Journal: Clinical Infectious Diseases

Article DOI: civ1025

Article title: Cost-effectiveness of Monovalent Rotavirus Vaccination of Infants in Malawi: A Postintroduction Analysis Using Individual Patient–Level Costing Data

- First Author: Naor Bar-Zeev
- Corr. Author: Naor Bar-Zeev

INSTRUCTIONS

- 1. **Permissions:** Permission to reproduce any third party material in your paper should have been obtained prior to acceptance. If your paper contains figures or text that require permission to reproduce, please inform me immediately by email.
- 2. Author groups: Please check that all names have been spelled correctly and appear in the correct order. Please also check that all initials are present. Please check that the author surnames (family name) have been correctly identified by a pink background. If this is incorrect, please identify the full surname of the relevant authors. Occasionally, the distinction between surnames and forenames can be ambiguous, and this is to ensure that the authors' full surnames and forenames are tagged correctly, for accurate indexing online. Please also check all author affiliations.
- 3. **Figures:** If applicable figures have been placed as close as possible to their first citation. Please check that they are complete and that the correct figure legend is present. Figures in the proof are low resolution versions that will be replaced with high resolution versions when the journal is printed.
- 4. Missing elements: Please check that the text is complete and that all figures, tables and their legends are included.
- 5. URLs: Please check that all web addresses cited in the text, footnotes and reference list are up-to-date, and please provide a last accessed date for each URL. Please specify format for last accessed date as: Accessed Day Month Year.
- 6. **Funding:** Please provide a Funding statement, detailing any funding received. Remember that any funding used while completing this work should be highlighted in a separate Funding section. Please ensure that you use the full official name of the funding body, and if your paper has received funding from any institution, such as NIH, please inform us of the grant number to go into the funding section. We use the institution names to tag NIH-funded articles so they are deposited at PMC. If we already have this information, we will have tagged it and it will appear as coloured text in the funding paragraph. Please check the information is correct.
- 7. **Conflict of interest:** All authors must make a formal statement indicating any potential conflict of interest that might constitute an embarrassment to any of the authors if it were not to be declared and were to emerge after publication. Such conflicts might include, but are not limited to, shareholding in or receipt of a grant or consultancy fee from a company whose product features in the submitted manuscript or which manufactures a competing product. The following statement has been added to your proof: Conflict of Interest: none declared'. If this is incorrect please supply the necessary text to identify the conflict of interest.
- 8. Please note that figures have been included only as low resolution scans, which will be replaced before the journal is printed. However, please check that all figures are correct and complete, including any required acknowledgements to third party sources. If your paper contains colour images please confirm that you are willing to pay the appropriate charge (colour costs: £350.00 per figure).
- 9. Please review your article for patient names and confirm that there are no instances where a patient can be identified.

Journal:	Clinical Infectious Diseases
Article DOI:	civ1025
Article title:	Cost-effectiveness of Monovalent Rotavirus Vaccination of Infants in Malawi: A Postintroduction Analysis Using Individual Patient–Level Costing Data
First Author:	Naor Bar-Zeev
Corr. Author:	Naor Bar-Zeev

AUTHOR QUERIES - TO BE ANSWERED BY THE CORRESPONDING AUTHOR

The following queries have arisen during the typesetting of your manuscript. Please click on each query number and respond by indicating the change required within the text of the article. If no change is needed please add a note saying "No change."

Query No.	Nature of Query
AQ	Please review your article for patient names and confirm that there are no instances where a patient can be identified.
AQ	Kindly provide the complete mailing address of the corresponding author; if available in the proof kindly ensure that it is correct.
AQ	Color charges: \$550 per page for the first printed page with color, then \$440 for each subsequent printed page with color. If your paper contains color images please confirm that you are willing to pay the appropriate charge (Supplement authors, please disregard this query, as color charges are contracted through the sponsor and any exceptions will be noted on an individual basis.).
AQ	Page Charges: \$55 for each of the first 6 printed pages, then \$85 for each subsequent printed page. Invited articles, Correspondence, Online only, Book Reviews, In The Literature and News manuscripts do not incur page charges (Supplement authors, please disregard this query, as page charges are contracted through the sponsor.).
AQ	Kindly ensure that the URL in the references lead to the intended website and provide the last accessed date if applicable.
Q1	Please check the names of all authors to be sure of consistency across manuscripts. Please be sure that all initials, surnames, etc. appear how they should be formatted in Pubmed.
Q2	Per journal style, the affiliations have been grouped according to department (or other subunit), primary institution, city, state (if in the United States), and country. In addition, the city or state name has been deleted when its removal does not introduce an ambiguity. Please review the changes for accuracy.
Q3	Your article has been edited for spelling, grammar, clarity, consistency, and adherence to journal style and, as appropriate, to conform with the style outlined in the American Medical Association Manual of Style (10th edition). Please read the article and author queries carefully to make sure your meaning has been retained. If changes are required, please enter the changes directly into the text. Please note that we may be unable to make changes that conflict with journal style, obscure meaning, or create grammatical or other problems.
Q4	Reference citations have been renumbered to include the flow of the tables. Please check.
Q5	Please provide the institution for Dan Hungerford.

Query No.	Nature of Query
Q6	Table 5 was cited before Table 4 in the text, so we have switched the citations and the tables so the citations appear in order. Please check.
Q7	The text "Thus, government net cost of just under \$2.5 million" is a sentence fragment. Please rewrite this to be a complete sentence.
Q8	The notes at the end of the text have been edited to accord with journal style. Please confirm whether the changes, particularly those involving financial support and conflicts of interest declarations, are correct as specified. If they are not, please enter corrections directly into the text to ensure that your intended meaning is conveyed.
Q9	Please provide the accessed date for Reference 12.
Q10	Please provide publisher name and location for Reference 25.
Q11	Please provide the volume number and page range for Ref [29].
Q12	Your tables have been edited in accordance with journal style. Please check carefully to ensure that all edits are acceptable and that the integrity of the data has been maintained. Please also confirm, where applicable, that units of measure are correct, that table column heads accurately reflect the information in the columns below, and that all material contained in table footnotes (including definitions of symbols and abbreviations) is correct.
Q13	Table 1: Please provide footnote text for designators a and b.
Q14	Tables 2, 4, and 5: Please provide a stub (far left) column heading.
Q15	Table 2, footnote a: Please write out "CEA."
Q16	Table 3: Please clarify RV1 and RV2; does this mean RV1 dose 1 and RV1 dose 2?
Q17	Table 3: For the last 3 rows, please state what the data in parentheses represent (ie, range, IQR, 95% CI).
Q18	Tables: All tables have been revised to conform with journal style. Please check carefully that accuracy of your data has been retained throughout.

MAKING CORRECTIONS TO YOUR PROOF

These instructions show you how to mark changes or add notes to the document using the Adobe Acrobat Professional version 7(or onwards) or Adobe Reader XI (PDF enabled for marking corrections). To check what version you are using go to **Help** then **About**.

If you do not have Adobe Reader XI, please visit the following link to download it for free: http://get.adobe.com/reader.

Displaying the toolbars

Acrobat Professional X, XI and Reader XI

Select Comment, Annotations and Drawing Markups.

If this option is not available, please let me know so that I can enable it for you.

Ann	otatio	ns			 Drawing Markups
P	5	B	-	- 🎴	
Ta	Ŧ	푸	T	Ъ	00010

Acrobat Professional 7, 8 and 9

Select Tools, Commenting, Show Commenting Toolbar.

Using Text Edits

This is the quickest, simplest and easiest method both to make corrections, and for your corrections to be transferred and checked.

- 1. Click Text Edits
- 2. Select the text to be annotated or place your cursor at the insertion point.
- 3. Click the **Text Edits** drop down arrow and select the required action.

You can also right click on selected text for a range of commenting options.

Pop up Notes

With *Text Edits* and other markup, it is possible to add notes. In some cases (e.g. inserting or replacing text), a pop-up note is displayed automatically.

To **display** the pop-up note for other markup, right click on the annotation on the document and selecting **Open Pop-Up Note**.

To **move** a note, click and drag on the title area.

Inserted Tex smithma	t 07/10/2009) 🛛
-bound [1]	- 0	^

To resize of the note, click and drag on the

bottom right corner.

To **close** the note, click on the cross in the top right hand corner.

To **delete** an edit, right click on it and select **Delete**. The edit and associated note will be removed.

SAVING COMMENTS

In order to save your comments and notes, you need to save the file (**File, Save**) when you close the document. A full list of the comments and edits you have made can be viewed by clicking on the Comments tab in the bottom-lefthand corner of the PDF.

Cost-effectiveness of Monovalent Rotavirus Vaccination of Infants in Malawi: A Postintroduction Analysis Using Individual Patient-Level Costing Data

Naor Bar-Zeev,^{1,2} Jacqueline E. Tate,³ Clint Pecenka,⁴ Jean Chikafa,¹ Hazzie Mvula,⁵ Richard Wachepa,¹ Charles Mwansambo,⁶ Themba Mhango,⁶ Geoffrey Chirwa,⁶ Amelia C. Crampin,^{5,7} Umesh D. Parashar,³ Anthony Costello,⁸ Robert S. Heyderman,^{1,9,10} Neil French,^{1,2} Deborah Atherly,⁴ and 5 Nigel A. Cunliffe²; for the VacSurv Consortium

Q1 02

¹Malawi-Liverpool-Wellcome Trust Clinical Research Programme, College of Medicine, University of Malawi, Blantyre; ²Institute of Infection and Global Health, University of Liverpool, United Kingdom; ³Epidemiology Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, ⁴Program for Appropriate Technologies in Health (PATH), Seattle, Washington; ⁵Karonga Prevention Study, Chilumba, Karonga, and ⁶Ministry of Health, Lilongwe, Malawi; ⁷London School of Hygiene and Tropical Medicine, ⁸Institute of Global Health and ⁹Division of Infection and Immunity, University College London, and ¹⁰Liverpool School of Tropical Medicine, United Kingdom

O3

10

Background. Rotavirus vaccination reduces childhood hospitalization in Africa, but cost-effectiveness has not been determined using real-world effectiveness and costing data. We sought to determine monovalent rotavirus vaccine cost-effectiveness in Malawi, one of Africa's poorest countries and the first Gavi-eligible country to report disease reduction following introduction in 2012.

Methods. This was a prospective cohort study of children with acute gastroenteritis at a rural primary health center, a rural first referral-level hospital and an urban regional referral hospital in Malawi. For each participant we itemized household costs of illness 15 and direct medical expenditures incurred. We also collected Ministry of Health vaccine implementation costs. Using a standard tool (TRIVAC), we derived cost-effectiveness.

Results. Between 1 January 2013 and 21 November 2014, we recruited 530 children aged <5 years with gastroenteritis. Costs did not differ by rotavirus test result, but were significantly higher for admitted children and those with increased severity on Vesikari

- scale. Adding rotavirus vaccine to the national schedule costs Malawi \$0.42 per dose in system costs. Vaccine copayment is an ad-20 ditional \$0.20. Over 20 years, the vaccine program will avert 1 026 000 cases of rotavirus gastroenteritis, 78 000 inpatient admissions, and 4300 deaths, and 136 000 disability-adjusted-life-years (DALYs). For this year's birth cohort, it will avert 54 000 cases of rotavirus and 281 deaths in children aged <5 years. The program will cost \$10.5 million and save \$8.0 million in averted healthcare costs. Societal cost per DALY averted was \$10, and the cost per rotavirus case averted was \$1.
- Conclusions. Gastroenteritis causes substantial economic burden to Malawi. The rotavirus vaccine program is highly cost-effective. 25 Together with the demonstrated impact of rotavirus vaccine in reducing population hospitalization burden, its cost-effectiveness makes a strong argument for widespread utilization in other low-income, high-burden settings.

Keywords. rotavirus vaccine; cost-effectiveness; developing countries.

Q4

30 Rotavirus gastroenteritis is a leading cause of illness and death in African children, accounting for >197 000 deaths annually, just over half of the global rotavirus mortality burden [1, 2].

- Since 2012, with Gavi, the Vaccine Alliance (hereafter "Gavi") support, 25 African countries have introduced rotavirus vaccine 35
- into their childhood immunization programs. New vaccines are costly to the health system, and the expenditure should be justified on epidemiological and fiscal grounds as investment in vaccine programs necessarily denies funds from competing health
- priorities. Additionally, as Gavi-supported countries are required 40 to make copayments for vaccines, knowing these vaccines are cost-effective is important for budgetary planning and negotiating procurement costs. Cost-effectiveness is evaluated in terms of

Clinical Infectious Diseases[®]

gross domestic product (GDP) and thus is context dependent, both with respect to program and treatment costs but also with 45 respect to local vaccine effectiveness. According to World Health Organization (WHO) criteria, cost per disability-adjusted lifeyear (DALY) [3] ratios <3 times the per-capita GDP are considered cost-effective, whereas those less than per-capita GDP are considered highly cost-effective [4]. (DALY measures the popu-50 lation loss of years of life lived in perfect health.) Estimates from middle- or high-income settings are therefore not applicable to low-income countries.

Malawi, a low-income country in southern Africa with under-5 mortality of 71 per 1000 live births and GDP per capita 55 of \$253 [5], was one of the first countries on the continent to introduce monovalent rotavirus vaccine in 2012. The government of Malawi is the main healthcare provider in the country and healthcare is free at government facilities, although families often incur considerable ancillary costs and there is no national 60 health insurance scheme. We recently described monovalent rotavirus vaccine effectiveness against severe acute rotavirus

Correspondence: N. Bar-Zeev, Malawi-Liverpool-Wellcome Trust Clinical Research Programme, PO Box 30096, Chichiri, Blantyre 3, Malawi (naor.bar-zeev@liverpool.ac.uk).

[©] The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com. DOI: 10.1093/cid/civ1025

gastroenteritis of 64% (95% confidence interval, 24%-83%) in routine use in Malawi [6]. Previous cost-effectiveness studies

- from Malawi and elsewhere in Africa conducted prior to vaccine 65 introduction were based on modeled (top-down) estimates of cost rather than empirically observed (ground-up) actual expenditures [7–9]. We now report results from a comprehensive individual patient costing cohort study using actual ongoing
- 70 costs incurred by the health system and by households to determine, from a government and from a societal perspective, rotavirus vaccine cost-effectiveness following introduction.

METHODS

Study Sites and Design

- Between 1 January 2013 and 21 November 2014, we conducted 75 a prospective cohort study of children <5 years of age resident within the study site catchment areas presenting with acute gastroenteritis in northern and southern Malawi. The northern rural site was located in Chilumba Rural Hospital campus,
- 80 Karonga, on which site are colocated an "under-5" primary health center providing childhood outpatient services and, adjacently housed, a first-referral-level inpatient facility. Both service the population within a demographic surveillance site in Chilumba that has been previously described [10, 11]. The southern urban
- 85 site was at Queen Elizabeth Central Hospital, Blantyre, which is the tertiary referral center for Malawi's south and serves as a district hospital for the city of Blantyre (population 1.3 million). All sites are government facilities providing free healthcare. At these sites, with parental written consent, we recruited both outpatient
- 90 and admitted children. We excluded children admitted to another hospital >24 hours who then subsequently transferred to study facilities, children re-presenting for the same illness within 14 days, and children with known oncological or congenital immunodeficiency other than human immunodeficiency virus infection. De-
- 95 mographic and clinical data were collected at enrollment (Table 1) and disease severity on admission was measured by Vesikari score, with severe disease defined as a score >10. Stool specimens were tested for rotavirus using enzyme immunoassay (Rotaclone, Meridian Bioscience, Cincinnati, Ohio). We followed up children
- surviving to facility discharge with a home visit after 6 weeks to 100 obtain all illness-related costs incurred after discharge. Initial training of interviewers was exhaustive and included role-play scenarios as well as peer review to ensure consistency in data recording and interpretation of parental answers regarding
- income and expenditures. 105

Data on Cost of Illness

Using a standard case report form, we undertook detailed itemized individual patient-level determination of actual expenditures related to the current illness. From a household perspective, we collected by parental interview self-reported recall of all illness-

110 related expenditures from symptom onset to convalescence at home after discharge, including transport costs to and from health

facilities, loss of income and other opportunity costs, costs of formal and informal healthcare seeking (including household expenditure on consultations, diagnostics, and therapeutics in com-115 munity healthcare facilities, traditional healers, or other informal care), and costs related to accommodation and food for visiting family members during admission of the index child and any direct medical costs. We did not include long-run costs arising from any disability related to the acute illness episode. 120

From a government healthcare provider perspective, we collected actual costs incurred in our cohort (Table 2). From the medical record we obtained individual-level drugs dispensed and laboratory or radiological investigations performed. Use of clinical consumables (intravenous cannula, stationery, etc) 125 was difficult to account for per child and thus was not included, although our experience in these facilities suggests these costs are likely to be minimal. Drug consumption was costed based on actual procurement purchase costs obtained from the purchasing officer. Laboratory investigations were costed on basis 130 of actual charge incurred by the respective facilities for each specific investigation performed; this charge was inclusive of laboratory consumables, staff time, etc. Costs for each cadre of staff were calculated by multiplying actual salaries (including oncosts such as medical benefits scheme contributions, study leave, 135 other allowances, etc) of staff in observed ward attendance divided by ward occupancy and multiplied by individual patient length of stay. We did not include staff time not spent on direct patient care (eg, in-service training). Hotel costs (ie, kitchen, laundry, sanitation, security, amenities, and transportation) 140 were based on actual hospital expenditures per bed multiplied by individual length of stay. Hospital administration costs, capital costs, or physical asset depreciation were not included. Household costs included all illness-related expenditures that were incurred at each health facility attended, such as direct med-145 ical costs (consultation fees, drug cost, diagnostic test cost), transport cost, and any other costs relating to illness as reported by the respondent. We collected costs of accommodation, food, and any other items (soap, cup, etc) for all participants, although only inpatients reported such costs. Opportunity costs (eg, lost income) 150 were included for all participants regardless of which facility they attended. The combination of healthcare costs and household costs over all projected birth cohorts constitute the total societal cost. All costs were collected in 2014 Malawi kwacha, which were converted to US dollars based on the Reserve Bank of Malawi 155 midmarket exchange rate as of 15 July 2014 (Table 2).

Data on Vaccine Program Cost

Ongoing rotavirus vaccine program cost projections were provided by the 2012-2016 comprehensive Expanded Programme on Immunization (EPI) multiyear plan [12]. Cost categories included 160 staff training, community sensitization, surveillance, management, transport, maintenance, and capital costs (such as cold storage and transport). We did not include depreciation of capital

		Urban			Rural	
Characteristic	Inpatient (n = 282)	Outpatient (n = 118)	Total (n = 400)	Inpatient (n = 22)	Outpatient (n = 108)	Total (N = 130)
Age						
0–11 mo	151 (54)	42 (36)	193 (48)	11 (50)	53 (49)	64 (49)
12–23 mo	105 (37)	51 (43)	156 (39)	5 (23)	26 (24)	31 (24)
24–59 mo	24 (9)	17 (14)	41 (10)	4 (18)	26 (24)	30 (23)
Mean (SD), mo	13.6 (8.0)	17.9 (13.0)	14.8 (9.8)	16.2 (14.2)	15.9 (11.4)	15.9 (11.8)
Male sex	168 (60.0)	63 (53)	231 (58)	9 (41)	62 (57)	71 (55)
Persons in household, median (IQR)	5 (4–6)	4 (3–5)	5 (3.5–6)	6 (4–7)	6 (5–7)	6 (4–7)
Transport to facility						
Walk	15 (5)	17 (14)	32 (8)	10 (46)	59 (55)	69 (53)
Bicycle	1 (0.4)	0	1 (0.3)	10 (46)	36 (33)	46 (35)
Car	19 (7)	1 (1)	20 (5)	0	3 (3)	3 (2)
Minibus	214 (76)	84 (71)	298 (75)	0	0	0
Other	18 (6)	36 (31)	54 (14)	2 (9)	10 (9)	12 (9)
Water source						
Piped to house	38 (14)	23 (20)	61 (15)	2 (9)	14 (13)	16 (12)
Communal piped tap	187 (66)	86 (73)	273 (68)	3 (14)	16 (15)	19 (15)
Borehole	35 (12)	5 (4)	40 (10)	7 (32)	31 (29)	38 (29)
Protected well	3 (1)	0	3 (1)	0	5 (5)	5 (4)
Open well ^a	11 (4)	1 (1)	12 (3)	4 (18)	2 (2)	6 (5)
Open lake/stream ^a	0	0	0	0	1 (1)	1 (1)
Toilet facilities						
Flush toilet	12 (4)	6 (5)	18 (5)	0	0	0
Improved latrine	0	1 (1)	1 (0.3)	0	0	0
Pit latrine	261 (93)	106 (90)	367 (92)	16 (73)	58 (54)	74 (57)
Open	2 (1)	1 (1)	3 (1)	6 (27)	50 (46)	56 (43)
Handwashing facilities available ^b	85 (30)	71 (60)	156 (39)	4 (18)	23 (21)	27 (21)
Caregiver						
Mother	274 (97)	118 (100)	392 (98)	20 (91)	102 (94)	122 (94)
Education of caregiver						
Tertiary	17 (6)	3 (3)	20 (5)	0	1 (1)	1 (1)
Secondary	113 (40)	64 (54)	177 (44)	5 (23)	28 (26)	33 (25)
Primary	122 (43)	46 (39)	168 (42)	15 (68)	76 (70)	91 (70)
None	6 (2)	1 (1)	7 (2)	0	0	0
Unknown	15 (5)	3 (3)	18 (5)	0	0	0
Profession of caregiver						
Housework/child care	157 (56)	68 (58)	225 (56)	12 (55)	41 (38)	53 (41)
Farming	7 (3)	2 (2)	9 (2)	6 (27)	4 (4)	10 (8)
Small business/self-employed	75 (27)	30 (25)	105 (26)	2 (9)	2 (2)	4 (3)

Data are presented as No. (%) unless otherwise specified.

Abbreviations: IQR, interquartile range; SD, standard deviation.

costs. Personnel costs were excluded because no additional EPI staff were employed with the introduction of rotavirus vaccine, 165 and all work was absorbed by existing staff. We used the mean expenditure over a 5-year period to represent the average annual cost we would expect over the life of the program. These costs were divided by total doses required by the birth cohort, and

- 170 the cost share was allocated to rotavirus on a per-antigen-dose basis to obtain a system cost per dose as 2014 Malawi kwacha. Our calculations indicate that the addition of rotavirus vaccine to the routine EPI schedule increases system costs by \$0.42 per dose. Malawi's copayment is \$0.20 [13], with the remainder of
- the \$2.50 dose cost being borne by Gavi. As sensitivity analysis, 175

we modeled Malawi taking on the full cost of \$2.50 from both 2023 and 2028, respectively 10 and 15 years after introduction.

Data on Disease Burden and Vaccine Effectiveness

Disease burden estimates were based on our observed incidence in Malawi and other published burden estimates from Africa 180 [14, 15]; we assumed no changes in quality or availability of clinical care or of population nutrition over time (Table 3). Vaccine coverage and timeliness were those empirically observed in our surveillance program (Table 3) [6]. We used our recently published estimate of vaccine effectiveness against severe disease in 185 Malawi [6], but input lower effectiveness against mild disease

Table 2. Input Parameters for Estimating Health Service Costs, and Per-Visit Costs by Admission Status and Disease Severity

	No.	Estimate	95% CI	No.	Estimate	95% CI	Rank-Sum <i>P</i> Value
Government cost overall		Outpatie	ent		Inpatie	nt	
Public health center	108	\$8.02	\$7.47-\$8.57	22	\$55.04	\$43.15-\$66.93	<.001
Public tertiary referral hospital	118	\$7.15	\$6.41-\$7.90	282	\$47.16	\$40.65-\$53.67	<.001
Government cost overall		Nonsevere o	disease		Severe dis	ease	
Public health center	128	\$15.50	\$11.92-\$19.08	2	\$46.34 ^a	\$0-\$357.84	.05
Public tertiary referral hospital	197	\$26.22	\$17.86-\$34.57	207	\$43.59	\$38.54-\$48.64	<.001
Government cost for outpatient vis	sit						
Public health center	108	\$8.02	\$7.47-\$8.57	0 ^b			.12 ^c
Public tertiary referral hospital	116	\$7.02	\$6.32-\$7.72	2	\$14.85	\$0-\$120.79	.08
Government cost for inpatient adm	nission						
Public rural hospital	20	\$55.91	\$43.32-\$68.49	2	\$46.34	\$0-\$357.84	.65 ^d
Public tertiary referral hospital	77	\$55.90	\$36.07-\$75.73	205	\$43.87	\$38.79-\$48.96	.25 ^d
Household cost overall		Outpatie	ent		Inpatie	nt	
Public health center ^e	108	\$0.49	\$0.30-\$0.68	22	\$9.43	\$4.96-\$13.89	<.001
Public tertiary referral hospital	118	\$5.80	\$3.93-\$7.68	282	\$10.76	\$9.38-\$12.13	<.001
Household cost overall		Nonsevere of	disease		Severe dis	sease	
Public health center	128	\$1.81	\$0.92-\$2.71	2	\$14.23	\$0-\$100.57	.015
Public tertiary referral hospital	197	\$7.69	\$6.17-\$9.21	207	\$10.94	\$9.29-\$12.59	<.001
Household cost for outpatient visit							
Public health center ^e	108	\$0.49	\$0.30-\$0.68	0			.56 ^c
Public tertiary referral hospital	116	\$5.80	\$3.93-\$7.68	2	\$6.82	\$0-\$21.26	.23
Household cost for inpatient admis	ssion						
Public rural hospital	20	\$8.95	\$4.16-\$13.73	2	\$14.23	\$0-\$100.57	.25
Public tertiary referral hospital	77	\$10.16	\$7.75-\$12.56	205	\$10.98	\$9.31-\$12.65	.38
Other household costs							
Private pharmacy		\$0.23	\$0.09-\$0.36		\$0.28	\$0.10-\$0.46	
Private clinic		\$0.04	\$0.01-\$0.07		\$0.13	\$0.00-\$0.27	

All costs are in 2014 US dollars

Abbreviation: CI, confidence interval (estimate ± 1.96 × standard error).

^a All severe cases in rural setting were admitted to the rural hospital on site (these costs were not entered twice in the CEA model).

^b Cases with severe disease were admitted after first being seen in outpatient clinic. Subsequent costs of severe disease when admitted were counted under inpatient admission and not outpatient visit. Outpatient visits occurred at public health center and at the outpatient department of the public referral hospital. Inpatient admissions occurred at the public rural hospital and the public referral hospital.

^c Linear regression of cost vs Vesikari score for those with score <10.

^d Nonsignificant but higher cost point estimate in nonsevere group, possibly explained by admission indicated by other comorbidity rather than gastroenteritis severity itself.

^e Total outpatient costs, including costs of healthcare sought before arrival at recruitment facility.

Q5

based on published estimates and an unpublished systematic review of effectiveness studies [14] (Dan Hungerford, personal communication). We used published case fatality estimates
from regional countries, and these were consistently within the error margin of our own measured fatality rate (Table 3) [2, 11, 16]. Because evidence indicates that monovalent rotavirus vaccine provides heterotypic (cross-genotype) protection [20], we assumed no impact on effectiveness over time from genotype

replacement in primary analysis, but allowed for this in sensitivity analysis. We assumed waning immunity beyond the first year of life, but modeled unchanging ongoing protective immunity in sensitivity analysis [18, 19]. Disability weighting for DALY calculations was based on published estimates (Table 3) [17].

200 Statistical Analysis

Sample size was specifically calculated for this costing study. Taking a healthcare provider perspective, using predefined

precision about a continuous cost estimate, a sample size of 88 provided a diarrheal illness cost estimate with a margin of error of $\leq 10\%$, assuming a coefficient of variation of 0.5 and 205 at least 1000 children with diarrhea presenting to our study site annually [21-23]. Larger samples provide more precise cost estimates. Mean (therefore total) costs and 95% confidence bounds were reported for households and healthcare provider costs [24]. These analyses were done using Stata software, 210 version 13.1 (StataCorp, College Station, Texas). Vaccine costeffectiveness was calculated using TRIVAC 2.0 (Pan-American Health Organization), extensive details of which have been previously published [14, 25]. In brief, TRIVAC uses input demographic and disease burden data, vaccine cost, and coverage and 215 effectiveness estimates, as well as user input healthcare utilization and costs to determine incremental cost-effectiveness over 20 stacked under-5 cohorts to derive years of life lost and cost per DALY gained for each cohort's life expectancy at birth [14].

Q15

Table 3. Input Parameters for Estimating Disease Burden, Vaccine Coverage, Timeliness, and Effectiveness

Parameter	Estimate	Source(s)
Annual incidence per 100 000 aged 1–59 mo		
Rotavirus (nonsevere) cases, No.	9201	Assumption, derived from [14, 15]
Rotavirus (severe) cases, No.	799	Assumption, derived from [14, 15]
Rotavirus case fatality rate ^a	4.29%	Assumption, derived from [2, 11, 16]
Disability weight for DALY calculations		
Rotavirus (nonsevere) cases	0.202	[17]
Rotavirus (severe) cases	0.281	[17]
Mean duration of illness, d		
Rotavirus (nonsevere) cases	6	[6]
Rotavirus (severe) cases	6	[6]
Age distribution of disease cases and deaths		
<3 mo	6.6%	[6]
3–5 mo	19.4%	[6]
6–8 mo	31.9%	[6]
9–11 mo	19.8%	[6]
12–23 mo	21.8%	[6]
24–35 mo	0.5%	[6]
36–47 mo	0%	[6]
48–59 mo	0%	[6]
Location of care seeking		
Private pharmacy/clinic	15%	Self-reported by this study cohort
Public/government primary health center	70%	Self-reported by this study cohort
Public/government first-level hospital	10%	Self-reported by this study cohort
Public/government referral-level hospital	5%	Self-reported by this study cohort
Total coverage in first year following introduction		
RV1	90.2%	[6]
RV2	86.9%	[6]
Coverage of dose 1 achieved by age in first year following i	introduction ^b	
3 mo	75.8%	[6]
6 mo	89.4%	[6]
9 mo	89.9%	[6]
12 mo	89.9%	[6]
Coverage of dose 2 achieved by age in first year following i	introduction ^b	
3 mo	32.2%	[6]
6 mo	76.0%	[6]
9 mo	84.5%	[6]
12 mo	86.3%	[6]
VE of 2 doses ^c vs rotavirus (severe) cases		
	64% (24%-83%)	[6]
VE of 2 doses ^c vs rotavirus (nonsevere) cases		
	40% (30%-60%)	Assumption, derived from [6]
Other vaccination impact assumptions		
% decrease in dose effectiveness per year	47.5% (35.7%–59.4%)	[18, 19]

Abbreviation: DALY, disability-adjusted life-year; RV1, monovalent rotavirus vaccine; VE, vaccine effectiveness.

^a Derived from diarrheal disease mortality estimate for Malawi [6]. In the absence of vaccination, this ratio is assumed to decline in each successive birth cohort in line with the general trend in mortality among children aged <5 years. This is done by assuming that the fraction of deaths in the under-5 population caused by the disease remains fixed over time.

^b Coverage projections over the period 2013–2033 were estimated by assuming rotavirus vaccine will achieve the same coverage and timeliness as diphtheria-tetanus-pertussis vaccine, and by assuming a 5% annual decrease in the gap between final coverage in the cohort (coverage by age 24 mo) and a ceiling of 99.5% (RV1 dose 1) and 98.8% (RV1 dose 2).

^c Effectiveness of single dose input at half that of 2 doses.

220 We used the projected annual number of live births and agespecific population projections for Malawi from United National Population Division projections 2012 to determine the number of live births in 2013 as 651 684 [26]. We chose to model costs and benefits over a 20-year horizon to assist policy makers in assessing the long-term implications of their decisions. Future 225 costs and benefits were discounted to 2014 levels at 3%.

Sensitivity Analyses

We conducted univariate sensitivity analysis on variables that impacted our TRIVAC model results most dramatically Q17

Table 4. Discounted Cost-effectiveness of Rotavirus Vaccine (20 Cohorts Vaccinated During the Period 2014-2033)

	Government Perspective	Societal Perspective
Cost-effectiveness threshold		
1 × GDP per capita (2014)–WHO threshold for "highly cost- effective" [4]	\$253	\$253
3 × GDP per capita (2014)–WHO threshold for "cost-effective" [4]	\$759	\$759
Cost-effectiveness compared to no vacci	ne	
Net cost of vaccine and related program costs	\$2 529 646	\$1 308 333
Costs of vaccine program	\$10 528 367	\$10 528 367
Health service costs avoided	\$7 998 721	\$9 220 034
DALYs averted	136 290	136 290
US\$ per DALY averted	\$19	\$10
Univariate sensitivity analyses (in US\$ pe	r DALY averted)	
Gavi withdraws support in 2023	\$161	\$152
Gavi withdraws support in 2028	\$88	\$79
Increased systems cost of 25% to \$0.53 per dose	\$32	\$23
No waning immunity in second year of life	\$2	Cost-saving ^a
Genotype changes lowering VE 15 percentage points	\$160	\$150
Lower cost of rotavirus care (lower bound of 95% CI in Table 2)	\$24	\$18
Case fatality rate 2%.5%	\$32	\$16

Costs and DALYs are discounted at 3% per year.

Abbreviations: CI, confidence interval; DALY, disability-adjusted life-year; GDP, gross domestic product; VE, vaccine effectiveness; WHO, World Health Organization.

^a This scenario is cost saving to a total of \$1.29 million

Q6 230 (Table 4). These variables included cessation (rather than longterm continuation) of Gavi support 10 or 15 years after introduction (but assuming unchanged vaccine cost), increased systems costs, absence of waning immunity beyond the first year of life, lower vaccine effectiveness over time from rotavirus genotype 235

changes, lower case fatality rate, and lower costs of rotavirus care. Details of specific scenarios are outlined in Table 4.

RESULTS

We recruited a total of 530 children with gastroenteritis, comprising 118 outpatient and 282 children admitted at Queen Elizabeth Central Hospital (urban setting), and 108 outpatient and 22 chil-240 dren admitted at Chilumba Rural Hospital (rural setting) (Table 1). Of these 530 children, 71 had rotavirus confirmed by enzyme immunoassay. Costs of illness did not differ by rotavirus status, but from both a government healthcare provider perspective

245

250

as were costs of severe illness (Table 2).

Given model assumptions (Tables 1 and 2), we project that over 20 years the rotavirus vaccine program will avert approximately 1 026 000 cases of rotavirus gastroenteritis, 78 000 inpatient admissions, and 4300 deaths. Additionally, the rotavirus

and a household perspective, costs of inpatient care were greater,

Table 5. Health and Economic Benefits (20 Cohorts Vaccinated During the Period 2014-2033)

	No Vaccine	With Vaccine	Averted
Total rotavirus cases <5 y	5 303 276	4 277 313	1 025 922
Total severe cases <5 y	423 581	298 721	124 860
Total deaths <5 y	14 671	10 358	4313
DALY lost	464 990	328 700	136 290
YLD - DALY due to morbidity	2120	1730	380
YLL - DALY due to mortality	462 880	326 970	135 910
Total government health services costs	\$34 857 067	\$26 860 346	\$7 998 716
Total outpatient visit costs	\$22 765 954	\$18 331 365	\$4 434 584
Total inpatient admission costs	\$12 091 113	\$8 528 981	\$3 564 132
Total societal health services costs	\$39 572 280	\$30 352 346	\$9 220 034
Total outpatient visit costs	\$24 637 042	\$19819510	\$4 817 531
Total inpatient admission costs	\$14 935 238	\$10 532 736	\$4 402 503

Health benefits and costs are discounted at 3% per year.

Abbreviations: DALY, disability-adjusted life-year; YLD, years of life lost to disability; YLL, years of life lost.

vaccine program was projected to avert about 136 000 DALYs. For the cohort born in 2015, this would translate to 54 000 cases of rotavirus gastroenteritis averted and 281 fewer deaths before the cohort reaches 5 years of age. Health and economic projections in absence and presence of vaccine are shown in Table 5. 255 The resultant cost-effectiveness is shown in Table 4. The cost of the rotavirus vaccine program was calculated as just over \$10.5 million. The total projected direct healthcare costs for gastroenteritis averted by vaccination were \$8.0 million, and total society costs averted were \$9.2 million. Thus, government net cost of just under \$2.5 million and a societal net cost (the cost of the vaccine program minus the societal cost of illness that is averted by the vaccination program) over the same period of \$1.3 million. The cost per DALY averted was \$19 from a healthcare provider perspective and \$10 from a societal perspective, and the cost per 265 rotavirus case averted was \$2 and \$1, respectively. Thus, from both the healthcare provider and societal perspectives, in Malawi the rotavirus vaccine program is highly cost-effective.

Sensitivity Analyses

In all but 2 scenarios tested in sensitivity analyses, rotavirus vac-270 cination remained highly cost-effective [4]. Although under an assumption of no waning in immunity beyond the first year of life, the vaccine was cost-saving from a societal perspective, saving Malawi >\$1 million over 20 years (Table 4).

DISCUSSION

Rotavirus vaccine has been projected to be highly cost-effective in the world's poorest countries [27, 28], and its introduction is now under way in many low-income countries with support from Gavi. Studies in sub-Saharan Africa have recently established this vaccine's effectiveness and impact on population 280

260 **Q7**

275

burden of disease [6, 29]. These welcome benefits, however, must be judged relative to other potential uses of limited health resources, and so establishing this vaccine's cost-effectiveness and budget impact is crucial. Available cost-effectiveness esti-

- 285 mates for Malawi, Uganda, and Kenya were based on assumed rather than observed vaccine effectiveness and on modeled rather than empirically observed costs of illness [7–9]. Additionally, these studies did not include household-level costs in the estimation of cost-effectiveness. In this comprehensive itemized
- 290 study of actual costs of medically attended gastroenteritis treatment and vaccination, the cost to government of providing free outpatient and especially inpatient care is substantial, and our empirically observed costs are higher than previous projected model-based estimates [9]. An intervention is generally consid-
- ered highly cost-effective if it costs less than the per-capita GDP (Table 4) [4]. Malawi has among the lowest per-capita GDP in the world, yet even under such challenging economic conditions we have shown that rotavirus vaccine is highly costeffective.
- 300 This study carefully and comprehensively collected actual costs incurred by government in vaccine implementation. A study that projected implementation costs and healthcare provider treatment costs, but did not include household costs, found the program to be relatively expensive for Malawi at \$18.5 million over 5 years
- 305 [30]. Using similar methods but with actual expenditures, our cost projection over 20 years was \$10.5 million for the vaccination program. Although it is possible we underestimated program costs, ours were ministry-budgeted expenditures and not modeled projections. Whereas the cost of the vaccination program is sub-
- 310 stantial, it is relatively small in relation to the \$429 million in total health expenditure in Malawi in 2013 [31]. Health expenditure in Malawi has more than doubled over the last decade, so it is critical that policy makers choose highly cost-effective health interventions to maximize the impact of these investments.
- 315 We made every attempt to provide as accurate an estimate of staff costs as was feasible. But we were unable to cost individual minutes spent by staff in direct patient care, nor were we able to include a patient complexity weighting [32]. However, consistent with a previous study from a tertiary hospital in an affluent area of
- 320 Johannesburg [33], we did not find evidence of cost differential by rotavirus status. We did find higher costs for severe disease and for inpatient care, but notably disease severity and admission status were closely related (Table 2). Regardless of diarrhea etiology, children are provided empiric treatment regimens in accordance with
- a standard protocol based on WHO guidelines for dehydration[34], and admitted children have similar length of stay.

Costs for families were based on reported recall, and these estimates could not be externally validated, so are subject to recall biases. However, we did conduct home visits and could confirm other socioeconomic covariates by direct observation,

330 confirm other socioeconomic covariates by direct observation, and interviewers had extensive training on appropriate questioning and follow-up prompting of responses to obtain and confirm information by parents. We suspect that the poorer the household, the greater the risk of presenting with diarrheal disease. This is an ascertainment bias of sorts, but also reflects a 335 reality that vaccination may be most important for the most impoverished families, and is likely one of the more equitable health interventions [35-37]. We have estimated the household costs of children attending care, but could not estimate costs to those families too poor to afford access to care. We have, for in-340 stance, recently shown that in the Karonga study site, distances to road and health facility are associated with delayed vaccine uptake or nonreceipt of vaccines, and we speculate that the same may be true for care seeking during illness. It is therefore plausible that for the most destitute, costs of attending health-345 care are prohibitive, and the very poorest children may be unable to attend care. This would bias our findings. We only recruited children presenting for care, so have not included costs to households of gastroenteritis episodes managed at home. The latter could only be obtained through a large pop-350 ulation cohort design, but the exclusion of such costs from our analysis makes our estimate of cost-effectiveness more conservative.

We used our observed population coverage rates and included adjustment for effective coverage-that is, the coverage in 355 those at risk of disease relative to coverage in the entire birth cohort (ie, overall coverage). We did not take into account costs of possible secondary household cases linked to our index patients, nor did we take into account indirect benefits of vaccination in averting secondary cases. If such indirect ef-360 fects will occur in Malawi as they have elsewhere [33], this would substantially increase the vaccine's cost-effectiveness. Should the burden of disease decline because of socioeconomic improvements over time, then our model may overestimate long-term cost-effectiveness. In sensitivity analyses we found 365 that even in many such circumstances the program remains highly cost-effective. Forecasting the impact of future scenarios on illness costs is conjectural at best, so our sensitivity analyses should be interpreted with due caution. The purpose of these analyses was not to predict future costs with precision, but to 370 test whether cost-effectiveness, broadly speaking, is maintained. In this regard the outcome was consistently affirmative. Over time, countries will increasingly be required to bear a higher copayment for vaccine procurement, though cost of vaccine is likely to decline over time. Although Malawi does not appear 375 to face an imminent increase in its copayment, even were this to happen at current prices, cost-effectiveness would be maintained, perhaps even enhanced should future prices decline further once additional products are marketed.

Although this study included primary healthcare, first-referral-level, and tertiary-level facilities in urban and rural settings and included inpatients and outpatients, caution is warranted in extrapolating our findings to other settings, particularly those in which vaccine effectiveness has not been evaluated, or whose

- 385 healthcare systems differ substantially from Malawi. In addition, the very presence of our longstanding research activities at our recruitment sites may reduce applicability to other government clinics where research and, by implication, an emphasis on good quality clinical care are enhanced. Malawi's population uti-
- 390 lization of primary and subsequent referral-level care was uncertain; thus, we assumed proportions based on healthcare utilization reported by our cohort. We ran our models with differing but plausible distributions, and this did not dramatically affect costeffectiveness estimates. We therefore believe it is likely that in
- 395 many resource-limited settings our findings have applicability, but clearly local health planners should be mindful of their own settings when considering the relevance of our findings. Modelbased expectations of cost-effectiveness have been reported from Southeast Asia, where the vaccine is yet to be introduced [28].
- The Malawian economy underwent a period of substantial instability in the wake of the devaluation of the kwacha in 2012. This ushered in inflation and marked increases in costs of goods and services. Inflation had stabilized by the time we embarked on the bulk of our recruitment, but the uncertain
- 405 economic climate persists. Such turbulence is difficult to adjust for in analysis, but is all too common in low-income countries. Indeed, such instabilities are often associated with increased illness, thereby strengthening further the argument for introducing and maintaining vaccine programs that are effective and
 410 cost-effective even in the short run.

In conclusion, gastroenteritis episodes represent a substantial economic burden to government and to families. We found monovalent rotavirus vaccine to be highly cost-effective in Malawi, even under challenging possible future scenarios. Together with the

415 demonstrated impact of monovalent rotavirus vaccine in reducing population hospitalization burden, the additional cost savings afforded by this vaccine make a strong argument for the widespread introduction in other low-income, high-burden settings.

Q8 Notes

430

- 420 **VacSurv consortium members.** James Beard (University College London, United Kingdom); Miren Iturriza-Gomara (University of Liverpool, United Kingdom); Khuzwayo Jere (University of Liverpool); Carina King (University College London); Sonia Lewycka (University of Auckland, New Zealand; formerly University College London); Osamu Nakagomi (Nagasaki University);
- 425 Tambosi Phiri (Mai Mwana Project, Mchinji, Malawi); Jennifer R. Verani (Centers for Disease Control and Prevention [CDC], Atlanta, Georgia); Cynthia G. Whitney (CDC).

Acknowledgments. We thank the members of the VacSurv consortium, and the ProVac Initiative of the Pan American Health Organization for permission to use the TRIVAC 2.0 tool.

- Author contributions. N. B.-Z., J. E. T., D. A., and N. A. C. designed the study (with input from U. P., A. C. C., R. S. H., and N. F.). N. B.-Z., J. C., H. M., R. W., T. M., and G. C. obtained data. N. B.-Z., C. P., and D. A. undertook data analysis. N. B.-Z. wrote the first draft of the manuscript.
- 435 All authors contributed to the interpretation of the data and writing of the manuscript and approved the final manuscript. The corresponding author had full access to all the data from the study and had final responsibility for the decision to submit for publication.

Disclaimer. The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the CDC.

Financial support. This work was supported by the Wellcome Trust (program grant number 091909; also a strategic award for the MLW Programme); the Karonga Prevention Study; and PATH.

Potential conflicts of interest.N. B.-Z. and N. F. have received investigator-initiated research grant support from GlaxoSmithKline Biologicals. N. A. C. hasreceived investigator-initiated and sponsor-initiated research grant support andhonoraria for participation in rotavirus vaccine advisory board meetings fromGlaxoSmithKline Biologicals. N. F. has received grants from PATH, the Well-come Trust, and GlaxoSmithKline. N. B.-Z. has received grants from GlaxoS-mithKline Biologicals. N. A. C. has received grants and personal fees fromGlaxoSmithKline Biologicals. All other authors report no potential conflicts.All authors have submitted the ICMJE Form for Disclosure of Potential Con-flicts of Interest. Conflicts that the editors consider relevant to the content of the455manuscript have been disclosed.

References

- Tate JE, Burton AH, Boschi-Pinto C, Steele AD, Duque J, Parashar UD. 2008 estimate of worldwide rotavirus-associated mortality in children younger than 5 years before the introduction of universal rotavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis 2012; 12:136–41.
- Liu L, Johnson HL, Cousens S, et al. Global, regional, and national causes of child mortality: an updated systematic analysis for 2010 with time trends since 2000. Lancet 2012; 379:2151–61.
- Gold MR, Stevenson D, Fryback DG. HALYS and QALYS and DALYS, oh my: 465 similarities and differences in summary measures of population health. Annu Rev Public Health 2002; 23:115–34.
- 4. World Health Organization. Cost-effectiveness thresholds. Available at: http:// www.who.int/choice/costs/CER_thresholds/en/. Accessed 25 March 2015.
- The World Bank. GDP per capita (current international \$). Available at: http:// data.worldbank.org/indicator/NY.GDP.PCAP.CD. Accessed 10 August 2015.
- Bar-Zeev N, Kapanda L, Tate JE, et al. Effectiveness of a monovalent rotavirus vaccine in infants in Malawi after programmatic roll-out: an observational and casecontrol study. Lancet Infect Dis 2015; 15:422–8.
- Tate JE, Kisakye A, Mugyenyi P, Kizza D, Odiit A, Braka F. Projected health benefits and costs of pneumococcal and rotavirus vaccination in Uganda. Vaccine 2011; 29:3329–34.
- Tate JE, Rheingans RD, O'Reilly CE, et al. Rotavirus disease burden and impact and cost-effectiveness of a rotavirus vaccination program in Kenya. J Infect Dis 2009; 200(suppl 1):S76–84.
- 9. Berry SA, Johns B, Shih C, Berry AA, Walker DG. The cost-effectiveness of rotavirus vaccination in Malawi. J Infect Dis **2010**; 202(suppl):S108–15.
- Crampin AC, Dube A, Mboma S, et al. Profile: the Karonga Health and Demographic Surveillance System. Int J Epidemiol 2012; 41:676–85.
- Bar-Zeev N, Kapanda L, King C, et al. Methods and challenges in measuring the impact of national pneumococcal and rotavirus vaccine introduction on morbidity and mortality in Malawi. Vaccine 2015; 33:2637–45.
- Government of Malawi. Comprehensive EPI multi-year plan 2010–2014. Available at: http://www.nationalplanningcycles.org/planning-cycle/MWI.
- Government of Malawi. Gavi Alliance Annual Progress Report 2013. Available at: 490 http://www.gavi.org/country/malawi/documents/#approvedproposal. Accessed 24 March 2015.
- 14. Clark A, Jauregui B, Griffiths U, et al. TRIVAC decision-support model for evaluating the cost-effectiveness of *Haemophilus influenzae* type b, pneumococcal and rotavirus vaccination. Vaccine **2013**; 31(suppl 3):C19–29.
- National Statistics Office. Malawi demographic and health survey 2010. Zomba, Malawi: National Statistics Office, 2011.
- Groome MJ, Madhi SA. Five-year cohort study on the burden of hospitalisation for acute diarrhoeal disease in African HIV-infected and HIV-uninfected children: potential benefits of rotavirus vaccine. Vaccine 2012; 30(suppl 1): 500 A173-8.
- GBD 2013 Mortality and Causes of Death Collaborators. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 385:117–71.
- Madhi SA, Cunliffe NA, Steele D, et al. Effect of human rotavirus vaccine on severe diarrhea in African infants. N Engl J Med 2010; 362:289–98.
- Armah GE, Sow SO, Breiman RF, et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial. Lancet 2010; 510 376:606–14.

480

445

Q9

495

505

- Clark HF, Borian FE, Plotkin SA. Immune protection of infants against rotavirus gastroenteritis by a serotype 1 reassortant of bovine rotavirus WC3. J Infect Dis 1990; 161:1099–104.
- 515 21. World Health Organization, Department of Immunizations. Guidelines for estimating the economic burden of diarrhoeal disease, with focus on assessing the costs of rotavirus diarrhoea. Geneva, Switzerland: WHO, 2005.
 - Anand K. Determining the costs associated with vaccine preventable childhood diseases in India. New Delhi: Centre for Community Medicine and the Department of Paediatrics, All India Institute of Medical Sciences, 2001.

520

Q10

- Dans LF, Gregorio GV. Determining the costs associated with vaccine-preventable childhood illnesses in the Philippines. Geneva, Switzerland: World Health Organization, 2001.
- Briggs A, Gray A. The distribution of health care costs and their statistical analysis
 for economic evaluation. J Health Serv Res Policy 1998; 3:233–45.
 - ProVac Initiative of the Pan-American Health Organization. TRIVAC: a model to evaluate the cost-effectiveness of Hib, pneumococcal and rotavirus vaccines, version 2.0 (in MS Excel). 2009.
- United Nations Population Division (UNPOP). World population prospects: the
 2012 revision; 2013 United Nations Population Division (UNPOP). Available at:
 esa.un.org/wpp. Accessed 5 August 2015.
 - Atherly D, Dreibelbis R, Parashar UD, Levin C, Wecker J, Rheingans RD. Rotavirus vaccination: cost-effectiveness and impact on child mortality in developing countries. J Infect Dis 2009; 200(suppl 1):S28–38.
- 535 28. Rheingans R, Amaya M, Anderson JD, Chakraborty P, Atem J. Systematic review of the economic value of diarrhoeal vaccines. Hum Vaccin Immunother 2014; 10:1582–94.

- 29. Groome MJ, Page N, Cortese MM, et al. Effectiveness of monovalent human rotavirus vaccine against admission to hospital for acute rotavirus diarrhoea in South African children: a case-control study. Lancet Infect Dis **2014**.
- Madsen LB, Ustrup M, Hansen KS, Nyasulu PS, Bygbjerg IC, Konradsen F. Estimating the costs of implementing the rotavirus vaccine in the national immunisation programme: the case of Malawi. Trop Med Int Health 2014; 19:177-85.
- World Health Organization. Global health expenditure database. Available at: 545 http://apps.who.int/nha/database/Select/Indicators/en. Accessed 14 May 2015.
- Duffield C, Forbes J, Fallon A, Roche M, Wise W, Merrick ET. Nursing skill mix and nursing time: the roles of registered nurses and clinical nurse specialists. Aust J Adv Nurs 2005; 23:14–21.
- MacIntyre UE, de Villiers FPR. The economic burden of diarrheal disease in a tertiary level hospital, Gauteng, South Africa. J Infect Dis 2010; 202(suppl 1): S116–25.
- World Health Organization. Integrated management of childhood illness for high HIV settings. Geneva, Switzerland: WHO, 2008.
- Bawah AA, Phillips JF, Adjuik M, Vaughan-Smith M, Macleod B, Binka FN. The impact of immunization on the association between poverty and child survival: evidence from Kassena-Nankana district of northern Ghana. Scand J Pub Health 2010; 38:95–103.
- Bhutta ZA, Reddy KS. Achieving equity in global health: so near and yet so far. JAMA 2012; 307:2035–6.
- Pecenka CJ, Johansson KA, Memirie ST, Jamison DT, Verguet S. Health gains and financial risk protection: an extended cost-effectiveness analysis of diarrhea treatment and prevention in Ethiopia. BMJ Open 2015; 5:e006402.

540 Q11

560

Online Summary text

565 Gastroenteritis causes substantial economic burden to Malawi. The rotavirus vaccine program is highly cost-effective across a range of plausible future scenarios.