFM has been proposed [74].

During the same period, the BGK-NS method has been presented by Xu in [63, 75] where the update of

the conservative variables is obtained integrating the BGK equation to model the gas evolution process

more accurately. Since the BGK-NS method takes into account the particle collisions in the gas evolution

process, no modification to reduce the numerical dissipation are required in contrast to the EFM and no

shock instabilities are observed [76]. A general solution of the kinetic model equation, with an equilibrium

initial state, is employed to represent the velocity distribution function. It is known that the BGK model

recovers the incorrect Prandtl number in the continuum limit and for this reason a simple correction,

that consists in scaling the energy numerical flux, has been proposed by Xu [63]. The approach has

been often applied by Xu and co-workers [77, 7] also in the limiting case of a well-resolved flow when the

solution assumes a simplified form based on the CE expansion. In this case a multi-temperature BGK

model without [77] and with [7] excited rotational degrees of freedom, and more recently including also

vibrational degrees of freedom [78], has been used. The assumption of a well-resolved flow leads to a

simpler scheme but rules out discontinuities in the reconstructed distribution function and therefore it is

4In the particle propagation model the flux vector is splitted according to the sign of the particle velocity, while in the
wave propagation model the jump at the interface results into waves accordingly to the Riemann approach and the flux
vector is split into the respective contributions from each wave speed.
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valid only for relatively small perturbances from equilibrium. However, as suggested in [79] it is possible

to regularise the CE expansion in order to extend the validity of the approach. Recently a GKS has been

proposed in [80] where an analytical solutions of the BGK equation up to third order CE expansion,

which gives the Burnett equations, is used. Furthermore, based on previous theoretical works [81], recent

studies in [82, 83] employing the BGK-NS scheme showed how GKS methods can also improve simu-

lations of turbulent flows thanks to their multiscalar approach. In these works, a turbulent gas-kinetic

scheme is obtained by establishing a relation between the relaxation time of the employed kinetic model

and the turbulent quantities evaluated by means of a turbulence model. Similar improvements have been

observed also when a DVM is employed to study turbulent flows [84], however the latter results much

more expensive.

In [85] the BGK-NS method has been improved, resulting in the Unified Gas Kinetic Scheme (UGKS),

and then successfully employed with the Shakhov (S-UGKS) [46] and Rykov model (R-UGKS) [47]. The

UGKS also involves the update of the non-equilibrium distribution function and employs a discrete in-

tegration method in the phase space as well as a non-equilibrium initial distribution function, based on

the CE expansion of the kinetic model. This allows to extend the validity of the scheme towards rarefied

flow conditions.

Finally, it is important to notice that the required moments in velocity space and the complex formu-

lation make the BGK-NS and UGKS significantly more expensive than classical continuum flow methods

[86].
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1.3 Aim of the Thesis

The current project aim is to develop the numerical tools available at the CFD Laboratory of the Uni-

versity of Liverpool towards the simulation of high-speed flow and, in doing so, to deliver an improvement

among the current available numerical approaches to simulate flow fields encountered by hypersonic ve-

hicles in their flight path. Among them, the work focuses in particular on partially-rarefied, high-speed,

flows involving temperatures at which translational and rotational modes can be considered fully ex-

cited and vibrational-chemical non-equilibrium does not occur. To achieve the stated aim the following

objectives have been identified:

• improvement of the continuum methods employed at the CFD Laboratory with the implementation

of a numerical flux function reliable for high-speed flows;

• implementation and assessment of kinetic models for diatomic gases with translational and ro-

tational non-equilibrium to improve the discrete velocity method solver employed at the CFD

Laboratory to simulate rarefied flows;

• development and assessment of an alternative method, less expensive compared to the discrete

velocity method, to simulate partially-rarefied flows with significant translational and rotational

non-equilibrium;

• integration of the latter method in the hybrid solver, available at the CFD Laboratory, to be coupled

with the previously improved discrete velocity method to simulate partially-rarefied flows with high

translational and rotational non-equilibrium.

A further discussion of the stated aim and objectives can be found in the next section 1.4.
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1.4 Thesis Overview

At the CFD Laboratory of the University of Liverpool two Computational Fluid Dynamics codes

are available. The Helicopter Multi-Block (HMB2) CFD code is a continuum solver based on a finite

volume spatial discretisation and a fully un-factored time discretisation. The solver has been revised

and updated over many years and successfully employed in a wide range of fluid dynamics applications

including subsonic and transonic flows [87, 88, 89]. The code uses Roe’s or Osher’s schemes for the

evaluation of the inviscid fluxes. The Multi-Physics Code (MΦC) presented in [90, 91, 92], instead, is a

computational framework designed for simulations of complex flows, where different mathematical models

can be employed in different regions of the flow domain depending on the flow physics. The continuum

flow solver is based on the compressible NS equations, and a cell-centred block-structured finite-volume

method is employed using the AUSM+ and AUSM+up formulations proposed in chapter 2 for the inviscid

fluxes. For flows with strong rarefied effects, the framework includes Molecular Dynamics (MD) methods

as well as deterministic DVM for a range of kinetic Boltzmann equations. To couple continuum and

rarefied flow solvers both state and flux based approaches, see section 4.5 for further information, are

available in MΦC.

To develop a numerical method for high-speed partially-rarefied flows a reliable continuum solver is

an essential requirement. Thus, to improve the capability of the codes available at the CFD Laboratory

to predict high-speed flow, the first part of the project has been dedicated to the implicit implementation

of the AUSM+ and AUSM+up schemes [93, 94] with an analytically defined Jacobian. The latter, when

possible, is favoured over the numerical evaluation because more efficient. The AUSM-family has been

shown to be capable of solving to a good accuracy flow fields at a wide range of Mach regime including

high-speed flows [95, 96], but, in their original formulations, they do not guarantee the fluxes to be

continuously differentiable functions of the primitive variables. This would imply the presence of different

branches in the computational algorithm, increasing the computational cost, and reduced stability for

cases with complex flow transient or grid geometry. Thus, a novel formulation of the AUSM+ and

AUSM+up schemes is proposed in chapter 2, and published in the literature [97, 98], where a blending

14



is introduced by means of parametric sigmoidal functions at the points of discontinuity. Considering an

implicit implementation is important for the further development of the solver in the context of high-Mach

flows; implicit time marching approaches can relieve the restriction in time step due to the presence of stiff

source terms when chemically reacting flow are considered. For this work HMB2 has been employed and

an assessment of the proposed AUSM+ and AUSM+up schemes is presented in chapter 3. Afterwards,

the proposed schemes have been implemented also in MΦC.

Later on, the focus has been shifted entirely on MΦC in order to improve the capability of the

framework to simulate high-speed partially-rarefied flows in the context of hybrid approaches.

In MΦC a DVM solver is available to predict flows in rarefied conditions. At the beginning of the

project for non-continuum flow modelling, the Shakhov and ES models were included for monoatomic gas

flows. However, in rarefied gas flows at high velocities it is necessary to take into account the excitation

of the internal degrees of freedom. Thus, as a step towards realistic simulations, the framework has been

firstly improved with the addition of the Rykov model and an Ellipsoidal-Statistical (ES) model [29] for

diatomic gases with rotational non-equilibrium. Results employing these models can be found in chapter

6 and are part of two publications [99, 100].

A major drawback using a DVM in hybrid simulations is the computational and memory cost. Based

on the literature survey of related works, the author believes that a GKS can represent an efficient

methods, relative to DVM, capable of modelling complex diatomic gas flows with moderate rarefaction

effects but with significant rotational non-equilibrium and thus, when employed in the context of hybrid

simulation, it can extend the validity of the continuum formulation. For this reason, two GKS methods,

analytically-defined on the basis of the Chapman-Enskog (CE) expansion of non-dimensional Shakhov

and Rykov models, are proposed in chapter 5 to simulate weakly rarefied flows. The derivatives of the

equilibrium function and the time derivatives of the primitive variables are defined analytically employing

the compatibility condition of the kinetic model for the latter. In previous works from Xu and co-workers

[77, 7] similar gas-kinetic schemes are defined using the CE solution of the BGK model with rotational

non-equilibrium and the required derivatives are expressed in terms of Taylor series where the coefficient

are calculated by means of properties of the employed BGK model. Moreover, in the work of Xu et al. a
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correct constant Prandtl number in the continuum limit is obtained by rescaling the energy flux [63], while

in the present work a kinetic model involving a Prandtl number correction is directly employed to define

the GKS. As demonstrated in appendix H the Rykov model leads in the continuum limit to a variable

Prandtl number, depending on the collision number Zr and this should lead to more accurate results for

diatomic gases where thermal non-equilibrium effects are important. As shown in chapter 6 the proposed

GKS approaches are able to resolve shock structures with and without rotational non-equilibrium, in

contrast to traditional single-/multi-temperature NS approaches [15, 14], and are cheaper alternatives

to the DVM for a range of relevant flows. Thus, they can be a viable way to improve the performance

of hybrid simulations reducing the domain where more complex methods are required, maintaining an

acceptable level of reliability. The formulation as well as an assessment of the two schemes have been

published in the literature [100, 101, 102].

Finally, since for the development of a CFD solver it is important to guarantee the capability to

cope with practical and realistic applications; the proposed methods have been tested to predict flow

fields around waverider shapes in chapter 7. These geometries have been chosen due to their easy access,

methods to build own waverider shapes are available in the literature, and the renewed interest in these

shapes for high-velocity commercial and defense applications, as discussed in section 7.1.
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Chapter 2

Continuum Flows Solver - HMB2

In the context of the present project a fully analytical Jacobian of the AUSM+ and AUSM+up schemes

have been implemented in HMB2 in order to improve the capability of the solver to predict flow fields

over a large interval of Mach numbers including high-speed flows. The schemes are presented in the

current chapter and available in the following publications:

• Assessment of Implicit Implementation of the AUSM+ Method and the SSTModel for Viscous High-

Speed Flow. Colonia S., Steijl R. and Barakos G.N., 5th European Conference for Aeronautics and

Space Sciences, 1-5 July 2013, Munich (Germany).

• Implicit implementation of the AUSM+ and AUSM+up schemes. Colonia S., Steijl R. and Barakos

G.N., International Journal for Numerical Methods in Fluids, Volume 75, Issue 10, pages 687-712,

DOI: 10.1002/fld.3891.

2.1 Introduction

Computational fluid dynamics methods based on the Navier-Stokes equations have gained significant

prominence in recent years and have been used for a wide range of Mach numbers; however, a number of

challenges remain, including the derivation of accurate and robust numerical schemes for the convective

flux computation that are able to cope with a wide range of Mach numbers as well as turbulent flows.

In the context of this work, the CFD code developed at the University of Liverpool, HMB2, has

been employed and extended. This solver uses a finite-volume spatial discretisation [103] and a fully

un-factored implicit time discretisation with a GCG/ILU(0) linear solver. It has been used successfully
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for a wide range of aerospace applications including subsonic and transonic flows ( [87] and [88] ). The

code generally employs Roe’s or Osher’s schemes for the evaluation of the inviscid fluxes. In the context

of the present work, the AUSM+ and AUSM+up schemes have been implemented.

Nowadays, upwind flux functions have overcome the challenge to compute compressible flow phenom-

ena reliably and with reasonable accuracy, and several approximation procedures for solving the Riemann

problem have been proposed including the methods of Roe [104], Van Leer [105], HLLE [106], and AUSM

[93] amongst others. In order to solve the interface Riemann problem, the left and the right states at

the surfaces of each finite volume need to be extrapolated from the centroid. The most common choice

is the Monotone Upstream-Centred Scheme for Conservation Laws, MUSCL, introduced by Van Leer in

[107]. Another interpolation technique that has been successfully used in the literature for high-speed

flows ( [108], [109] ) is the Spekreijse’s interpolation introduced in [110]. As a limiter for both schemes

the Van Albada limiter [111] seems to be the most popular.

Among the different Riemann solvers the AUSM-family has been shown to be capable of solving to

a good accuracy flow fields at a wide range of Mach regime. The original AUSM scheme was introduced

by M.-S. Liou in [93] and then improved in [112] obtaining the AUSM+. The aim of the AUSM-family

was to combine the desirable attributes of the flux difference (Roe) and flux vector splitting (Van Leer)

methods. The basic idea is the recognition of the convection and acoustic waves as two physically distinct

processes. Recently, Liou [94] extended the AUSM+-family to solve flows at all speed regimes with the

AUSM+up scheme. In the low Mach number regime the speed of sound and the convective speed are

quite different. This results in an large amount of numerical dissipation which affects the solution along

with possible slowing or stalling of the convergence. To avoid both problems, Liou introduced a rescaling

factor [94], so that the resulting sound and convective speeds become of equal order.

Various explicit and implicit schemes have been proposed to advance in time the system of ordinary

differential equations, obtained by the spatial discretisation. In an explicit method, the solution at the

time step n+1 depends only on the known solution at the previous time step. In the implicit schemes, the

new solution does not only depend on the known solution at the previous time step, but also on a coupling

between the cell variables at the new time step. Thus, an implicit approach, after the linearisation of the
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residual at the new time step, results in a large system of linear equations which as the time step tends

to infinity results in the standard Newton’s method. A system of linear equations needs to be solved,

and this task can be accomplished using direct or iterative methods. The former are based on the exact

inversion of the system sparse matrix by means of the Gaussian elimination, as can be found in [113],

or a direct sparse matrix method, like the Boeing Real Sparse Library [114]. Although the recovery of

the standard Newton’s method, and of the quadratic convergence when the Jacobian is well defined, was

demonstrated on both structured and unstructured grids [113], [115], their application in complex three

dimensional problems requires an excessively high computational effort. Thus, in these cases the linear

system has to be solved using an iterative matrix inversion methodology. Different iterative methods

have been proposed in the literature. Among them there are the Alternating Direction Implicit (ADI)

scheme [116], the line Jacobi scheme [117], the Lower-Upper Symmetric Gauss-Seidel (LU-SGS) scheme

[118], and Newton-Krylov methods. The first four methods are based on splitting the implicit operator

into a sum or products of decoupled parts, that are easily inverted. For this reason they introduce a fac-

torisation error and are less implicit (the coupling between the grid point variables at the new time step is

not considered overall but only along particular directions). The Newton-Krylov methods, instead, treat

the system of linear equation in a more global way, allowing a fully un-factored approach in which the

new time level is introduced simultaneously for all the cells. Obviously, this leads to increased computa-

tional effort. Among the Krylov methods two examples are the Generalised Conjugate Gradient (GCG)

methods introduced in [119] and [120, 121] and the Generalised Minimal Residual (GMRES) method

introduced in [122]. It has to be noted that the efficiency of Krylov-subspace methods depends strongly

on the pre-conditioning operation. The purpose of the pre-conditioning is to cluster the eigenvalues of

the system matrix around unity. One of the most successful pre-conditioners is the Incomplete Lower

Upper factorisation method, [123], with different levels of fill-in (commonly zero, ILU(0)). Until the

early nineties memory intensive methods like the Newton’s method were severely restricted by computer

technology. One of the first attempts to employ a Newton method solver to high-speed flows is reported

in [108] and [109]. The work follows some of the ideas developed in [113] for subsonic and transonic flows,

one in particular was to add a damping term to the Jacobian matrix diagonal to alleviate the start-up
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problems of the Newton’s method. In both these line of works [108, 109] and [113] a direct method has

been used, but in following works, [124] and [125] respectively, iterative methods have been taken into

account with an ILU(0) factorisation.

For the implicit formulation, the derivatives of the interface fluxes are needed. In [126], [127] and [128]

numerical Jacobians for the AUSM+, AUSM+up and AUSMPW+ schemes, respectively, have been cho-

sen and successfully employed for low Mach, subsonic, transonic and hypersonic flows. However, when

possible, an analytical Jacobian is preferred because it is more efficient. Analytical Jacobians for the

AUSM and AUSM+ schemes were studied in [129] and [130] respectively. In [129] a comparative study of

analytical Jacobians for different schemes is shown, and the AUSM Jacobian failed to converge, though

no information was given about its derivation. In [130], instead, a complete study of the derivation of a

simplified analytical Jacobian for the AUSM+ was presented. Moreover, the latter has been successfully

applied in a point implicit Runge-Kutta scheme to solve subsonic and transonic flows. Since this work

was not focused on high-speed cases no discussion about the impact of the simplifications on the solution

of these flow fields was reported.
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2.2 Conservation Laws

Fluid mechanics is based on the conservation laws for mass, momentum, and energy. These laws can

be stated in the integral form, applicable to an extended region, or in the differential form, applicable at

a point. In the integral form, the expressions of the laws depend on whether they relate to a material

volume, which consists of the same fluid particles and whose bounding surface moves with the fluid, or

to a fixed volume field in space. The system of the aforementioned laws, stated in the integral form and

related to a material volume, can be written as follow

d

dt

∫∫∫
V
U dV+

∫∫
S
Pj nj dS =

∫∫
S
Gj dS+

∫∫∫
V
Q dV (2.1)

where

U =

 ρ
ρui
E

 Pj =

 0
pδij
ρuj

 Gj =

 0
σij

σijui + k dT
dxj

 Q =

 0
ρfvol, i

ρfvol, j uj

 . (2.2)

It is often useful to relate the integral form to a fixed volume field in space. This can be done by

applying the Reynolds transport theorem to the system (2.1)

d

dt

∫∫∫
V
U dV+

∫∫
S
Fjnj dS =

∫∫
S
Gj dS+

∫∫∫
V
Q dV (2.3)

with

Fj = Uuj +Pj . (2.4)

Since the volume that appears in equations (2.3) does not depend on time, it is possible to reverse

the operations of derivation and integration. Then the surface integrals appearing in these equations can

be transformed in volume integrals using the Gauss divergence theorem. Thus, equations (2.3) can be

reduced to another form which does relate flow properties at a given point, the differential form

∂

∂t
U+

∂

∂xj
Fj =

∂

∂xj
Gj +Q. (2.5)

System (2.5) is called conservation form of the fundamental equations. A non-conservation form, i.e. in

terms of the substantial derivative, can be also given as follows

Dρ

Dt
+ ρ▽⃗ ·V = 0

ρ
DV

Dt
= ρFvol + ▽⃗ · ¯̄σ −▽p

ρ
De

Dt
= ρFvol ·V+ ▽⃗ · (¯̄σ ·V)−▽ · (pV) + k▽2T

. (2.6)
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Both forms are equally valid statements of the fundamental principles. In order to be properly formulated

the problem is subject to initial and boundary conditions.

The relation between the stress and the velocity of deformation in a continuum is called a constitutive

equation and it depends on the nature of the fluid. The velocity gradient tensor can be decomposed

into symmetric and antisymmetric parts. The antisymmetric part represents fluid rotation without

deformation, and can not by itself generate stress. Thus, stresses are generated by the strain rate tensor

(the symmetric part of the velocity gradient tensor). Assuming a linear relation, that the medium is

isotropic and that the stress tensor is symmetric the following relation can be derived

σij = λ′(▽ ·V)δij + 2µ(symm▽ Vij) (2.7)

where (symm▽ Vij) is the symmetric part of the velocity gradient tensor and µ and λ′ are the first and

second viscosity coefficients. A fluid obeying equation (2.7) is called a Newtonian fluid. The momentum

equations written for a Newtonian fluid are the so-called Navier -Stokes equations[
∂(ρui)

∂t
+
∂(ρuiuj)

∂xj

]
= ρfvol, i −

∂p

∂xi
+ µ

∂2ui
∂xj∂xj

+ (λ′ + µ)
∂

∂xi

[
∂uj
∂xj

]
(2.8)

if we consider an inviscid fluid, we obtain the Euler equations[
∂(ρui)

∂t
+
∂(ρuiuj)

∂xj

]
= ρfvol, i −

∂p

∂xi
. (2.9)

In HMB2, the Sutherland’s law [131] is employed for the viscosity

µ = µref

(
T

Tref

)3/2
Tref + TS
T + TS

(2.10)

where, T is the temperature of the fluid, Tref is a reference temperature (Tref = 273.15K), µref is the

viscosity at that reference temperature (µref = 1.716 ·10−5kg/ms) and TS is the Sutherland temperature

(TS = 110.4K). The heat flux vector, qi, is calculated using Fourier’s Law

qi = −k ∂T
∂xi

(2.11)

where k is the heat transfer coefficient. Finally, an ideal gas approximation is used, with the adiabatic

index set to γ = 1.4 and R the specific gas constant as R = cp − cv = 287.058Jkg−1K−1.

22



2.3 Turbulence modelling

By time-averaging the mass, momentum and energy equations, the Reynolds-Averaged Navier-Stokes

(RANS) equations can be obtained. While the continuity equation remains the same since it is linear with

respect to velocity, extra terms appear in the momentum and energy equations due to the non-linearity

of the convection term. The time-averaged momentum equation then takes the form

∂ (ρui)

∂t
+
∂ (ρuiuj)

∂xj
= ρfvol,i −

∂p

∂xi
+

∂

∂xj

(
τij + τRij

)
(2.12)

while for the energy equation (Equation 2.13)

∂ρE

∂t
+

∂

∂xj
[uj (ρE + p)]− ∂

∂xj

(
ui
(
τij + τRij

)
− qj

)
= 0 (2.13)

where the average symbol has been dropped for simplicity. The extra terms, τRij , are called the Reynolds

Stresses and are defined in tensor notation as being equivalent to −ρu′iu′j . At this point, the main problem

in turbulence modelling involves calculating the Reynolds stresses, from the known mean quantities. One

common approach is the approximation first introduced by Boussinesq. The latter is based on an analogy

between viscous and Reynolds stresses and expresses the Reynolds stresses as a product of the eddy

viscosity (µt) and the velocity gradient. Thus, the Boussinesq’s eddy viscosity hypothesis states that

−ρu′iu′j = µt

[(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
δij
∂uk
∂xk

]
− 2

3
ρδijk (2.14)

with k representing the specific kinetic energy of the fluctuations and given by

k ≡ u′iu
′
i

2
. (2.15)

The eddy viscosity, µt, is a scalar and consequently the Reynolds stress components are linearly propor-

tional to the mean strain-rate tensor. To compute µt, further modelling is required and it is at this point

that turbulence models come into play. Turbulence models are classified into categories based on the num-

ber of transport equations required to calculate the eddy viscosity. Among the various turbulence models

available in the literature, HMB2 employs one-equation models, such as the Spalart-Allmaras (SA)[132]

model, and two-equation models, such as the k − ω[133], k − ω baseline (BSL) and shear-stress trans-

port (SST)[134] models.
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2.4 Fully Implicit Formulation for a Steady Case

In the Helicopter Multi-Block (HMB2) code, the Navier-Stokes (NS) equations are discretised using

a cell-centred finite-volume approach. The computational domain is divided into a finite number of non-

overlapping control-volumes, and the governing equations are applied in integral-conservation form at

each cell. The equations are written in a curvilinear co-ordinate system. The spatial discretisation of

the NS equations leads to a set of ordinary differential equations in time. Following the pseudo-time

approach, after the linearisation of the residual at the new pseudo time step the latter results in a large

system of linear equations which, rewritten in terms of the primitive variables P, for a steady case is

given by [
Vi,j,k
∆t∗

∂Wi,j,k

∂Pi,j,k

+
∂Ri,j,k

∂Pi,j,k

]
∆Pi,j,k = −Ri,j,k(W

m) (2.16)

where R represents the residual vector. The Jacobian matrix is calculated analytically by repeated

application of the chain rule and the residual for one cell is built up as a summation of the fluxes through

the cell faces. Considering the convective part of the flux at the interface, denoted by fi+ 1
2
, to avoid ill-

conditioning a first order Jacobian is employed (regardless of its numerical or analytical evaluation). Thus,

the exact Jacobian matrix is approximated by removing the dependence of the MUSCL interpolation;

∂fi− 1
2

∂Pi−2
≈ 0;

∂fi+ 1
2

∂Pi−1
≈
∂fi+ 1

2

∂PL
;

∂fi+ 1
2

∂Pi
≈
∂fi+ 1

2

∂PR
;

∂fi+ 1
2

∂Pi+1
≈ 0. (2.17)

This leads to a lower quality Jacobian which, however, is much more computationally efficient. Indeed, it

has been experienced that the conditioning of the system gets worse when additional off-diagonal terms

are included.

In the present work the first order Jacobian has been employed with first order reconstruction in the

high-speed regime. In the transonic and low Mach regimes, instead, it has been used together with a,

formally, third order MUSCL scheme and the Van Albada limiter. The reason for this choice is due to

the fact that the current implementation of the MUSCL reconstruction approach and the Van Albada

limiter in HMB2 is not optimised for high-Mach flows.
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2.5 Variable extrapolation - MUSCL

The Monotone Upstream-Centred Scheme for Conservation Laws (MUSCL) was introduced by Van

Leer [107]. It is a compact scheme which is used to discretise the convective part of the Navier-Stokes

equations. In one dimension and considering uniform spacing, the extrapolation to both sides of the

interface at i+ 1/2 is

fLi+1/2 = fi +
ϕ(ri)
4 [(1− χ)∆−fi + (1 + χ)∆+fi]

fRi+1/2 = fi+1 − ϕ(ri+1)
4 [(1− χ)∆+fi+1 + (1 + χ)∆−fi+1]

(2.18)

where ∆+fi = fi+1− fi, ∆−fi = fi− fi−1, ϕ(ri) is the limiter and ri = ∆−Fi/∆+Fi. If ϕ(ri) = 0 then this

is only a first order scheme but if ϕ(ri) = 1 then higher order schemes are activated which are at least

second order for all values of χ. The current scheme in HMB2 uses the van Albada limiter [111]

ϕ(r) =
2r

r2 + 1
. (2.19)

It should be noted that this limiter is not second order TVD since for any r ∈ (1, 2), ϕ(r) < 1. Then

value of χ is set to zero giving the final formulation

fLi+1/2 = fi +
∆−fi∆+fi

2(∆+f2i +∆−f2i )
[∆−fi +∆+fi] . (2.20)
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2.6 A Jacobian Matrix for the AUSM+ Scheme

For the definition of the AUSM+ and AUSM+up schemes the works of Liou [112, 94] are used, and

their notation is preserved in the present work. The Jacobian matrix is calculated analytically by repeated

application of the chain rule. The residual for one cell is built up as a summation of the fluxes through

the cell faces. Then, the inviscid numerical flux is expressed as

∂f
i− 1

2

∂P
L/R

=
∂ṁ

1/2

∂P
L/R

Ψ+ ṁ
1/2

∂Ψ

∂P
L/R

+
∂p

1/2

∂PL/R
(2.21)

where as defined in [112, 94]

ṁ
1/2

= a
1/2
M

1/2
ρ (2.22)

a
1/2

= min( âL , âR ); âL = a∗2
L
/max( a∗L, un,L ); âR = a∗2

R
/max( a∗

R
,−un,R ) (2.23)

M
1/2

=M+
(4)
(ML) +M−

(4)
(MR) (2.24)

p
1/2

=
{
0, p

1/2
nx, p1/2ny, p1/2nz, 0

}T
; p

1/2
= P+

(5)
(ML)pL + P−

(5)
(MR)pR . (2.25)

In order to have a continuously differentiable function, the original definition of the primitive variables

vector, Ψ, is replaced by

Ψ = sig(ṁ
1/2
, )ΨL + [1− sig(ṁ

1/2
, 0)]ΨR (2.26)

Ψ
L/R

=
{
1, u

L/R
, v

L/R
, w

L/R
, H

L/R

}T
=

W
L/R

ρ
L/R

. (2.27)

The density, ρ, in the mass flux is defined, from the left and right state densities, employing the same

approach used for Ψ instead of the original definition given in [112, 94]

ρ = sig(M
1/2
, 0)ρL + [1− sig(M

1/2
, 0)]ρR . (2.28)

The original AUSM+ scheme [112], did not provide a fully differentiable flux function. Indeed, although

the fourth and fifth order polynomials, of equations (C.5) and (C.6), are C1, the interface speed of
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sound definition and the upwind approach do not guarantee the resulting fluxes to be continuously

differentiable functions of the primitive variables. This would imply the presence of different branches in

the computational algorithm, which increase the computational cost, and reduced stability for cases with

complex flow transient or grid geometry. To avoid this, a blending is introduced in the present work, by

means of parametric sigmoidal functions applied at the points of discontinuity in the Jacobian and, for

consistency, in the formulation of the scheme. The parametric sigmoidal function, employed to blend the

left and right limits at the points of discontinuity, is defined as

sig(x, y) =
1

2

(
−(1 +K)

x− y

−|x− y| −K
+ 1

)
(2.29)

with K chosen to have the desired level of blending. The choice of this sigmoidal in equation (2.29) lies

in the fact that it does not involve complex trigonometric or exponential functions that require a higher

computational cost to be evaluated. Examples of parametric sigmoidal functions for different values of

(a) K = 10−8 (b) K = 10−16

Figure 2.1: Sigmoidal function examples for different values of K.

K are shown in figures 2.1a and 2.1b. Note that a value of K = 10−16 has been used in the present

work. In order to avoid introducing singularities, the derivatives of the sigmoidal functions are not taken
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into account in the formulation of the analytical Jacobian. Thus, the resulting Jacobian is not the exact

analytical derivation of the sigmoidal blended AUSM+ scheme but rather a C0 approximation of it.

To complete the definition of the interface flux derivatives, the derivative of the mass and pressure

fluxes, equation (2.22) and (2.25) respectively, have to be computed

∂ṁ
1/2

∂P
L/R

=
∂a

1/2

∂P
L/R

M
1/2
ρ+ a

1/2

∂M
1/2

∂P
L/R

ρ+ a
1/2
M

1/2

∂ρ

∂P
L/R

(2.30)

∂p
1/2

∂P
L/R

=

{
0,

∂p
1/2

∂P
L/R

nx,
∂p

1/2

∂P
L/R

ny,
∂p

1/2

∂P
L/R

nz, 0

}T

. (2.31)

2.6.1 Derivatives of the Interface Speed of Sound

The definition of the interface speed of sound is central in AUSM+ solvers. In the present work the

entropy-satisfying interface speed of sound, introduced in [94], has been employed

a
1/2

= min( âL , âR ); âL = a∗2
L
/max( a∗L, un,L ), âR = a∗2

R
/max( a∗

R
,−un,R ) (2.32)

where u
n,L/R

and a∗
L/R

are the left and right normal velocities and critical speed of sounds at the cell

face.

A good Jacobian definition for this scheme has to represent a
1/2

dependencies as best as possible.

The presence of the min/max operators in the original formulation leads to discontinuous derivatives at

the border-lines âL = âR and a∗
L/R

= u
n,L/R

. Indeed, the interface speed of sound is not a continuously

differentiable function of a∗
L/R

and u
n,L/R

. Moreover, the min/max formulation leads to the following

dualities

• when âL = âR both the left and right state could be chosen by the min/max operators to evaluate

a
1/2

• when a∗
L/R

= ±u
n,L/R

the interface speed of sound could be either a function only of the critical

speeds of sound or a function of a∗
L/R

and the normal velocities u
n,L/R

.

in which the definition of the Jacobian is not unique. To deal with these situations, we consider the

interface speed of sound as in equation (2.33) where the min/max operators have been replaced by
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parametric sigmoidal functions.

a
1/2

= (1− sig(âL , âR))
a∗2
L

â(a∗
L
, un,L)

+ sig(âL , âR)
a∗2
R

â(a∗
R
,−un,R)

(2.33)

where

â(x, y) = sig(x, y)x+ (1− sig(x, y))y. (2.34)

Then, the respective derivatives are given by

∂a
1/2

∂P
L/R

= (1− sig(âL , âR))

(
2a∗

L
â(a∗

L
,u

n,L
)

∂a∗
L

∂P
L/R

− a∗2
L

â2(a∗
L
,u

n,L
)

∂â(a∗
L
,u

n,L
)

∂P
L/R

)

+sig(âL , âR)

(
2a∗

R
â(a∗

R
,−u

n,R
)

∂a∗
R

∂P
L/R

− a∗2
R

â2(a∗
R
,−u

n,R
)

∂â(a∗
R
,−u

n,R
)

∂P
L/R

) (2.35)

with

∂â(x, y)

∂P
L/R

= sig(x, y)
∂x

∂P
L/R

+ (1− sig(x, y))
∂y

∂P
L/R

. (2.36)

This approach leads to an approximated, but continuous, derivative of the interface speed of sound

where towards the points of discontinuity the right and left limit are blended to their average. The

derivative of the critical speeds of sound and cell face normal velocities can be obtained directly from

their definitions

∂a∗
L/R

∂P
L/R

= γ−1
a∗
L/R

(γ+1)

{
− γ

γ−1

p
L/R

ρ2
L/R

, u
L/R

, v
L/R

, w
L/R

, γ
γ−1

1
ρ
L/R

}
∂a∗

L
∂P

R
=

∂a∗
R

∂P
L
= 0

(2.37)

∂u
n,L

∂P
L

=
∂u

n,R

∂P
R

= {0, nx, ny, nz, 0}

∂u
n,L

∂P
R

=
∂u

n,R

∂P
L

= 0

(2.38)

where n = {nx, ny, nz}T is the cell face normal. It has to be noticed that for subsonic flows the sigmoidal

blending in equations (2.34) and (2.36) drop since the left and right cell face normal velocities, u
n,L/R

,

are always smaller than the relative critical speed of sounds, a∗
L/R

.

29



2.6.2 Derivatives of the Interface Mach Number

The derivative of the interface Mach number is given by

∂M
1/2

∂P
L/R

=
∂M+

(4)
(ML)

∂P
L/R

+
∂M−

(4)
(MR)

∂P
L/R

. (2.39)

Deriving the definition of the mass flow polynomials M+
(4)
(ML) and M

−
(4)
(MR) one obtains

∂M+
(4)
(ML)

∂P
L/R

=


∂M+

(1)
(M

L
)

∂P
L/R

if |ML | ≥ 1

∂M+
(2)

(M
L
)

∂P
L/R

(1 + β′M−
(2)
(ML))− β′M+

(2)
(ML)

∂M−
(2)

(M
L
)

∂P
L/R

otherwise

(2.40)

∂M−
(4)
(MR)

∂P
L/R

=


∂M−

(1)
(M

R
)

∂P
L/R

if |MR | ≥ 1

∂M−
(2)

(M
R
)

∂P
L/R

(1 + β′M+
(2)
(MR)) + β′M−

(2)
(MR)

∂M+
(2)

(M
R
)

∂P
L/R

otherwise

(2.41)

where β’= 16β and

∂M±
(1)
(M

L/R
)

∂P
L/R

= ±1

2

(
∂M

L/R

∂P
L/R

±
∂|M

L/R
|

∂P
L/R

)
(2.42)

∂M±
(2)
(M

L/R
)

∂P
L/R

= ±1

2
(M

L/R
± 1)

∂M
L/R

∂P
L/R

. (2.43)

Substituting equations (2.42), (2.43) and the definition ofM±
(2)

in equation (2.40),
∂M+

(4)
(M

L
)

∂P
L/R

and
∂M−

(4)
(M

R
)

∂P
L/R

can be expressed in terms of the left and right Mach numbers and the relative derivatives

∂M+
(4)
(ML)

∂P
L/R

=



∂M
L

∂P
L/R

if ML ≥ 1

1
2(8βM

3
L
− (8β − 1)ML + 1)

∂M
L

∂P
L/R

if − 1 ≥ML ≤ 1

0 if ML ≤ −1

(2.44)

∂M−
(4)
(MR)

∂P
L/R

=



0 if MR ≥ 1

1
2(−8βM3

R
+ (8β − 1)MR + 1)

∂M
R

∂P
L/R

if − 1 ≥MR ≤ 1

∂M
R

∂P
L/R

if MR ≤ −1

. (2.45)

As shown in figures 2.2a and 2.2b, both the fourth-order polynomials and their derivatives are continuous

functions.
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2.6.3 Derivatives of the Interface Pressure Formula

Finally, the interface pressure derivative, after using the same approach applied to the interface Mach

number, is given by

∂p
1/2

∂P
L/R

=
∂P+

(5)
(ML)

∂P
L/R

pL +
∂P−

(5)
(MR)

∂P
L/R

pR + P+
(5)
(ML)

∂pL
∂P

L/R

+ P−
(5)
(MR)

∂pR
∂P

L/R

(2.46)

with

∂P+
(5)
(ML)

∂P
L/R

=


0 if |ML | ≥ 1

1
2(10αM

4
L
− (32 + 12α)M2

L
+ 3

2 + 2α)
∂M

L
∂P

L/R
otherwise

(2.47)

and

∂P−
(5)
(MR)

∂P
L/R

=


0 if |MR | ≥ 1

1
2(−10αM4

R
+ (32 + 12α)M2

R
− 3

2 − 2α)
∂M

R
∂P

L/R
otherwise

. (2.48)

Also, the derivatives of the pressure flux are continuous as the polynomials themselves, see figures 2.3a

and 2.3b.

(a) � M+
(4)
(ML) and � M−

(4)
(MR) (b) �

∂M+

(4)
(M

L
)

∂M
L

and �
∂M−

(4)
(M

R
)

∂M
R

Figure 2.2: Split Mach number functions and derivatives.
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(a) � P+
(5)
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L
) and � P−

(5)
(M

R
)

(b) �
∂P+

(5)
(M

L
)

∂M
L

and �
∂P−

(5)
(M

R
)

∂M
R

Figure 2.3: Split pressure functions and derivatives.
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2.7 Extension to the AUSM+up Scheme

For subsonic cases, the solver automatically extends the AUSM+ scheme to the AUSM+up. The

major difference between these schemes lies in the additional couplings between velocity and pressure

fields that are considered in the AUSM+up. These couplings are introduced in the convective and pressure

fluxes by means of a pressure and a velocity diffusion term. In these terms a factor, fa, is considered

to scale the two additional terms with the flow speed. Moreover the latter is used to evaluate a more

suitable value of the parameter α, in the fifth order polynomials definition, for low speed regime.

2.7.1 Derivatives of the interface Mach number with the pressure diffusion term

Considering the pressure diffusion term, the derivative of the interface Mach number becomes

∂M
1/2

∂P
L/R

=
∂M+

(4)
(ML)

∂P
L/R

+
∂M−

(4)
(MR)

∂P
L/R

+
∂Mp

∂P
L/R

. (2.49)

Again, in order to have a continuous derivative of the pressure diffusion term its original formulation is

replaced by the following

Mp = −2
Kp

fa
sig(1− σM̄2, 0)(1− σM̄2)

pR − pL
a2
1/2

(ρL + ρR)
(2.50)

where the max operator has been replaced with the sigmoidal function. At this point the respective

derivative can be evaluated using the chain rule on equation (2.50) and considering the sigmoidal function

as a constant weight. Note that for subsonic flow the (1 − σM̄2) is always positive,thus the sigmoidal

blending drops.

2.7.2 Derivatives of the Scaling Factor fa

As for the interface speed of sound, the definition of fa includes min/max operators

fa =M0(2−M0) (2.51)

M2
0 = min(1,max(M̄2,M2

∞)); M̄2 = 1
2(M

2
L +M2

R). (2.52)

This formulation would lead to the following derivative for M2
∞ < 1

∂fa
∂P

L/R

= f(M̄,M∞)

(
ML

∂ML

∂P
L/R

+MR

∂MR

∂P
L/R

)
(2.53)
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where

f(M̄,M∞)


0 if M̄2 > 1

0 if M̄2 < M2
∞

1−M̄
M̄

otherwise

. (2.54)

The latter function has a point of discontinuity at M̄2 = M2
∞ . To avoid this, the sigmoidal (2.29)

has been employed again to blend the left and the right limits for M̄2 → M2
∞. Then, the resulting new

formulation of function (2.54) is

f(M̄,M∞)


0 if M̄2 > 1

sig(M̄2,M2
∞)1−M̄

M̄
otherwise

. (2.55)

Thus, introducing equation (2.55) in equation (2.53) a continuous formulation of the derivative of the

scaling factor fa is given.

2.7.3 Derivatives of the Interface Pressure Formula with the Velocity Diffusion Term

In the AUSM+up scheme the derivative of the interface pressure formula can be given as

∂p
1/2

∂P
L/R

=
∂P+

(5)
(ML)

∂P
L/R

pL +
∂P−

(5)
(MR)

∂P
L/R

pR + P+
(5)
(ML)

∂pL
∂P

L/R

+ P−
(5)
(MR)

∂pR
∂P

L/R

+
∂pu
∂P

L/R

(2.56)

where the derivative of the velocity diffusion term can be obtained employing directly the chain rule on

its original definition, equation (2.57).

pu = −KufaP
+
(5)
(ML)P

−
(5)
(MR)(ρL + ρR)a1/2(un,R − un,L). (2.57)

Due to the fact that α is not a constant anymore, additional terms need to be considered in the

derivatives of the fifth order polynomials of the pressure fluxes as follow

∂P ±
(5)

(ML/R)

∂P
L/R

=

(
∂P ±

(5)

∂P
L/R

)
AUSM+

+


0 if |M

L/R
| ≥ 1

±M
L/R

(M2
L/R

− 1)2 ∂α
∂P

L/R
otherwise

(2.58)

where the derivative of α can be obtained straight from equations (2.53) and (2.55), considering

∂α

∂P
L/R

=
15

8
fa

∂fa
∂P

L/R

. (2.59)
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Chapter 3

Continuum Flows Results and
Discussion - HMB2

To evaluate the performance of the implicit implementation of the AUSM+ and AUSM+up schemes

proposed in chapter 2, and to verify that the changes made to the schemes, to make them more suitable

to differentiate, did not affect their reliability, different practical applications for a wide range of Mach

numbers have been considered. As high-speed flows, five test cases which represent typical flow fields of

aerospace interest have been considered: an infinite cylinder, the Orion spacecraft, a single cone with a

blunt nose and two compression ramps. For the transonic regime, two external flows, an aerofoil and a

wing, have been selected from the experimental databases reported in the AGARD AR 138, [135] and

[136], for CFD validation. Finally, a wind turbine section as well as a wind turbine blade have been

employed as test cases for low-speeds flows. The results presented in the current chapter are part of the

following publications:

• Assessment of Implicit Implementation of the AUSM+ Method and the SSTModel for Viscous High-

Speed Flow. Colonia S., Steijl R. and Barakos G.N., 5th European Conference for Aeronautics and

Space Sciences, 1-5 July 2013, Munich (Germany).

• Implicit implementation of the AUSM+ and AUSM+up schemes. Colonia S., Steijl R. and Barakos

G.N., International Journal for Numerical Methods in Fluids, Volume 75, Issue 10, pages 687712,

DOI: 10.1002/fld.3891.
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3.1 High-Mach Regime: AUSM+ Scheme

3.1.1 Performance and accuracy of the implicit implementation

Firstly, the inviscid flow field around an infinite cylinder has been considered. In order to evaluate

the maximum CFL numbers that can be run at different residual L2-norms (as defined in equation (B.1)

of appendix B) with the implicit scheme, two different Mach numbers have been considered. The Euler

grid, figure 3.1a, was of the multi-block structured type with 90000 cells divided in 24 blocks. Looking

at figure 3.1b it can be seen that the analytical Jacobian is well defined. For both Mach 3 and 5 the

proposed implicit implementation allowed the solver to run at a CFL numbers equal and often even

higher than the numerical Jacobian of the original scheme. The numerical Jacobian is evaluated by

second order central finite differences. The steps were equal to 10−5 times the left or right value, for the

left or right derivatives, of the variable relative to the flux which is being derived. The minimum step

allowed was 10−8. The fact that the interface speed of sound definition does not result in a continuously

differentiable function could poorly affect the numerical approximations of its derivative. This justifies

the lower performance, in terms of CFL, of the numerically Jacobian.

To evaluate the scheme coping with a more complex case, a laminar flow field around the Orion CEV

has been considered. The employed grid is shown in figure 3.2a, and had a spatial resolution normal to

the shock similar to the infinite cylinder Euler grid. The grid was made out of 3.2 million nodes divided

in 294 blocks. As can be seen from figure 3.2b the implicit scheme allows to run at least CFL numbers

around 2.5 also in presence of the strong shocks, expansions and interactions characterising the flow field

around the Orion.

Regarding the computational time various tests have been conducted on a quad-core Xeon R⃝ CPU

machine. Figure 3.3a shows some results for the infinite cylinder Mach 3. It can be noticed that the

analytical Jacobian leads to a solver that is two times faster than the respective numerical one. This is

due mainly to the higher computational efficiency of evaluating an analytical Jacobian compared to the

numerical approach. Indeed, an investigation on the computational time required to evaluate analytically

or numerically the Jacobian has shown that the former approach is three times faster than the latter. In
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comparison to the explicit, 4-stage Runge Kutta, time marching the implicit approach becomes 30% and

40% faster after the logarithm of the normalised residual has dropped to −1 and −2, respectively, due

to the increased CFL numbers.

Finally, in order to confirm the reliability of the predictions given by the implicit implementation of

the AUSM+ scheme, a comparison with the standard Roe scheme has been conducted. The geometry

considered for the comparison is a 15◦ cone with a blunt nose of radius R = 0.01L, where L is the length

of the cone. Some results are also compared with theory and the correlation of [137]. The comparisons are

listed in table 3.1. The AUSM+ predictions showed the best agreement with the theory and the correlation

results. The agreement for the stagnation quantities is quite remarkable, the differences are less than

0.2%. The standoff distance is slightly under-predicted, about 7%. The Roe scheme, instead, gives

over-predicted stagnation point quantities, 5% and 18%, and an underestimated, about 15%, standoff

distance. Looking at figures 3.4a and 3.4b is possible to notice that, as shown before in [138] and [139],

the shock predicted by the AUSM+, unlike the Roe scheme, is less affected by the carbuncle problem.

This is a well known local oscillatory displacement of the bow shock wave shape, mainly within the blunt

nose region of a vehicle, which affect many numerical schemes and compromises the accuracy of numerical

predictions of hypersonic flows. Various efforts have succeeded in reducing this oscillatory behaviour but

none have yet removed completely the problem [140]. For this test case, the 4-stage Runge Kutta time

marching, with a CFL number of 0.9, has been employed till a logarithm of the residual of −1 and then

the implicit scheme has been used till −8 with a CFL number of 3. The computational domain consisted

of 15 blocks with 0.5 million point overall; a detail is shown in figure 3.5a. The time needed to obtain

the solution was 13 minutes on quad-core Xeon R⃝ CPU machine; again 30% faster than using the 4-stage

Runge Kutta, which needed 19 minutes, thanks to the higher CFL number allowed, see figure 3.5b.

AUSM+ Roe THEORY, [137]

7 Stagnation point ρ/ρ∞ 5.439 5.716 5.442

Stagnation point p/p∞ 32.593 38.5 32.653

Standoff distance δ/Rn 0.152 0.128 0.163

Table 3.1: AUSM+ and Roe results compared to theory and correlation [137]. Rn is the nose radius.
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(a) Euler grid, 24 blocks and 90000 cells.

(b) CFL comparison: numerical and analytical Jacobian, AUSM+.

Figure 3.1: Infinite cylinder (R = 1)
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(a) Navier-Stokes grid, 294 blocks and 3.2 million cells.

(b) CFL comparison: numerical and analytical Jacobian, AUSM+,
M = 3 laminar flow (Re = ×105).

Figure 3.2: Orion CEV
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(a)

(b)

Figure 3.3: Infinite cylinder, Euler grid, AUSM+, M = 3.
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Figure 3.4: Inviscid flow around a 15◦ cone with blunt nose (R = 0.01L) at M = 5.
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(a) Euler grid, 15 blocks and 0.5 million cells.

(b) Computational cost comparison: explicit and implicit schemes,
AUSM+, M = 5 inviscid flow.

Figure 3.5: 15◦ cone with blunt nose (R = 0.01L)
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3.1.2 Shock-wave / turbulent boundary-layer interactions

In [141] shock-wave/boundary-layer interactions, generated using two-dimensional compression ramps,

were studied experimentally. The characteristics of the incoming boundary layer were: δ = 24mm,

M∞ = 2.84, Re = 6.5× 107m−1 and different ramp angle have been considered. In this work, we solved

numerically the same flow fields using the SST turbulence model of Menter and the AUSM+ scheme. The

computational domains were both divided in 21 blocks with an overall number of cells equal to 24000

and 27000 for the θ = 16◦ and θ = 20◦ ramps, respectively.

Figure 3.6a shows the comparison of the pressure curve obtained with the CFD code and the one

reported in [141], while in figures 3.6b, 3.7a and 3.7b the Mach contours are presented for the two ramp

angles. The numerical solutions fit reasonably the experimental data. Indeed, the positions of the recir-

culation zones predicted by the CFD code are comparable to the ones given by the experiment. Figures

3.7a and 3.7b confirm that the SST model and the AUSM+ scheme are able to capture the recirculation

zones with a reasonable level of accuracy.

(a) Pressure curves for θ = 16◦ and θ = 20◦.
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(b) Mach contours for θ = 20◦.

Figure 3.6: SST, AUSM+ with entropy satisfying a1/2, M = 2.84, Re = 6.5× 107m−1.
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(a) Mach contours for θ = 16o.
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(b) Mach contours for θ = 20o.

Figure 3.7: SST, AUSM+ with entropy satisfying a1/2, M = 2.84, Re = 6.5× 107m−1.
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3.1.3 Orion CEV aerodynamic testing

In this section, firstly predictions of the aerodynamic coefficients of the Orion CEV (figures 3.2a and

3.8) are compared with data from reference [3] that is a summary of the experimental static aerodynamic

data of the Orion CEV. These data were collected during wind-tunnel tests at different facilities to support

the development of the spacecraft. The results for the test cases at Mach 3 with Reynolds 1.5× 106 and

Figure 3.8: Orion CEV sketch with angle of attack definition, from [3].

Mach 6 with Reynolds 1× 106 have been used. As can be seen from figure 3.9, the predictions given by

the CFD code are in good agreement with the experimental data. Indeed, the relative differences between

the numerical and the experimental results are not more than 4% and both follow the same trends.

In [142], experimental and numerical investigations of the aero-heating environment of the Orion CEV

were reported with the primary goal to provide convective heating data for use in assessing the accuracy

of computational techniques. In figures 3.10a and 3.10b two comparisons between the experimental

results obtained at the Langley Research Center 20-Inch Mach 6 Air Tunnel, the numerical results

obtained by the NASA code LAURA, [143], and the CFD predictions given by HMB2 are presented.

The agreement between the experimental results and the numerical predictions given by HMB2 with

the proposed implementation of the AUSM+ scheme, as for the LAURA solver, is good. Indeed, the

discrepancies are lower than the uncertainty of the data reported in [143]. This shows that the AUSM+

scheme is a reliable tool also for heating predictions for the this test case.

Finally, the Mach contours for two test cases are presented in figures 3.11a and 3.11b. It has to be

noted that no shock instabilities were observed during these simulations.
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Figure 3.9: Orion CEV CL and CD: SST, AUSM+, M = 3, ReD = 1.5× 106.
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(a) M = 6, ReD = 1.76× 106, α = 16◦.

(b) M = 6, ReD = 1.17× 106, α = 20◦.

Figure 3.10: Orion CEV StRe
1/2
D : laminar flow, AUSM+ with entropy satisfying a1/2.
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(a) Turbulent Flow: M = 3, ReD = 1.5× 106, α = 20◦.
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(b) Laminar Flow: M = 6, ReD = 1.17× 106, α = 20◦.

Figure 3.11: Orion CEV Mach Contours.
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3.2 Transonic Regime: AUSM+up Scheme

To evaluate the approximated analytical Jacobian proposed for the AUSM+up scheme in the transonic

regime, the viscous flow over the RAE2822 aerofoil [135] and the ONERA M6 wing [136] have been

considered as test cases.

The RAE2822 airfoil grid consisted of 3 blocks and 34000 cells while the test condition wereM = 0.73

and Reynolds number 6.5× 106 with an angle of attack of 2.31 degrees. The turbulence model employed

was the k−ω . The maximum CFL number obtained with the AUSM+up scheme for the present test case

was equal to 25, A prediction with 7 orders of reduction of the L2 norm of the residuals, was obtained

in 5 minutes on one processor of a quad-core Xeon R⃝ CPU machine. This was 40% less than the time

needed with the numerical approximation of the Jacobian, and was achieved after about 1500 iterations

as shown in figure 3.12. As for the AUSM+ in section 3.1, the computational time required to compute

analytically the Jacobian of the AUSM+up was found to be three times less than for the numerical

evaluation. The Osher scheme, employed in previous works [144], for the same test case allowed a CFL

number of 90 reducing the computational time by 35%. An explanation of the higher performance of the

Osher implicit implementation can be found in the fact that for this scheme an exact Jacobian can be

defined. The pressure coefficient profiles obtained by the CFD method based on the AUSM+up scheme

agree with the experimental results of [135], confirming the reliability of the numerical scheme, as shown

in figure 3.13.

The ONERA M6 wing computational domain was composed by 94 blocks with 2.15 million cells

overall. The chosen test conditions were: M = 0.84, angle of attack equal to 3.06o. For the Euler 3D test

case the solution has been obtained employing the 4-stage Runge-Kutta method, CFL equal to 0.5, till

1 order of reduction and then the proposed implicit implementation, which achieved a CFL equal to 10.

This allowed the solver to give a prediction, with 6 orders of reduction, in 120 minutes, 3407 iterations,

on 2 quad-core Xeon R⃝ CPU machines in parallel. On the same test case the implicit implementation of

the Osher scheme with the same time marching approach allowed the same CFL number. Also in this

case the reliability of the AUSM+up scheme prediction was confirmed. As seen from figures 3.14a and
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3.14b, the agreement in the trends of the pressure coefficient profiles predicted by the AUSM+up scheme

with the experimental data from [136] and the inviscid numerical results provided in [145] confirmed the

reliability of the solution also for a transonic 3D test case. Looking at figure 3.15a is possible to notice

the typical flow field on the upper surface of the ONERA M6 wing, in which the two shocks present at

the front and rear part of the root region coalesce in a single shock at the triple point towards the tip.

Moreover, the flow fields predicted by the AUSM+up and Osher schemes are in good agreement (figure

3.15b).

Figure 3.12: Convergence history: RAE2822 aerofoil , M = 0.73, α = −2.31◦ and Re = 6.5× 106.

Figure 3.13: Surface CP : RAE2822 aerofoil , M = 0.73, α = −2.31◦ and Re = 6.5× 106.
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(a) Mid-span region

(b) Tip region

Figure 3.14: ONERA M6 wing −Cp profiles at two different sections along the span, M = 0.84, angle of
attack 3.06◦.
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(a) AUSM+up
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(b) Osher

Figure 3.15: ONERA M6 wing upper surface Mach lines and contours, M = 0.84, angle of attack 3.06◦.
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3.3 Low-Mach Regime: AUSM+up Scheme

For the low-speed regime, the viscous flow over the S809 aerofoil [146] at 2.1 degrees of incidence and

the MEXICO blade [147] have been chosen as test cases. Both cases are comprehensively discussed in

[144] and used here to validate and evaluate the performance of the fully analytical Jacobian proposed

for the AUSM+up scheme in low-Mach regime.

For the S809 airfoil the grid consisted of 12 blocks and 60000 cells and two low Mach numbers have

been considered, M = 0.1 and M = 0.01, both with a Reynolds number of 1× 106. The adopted turbu-

lence model was the k − ω. At M = 0.1 the AUSM+up allowed the solver to run at a maximum CFL

number of 50. A prediction, with 8 orders of reduction for the laminar and turbulent residuals, needed

3100 iteration, see figure 3.18a. The computational time on a quad-core Xeon R⃝ CPU machine was 6

minutes, 40% faster than the approach with the numerical Jacobian. ForM = 0.01 the maximum allowed

CFL number was higher, reaching 500. For this reason a prediction, with 8 and 9 orders of reduction

for the laminar and turbulent residuals respectively, was obtained in only 5 minutes, 2531 iteration, on

the same machine, see figure 3.18b, which is 45% less than the time needed employing the numerical

Jacobian. The LM-ROE scheme implicit implementation documented in [144] achieved CFL numbers

of 50 and 200 on the same test cases. The LM-ROE resulted in a 30% slower simulation than with the

AUSM+up scheme for the M = 0.01 case due the lower CFL while 40% faster for the M = 0.1 case

since the CFL numbers are comparable and the evaluation of the original ROE Jacobian used in [144]

for the LM-ROE scheme is more efficient. The reliability of the solution was, once again, confirmed as it

is possible to see from figure 3.17. Indeed, the pressure coefficient profiles obtained by the CFD method

fit quite well the experimental results of Ramsay [148].

For the 3D parked MEXICO blade the computational domain was composed by 94 blocks with 2.15

million cells overall and the high performance of the proposed implicit implementation of the AUSM+up

scheme was confirmed. The chosen test condition was a parked position with M = 0.029 wind and pitch

angle equal to 81o, see figure 3.16; the Reynolds number was 4.93 × 105. The parked position means a

non-rotating blade positioned to have the wind direction transversal to the chord in order to not generate
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torque. The k − ω turbulence model of Menter was employed also in this case. The maximum CFL

Figure 3.16: Parked position and pitch angle definition

obtained was equal to 20, which allowed the solver to compute a prediction, with 6 and 7 orders of reduc-

tion for the laminar and turbulent residuals respectively, in 193 minutes, 3624 iteration, on 3 quad-core

Xeon R⃝ CPU machines in parallel. Looking at figures 3.19a and 3.19b no particular differences, except

small discrepancies due to the different numerical dissipations of the schemes, can be spotted between

the AUSM+up prediction and the one obtained with the LM-ROE in [144].

Figure 3.17: S809 aerofoil −Cp profiles, α = −2.1◦ and Re = 1× 106.
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(a) M = 0.1, CFL=50.

(b) M = 0.01, CFL=500

Figure 3.18: S809 aerofoil Residual vs Iteration, α = −2.1◦ and Re = 1× 106.
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Figure 3.19: Parked MEXICO blade −Cp profiles at two different sections along the blade, M = 0.029,
pitch angle 81◦ and Re = 4.93× 105.
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3.4 Conclusions

In chapter 2 the derivation of a novel formulation of the AUSM+ scheme and its extension to the

AUSM+up scheme and a continuous approximation of its analytical Jacobian have been presented. In

this chapter, the implicit schemes with the proposed analytical Jacobian have been tested in a wide range

of Mach numbers covering high-speed, transonic and low-Mach regimes.

In section 3.1 it has been shown that the analytical Jacobian for AUSM+ led to a solver 30 − 40%

faster than a 4-stage Runge-Kutta method, thanks to the higher CFL numbers allowed by the implicit

time discretisation, and 50% faster than an implicit approach with a numerical approximation of the Ja-

cobian matrix by finite differences. This is due mainly to the lower computational efficiency of evaluating

numerically the Jacobian and partially to the higher CFL number allowed by the analytical Jacobian

approach.

Regarding the Osher scheme that is routinely employed in HMB2, the proposed implementation of the

AUSM+up is about 35% slower as shown in section 3.2. The reason for the lower performance is that the

Osher scheme involves only continuously differentiable functions that make the implicit implementation

of the scheme more efficient.

In the low-Mach regime, section 3.3, the performance of the proposed implementation has been com-

pared to the LM-ROE scheme discussed in [144]. The results suggest that the proposed AUSM+up

formulation led to a faster solver for very low Mach numbers, see figure 3.18b, due the higher CFL

number allowed; while at relatively higher Mach numbers, see figure 3.18a, the allowed CFL numbers for

the implicit LM-ROE and AUSM+up schemes are comparable and the LM-ROE becomes faster. This

is probably due to the fact that the implicit implementation of the LM-ROE proposed in [144] employs

the Jacobian matrix of the original Roe scheme, which is more efficient, involving just C1 functions, but

limits the maximum allowed CFL number at very low Mach.

Finally, comparing the prediction obtained employing the proposed AUSM+ and AUSM+up formu-

lation with results available in the literature, it has been shown that the reliability of the AUSM+ and

AUSM+up schemes for the convective fluxes is preserved after introducing the sigmoidal function.

57



Chapter 4

Rarefied and Hybrid Flow Solvers -
MΦC

4.1 Introduction

The methods described in the present chapter are built in the Multi-Physics Code (MΦC) developed

at the University of Liverpool [90, 91, 92]. MΦC is a computational framework designed for simulations

of complex flows and it is able to employ different mathematical models in different regions of the flow

domain depending on the flow physics. The aim of the hybrid approach is to use more computationally

expensive approaches only where strictly needed and use the continuum-level modelling elsewhere.

For the continuum flow solver, as in HMB2, a cell-centred block-structured finite-volume method

is employed to discretise the compressible NS equations and the AUSM+/up method can be used for

the convective fluxes, see chapter 2. Alternatively, the GKS methods presented in chapter 5 can be

employed in the continuum solver to extend the capability of the latter to simulate flows in slightly

rarefied conditions as shown in chapter 6. For the analysis of low-speed flows with rarefaction effects,

a Lattice Boltzmann method as well as a Vortex-In-Cell method for vortex-dominated incompressible

flows are also available in the framework. To predict rarefied flow fields with strong non-equilibrium the

framework includes Molecular Dynamics methods as well as the deterministic Discrete Velocity Method

described in section 4.6 for the Shakhov, Rykov and ES kinetic Boltzmann equations.

Previous works on coupled NS/MD simulations using the Multi-Physics Code are mainly focused

on developing coupling techniques and applications to micro-fluidics [90, 91]. The developed coupling

techniques involved continuum state reconstruction for the coupling from MD to NS and particle-forcing
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techniques for imposing continuum flow derived interface conditions on the MD simulation.

In the present work, the emphasis is on the simulation of hypersonic, partially-rarefied flows. For

this purpose the hybrid approach and the DVM included in the framework have been employed and thus

are described in this chapter. The work made use mainly of the Shakhov and Rykov models, then the

relative non-dimensional forms implemented in MΦC are presented in sections 4.3 and 4.4, respectively.

For the assessment of the Rykov model implementation presented in chapter 6, the ES model for diatomic

gases proposed in [29], and previously implemented in the framework, has been employed as comparison.

Detail of the latter model can be found in appendix D,
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4.2 Boltzmann Equation

The fundamental equation employed to model the behaviour of gases at molecular level is the Boltz-

mann transport equation, presented in [12] in the following form

∂[nf(x, c, t)]

∂t
+V · ▽[nf(x, t, c)] = △ [Q(f)] . (4.1)

The BTE describes the evolution of the velocity distribution function (VDF), f(x, t, c), which represents

the molecular density of particles with position x and particle-velocity c at time t. The operator,

△ [Q(f)], describes the rate of change of f due to binary collisions among particles. Unlike calculation of

the other terms in equation (4.1), △ [Q(f)] involves integrating over all velocity space in order to account

for collisions between particles of all velocities. In contrast with the NS equations, since no assumption

about the form of f is made, the BTE is physically accurate for dilute gases under all conditions ranging

from continuum to free-molecular flow. If m denotes the molecular mass, the continuum-level state can

be obtained by the following moments Ψ = (m, mc, 1
2mc2, 1

2mc′c′2)T of the VDF

(ρ, ρu, ρetot, q)
T =

+∞∫∫∫
−∞

Ψfdc. (4.2)
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4.3 Non-dimensional Shakhov Model

The complex collision term in the right-hand side of the BTE, poses a major challenge in modelling

flows using this equation [149]. For this reason kinetic model equations have been developed which

approximate the BTE such that the exact moment equations up to a desired order are respected. The

first kinetic model equation to be proposed has been the Bhatnagar-Gross-Krook model [25] where the

complex collision term has been replaced with a relaxation term towards the equilibrium Maxwellian (4.6).

However, it is well known [11] that the BGK model recovers a unit Prandtl number in the continuum

limit and for this reason various corrected models have been presented in the literature. Several attempts

have been made to improve the BGK model to recover the correct Prandtl number in the continuum

limit, while keeping the same simplicity of the approach. Among them, two very well established kinetic

models, for flows where only translational non-equilibrium is considered, are the Ellipsoidal Statistical

model [27] and the Shakhov model [26]. Both maintain the overall structure of the BGK model where the

Maxwellian is replaced with a velocity distribution function such that the resulting moments recover the

correct Prandtl number in the hydrodynamic limit. The two models differ in the way the latter function

is defined. The ES model introduces a modified collision operator replacing the Maxwellian equilibrium

function by a generalised Gaussian function defined to obtain the continuum expressions for the stress

tensor and the thermal flux vector with the proper viscosity and thermal conductivity. In the Shakhov

model the correct continuum Prandtl number is achieved by scaling the heat fluxes and the equilibrium

distribution function consists in the Maxwellian multiplied by a correction term determined by imposing

the agreement of the moments up the third order between the BGK type approximation and the full

BTE equation. Although these models provide the correct limit, it is not guaranteed that they yield

accurate results in the transition regime. The present work made use of the Shakhov model, which has

been proved to be a reliable kinetic approximation where only translational non-equilibrium is considered

[150].
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Defining the following non-dimensional variables

ρ = ρ̂/ρ∞ ; T = T̂ /T∞ ; u = ĉ/
√
2RT∞

t = t̂/(µ∞p
−1
∞ ) ; x = x̂/

(√
2RT∞µ∞p

−1
∞
)

; q = q̂/
(
ρ∞(2RT∞)3/2

)
µ = µ̂/µ∞ ; τ = τ̂ /(µ∞p

−1
∞ )

(4.3)

where the dimensional variables are denoted with a hat and c∞ =
√
2RT∞ represents the most proba-

ble molecular velocity magnitude at equilibrium at the reference temperature T∞, the non-dimensional

distribution function for the Shakhov model results

FS = F̂S/
(
ρ∞(2RT∞)−3/2

)
. (4.4)

Then, substituting the latter variables in the Shakhov model written in terms of F = mf we obtain

∂F

∂t
+ c

∂F

∂x
=
FS − F

τ

FS = FM

[
1 +

8

15

qx
ρT

c′x
T

(
c′2

T
− 5

2

)] (4.5)

where

FM =
ρ

(πT )3/2
exp

(
−
c′2

T

)
(4.6)

is the non-dimensional Maxwellian and the total collision time τ is expressed as µ/p. For the viscosity

temperature dependency, the following power law

µ(T ) = µ(T∞)

(
T

T∞

)ω

(4.7)

is employed in MΦC, generally with an exponential factor of 0.72 [151]. The dimensionless macroscopic

quantities can be obtained from F by means of the following moments Ψ = (1, cx, c
2, 1

2c
′
xc

′2)T

(
ρ. ρux,

3

2
ρT + ρu2x, qx

)T

=

+∞∫
−∞

ΨFdc. (4.8)
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4.4 Non-dimensional Rykov Model

The Shakhov and the ES models present a single relaxation term. This means that these models are

able to represent only problems where a single relaxation process takes place, narrowing their applicability

only to monoatomic gases or flow fields without rotational non-equilibrium. However, hypersonic and

re-entry vehicles encounter temperatures associated with translational, rotational and, often, vibrational

non-equilibrium [152]. For this reason, various works have been made in order to extend the the Shakhov

model and the ES model to include multiple relaxation processes for polyatomic gases. Among them, the

Rykov model [28] and the ES polyatomic model [29] are the most commonly employed when rotational

non-equilibrium is considered. In the present work the Rykov model has been extensively used and

for this reason is described in this section. The ES polyatomic model of Andries and co-workers [29],

described in appendix D, is also available in MΦC.

Considering the flow of a diatomic gas, we will assume that the gas temperature is not too high, so

that the vibrational degrees of freedom are not excited, and not too low, so that the rotational degrees

of freedom can be considered fully excited. In this case, the particle distribution function f(x, c, t, ζ),

which describes the state of the gas, will be a function not only of the spatial coordinate x, the particle

velocity c and the time t, but also of the rotational degrees of freedom ζ. The Rykov model represents

an extension of the Shakhov model where also rotational non-equilibrium is considered and has been

proved to be a reliable kinetic approximation, up to the heat fluxes moments of the BTE, for this kind of

flows [28, 153, 4, 47] . Since the rotational degrees of freedom are considered fully excited, ζ is reduced

by the model and a second distribution function is obtained.

Employing the non-dimensional variables defined in equations (4.3), the non-dimensional distribution

functions of the model result

F0 = F̂0/
(
ρ∞(2RT∞)−3/2

)
; F1 = F̂1/

(
mRT∞ρ∞(2RT∞)−3/2

)
(4.9)
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thus, for the Rykov model written in terms of F = mf we obtain

∂F0

∂t
+ c

∂F0

∂x
=
F eq
0 − F0

τ
;
∂F1

∂t
+ c

∂F1

∂x
=
F eq
1 − F1

τ

F eq
0 =

1

Zr
F r
0 +

(
1− 1

Zr

)
F t
0 ; F eq

1 =
1

Zr
F r
1 +

(
1− 1

Zr

)
F t
1

F r
0 = FM (T )

[
1 +

8

15
ω0

qtx
ρT

c′x
T

(
c′2

T
− 5

2

)]

F t
0 = FM (Tt)

[
1 +

8

15

qtx
ρTt

c′x
Tt

(
c′2

Tt
− 5

2

)]

F r
1 = TFM (T )

[
1 +

8

15
ω0

qtx
ρT

c′x
T

(
c′2

T
− 5

2

)
+ 4ω1(1− δ)

qri c
′
i

ρT 2

]

F t
1 = TrFM (Tt)

[
1 +

8

15

qtx
ρTt

c′x
Tt

(
c′2

Tt
− 5

2

)
+ 4(1− δ)

qri c
′
i

ρTtTr

]

FM (T ) =
ρ

(πT )3/2
exp

(
−c′2

T

)

5

2
T =

3

2
Tt + Tr

(4.10)

where the total collision time τ is expressed as µt/ρTt with the viscosity determined from the translational

temperature. In a system of colliding particles, energy is transferred between the various internal modes

and the collision number associated to a mode represents the inverse of the fraction of particle collisions

involving that mode, see appendix F. The Rykov model is based on the assumption that the rotational

collision number Zr is a given constant or a function of the flow temperatures. Several works provide an

expression of Zr as a function of the temperature in the flow field. Probably the first attempt to appear in

the literature is the theoretical work of Parker [154] where, employing an empirical non impulsive model

and assuming coplanar collisions and zero initial rotational energy, the following approximate expression

is obtained

ZPar.
r =

(Zr)∞
1 + (π3/2/2)(T ∗/T )1/2 + (π2/4 + π)(T ∗/T )

(4.11)

T∗ = 91.5K is the characteristic temperature of the intermolecular potential and (Zr)∞ = 23.5 is the

limiting value suggested in [12]. While Parker’s expression, (4.11), is derived involving a large number
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of simplifying assumptions the overall dependence on the temperature is in agreement with the more

rigorous treatment of [155]. However, this expression does not involve any dependence on the different

translational and rotational temperatures. Thus, in the recent literature, models derived from data

fitting, either from numerical or experimental results, have been employed. In [28, 153, 4] the following

expression for the collision number is presented to be used with the Rykov model

ZRyk.
r =

3

4
π
ψ(T̃ )

T̃ 1/6

9T̃

T̃ + 8

Tr
Tt

[
0.461 + 0.5581

(
Tr
Tt

)
+ 0.0358

(
Tr
Tt

)2
]

ψ(T̃ ) = 0.767 + 0.233T̃−1/6 exp
(
−1.17

[
T̃ − 1

])
T̃ = Tt/T

∗.

(4.12)

An alternative expression for Zr(Tt, Tr) derived from molecular dynamics simulations can be found in

[156] as

ZV al.
r =

[
a1

(
Tt
1K

)1/4

+ a2

(
Tt
1K

)−1/4

− a3

(
Tt
1K

− 1000

)][
1− b

(
1−

Tr
Tt

)]
(4.13)

where a1 = 1.33868, a2 = −6.19992, a3 = −0.00107942 and 0 < b ≤ 1. It is important to notice that,

considering the moments of the Rykov model collision term shown in appendix E, the relaxation process

in the model is described as

ρ(T − Tr)

Zrτ
(4.14)

while in [154, 156] Jeans equation is considered, leading to

ρ(Tt − Tr)

Zrτ
. (4.15)

This means that the collision number in the Rykov model results

Zr = 0.6× ZPar./V al.
r . (4.16)

All the mentioned expressions for the rotational collision number are available in MΦC. Regarding the

viscosity law, the expression proposed by Rykov and his co-workers [28, 153, 4]

µ(Tt) = µ(T ∗)
T̃ 2/3

ψ(T̃ )
(4.17)

or a simpler power law

µ(Tt) = µ(T∞)

(
Tt
T∞

)ω

(4.18)
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can be selected in the framework. Usually an exponential factor of 0.72 [151] is chosen for the power law.

To make the system (4.10) complete, the value of the constants δ, ω0 and ω1, need to be determined.

In [157] ω0 = 0.2354 and ω1 = 0.3049 or ω0 = 0.5 and ω1 = 0.286 are given for diatomic gases. Both pairs

of values have been successfully employed in [153, 4, 157, 158] with δ−1 = 1.55. In the present work the

values ω0 = 0.5 and ω1 = 0.286 are employed. The dimensionless macroscopic quantities can be obtained

from the following moments

(
ρ, ρux,

3

2
ρTt + ρu2x + ρTr, ρTr, q

t
x + qrx, q

r
x

)T

=

+∞∫
−∞

[Ψ0F0 +Ψ1F1] dc. (4.19)

where Ψ0 = (1, c, 1
2c

2, 0, 1
2c

′c′2, 0)T of Ψ1 = (0, 0, 1, 1, 1, 1)T .
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4.5 The Hybrid Approach in MΦC

The first important step in the setup of an hybrid simulation is the definition of the continuum and

rarefied flow regions. In the literature, the domain decomposition is generally done during the simulation

on the basis of a breakdown parameter, for example as done by other researchers in [2, 1]. At the

moment, this feature is still under development in MΦC and the domain decomposition, of which an

example is shown in figure 6.9d of chapter 6, has to be defined by the user in an input file. However, the

framework can perform a reconfiguration of the different regions throughout the calculation when the

domain definition file is modified by the user. The information transfer between the two solvers can be

handled in the current framework using the state-based method depicted in figure 4.1. The state-based

coupling assigns boundary cells on the edge of one domain based on the flow solution of the other leaving

the evaluation of the numerical fluxes to the respective solver through the relative boundary procedures.

For the case of DVM/Continuum hybrid approach, this is achieved by computing moments of the kinetic

solution to obtain a macroscopic state on one side of the interface and at the same time reconstructing a

velocity distribution function from a macroscopic state, employing the CE solution of the kinetic model,

on the other side of the interface. To obtain more accurate solutions, an overlap region, in which both

approach are used, is required as a buffer zone to relax possible inaccurate kinetic boundary conditions

provided by the continuum solver. In MΦC the number of cells composing this overlap region is a user

defined variable.

In the current work, the DVM for kinetic approximation of the Boltzmann equations has been

employed coupled mainly with the GKS method proposed in chapter 5 and for some calculation with

a more traditional finite-volume approach using the AUSM+ scheme. An overlap of 10 cells has been

chosen for the hybrid simulations presented in chapter 6.
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Figure 4.1: State-based coupling techniques, adapted from [2, 1].
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4.6 Discrete Velocity Method for Kinetic Boltzmann Equations in
MΦC

For non-continuum flow modelling, the Shakhov and ES models are included for monoatomic gas flows,

while, for the present work, the Rykov model and a polyatomic ES model [29] have been implemented in

MΦC to predict flow fields in rotational non-equilibrium.

The standard approach [159] to discretise kinetic model equations is to employ the discrete ordinate

method [160]. Its core idea is to define a discrete velocity (phase) domain c|m, where m represents the

index in the velocity space, in order to replace the velocity distribution function F (x, t, c) with a vector

where each component F |m(x, t) is an approximation of F (x, t, c|m). Then, the discrete kinetic model

results

∂F |m
∂t

+ c
∂F |m
∂x

=
Feq − F |m

τ
(4.20)

and the fluid macroscopic quantities are given by the same moments except that the integrals in the

phase space are replaced by discrete sums as follow

Φ =
∑
m

ΨF |m∆c|m. (4.21)

In MΦC the velocity space is discretised using either a uniformly spaced method and the trapezoidal

rule for the evaluation of the moments of the distribution functions or a Gauss-quadrature method with

modified Hermite polynomials [161]. The Gauss-quadrature method is more efficient for low-speed mi-

crofluidic gas flows, while for high-speed flows the trapezoidal rule is the preferred approach. Moreover,

it has to be mentioned that in the literature different approaches for an adaptive velocity space discreti-

sation are available [162, 22], but due to their complexity this feature is not currently implemented in

the framework. Thus, for the present high-speed flows related work, the uniform velocity space with the

trapezoidal rule has been the preferred approach and was used exclusively.

An important aspect is to consistently evaluate a discrete approximation of the ”target” equilibrium

function Feq of the collision term in the kinetic model. The classical approach [159]

Feq|m = Feq(x, t, c|m) (4.22)
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does not exactly satisfy the conservation properties, i.e. compatibility condition, of the model equation

[20, 163]; as example equations (5.18) and (5.40) for the Shakhov and Rykov models respectively. For

this reason, methods have been proposed in the literature to ensure that the conservation principles [163]

as well as the entropy production property [20] are satisfied. In the current framework the approach of

[163] for both Shakhov and Rykov models is used. In this case the discrete collision integrals are modified

as follow

∂F |m
∂t

+ c
∂F |m
∂x

=
Feq(Φ

′(x, t), c|m)− F |m
τ

(4.23)

where the modified vector of macroscopic variablesΦ′ is obtained as solution of the discrete approximation

of the moments of the distribution function relative to mass, momentum, energy and heat transfer

∑
m

Ψ
Feq(Φ

′(x, t), c|m)− F |m
τ

∆c|m = JΨ (4.24)

where JΨ represents the exact moments of the kinetic model collision term. System (4.24) can be solved

by means of a Newton iteration methods. In the present work a LU decomposition [164], i.e. Gaussian

elimination, is employed to compute the update of the modified continuum state in each Newton iteration

step.

Each of equations (4.23) can now be discretised in physical space and time using a finite-difference or a

finite-volume approach and an explicit [159, 20] or implicit [20, 24] time marching scheme as well as more

novel methods [21, 23]. The previously described discrete velocity method is employed in MΦC within

a finite-volume scheme [103], shown here in one-dimensional formulation for simplicity, for multi-block

structured grids

∂Fi,j,k|m
∂t

+
F flux
i+1/2,j,k|m − F flux

i−1/2,j,k|m
∆xi,j,k

=
Feq(Φ

′(xi,j,k, t), c|m)− Fi,j,k|m
τ

(4.25)

and a second order TVD time marching approach [165, 166]

F
(1)
i,j,k|m = Fn

i,j,k|m +∆tL(Fn
i,j,k|m)

Fn+1
i,j,k |m =

1

2
(Fn

i,j,k|m + F
(1)
i,j,k|m) + ∆tL(F (1)i,j,k|m))

L(Fn
i,j,k|m) = −

F flux
i+1/2,j,k|m − F flux

i−1/2,j,k|m
∆xi,j,k

+
Fn
eq(ϕ

′(xi,j,k, t
n), c|m)− Fn

i,j,k|m
τ

(4.26)
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with discretised physical space xi,j,k and time tn. The first- and second-order numerical fluxes are as

described in [167]

F flux
i+1/2,j,k|m =

1

2

[
(c · n) (Fi+1,j,k|m + Fi,j,k|m)− | (c · n) |

(
∆Fi+1/2,j,k|m +Θi,j,k

)]

Θi,jk =


0 first-order

minmod(∆Fi−1/2,j,k|m, ∆Fi+1/2,j,k|m, ∆Fi+3/2,j,k|m) second-order

∆Fi+1/2,j,k|m = Fi+1,jk|m − Fi,jk|m

(4.27)

where n is the cell face normal. For the approach employed here, a comprehensive discussion about its

entropy production property is available in the literature [166].

Finally, due to the large computational time and memory overhead created by the discretisation in

velocity space (in contrast to the continuum solver, which typically stores 5 continuum flow quantities,

the kinetic solver stores O(104) degrees of freedom per cell), an efficient parallel implementation involving

’two’ levels of parallelism was conceived in MΦC. In this parallelisation strategy, the phase space as well

as the flow domain are distributed over the processes. First, the phase space is partitioned in regular sub-

spaces, each to be assigned to separate processes within separate MPI communicators. The overall number

of processes is then divided by the number partitions to obtain the required number of communicators.

The mesh-blocks in physical space are then equally distributed over these communicators. An important

factor in the performance is the number of process assigned to the velocity space discretisation. Limiting

the size of these communicators will minimise the overhead in collective operations required for the

evaluations of the moments of the distribution functions. However, this implies an increasing number of

communicators over which the mesh-blocks are divided, potentially creating a load imbalance in physical

space.
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4.6.1 Diffuse Wall Boundary Conditions

The gas evolution at a solid boundary is modelled assuming that particles hit the wall with a distri-

bution function according to the flow conditions whereas they are reflected with:

• a Maxwellian distribution according to the wall state for fully accommodating boundary (viscous

wall),

• the same distribution function for specular reflection boundary (inviscid wall),

• a combination of diffuse and specular boundaries depending on the accommodation coefficient σ.

Therefore, the final gas distribution function at the wall can be written as

F = σFMu>0 + Fu<0 + (1− σ)Fu>0 (4.28)

where u < 0 and u > 0 represent the velocities of particles hitting the wall and reflected by the wall

respectively while FM and F are the Maxwellian and the non-equilibrium distribution functions at the

wall. The fluid state at the wall can be extrapolated from the domain. In the present work, fully

accommodating walls have been employed, i.e. σ = 1.
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Chapter 5

Analytical Definition of Gas-Kinetic
Schemes for Slightly Rarefied Flows

To improve the capability of the continuum solver in MΦC to predict flow fields in thermal non-

equilibrium, two GKS schemes based on the limit for a well-resolved flow of the UGKS written for the

Shakhov and Rykov models, see appendices I and J, have been analytically derived and implemented in

the framework. In contrast to the Taylor series expansions employed by Xu and co-workers [63, 75, 77,

7, 85, 46, 47], here the derivatives of the equilibrium function are defined fully analytically by means of

properties of the employed kinetic model. Moreover, employing directly a kinetic model which involves a

Prandtl number correction, instead of a rescaling the energy flux to fix the Prandtl number [63], should

lead to more accurate results for diatomic gases where thermal non-equilibrium effects are important as

discussed in section 1.4. Finally, the update of the non-equilibrium distribution function is neglected,

which then it is not needed to be stored, reducing the memory cost of the approach. The proposed GKS

schemes are limited to near-continuum regions but are simpler than the UGKS [46, 47]. However, the

validity of the approach can be extended considering a modified collision time. Also the latter, in the

present work, is defined fully analytically for both schemes. The schemes are presented in the current

chapter and are part of the following publications:

• Kinetic Models with Rotational Degrees of Freedom for Hybrid Methods. Colonia S., Steijl R. and

Barakos G.N., 6th European Conference on Computational Fluid Dynamics (ECFD VI), ECCO-

MAS 2014, 20-25 July 2014, Barcelona (Spain).

• Kinetic Models and Gas Kinetic Schemes for Hybrid Simulation of Partially Rarefied Flows. Colonia

73



S., Steijl R. and Barakos G.N., AIAA Atmospheric Flight Mechanics Conference 2015, 5-9 January

2015, Kissimmee (Florida), DOI: 10.2514/6.2015-0521.

• Kinetic Models and Gas Kinetic Schemes for Hybrid Simulation of Partially Rarefied Flows. Colonia

S., Steijl R. and Barakos G.N., AIAA Journal (Articles in Advance), DOI: 10.2514/1.J054137.

• Gas Kinetic Schemes for Hybrid Simulation of Partially Rarefied Flows. Colonia S., Steijl R. and

Barakos G.N., 6th European Conference for Aeronautics and Space Sciences, 29 June to 3 July

2015, Krakow (Poland).

• A Gas Kinetic Scheme for Hybrid Simulation of Partially Rarefied Flows. Colonia S., Steijl R. and

Barakos G.N., Progress in Flight Physics Volume 8 - EUCASS book series, accepted.
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5.1 The BGK-NS Method and the Unified Gas-Kinetic Scheme

Among the gas-kinetic schemes available in the literature [86] a successful approach is represented

by the BGK-NS method [63, 75] here briefly described. Integrating in time the BGK equation for a

one-dimensional flow in a control volume dx with a continuous particle velocity cx and discretised space

xi and time tn, with step sizes of ∆x and ∆t respectively, one obtains

F |n+1
i = F |ni +

1

∆x

tn+1∫
tn

(
[cxF ]|i−1/2 − [cxF ]|i+1/2

)
dt+

∆t

2

(
FM |n+1

i − F |n+1
i

τn+1
+
FM |ni − F |ni

τn

)
(5.1)

where the trapezoidal rule has been employed for the collision term integral, and [cxF ]|i∓1/2 are the fluxes

of the distribution function across the cell interface. Then, taking the moments Ψ = (1, cx, c2)T of

equation (5.1), the update of the conservative variables can be found as

Wn+1
i = Wn

i +
1

∆x

tn+1∫
tn

+∞∫
−∞

Ψ
(
[cxF ]|i−1/2 − [cxF ]|i+1/2

)
dcdt (5.2)

since the compatibility conditions for the BGK model give

+∞∫
−∞

Ψ
FM − F

τ
dc = (0, 0, 0)T . (5.3)

It is well known that the BGK model recovers the incorrect Prandtl number in the continuum limit and

for this reason a simple correction consisting in scaling the energy numerical flux has been proposed by

Xu [63] as

fnewenergy = fenergy +

(
1

Pr
− 1

)
q (5.4)

Recently, an alternative to the finite-volume approach employed in the BGK-NS method has been pre-

sented in [168] where a hybrid finite-element/finite-volume node-pair discretisation of the NS equations

has been reformulated to be employed with Xu’s scheme.

The BGK-NS scheme has been applied by Xu and co-workers [77, 7] also to predict flows with internal
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degrees of freedom employing the following multi-temperature BGK model

∂F

∂t
+ c

∂F

∂x
=
F∗ − F

τ
+
FM (T )− F∗

Zrτ

FM (T ) =
ρ

(πT )3/2
exp

(
−c′2

T

)

F∗ =
ρ

(πTr)
3/2 πTr

exp

(
−c′2

Tt
− ζ2

Tr

)
.

(5.5)

In the above F∗ is an intermediate equilibrium state including the rotational degrees of freedom, ζ. The

assumption that the fraction of collisions exciting the rotational degrees of freedom is a given constant or a

function of the flow temperatures is also made as in the Rykov model. In this case, only mass, momentum

and total energy are conserved during a particle collision and the moments Ψ′ = (1, cx, c
2, ζ2)T of the

collision term are given by

+∞∫
−∞

Ψ′
(
F∗ − F

τ
+
FM (T )− F∗

Zrτ

)
dc = (0, 0, 0, S)T (5.6)

then, the update of the macroscopic variables is

Wn+1
i = Wn

i +
1

∆x

tn+1∫
tn

+∞∫
−∞

Ψ′ ([cxF ]|i−1/2 − [cxF ]|i+1/2

)
dcdt+

∆t

2

(
Sn+1
i + Sn

i

)
(5.7)

with the source terms S modelled through the Landau-Teller-Jeanes-type relaxation model [7].

In [85] the BGK-NS method has been improved, resulting in the Unified Gas Kinetic Scheme, and

then successfully employed with the Shakhov kinetic model [46]. The S-UGKS also involves the update of

the non-equilibrium distribution function Fn+1
i and employs a discrete integration method in the phase

space with cx|m the mth discrete velocity, then, equation (5.2) becomes

Wn+1
i = Wn

i +
1

∆x

∑
m

tn+1∫
tn

Ψ
(
[cx|mF ]|i−1/2 − [cx|mF ]|i+1/2

)
dt∆cx (5.8)

where the aforementioned Prandtl correction is no longer needed, with F reconstructed on the basis of

the equilibrium distribution function of the Shakhov model. Recently [47] a UGKS for diatomic gas flow

has been developed employing the Rykov model, (4.10). Also in this case, as for the modified BGK model

discussed above, a source term (that needs to be determined) arises in the update of the macroscopic
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variables as

Wn+1
i = Wn

i +
1

∆x

∑
m

tn+1∫
tn

Ψ0

(
[cx|mF0]|i−1/2 − [cx|mF0]|i+1/2

)
dt∆cx+

+
1

∆x

∑
m

tn+1∫
tn

Ψ1

(
[cx|mF1]|i−1/2 − [cx|mF1]|i+1/2

)
dt∆cx +

∆t

2

(
Sn+1
i + Sn

i

) (5.9)

where Ψ0 = (1, cx, c
2, 0)T and Ψ1 = (0, 0, 1, 1)T .

The method is not complete till a procedure is defined to reconstruct the time-dependent gas distri-

bution function at the cell interfaces, F |i+1/2. For most cases [63, 75, 85, 46, 47], the following general

solution of the kinetic model equation (under the assumption of a locally constant collision time) has

been employed with the BGK, Shakhov and Rykov models

F (xi+1/2, t, cx|m) =
1

τ

t∫
tn
Feq(xi+1/2 − cx|m(t− t′), t′, cx|m) exp

(
− t− t′

τ

)
dt′+

+exp

(
− t

τ

)
F 0(xi+1/2 − cx|m(t− tn), tn, c|m))

(5.10)

where Feq is the equilibrium distribution function of the employed kinetic model, and F 0 the reconstructed

initial state. In the early BGK-NS approach [63] an equilibrium initial state is considered, while in the

later version [75] and its successive UGKS a non-equilibrium initial distribution function, based on the

CE expansion of the kinetic model, is used to extend the validity of the scheme towards rarefied flow

conditions. In the limiting case of a well-resolved flow, equation (5.10) assumes a simplified form; as

example for the BGK model, when a non-equilibrium initial distribution is considered, it becomes

F = FM − τ

(
∂FM(T )

∂t
+ c

∂FM(T )

∂x

)
+ t

∂FM(T )

∂t
. (5.11)

The latter limit approach has also been applied in [77, 7] with the multi-temperature BGK model (5.5)

and more recently in [78] including the vibrational degrees of freedom. Recently a GKS has been proposed

in [80] where, instead of equations (5.10) or (5.11), an analytical solution of the BGK equation up to a

second order CE expansion (which results in the Burnett equations in the continuum limit) is used.

Considering that the assumption of a well-resolved flow rules out discontinuities in the reconstructed

distribution function, equation (5.11) leads to simpler schemes but, strictly speaking, valid only for

relatively small perturbances from equilibrium. Moreover, when a departure from the local equilibrium
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condition occurs an approximation of first order in τ is not adequate, and it becomes necessary to include

effects of higher order terms. In this case, it is possible to regularise the CE expansion in order to increase

the validity of the approach. Indeed, as suggested in [79], the collision time in equations (5.11) can be

replaced by a generalised one which depends on not only the local macroscopic variables, but also their

gradients, and is obtained in order to have the kinetic equation satisfied. If, as example, we substitute

equation (5.11) with a modified collision time τ∗ in the extended Shakhov model (4.5) we obtain

τ∗ =
τ

1 + τ(D2FM(T )M/DFM(T ))
(5.12)

where

D =
∂

∂t
+ c

∂

∂x
; D2 =

∂2

∂t2
+ 2c

∂2

∂x∂t
+ c2

∂2

∂x2
. (5.13)

Then, assuming that the particle collision times are independent of the particle velocity, we can take the

moments of the above equation.

Finally, the equilibrium distribution function, if equation (5.10) is employed, (or its derivatives if

the limit equation (5.11) is used) are expressed as Taylor expansions in terms of the internal degrees of

freedom with the coefficients that can be obtained by means of the macroscopic variables relations, as

example equations (4.8) for the Shakhov model, and the compatibility conditions relative to the model

employed, for example equations (5.3) for the BGK model.

Summarising, the BGK-NS and UGKS approaches involve the following steps:

1. reconstruction of the initial condition at the cells interface;

2. evaluation of the coefficient of the Taylor expansions of the equilibrium function or its derivatives;

3. calculation of the numerical fluxes of the macroscopic variables Wn+1
i ;

(a) for the UGKS, calculation of the numerical fluxes of the non-equilibrium distribution function

Fn+1
i ;

4. update of the macroscopic variables Wn+1
i employing the relative equation;

(a) for the UGKS, update of the non-equilibrium distribution function Fn+1
i employing the relative

equation.
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5.2 Gas-Kinetic Scheme for Near-Continuum Flows based on the Shakhov
Model: S-GKS

Integrating in time the non-dimensional Shakhov model system (4.5), in a one-dimensional control

volume dx with discretised space and time steps of ∆x and ∆t respectively, and taking the moments

Ψ = (1, cx, c2)T of F |n+1
i the updated non-dimensional macroscopic variables can be obtained as in

equation (5.8). Here, a uniformly spaced method is employed to discretise the velocity space and the

trapezoidal rule is used to evaluate the moments of the distribution functions. Moreover, we reconstruct

the time dependant distribution function at the cell-faces, i.e. F |i±1/2 (5.10), where the initial condition

is given by the CE solution of the Shakhov model given in appendix G

F = FS − τ

[
∂FM(T )

∂t
+ c

∂FM(T )

∂x

]
. (5.14)

Then, for a well-resolved, as shown in appendix I, we obtain

F = FS − τ

(
∂FM(T )

∂t
+ cx

∂FM(T )

∂x

)
+ t

∂FM(T )

∂t
. (5.15)

Instead of representing the derivatives of the Maxwellian distribution function employing the following

Taylor series in terms of the internal degrees of freedom

∂FM

∂α
= (a1 + a2cx + a3c

2
x)FM (5.16)

as done by Xu and co-workers [7], here we proceed analytically to obtain the derivatives of the Maxwellian

distribution function in terms of the macroscopic variables and their derivatives as follow

∂FM

∂α
= FM

[
1

ρ

∂ρ

∂α
+

1

T

(
c′2

T
−

3

2

)
∂T

∂α
+ 2

c′x
T

∂ux
∂α

]
. (5.17)

These can then be computed at the interface knowing the values at the cells centres. Employing equation

(5.17) in place of equation (5.16) do not require the evaluation of the coefficients an=1,2,3... and provide

the exact analytical derivatives of the Maxwellian distribution function. The time and space derivatives

of the macroscopic variables can be linked by means of the compatibility condition, i.e. conservation

constraint, for the Shakhov model
+∞∫

−∞

Ψ
FS − F

τ
dc = 0 (5.18)

79



evaluated for the employed CE solution

+∞∫
−∞

[
Ψ

(
∂FM (T )

∂t
+ cx

∂FM (T )

∂x

)]
dc = 0. (5.19)

Thus, we obtain
+∞∫

−∞

Ψ
∂FM(T )

∂t
dc = −

+∞∫
−∞

Ψcx
∂FM(T )

∂x
dc (5.20)

which results in

∂WS

∂t
= −

∂QS

∂x
(5.21)

with

WS =

(
ρ, ρux,

3

2
ρTux + ρu2x

)T

; QS =

(
ρux,

1

2
ρT + ρu2x,

5

2
ρTux + ρu3x

)T

. (5.22)

since
+∞∫
−∞

ΨFM (T )dc =

(
ρ, ρux,

3

2
ρ+ ρu2x

)T

+∞∫
−∞

ΨcxFM (T )dc =

(
ρux,

1

2
ρT + ρu2x,

5

2
ρTux + ρu3x

)T

.

(5.23)

To regularise the CE solution (5.14) employed in the time dependant distribution function (5.15), we

introduce a modified collision time τ∗ as follow

F = FS − τ∗
(
∂FM(T )

∂t
+ c

∂FM(T )

∂x

)
(5.24)

and substituting the above equation in the Shakhov model (4.5) the following relation can be obtained

τ∗ =
τDFS

DFM(T ) + τD2FM(T )
. (5.25)

If we consider the particle collision times independent from the particle velocity, we can take moments

of equation (5.25). We decide to take the moment c′xc
′2, thus

τ∗ =
τ⟨DFS⟩

⟨DFM(T )⟩+ τ⟨D2FM(T )⟩
(5.26)

Since the latter τ∗ represents a numerical evaluation of the CE expansion closure we decide to simplify

the approach here neglecting the terms relative to the Prandtl number correction, thus

τ∗ =
τ

1 + τ
⟨D2FM(T )⟩
⟨DFM(T )⟩

(5.27)
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where

⟨DFM (T )⟩ = 5

4

∂
(
ρT 2

)
∂x

+
5

2
ρT

(
∂ux
∂t

+ ux
∂ux
∂x

)

⟨D2FM (T )⟩ = 5

2

(
∂2
(
ρT 2

)
∂t∂x

+
∂2
(
ρT 2ux

)
∂x2

)
+

+T

(
5
∂ρ

∂t

∂ux
∂t

+
5

2
ux

(
∂ρ

∂t

∂ux
∂x

+
∂ρ

∂x

∂ux
∂t

)
+

(
11

2
T + 5u2x

)
∂ρ

∂x

∂ux
∂x

)
+

+ρT

(
5
∂T

∂t

∂ux
∂t

+
5

2
ux

(
∂T

∂t

∂ux
∂x

+
∂T

∂x

∂ux
∂t

)
+
(
11T + 5u2x

) ∂T
∂x

∂ux
∂x

)
+

+ρT

(
5

2

(
∂ux
∂t

)2

+
5

2
ux
∂2ux
∂t∂x

+ 8
∂ux
∂t

∂ux
∂x

+

(
11

4
T +

5

2
u2x

)
∂2ux
∂2x

+ 16ux

(
∂ux
∂x

)2
)
.

(5.28)

Equations (5.28) have been obtained considering equations (5.13) in one-dimension, the chain-rule for

the following derivatives

∂

∂α

(
c′xc

′2cnxFM (T )
)
= cnxFM (T )

∂

∂α

(
c′xc

′2
)
+ c′xc

′2 ∂

∂α
(cnxFM (T ))

∂2

∂α∂β

(
c′xc

′2cnxFM (T )
)
= cnxFM (T )

∂2

∂α∂β

(
c′xc

′2
)
+ c′xc

′2 ∂2

∂α∂β
(cnxFM (T ))+

+cnxFM (T )

(
∂FM (T )

∂α

∂

∂β

(
c′xc

′2
)
+
∂FM (T )

∂β

∂

∂α

(
c′xc

′2
))

(5.29)

and the integrals

+∞∫
−∞

c′xc
′2FM (T )dc = 0 ;

+∞∫
−∞

c′2xc
′2FM (T )dc =

5

4
ρT 2 ;

+∞∫
−∞

c′2xc
′2c′2FM (T )dc =

35

8
ρT 3. (5.30)

The required second derivatives ∂2/∂2t and ∂2/∂t∂x can be expressed deriving the compatibility condition

(5.21) as follow
∂2WS

∂2t
= −2

+∞∫
−∞

Ψcx
∂2FM (T )

∂t∂x
dc−

+∞∫
−∞

Ψc2x
∂2FM (T )

∂2x
dc

∂2WS

∂t∂x
= −∂

2QS

∂x2

(5.31)

with WS and QS defined in equations (5.22). Finally, similar to [77, 7], since ⟨DFM (T )⟩ and ⟨D2FM (T )⟩

will be sensitive to numerical errors (especially close to equilibrium regions where they tend to vanish) a

limiter is needed. In the current work, the following non-linear limiter is used

τ∗ =
τ

1 +max
(
−0.5,min

(
0.0, τ ⟨D2FM (T )⟩

⟨DFM (T )⟩

)) . (5.32)
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Moreover, since equation (5.32) does not guarantee a continuous modification of the collision time, spe-

cially in the transient towards the steady state solution, and this may reduce the stability of the method;

a Laplacian smoothing, see appendix K, is applied to the term

τcorrection =
1

1 +max
(
−0.5,min

(
0.0, τ ⟨D2FM (T )⟩

⟨DFM (T )⟩

)) . (5.33)

Finally the following blending

τ∗ =


τ [1 + (τcorrection − 1) (exp (−a {Kn− 0.05}))] for Kn ≥ 0.05

1 for Kn < 0.05

(5.34)

function of a locally defined Knudsen number

Kn = max(Knρ,KnV ,KnT ) (5.35)

with KnQ defined in equation (1.2), is applied to avoid spurious numerical values when ⟨DFM (T )⟩ ∼ 0

and ⟨D2FM (T )⟩ ∼ 0, i.e. towards continuum conditions where Kn < 0.05. The value a = 12.84849226 is

employed here to have the full correction applied when Kn is of the unit order.
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5.3 Gas-Kinetic Scheme for Near-Continuum Flows based on the Rykov
Model: R-GKS

Integrating in time the non-dimensional, reduced, Rykov model system (4.10) and taking the moments

Ψ0 = (1, cx, c2, 0)T of F0|n+1
i and Ψ1 = (0, 0, 1, 1)T of F1|n+1

i , equation (5.9) with, as discussed in

appendix E, the following source term

∆t

2

(
Sn+1
i + Sn

i

)
=

∆t

2

(
0, 0, 0,

ρ(T |n+1
i − Tr|n+1

i )

Zrτ
n+1
i

+
ρ(T |ni − Tr|ni )

Zrτni

)T

(5.36)

can be obtained for the update of the non-dimensional macroscopic variables. As for the monoatomic

formulation, the velocity space is discretised using a uniformly spaced method and the moments of the

distribution functions are evaluated by means of the trapezoidal rule. Reconstructing the time dependant

distribution functions at the cell-faces, i.e. F0|i±1/2 and F1|i±1/2, consistently on the basis of the CE

solution of the Rykov model, see appendix H for the derivation,

F0 = F eq
0 − τ

[
∂FM (Tt)

∂t
+ c

∂FM (Tt)

∂x

]

F1 = F eq
1 − τ

[
∂ (TrFM (Tt))

∂t
+ c

∂ (TrFM (Tt))

∂x

]
.

(5.37)

for a well-resolved flow, as shown in appendix J, it is possible to obtain

F0 = F eq
0 − τ

(
∂FM (Tt)

∂t
+ cx

∂FM (Tt)

∂x

)
+ t

∂FM (Tt)

∂t

F1 = F eq
1 − τ

(
∂ (TrFM (Tt))

∂t
+ cx

∂ (TrFM (Tt))

∂x

)
+ t

∂ (TrFM (Tt))

∂t

(5.38)

where all derivatives are obtained analytically with the derivative of the Maxwellian defined in equation

(5.17) and

F eq
0 = F t

0 +
F r
0 − F t

0

Zr
; F eq

1 = F t
1 +

F r
1 − F t

1

Zr
. (5.39)

The time derivatives of the macroscopic variables can be obtained in terms of the space derivatives by

means of the compatibility condition for the Rykov model

+∞∫
−∞

[
Ψ0

F eq
0 − F0

τ
+Ψ1

F eq
1 − F1

τ

]
dc = S (5.40)
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written for the CE solutions employed

+∞∫
−∞

[
Ψ0

(
∂FM(Tt)

∂t
+ cx

∂FM(Tt)

∂x

)
+Ψ1

(
∂TrFM(Tt)

∂t
+ cx

∂TrFM(Tt)

∂x

)]
dc = S. (5.41)

Thus

+∞∫
−∞

[
Ψ0

∂FM(Tt)

∂t
+Ψ1

∂TrFM(Tt)

∂t

]
dc = S−

+∞∫
−∞

(
Ψ0cx

∂FM(Tt)

∂x
+Ψ1cx

∂TrFM(Tt)

∂x

)
dc (5.42)

which leads to

∂WR

∂t
= S−

∂QR

∂x
(5.43)

where

WR =

(
ρ, ρux,

5

2
ρT + ρu2x, ρTr

)T

; QR =



ρux

1

2
ρTt + ρu2x

5

2
ρTtux + ρu3x + ρTrux

ρTrux


. (5.44)

being
+∞∫
−∞

Ψ0FM (Tt)dc =

(
ρ, ρux,

3

2
ρTt + ρu2x, 0

)T

+∞∫
−∞

Ψ1TrFM (Tt)dc = (0, 0, ρTr, ρTr)
T

+∞∫
−∞

Ψ0cxFM (Tt)dc =

(
ρux,

1

2
ρTt + ρu2x,

5

2
ρTtux + ρu3x, 0

)T

+∞∫
−∞

Ψ1cxTrFM (Tt)dc = (0, 0, ρTrux, ρTrux)
T

(5.45)

As for the monoatomic case, we introduce the CE solutions (5.37) of the Rykov model (4.10) with a

modified collision time τ∗

F0 = F eq
0 − τ∗

(
∂FM (Tt)

∂t
+ c

∂FM (Tt)

∂x

)

F1 = F eq
1 − τ∗

(
∂ (TrFM (Tt))

∂t
+ cx

∂ (TrFM (Tt))

∂x

) (5.46)

back in the model equation, it is possible to obtain

τ∗DFM (Tt) + τ∗τD2FM (Tt) = τDF eq
0 ; τ∗D (TrFM (Tt)) + τ∗τD2 (TrFM (Tt)) = τDF eq

1 . (5.47)
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Since the difference in the relaxation rate between translational and rotational processes is inherited in

the collision number, Zr, we define a single modified collision time by taking the moment relative to the

total heat flux. Thus, multiplying the first of equations (5.47) by c′xc
′2 and the second one by c′x, and

adding the two resulting equations we obtain

τ∗ =
τ (⟨DF eq

0 ⟩+ ⟨DF eq
1 ⟩)

(⟨DFM(Tt)⟩+ ⟨D {TrFM(Tt)}⟩) + τ (⟨D2FM(Tt)⟩+ ⟨D2 {TrFM(Tt)}⟩)
. (5.48)

As for the S-GKS, we simplify the numerical evaluation of this closure of the CE expansion by neglecting

the terms relative to the Prandtl number correction introduced in the Rykov model, then

τ∗ =
τ

1 + τ
(⟨D2FM(Tt)⟩+ ⟨D2 {TrFM(Tt)}⟩)
(⟨DFM(Tt)⟩+ ⟨D {TrFM(Tt)}⟩)

(5.49)

where

⟨DFM (Tt)⟩ =
5

4

∂
(
ρT 2

t

)
∂x

+
5

2
ρTt

(
∂ux
∂t

+ ux
∂ux
∂x

)

⟨D2FM (Tt)⟩ =
5

2

(
∂2
(
ρT 2

t

)
∂t∂x

+
∂2
(
ρT 2

t ux
)

∂x2

)
+

+Tt

(
5
∂ρ

∂t

∂ux
∂t

+
5

2
ux

(
∂ρ

∂t

∂ux
∂x

+
∂ρ

∂x

∂ux
∂t

)
+

(
11

2
Tt + 5u2x

)
∂ρ

∂x

∂ux
∂x

)
+

+ρ

(
5
∂Tt
∂t

∂ux
∂t

+
5

2
ux

(
∂Tt
∂t

∂ux
∂x

+
∂Tt
∂x

∂ux
∂t

)
+
(
11Tt + 5u2x

) ∂Tt
∂x

∂ux
∂x

)
+

+ρTt

(
5

2

(
∂ux
∂t

)2

+
5

2
ux
∂2ux
∂t∂x

+ 8
∂ux
∂t

∂ux
∂x

+

(
11

4
Tt +

5

2
u2x

)
∂2ux
∂2x

+ 16ux

(
∂ux
∂x

)2
)

(5.50)
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and

⟨D {TrFM (Tt)}⟩ =
1

2

∂ (ρTrTt)

∂x
+ ρTr

(
∂ux
∂t

+ ux
∂ux
∂x

)

⟨D2 {TrFM (Tt)}⟩ =
∂2 (ρTrTt)

∂t∂x
+
∂2 (ρTrTtux)

∂x2
+

+Tr

(
2
∂ρ

∂t

∂ux
∂t

+ 2ux
∂ρ

∂t

∂ux
∂x

+ 2ux
∂ρ

∂x

∂ux
∂t

+
(
Tt + 2u2x

) ∂ρ
∂x

∂ux
∂x

)
+

+ρTr
∂Tt
∂x

∂Tr
∂x

+

+ρ

(
2
∂Tr
∂t

∂ux
∂t

+ 2ux
∂Tr
∂t

∂ux
∂x

+ 2ux
∂Tr
∂x

∂ux
∂t

+
(
Tt + 2u2x

) ∂ρ
∂x

∂ux
∂x

)
+

+ρTr

(
∂2ux
∂2t

+ 2ux
∂2ux
∂t∂x

+ 4
∂ux
∂t

∂ux
∂x

+
(
Tt
2 + u2x

) ∂2ux
∂2x

+ 4ux

(
∂ux
∂x

)2
)
.

(5.51)

can be obtained employing equations (5.13) considering the derivatives defined in equations (5.29), plus

the following derivatives

∂

∂α
(c′xc

n
xTrFM (Tt)) = cnxTrFM (Tt)

∂c′x
∂α

+ c′x
∂

∂α
(cnxTrFM (Tt))

∂2

∂α∂β
(c′xc

n
xTrFM (Tt)) = cnxTrFM (Tt)

∂2c′x
∂α∂β

+ c′x
∂2

∂α∂β
(cnxTrFM (Tt))+

+cnxTrFM (Tt)

(
∂TrFM (Tt)

∂α

∂c′x
∂β

+
∂TrFM (Tt)

∂β

∂c′x
∂α

)
(5.52)

and integrals

+∞∫
−∞

c′xc
′2FM (Tt)dc = 0 ;

+∞∫
−∞

c′2xc
′2FM (Tt)dc =

5

4
ρT 2

t ;
+∞∫
−∞

c′2xc
′2c′2FM (T )dc =

35

8
ρT 3

t

+∞∫
−∞

c′xTrFM (Tt)dc = 0 ;
+∞∫
−∞

c′2xTrFM (Tt)dc =
1

2
ρTrTt.

(5.53)

The second derivatives ∂2/∂t∂x can be expressed in term of only spatial derivatives employing the

compatibility condition (5.42) as follow

∂2WR

∂t∂x
=
∂S

∂x
−
∂2QR

∂x2
(5.54)

where WR and QR are defined in equations (5.44), while the required second time derivative of the mean

velocity can be obtained considering the first of equations (5.31) for the translational part

∂2Wt

∂2t
= −2

+∞∫
−∞

Ψ1cx
∂2FM(Tt)

∂t∂x
dc−

+∞∫
−∞

Ψ1c
2
x

∂2FM(Tt)

∂2x
dc. (5.55)
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Finally, the same limiting and blending approach employed for the monoatomic case in equations (5.32)

and (5.34) as well as a Laplacian smoothing on the term

τcorrection =
1

1 + τ
(⟨D2FM(Tt)⟩+ ⟨D2 {TrFM(Tt)}⟩)
(⟨DFM(Tt)⟩+ ⟨D {TrFM(Tt)}⟩)

(5.56)

is used for the R-GKS. To involve also an index of the translational-rotational relaxation process, the

following definition of the local Knudsen number given in [1]

Kn = max(Knρ,KnV ,KnTt ,KnTr ,
|Tt − Tr|

2Tr
) (5.57)

is employed for the diatomic case.
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Chapter 6

Partially-Rarefied High-Speed Flows
Results and Discussion - MΦC

To verify the implementation of the new polyatomic kinetic models and evaluate the proposed gas-

kinetic schemes alone and in the context of hybrid simulations, different practical applications for a wide

range of Mach numbers and flow conditions have been considered.

Test Case λ∞ T∞ Twall Particle vel. space ∆u

M = 2.05 Shock
cx = (−16u∞; 16u∞)

cy = (−16u∞; 16u∞)
0.5u∞

M = 3.8 Shock
cx = (−24u∞; 24u∞)

cy = (−24u∞; 24u∞)
0.5u∞

M = 9 Shock
cx = (−24u∞; 24u∞)

cy = (−24u∞; 24u∞)
0.5u∞

M = 2.8 Shock
cx = (−16u∞; 16u∞)

cy = (−16u∞; 16u∞)
0.125u∞ ÷ 0.5u∞

M = 10 Shock
cx = (−24u∞; 24u∞)

cy = (−24u∞; 24u∞)
0.5u∞

M = 5 Cylinder Diameter/400
cx = (−24u∞; 24u∞)

cy = (−16u∞; 16u∞)
0.5u∞

M = 4.89 Plate 1.2mm 116K 290K
cx = (−6u∞; 10u∞)

cy = (−8u∞; 8u∞)
0.5u∞

M = 4 Wedge 0.1mm 185.6K 293.3K
cx = (−12u∞; 12u∞)

cy = (−8u∞; 8u∞)
0.5u∞

M = 12 Cylinder Diameter/100 217.5K 1000K
cx = (−24u∞; 24u∞)

cy = (−16u∞; 16u∞)
0.5u∞

Table 6.1: Test cases details.
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Details of the simulations are reported in table 6.1 and wall boundary conditions are considered fully

accommodating. The results presented in the current chapter are part of the following publications:

• Kinetic Models with Rotational Degrees of Freedom for Hybrid Methods. Colonia S., Steijl R. and

Barakos G.N., 6th European Conference on Computational Fluid Dynamics (ECFD VI), ECCO-

MAS 2014, 20-25 July 2014, Barcelona (Spain).

• Kinetic Models and Gas Kinetic Schemes for Hybrid Simulation of Partially Rarefied Flows. Colonia

S., Steijl R. and Barakos G.N., AIAA Atmospheric Flight Mechanics Conference 2015, 5-9 January

2015, Kissimmee (Florida), DOI: 10.2514/6.2015-0521.

• Kinetic Models and Gas Kinetic Schemes for Hybrid Simulation of Partially Rarefied Flows. Colonia

S., Steijl R. and Barakos G.N., AIAA Journal (Articles in Advance), DOI: 10.2514/1.J054137.

• Gas Kinetic Schemes for Hybrid Simulation of Partially Rarefied Flows. Colonia S., Steijl R. and

Barakos G.N., 6th European Conference for Aeronautics and Space Sciences, 29 June to 3 July

2015, Krakow (Poland).

• A Gas Kinetic Scheme for Hybrid Simulation of Partially Rarefied Flows. Colonia S., Steijl R. and

Barakos G.N., Progress in Flight Physics Volume 8 - EUCASS book series, accepted.
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6.1 Discrete Velocity Method - Assessment of the Rykov Model Im-
plementation

For a monoatomic gas the Rykov and the polyatomic ES models reduce, respectively, to the Shakhov

model and the monoatomic ES model [27] and as mentioned in the previous section in [150] a comparison

of monoatomic models is presented showing that the Shakhov model in the majority of cases predicts

more accurate numerical solutions.

Firstly, the implementation of the Rykov model in the framework DVM has been evaluated. Thus,

MΦC has been employed to predict a shock structure at Mach 7 in the same conditions and settings of

the one presented in the literature by Rykov et al. in [4]. As shown in figure 6.1 the solution obtained

is in excellent agreement with the results available in the literature and this confirms the correctness of

the implemented Rykov model.

Afterwards, the Rykov model has been compared with the polyatomic ES model of Andries and his

co-workers [29] with respect to the DSMC results reported in [5] for a normal shock at Mach number 2.8.

From figures 6.2 it is clear that the Rykov model achieves a slightly better agreement with the DSMC

results than the polyatomic ES model.

As a final step, the implemented polyatomic kinetic models have been used to predict the 2D flow

field around a flat plate for which experimental data of temperature profiles in the boundary layer are

available [6]. For all simulations a fully accommodating wall boundary has been employed. The temper-

atures relative difference contours in proximity of the leading edge are shown in figure 6.3d. The Rykov

model leads to good agreement with both experimental and DSMC results, but it slightly over-predicts

the translational temperature in the thermal layer, as it can be seen from figure 6.3a. Moreover, em-

ploying different expressions for the rotational collision number does not affect particularly the solution

of this test case. Looking at figure 6.3b, it is clear that the polyatomic ES model slightly under-predicts

the rotational temperature near the wall, leading also to a higher temperature gradients at the wall com-

pared to the Rykov model. As the Rykov model, the polyatomic ES model predicts a higher translational

temperature in the thermal layer. Figure 6.3c confirms the same conclusions also for the flow at 20mm

from the plate leading edge. However, in this case it is important to notice that the ES model, at the
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moment, does not consider a variation of the ratio of elastic and inelastic collisions with translational and

rotational temperature and this may represent an advantage in terms of accuracy for the Rykov model.

Figure 6.1: Non-dimensional ρ, Tr and Tt normalised profiles for M = 7 normal shock in Nitrogen, Zr eq.
(4.12) and µ eq. (4.17). DVM physical space cell’s size equal to 0.25λ−∞. Comparison between DVM
results form present work and [4].

(a) (b)

Figure 6.2: Non-dimensional ρ, Tr and Tt normalised profiles for M = 2.8 normal shock in Nitrogen,
constant Zr = 4.2 (i.e. Zr = 2.52 for the Rykov model) and µ eq. (4.18). DVM physical space cell’s size
equal to 0.25λ−∞. DSMC results from [5].
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(a) Tt and Tr profiles at x = 5mm from the flat plate
leading edge. (1) Zr eq. (4.12) and µ eq. (4.17); (2) Zr

eq. (4.13) and µ eq. (4.18).
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(b) Tt and Tr profiles at x = 5mm from the flat plate
leading edge.
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(c) Tt and Tr profiles at x = 20mm from the flat plate
leading edge. (d) (Tt − Tr)/Tt contours over the flat plate.

Figure 6.3: DVM results for Nitrogen flow over a 2D flat plate: M = 4.89, Re = 422, Kn = 0.024 and
xref = 5cm. DSMC and experimental results from[6].
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6.2 Assessment of the Analytical Gas-Kinetic Schemes

Computational and memory cost is a major drawback for DVM in hybrid simulations and the use

of the GKS to reduce the extension of the domain where it is strictly required represents a preferable

alternative. To support this assertion different test cases for a wide range of Mach numbers have been

considered, see table 6.1.

Firstly, a simple grid refinement study, for a Mach 2.8 normal shock in Nitrogen, has been conducted

for both physical and phase spaces. As observed from figures 6.4a-b, reducing the velocity step size

further than 0.5u∞ seems not to affect the accuracy of the solution while a physical step size of at least

0.25λ∞ is required to obtain a grid independent solution. Thus the latter settings have been preferred

in all studies shown in this section, however for the test cases that involve fully accommodating wall

boundaries a physical step size of at least 0.125λ∞ is employed at the wall.

Figure 6.5a presents a comparison between the AUSM+ presented in chapter 2 and the GKS for a

monoatomic gas flow around an infinite cylinder at Mach 5. As also reported in the literature [76], it was

confirmed that the GKS is less affected by shock anomalies than more commonly employed numerical

schemes like the AUSM+. Furthermore, the AUSM+ solution displays spurious pressure oscillations at

the edge of the boundary layer, as previously reported in [169], while the GKS solution is not affected by

this issue.

As shown in figures 6.6a-c for Argon and figures 6.7a-d and 6.8a-d for Nitrogen; the GKS is able

to resolve shock structures with and without rotational non-equilibrium in contrast to more traditional

single-/multi-temperature NS approaches [15, 14], where shock capturing approaches are used to solve

models in which it is assumed a single temperature to describe the distribution of energy in the transla-

tional and rotational modes. However, due to the continuum formulation, it predicts steeper shocks when

compared to the DSMC solutions presented in [5]. A better shock structure prediction can be obtained

when equations (5.26) or (5.49) are employed to modify the collision time as it is possible to notice from

figures 6.6a-c, 6.7c-d and 6.8c-d. Even so, significant differences between GKS and DSMC results can

still be observed for the higher Mach number cases in figures 6.6c and 6.8c-d. This is probably due to

93



the well-resolved flow assumption which does not allow to represent the typical bi-modal behaviour of

the distribution function across shock waves at very high Mach numbers (Mach > 4).

(a) (b)

Figure 6.4: Non-dimensional ρ, Tr and Tt profiles for M = 2.8 normal shock in Nitrogen, constant Zr and
µ eq. (4.18). GKS physical space cell’s size equal to 0.125÷ 0.5λ−∞.

(a) (b)

Figure 6.5: Non-dimensional T contours for M = 5 monoatomic gas flow over an infinite cylinder with
Kn = 0.0025, based on the diameter, and adiabatic inviscid wall boundary condition. Comparison
between GKS and AUSM+ results from present work.
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(a) M = 2.05. (b) M = 3.8.

(c) M = 9.

Figure 6.6: Non-dimensional ρ and T normalised profiles for normal shocks in Argon at different Mach
numbers, µ eq. (4.18). GKS physical space cell’s size equal to 0.25λ−∞. DSMC and experimental results
from [5].
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(a) (b)

(c) (d)

Figure 6.7: Non-dimensional ρ, Tr and Tt normalised profiles for M = 2.8 normal shocks in Nitrogen,
constant Zr = 4.2 (i.e. Zr = 2.52 for the Rykov model) and µ eq. (4.18). GKS physical space cell’s size
equal to 0.25λ−∞. DSMC results from [5].
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(a) (b)

(c) (d)

Figure 6.8: Non-dimensional ρ, Tr and Tt normalised profiles for M = 10 normal shocks in Nitrogen,
constant Zr = 5 (i.e. Zr = 3 for the Rykov model) and µ eq. (4.18). GKS physical space cell’s size equal
to 0.25λ−∞. DSMC results from [5].
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To further evaluate the proposed GKS, different two-dimensional cases, shown in table 6.1, have been

investigated. In all cases the gas considered was Nitrogen and wall boundaries were fully accommodating,

i.e. equation (4.28) with σ = 1 is employed as mentioned in section 4.6.1. For the flat plate and the

25◦ wedge predictions have been obtained employing the GKS, with and without modified collision time;

while for the infinite cylinder also a hybrid approach, where the DVM is employed to solve the bow

shock while the GKS is used in the rest of the domain, has been considered. The computational grids

are presented in figures 6.9a-c and the hybrid setup for the cylinder case is shown in figure 6.9d. Some

additional details about number of cells and computational times can be found in table 6.2 of the next

section.

x (mm)

Y
 (

m
m

)

0 10 20 30
0

10

20

30

(a) Flat plate. (b) 25◦ wedge.

(c) Cylinder, diameter 8cm. (d) Cylinder, DVM and GKS domains.

Figure 6.9: Computational grids for two-dimensional flat plate, wedge and cylinder test cases. In (a),
(b) and (c) different colors represent different blocks; in (d) the part of the domain solved employing the
GKS is defined in red while the DVM region in blue.
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Figures 6.10c and 6.11c present the relative difference between translational and rotational temper-

atures for the flat plate predicted by the GKS approach with and without modified collision time. As

expected, the main differences between the two temperatures can be observed in the first part of the

plate where strong viscous interaction and rarefaction effects occur. When compared with figure 6.3d

obtained with the DVM approach, it is clear that, due to its continuum formulation, both the GKS and

the GKSτ∗ methods can not correctly predict the rarefaction effects extending upstream of the plate.

Nevertheless, looking at figure 6.10a, the GKS results prove to be in good agreement with the DVM and

both the experimental data and the DSMC calculations from [6] at 5mm from the plate leading edge.

The biggest differences between GKS and DVM predictions, defined here as

△ =
|ΦDVM − ΦGKS|

|ΦDVM |
× 100%, (6.1)

occur when the local Knudsen number, equation (5.57), is much higher than the commonly employed

threshold, i.e. 0.05 [49], as shown in figure 6.10b. As it is possible to notice from figures 6.11a, when

the modified collision time is employed a slightly thicker thermal layer, in better agreement with the

one predicted by the DVM, is predicted and smaller differences between the GKSτ∗ and the DVM are

observed where the Kn number is around the continuum breakdown limit, as shown in figure 6.11b.

However, both GKS and GKSτ∗ predict the quantities at the wall with a difference less then 5% relative

to DVM calculations. In figure 6.13, τcorrection, equation (5.56), contours are presented showing that

the collision time correction is mainly active in the first part of the plate where strong non-equilibrium

effects are predominant in accordance with the flow features previously described. When compared with

the results from Xu et al. [7], as shown in figure 6.12, the proposed GKS is in better agreement with

experimental data and DSMC results for the translational temperature at the wall. This is probably

due to the fact that in the present work the GKS is based on the Rykov model which directly involves

a correction that in the continuum limit leads to a variable Prandtl number, depending on the collision

number Zr, as demonstrated in appendix H. Instead, in [7] the scheme is based on a multi-temperature

BGK model and a rescaling of the energy fluxes involving a fixed Prandtl number is employed as shown

in equation (5.4). Therefore, considering a variable Prandtl number in region where important thermal
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non-equilibrium effects occur, such as the wall for the current test case, should lead to more accurate

predictions. Moreover, in [7] equation (4.11) for the collision number Zr is employed. The latter neglect

any dependence on the difference between translational and rotational temperatures.
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x = 5 mmKn x = 0.24

(a) Tt and Tr profiles at x = 5mm from the flat plate
leading edge. DSMC and experimental results from [6].

(b) R-GKS and DVM results difference and local Kn,
equation (5.57), at x = 5mm from the flat plate leading
edge.

(c) (Tt − Tr)/Tt contours.

Figure 6.10: R-GKS results for Nitrogen flow over a 2D flat plate: M = 4.89, Re = 422, Kn = 0.024 and
xref = 5cm. Zr eq. (4.12) and µ eq. (4.17).
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(a) Tt and Tr profiles at x = 5mm from the flat plate
leading edge. DSMC and experimental results from [6].

(b) R-GKSτ∗ and DVM results difference and local Kn,
equation (5.57), at x = 5mm from the flat plate leading
edge.

(c) (Tt − Tr)/Tt contours.

Figure 6.11: R-GKSτ∗ results for Nitrogen flow over a 2D flat plate: M = 4.89, Re = 422, Kn = 0.024
and xref = 5cm. Zr eq. (4.12) and µ eq. (4.17).
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Figure 6.12: R-GKS and Xu et al. [7] results comparison for Nitrogen gas flow over a 2D flat plate:
M = 4.89, Re = 422, Kn = 0.024 and xref = 5cm. Zr eq. (4.12) and µ eq. (4.17). DSMC and
experimental results from [6].

Figure 6.13: τcorrection, equation (5.56), contours for Nitrogen flow over a 2D flat plate: M = 4.89,
Re = 422, Kn = 0.024 and xref = 5cm. Zr eq. (4.12) and µ eq. (4.17).
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For the 25◦ wedge strong non-equilibrium effects can be observed not only at the leading edge but

also across the oblique shock, see figures 6.14c and 6.15c obtained respectively employing the GKS, the

GKSτ∗ and the DVM approaches. As for the flat plate, again, the GKS is not able to correctly predict the

rarefaction effects upstream of the wedge in contrast to the DVM approach, figure 6.17, even when the

modified collision time is used. In figures 6.14a-b a comparison between GKS results and the calculations

of [45] at 5mm from the leading edge is presented. As observed before for the normal shock cases, the

GKS is able to resolve the shock structure, moreover the results are in good agreement with both hybrid

and DSMC solutions presented in [45]. In [45] hybrid solutions have been obtained employing the DSMC

method in regions of the domain with a local Knudsen number higher than 0.02 leaving the simulation

of the rest of the domain to a traditional single-temperature NS approach. As shown in figure 6.14c, the

biggest differences between GKS and DVM results take place across the shock where the local Knudsen

number is greater than 0.1. Looking at Figure 6.15a-b, it is clear that considering the modified collision

time leads to a solution in better agreement with the DVM approach. However, the difference between

the two solution also becomes minimal across the shock as shown in figure 6.15c. This was expected

since the DVM predicts a solution of the Rykov model of which the GKS can represent only a first

order approximation and regularising the CE expansion should lead towards the more accurate solution

of the model. What was not expected is that the GKS results are in better agreement with the hybrid

and DSMC calculations from the literature respect the DVM and the GKSτ∗ solutions. The differences

between the DVM and the DSMC predictions can be explained considering that the former solves a

simplified deterministic model of the BTE where the collision time τ does not depend on the particle

velocities. Thus, the behaviour of the GKS is only fortuitous in this case. Anyhow, also for the wedge, as

for the flat plate, both GKS and GKSτ∗ predict the quantities at the wall with a difference less then 5%

relative to DVM calculations. Finally, as expected considering the flow field characteristics mentioned

above, the correction is mainly active at the leading edge and across the oblique shock, as can be seen

figure 6.16.
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(a) ρ profiles at x = 5mm from the wedge leading edge.
Hybrid results from [45].
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(b) Tt profiles at x = 5mm from the wedge leading edge.
Hybrid results from [45].

(c) R-GKS and DVM results difference and local Kn,
eq. (5.57), at x = 5mm from the wedge leading edge.

(d) (Tt − Tr)/Tt contours.

Figure 6.14: R-GKS results for Nitrogen flow over a 25◦ 2D wedge: M = 4. Zr eq. (4.12) and µ eq.
(4.17).
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(a) ρ profiles at x = 5mm from the wedge leading edge.
Hybrid results from [45].

(b) Tt profiles at x = 5mm from the wedge leading edge.
Hybrid results from [45].

(c) R-GKS and DVM results difference and local Kn,
eq. (5.57), at x = 5mm from the wedge leading edge.

(d) (Tt − Tr)/Tt contours.

Figure 6.15: R-GKSτ∗ results for Nitrogen flow over a 25◦ 2D wedge: M = 4. Zr eq. (4.12) and µ eq.
(4.17).
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Figure 6.16: τcorrection, equation (5.56), contours for Nitrogen flow over a 25◦ 2D wedge: M = 4. Zr eq.
(4.12) and µ eq. (4.17).

Figure 6.17: R-DVM prediction of (Tt − Tr)/Tt contours for Nitrogen flow over a 25◦ 2D wedge: M = 4.
Zr eq. (4.12) and µ eq. (4.17).
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Regarding the cylinder test case, looking at the relative differences between translational and rota-

tional temperatures shown in figures 6.18 and 6.19c, it is possible to notice that high level of thermal

non-equilibrium occur across the bow shock. Moreover, a region where the rotational temperature is big-

ger than the translational one can be observed towards the shoulder of the cylinder due to the expansion

waves generated by the cylinder curvature. Figures 6.18a-b and 6.19a-b show density and temperatures

profiles for the section at 45◦ respect the cylinder symmetry plane. Both GKS and GKSτ∗ correctly

predict the shock position as well as quantities and gradients at the wall in comparison to the results

of the Modular Particle-Continuum (MPC) method of [54]. However, a thinner shock is obtained even

when the modified collision number is employed. This was previously observed for the normal shock

cases at high Mach numbers and the same explanation can be applied here. In figure 6.21 the collision

time correction contours are presented, confirming once again that the correction is active where non-

equilibrium effects occur accordingly with the flow field features. In this case across the bow shock and

at the wall in the expansion region towards the cylinder shoulder. A better shock structure prediction

can be obtained using the hybrid approach as can be observed in figures 6.20a-b. Here for the hybrid

approach the DVM is employed in a region around the bow shock while the rest of the domain is simu-

lated using the GKS, see figure 6.9d. The information exchange between the two solver has been handled

employing the state-based coupling described in section 4.5 with an overlap region extension of about 10

cells. Differences can be still observed between the hybrid results from the present work and the ones

in [54]. As for the wedge case the reason of this discrepancies can be found in the different methods

employed. Indeed in [54] a DSMC method is used where rarefaction effect are dominant while in the

present work a DVM, which solves only a simplified model of the BTE, is employed. When employed in

a hybrid simulation, as noticeable in figures 6.20c, the transition between the GKS and the DVM solvers

at the interface is naturally smooth, no blending of the two solutions has been applied in the overlap

region, due to the common root of the approaches. This and the extended validity of the the GKS also

suggest a reduction of the hybrid simulations’ sensitivity to the positioning of the interfaces. However,

the latter point requires further investigations.
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(a) ρ profiles at 45◦. Hybrid (MPC) results from [54]. (b) Tt and Tr profiles at 45◦. Hybrid (MPC) results
from [54].

(c) (Tt − Tr)/Tt contours.

Figure 6.18: R-GKS results for Nitrogen flow over a 2D cylinder: M = 12, Kn = 0.01 and xref = 8cm.
Zr eq. (4.12) and µ eq. (4.17).
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(a) ρ profiles at 45◦. Hybrid (MPC) results from [54]. (b) Tt and Tr profiles at 45◦. Hybrid (MPC) results
from [54].

(c) (Tt − Tr)/Tt contours.

Figure 6.19: R-GKSτ∗ results for diatomic gas flow over a 2D cylinder: M = 12, Kn = 0.01 and
xref = 8cm. Zr eq. (4.12) and µ eq. (4.17).
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(a) ρ profiles at 45◦. Hybrid (MPC) results from [54]. (b) Tt and Tr profiles at 45◦. Hybrid (MPC) results
from [54].

(c) Mach contours.

Figure 6.20: R-GKS/DVM hybrid results for Nitrogen flow over a 2D cylinder: M = 12, Kn = 0.01 and
xref = 8cm. Zr eq. (4.12) and µ eq. (4.17).
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Figure 6.21: τcorrection, equation (5.56), contours for Nitrogen flow over a 2D cylinder: M = 12, Kn = 0.01
and xref = 8cm. Zr eq. (4.12) and µ eq. (4.17).
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6.3 Computational and memory cost

The GKS is implemented with an optimisation feature so that the particle velocity space dimensions

depend on the local state, while at the moment due its complexity this feature is not available in the DVM

for the kinetic Boltzmann equations in MΦC. To perform a fair comparison about the computational

time for the two approaches constant velocity spaces were used. Furthermore, it needs to be reminded

that the halo exchange in the GKS involves only the flow state while the DVM needs to exchange the

full velocity space and this represents an advantage of the GKS relative to the DVM and the full UGKS

when a parallel calculation is performed. All simulations are steady state and a local time stepping is

Test Case Phys. Cells Vel. Cells Solver CFL Cores Iterations Time (min)

M = 2.8 Shock 352 64× 64 DVM 0.9 8 1838 15

M = 2.8 Shock 352 64× 64 GKS 0.9 8 8066 6.5

M = 2.8 Shock 352 64× 64 GKSτ∗ 0.7 8 8336 7

M = 4.89 Plate 12996 32× 32 DVM 0.7 16 9178 877.5

M = 4.89 Plate 12996 32× 32 GKS 0.9 16 16526 81

M = 4.89 Plate 12996 32× 32 GKSτ∗ 0.9 16 16865 86

M = 4.0 Wedge 28016 48× 32 DVM 0.7 64 29494 1925

M = 4.0 Wedge 28016 48× 32 GKS 0.9 64 24552 107

M = 4.0 Wedge 28016 48× 32 GKSτ∗ 0.9 64 25397 115

M = 12.0 Cylinder 110544 96× 64 GKS 0.9 256 178598 17177

M = 12.0 Cylinder 110544 96× 64 GKSτ∗ 0.9 256 173373 17159

M = 12.0 Cylinder

DVM:

50544

GKS:

61000

96× 64 DVM/GKS 0.7 256 160656 75669

Table 6.2: Test cases details and computational time.

employed. The runs have been performed on Intel R⃝ Xeon R⃝ processors at the University of Liverpool

cluster ”Chadwick” and solution have been considered converged when the L2-norm of the update be-

tween two consecutive solution, defined in appendix L, is of order 10−8 for all the macroscopic variables.

The reason for the latter choice was the necessity to define a common convergence index for DVM and

GKS to compare their performance, since being completely different approaches the relative residuals,

normally used as convergence index, have different meanings. In table 6.2 the computational time for the
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studied cases are reported and the GKS is found to be from 50% to 90% faster than the DVM depending

on the case considered. This is due to the smaller time needed by the GKS per iteration, around 10 times

smaller than the DVM. Moreover only a minimal increase in computational time is observed when the

modified collision time is employed. In fact, in this case only the further requirement of evaluating the

second derivatives is needed since the collision time modification is defined fully analytically as shown in

sections 5.2 and 5.3 for monoatomic and diatomic gases respectively. Figures 6.22, 6.23 and 6.24 show

the trends of L2-norm of the update between two consecutive solution steps with the number of iterations

for some of the two-dimensional cases considered in the current chapter. Finally, in terms of the memory

cost of the GKS, the latter is drastically reduced compared with the DVM and the full UGKS. Indeed,

in the DVM and the UGKS the values of the distribution function need to be stored for each physical

cell in the full velocity space while the GKS being employed in the context of a continuum solver requires

only the storage of the primitive variables.

Thus, employing the GKS in place of the DVM where the fluid is near thermal equilibrium, the

performance of the hybrid solver can be improved in both memory and CPU time requirements, this

without significantly compromising the accuracy as shown in section 6.2.

Considering an implicit approach can allow much larger CFL numbers to be used and relieve the re-

striction in time step due to the presence of the source term in the kinetic Boltzmann equations. However,

this represents a complex step when the DVM is involved. Indeed, implicit time integrations require to

store the solution at different time levels and in the case of the DVM this would include also the velocity

distribution function. Thus, this would further increase the memory cost of the method. Instead, regard-

ing the GKS an implicit implementation should be considered since, as more conventional NS approaches,

it would require to store only the flow solution at different time levels. However, an important limitation

when employing GKS methods is the higher computational cost than more traditional NS approaches.

This is due to the numerical integrals required to obtain the the update of the conservative variables,

see equation (5.2). For this reason, before considering an implicit implementation, the evaluation the

Jacobian whould be affected by the high number of operations necessary to compute the integrals, a first

improvement should be the fully analytical definition of the scheme.
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(a) R-GKS. (b) R-GKSτ∗.

Figure 6.22: L2-norm of the update between two consecutive solution for the flat plate test case.

(a) R-GKS. (b) R-GKSτ∗.

Figure 6.23: L2-norm of the update between two consecutive solution for the 25◦ wedge test case.
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(a) R-GKS.

(b) R-GKSτ∗.

Figure 6.24: L2-norm of the update between two consecutive solution for the cylinder test case.
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6.4 Conclusions

It has been observed that the Shakhov and Rykov models achieve a generally better behaviour for

flows with strong shocks than the ES models confirming what was previously reported in [150]. For this

reason and the simpler mathematical formulation of the Shakhov and Rykov models, relative to the ES

models, the former models have been chosen for the derivation of the analytical GKS in chapter 5.

The prediction of flow fields where rarefied and continuum regions coexist requires the solution of two

models, the NS equations and the BTE. Since the methods to solve the BTE equation are expensive, the

reduction of the region where this is strictly required could improve the performance of hybrid simula-

tions. For these reasons a GKS for near-continuum regime has been proposed.

The scheme has been tested for various cases and Mach numbers proving to produce reliable predic-

tions for near-continuum flows. Regarding the computational time, when compared with a kinetic DVM

solver, the near-continuum GKS solver was found to be between from 50% to 90% faster than the former.

Furthermore, due to the lower number of variables that need to be stored the GKS is less expensive in

terms of memory than the DVM and the full UGKS. The memory usage of the proposed GKS is similar to

traditional NS solvers which store only the continuum variables at the cell centres at different time levels.

This proves that GKS can be a viable way to improve the performance of hybrid simulations maintaining

an acceptable level of reliability when used in place of more complex methods for weekly rarefied flows.

Finally, when employed in a hybrid simulation the transition between the GKS and the DVM solvers

at the interface is naturally smooth, suggesting a reduction of the hybrid simulations’ sensitivity to the

positioning of the interfaces.
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Chapter 7

Complex Three-Dimensional Cases for
the GKS: Waveriders

7.1 Introduction

The recent successes of the Boeing X-51 (figure 7.2a) and the ESA IXV (figure 7.2b) as well as ongoing

projects, such as the ESA HEXAFLY and LAPCAT projects (figure 7.2c) show a renewed interest in

high-speed vehicles, designed following waverider’s principles, for commercial and defense applications.

Moreover, this is driving research on design solution, performance and optimisation in United States

[170, 171, 172, 173], Europe [174, 175, 176, 177, 178] and China [179, 180] as well as in other countries

[181, 182, 183, 184, 185].

The easy access to methods to design own waveriders shapes [186, 187, 188] makes them an appeal-

ing candidate to evaluate the capability of numerical methods for high-speed flows to predict complex

3D flow fields. A waverider is a shape designed from a known hypersonic, typically conical, flow field

such that the shock is attached along the outer leading edge, see figure 7.1. The design procedure of a

waverider is an inverse process which requires as inputs the definition of the shock generating surface,

the vehicle’s trailing edge and the design free stream Mach number. Then, the lower surface is generated

tracing backwards stream-lines from the prescribed trailing edge, while the upper surface is generally

aligned with the free-stream. Thanks to the leading edge attached shock wave, forming a high pressure

zone on the lower surface, a waverider is able to generate lift and the corresponding wave drag.

The easiest way to construct the lower surface of a waverider is to employ a wedge flow [189] for which

the flow conditions are exactly determined by the oblique shock relations. More general shapes can be
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Figure 7.1: Example of a waverider shape from a conical flow.

obtained by employing circular cone flow [186]. In this case, introducing conical coordinates and assum-

ing inviscid flows, the flow variables between the shock and the cone surface can be exactly calculated by

solving the Taylor-Maccoll equation [190] or the hypersonic small disturbances theory. To increase the

design flexibility for more general shocks geometries the osculating cone design method was developed

in [187, 188] based on the class of methods to compute the flow field behind a given oblique shock wave

presented in [187].

The classical waverider design procedures consider inviscid flow fields. Therefore, a realistic design

requires that viscous effects must be accounted. Viscous effects, taken into account in the design process

for the first time in [191], in this context are wall-shear stress and weak or strong hypersonic viscous inter-

action as well as, at high altitudes, rarefaction effects. Generally, viscous effects reduce the aerodynamic

performance roughly from 25% to 50% [192]. Moreover, due to manufacturing limits and aero-heating

issues, in reality waveriders have blunted leading edges and this also significantly reduces the lift-to-drag

ratio [193]. However, the various studies on the performance of waveriders with blunt leading edges

available in the literature show that optimum design points in terms of aerodynamic performance and

aero-heating issues can be found [194].

118



(a) Boeing X-51 Waverider [195]. (b) ESA Intermediate eXperimental re-entry Vehicle
(IXV) [196].

(c) ESA completely integrated vehicle concept for Mach 8 flight, designed in the context of
the HEXAFLY [197] and LAPCAT [198] projects.

Figure 7.2: Example of current vehicles designed employing waverider concepts.

119



7.2 Results

As mentioned in section 1.4, for the development of a CFD method it is important to guarantee the

capability to cope with practical and realistic applications. For this reason also a fully three-dimensional

formulation of the proposed GKS has been implemented in MΦC. In this section we present some results

where the 3D GKS method have been employed alone, i.e. not coupled with DVM, to simulate the flow

field around the waverider vehicle shown in figures 7.3a-b at Mach 8 for different Knudsen numbers with

T∞ = 116K and Twall = 2.5T∞. The choice of this design was driven by the availability in the literature

of methods to build own waverider shapes and the renewed interest in this type of vehicle for high-velocity

commercial and defense applications, as discussed in section 7.1. The shape has been derived following

the work of Rasmussen and co-workers [186], but employs the higher order formulation of the hypersonic

small disturbances theory presented in [199] to obtain a more accurate prediction of the shock angle in

the design process. A generating cone angle of 10◦ and a straight-line compression-surface trailing edge,

placed around 50% of the shock radius at the base of the generating cone as shown in figure 7.3c, have

been chosen as design parameters. Finally, a blending of the leading edge has been considered with a

constant radius of 0.05% the length of the waverider. The gas considered was Nitrogen. For this test case,

the GKS method has been employed without modified collision time. Moreover, the power law defined

in equation (4.18) with ω = 0.72 has been used for the viscosity and the expression of [156], equation

(4.13) with b = 1, was considered for the rotational collision number Zr.

As expected, looking at figure 7.4a it is clear that for the highest Knudsen number case, KnL =

λ∞/Length = 0.001 (KndLE
= λ∞/diameterLE = 1), the flow fields shows high thermal non-equilibrium

around the waverider nose where also important viscous interaction effects occur. Significant rarefac-

tion effects can be observed also across the shock wave and in the boundary layer over the upper body

surface, see figure 7.4b. As can be noticed from figures 7.5a-b, when the Knudsen number is reduced

to KnL = 0.0004 (KndLE
= 0.4) the non-equilibrium region around the vehicle nose becomes smaller

as well as less intense rarefaction effects occur in the boundary layer. By further reducing the Knudsen

number to KnL = 0.0002 (KndLE
= 0.2) less rarefaction effects can be observed except for the region
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downstream the bow shock around the nose, see figure 7.6a. Indeed, the Knudsen number based on

the nose diameter is still clearly in the rarefied domain. Furthermore, figure 7.6b shows how the shock

becomes ever thinner relative to the waverider dimensions with decreasing Kn.

(a) Computational grid, around 3 million cells, and Tr
contours.

(b) Mach contours.

(c) Straight line compression-surface trailing edge and
Tt contours.

Figure 7.3: Waverider design, dLE = Length/103.

121



(a) Symmetry plane. (b) Section at 0.5L from the waverider nose.

Figure 7.4: (Tt − Tr)/Tt contours for Nitrogen flow over a waverider at KnL = 0.001 (KndLE
= 1),

R-GKS solution.

(a) Symmetry plane. (b) Section at 0.5L from the waverider nose.

Figure 7.5: (Tt − Tr)/Tt contours for Nitrogen flow over a waverider at KnL = 0.0004 (KndLE
= 0.4),

R-GKS solution.
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(a) Symmetry plane.

(b) Section at 0.5L from the waverider nose.

Figure 7.6: (Tt − Tr)/Tt contours for Nitrogen flow over a waverider at KnL = 0.0002 (KndLE
= 0.2),

R-GKS solution.
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7.3 Conclusions

In this chapter we have seen that the GKS can cope with flow fields around complex three-dimensional

geometries such as waverider shapes and correctly predict the main flow features. Moreover, from the

discussion presented in section 6.2 can be assumed that the predicted shock position, quantities and

gradients at the wall as well as boundary layer thickness are reliable. This, as shown in section 6.3, at

a considerably smaller cost in computational time and memory when compared to DVM calculations.

Indeed, previous simulations of the flow field around a waverider presented in [100, 102] and obtained

using a DVM/AUSM+ hybrid approach required the use of tier-0 supercomputers, such as the Super-

MUC supercomputer [9], due to the memory cost of the DVM; while the GKS allowed to obtain the

results presented in the current chapter employing the local cluster Chadwick [8]. Therefore the GKS

methods can represent a valid alternative to perform preliminary studies on complex high-speed vehicles,

with important rarefaction effects, employing a limited amount of computational resources than the one

required by more advanced methods such as the DVM and hybrid approaches.
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Chapter 8

Conclusions and Future Works

8.1 Summary of Findings

As discussed in section 1.3, the aim of this work was to develop the numerical tools available at the

CFD Laboratory of the University of Liverpool towards the simulation of high-speed flow, particularly

partially-rarefied flows with fully excited translational and rotational modes. The CFD codes improved

in the context of the present work are the Helicopter Multi-Block (HMB2) solver and the Multi-Physics

Code (MΦC) described in sections 2 and 4, respectively. The former is a continuum solver previously

employed in a wide range of fluid dynamics applications and the latter is a computational framework

which allows different mathematical models to be employed in different regions of the flow domain.

Firstly, to improve the capability of the two codes to predict continuum high-speed flow, the implicit

implementation of the AUSM+ and AUSM+up schemes with an analytically defined Jacobian has been

considered. A novel formulation of the AUSM+ and AUSM+up schemes has been proposed in chapter

2 where a blending has been introduced by means of parametric sigmoidal functions at the points of

discontinuity of the numerical fluxes. This to remove the different branches present in the original

formulation, which would increase the computational cost and reduce the stability for cases with complex

flow transient or grid geometry. In chapter 3 the predictions obtained employing the proposed AUSM+

and AUSM+up formulations have been compared with results available in the literature showing that

the reliability of the schemes has been preserved in the proposed formulation.

A DVM solver is the preferable approach employed in MΦC to predict flows in rarefied conditions.

In rarefied gas flows at high velocities it is necessary to take into account the excitation of the internal
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degrees of freedom, thus, as a step towards realistic simulations, the framework has been firstly improved

with the addition of the Rykov model and an Ellipsoidal-Statistical (ES) model [29] for diatomic gases

with rotational non-equilibrium. In chapter 6 it has been observed that the Shakhov and Rykov models

achieve a generally better behaviour for flows with strong shocks than the ES models confirming what

was previously reported by [150]. For this reason and the simpler mathematical formulation, relative to

the ES models, of the Shakhov and Rykov models, the latter have been chosen for the derivation of the

analytical GKS in chapter 5.

A major drawback using a DVM in the hybrid approach available in MΦC is its computational and

memory cost. Based on the literature survey of related works, GKS methods have been identified as

efficient approaches, relative to DVM, capable of modelling complex diatomic gas flows with moderate

rarefaction effects but with significant rotational non-equilibrium and thus, when employed in the context

of hybrid simulation, they can reduce the extent of the domain where more complex numerical methods,

such as the DVM, are needed.

For this reason, two GKS methods, analytically-defined on the basis of the CE expansion of non-

dimensional Shakhov and Rykov models, have been proposed in chapter 5 to simulate weakly rarefied

flows. In chapters 6 and 7 the scheme has been tested for various cases and Mach numbers proving to

produce reliable predictions for near-continuum flows for a wide range of test cases including complex

3D flows. When compared with a kinetic DVM solver in chapter 6, the near-continuum GKS solver was

found to be between from 50% to 90% faster than the former and due to the lower number of variables

that need to be stored, the GKS is less expensive in terms of memory than the DVM and the full UGKS.

Moreover, when employed in a hybrid simulation the transition between the GKS and the DVM solvers

at the interface is naturally smooth suggesting a reduction of the hybrid simulations’ sensitivity to the

positioning of the interfaces. Thus, in chapter 6 it has been shown that GKS can be a viable way

to improve the performance of hybrid simulations maintaining an acceptable level of reliability if used

in place of more complex methods for weekly rarefied flows. Although more advanced approaches can

represent the flow physics to a deeper level, this come to a cost in computational resources not always

readily accessible. In this context the GKS methods can be employed to perform preliminary studies
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on complex high-speed vehicles with important rarefaction effects, as shown in chapter 7, employing less

computational resources than the one required by more advanced methods such as the DVM or hybrid

approaches.
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8.2 Future Works

An important limitation observed while employing GKS methods is the higher computational cost,

relative to more traditional NS approaches, due to the numerical evaluation of the required moments in

velocity space [86]. For this reason, a first improvement should be the fully analytical definition of the

moments to obtain a formulation of the scheme where no numerical evaluation of integrals is needed.

This would lead to a more efficient algorithm respect the presented formulation where a trapezoidal rule

is employed to evaluate the required integrals making the efficiency of the scheme dependant on the

Mach number which affect the velocity space dimensions. The latter improvement is currently under

development in the present framework.

Furthermore, based on previous theoretical works [81], recent studies in [82, 83] employing the BGK-

NS scheme showed how GKS methods can also improve simulations of turbulent flows thanks to their

multiscale approach. In this cases [82, 83] the BGK-NS method is used, however in high-speed flows

thermal non-equilibrium often occurs. Thus, as a further development, the modification of the proposed

schemes to include the relation between the relaxation time and the turbulent quantities presented in

[82, 83] would also open the possibility to include turbulence phenomena when simulating flows with

strong thermal non-equilibrium effects using GKS methods.

In the current work only translational and rotational non-equilibrium have been considered, limiting

the applications of the presented methods to flow field with temperatures lower than 800K. Thus, a

third suggested improvement is the extension of the proposed GKS to include also vibrational degrees

of freedom. In real world applications, the latter are gradually excited, in contrast to the translational

and rotational ones that are in general fully excited. Although kinetic models with the correct transport

properties in the continuum limit that consider also the vibrational degrees of freedom are not available

following the work in [78], for the BGK-NS method in one-dimensional problems, a three temperature

equilibrium Maxwellian could be considered in the Rykov model. As in [78] a Landau-Teller-Jeans type

relaxation model could be used for the vibrational energy equation source term and a simple harmonic

oscillator model could be considered to evaluate the effective number of degrees of freedom depending on
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the temperature. In the literature examples are given where vibrational non-equilibrium is considered in

an hybrid method [1]. Finally, another important aspect in high-speed and re-entry flows are chemical

reactions. Then, after the introduction of vibrational non-equilibrium, chemical reactions models should

also be considered in the framework. As a first step the latter can be considered employing a classical

approach as done for more traditional NS solvers [15, 14, 200]. In this approach, it is assumed that

the translational and rotational modes are in equilibrium and are treated as a single temperature, while

the other energy modes are treated as different non-equilibrium temperatures, as already mentioned in

section 1.1. Alternatively, more advanced methods such as state-to-state models are available in the

literature, as example in [201, 202, 203, 204]. The latter represent the non-equilibrium kinetic processes

in terms of master equations which take into account the cross sections for the chemical reactions and

the vibrational transition probabilities.
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Appendix A

Dimensionless Temperature in HMB2

In HMB2 the the Navier-Stokes, or Euler, equation are solved in terms of the dimensionless pressure,

p̃, and the density, ρ̃. For this reason the temperature field has to be evaluated from the pressure and

density fields, known the properties of the heat capacity ratio, γ, and free stream Mach number, M∞.

Considering the ideal gas law:

p = ρRT (A.1)

the speed of sound definition

a =
√
γRT (A.2)

and the dimensionless quantities

ϕ̃ =
ϕ

ϕ∞
(A.3)

the following relation to evaluate the dimensionless temperature from the pressure and density fields

T̃ =
T

T∞
=

p

ρR

1

T∞
=

p

ρR

γR

a2∞
=

γp

ρa2∞
=

γp∞p̃

ρ∞ρ̃a2∞
=
γρ∞V

2
∞p̃

ρ∞ρ̃a2∞
=
γp̃

ρ̃
M2

∞ (A.4)
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Appendix B

L2-Norm of the Residual

The following L2-norm of the residual is used in HMB2 as index of the convergence of the solution

log

(
L2(Res. t > 0)

L2(Res. t = 0)

)
(B.1)

indeed, the latter represents the order of magnitude of the residual at time t scaled by the initial residual.

Clearly if the sign is negative (or positive) means that the residual is decreasing (or increasing) with

respect to the initial one.
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Appendix C

Modified AUSM+ and AUSM+up
Schemes and Relative Jacobians

C.1 Modified AUSM+ and AUSM+up Schemes

C.1.1 AUSM+

Interface fluxes formula:

f
i−1/2

= ṁ
1/2

Ψ+ p
1/2

Ψ = sig(ṁ
1/2
, 0)ΨL + [1− sig(ṁ

1/2
, 0)]ΨR

Ψ
L/R

=
{
1, u

L/R
, v

L/R
, w

L/R
, H

L/R

}T

ṁ
1/2

= a
1/2
M

1/2
ρ

ρ = sig(M
1/2
, 0)ρL + [1− sig(M

1/2
, 0)]ρR

p
1/2

=
{
0, p

1/2
nx, p1/2ny, p1/2nz, 0

}T

(C.1)

sigmoidal function:

sig(x, y) = 1
2

(
−(1 +K) x−y

−|x−y|−K + 1
)

K = 10−16

(C.2)

left and right state Mach numbers:

ML =
u
n,L

a
1/2

MR =
u
n,R

a
1/2

(C.3)
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interface speed of sound formula:

a
1/2

= (1− sig(âL , âR))
a∗2
L

â(a∗
L
,u

n,L
) + sig(âL , âR)

a∗2
R

â(a∗
R
,−u

n,R
)

â(x, y) = sig(x, y)x+ (1− sig(x, y))y

a∗2
L/R

= 2(γ−1)
γ+1 H

L/R

(C.4)

interface Mach number:

M
1/2

=M+
(4)
(ML) +M−

(4)
(MR)

M ±
(4)

(M) =


M ±

(1)
(M) if |M | ≥ 1

M ±
(2)

(M)(1∓ 16βM ∓
(2)

(M)) otherwise

M ±
(1)

(M) = 1
2(M ± |M |); M ±

(2)
(M) = ±1

4(M ± 1)2

β = 1/8

(C.5)

interface pressure formula:

p
1/2

= P+
(5)
(ML)pL + P−

(5)
(MR)pR

P±
(5)
(M) =


1
MM±

(1)
(M) if |M | ≥ 1

M±
(2)
(M)(±2−M ∓ 16αMM∓

(2)
(M)) otherwise

α = 3/16

(C.6)

C.1.2 AUSM+up

Interface Mach number with pressure diffusion term:

M
1/2

=M+
(4)
(ML) +M−

(4)
(MR) +Mp

Mp = −2
Kp

fa
sig(1− σM̄2, 0)(1− σM̄2)

p
R
−p

L
a
1/2

(ρ
L
+ρ

R
)

(C.7)

scaling factor:

fa =M0(2−M0)

M2
0 = min(1, sig(M̄2,M2

∞)M̄2 + (1− sig(M̄2,M2
∞))M2

∞))

M̄2 = 1
2(M

2
L +M2

R)

(C.8)

133



interface pressure formula with velocity diffusion term:

p
1/2

= P+
(5)
(ML)pL + P−

(5)
(MR))pR + pu

α = 3
16(−4 + 5f2a ) ∈

[
−3

4 ;
3
16

]
pu = −KufaP

+
(5)
(ML)P

−
(5)
(MR)(ρL + ρR)a1/2(un,R − un,L)

(C.9)

C.2 Jacobian Matrix

C.2.1 Modified AUSM+

Full analytical Jacobian formulation:

(
∂f

∂P
L/R

)
=



∂fρ
∂ρ

L/R

∂fρ
∂u

L/R

∂fρ
∂v

L/R

∂fρ
∂w

L/R

∂fρ
∂p

L/R
∂fu

∂ρ
L/R

∂fu
∂u

L/R

∂fu
∂v

L/R

∂fu
∂w

L/R

∂fu
∂p

L/R
∂fv

∂ρ
L/R

∂fv
∂u

L/R

∂fv
∂v

L/R

∂fv
∂w

L/R

∂fv
∂p

L/R
∂fw

∂ρ
L/R

∂fw
∂u

L/R

∂fw
∂v

L/R

∂fw
∂w

L/R

∂fw
∂p

L/R
∂fH
∂ρ

L/R

∂fH
∂u

L/R

∂fH
∂v

L/R

∂fH
∂w

L/R

∂fH
∂p

L/R


∂fP

∂P
L/R

=
∂ṁ

1/2

∂P
L/R

Ψ+ ṁ
1/2

∂Ψ
∂P

L/R
+

∂p
1/2

∂P
L/R

∂Ψ
∂P

L/R
= sig(ṁ

1/2
, 0)

∂Ψ
L

∂P
L/R

+ [1− sig(ṁ
1/2
, 0)]

∂Ψ
R

∂P
L/R

∂Ψ
L

∂P
L
=

∂Ψ
R

∂P
R

=


0 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

− γ
γ−1

p
ρ2

u v w γ
γ−1

1
ρ

 ;
∂Ψ

L
∂P

R
=

∂Ψ
R

∂P
L

= 0

(C.10)

derivative of the interface mass flux:

∂ṁ
1/2

∂P
L/R

=
∂a

1/2

∂P
L/R

M
1/2
ρ+ a

1/2

∂M
1/2

∂P
L/R

ρ+ a
1/2
M

1/2

∂ρ
∂P

L/R

∂ρ
∂P

L/R
= sig(M

1/2
, 0) ∂ρL

∂P
L/R

+ [1− sig(M
1/2
, 0)] ∂ρR

∂P
L/R

∂ρ
L

∂P
L
=

∂ρ
R

∂P
R
= {1, 0, 0, 0, 0} ; ∂ρ

L
∂P

R
=

∂ρ
R

∂P
L
= 0

(C.11)

derivative of the pressure term:

∂p
1/2

∂P
L/R

=

{
0,

∂p
1/2

∂P
L/R

nx,
∂p

1/2

∂P
L/R

ny,
∂p

1/2

∂P
L/R

nz, 0

}T

(C.12)
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derivative of the interface speed of sound:

∂a
1/2

∂P
L/R

= (1− sig(âL , âR))

(
2a∗

L
â(a∗

L
,u

n,L
)

∂a∗
L

∂P
L/R

− a∗2
L

â2(a∗
L
,u

n,L
)

∂â(a∗
L
,u

n,L
)

∂P
L/R

)

+sig(âL , âR)

(
2a∗

R
â(a∗

R
,−u

n,R
)

∂a∗
R

∂P
L/R

− a∗2
R

â2(a∗
R
,−u

n,R
)

∂â(a∗
R
,−u

n,R
)

∂P
L/R

)
∂a∗

L/R

∂P
L/R

= γ−1
a∗
L/R

(γ+1)

{
− γ

γ−1

p
L/R

ρ2
L/R

, u
L/R

, v
L/R

, w
L/R

, γ
γ−1

1
ρ
L/R

}
;

∂a∗
L

∂P
R
=

∂a∗
R

∂P
L
= 0

∂u
n,L

∂P
L

=
∂u

n,R

∂P
R

= {0, nx, ny, nz, 0} ;
∂u

n,L

∂P
R

=
∂u

n,R

∂P
L

= 0

∂â(x,y)
∂P

L/R
= sig(x, y) ∂x

∂P
L/R

+ (1− sig(x, y)) ∂y
∂P

L/R

(C.13)

derivatives of the interface Mach number:

∂M
1/2

∂P
L/R

=
∂M+

(4)
(M

L
)

∂P
L/R

+
∂M−

(4)
(M

R
)

∂P
L/R

∂M±
(4)

(M)

∂P
L/R

=



1
2

(
∂M

∂P
L/R

± ∂M
∂P

L/R

)
if M ≥ 1

1
2(±8βM3 ∓ (8β − 1)M + 1) ∂M

∂P
L/R

if − 1 ≥M ≤ 1

1
2

(
∂M

∂P
L/R

∓ ∂M
∂P

L/R

)
if M ≤ −1

(C.14)

derivative of the left and right state Mach numbers:

∂M
L

∂P
L

= 1
a
1/2

∂u
n,L

∂P
L

−
u
n,L

a2
1/2

∂a
1/2

∂P
L

∂M
L

∂P
R

= −
u
n,L

a2
1/2

∂a
1/2

∂P
R

∂M
R

∂P
R

= 1
a
1/2

∂u
n,R

∂P
R

−
u
n,R

a2
1/2

∂a
1/2

∂P
R

∂M
R

∂P
L

= −
u
n,R

a2
1/2

∂a
1/2

∂P
L

(C.15)

derivative of the interface pressure formula:

∂p
1/2

∂P
L/R

=
∂P+

(5)
(M

L
)

∂P
L/R

pL +
∂P−

(5)
(M

R
)

∂P
L/R

pR + P+
(5)
(ML)

∂p
L

∂P
L/R

+ P−
(5)
(MR)

∂p
R

∂P
L/R

∂p
L

∂P
L
=

∂p
R

∂P
R
= {0, 0, 0, 0, 1} ∂p

L
∂P

R
=

∂p
R

∂P
L
= 0

∂P±
(5)

(M)

∂P
L/R

=


0 if |M | ≥ 1

1
2

(
±10αM4 ∓ (32 + 12α)M2 ± (32 + 2α)

)
∂M

∂P
L/R

otherwise

(C.16)
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C.2.2 Modified AUSM+up

Derivative of the interface Mach number with the pressure diffusion term:

∂M
1/2

∂P
L/R

=
∂M+

(4)
(M

L
)

∂P
L/R

+
∂M−

(4)
(M

R
)

∂P
L/R

+
∂Mp

∂P
L/R

∂Mp

∂P
L/R

= ∂
∂P

L/R

(
−Kp

fa
sig(1− σM̄2, 0)

p
R
−p

L
a
1/2

(ρ
L
+ρ

R
)

) (C.17)

derivative of the scaling factor fa for M∞ < 1:

∂fa
∂P

L/R
= f(M̄,M∞)

(
ML

∂M
L

∂P
L/R

+MR

∂M
R

∂P
L/R

)

f(M̄,M∞)


0 if M̄2 > 1

sig(M̄2,M2
∞)1−M̄

M̄
otherwise

(C.18)

derivative of the interface pressure formula with the velocity diffusion term:

∂p
1/2

∂P
L/R

=
∂P+

(5)
(M

L
)

∂P
L/R

pL +
∂P−

(5)
(M

R
)

∂P
L/R

pR + P+
(5)
(ML)

∂p
L

∂P
L/R

+ P−
(5)
(MR)

∂p
R

∂P
L/R

+ ∂pu
∂P

L/R

∂pu
∂P

L/R
= ∂

∂P
L/R

(
−KufaP

+
(5)
(ML)P

−
(5)
(MR)(ρL + ρR)a1/2(un,R − un,L)

)

∂P±
(5)

(M)

∂P
L/R

=

(
∂P±

(5)
(M)

∂P
L/R

)
AUSM+

+


0 if |M

L/R
| ≥ 1

±M(M2 − 1)2 ∂α
∂P

L/R
otherwise

∂α
∂P

L/R
= 15

8 fa
∂fa

∂P
L/R

(C.19)
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Appendix D

Non-dimensional ES Model with
Rotational Degrees of Freedom

In [29], a polyatomic ES model is presented, where a parameter Kint is introduced to define the

number of internal degrees of freedom. For a diatomic molecule without vibrational excitation, two

rotational degrees of freedom are present, i.e. Kint = 2. Considering the non-dimensional variables

defined in equations (4.3) the latter model can be written as

∂F0

∂t
+ c

∂F0

∂x
=

FES
0 − F0

τ
(
1− ν + θν

) ;
∂F1

∂t
+ c

∂F1

∂x
=

FES
1 − F1

τ
(
1− ν + θν

) (D.1)

where the equilibrium function is an anisotropic Gaussian

FES
0 =

ρ√
det(πΛ)

exp
(
−c′ ·Λ−1 · c′

)
; FES

1 = TrelF0. (D.2)

The matrix Λ is defined as

Λ = (1− θ) ((1− ν)TtrI+ νΘ) + θTeqI ; ρΘ =
∞∫

−∞
c′ ⊗ c′F0du⃗ (D.3)

with ρΘ the opposite of the stress tensor and 0 < θ < 1 and −1/2 ≤ ν < 1 two relaxation parameters.

The pressure is assumed to depend on the equilibrium temperature T , and furthermore a relaxation

temperature is introduced to represent the thermodynamic non-equilibrium between the translational

and internal degrees of freedom,

p = ρT ; Trel = θT + (1− θ)Trot. (D.4)
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The equivalent continuum state is given by

ρ =
∞∫

−∞
F0dc ; ρui =

∞∫
−∞

ciF0dc ;
3

2
ρTt + ρ(u2x + u2y + u2z) =

+∞∫
−∞

c2F0dc

5

2
T =

3

2
Tt + Tr ; ρTr =

∞∫
−∞

F1dc.

(D.5)
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Appendix E

Moments of the Rykov Model Collision
Term

With Ψ̂0 = (1, cx, c2, 0)T and Ψ̂1 = (0, 0, 1, 1)T the moments of the Rykov model collision term

result

+∞∫
−∞

[
Ψ̂0

(
F t
0 − F0

τ
+
F r
0 − F t

0

Zrτ

)
+ Ψ̂1

(
F t
1 − F1

τ
+
F r
1 − F t

1

Zrτ

)]
dc =



0

0

0

ρ(T − Tr)

Zrτ


. (E.1)

Indeed
+∞∫
−∞

Ψ̂0
F t
0 − F0

τ
= (0, 0, 0, 0)T

+∞∫
−∞

Ψ̂0
F r
0 − F t

0

Zrτ
=

(
0, 0,

3

2

ρ(T − Tt)

Zrτ
, 0

)T
(E.2)

and
+∞∫
−∞

Ψ̂1
F t
1 − F1

τ
= (0, 0, 0, 0)T

+∞∫
−∞

Ψ̂1
F r
1 − F t

1

Zrτ
=

(
0, 0,

ρ(T − Tr)

Zrτ
,
ρ(T − Tr)

Zrτ

)T
(E.3)

from which, remembering the relation between T , Tt and Tr defined in equations (4.19), it is straightfor-

ward to find equations (E.1)
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Appendix F

Collision Numbers

For a gas in thermal non-equilibrium, energy is transferred between the various internal modes and

the internal energy distributions are driven towards their respective equilibrium state by means of particle

collisions; however, not all the modes are involved in every collision. The collision number Z associated

to a mode is defined as the inverse of the particle collisions fraction involving it and generally [152]

Ztranslation < Zrotation < Zvibration (F.1)

therefore, the number of collisions required for the vibrational mode to reach the equilibrium is greater

than the one required for the rotational energy which in turn is higher than the one associated with the

translational mode. This implies that the time required for the different modes to relax towards the

equilibrium state is different. Indeed, if we define the collision times τt,r,v as usual in the literature

τt,r,v = Zt,r,vτ (F.2)

where τ is the mean time between collisions, from relation (F.1) it follows that

τtranslation < τrotation < τvibration. (F.3)
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Appendix G

The Chapman-Enskog Solution of the
Shakhov Model

Considering the non-dimensional variable (4.3) with the difference of employing the free stream mean-

free-path λ∞ as reference length, the Shakhov model (4.5) can be written as follows

ξ

[
∂F

∂t
+ c

∂F

∂x

]
=
F S − F

τ
(G.1)

where

ξ =

√
2RT∞µ

λ∞p∞
. (G.2)

Note that the non-dimensional variables (4.3) are chosen to give ξ = 1 so that the unit length in the

computational grid is approximately the free stream mean path. The parameter ξ is a measure of the

degree of departure from the local thermodynamic equilibrium and when it is sufficiently small the flow

is collision dominated [11]. The CE method employs a series expansion of the distribution function F .

For mall values of ξ, i.e. near the continuum regime, the CE expansion can be truncated after the first

order terms as follow

F = F (0) (1 + ξϕ) (G.3)

where F (0) is the solution of the zeroth order approximation, i.e. ◦(ξ0), of the model equation. Introducing

the CE expansion (G.3) in the Shakhov model (4.5) we obtain

ξ

[
∂F (0)

∂t
+ c

∂F (0)

∂x

]
+ ξ2

[
∂
(
F (0)ϕS

)
∂t

+ c
∂
(
F (0)ϕS

)
∂x

]
=

FM (T )− F (0)

τ
+

+
ξ

τ
FM (T )ϕS − ξ

τ
FM (T )ϕ

(G.4)
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where it has been considered

FS = FM (T ) (1 + ξϕS) = FM (T )

[
1 + ξ

8

15

qi
p

c′i
T

(
c′2

T
−

5

2

)]
(G.5)

since from the CE solution of the BGK model [11] we know

q̂i ∝ R2ρ̂T̂ 2τ̂
∂T̂

∂x̂i
(G.6)

which, with the non-dimensional variables (4.3) and employing λ∞ as reference length, leads to

q̂i ∝ ρ∞ (2RT∞)3/2 ξqi. (G.7)

Neglecting all terms of order ◦(ξ) and ◦(ξ2) in equation (G.4) we have the zeroth order approximation

F (0) = FM (T ). Considering this and retaining only terms up the first order, equation (G.4) becomes

ξ

[
∂F (0)

∂t
+ c

∂F (0)

∂x

]
= −

ξ

τ
FM (T ) [ϕ− ϕS ] (G.8)

from which

FM (T )ξϕ = FM (T )ξϕS − ξτ

[
∂FM(T )

∂t
+ c

∂FM(T )

∂x

]
(G.9)

thus, the first order CE solution of the Shakhov model (4.5) results

F = FM (T ) (1 + ξϕ) = FS − ξτ

[
∂FM(T )

∂t
+ c

∂FM(T )

∂x

]
. (G.10)

Employing the CE solution (G.10) it is possible to demonstrate that the Shakhov model (4.5) recovers

the correct monoatomic Prandtl number, i.e. Pr = 2/3, in the continuum limit. In fact, from the CE

solution of the BGK model [11] we know that

ξ

[
∂FM (T )

∂t
+ c

∂FM (T )

∂x

]
= − ξ

τ
FM (T )ϕBGK =

=
ξ

τ
FM (T )τ

[
c′i

(
c′2

T
− 5

2

)
∂T

∂xi
+

1

T

(
c′ic

′
j −

2

3
c′2δij

)
∂ui
∂xj

] (G.11)

thus, using the CE solution (G.10) to obtain the continuum stress tensor

τij = −2
[∫
c′ic

′
jFM (T )dc−

(∫
c′ic

′
jFM (T )ξϕBGKdc− p

2δij
)
−
∫
c′ic

′
jFM (T )ξϕSdc

]
=

= 0 + ξρTτ

[
∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂ul
∂xl

δij

]
+ 0;

(G.12)
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and the heat flux vector

qi =
∫

c′ic′
2

2 FM (T )dc+
∫

c′ic′
2

2 FM (T )ξϕBGKdc+
∫

c′ic′
2

2 FM (T )ξϕSdc =

= 0− ξ
5

8
ρTτ

∂T

∂xi
+

1

3
qi = −ξ 15

16
ρTτ

∂T

∂xi
;

(G.13)

and returning to the dimensional form we find Pr = cpµ/k = 2/3, known that cp = 5/2R for monoatomic

gases.
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Appendix H

The Chapman-Enskog Solution of the
Rykov Model

Considering the non-dimensional variable (4.3) with the the free stream mean-free-path λ∞ employed

as reference length, the Rykov model (4.10) can be written as follow

ξ

[
∂F0

∂t
+ c

∂F0

∂x

]
=
F eq
0 − F

τ
; ξ

[
∂F1

∂t
+ c

∂F1

∂x

]
=
F eq
1 − F

τ
(H.1)

with the ξ as defined in equation (G.2). We consider the CE expansions of the two distribution functions

F0 and F1 truncated after the first order terms for small values of ξ typical of near continuum conditions

F0 = F
(0)
0 (1 + ξϕ0) ; F1 = F

(0)
1 (1 + ξϕ1) (H.2)

where F
(0)
0 and F

(0)
1 are the solutions of the zeroth order approximations of the model equations. Sub-

stituting expansions (H.2) in the respective Rykov model equations (4.10) we obtain

ξ

[
∂F

(0)
0

∂t
+ c

∂F
(0)
0

∂x

]
+ ξ2

∂
(
F

(0)
0 ϕR0

)
∂t

+ c
∂
(
F

(0)
0 ϕR0

)
∂x

 =
1

τ

[
FM (Tt)− F

(0)
0

]
+

+
FM (T )− FM (Tt)

Zrτ
+

+
ξ

τ
FM (Tt)ϕ

R
0 (Tt)−

ξ

τ
F

(0)
0 ϕ0+

+ ξ
τ

[
FM (T )ω0ϕ

R
0 (T )− FM (Tt)ϕ

R
0 (Tt)

Zr

]

(H.3)

144



ξ

[
∂F

(0)
1

∂t
+ c

∂F
(0)
1

∂x

]
+ ξ2

∂
(
F

(0)
1 ϕR1

)
∂t

+ c
∂
(
F

(0)
1 ϕR1

)
∂x

 =
1

τ

[
TrFM (Tt)− F

(0)
1

]
+

+
TFM (T )− TrFM (Tt)

Zrτ
+

+
ξ

τ
TrFM (Tt)

(
ϕR0 (Tt) + ϕR1 (Tt, Tr)

)
− ξ

τ
F

(0)
1 ϕ1+

+ ξ
τ

[
TFM (T )

(
ω0ϕ

R
0 (T ) + ω1ϕ

R
1 (T, T )

)
− TrFM (Tt)

(
ϕR0 (Tt) + ϕR1 (Tt, Tr)

)
Zr

]
(H.4)

where it has been considered

F eq
0 = FM (Tt) +

FM (T )− FM (Tt)

Zr
+ ξ

[
FM (Tt)ϕ

R
0 (Tt) +

FM (T )ω0ϕ
R
0 (T )− FM (Tt)ϕ

R
0 (Tt)

Zr

]

F eq
1 = TrFM (Tt) +

TFM (T )− TrFM (Tt)

Zr
+ ξ

[
TrFM (Tt)

(
ϕR0 (Tt) + ϕR1 (Tt, Tr)

)]
+

+ξ
TFM (T )

(
ω0ϕ

R
0 (T ) + ω1ϕ

R
1 (T, T )

)
− TrFM (Tt)

(
ϕR0 (Tt) + ϕR1 (Tt, Tr)

)
Zr

(H.5)

with

ξϕR0 (T1) = ξ
8

15

qtic
′
i

ρT 2
1

(
c′2

T1
− 5

2

)
; ξϕR1 (T1, T2) = ξ4(1− δ)

qri c
′
i

ρT1T2
(H.6)

thanks to relation (G.7). Gathering, for each of equations (H.3) and (H.4), all terms of order ◦(ξ0) we

can obtain the zeroth order approximations for the CE expansions (H.2) as

F
(0)
0 = FM (Tt) ; F

(0)
1 = TrFM (Tt) (H.7)

knowing that it is possible to demonstrate [205]

FM (T )− FM (Tt)

Zr
∼ ◦(ξ) ;

TFM (T )− TrFM (Tt)

Zr
∼ ◦(ξ). (H.8)

Considering expressions (H.7) and neglecting second order terms, equations (H.3) and (H.4) become

ξ

[
∂FM (Tt)

∂t
+ c

∂FM (Tt)

∂x

]
=

FM (T )− FM (Tt)

Zrτ
+

+
ξ

τ
FM (Tt)ϕ

R
0 (Tt)−

ξ

τ
F

(0)
0 ϕ0+

+ ξ
τ

[
FM (T )ω0ϕ

R
0 (T )− FM (Tt)ϕ

R
0 (Tt)

Zr

]
(H.9)
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ξ

[
∂ (TrFM (Tt))

∂t
+ c

∂ (TrFM (Tt))

∂x

]
=

TFM (T )− TrFM (Tt)

Zrτ

+
ξ

τ
TrFM (Tt)

(
ϕR0 (Tt) + ϕR1 (Tt, Tr)

)
− ξ

τ
F

(0)
1 ϕ1+

+ ξ
τ

[
TFM (T )

(
ω0ϕ

R
0 (T ) + ω1ϕ

R
1 (T, T )

)
− TrFM (Tt)

(
ϕR0 (Tt) + ϕR1 (Tt, Tr)

)
Zr

]
(H.10)

from which

FM (Tt)ξϕ0 =
FM (T )− FM (Tt)

Zr
+ ξFM (Tt)ϕ

R
0 (Tt) + ξ

[
FM (T )ω0ϕ

R
0 (T )− FM (Tt)ϕ

R
0 (Tt)

Zr

]
+

−ξτ
[
∂FM (Tt)

∂t
+ c

∂FM (Tt)

∂x

]

TrFM (Tt)ξϕ1 =
TFM (T )− TrFM (Tt)

Zr
+ ξTrFM (Tt)

(
ϕR0 (Tt) + ϕR1 (Tt, Tr)

)
+

+ξ

[
TFM (T )

(
ω0ϕ

R
0 (T ) + ω1ϕ

R
1 (T, T )

)
− TrFM (Tt)

(
ϕR0 (Tt) + ϕR1 (Tt, Tr)

)
Zr

]
+

−ξτ
[
∂ (TrFM (Tt))

∂t
+ c

∂ (TrFM (Tt))

∂x

]
.

(H.11)

Thus, the CE solutions of the Rykov model equations (4.10) are

F0 = F
(0)
0 (1 + ξϕ0) = F eq

0 − ξτ

[
∂FM (Tt)

∂t
+ c

∂FM (Tt)

∂x

]

F1 = F
(0)
1 (1 + ξϕ1) = F eq

1 − ξτ

[
∂ (TrFM (Tt))

∂t
+ c

∂ (TrFM (Tt))

∂x

]
.

(H.12)

Using the CE solutions (H.12) in the limit T = Tt = Tr
1 and considering equation (G.11), it is possible

to obtain the continuum stress tensor

τij = −2
[∫
c′ic

′
jFM (T )dc−

(∫
c′ic

′
jFM (T )ξϕBGKdc− p

2δij
)
− ω0+Z−1

Z

∫
c′ic

′
jFM (T )ξϕR0 dc

]
=

= 0 + ξρTτ

[
∂ui
∂xj

+
∂uj
∂xi

− 2
3

∂ul
∂xl

δij

]
+ 0;

(H.13)

translational heat flux vector

qti =
∫

c′ic′
2

2 FM (T )dc+
∫

c′ic′
2

2 FM (T )ξϕBGKdc+
ω0+Z−1

Z

∫
c′ic′

2

F M
(T )ξϕR0 dc =

= 0− ξ 58ρTτ
∂T

∂xi
+ ω0+Z−1

3Z qti = −ξ 1516ρTτ
(
1 + 1−ω0

2Z

)−1 ∂T

∂xi
;

(H.14)

1Note that, as shown in [7], the model equations obtained in the continuum limit with Tt ̸= Tr present relaxation terms
between translational and rotational energy corresponding to the bulk viscosity terms in the standard NS equations.
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rotational heat flux vector

qri =
∫

c′

2 FM (T )dc+
∫

c′

2 FM (T )ξϕBGKdc+
∫

c′

2 FM (T )ξ

[
c′i
∂T

∂xi
+ 2

3T
∂ui
∂xi

]
dc+

+ω0+Z−1
Z

∫
c′2FM (T )ξϕR0 dc+

ω1+Z−1
Z

∫
c′2FM (T )ξϕR1 dc =

= 0 + 0− ξ 14ρTτ
∂T

∂xi
+ 0 + ω1+Z−1

Z (1− δ)qri = −ξ 14ρTτ
(
δ + (1−δ)(1−ω1)

Z

)−1 ∂T

∂xi

(H.15)

and total heat flux

qi = −ξ 1
4
ρTτ

[
15

4

(
1 +

1− ω0

2Z

)−1

+

(
δ +

(1− δ)(1− ω1)

Z

)−1
]
∂T

∂xi
(H.16)

Finally, after returning to the dimensional form it is possible to evaluate the Prandtl number Pr = cpµ/k

that the Rykov model recover in the continuum limit

Pr =
7

5

[
3

2

(
1 +

1− ω0

2Z

)−1

+
2

5

(
δ +

(1− δ)(1− ω1)

Z

)−1
]−1

(H.17)

considering that cp = 7/2R for diatomic gases when the rotational degrees of freedom are in non-

equilibrium. Figure H.1 shows the variation of the Prandtl number with the collision number Zr for the

Figure H.1: Rykov Model Prandtl number in the continuum regime limit.

values of ω0 and ω1 cited in section 4.4. As expected for Z → ∞ the model reduces to the Shakhov

model and Pr = 2/3 is obtained while the diatomic Prandtl number of 5/7 is obtained, as expected, for

Z = 3− 5 that are usual values of the collision number at standard conditions.
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Appendix I

The S-GKS as a Limit of the S-UGKS
for a Well-resolved Flow

In [46] equation (5.10) is employed to derive the time dependant distribution function solution of the

Shakhov model. In this case
Feq = FS = FM (T ) + F+

F+ = FM (T )
8

15

qi
p

c′i
T

(
c′2

T
− 5

2

)
.

(I.1)

The Maxwellian term in FS can be expanded around the cell interface in series of Taylor as follow

FM (T ) = F 0
M (T )

[
1 + (1−H(x))alx+H(x)arx+At

]
(I.2)

where the terms of the expansion are defined as

(
∂FM (T )

∂x

)l/r

= al/rF 0
M (T ) ;

∂FM (T )

∂t
= AF 0

M (T ), (I.3)

with F 0
M (T ) the Maxwellian distribution at the interface, and H(x) is the Heaviside function

H(x) =

{
0 x < 0

1 x ≥ 0
. (I.4)

Likewise, the initial distribution function can be reconstructed based on the CE solution (G.10) of the

Shakhov model as
F 0 =

(
F l
S + F l

M (T )
[
alx− τ

(
alu+At

)])
(1−H(x))+

+ (F r
S + F r

M (T ) [arx− τ (aru+At)])H(x).

(I.5)
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Now, introducing expressions (I.1), (I.2) and (I.5) in equation (5.10) and integrating we obtain

F (0, t, cx|m) = (1− exp (−t/τ))F 0
S+

+τ (−1 + exp (−t/τ))
[
(1−H(cx|m))al +H(cx|m)ar

]
cx|mF 0

M (T )+

+t exp (−t/τ)
[
(1−H(cx|m))al +H(cx|m)ar

]
cx|mF 0

M (T )+

+τ (t/τ − 1 + exp (−t/τ))AF 0
M (T )+

+exp (−t/τ)
(
F l
S + F l

M (T )
[
−altcx|m − τalcx|m +At

])
(1−H(cx|m))

+ exp (−t/τ) (F r
S + F r

M (T ) [−artcx|m − τarcx|m +At])H(cx|m).

(I.6)

where xi+1/2 = 0 is considered for a simpler formulation. If we assume the hypothesis of a well-resolved

flow

al = ar ; F l
S = F r

S = F 0
S ; F l

M (T ) = F r
M (T ) = F 0

M (T ) (I.7)

and consider definitions (I.3), equation (I.6) reduces to the simplified form in equation (5.15).
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Appendix J

The R-GKS as a Limit of a UGKS
based on the Rykov Model for a
Well-resolved Flow

We will employ equation (5.10) to derive the time dependant distribution functions solutions of the

Rykov model. In this case

F eq
1 = FM (Tt) + F+

0

F eq
2 = TRFM (Tt) + F+

1

F+
2 =

FM (T )− FM (Tt)

Zr
+ ξ

[
FM (Tt)ϕ

R
0 (Tt) +

FM (T )ω0ϕ
R
0 (Tt)− FM (Tt)ϕ

R
0 (Tt)

Zr

]

F+
1 =

TFM (T )− TrFM (Tt)

Zr
+ ξ

[
TrFM (Tt)

(
ϕR0 (Tt) + ϕR1 (Tt, Tr)

)]
+

+ξ
TFM (T )

(
ω0ϕ

R
0 (Tt) + ω1ϕ

R
1 (T, T )

)
− TrFM (Tt)

(
ϕR0 (Tt) + ϕR1 (Tt, Tr)

)
Zr

.

(J.1)

To be consistent with the CE solutions (H.12) only the Maxwellian terms, i.e. ◦(ξ0), in F eq
0 and F eq

1 are

expanded around the cell interface in Taylor series

FM (Tt) = F 0
M (Tt)

[
1 + (1−H(x))alx+H(x)arx+At

]
TrFM (Tt) = TrFM (Tt)|0

[
1 + (1−H(x))blx+H(x)brx+Bt

] (J.2)
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with H(x) the Heaviside function defined in equation (I.4), F 0
M (Tt) and TrFM (Tt)|0 the Maxwellian

distributions at the interface and the terms of the expansions defined as follow(
∂FM (Tt)

∂x

)l/r

= al/rF 0
M (Tt) ;

∂FM (Tt)

∂t
= AF 0

M (Tt)

(
∂ (TrFM (Tt))

∂x

)l/r

= bl/rTrFM (Tt)|0 ;
d (TrFM (Tt))

dt
= BTrFM (Tt)|0.

(J.3)

Consistently, the initial distribution functions are reconstructed based on the CE solutions (H.12) of the

Rykov as
F 0
0 =

(
F eq
0 |l + F l

M (Tt)
[
alx− τ

(
alu+At

)])
(1−H(x))+

+ (F eq
0 |r + F r

M (Tt) [a
rx− τ (aru+At)])H(x)

F 0
1 =

(
F eq
1 |l + TrFM (Tt)|l

[
blx− τ

(
blu+Bt

)])
(1−H(x))+

+ (F eq
1 |r + TrFM (Tt)|r [arx− τ (bru+Bt)])H(x)

(J.4)

If we introduce expressions (J.1), (J.2) and (J.4) in equation (5.10), written for F0 and F1 at xi+1/2 = 0

to simplify the formulation, and integrating we obtain

F0(0, t, cx|m) = (1− exp (−t/τ))F eq
0 |0+

+τ (−1 + exp (−t/τ))
[
(1−H(cx|m))al +H(cx|m)ar

]
cx|mF 0

M (Tt)+

+t exp (−t/τ)
[
(1−H(cx|m))al +H(cx|m)ar

]
cx|mF 0

M (Tt)+

+τ (t/τ − 1 + exp (−t/τ))AF 0
M (Tt)+

+exp (−t/τ)
(
F eq
0 |l + F l

M (Tt)
[
−altcx|m − τ

(
alcx|m +At

)])
(1−H(cx|m))

+ exp (−t/τ) (F eq
0 |r + F r

M (Tt) [−artcx|m − τ (arcx|m +At)])H(cx|m)

(J.5)

F1(0, t, cx|m) = (1− exp (−t/τ))F eq
1 |0+

+τ (−1 + exp (−t/τ))
[
(1−H(cx|m))bl +H(cx|m)br

]
cx|mTrFM (Tt)|0+

+t exp (−t/τ)
[
(1−H(cx|m))bl +H(cx|m)br

]
cx|mTrFM (Tt)|0+

+τ (t/τ − 1 + exp (−t/τ))BTrFM (Tt)|0+

+exp (−t/τ)
(
F eq
1 |l + TrFM (Tt)|l

[
−bltcx|m − τ

(
blcx|m +Bt

)])
(1−H(cx|m))

+ exp (−t/τ) (F eq
1 |r + TrFM (Tt)|r [−brtcx|m − τ (brcx|m +Bt)])H(cx|m).

(J.6)
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Assuming the hypothesis of a well-resolved flow

al = ar ; bl = br ; F eq
0 |l = F eq

0 |r = F eq
1 |0 ; F eq

1 |l = F eq
1 |r = F eq

1 |0

F l
M (Tt) = F r

M (Tt) = F 0
M (Tt) ; TrFM (T )|l = TrFM (T )|r = TrFM (T )|0

(J.7)

and considering definitions (J.3), equations (J.5) and (J.6) reduce to the simplified form in equations

(H.12).
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Appendix K

Laplacian Smoothing

The Laplacian smoothing is a method that can be used to smooth a mathematical function in a point

based on neighbour values. As example in one-dimension it assumes the following form

Φm+1
i = Φn

i + aL (Φn
i ) (K.1)

where L (Φn
i ) is the one-dimensional Laplacian of the function

L (Φn
i ) =

1

2

(
Φn
i−1 +Φn

i+1

)
(K.2)

and m is the required number of iteration to obtain a sufficiently smooth function. A value of a = 0.5

and m = 50 is employed in MΦC for this work.
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Appendix L

L2-Norm Between to Consecutive
Solutions

The following L2-norm between two consecutive solutions can be used in MΦC as index of the con-

vergence of steady state solutions √∑ncells

i (Φtn+1

i − Φtn

i )2

ncells

. (L.1)

where ncells is the number of cells in which the computational physical domain is discretised.
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