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Abstract

In this contribution, we propose a novel method
for active learning termed ‘dynamic active learn-
ing’ or DAL for short, with the aim of ultimately
reducing the costly human labelling work for sub-
jective tasks such as speech emotion recognition.
Through an adaptive query strategy, the amount
of manual labelling work is minimised by decid-
ing for each instance not only whether or not it
should be annotated, but also dynamically on how
many human annotators’ opinions are needed. In
extensive experiments on standardised test-beds,
we achieve the same classification accuracy when
using accordingly labelled data for machine learn-
ing as compared to using the conventional ‘static’
active learning that considers a fixed number of an-
notators for all instances. Thus, the DAL method
significantly improves the efficiency of existing al-
gorithms, setting a new benchmark for the utmost
exploitation of unlabelled data.

1. Introduction

Within the context of Computational Paralinguistics, speech
patterns can be characterised using objective and subjec-
tive measures (Schuller & Batliner, 2014). In the case of
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objective measures (e.g. age, gender, weight), the labels
attributed to speech are referred to as the ‘ground truth’.
On the other hand, there are speech phenomena (e.g. voice
likeability, attractiveness, interest) that can only be reli-
ably assessed (annotated/labelled) by perceptive judgements
(Steidl et al., 2005). In consequence, the reliability of la-
bels for the subjective speech phenomena highly depends
on the annotators’ stable and transient characteristics, in-
cluding a myriad of subjective factors (Steidl et al., 2005;
Schuller, 2015). Therefore, in contrast to the ‘ground truth’
that can be measured objectively, subjective annotations
lead to what is known as the ‘gold standard’, and are neces-
sarily assessed by inter-rater agreement procedures. Thus, a
large number of annotators is necessary to establish a well
grounded reference. This leads to the fact that subjective
tasks are particularly affected by the major barrier of to-
day’s research: scarceness of human annotated data, which
are time-consuming and expensive to obtain. On the other
hand, there is a vast resource of unlabelled data which is
nowadays pervasive in digital format and relatively easy and
inexpensive to collect, e.g. from public resources such as
social media.

Following the belief “there is no data like more data”, many
researchers in the area of Machine Learning (ML) devel-
oped approaches in machine learning for the exploitation of
unlabelled data. The most common methods include semi-
supervised learning (SSL) (Zhu, 2006), active learning (AL)
(Settles, 2009), and diverse combinations thereof (Tur et al.,
2005; Zhu et al., 2003). The essence of the conventional
ML methods is to train a classifier on a small, labelled data
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set, and re-train the model iteratively by sequentially adding
new (machine or human) labelled instances to the training
set. The active learner aims at achieving greater accuracy
with fewer training labels by (actively) choosing the data
from which it learns, and querying human annotators for la-
belling. The main drawback of conventional AL algorithms
is that they define a fixed number of human annotators for
all selected instances (hereinafter referred to as ‘Static Ac-
tive Learning’ (SAL)). As result of this constraint, the SAL
algorithms still require a considerable amount of human
annotations, which can easily be avoided through a shift in
perspective from standard majority voting among multiple
raters to an agreement based annotation strategy (Zhang
et al., 2014). This motivates us to introduce the ‘Dynamic
Active Learning’ (DAL) approach that uses an adaptive
query strategy to minimise the amount of human labelling
work without sacrificing performance. The core underlying
idea is simple: instead of requesting all available raters and
then forming a majority of their votes, we adapt the number
of annotations for each instance to a predefined agreement
level, i.e. a certain number of votes for a common category
(e.g. class label). Among many application possibilities, the
proposed DAL approach is targeted at optimising existing
crowd-sourcing systems (e.g. Amazon Mechanical Turk
(Kittur et al., 2008)) in which tasks are distributed to paid
click-workers to complete (Howe, 2006; Yuen et al., 2011).

In this paper, we describe the methods used in DAL in Sec-
tion 2. Then, we introduce the database and the feature set
in Section 3 and Section 4. Experimental setup and results
are presented in Section 5. We conclude by discussing our
findings and extensions for future research in Section 6.

2. Methodology

A common and straightforward decision rule in SAL is ma-
jority voting among multiple raters, who are considered
equally reliable.It is evident that querying a fixed number of
annotators for each instance is a rather inefficient method.
For instance, if there are five annotators available and the
first three annotate a specific instance with the same label,
the annotations of the other two annotators seem to be abun-
dant. In the following, we detail the methods of DAL by
providing the mathematical definitions of prediction uncer-
tainty and agreement level, and describing the algorithms.

2.1. SVM and Confidence Measure

Similar to traditional AL, we apply Support Vector Ma-
chines (SVMs) that construct decision hyperplanes to sep-
arate instances of different classes by using the decision
function f(x), while maximizing the functional margin. For
each instance, the output distances to the decision bound-
aries are then transformed into probability values through a
parametric method of logistic regression (Platt, 1999). For

binary classification, the sigmoid function with the parame-
ters A and B is defined as:

1
Ty
PO(X) =1- Pl (X) (2)

The confidence value for the predicted class is obtained
by forming the difference of the posterior probabilities
Py(x), P1(x) for classes ‘0" and ‘1°, respectively.

C(x) = |P(x) = Bo(x)]| 3)

In addition to the least certainty (Ic) query strategy adopted
from traditional AL, we consider a medium certainty (mc)
query strategy (Zhang & Schuller, 2012) that has the po-
tential advantage of avoiding the selection of noisy data,
which can be caused by distortions of acoustic patterns (You
et al., 2006), unreliable or ambiguous annotations (Grimm &
Kroschel, 2005) as it is usually the case for acoustic emotion
recognition tasks due to their subjective nature. Formally,
the query function for mc is defined as:

Xme = argmin |C(x) — Cp |, 4)

X

where C(x) denotes the confidence value assigned to the
predicted label of a given instance x. The confidence values
are ranked and stored in a queue (in descending order).
Accordingly, C,, represents the confidence value of the
instance located in the centre of the ranking queue.

2.2. Agreement Levels

Given the number n of annotators who are available for
labelling a specific database, we define the agreement level
as the minimum number of raters agreeing on one common
category. Accordingly, j € {1,..., [241]}, with j,n € N,
agreement levels can be selected. For the upper limit of the
interval, the floor is considered with regard to even numbers
of annotators. Specifically, n’ € {j,...,2j — 1},n’ € N
raters might be needed until a certain agreement level j is
achieved. In practice, j raters would be required simultane-
ously in the first round of queries to minimise the related
time-consumption as j is the minimum number of ratings
to achieve the respective agreement level. The SAL perfor-
mance that is achieved through majority voting among all n
raters is set to the baseline in our experiments.

2.3. Algorithms and Data Structure

For the applied algorithm, we define the following nota-
tions: £ = ([x1,11],---, x5, u]),¢ = 1,2,...,1, denotes
a small set of labelled training data, where x; is a d-
dimensional feature vector, and y; is the assigned emotion-
related label. Additionally, a large pool of unlabelled data
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U= (xj,...,x,),k=1,2,..u, exists where u > [ and
x|, is a d-dimensional feature vector. The number of votes
for a specific class label 3’ that is manually assigned to an
example instance x’ € N, is named v'. Figure 1 shows
the pseudo-code description of the DAL algorithm based on
the mc and Ic query strategy. The learning process starts by
training a model on the labelled data £ and subsequently
using this model to classify all instances of the unlabelled
data pool ¢. Depending on which query strategy is imple-
mented, an subset A, C U is selected and submitted to
human annotation. The sequential process is repeated until
a predefined number of instances are annotated. The main
improvement compared to the SAL method is presented in
the fifth item. In the proposed adaptive query strategy, the
stopping criterion for manual labelling of each instance is
fulfilled when a predefined agreement level for a specific
task is achieved.

Algorithm: Dynamic Active Learning (DAL)
Repeat:

1. (Optional) Upsample the training set £ to obtain even
class distribution £ p

2. Use L£/Lp to train a classifier 7, and then classify the
unlabelled data set U

3. Rank the data based on the prediction confidence
values C' and store them in a queue

4. Select a subset NV, with medium or least certainty

5. For each instance x’ in A/,

(a) Randomize the query order of raters

(b) Submit x’ to the first j raters

(¢) If v' = j; STOPP
else repeat: select one rater for annotation
until agreement level j is achieved

(d) Assigny’ tox’
6. Remove N, from the unlabelled set U, U = U ~ N,
7. Add N, to the labelled set £, £L = LU N,

Figure 1. Pseudocode description of the DAL algorithm based on
the medium and least certainty strategy for a predefined agreement
level j.

3. Database

In our experiments, we use the FAU Aibo Emotion Corpus
(AEC) (Steidl, 2009) of the INTERSPEECH 2009 Emo-
tion Challenge (IS09 EC) (Schuller et al., 2009; Schuller,
2012). The database consists of recordings of children in-
teracting with Sony’s pet robot Aibo, which performs a
fixed, predetermined sequence of actions. The recordings
were taken from 51 children at two different schools, re-
ferred to as ‘MONT’ and ‘OHM’. Five labellers (advanced

students of linguistics) annotated each word independently
from each other as neutral (default) or as one of ten specific
emotional states. Each instance corresponds to a manually
defined chunk that consists of multiple words according to
the syntactic-prosodic criteria. For binary classification, the
11-class labels are mapped onto two-class labels by defining
states with negative valence (e.g. angry, reprimanding) as
NEG (agative), and all other states as IDL(e). A heuristic
approach is applied to map the labels from the word-level to
the chunk-level for each of the five labellers, where a chunk
is defined as NEG if it contains at least one word with neg-
ative valence. To define the gold standard for the baseline
results, we resort to majority voting to combine the labels
from all five labellers to one single label for each chunk.
The frequencies for the two-class problem are given in Table
1. Speaker independence is guaranteed by using the speech
samples of the school ‘OHM’ for training and the data of
the other school ‘MONT’ for validation. Specifically, the
training data referred to as ‘Pool’ contains both the labelled
training set £ and the unlabelled data pool U.

Table 1. Distribution of speakers and instances per partition of the
FAU AEC. M: male; F: female; NEG: negative emotions; IDL:
neutral and positive emotions.

# speakers # instances per class
FAU AEC | M F | NEG IDL P
Pool 13 13| 3358 6601 9959
Validation 8 17 | 2465 5792 8257
D) 21 30 | 5823 12393 18216

4. Acoustic Features

The acoustic features used in our experiments are adopted
from the baseline feature set of IS09 EC. This is created
with the openSMILE framework (Eyben et al., 2010; 2013)
by applying statistical functionals to frame-wise low-level-
descriptors (LLDs) . To each of the 16 LLDs, the delta
coefficients are computed. Finally, the 12 functionals are
applied on a per-chunk level. As result of the ‘brute-forcing’
method, the total feature vector per chunk contains 16 x 2 x
12 = 384 attributes.

5. Experiments and Results

In this section, we investigate the performance of the DAL
algorithm by evaluating the classification accuracy in rela-
tion to the number of manually annotated instances with
regard to different agreement levels and query strategies.
The optimised results are compared with the baseline per-
formance achieved through the SAL method.
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5.1. Experimental Setup

For transparency and reproducibility, we used open-sour¢
classifier implementations of SVMs from the WEKA da
mining toolkit (Hall et al., 2009). As classifiers, we chos
linear kernel SVMs trained with a complexity paramet
C constant of 0.05 and with Sequential Minimal Optimiz
tion (SMO). For initial training of the model, 200 instanct
were randomly selected from the training data, whereas tt
remaining instances were used as the unlabelled data poc
At each learning iteration, we selected a subset A, cor
prising 200 instances to be submitted to manual annotatio
The learning process stopped after 4 800 instances had bec
manually annotated, where the total number of human ann
tations differs in each experimental scenario. The trainir
process was repeated 20 times with different initializatior
of the random generator. As the evaluation measure, we co
sidered the unweighted average recall (UAR) in accordanc
with the previous IS challenges.

5.2. Discussion of Results

According to Figure 2, the sequential addition of huma
labelled instances to the initial training set (200 per iteratio:
leads to continuous improvements in the performance ¢
the classifier. The UAR first increases steeply with the tot
number of human annotations before reaching a platea
Moreover, our results clearly show that higher classific
tion accuracy and greater stability are achieved with the mc
strategy. This evidence reinforces our assumption that the
medium certainty strategy is more robust to noise distur-
bance (Zhang et al., 2014). Furthermore, it can be seen that
the accuracy increases with higher agreement level, where
the performance of agreement level ;7 = 3 corresponds to
the SAL baseline using majority voting among all five raters.
In order to demonstrate the cost reduction achieved through
the DAL method, we compare the costs in terms of the num-
bers of human annotations at UAR = 68.1%. According
to Table 2, the relative cost reduction (CR) increases with
lower agreement levels. In addition, it can be noted that
Ic causes higher costs than mc on all tested agreement lev-
els. Finally, the analysis of standard deviation shows that
the stability of the model is enhanced during the learning
process.

6. Conclusions and Future Work

In this paper, we introduced a novel approach for Dynamic
Active Learning that allows utmost reduction of the human
labelling work by adapting the number of human annotators
for each instance to a predefined agreement level. In partic-
ular, our results demonstrate that the DAL approach leads
to the same performance of the trained model, but requires
up to 67% less human annotations for the medium certainty
and 79% for the least certainty query strategy. Finally, our

Std. Dev. [%]
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Figure 2. Dynamic Active Learning (DAL): the performance mea-
sures show the UAR values averaged across 20 runs of the algo-
rithm and the respective standard deviations vs. the number of
human annotated instances for the FAU AEC with IS09 EC feature
set by 200 initial training instances.

Table 2. Cost corresponding to the number of human annotations at
UAR = 68.1% and the relative cost reduction (CR) by comparing
the agreement levels j = 1,2, 3 with the SAL baseline

mc Ic
cost (x 10k) CR (%) | cost(x 10k) CR (%)
baseline 1.03 - 2.09 -
j=3 0.77 25.38 1.60 23.39
j=2 0.56 45.37 1.04 50.18
j=1 0.34 66.76 0.45 78.69

results reinforce the assumption that the mc strategy is more
robust against noise than the conventional Ic strategy. For
future research, we will extend the DAL algorithm by con-
sidering individual rater reliability and inter-rater correla-
tion. In the long term, the full potential of self-optimising
classifiers will be realised by combining SSL methods with
enhanced DAL techniques.
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