
On the Formal Verification of Diffusion Phenomena
in Open Dynamic Agent Networks

Francesco Belardinelli
Université d’Evry

France
belardinelli@ibisc.fr

Davide Grossi
University of Liverpool

United Kingdom
d.grossi@liverpool.ac.uk

ABSTRACT
The paper is a contribution at the interface of social net-
work theory and multi-agent systems. As realistic models of
multi-agent systems, we assume agent networks to be open,
that is, agents may join or leave the network at run-time,
and dynamic, that is, the network structure may change as
a result of agents actions. We provide a formal model of
open dynamic agent networks (ODAN) in terms of inter-
preted systems, and define the problem of model checking
properties of diffusion phenomena, such as the spread of
information or diseases, expressed in a first-order version
of computation-tree logic. We establish the decidability of
the model checking problem by showing that, under specific
conditions, the verification of infinite-state ODAN can be
reduced to model checking finite bisimulations.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic]: Temporal Logic

General Terms
Theory,Verification

Keywords
Agent Networks; Diffusion Phenomena; First-order Tempo-
ral Logic

1. INTRODUCTION
Social network theory and analysis (SNA) is a thriving

area of research (see [14, 11] for comprehensive introductions
to the field) and its interaction with the field of multi-agent
systems (MAS) has witnessed a steady growth over the last
decade. On the one hand the MAS paradigm has established
itself as a recognized tool within SNA, in particular for sim-
ulation purposes (e.g., [15]). On the other hand, concepts
and methods from SNA are reaching the theory of MAS as a
growing number of papers (e.g, [18, 19, 21], just to mention
a few in the last edition of AAMAS) and events (e.g., the So-
cial Networks and Multi-Agent Systems Symposium series)
on the application of SNA to MAS testify.

Appears in: Proceedings of the 14th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2015), Bordini, Elkind, Weiss, Yolum (eds.), May,
4–8, 2015, Istanbul, Turkey.
Copyright c© 2015, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

The present paper contributes further to the application
of SNA concepts to MAS, bringing them closer to standard
MAS concerns such as openness, and deploying established
methods in MAS research such as formal verification. We fo-
cus specifically on (non-probabilistic) diffusion phenomena,
that is, how information, ideas, behaviors spread in networks
of agents similarly to epidemics. We model a MAS as a net-
work, that is, a set of agents – the nodes – which are linked
via edges constraining their possible interactions. As typical
in SNA, such links are abstractions of concrete relationships
such as proximity, or the availability of communication chan-
nels, or trust relationships, and the like. However, although
building on established concepts from SNA, the paper fo-
cuses on the type of networks that are of specific relevance
for MAS, namely networks that are open, as agents can enter
and leave the MAS at run-time; and dynamic, as the network
links can change as the direct result of agents’ actions.1

Aim of the paper and methodology. The paper in-
vestigates the applicability in principle of formal verifica-
tion techniques to the analysis of diffusion phenomena in
agent networks which may evolve over time as the result of
agents’ actions. More concretely, the paper establishes the
decidability of the model-checking problem for properties of
open and dynamic networks specified in a first-order tem-
poral logic (FO-CTL). This result is obtained by modelling
networks as a special type of infinite-state data-aware sys-
tems [7, 9]. This allows us to capitalize on recent results on
the formal verification of artifact-centric systems [2, 3], and
to extend them to MAS where agents can join or leave at
run-time.

Related Work. From the technical point of view the paper
builds on two strands of research: the application of logic to
SNA, and the verification of data-aware systems. The appli-
cation of logic-based methods to SNA is a very recent area
of research. Researchers have focused in particular on the
formalization of information dynamics phenomena, mainly
using dynamic epistemic logic (DEL, [22]), over networks,
e.g., [5, 6]. In particular, we are aware of only one study at-
tempting the application of formal verification techniques to
SNA, and in particular to the study of epidemics [20], which
however does not focus on open and dynamic networks.

The verification of data-aware systems, i.e., systems where
data play a crucial role in directing the system’s execution,
is in itself a subject of growing interest. In [10, 9] the ver-
ification of data-driven web services and business processes

1It may be worth noting that dynamic networks are them-
selves an open research area in SNA with no established
models (cf. [14, Ch. 7])

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80775636?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is tackled by assuming syntactic restrictions on the specifi-
cation language, and [13] investigated the verification of dy-
namic relational databases. With a different focus, networks
have been used also in concurrency theory as an abstraction
for modeling and verifying communicating processes (e.g.,
[16, 8]). More directly related to our contribution, [2, 3]
put forward abstraction techniques for the verification of
artifact-centric systems. While we make use of ideas and no-
tions appearing therein, the motivation and setting for our
paper are markedly different. First, the inspiration comes
from SNA and the formal analysis of agents’ behaviours in
networked contexts. Second, the agent networks here intro-
duced are open and dynamic, in particular agents can join
or leave the network at run time. None of these features is
considered in [2, 3].

Outline of the paper. The paper is structured as follows.
In Section 2 we introduce a multi-agent, data-aware model
for open dynamic agent networks (ODAN), and a first-order
temporal specification language. Then, we state the model
checking problem for this setting. Section 3 is devoted to
show that the proposed framework is rich enough to express
established network models such as the SIR (susceptible-
infected-recovered) model for epidemics. The main technical
results are presented in Section 4 and 5, where we prove
that under specific conditions the model checking problem
for ODAN is decidable. We conclude in Section 6. Proofs
are omitted in the interest of space.

2. OPEN DYNAMIC AGENT NETWORKS
In this section we introduce open dynamic agent networks

(ODAN) as multi-agent systems whose main feature is that
agents can join or depart at run time. Then, we present
a first-order version of the branching-time logic CTL, and
state the model checking problem for this setting. We first
present the basic terminology on databases that will be used
throughout the paper; we refer to [1, 3] for further details.

Definition 1 (Database schema and instance). A
database schema is a finite set D = {P1/q1, . . . , Pn/qn} of
predicate symbols P with arity q ∈ N.

Given a (possibly infinite) interpretation domain X, a D-
instance over X is a mapping D associating each predicate
symbol P to a finite q-ary relation on X, i.e., D(P) ⊆ Xq.

Given a database schema D, D(X) is the set of all D-
instances on domain X; while the active domain adom(D)
of a D-instance D is the finite set of all individuals occur-
ring in some predicate interpretation D(P), i.e., adom(D) =⋃
P∈D{u1, . . . , uq ∈ X | 〈u1, . . . , uq〉 ∈ D(P)}. Further,

the primed version of a database schema D as above is the
schema D′ = {P ′1/q1, . . . , P ′n/qn}. Then, the disjoint union
D⊕D′ of D-instances D and D′ is the (D∪D′)-instance such
that (i) D ⊕D′(P) = D(P), and (ii) D ⊕D′(P ′) = D′(P).
Intuitively, primed versions and disjoint unions will be used
to describe the temporal evolution of a database schema
from the previous state D to the next state D′.

2.1 Agents in ODAN
In this paper we focus on agents manipulating data orga-

nized in relational structures, according to some database
schema. Specifically, hereafter we assume a finite number of
agent types T0, . . . , Tk. Each agent type T is associated with
(i) a local database schema DT , containing a reserved unary

predicate symbol N ∈ DT to represent the network struc-
ture, and (ii) a finite set ActT of parametric actions α(~x)
with parameters ~x. Hence, agents of the same type share the
database schema and available actions. For every agent type
T , let AgT , Ag′T , . . . be possibly infinite sets of agent names.
In the following we assume that the interpretation domain
X for database schemas contains a set AgT of names for
agents of type T , that is, X = Ag∪U for Ag =

⋃
type T AgT

and some other set U of elements. Also, the interpretation
D(N) of predicate N ∈ DT is a subset of Ag, i.e., intuitively
D(N) stores the agents related to a specific agent. To ac-
count for the temporal evolution of ODAN, we introduce
protocols for agent types. First of all, we consider a notion
of isomorphism between database instances.

Definition 2 (Instance Isomorphism). Two instances
D ∈ D(X) and D′ ∈ D(X ′) are isomorphic, or D ' D′, iff
for some bijection ι : adom(D) 7→ adom(D′),

(i) ι preserves the type of agents, i.e., for every type T , ι is
a bijection from adom(D)∩AgT into adom(D′)∩Ag′T ;

(ii) for every P ∈ D, ~u ∈ Xq, ~u ∈ D(P) iff ι(~u) ∈ D′(P).

Then, we say that ι is a witness for D ' D′ and write

D
ι' D′ to state this explicitly.

Once we have a notion of isomorphism between states, we
can introduce the local protocol PrT for a type T as follows.

Definition 3 (Protocol). Given an interpretation do-

main X, PrT is a function from DT (X) to 2ActT (X), where
ActT (X) is the set of ground actions α(~u), for α(~x) ∈ ActT
and ~u ∈ X |~x|.

Thus, the protocol PrT returns a ground action in ActT (X)
for every DT -instance of type T . Hereafter we assume the
following constraint on protocol functions: for every in-

stance D ∈ DT (X) and D′ ∈ DT (X ′), if D
ι' D′ then

α(~u) ∈ PrT (D) iff α(ι(~u)) ∈ PrT (D′). This constraint en-
sures that isomorphic states allow the same actions when-
ever “isomorphic” values are substituted to parameters. As
an example, sending an email is allowed in all states where
a valid receiver, subject and email body are provided, inde-
pendently from the actual data content of these fields.

We finally introduce the notion of agent.

Definition 4 (Agent). Given an agent name a ∈ AgT
of type T , an agent is a tuple a = 〈DT ,ActT ,PrT 〉 where DT ,
ActT , and PrT are defined as above.

Notice that above we assumed only a finite number of
agent types. However, for each type we can have an infinite
number of agents in priciple. This modelling choice is moti-
vated by the use case scenario in Section 3. Also, in domains
of interest typically it is possible to specify the relevant agent
types at design time. However, it is much more difficult,
viz. impossible, to know exactly how many agents of each
type will appear during the system’s execution. Accounting
for incoming and outgoing agents is a major challenge we
tackle in the proposed framework.

In what follows we often identify an agent with her name
and write a = 〈Da,Acta,Pra〉, omitting the type, whenever
this is clear by the context. By Def. 4 at each moment agent
a is in some local state l ∈ Da(U∪Ag) that represents the in-
formation she has about the system as well as fellow agents.

In this respect we follow the interpreted systems approach
to MAS [17, 12, 23], but a fundamental difference is that
here we require that the agent’s information is structured as
a relational database. Also, agent a is assumed to perform
the actions in Acta according to protocol function Pra. Fi-
nally, the database schema Da contains the unary predicate
symbol N to store the agents which a is related to.

Since we are interested in the interactions amongst agents
and with the external environment, we define their syn-
chronous composition, beginning with the notions of global
state and network.

Definition 5 (Global State). Given a finite subset
A ⊆ Ag of agents ai = 〈Di,Acti,Pri〉 on domain X = U ∪
Ag, for i ≤ n, a global state is a tuple s = 〈l0, . . . , ln〉 of
instances li ∈ Di(X) such that

⋃
i≤n adom(li) ∩Ag ⊆ A.

By Def. 5 a global state accounts only for a finite set of
agents, who are meant to be the active agents at a specific
time in the system’s execution. This assumption is consis-
tent with the literature on MAS [17, 12, 23], where global
states are tuples of fixed length. Also, by definition a global
state s accounts at least for all agents appearing in its active
domain adom(s) =

⋃
i≤n adom(li). That is, if some agent a

is mentioned in the local state of some other agent b ∈ A (no-
tably in the network relationN), and thus a ∈ adom(s), then
a also belongs to A. In what follows we implicitly identify
global states containing the same local states for the same
agents, only in a different order. This can be done w.l.o.g. by
assuming a fixed enumeration of agents. Further, let ag be
a function that for each global state s = 〈l0, . . . , ln〉 returns
the set ag(s) = {a0, . . . , an} of agents such that li ∈ Dai(X)
for i ≤ n. By the constraint above on global states we have
that for every state s, adom(s) ∩ Ag ⊆ ag(s). We write S
to denote the set

⋃
n∈N(

∏
i≤nDai(X)) of all global states.

Notice that S is infinite whenever Ag is.
We already remarked that the unary predicate symbol N

is used to encode the network structure of the global state.
More precisely, given a state s we define the network induced
by N as follows.

Definition 6 (Agent Network). The agent network
induced by state s is the directed graph Ns = 〈ag(s), E〉
where (i) ag(s) ⊆ Ag is the set of vertices, and (ii) E is
the binary relation on ag(s) such that E(a, b) iff b ∈ la(N).

The agent networks in Def. 6 are digraphs in general.
However, by assuming suitable conditions on global states,
namely that b ∈ la(N) iff a ∈ lb(N), we can also model undi-
rected graphs. The latter might be more appropriate when
modelling particular agent networks, as in Section 3.

Finally, we introduce open dynamic agent networks.

Definition 7 (ODAN). Given a (possibly infinite) in-
terpretation domain X = Ag ∪ U containing a (possibly in-
finite) set Ag = {a0, a1, . . .} of agents ai = 〈Di,Acti,Pri〉,
an open dynamic agent network is a tuple P = 〈Ag,U, I, τ〉
where

• I is the set of initial states s0 for some finite ag(s0) ⊆ Ag;
• τ : S ×Act(X) 7→ 2S is the global transition function,

where Act is the set of joint (parametric) actions, and
τ(〈l0, . . . , ln〉, 〈α0(~u0), . . . , αn(~un)〉) is defined iff
αi(~ui) ∈ Pri(li) for every i ≤ n.

An ODAN evolves from an initial state s0 ∈ I as speci-
fied by the global transition function τ , which returns a set
τ(s, α(~u)) ∈ 2S of successor states for each current state
s and joint ground action α(~u) by all agents in s. Since
the interpretation domain X is infinite in general, ODAN
are infinite-state systems normally. In this respect, ODAN
can be thought of as a natural extension of interpreted sys-
tems to a first-order setting. Moreover, ODAN are open and
dynamic as global states may be tuples of different length,
comprising a variable number of agents. The transition func-
tion is defined only for joint actions providing an individual
action for each agent in the current global state, but the
resulting state may include fewer or more agents. This is in
marked contrast with most of the current literature on MAS
[17, 12, 23], which assumes that the set of agents is finite
and fully specified at design time.

Hereafter we introduce a further constraint on joint ac-
tions in ODAN. To present it we need to extend the notion
of isomorphism to global states.

Definition 8 (State Isomorphism). The global states
s ∈ S and s′ ∈ S ′ are isomorphic, or s ' s′, iff for some
bijection ι : adom(s) ∪ ag(s) 7→ adom(s′) ∪ ag(s′), (i) ι pre-
serves the type of agents; and (ii) for every aj ∈ ag(s),

lj
ι' l′j.

Any function ι as above is a witness for s ' s′, also indi-

cated as s
ι' s′. Obviously, ' is an equivalence relation.

Further, given an injective function f : X 7→ X ′ such that
its restriction f|Ag is a type-preserving injection from Ag to
Ag′, f(s) denotes the instance in D(X ′) obtained from s by
renaming each u ∈ adom(s) ∪ ag(s) as f(u). In particular,
f(s) ' s. As a consequence of Def. 8, isomorphic states are
tuples of the same length. Hereafter we consider the fol-
lowing constraint on the transition functions in ODAN: for

every state s ∈ S and s′ ∈ S ′, if s
ι' s′ then t ∈ τ(s, α(~u))

iff ι(t) ∈ τ(s′, α(ι(~u))). Similarly to the condition on pro-
tocols, this constraint requires that actions performed with
“isomorphic” values in isomorphic states, also return isomor-
phic states. In other words, “isomorphic” actions are invari-
ant w.r.t. the relational structure of states. For instance,
sending emails returns isomorphic states modulo the emails’
actual data content.

It is important to stress that state isomorphism is an ex-
tremely natural condition. It amounts to the preservation of
the interpretation of predicates in each local state up to re-
naming of corresponding agents and elements of the domain.
In other words, it ensures that the behavior of the system
does not depend on how agents or elements are named.

We now introduce some notation that will be used in the
paper. We denote a joint (ground) action in

∏
i≤n Acti(X),

for n ∈ N, as α(~u), for α = 〈α0(~x0), . . . , αn(~xn)〉 and ~u =
〈~u0, . . . , ~un〉, and define the transition relation s → s′ on

global states iff s
α(~u)−−−→ s′ for some joint action α(~u), i.e., s′ ∈

τ(s, α(~u)). When no risk of confusion arises, we will use the
same symbols to denote parameters and ground values for
actions. An s-run r is an infinite sequence s0 → s1 → · · · ,
with s0 = s. For n ∈ N, we set r(n) = sn. A state s′ is reach-
able from s iff s′ = r(i) for some s-run r and i ≥ 0. In what
follows we assume that the transition relation → is serial.
This can be ensured w.l.o.g. by assuming that each agent has
a skip action enabled at each local state. Further, we define
R as the set of states reachable from any initial state s0 ∈ I,

i.e., R = {s ∈ S | s is reachable from s0, for some s0 ∈ I}.
Since the domain X may be infinite, the set R of reachable
states is also infinite in principle. Indeed, in the general
case our ODAN are infinite-state systems. Finally, for tech-
nical reasons we will refer to the global database schema
Ds = D0 ∪ · · · ∪ Dn of a state s = 〈l0, . . . , ln〉. Hence, every
state s is associated with the Ds-instance Ds ∈ Ds(X) such
that Ds(P) =

⋃
i≤n li(P), for P ∈ Ds, that is, we assume

that each agent has a truthful, yet limited, view of the global
database Ds. In particular, adom(Ds) is equal to adom(s).
Notice that for every s ∈ S, there is a unique instance Ds,
while the converse is not true in general. Also, the disjoint
union s⊕ s′ is defined as 〈l0 ⊕ l′0, . . . , ln ⊕ l′n〉.

2.2 The Specification Language FO-CTL
We now introduce a formal language to specify properties

of interest of open dynamic agent networks. The presence of
data in ODAN calls for the use of first-order logic, whereas
temporal operators are needed to account for the system’s
evolution. Hereafter we consider a set Var of individual vari-
ables and the database schema D =

⋃
type T DT .

Definition 9 (FO-CTL). The FO-CTL formulas over
the database schema D are defined in BNF as follows:

ϕ ::= P (~x) | x = y | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ

where x, y ∈ Var, P ∈ D, and ~x is a q-tuple of variables.

The language FO-CTL is a first-order extension of the
propositional temporal logic CTL. The temporal formulas
AXϕ and AϕUϕ′ (resp. EϕUϕ′) are read as “for all runs,
next ϕ”and“for every (resp. some) run, ϕ until ϕ′”. Free and
bound variables are defined as standard, as well as formulas
EXϕ, AFϕ, AGϕ, EFϕ, and EGϕ. We write φ(~x) to de-
note that the free variables of φ are among ~x = x1, . . . , xn.
Notice that we use the same symbols to refer to individ-
ual variables and action parameters, the context will disam-
biguate. The present language can be enriched with con-
stants for individuals. Since such an enhanced framework
does not require significant new formal results, while making
the notation more cumbersome, we consider only variables
as individual terms. In the following we consider also first-
order non-modal logic, as defined by the following syntax:

ϕ ::= P (~x) | x = y | ¬ϕ | ϕ→ ϕ | ∀xϕ

To define the satisfaction of an FO-CTL formula on an
ODAN, we introduce the notion of an assignment σ : Var 7→
X. We denote by σxu the assignment such that (i) σxu(x) = u;
and (ii) σxu(x′) = σ(x′) for every x′ different from x.

Definition 10 (Semantics of FO-CTL). We define
whether an ODAN P satisfies a formula ϕ in a state s ac-
cording to assignment σ, or (P, s, σ) |= ϕ, as follows:

(P, s, σ) |= P (~x) iff 〈σ(x1), . . . , σ(xq)〉 ∈ Ds(P)
(P, s, σ) |= x = y iff σ(x) = σ(y)
(P, s, σ) |= N(x, y) iff σ(y) ∈ lσ(x)(N)
(P, s, σ) |= ¬ϕ iff (P, s, σ) 6|= ϕ
(P, s, σ) |= ϕ→ ϕ′ iff (P, s, σ) 6|= ϕ or (P, s, σ) |= ϕ′

(P, s, σ) |= ∀xϕ iff for all u ∈ adom(s), (P, s, σxu) |= ϕ
(P, s, σ) |= AXϕ iff for all r, if r(0) = s then (P, r(1), σ) |= ϕ
(P, s, σ) |= AϕUϕ′ iff for all r, if r(0) = s then for some k ≥ 0,

(P, r(k), σ) |= ϕ′, and for all j,
0 ≤ j < k implies (P, r(j), σ) |= ϕ

(P, s, σ) |= EϕUϕ′ iff for some r, r(0) = s and for some k ≥ 0,
(P, r(k), σ) |= ϕ′, and for all j,
0 ≤ j < k implies (P, r(j), σ) |= ϕ

A formula ϕ is true at s, or (P, s) |= ϕ, if (P, s, σ) |= ϕ for
all assignments σ; ϕ is true in P, or P |= ϕ, if (P, s0) |= ϕ
for all s0 ∈ I. Notice that in Def. 10 we adopt an active
domain semantics, where quantifiers range over the active
domain adom(s) of a state s. This is a standard assumption
in database theory that has been lifted to data-aware sys-
tems [3, 13]. Also, observe the particular clause for formulas
of the form N(x, y), according to the intution that N(x, y)
describes an edge from σ(x) to σ(y).

Finally, we state the model checking problem for ODAN
with respect to the specification language FO-CTL.

Definition 11 (Model Checking Problem). Given
an ODAN P and an FO-CTL formula ϕ, determine whether
for every initial state s0 ∈ I, (P, s0, σ0) |= ϕ for some as-
signment σ0.

In the statement of the model checking problem we sup-
pose that the transition function τ is given as some sort of
computable function. Also, we assume finitary descriptions
for the set I of initial states and the domain of interpreta-
tion. As it will be apparent in Section 3, these requirements
are normally fulfilled in cases of interest. Also, for most of
relevant applications the specification ϕ is an FO-CTL sen-
tence, with no free variables. Hence, the model checking
problem reduces to determine whether P |= ϕ, as the sat-
isfaction of FO-CTL sentences does not depend on bound
variables.

Model checking general data-aware systems is known to
be undecidable [10]. In [2, 3] the same problem is proved to
be decidable for bounded and uniform systems. However, the
set of agents is assumed to be fixed at design time. In the
next section we illustrate and motivate the formal machinery
introduced so far by means of a diffusion phenomenon.

3. THE SIR MODEL
In this section we show how an influential network diffu-

sion model can be handled in our framework. The model at
issue is the SIR (susceptible-infected-recovered) model for
epidemics, i.e., the diffusion of a diseases in a population
(see [11, Ch. 21] or [14, Ch. 7] for textbook introductions).
In the SIR model a population of individuals is liable to go
through three different stages during an epidemic. First,
each agent is susceptible to be infected; she may actually get
infected at a certain point; and finally she will eventually
recover.2 The SIR model typically assumes a finite popula-
tion and a static network structure. In the following we show
how the SIR model can be captured and generalized to an
open and dynamic system within the framework of ODAN
and how interesting properties of SIR can be expressed in
FO-CTL. In Section 5 we will briefly discuss how the tech-
niques developed in this paper can be deployed to verify the
SIR model against FO-CTL specifications. We start with
the standard case in which the topology of the network is
assumed to be fixed and it does not change over time.

3.1 Static SIR Model
In the static SIR model the network topology is assumed

to be fixed. This case is handy to introduce basic nota-
tion and terminology. More formally, we consider a unique
2Many variants of such model are of course possible, and
many are indeed studied. For instance, the SIS model as-
sumes a cycle from susceptibility to infection and back, with-
out any recovered state.

type of agents with names in Ag. Also, the interpretation
domain X is equal to Ag, i.e., for the time being we are
only interested in facts concerning our agents. An agent in
the static SIR model is a tuple a = 〈Da,Acta,Pra〉 such that
• Da = {Sus/1, Inf/1,Rec/1, N/1}, where the intuitive

meaning of Sus (resp. Inf, Rec) is that an agent is suscep-
tible (resp. infected, recovered), while N is the network
predicate expressing the proximity/contact relation be-
tween agents;

• Acta = {skip}, i.e., agents can only perform a skip;
• the protocol Pra is such that Pra(l) = Acta(X) for all
l ∈ Da(X), i.e., the skip action is enabled in any state.

Given the set Ag of agents as defined above, the static
SIR ODAN is defined as the tuple P = 〈Ag, I, τ〉 such that
• I is the set of states where no agent is in the recovered

state, and it is assumed that at least one agent is infected
to rule out trivial models. Also, Sus(b) (resp. Inf(b),
Rec(b)) belongs to la only if b = a, or b ∈ la(N) and
Sus(b) (resp. Inf(b), Rec(b)) belongs to lb. Basically, we
assume that each agent is exactly in one of the three
possible states, and she knows only her local state and
at most those of the agents she is directly related to.

• s′ ∈ τ(s, skip) iff
1. Sus(a) ∈ la, for some b ∈ la(N), Inf(b) ∈ lb, and

either Sus(a) ∈ l′a or Inf(a) ∈ l′a; or
2. Inf(a) ∈ la and either Inf(a) ∈ l′a or Rec(a) ∈ l′a; or
3. Rec(a) ∈ la and Rec(a) ∈ l′a;
4. the consistency between an agent’s information

about the agents she is related to and said agents’
local states is preserved.

Intuitively, by definition of the static SIR ODAN P, in
each moment a necessary but not sufficient condition for
getting infected is that at least one related agent is such.
Also, each infected agent non-deterministically recovers and
remains so everafter. We observe that P is an infinite-state
system as the set Ag of agents is infinite, thus allowing in-
finitely many initial states in I, according to the network
topology. Nonetheless, notice that each s0 ∈ I defines a
finite agent network. This observation is key for the devel-
opments in Section 5.

Further, we remark that the definitions of protocol Pra
and transition function τ satisfy the constraints on both
outlined in Section 2. Specifically, it is trivially true that in
isomorphic local states the protocol Pra prescribes isomor-
phic actions (as it always prescribes skip); while τ returns
isomorphic states provided isomorphic states and actions.

The formalisation of the SIR model here provided is ex-
tremely simple. More elaborate rules for infection spread-
ing could be considered, especially if probabilities of infec-
tion are taken into account, which we abstract from here.
Nonetheless, even this basic setting raises verificational is-
sues. Indeed, the static SIR ODAN is an infinite-state sys-
tem in general, and thus not amenable by standard model
checking techniques for finite-state systems.

3.2 Dynamic SIR Model
To account for the agents’ actions, in the dynamic SIR

model agents are allowed to change the structure of the net-
work given their current information on the other agents.
Specifically, we suppose that agents disconnect from other
agents in the network whenever the latter get infected. This
can be seen for instance as a standard quarantine procedure
during epidemics. Also in the present case we consider a

unique type of agent. Then, an agent in the dynamic SIR
model is introduced as a tuple a = 〈Da,Acta,Pra〉 such that
Da is defined as in the static model and
• Acta = {skip, con(ag), disc(ag)}, where the intuitive

meaning of con(ag) (resp. disc(ag)) is that agent a
connects with (resp. disconnects from) agent ag;

• the protocol Pra is such that disc(b) ∈ Pra(la)
whenever b ∈ la(N) and Inf(b) ∈ la. Moreover,
{skip, con(b)} ⊆ Pra(l) for all la ∈ Da(X).

Notice that an agent can disconnect from another agent
whenever she knows that the latter is infected. However,
she can always connect to any other agent.

Given a set Ag of agents as defined above, the dynamic
SIR ODAN is a tuple P = 〈Ag, I, τ〉 where I is defined as
in the static SIR ODAN, and
• s′ ∈ τ(s, α) iff

1. conditions (1)-(4) in the definition of τ for the
static SIR ODAN hold;

2. αa = con(b), l′a(N) = la(N) ∪ {b}, and
l′a = la ∪ {P (b) | P ∈ Db, P (b) ∈ l′b};

3. αa = dis(b), l′a(N) = la(N) \ {b}, and
l′a = la \ {P (b) | P ∈ Db, P (b) ∈ lb}.

We remark that when agent a connects to agent b, the
health status of the latter become part of the local state of
the former, as assumed to be the case already in the defini-
tion of the static model. Moreover, b may be a new agent,
not appearing in adom(s) nor ag(s). If this is the case, the
health status of b is initialised to susceptible for definiteness.
Since agents can“be born”and“die”at run time, the lengths
of tuples s and s′ in the definition of τ will be different in
general. This formal feature, which reflects the open and
dynamic nature of ODAN, is in marked contrast with the
standard literature on interpreted systems [17, 12, 23].

In the formalisation provided each agent disconnects or
connects to a single agent at a time. We can generalize
the model by allowing multiple connections/disconnections.
Moreover, we may suppose that an agent not only sees the
health status of directly reachable partners, but possibly of
agents within a distance of k steps, for some k ∈ N. These
extra features, that can have an impact on the properties of
the agent network, can be seamlessly modelled on ODAN.

3.3 Dynamic SIR Model with Health Workers
The third version of the SIR model is intended to account

for the contribution of different types of agents to the dif-
fusion process. For the case in hand, besides the standard
agents of the static and dynamic SIR models, we introduce
a new type of agent to mimick health workers. Containe-
ment policies are key to prevent the spreading of diseases.
However, it is extremely challenging to assess the impact of
such policies in real-life scenarios. In this endeavour formal
verification techniques are surely of help (cf. [20]).

A health agent is defined as a tuple h = 〈Dh,Acth,Prh〉
where Dh and Acth are the same as for standard agents;
while the protocol Prh is such that
• disc(b) /∈ Prh(lh) whenever Inf(b) ∈ lh, but
disc(b) ∈ Prh(lh) whenever Inf(h) ∈ lh and b ∈ lh(N).

Thus, differently from standard agents, health agents are
not allowed to disconnect from infected agents. Nonetheless,
they disconnect once they also become infected. As a result,
health workers behave differently from standard agents as
long as they are not infected. This modelling choice reflects
the idea that health agent are also susceptible to infection.

Given sets Ag of agents and Agh of health agents, the
dynamic SIR ODAN with recovery threshold k ∈ N is defined
as a tuple P = 〈Ag ∪Agh, I, τ〉 such that the set I of initial
states and the transition function τ are defined as for the
dynamic model, but for the following clause:
• s′ ∈ τ(s, α) iff Inf(a) ∈ la, Rec(a) ∈ l′a, and
|la(N) ∩Agh| > k.

The ODAN P formalises, even though naively, the contri-
bution provided by health workers to patient recovery. That
is, we suppose that when an infected agent is in contact with
more than k health workers, for some threshold k ∈ N, then
she is guaranteed to recover. Notice that, by definition of
the procol Prh, these health workers are not infected and in-
deed capable of doing their job. By tweaking the threshold k
we can simulate stricter or milder policies. Also, ODAN are
expressive enough to accommodate communication amongst
health agents in order to treat infected patients.

To summarize, the framework of ODAN is rich enough to
model various assumptions on the network agents, including
available actions, behaviour, and internal state. For systems
such as the above SIR ODAN we will show in Section 5 that
it is possible to develop verification techniques, even if we
are dealing with infinite-state systems.

3.4 Specifications
We now consider specifications in FO-CTL that express

interesting properties of the SIR models illustrated above.
Firstly, a property that it is natural to consider is whether
each agent goes through the susceptible-infected-recovered
cycle. This can be easily expressed as an FO-CTL formula:

AG ∀xA(Sus(x)UA(Inf(x)URec(x))) (1)

The same property can be recast by using the weak until
operator defined as AφWφ′ ≡ ¬E(¬φ′U(¬φ ∧ ¬φ′)):

AG ∀xA(Sus(x)WA(Inf(x)WRec(x))) (2)

We anticipate that, while (1) does not hold for some execu-
tions of the SIR model, its weak until version (2) is indeed
satisfied.

Secondly, we might want to verify topological properties
of the agent network, such as whether every agent either
remains susceptible or will eventually become infected if she
is continuously in contact with someone infected. This can
be expressed in FO-CTL as follows:

AG ∀x(AGSus(x) ∨ E(∃y(Inf(y) ∧N(x, y))UInf(x))) (3)

Another property of interest is whether each agent even-
tually disconnects from an infected neighbour:

AG ∀x, y(Inf(y) ∧N(x, y)→ AF¬N(x, y)) (4)

Finally, we might want to assess the impact of health
agents in the third version of the SIR model, for instance
by evaluating whether an infected agent will always eventu-
ally recover if she is in contact with at least k health agents:

AG ∀x(∃>ky(Inf(x) ∧Agh(y) ∧N(x, y))→ AFRec(x)) (5)

In (5) the bounded quantifier ∃>k can be defined by using
equality =, while Agh is introduced as a new predicate in
the language, true only of health agents.

Our aim in the present paper is to develop techniques to
model check FO-CTL specifications as these on open dy-
namic agent networks. We remarked above that the SIR
ODAN here provided are infinite-state systems in general,

so their verification cannot be straightforwardly tackled by
using techniques developed for finite-state systems. In the
next section we prove novel results that make ODAN verifi-
cation feasible.

4. BISIMULATION
In Section 2 we stated that model checking ODAN against

FO-CTL specifications is undecidable in general. Clearly,
for the verification of open dynamic agent networks it is
crucial to isolate syntactic and semantical fragments with
a decidable model checking problem. Hereafter we identify
a rather natural subclass of ODAN that we call bounded.
Bounded ODAN admit finite bisimilar abstractions, so that
the verification of FO-CTL properties can be conducted on
the latter, rather than on the original infinite-state system.
We will discuss this in some detail in Section 5. To introduce
finite abstractions we first present bisimulations and show
that bisimilar ODAN satisfy the same FO-CTL formulas.
The results presented in this section build on [2, 3]. However,
the setting here is fundamentally different, as we consider
networks where agents can join and leave at run time.

In the rest of the section we let P = 〈Ag,U, I, τ〉 and
P ′ = 〈Ag′, U ′, I ′, τ ′〉 be two ODAN and assume that s =
〈l0, . . . , ln〉 ∈ R and s′ = 〈l′0, . . . , l′n〉 ∈ R′. First of all,
according to Def. 8 isomorphic states have the same rela-
tional structure. However, they do not necessarily satisfy
the same first-order formulas, as satisfaction depends also
on the values assigned to free variables. To account for this,
we introduce the following notion.

Definition 12 (Equivalent assignments). Given
states s ∈ R and s′ ∈ R′, and a set V ⊆ Var of variables,
assignments σ : Var 7→ X and σ′ : Var 7→ X ′ are equivalent
for V w.r.t. s and s′ iff for some bijection γ : adom(s) ∪
ag(s)∪σ(V) 7→ adom(s′)∪ag(s′)∪σ′(V), (i) the restriction
γ|adom(s)∪ag(s) is a witness for s ' s′; and (ii) σ′|V = γ◦σ|V .

Intuitively, equivalent assignments preserve agent types,
the (in)equalities of the variables in V , as well as the active
elements in s, s′ up to renaming. Moreover, two assignments
are equivalent for an FO-CTL formula ϕ (omitting states s
and s′ whenever clear by the context) if these are equivalent
for its free variables fr(ϕ).

We now state the following standard result on the preser-
vation of first-order (non-modal) formulas.

Lemma 1. Given isomorphic states s ∈ R and s′ ∈ R′,
an FO formula ϕ, and assignments σ and σ′ equivalent for
ϕ, we have that (Ds, σ) |= ϕ iff (Ds′ , σ

′) |= ϕ.

As a result, isomorphic states cannot be distinguished by
FO formulas (whenever equivalent assignments are consid-
ered). We make use of this observation to define bisimula-
tions on ODAN. In particular, plain bisimulations are known
to be satisfaction preserving in a modal propositional set-
ting [4]. Hereafter we explore under which conditions this
applies to ODAN as well.

Definition 13 (Simulation). A relation R on R×R′
is a simulation if 〈s, s′〉 ∈ R implies (i) s ' s′; and (ii) for
every t ∈ R, if s → t then for some t′ ∈ R′, s′ → t′,
s⊕ t ' s′ ⊕ t′, and 〈t, t′〉 ∈ R;

A state s′ ∈ R′ simulates s ∈ R iff 〈s, s′〉 ∈ R for some
simulation R. Notice that similar states are isomorphic by

condition 13.(i) above. Simulations can naturally be ex-
tended to bisimulations as follows.

Definition 14 (Bisimulation). A relation B on R×
R′ is a bisimulation iff both B and B−1 = {〈s′, s〉 | 〈s, s′〉 ∈
B} are simulations.

Two states s ∈ R and s′ ∈ R′ are bisimilar, or s ≈ s′, iff
〈s, s′〉 ∈ B for some bisimulation B. It can be shown that ≈
is the largest bisimulation, and an equivalence relation, on
R ∪ R′. Finally, P and P ′ are bisimilar, or P ≈ P ′, iff for
every s0 ∈ I, s0 ≈ s′0 for some s′0 ∈ I ′, and for every s′0 ∈ I ′,
s0 ≈ s′0 for some s0 ∈ I.

We remark that for general data-aware systems, bisimi-
larity is not sufficient to preserve FO-CTL formulas (please
refer to [3] for a proof). This is in marked constrast with the
modal propositional case. However, we show that ODAN,
being uniform, admit bisimulations that preserve FO-CTL.

Lemma 2 (Uniformity). Every ODAN P is uniform,
that is, for every s, t, s′ ∈ R, t′ ∈ S, if s → t and s ⊕ t '
s′ ⊕ t′, then s′ → t′.

Intuitively, uniformity expresses that if t can be reached
by executing the ground action α(~u) in s, and we uniformly
replace the element v with v′ in s, ~u and t, obtaining s′, ~u′

and t′ respectively, then t′ can be reached by executing α(~u′)
in s′. This feature is a consequence of the invariance of the
protocol and transition functions w.r.t. the actual data con-
tent of states and actions, as formalised in the requirements
on ODAN in Section 2.

Now we state some lemmas, which are needed to prove the
main preservation result Theorem 6. A further distinctive
feature of ODAN is that isomorphic states are bisimilar.

Lemma 3. For every ODAN P, for every s, s′ ∈ R, s ' s′
implies s ≈ s′.

By Lemma 3 the submodels generated by isomorphic states
are bisimilar.

The next two results guarantee that, under appropriate
constraints, bisimulations preserve assignments equivalence.

Lemma 4. Consider bisimilar ODAN P and P ′, bisimilar
states s ∈ R and s′ ∈ R′, an FO-CTL formula ϕ, and
assignments σ and σ′ equivalent for ϕ w.r.t. s and s′.

For every t ∈ R, if (i) s → t, (ii) |X ′| ≥ |adom(s) ∪
ag(s)∪adom(t)∪ag(t)∪σ(fr(ϕ))|, and (iii) for every agent
type T , |Ag′T | ≥ |agT (s)∪agT (t)∪σ(fr(ϕ))|, then for some
t′ ∈ R′, (i) s′ → t′, (ii) t ≈ t′, and (iii) σ and σ′ are
equivalent for ϕ w.r.t. t and t′.

The proof of Lemma 4 makes essential use of Lemma 3 and
uniformity. Thus, every time the cardinality constraints in
Lemma 4 are satisfied, it is possible to extend equivalent
assignments between pairs of bisimilar global states to their
successors.

The next result relies on and generalises Lemma 4 to runs.

Lemma 5. Consider bisimilar ODAN P and P ′, bisimilar
states s ∈ R and s′ ∈ R′, an FO-CTL formula ϕ, and
assignments σ and σ′ equivalent for ϕ w.r.t. s and s′.

For every s-run r in P, if for all i ≥ 0, (i) |X ′| ≥
|adom(r(i))∪ag(r(i))∪adom(r(i+1))∪ag(r(i+1))∪σ(fr(ϕ))|,
and (ii) |Ag′T | ≥ |agT (r(i))∪agT (r(i+1))∪σ(fr(ϕ))| for ev-
ery agent type T , then for some s′-run r′ in P ′, for all i ≥ 0,
(i) r(i) ≈ r′(i); (ii) σ and σ′ are equivalent for ϕ w.r.t. r(i)
and r′(i); and (iii) if r(i)→ r(i+ 1) then r′(i)→ r′(i+ 1).

By Lemma 5, if we have a sufficient number of elements in
X ′ and of agents in each Ag′T , we can simulate the execution
of an s-run by constructing a corresponding s′-run.

We finally prove that FO-CTL formulas cannot distin-
guish between bisimilar ODAN (var(ϕ) is the set of variables
in ϕ).

Theorem 6. Consider bisimilar ODAN P and P ′, bisim-
ilar states s ∈ R and s′ ∈ R′, an FO-CTL formula ϕ, and
assignments σ and σ′ equivalent for ϕ w.r.t. s and s′. If

1. for every s-run r, for every k ≥ 0, (i) |X ′| ≥
|adom(r(k)) ∪ ag(r(k)) ∪ adom(r(k + 1)) ∪ ag(r(k +
1)) ∪ σ(fr(ϕ))| + |var(ϕ) \ fr(ϕ)|, and (ii) |Ag′T | ≥
|agT (r(k))∪agT (r(k+ 1))∪σ(fr(ϕ))|+ |var(ϕ) \ fr(ϕ)|
for every type T ;

2. for every s′-run r′, for every k ≥ 0, (i) |X| ≥
|adom(r′(k)) ∪ ag(r′(k)) ∪ adom(r′(k + 1))ag(r′(k +
1)) ∪ σ′(fr(ϕ))| + |var(ϕ) \ fr(ϕ)|, and (ii) |AgT | ≥
|agT (r′(k))∪agT (r′(k+1))∪σ′(fr(ϕ))|+|var(ϕ)\fr(ϕ)|
for every type T ;

then (P, s, σ) |= ϕ iff (P ′, s′, σ′) |= ϕ.

As a consequence of Theorem 6, bisimilar states satisfy the
same FO-CTL formulas for equivalent assignments, when-
ever cardinality constraints (1) and (2) are satisfied. The
proof of this result makes essential use of Lemma 5.

We now apply Theorem 6 to the model checking problem
for ODAN. First of all, we introduce bounded ODAN.

Definition 15 (Bounded ODAN). An ODAN P is b-
bounded, for b ∈ N, iff for all s ∈ R, |adom(s) ∪ ag(s)| ≤ b.

An ODAN P is bounded iff it is b-bounded for some b ∈ N.
Notice that bounded ODAN are still infinite-state systems
in general. Hereafter let sups∈R{|adom(s)∪ag(s)|} be equal
to ∞ whenever the ODAN P is unbounded. Similarly for
sups∈R{|agT (s)|}.

Corollary 7. Consider bisimilar ODAN P and P ′, and
an FO-CTL formula ϕ. If

1. |X ′| ≥ 2 sups∈R{|adom(s) ∪ ag(s)|}+ |var(ϕ)| and
|Ag′T | ≥ 2 sups∈R{|agT (s)|}+ |var(ϕ)|

2. |X| ≥ 2 sups′∈R′{|adom(s′) ∪ ag(s′)|}+ |var(ϕ)| and
|AgT | ≥ 2 sups′∈R′{|agT (s′)|}+ |var(ϕ)|

then P |= ϕ iff P ′ |= ϕ.

Corollary 7 shows that ODAN can in principle be verified
by model checking a bisimilar system. Most importantly,
this applies to any infinite ODAN P as well. Hence, by this
result we can model check the corresponding, possibly finite
P ′, as long as X ′ is sufficiently large for P ′ to bisimulate P.

In the next section we show that finite abstractions can
indeed be constructed for bounded ODAN, thus allowing for
the verification of systems such as those of Section 3.

5. FINITE ABSTRACTION
In this section we state sufficient conditions to reduce the

model checking problem for an infinite ODAN to the veri-
fication of a finite system. The main result is Theorem 8,
which guarantees that boundedness is sufficient to obtain fi-
nite bisimilar abstractions that preserve FO-CTL formulas.

5.1 Reduction to finite-system verification
In Section 4 we specified that an ODAN is b-bounded if no

active domain in its reachable state space contains more than

b distinct elements. Moreover, no more than b agents can
be active at the same time. Observe that bounded ODAN
may still contain infinitely many states, all bounded by some
b. So, bounded ODAN are infinite-state systems in general,
with a non-trivial model checking problem.

In order to verify ODAN we introduce abstractions in a
modular manner by first defining abstract agents.

Definition 16 (Abstract agent). Let a = 〈D,Act,
Pr〉 ∈ AgT be an agent of type T defined on a countable
interpretation domain X = U ∪ Ag. Given a countable set
X ′ = U ′ ∪ Ag′ of elements, the abstract agent a′ ∈ Ag′T
is a tuple 〈D′,Act′,Pr′〉 on X ′ such that (i) D′ = D; (ii)
Act′ = Act; and (iii) Pr′ is the smallest function defined as
• if α(~u) ∈ Pr(l), l′ ∈ D′(X ′) and l′ ' l for some witness
ι, then α(ι(~u)) ∈ Pr′(l′).

Given a set AgT of agents, let Ag′T be the set of the corre-
sponding abstract agents.

We remark that a′, as defined in Def. 16, is indeed an agent
of type T according to Def. 4. In particular, the protocol Pr′

is well-defined provided Pr is, and it satisfies the assumption
on protocols by definition. We now present abstractions.

Definition 17 (Abstraction). Let P = 〈Ag,U, I, τ〉
be an ODAN, and Ag′ the set of abstract agents given as
in Def. 16. The ODAN P ′ = 〈Ag′, U ′, I ′, τ ′〉 is an abstrac-
tion of P iff (i) I ′ = {s′0 ∈ D′(X ′) | s′0 ' s0 for some s0 ∈
I}, and (ii) τ ′ is the smallest function defined as follows

• if s
α(~u)−−−→ t in P, s′, t′ ∈ D′(X ′), and s⊕ t ' s′ ⊕ t′ for

some witness ι, then s′
α(ι(~u))−−−−→ t′.

Notice that P ′ is indeed an ODAN as it satisfies the rele-
vant conditions on protocols and transitions in Def. 7. Also,
by varying X ′ we can obtain abstractions of different cardi-
nalities. In particular, we are interested in finite ones.

The following result guarantees that for every bounded
ODAN there exists a bisimilar abstraction, provided that the
latter is built over a sufficiently large interpretation domain.
In the following we assume that, for a bound b ∈ N, Nb is
the maximum numbers of parameters contained in any para-
metric joint actions, i.e., N = b ·max{α(~x)∈ActT ,type T}{|~x|}.

Theorem 8. Consider a bounded ODAN P over an infi-
nite interpretation domain X, an FO-CTL formula ϕ, and
an interpretation domain X ′. If (i) |X ′| ≥ 2b+max{|var(ϕ)|,
Nb}, and (ii) for every type T , |Ag′T | ≥ 2b+max{|var(ϕ)|, Nb},
then there exists a bisimilar abstraction P ′ of P over X ′ such
that P |= ϕ iff P ′ |= ϕ

We remark that each Ag′T and X ′ in Theorem 8 might as
well be finite. So, by using a sufficient number of abstract
agents and values, we can in principle reduce the model
checking problem for infinite-state ODAN to the verification
of a finite abstraction. Specifically, we obtain the following
corollary to Theorem 8.

Corollary 9. Given a bounded ODAN P over an infi-
nite interpretation domain X, and an FO-CTL formula ϕ,
there exists an abstract ODAN P ′ over a finite interpretation
domain X ′ such that ϕ holds in P iff P ′ satisfies ϕ.

As a consequence of Corollary 9, we can verify an infinite-
state, bounded ODAN, by model checking its finite, bisimi-
lar abstraction.

For the time being we do not discuss efficient model check-
ing procedure for finite ODAN, as it is beyond the scope of
the paper. We only remark that the state space of ODAN
is usually exponential in the number of agents and data.
Thus, a major challenge for these systems is to develop ef-
ficient model checking algorithms. We leave this topic for
future research and remind here that the main motivation
and contribution of this paper is to show that under spe-
cific conditions (namely, boundedness) we can reduce the
model checking problem for an infinite-state ODAN to the
verification of its finite abstraction.

5.2 Model Checking SIR Models
In this section we outline how the properties listed in Sec-

tion 3.4 can be verified on the SIR models provided in Sec-
tion 3. We start by remarking the following.

Firstly, when studying the evolution of a diffusion phe-
nomenon, such as epidemics, we can safely assume that the
population will not exceed a certain bound at any given
time, possibly determined by the resources of the environ-
ment. Hence, even though individual agents can join or leave
the ODAN according to the cycle of births and deaths, their
number is supposed to never exceed a given bound b ∈ N.

Secondly, the computational capabilities of any real-life
system are limited at each time-point. Specifically, sys-
tem memories are capable of storing only a finite amount
of data at each moment, even though these data can con-
stantly change at run time.

Given the above, we can safely assume that the number
of agents in any single state of the SIR ODAN in Section 3
is bounded by a value b ∈ N. We can enforce this by mod-
ifying the definition of the SIR ODAN, by requiring that
the initial states contain at most b agents, i.e., for every
s0 ∈ I, |ag(s0)| ≤ b. Further, we modify the definition of
the transition function τ by specifying that recovered agents
are discarded from the network and that existing agents can
connect to new agents as long as the bound b is not met.
Indeed, recovered agents no longer play an active role in the
evolution of the SIR model, so they can be safely discarded.

Therefore, according to Theorem 8, to model check spec-
ification (1) in Section 3.4 on the dynamic SIR ODAN it is
sufficient to consider a domain Ag′ of agents of cardinality
|Ag′| = 2b + max{|var(ϕ)|, Nb} = 3b. The agents in Ag′

generate a dynamic SIR ODAN P ′ that is bisimilar to the
original concrete system P defined on some infinite set Ag
of agents of the same type. In particular, P ′ is finite, so
we can effectively verify specification (1) on P ′ and then
transfer the result to P.

6. CONCLUSIONS
In this paper we introduced a data-aware model for open

dynamic agent networks (ODAN) and investigated the ver-
ification of first-order temporal specifications on such struc-
tures. The main technical result consists in proving that, un-
der the boundedness assumption, the model checking prob-
lem for ODAN against FO-CTL is decidable. We also showed
that the framework of ODAN is expressive enough to capture
non-probabilistic diffusion phenomena such as epidemics in
open and dynamic variants of the SIR model.

Future work should focus on exploring the complexity of
the model-checking problem for ODAN possibly restricting
the first-order expressivity of the underlying logic to a suit-
able modal fragment.

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995.

[2] F. Belardinelli, A. Lomuscio, and F. Patrizi. An
Abstraction Technique for the Verification of
Artifact-Centric Systems. In Proc. of the 13th
International Conference on Principles of Knowledge
Representation and Reasoning (KR’12), pages 319 –
328, 2012.

[3] F. Belardinelli, F. Patrizi, and A. Lomuscio.
Verification of agent-based artifact systems. Journal of
Artificial Intelligence Research, 51:333–77, 2014.

[4] P. Blackburn, M. de Rijke, and Y. Venema. Modal
Logic, volume 53 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2001.

[5] Z. Christoff and J. U. Hansen. A two-tiered
formalization of social influence. In Proceedings of
LORI’13, number 8196 in LNCS, pages 68–81.
Springer, 2013.

[6] Z. Christoff and J. U. Hansen. A logic for diffusion in
social networks. Journal of Applied Logic, 13(1):48–77,
2015.

[7] D. Cohn and R. Hull. Business Artifacts: A
Data-Centric Approach to Modeling Business
Operations and Processes. IEEE Data Eng. Bull.,
32(3):3–9, 2009.

[8] M. Dam. Model checking mobile processes.
Information and Computation, 129:35–51, 1996.

[9] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu.
Automatic Verification of Data-Centric Business
Processes. In Proc. of ICDT, 2009.

[10] Alin Deutsch, Liying Sui, and Victor Vianu.
Specification and Verification of Data-Driven Web
Applications. J. Comput. Syst. Sci., 73(3):442–474,
2007.

[11] D. Easley and J. Kleinberg. Networks, Crowds, and
Markets. Cambridge University Press, 2010.

[12] R. Fagin, J.Y. Halpern, Y. Moses, and M.Y. Vardi.
Reasoning About Knowledge. The MIT Press, 1995.

[13] B. Bagheri Hariri, D. Calvanese, G. De Giacomo,
A. Deutsch, and M. Montali. Verification of relational
data-centric dynamic systems with external services.
In R. Hull and W. Fan, editors, PODS, pages 163–174.
ACM, 2013.

[14] M. O. Jackson. Social and Economic Networks.
Princeton University Press, 2008.

[15] S. Khan, R. Makkena, F. McGeary, K. Decker,
W. Gillis, and C. Schmidt. A multi-agent system for
the quantitative simulation of biological networks. In
Proceedings of the second international joint
conference on Autonomous agents and multiagent
systems (AAMAS’03), pages 385–392. ACM, 2003.

[16] R. Milner. The polyadic π-calculus: A tutorial.
Technical Report ECS-LFCS-91-180, Laboratory for
the Foundations of Computer Science, Department of
Computer Science, University of Edinburgh, 1991.

[17] R. Parikh and R. Ramanujam. Distributed processes
and the logic of knowledge. In Logic of Programs,
pages 256–268, 1985.

[18] M. Rovatsos. Multiagent systems for social
computation. In A. Lomuscio, P. Scerri, A. Bazzan,
and M. Huhns, editors, Proceedings of the 13th
International Conference on Autonomous Agents and
Multiagent Systems (AAMAS14). IFAAMAS, 2014.

[19] A. Salehi-Abari and C. Boutilier. Empathetic social
choice on social networks. In A. Lomuscio, P. Scerri,
A. Bazzan, and M. Huhns, editors, Proceedings of the
13th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS14). IFAAMAS,
2014.

[20] G. Santhanam, Y. Suvorov, S. Basu, and V. Honavar.
Verifying intervention policies to counter infection
propagation over networks: A model checking
approach. In Proceedings of the 25th AAAI Conference
on Artificial Intelligence. AAAI Press, 2011.

[21] L. Sless, N. Hazon, M. Wooldridge, and S. Kraus.
Forming coalitions and facilitating relationships for
completing tasks in social networks. In A. Lomuscio,
P. Scerri, A. Bazzan, and M. Huhns, editors,
Proceedings of the 13th International Conference on
Autonomous Agents and Multiagent Systems
(AAMAS14). IFAAMAS, 2014.

[22] H. van Ditmarsch, B. Kooi, and W. van der Hoek.
Dynamic Epistemic Logic, volume 337 of Synthese
Library Series. Springer, 2007.

[23] M. Wooldridge. Computationally Grounded Theories
of Agency. In Proc. of ICMAS, pages 13–22. IEEE
Press, 2000.

