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Abstract—In this paper, we propose and evaluate a distributed system for multiple Computational Paralinguistics tasks in a client-
server architecture. The client side deals with feature extraction, compression and bit-stream formatting, while the server side
performs the reverse process, plus model training and classification. The proposed architecture favors large-scale data collection
and continuous model updating, personal information protection, and transmission bandwidth optimization. In order to preliminar-
ily investigate the feasibility and reliability of the proposed system, we focus on the trade-off between transmission bandwidth and
recognition accuracy. We conduct large-scale evaluations of some key functions, namely, feature compression/decompression,
model training and classification, on five common paralinguistic tasks related to emotion, intoxication, pathology, age and gender.
We show that, for most tasks, with compression ratios up to 40 (bandwidth savings up to 97.5%̇), the recognition accuracies are
very close to the baselines. Our results encourage future exploitation of the system proposed in this paper, and demonstrate
that we are not far from the creation of robust distributed multi-task paralinguistic recognition systems which can be applied to a
myriad of everyday life scenarios.

Index Terms—Computational Paralinguistics, Distributed Recognition System, Split Vector Quantization, Emotion.
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1 INTRODUCTION

IN recent years, computational paralinguistics has
attracted the attention of speech and language pro-

cessing researchers due to its prominent potential for
practical applications in everyday life scenarios [1],
[2]. For instance, it can support the interpretation of
people’s stable and transitory states, such as their
intentions, emotional and mood states, confidence and
stress levels, physical condition, age, gender, person-
ality traits, amongst many others. From a computer
science perspective, such information is crucial for the
improvement of machine mediated human-human
interactions as well as human-machine interactions.
An example are call centers, as it can support, for
instance, the detection of negative emotional states in
customers which in turn can inform the development
of new strategies to ameliorate the interactions and
service provided.

1.1 Embedded vs. Client-Server-Based Recogni-
tion Systems

Most state-of-the-art academic research in this area
focuses on statically embedded recognition [1], [2],
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[3], [4]. Such systems have a good degree of flexi-
bility since they can be used without Internet access
and therefore applied in a wide range of practical
scenarios. Nonetheless, at present, this advantage is
becoming less relevant. On the one hand, because cur-
rent data-driven pattern recognition systems largely
benefit from processing large amounts of data for
training and continuous development, which requires
data transmission for the integration of data from
multiple users (as well as vast storage and compu-
tational resources for training). Furthermore, sophis-
ticated computational paralinguistic systems may re-
quire advanced computational models whose imple-
mentation is not feasible in users’ devices [5]. On the
other hand, because internet access is now ubiquitous
on account of the advent of far-ranging coverage and
high-speed wireless networks such as 3G, 4G and
wireless LAN, and the breakout of mobile electronic
devices like smartphones, laptops, and tablets.

One possible solution to this problem is to recur
to client-server computing [6]. On the client side, the
normal consumer devices with restricted computing
ability can perform basic computational tasks, while,
on the server side, super computers or computing cen-
ters can deal with the most expensive computational
tasks. In the context of computational paralinguistics,
the client is responsible for collecting realistic data
(i.e., voice recordings in natural occurring scenarios)
which is then sent to the server. In the server, the com-
putational resources can be employed to integrate the
data from the various clients, build (and continuously
improve) the target paralinguistic system(s), classify
the data received from the various clients for the task
at hand, and feed back the final results to the various
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clients.
Such a solution has several advantages for the

future development and application of paralinguistic
recognition systems in real-life scenarios. First, it can
overcome one of the most important limitations for
the development of robust paralinguistic recognition
tasks – data scarcity. In contrast to other pattern
recognition areas like automatic speech recognition,
the data for computational paralinguistics is quite
scarce, which constitutes a major concern in this field
that needs to be addressed [1], [2], [7]. To this goal,
client-server-based systems have the potential to al-
low the collection of large amounts of labeled and
unlabeled realistic data from thousands of users in
real-life scenarios, which can be exploited for training
models and enhancing their performance using ma-
chine learning techniques like semi-supervised learn-
ing [8], co-training [7], active learning [9], or even
advanced crowd sourcing [10]. Such data enrichment
and optimization techniques are of crucial importance
to continuously enhance the systems’ robustness [8],
without the need of users to exchange data on the
client side. Second, it can accelerate the improvement
of paralinguistic recognition systems since having the
data processed on the server side computer scientists
can continuously develop and apply more effective
techniques (e.g., Bidirectional Long Short-Term Mem-
ory (BLSTM) [11] or cumulative evidence [12]) and
combine various data sources to boost the systems’
performance and robustness. Moreover, user profiles
can be stored in the server to support long-term
analysis and improve user-specific models. Third, on
the client side, the requirements of computing power,
the conditions of operating systems and hardware
configurations are greatly relaxed, therefore making
it possible to spread the use of paralinguistic analysis
to a wide range of personal mobile or fixed devices.

1.2 Network vs. Distributed Recognition Systems

Concerning the location where the feature extraction
takes place, client-server architectures for computa-
tional paralinguistics can be categorized into two
classes: network recognition systems and distributed
recognition systems [6]. The former uses conventional
speech coding for the transmission of speech from a
client device to a server where decoding and feature
extraction are undertaken. The latter implies that the
feature extraction stage is processed on the client side,
but the recognition is made on the server.

One of the major advantages of adopting a network
recognition approach is that it is not necessary to
develop a completely new system for paralinguis-
tic recognition tasks. Indeed, numerous commercial
applications already implement speech coding, and
so, without the need to change the applications on
existing devices and networks, we can simply use
preexisting recognition models on the server side

to process the encoded speech signals. Moreover, it
shares all the advantages of server-based systems
in terms of system maintenance, update and device
requirements [6]. Nonetheless, as it will be discussed
in the next section (1.3), network recognition systems
posit various challenges related to privacy and trans-
mission bandwidth limitations.

In distributed pattern recognition systems, instead,
the feature extraction process occurs on the client
side, where a representation of the speech signal
with a lower dimensionality and redundancy can be
obtained and optimized for transmission. Such sys-
tems have been adopted in various applications, being
some of the most impressive and successful ones
developed in the context of speech recognition, where
both theoretical (e.g., packet loss via transmission [13],
feature compression techniques [14], and noise robust-
ness [15]) and applied (e.g., Google search engines
and Apple’s Siri [16]) research has been conducted.
In other fields, distributed pattern recognition has
also been applied, for instance, to the recognition of
human actions through the use of wearable motion
sensor networks [17], nature elements (such as trees
or weeds) or faces [18].

In relation to computational paralinguistics, if dis-
tributed computing can be demonstrated to be feasible
and reliable, some of the current limitations prevent-
ing recognition systems to be applied to large-scale
realistic applications can be greatly mitigated. More
importantly, this would be beneficial to a variety of
areas, such as, remote medicine treatment, remote
conferences or negotiations, remote education, and
even advanced driver assistance systems, where par-
alinguistic recognition systems have manifold appli-
cations.

In this paper, we propose a distributed recognition
framework for paralinguistic tasks inspired by the
standardization work of distributed speech recogni-
tion done by the Aurora group from the European
Telecommunications Standards Institute (ETSI) [19].
Compared to our previous work described in [20],
where we only targeted the recognition of emotional
states, here we provide a detailed description of a
distributed recognition system and evaluate its ap-
plication to large-scale and realistic tasks pertaining
to three different time-scales of paralinguistic phe-
nomena (following [2] and [1] taxonomy for the cat-
egorization of paralinguistic phenomena in the con-
text of computer science): 1) short-term states, e.g.,
emotions and emotion-related states or affects (stress,
confidence, interest, frustration, etc.); 2) medium-term
phenomena, like health state, intoxication, sleepi-
ness, mood (depression), friendship; and 3) long-
term traits, such as biological aspects (e.g., age and
gender), personality-related features (likability), and
social background (culture, race, status, etc.). In par-
ticular, we will focus on feature (de)compression and
paralinguistic information recognition systems with
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the aim of dealing in efficient ways with transmission
bandwidth limitations and warranting users’ privacy,
which are core aspects for the future application of
such framework.

1.3 Privacy and Transmission Bandwidth Limita-
tions

One major concern in paralinguistic recognition is
security since the privacy of the speakers has to be
guaranteed. This is particularly important in real-life
contexts where personal information and sensitive
data may be collected. Paralinguistic information is
indeed of highly private nature as it can contain,
for instance, emotional statements, information about
alcohol intoxication, tiredness, etc. [21].

The transmission of raw coded speech is a common
approach in client-server architectures. The speech
data are normally coded by protocols like G.711,
G.726, and AMR-WB [22]. However, these coding
protocols target a faithful recovery of speech for
better communication quality, which could lead to
exposure of user personal information. As mentioned
earlier, a possible alternative is to perform feature
extraction directly in the client and transmit Low-
Level-Descriptors (LLDs) [19], therefore preventing
direct access to users’ speech. Unfortunately, previous
work has shown that it is feasible to reconstruct the
audio from static feature vectors like Mel frequency
cepstral coefficients (MFCCs) and pitch (e.g., [23], [24])
which is why they are used for speech recognition
and speaker recognition. This once more generates
important privacy-related concerns.

For our system, we propose to generate and trans-
mit statistical feature vectors obtained by applying
functionals over LLDs for each utterance. The proce-
dure of generating such feature vectors is irreversible,
and therefore they avoid the reconstruction of the
speech signal and permit to overcome the issue of
users’ privacy violation. Because of this irreversibility,
the speakers’ speech content is fully protected, which
is significantly important since the speech content is
widely admitted as the most important personal in-
formation. Moreover, even though access to statistical
features could be used to infer private information
(e.g., age or gender of speakers), that would be only
possible by having access to the computational mod-
els stored in the server (something that is extremely
unlikely). Additionally, in the context of state-of-the-
art computational paralinguistic research, statistical
features are nowadays a well-accepted standard for
extracting relevant information from speech (e.g., [1],
[2], [25]).

Another major concern of network-based systems
with relevance to our work is transmission bandwidth.
Let us consider as an example the official databases
of the INTERSPEECH 2009–2012 Challenges [26], [4],
[27], [28], which will be used in this paper to evaluate

TABLE 1
Turn duration (average, minimum, maximum, and

standard deviation) and required transmission
bandwidth for three transmission strategies – raw

coded speech, LLDs, and statistical feature set – and
all corpora used in this paper (AEC, ALC, NCSC and

Agen; a detailed description of the databases and
respective acronyms is given in Section 4.1).

uttr. length (s) bandwidth (kb/s)
Corpus1 avg min max std raw LLDs stat
AEC 1.7 0.1 24.5 0.8 16∼40 51.2 7.3
ALC 11.4 1.5 61.8 14.2 16∼40 188.8 12.3
NCSC 3.1 0.9 21.2 1.8 16∼40 204.8 62.4
Agen 2.6 0.3 11.3 1.2 16∼40 92.8 5.5

our framework. We calculated the bandwidth neces-
sary for each of the coding strategies mentioned above
(raw coded speech, LLDs, and statistical features)
for various turn durations (the ITU-G.726 protocol
was considered for coding raw speech, and single
precision floating point – 32 bit – was used for LLDs
and statistical feature sets). In the case of statisti-
cal features, given that the vector dimensionality is
always the same per turn (and so the transmission
bandwidth will vary as a function of turn duration),
the bandwidth size was calculated for the average
turn duration in each data set. As it can be observed
from Table 1, with the exception of the pathology task,
the statistical feature set requires less bandwidth than
the remaining coding strategies.

Statistical feature sets seem to satisfy privacy con-
cerns and require less bandwidth than raw coded
speech and LLDs transmission. However, such an
approach still requires a large bandwidth if we con-
sider a target scenario involving a large number of
users/devices. Therefore, it is necessary to reduce
further the dimensionality of the feature space (while
taking into account the recognition performance).
There are at least two general solutions which can
be considered to deal with a limited transmission
bandwidth: feature selection and feature compression.
A feature selection strategy takes into account the fea-
tures’ relevance, irrelevance and abundance, and aims
at selecting a subset that can predict the output with
an accuracy which is comparable to the performance
of the complete feature set. Typical methods achieving
this goal include wrappers, filters, and embedded
routines [29] [30]. Some algorithms, such as minimum
Redundancy Maximum Relevance (mRMR) [31] and
random subset feature selection [29], are now well-
developed, and have been successfully applied to
paralinguistic tasks ([32], [33]). In this article, never-
theless, we do not explore the use of feature selection
algorithms, nor the merit of individual features in the
original space, which has repeatedly been explored
in the literature (cf. e.g., [34]). Instead, we employ
feature sets which have been previously optimized for
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Fig. 1. Proposed framework for distributed paralinguistic recognition system. Dotted boxes indicate optional
components. Dashed lines show steps carried out only during system training or adaptation phases. Dash
dotted lines indicate steps carried out when multiple recognition tasks need to be processed at the same time or
separately.

the various paralinguistic tasks used in this work (cf.
Section 4.2). There are two main reasons for this. First,
we intend to focus only on the essential components
of the distributed system. Feature selection techniques
can easily be integrated into the system as a ‘plug-in’
[32]. Second, in order to directly and fairly compare
the performance of the distributed system with the
baseline performances of embedded systems the same
features sets should be used.

Feature compression generally refers to methods
that transform a high dimensional feature space into a
lower dimensional one. Typical dimensionality reduc-
tion methods include Principle Component Analysis
(PCA) [35] and Linear Discriminant Analysis (LDA)
[36], and have been implemented, for instance, in dis-
tributed face recognition [37], speaker identification
[38], and speech recognition [39]. Another family of
methods for (lossy) compression is Vector Quantiza-
tion (VQ) [40], which has been very popular in a
variety of research fields such as speech coding [41],
image and video compression [42], and various pat-
tern recognition applications (e.g., face detection [43],
texture classification [44]). There are many variations
of VQ proposed in the literature, such as, distance-
based VQ [45], histogram-based quantization (HQ)
[46], lattice VQ, and address VQ [47]. Concerning
the work presented in this paper, we opted for a
particular VQ compression algorithm known as split
vector quantization (SVQ) [48]. The main reasons for
choosing SVQ are: i) the assignment of prototype

numbers from a codebook eliminates any direct fea-
ture information from the user, thus ensuring privacy
[19]; ii) SVQ is the officially recommended method by
the ETSI standards [19] for distributed speech recog-
nition; and iii) it is a well established and efficient
compression technique [47], [40], [41].

The remainder of this paper is organized as follows.
Section 2 describes a unified distributed recognition
system for paralinguistic tasks. In Section 3 we de-
scribe the SVQ feature compression method, and in
Section 4 we introduce the four corpora covering
short-term, medium-term, and long-term paralinguis-
tic tasks for classification used in this paper. In Sec-
tion 5 we evaluate the impact of feature independence
for SVQ on the proposed system, and present the
results for a large-scale experiment on five paralin-
guistic tasks. Finally, in Section 6, we deliver our
conclusions and discuss the strengths, limitations, and
implications of the work presented in this paper.

2 OVERVIEW OF THE DISTRIBUTED RECOG-
NITION SYSTEM FOR PARALINGUISTIC TASKS
Fig. 1 illustrates the framework of the distributed
paralinguistic recognition system proposed in this
paper. It consists of two main modules: client and
server.

2.1 Client Module
The client module consists of several sequential pro-
cessing stages that aim at maintaining as much in-
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formation as possible about the speech signals while
using the less transmission bandwidth possible, and
dealing with transmission distortion.

First, a Voice Activity Detection (VAD) algorithm
is used for detecting speech signals and dropping
the non-speech frames. If speech is detected, the sig-
nals are then delivered to the following processing
components. Given that the incoming speech signals
are always distorted by various noise sources, such
as additive noise of multiple speakers, environmental
and recording noise, as well as convolutional noise
like reverberation, the goal of the speech preprocess-
ing stage (“Signal Processing” block) is to enhance
the incoming speech signals and filtering out unde-
sired signals. Common techniques to deal with these
problems include adaptive filters [49], spectral nor-
malization and subtraction [50], Non-negative Matrix
Factorization (NMF) [49], and beamforming [51].

Following the “Signal Processing” stage, the de-
noised and enhanced signals are sent to the feature
extraction module. Considering the advantages high-
lighted in Section 1.3 regarding privacy and band-
width requirements, we propose the encoding of the
speech signals using statistical features computed on
LLDs rather than raw coded speech or simply LLDs.
LLDs were computed at approximately 100 frames
per second with typical window sizes of 10–30 ms.
The windowing functions used for extraction of LLDs
in the time or time-frequency domain are typically
smooth (Hamming or Hann) or rectangular [2]. Then,
the LLD sequence is divided (chunked) into ‘super-
segmental’ turns, and functionals over LLDs are ap-
plied to each turn (“Chuncking” block). The turns
can be a fixed number of frames, syllables, words,
acoustic chunks, sub-turns, or complete turns [52]. In
our framework, the selection of turns depends on the
requirements of the specific recognition tasks (e.g., the
emotion-related information often involves transient
speech, while the gender information can cover the
whole speech track). For the experimental work pre-
sented in this paper, we recur to the LLD set used
in the INTERSPEECH 2009–2012 Challenges [26], [4],
[27], [28], whose dimensionality per frame ranges
from 16 × 2 to 60 × 2 (the exact number of features
depends on the recognition task) if the derivatives are
also adopted. By applying functionals to each trunk,
the final transmission bandwidth requirements lies
between 5.5kb/s and 62.4kb/s (cf. Table 1).

As discussed earlier, in order to further reduce the
required transmission bandwidth a feature compres-
sion stage is useful (a detailed description will be
provided in Subsection 3). Following feature compres-
sion, and before the compressed features enter into
the physical transmission channel, framing, bit-stream
formatting, error protection, and secure coding algo-
rithms are necessary in order to meet the transmission
requirements (e.g., IP routing, clock recovery), prevent
channel distortion (e.g., channel noise, packet loss),

and guarantee information security.
Given the need of dealing with various tasks simul-

taneously, and the fact that information required for
a specific task may also be relevant to other tasks,
task selection algorithms are definitely important. A
common way is to allow the client to perform task
selection which in turn would determine the feature
set chosen on the client side and the model selected
on the server side. If no specific tasks are prede-
fined, however, Computational Auditory Scene Anal-
ysis (CASA) could be used to automatically analyze
the circumstances of speech recording (e.g., driving,
cocktail party, home, street) and determine the pos-
sible tasks [53]. It is nevertheless out of the scope of
this paper to introduce automatic task selection.

2.2 Server Module

Turning now to the server module, we start by in-
cluding bit-stream and secure decoding as well as
error mitigation in order to recover the transmitted
signal and convert it back to the compressed feature
set. Then, the feature set is decompressed into its
corresponding higher dimensional set (“Feature De-
compression (SVQ)” stage) by using the codebook
generated by the server (the codebook allows the
translation from the compressed feature space to the
original one, and vice-versa). Next, the decompressed
feature set is delivered to the recognizer for classifica-
tion, which in turn outputs discrete labels which are
associated with the particular recognition task (e.g.,
positive/negative arousal) or regression values when
the output is a continuous quantity (e.g., speaker’s
height or age). The classification/regression results
from the acoustic and language models can also
be integrated with other information such as facial
expressions, motion patterns, among others. Finally,
the relevant feedback information is encoded and
transmitted to the client through the network.

With respect to the training and adaptation of
server-side models, several methods can be effec-
tive: supervised learning, semi-supervised learning,
combinations of both, among others. For instance,
a particular model in the server back-end can use
annotated speech received from the various clients for
model training. Other possibilities include the use of
unlabeled data to improve the models, by applying,
for instance, Co-Training techniques [7]. Compared
to traditional paralinguistic recognition systems, it is
easier and cheaper to collect large amounts of data
from different contexts in the realistic world, giving
rise to the ability of training a more robust model
by a powerful server. In this process, parameter opti-
mization is also required to suit different classification
algorithms, e.g., the kinds of kernel and complexity
constants of Support Vector Machines (SVMs), neural
networks topology, etc.
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3 FEATURE (DE)COMPRESSION

SVQ algorithms split the high dimensional feature
vectors into several subvectors which automatically
group the original feature set through some sort of
clustering algorithm (e.g., k-means). Each subvector
is then represented by the centroid of each group.
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Fig. 2. Diagram of Split Vector Quantization (SVQ)
algorithm.

Fig. 2 shows a diagram depicting the
SVQ algorithm. The encoding scheme firstly
partitions the whole r-dimensional feature
vector F = [f1, f2, . . . , fr]

T into P subvectors,
X = [x1,x2, . . . ,xP ]

T , each of which has k
dimensions. Thus, r is equal to the sum of
dimensions of each subvector, r = k1 + k2 + . . .+ kP .
In the particular case of having the same
number of dimensions in each subvector, then
r = k × P . Following, each subvector is quantized
using a different VQ codebook, Q = vq(X) =
[vq(x1), vq(x2), . . . , vq(xP )]

T = [v1,v2, . . . ,vP ]
T ,

where vi ∈ Ci. Note that the codebook (Ci)
pertaining to a particular subvector can be different
from that of other codebooks, not only in the
clustering space but also in size.

In our implementation, we used a k-means algo-
rithm for clustering. That is, each observation belongs
to the closest quantization centroid which is found by
using a weighted Euclidean distance to determine the
index:

dj
i = xi − vj

i , i = 1, . . . , P ; j = 1, . . . , Ni, (1)

idxi = argmin
1≤j≤(Ni)

(dj
i )Wi(d

j
i ), (2)

where vj
i is the j-th codevector in the codebook Ci,

dj
i denotes the Euclidean distance between subvector

xi and codevector vj
i , Ni is the size of the codebook,

Wi is the weight matrix, e.g., identity matrix, to be
applied to the codebook Ci, and the idxi denotes the
codevector index chosen to represent the vector xi.

The final set of quantized vectors,
[idx1, idx2, . . . , idxP ]

T , is used to represent the

TABLE 2
Overview of selected corpora for emotion (AEC),

intoxication (ALC), pathology (NCSC), age and gender
(Agen) recognition tasks. Languages (LA): German

(DE) and Dutch (NL); speech types (TY): spontaneous
(S) and promoted (P); number of subjects (S) and

instances (INST); total speech time (TT) and average
speech time per chunk (TC); recording rate (Hz).

Corpus LA TY S # TT[H] TC[s] INST # Hz
AEC DE S 51 8.9 1.7 18 216 16k
ALC DE P 162 43.8 11.4 12 360 16k
NCSC NL P 55 2.0 3.1 2 386 16k
Agen1 DE P 770 35.9 2.6 53 074 8k

corresponding speech chunk, and is transmitted to
the server back-end. On the server back-end, the SVQ
process is reversed by using the same codebook used
in the front-end for each subvector:

x̂i = vidxi
i , (3)

where x̂i denotes the estimate of xi. Then, we unify
all estimated subsets of features into a single vector,
F̂ = [x̂1, x̂2, . . . , x̂P ]

T .
Finally, it is important to mention that there are var-

ious aspects that need to be taken into consideration
when using SVQ as they can impact the performance
of the various recognition task. Those will be dealt
with in Subsections 5.1 and 5.2.

4 DATABASES AND ACOUSTIC FEATURES

4.1 Databases
In this paper we recur to four frequently used par-
alinguistic databases to test our system: the FAU Aibo
Emotion Corpus, the Alcohol Language Corpus, the
NKI CCRT Speech Corpus, and the Agender database.
The tasks associated with the four corpora cover
a variety of time-relations of paralinguistic groups
from the short-term (emotion), medium-term (intoxi-
cation and pathology), and long-term (age and gen-
der) phenomena. Further details on the four corpora
are shown in Table 2. Table 3 shows the speaker-
independent partition of instances. In what follows
we briefly describe each of the four databases.

4.1.1 Emotion: FAU Aibo Emotion Corpus
The FAU Aibo Emotion Corpus (AEC) [25] is the offi-
cial corpus of the INTERSPEECH 2009 Emotion Chal-
lenge (EC) [26]. This corpus contains audio record-
ings of German-speaking children interacting with
Sony’s pet robot Aibo [25]. For the construction of
this database, children were led to believe that the
Aibo was responding to their commands by produc-
ing a series of fixed and predetermined behaviors.
Nevertheless, the Aibo robot did sometimes disobey

1. Test labels of Agender are not freely available. Thus, only its
partitions of train and develop are used in our experiments.
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TABLE 3
Instances distribution per partition (Train, Develop or Test) for four paralinguistic corpora – AEC, ALC, NCSC,

and Agender. NEG: negative; IDL: idle; (N)AL: (non-)intoxicated; (N)I: (non-)intelligible; C/Y/A/S:
children/young/adult/senior; X/M/F: children/male/female. No development set is defined on the AEC.

AEC ALC NCSC Agender: Age Agender: Gender
NEG IDL NAL AL I NI C Y A S X M F

Train 3 358 6 601 3 750 1 650 384 517 4 406 8 657 8 990 10 473 4 406 13 985 14 135
Develop 2 790 1 170 341 405 2 396 4 892 5 873 7 387 2 396 8 508 9 644
Test 2 465 5 792 1 620 1 380 475 264
Σ 5 823 12 393 8 160 4 200 1 200 1 186 6 802 13 549 14 863 17 860 6 802 22 493 23 779

to the children’s commands, which provoked various
types of emotional reactions. The recordings include
speech samples from 51 children (30 females) with
ages ranging from 10 to 13 years from two differ-
ent German schools, MONT and OHM. The various
recordings were labeled using two cover classes: one
consisting of NEGative emotion labels (angry, touchy,
reprimanding, emphatic), and the other (IDLe) consist-
ing of non-negative states (for more information about
the database development and data processing please
refer to [26]).

4.1.2 Intoxication: Alcohol Language Corpus

The Alcohol Language Corpus (ALC) [54] is the of-
ficial corpus of the Intoxication Sub-Challenge from
the Speaker State Challenge (SSC) at INTERSPEECH
2011 [27]. The database includes speech recordings of
various people with ages ranging from 21 to 75 years
old, either sober or with blood alcohol concentrations
(BACs) ranging from 0.28 to 1.75 per mill. Three
different speech recording conditions were conducted:
read speech, spontaneous speech, and command &
control. For our experiments, the recordings from
speakers with BAC ≤ 0.5 per mill were labeled as non-
alcoholized (NAL). All other instances were labeled as
alcoholized (AL).

4.1.3 Pathology: NKI CCRT Speech Corpus

The “NKI CCRT Speech Corpus” (NCSC) [55] is the
official corpus of the Pathology Sub-Challenge of the
INTERSPEECH 2012 Speaker Trait Challenge (STC)
[28]. The database was created at the Department
of Head and Neck Oncology and Surgery of the
Netherlands Cancer Institute and consists of speech
recordings from 55 speakers (10 female; mean age of
57 y.o.) before and after chemo-radiation treatments
(CCRT). All speakers read a text in the Dutch lan-
guage with an emotionally neutral content. Thirteen
speech pathologists evaluated the speech recordings
in an online experiment on an intelligibility scale
ranging from 1 to 7. Finally, an evaluator weighted
estimator (EWE) was used to compute and discretize
the ratings into binary classes – intelligible (I) and
non-intelligible (NI) – using the median of the ratings
distribution.

TABLE 4
Features used for five paralinguistic tasks. (Int.:

intoxication)
# Features Emotion Int. Pathology Age/Gender
LLDs 16 59 64 29
Functionals 12 39 61 8
Total 384 4 368 6 125 450

4.1.4 Age and Gender: Agender
The Agender database [56] is the official corpus of the
INTERSPEECH 2010 Paralinguistic Challenge (PC)
Age and Gender Sub-Challenges [4]. This database
was collected by a commercial company with the aim
of identifying people of specific targeted ages and
genders. The participants were asked six times to call
an automated Interactive Voice Response system and
to repeat various German utterances or to produce
free speech content. The calls were made through
a mobile phone in various recording environments,
and in different days and times so as to ensure
more variation in the voices of each speaker. In the
Challenge task, four classification classes were used
for age – Children, Young, Adult, and Senior – and
three for gender – Children (X), Male, and Female.
Additionally, here we also consider seven new classes
which are generated by combining the various age
and gender classes. Hereinafter, we will refer to this
classification task as “Age+Gender” (for more details
please refer to [4]).

4.2 Acoustic Features
As introduced in Section 2, the feature set was com-
puted by applying functionals over LLDs per trunk
and corresponding first and/or second order delta
regression coefficients. For our experiments, we use
the same feature sets used in the INTERSPEECH
Challenge 2009–2012 for emotion, intoxication, pathol-
ogy, age and gender tasks. All features were extracted
using the openSMILE toolkit [57]. Table 4 gives a
detailed overview of the features used.

The feature sets sizes of the various tasks range
from 384 (emotion recognition) to 6 125 (pathology
task). The acoustic LLDs contain: energy-related fea-
tures, such as frame energy, frame intensity/loudness,
and zero-crossing rate; spectral-related features, such
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as cepstral coefficients (MFCCs, etc.), line prediction
cepstral coefficients (LPCCs), and line spectral pairs
(LSPs); voice-related features, like perturbation (jitter,
shimmer, etc.), harmonicity (harmonics-to-noise ratio
(HNR), noise-to-harmonics ratio (NHR), etc.), funda-
mental frequency (F0), and probability of voicing; and
linguistic features, e.g., length of words, fragments,
repetitions. In relation to the functionals used, they
include extreme values and position (maximum, min-
imum, etc.), mean (arithmetic, quadratic, etc.), mo-
ments (standard deviation, variance, skewness, kurto-
sis, etc.), percentiles and percentiles range, regression
(linear and quadratic approximation, etc.), centroid,
peaks (number, distance, etc.), segments (number, du-
ration, etc.), spectral (Discrete Cosine Transformation
coefficients, etc.) and temporal (durations, positions,
etc.) parameters. For full details on the feature sets
please refer to [26], [4], [27], and [28].

5 EXPERIMENTS AND RESULTS
In our classification experiments, we adopt linear
SVMs trained with the Sequential Minimal Optimiza-
tion (SMO) algorithm as implemented in the Weka
toolkit [58], in line with the INTERSPEECH 2009–
2012 EC [26], PC [4], SSC [27], and STC [28] chal-
lenges. Furthermore, we follow the classifier set-ups
for the five Sub-Challenges. The complexity constants
were optimized on the development set or through
cross-validation of the training set (depending on the
task). The resulting values were 0.05, 0.01, 0.001, 0.05,
and 0.05 for emotion, intoxication, pathology, age,
and gender tasks, respectively. Furthermore, as in the
challenge, to alleviate the influence of instance im-
balance, we implemented instance upsampling before
any learning process, which produces a random sub-
sample of the dataset belonging to sparse categories
with-/out replacement.

In relation to the classification performance evalua-
tion, we recur to the unweighted average recall (UAR;
the sum of the recalls per class divided by the number
of classes), which is the performance measure used in
the 2009–2012 INTERSPEECH Challenges. In our ex-
periments on ALC and NCSC tasks, the training and
development sets are combined for training, and the
test sets are used for testing. For the AEC task, given
that there is no development set, only the training
set is used for training (and the test set for testing).
In relation to the Agender task, the development set
is used for testing given that there is no test set.
The UAR baselines for the binary classification on
the emotion, intoxication, and pathology classification
tasks are 67.6 %, 66.0 %, 69.0 %, respectively. The base-
line for the three-class gender classification is 76.0 %,
and the baseline for the four-class age classification is
45.7 %. It should be pointed out that the baselines ob-
tained in this paper are different from those reported
in the 2009–2012 INTERSPEECH due to the use of a
different Weka version.

For the sake of simplicity, in each paralinguistic task
we split the whole feature vector (r dimensions) into
multiple subvectors with the same dimensionality k
(note that the last subvector dimensionality may be
smaller than k and equal to r mod k). We also adopted
the same codebook size N (N = 2L, where L is
codevector length) for all subvectors. In this case,
the transmission bandwidth Bw for such compressed
features is

Bw = (d r
k
e · L)/T. (4)

Hence, its corresponding feature compression rate R
for a transmission bandwidth requirement Bw/o (no
feature compression) is calculated by the equation

R =
Bw/o

Bw
=

(32 · r)/T
(d rk e · L)/T

∼= 32 · k
L
, (5)

where L is the length of codevector, T is the average
length of a chunk, and assuming a single-precision
floating point for the transmission of uncompressed
data (32 bits). Obviously, the feature compression rate
R is in direct proportion to the subvector dimension
k and in inverse proportion to the codevector length
L.

5.1 Influence of Attributes Independence

As discussed in Section 3, a central issue of SVQ is
the splitting of the whole feature set into multiple
subvectors in an effective way. The most important
factor is arguably the cross correlation of attributes in
the feature domain. A simple method to deal with
this issue is to adopt a splitting strategy based on
the types of LLDs, that is, the statistical features
belonging to the same LLD are grouped into one
subvector. In order to test this method, we compared
the performance of this strategy with the performance
achieved using a random clustering of the features on
the five paralinguistic tasks. The dimensionality of all
subvectors was set to the same value in each task –
k = 12, 37, 35, 8, 8 for emotion, intoxication, pathology,
age, and gender recognition, respectively. Given that
the number of functionals over each LLD within each
task may be different, we defined the dimensionality
of the subvectors for each task as the maximum
number of functionals over all LLDs. Table 5 shows
the results obtained for the various tasks.

As it can be seen in Table 5, the performance
achieved through LLD-based vector splitting strategy
is always better than the strategy that used a random
splitting strategy. This improvement is evident for
all codebook sizes and across all tasks, and lies in
the range of 1 ∼ 3% (absolute UAR). Results also
show that the improvement delivered by the LLD-
based splitting strategy over the random one is more
noticeable for the tasks with larger features spaces,
i.e., Intoxication (absolute average improvement of
1.9%) and Pathology (absolute average improvement
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TABLE 5
Performance comparison for five paralinguistic tasks

using two types of vector splitting strategies:
LLD-based (D) and random (R). BL: baseline; k:

dimension of subvector; N : codebook size for each
subvector. Emotion, Intoxication, Pathology, Gender.
UAR BL k =

N = 128 N = 256 N = 512
[%] D R D R D R
Emo 67.6 12 66.1 65.3 66.7 65.8 67.4 66.8
Int 66.0 37 61.4 59.7 63.2 60.4 61.9 60.7
Path 69.0 35 69.0 66.6 68.3 66.8 69.1 66.2
Age 45.7 8 44.5 43.6 44.6 43.8 44.9 44.0
Gen 76.0 8 75.0 73.9 75.3 74.1 75.2 74.2

of 2.3%). The absolute average improvement on the
Emotion, Age and Gender tasks is less pronounced:
0.8%, 0.8% and 1.1%, respectively.

5.2 Distributed Paralinguistic Tasks Classifica-
tion

In the context of distributed speech recognition, the
feature set typically comprises 14 features, and ad-
jacent features are grouped into pairs [19]. This is
quite different from distributed paralinguistic tasks,
where the feature spaces are much larger (cf. Table 4).
Therefore, grouping features into pairs would lead to
a very large number of subvectors and low compres-
sion rates, which is not ideal given the bandwidth
limitations. In order to investigate the influence of
the dimensionality of the subvectors as well as the
codebook sizes and their impact on the recognition
performance, we considered several permutations of
these two parameters for each task. Given the results
presented in the previous section, we adopted a LLD-
based splitting strategy, and so, each subvector is
quantized using the same codevector length and their
own codebook.

Fig. 3 and 4 depict the classifier performance for
the short-, medium-, and long-term recognition tasks
for various codevector lengths (the length of each
codevector is L = log2N , where N is the codebook
size) and subvector sizes (k; increasing values of k
indicate higher compressions rates). The horizontal
lines in each figure indicate the baseline performance
for each task. As expected, for increasing codevector
lengths (i.e., smaller quantization error) and lower
subvector dimensionalities (i.e., lower compression
rates) the recognition performance is improved for
all tasks, except some cases of the “Pathology” task
(k = 5 and k = 175; discussed below). Taking
the “Emotion” task as a representative example (see
Fig. 3(a)), we can observe that for k = 24 the UAR
varies between (approximately) 62.6 % (L = 3) to
67.0 % (L = 12), a value very close to the baseline
(67.6 %). If we increase the subvector dimensionality
(e.g, k = 48), the performance varies between 61.0 %
(L = 3) to (approximately) 65.3 % (L = 12), which

is further away from the baseline. Naturally, with a
higher value of k a smaller bandwidth is required.
In the example given, for a codevector of length 12,
the bandwidth would be (384/24) ∗ 12/1.7 ≈ 113b/s
(k = 24) and (384/48) ∗ 12/1.7 ≈ 57b/s (k = 48).
Compared to the no compression case the bandwidth
reduction would be of 98.4 % and 99.2 %, respectively.

As mentioned above, the Pathology task does not
follow the same pattern and shows a more complex
relationship between the code vector length and sub-
vector dimensionality. As it can be seen in Fig. 3(c)
for different values of k the performance either de-
creases (k = 5 and k = 175) or increases (k = 35
and k = 875) for increasing code vector lengths. In
our view, this phenomenon might be caused by data
scarcity. As it can be observed in Table 3, there are
only 2 386 instances in total for this task, which is
potentially an insufficient number of instances to train
a robust SVQ model and/or recognizer. This seems
to be corroborated by the results of the “Agender”
task, where we have 53 074 instances, and the stability
and reliability of the system is much higher (and also
the fact that age and gender recognition tasks have
a more solid ground truth). Despite this unexpected
result, and as it will be shown in the next section, the
relationship between recognition performance, feature
compression rate, and bandwidth follows a pattern
that is similar to that of other tasks (see Figs. 5 and
6). Finally, it is also noticeable that in this task com-
pressing the feature set to a certain degree increased
the performance of the model over the baseline – in
the case of k = 5/L = 6 the UAR is 69.4 %, and
in the case of k = 35/L = 9 the UAR is 69.1 %.
This may indicate that, to a certain degree (both
values are actually not significantly higher than the
baseline), the compression process attributed more
weight to relevant features and reduced the impact
of less relevant ones.

5.2.1 Performance, Feature Compression Rate, and
Bandwidth
Fig. 5 provides a combined overview of the relation-
ship between performance and feature compression
rate for the five distributed paralinguistic classifica-
tion presented in this paper. The distributed gender
recognition seems to be the most sensitive to the
feature compress rate, as it can be inferred from the
slope of the trend line (dash-dot). It can also be
observed that, for all tasks except “age”, the perfor-
mance degradation was not significant (one-side z-
test, p>.05) with feature compression rates smaller
than 40, but it is increasingly pronounced for values
over 40, and especially over 160. This is an interesting
result given that in a multi-task scenario where the
best permutation of the subvector dimension and
codebook sizes for a given task may be unknown
and varied, guaranteeing a compression rate below
40 warrants a good performance for all tasks.
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Fig. 3. Performance for distributed short-term (emotion, AEC) and medium-term (intoxication, ALC; pathology,
NCSC) paralinguistic tasks. k: subvector size.
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Fig. 4. Performance for distributed long-term paralinguistic tasks: age, gender, and age + gender. k: subvector
size.

Given that a crucial aspect of a distributed recog-
nition system is the trade-off between recognition ac-
curacy and bandwidth limitations, in Fig. 6 we show
the relationship between recognition performance and
required transmission bandwidth for all five tasks (the
transmission bandwidth is calculated by Eq. 4). This
figure can be used to obtain an estimation of the
recognition task accuracy for a particular transmission
bandwidth, and vice versa. As expected, the perfor-
mance decreases for lower transmission bandwidth
rates, and is particularly degraded for rates below
100 bit/s. For instance, considering the “Gender”
classification task, if a transmission bandwidth of 10
bit/s is available the recognition accuracy would be
of about 65.0 %. If a better performance is required,
for instance 75.0 %, then a transmission bandwidth of
more than 100 bit/s would be necessary.

6 CONCLUSION AND OUTLOOK

In this paper, we introduced a general distributed
architecture for paralinguistic speech signal process-
ing. We have described the various components of
the proposed system, and focused on creating the
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Fig. 5. Relationship between recognition performance
(UAR) and feature compression rate for the various
tasks with manifold permutations of codevector length
and subvector dimensionality.

conditions for large-scale data collection, security of
data transmission for protecting personal information,
continuous classification improvement and transmis-
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Fig. 6. Relationship between recognition performance
(UAR) and bandwidth requirements for the various
tasks with manifold permutations of codevector length
and subvector dimensionality.

sion bandwidth optimization. In order to warrant data
privacy, we have used statistical features extracted
from Low-Level-Descriptors (LLDs) due to their irre-
versibility. Furthermore, such strategy also promoted
efficiency in terms of performance and bandwidth
requirements. The required bandwidth was further
optimized by means of features compression. To that
end, we have focused on Split Vector Quantization
(SVQ) due to its efficiency, security, and the fact that
it is the official compression method recommended
by ETSI for distributed speech recognition. Finally, we
conducted various experiments to investigate the fea-
sibility and efficiency of the system on large-scale par-
alinguistic tasks, including short-term states, medium-
term phenomena, and long-term traits.

We started by showing that there is a strong in-
fluence of feature attributes on the performance of
the compression algorithm. Compared to a random
clustering strategy, grouping the feature attributes
under same LLDs reduced the information loss when
implementing compression of the feature set using
SVQ. We have also shown that subvector and code-
book size have a critical impact on the system’s perfor-
mance – the classification performance degrades for
almost all tasks when either large subvector or small
codebook size (or both) is used. Overall, our results
demonstrated that when the feature compression rate
is less than 40, the classification performance is similar
to that with no compression.

Overall, our results are very informative and en-
couraging for future exploitation of the system pro-
posed in this paper. Nonetheless, this work is only
a first step towards the creation of large-scale dis-
tributed paralinguistic information recognition sys-
tems for the application in real life contexts, and sev-
eral issues still need to be addressed. A central issue
is the optimization of the various modules. In this

article we focused on demonstrating the feasibility of
the whole system, but there is plenty of room for im-
provements in the various modules. For instance, we
have used a common feature compression technique
(SVQ), but given the demonstrated importance of the
compression stage it would be very beneficial to ex-
plore other state-of-the-art feature compression tech-
niques such as Principle Component Analysis (PCA)
[35], Linear Discriminant Analysis [36], Histogram-
Based Quantization [14], and sparse representations
[59]. Further, while we used preselected features sets
for each task, it would be worth exploring the use
of feature selection as it could improve compression
rates and reduce the required bandwidth while main-
taining or improving the recognition tasks perfor-
mance. Furthermore, given that the dimensionality of
statistical features vectors used in this paper is always
the same per turn, the transmission bandwidth will
vary as a function of turn duration, which may lead
to bandwidth bursts for consecutive short turns. A
possible way of overcoming such a problem is to
consider different methods for dealing with long and
short turns so as to avoid its negative impact on
the client-server communication. Yet, another possible
solution would be to evaluate the contribution of the
features used for each classification task, and vary the
dimensionality and codebook size for the attributes
with different levels of importance (in this paper we
considered that all features are equally important to
the classification tasks).

In addition to optimization issues there are vari-
ous important challenges particular to paralinguistic
recognition systems that should be addressed in the
future. A central one is dealing with multiple paralin-
guistic tasks simultaneously, and particularly task se-
lection and multi-task learning. In relation to the first,
if the tasks are not selected manually on the client side
(as considered in this paper) methods such as Com-
putational Auditory Scene Analysis (CASA) could be
used to analyze the characteristics of the acoustic
environment and infer the paralinguistic task(s) of
interest. Concerning the second, and given that it has
been continuously demonstrated that paralinguistic
tasks benefit from contextual knowledge (for example,
gender, social background, and other information can
improve emotion recognition performance [60], [61]),
it would be relevant to exploit the use of mutual in-
formation in multi-task learning scenarios to improve
the performance for a particular task. Furthermore,
given the overlaps between the feature sets used for
different tasks, it is plausible to pursue a common set
of features that can be applied to all tasks. In this
case the distributed framework can be simplified since
modules related to task selection are not necessary
anymore. To this end, deep neural networks or sparse
coding could be used to extract high-level feature
representations which may be shared by the various
paralinguistic tasks.
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Another aspect that should be at the very center
of future developments is the enhancement of the
system robustness, in particular regarding recording
devices disparity, environmental noise and reverbera-
tion, voice variation across users, security protection,
and the impact of packet loss during data transmis-
sion. This is crucial for the implementation and use
of the system proposed in this paper. Furthermore,
other technical aspects such as energy efficiency on
the client side must be investigated so as to warrant
the applicability of the system. Energy optimization
algorithms such as optimal time-resource allocation
[62] provide ways of defining costs models of local
computing and transmission which can be used to
find an optimal balance between performance, com-
plexity, computational power and energy consump-
tion.

Despite the many issues still to be addressed in
this area, we have shown very promising results
and demonstrated that we are not far from the cre-
ation of robust distributed multi-task paralinguistic
recognition systems that can be applied to a myriad
of everyday life scenarios, such as, remote medicine
treatments, remote conferences or negotiation, remote
education, or even advanced driver assistance sys-
tems. Also, and very importantly, as we mentioned
in the introduction to this paper, this type of systems
may also be crucial to the future of computational par-
alinguistics by providing the essential speech signals
for the development of robust recognition systems.
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