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Heteroepitaxial growth of BaSnO3 (BSO) and Ba1-xLaxSnO3 (x = 7%) (LBSO) thin films on 

different perovskite single crystal (SrTiO3 (001) and SmScO3 (110)) substrates has been achieved 

by Pulsed Laser Deposition (PLD) under optimized deposition conditions. X-ray diffraction 

measurements indicate that the films on either of these substrates are relaxed due to the large 

mismatch and present a high degree of crystallinity with narrow rocking curves and smooth 

surface morphology while analytical quantification by proton induced x-ray emission (PIXE) 

confirms the stoichiometric La transfer from a polyphasic target, producing films with La 

contents above the bulk solubility limit. The films show degenerate semiconducting behavior on 

both substrates, with the observed room temperature resistivities, Hall mobilities and carrier 

concentrations of 4.4 mΩcm, 10.11 cm
2
V

-1
s

-1
, and 1.38  10

20
 cm

-3
 on SmScO3 and 7.8 mΩcm, 

5.8 cm
2
V

-1
s

-1
, and 1.36  10

20
 cm

-3
 on SrTiO3 ruling out any extrinsic contribution from the 

substrate. The superior electrical properties observed on the SmScO3 substrate are attributed to 

reduction in dislocation density from the lower lattice mismatch.  
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Tin doped indium oxide (ITO, In2.95Sn0.05O3) has been extensively studied as a 

transparent conducting oxide (TCO) because of the unusual combination of high transparency in 

the visible range coupled with metal-like conductivity and high mobility. These properties make 

ITO important for optoelectronic devices such as flat panel displays, light emitting diodes and 

solar cells.
1
 The high dispersion of the bottom of the s-type conduction band and the resulting 

low effective mass along with the lowered optical absorption due to hybridization between Sn 

and In s states produce the enhanced electrical and optical properties of ITO.
2
 However, the 

scarcity of indium had led to the search for other doped oxide semiconductors such as ZnO,
3
 

TiO2
4
 and SnO2

5,6
 that can be used as alternatives to ITO with resistivity approaching the 

application threshold of 10
-1

 mcm
7
 but device patterning and environmental stability issues are 

unresolved.
8,9

 The rapid development of perovskite-based photovoltaic cells calls for compatible 

transparent electrodes.
10 Titanate-based perovskites have been heavily studied as potential 

TCO,
11-13

 and recently, BaSnO3 (BSO) has been proposed as a high performance perovskite TCO 

because its conduction band is composed of Sn 5s orbitals and La doping will create highly 

mobile carriers.
14

 Initial work on thin films of doped stannates indicated that while oriented 

growth is possible, the resistivities are one order of magnitude higher
15-19

 than found for ITO. 

Subsequent work on lanthanum doped barium stannate (LBSO) epitaxial thin films on SrTiO3 

(001)
20,21

 substrates challenged this picture with room temperature mobility (resistivity) of ~ 70 

cm
2
V

-1
s

-1
, (0.17 mΩcm), which are comparable with conventional ITO thin films, making LBSO 

an alternative to ITO. The nominal La content of the films (x = 0.07) is beyond the bulk 

solubility limit, so determination of electrical properties for compositionally defined films is a 

priority. Such high mobility compared to the previous results is attributed to a superior 

crystalline quality of these thin films.
21 

Although the apparent increase in mobility in the thin 
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films is ascribed to the improved crystallinity, several other factors could be the origin of such 

results. Recent theoretical results highlight the possibility of tuning the bandgap using elastic 

strain,
22 

and the interpretation of the electrical properties of films needs to take into account the 

role of any free carriers generated in the substrates. Oxygen vacancies generated during growth 

at high temperatures and low pressures in STO can produce conductivity.
23,24 

All these potential 

problems make it difficult to robustly separate the films electrical properties from those of the 

substrate. Moreover it was suggested that the observed mobility in thin films could be improved 

by reducing the lattice mismatch between LBSO and the substrate.
20 

In order to investigate these 

potential effects we have grown high quality BSO and LBSO films on SrTiO3 (001) (STO) 

[lattice mismatch of +5.28%] and SmScO3 (110) (SSO) substrates [+3.08%  lattice mismatch ]. 

The scandate substrate possesses not only the largest lattice parameter of commercially available 

perovskite substrate to provides a lower mismatch for epitaxial growth but is also redox-resistant 

to introduction of carriers during processing, allowing for the investigation of possible strain 

effects and separation of the intrinsic electrical properties of the films. 

Bulk targets of BaSnO3 (BSO) and Ba0.93La0.07SnO3 (LBSO) were prepared using BaCO3, 

La2O3, and SnO2 as the starting materials. Stoichiometric mixtures were ground, cold pressed 

and sintered at 1250 
o
C for 24 hours in alumina crucibles followed by grinding, after which the 

powders were cold isostatically pressed and fired at 1450 
o
C for 24 hours. XRD measurements 

showed that cubic perovskite phase with space group       was formed in the undoped BSO 

targets. However in case of LBSO, since the solid solubility of lanthanum is 3%
25

, a polyphasic 

target with both perovskite Ba1-xLaxSnO3 and La-rich pyrochlore phase La2Sn2O7 was formed 

with weight fractions of 95.7(3) and 4.3(2)% respectively. Epitaxial thin films of BSO and 

LBSO were grown on STO and SSO substrates using pulsed laser deposition with a 248 nm KrF 
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laser. The substrates, STO (001) and SSO (110) were ultrasonically cleaned with acetone, 

ethanol and DI water and mounted on an Inconel sample holder with Ag paste. The vacuum 

chamber was pumped to a base pressure of 5  10
-7

 Torr prior to deposition. Prior to deposition 

100 mTorr of O2 gas was introduced in the chamber and samples were annealed for 30 minutes. 

A systematic variation of heater temperatures from 700 
o
C to 850 

o
C and pressures from 100 

mTorr to 2 mTorr was performed to find the optimal growth conditions. For all the depositions 

the laser energy was maintained at 180 mJ and frequency of 5 Hz. The numbers of pulses were 

adjusted to grow approximately 40 nm thick films. After growth, the samples were annealed for 

10 minutes in 100 mTorr of O2 gas and then cooled down to room temperature in the same 

oxygen pressure. Optimum growth was achieved for oxygen partial pressures of 2 mTorr and a 

heater temperature of 850 
o
C. θ/2θ scans were measured in a two circle Panalytical X’Pert PRO 

diffractometer (Co Kα1), while rocking curves (RC), x-ray reflectivity (XRR) and reciprocal 

space maps (RSM’s) were measured using a four circle Panalytical X’Pert PRO diffractometer 

(Cu Kα1). Surface morphology was studied using an Agilent 5600LS atomic force microscope 

(AFM). The temperature dependent electrical properties (resistivity, carrier concentration) were 

measured using van der Pauw geometry in a commercial Semimetrics 4C system using gold 

contacts. Rutherford back scattering (RBS) and proton induced x-ray emission (PIXE) 

measurements were performed in a Tandetron accelerator from High Voltage on thicker LBSO 

films grown under the same conditions as the film presented in this study in order to increase the 

volume probed. For RBS, a passive implanted planar silicon (PIPS) detector (Canberra) was used, 

while for PIXE, a low energy germanium (LEGe) detector (Canberra) was used. Protons of 2.5 

MeV were used to bombard the samples positioned at 45°. Lanthanum quantification was 

performed in the L-shell energy window of 5.33-5.78 keV as the emission intensities are stronger. 
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PIXE spectra were analyzed by the software GUPIXWIN, while RBS where analyzed by 

SimNRA.
26

 

Figure 1 (a) and (c) show the wide range XRD θ-2θ scans for the BSO/STO, LBSO/STO, 

BSO/SSO, LBSO/SSO film respectively. On either of these substrates, the (00l) peaks from the 

film are observed, indicating oriented growth along the c-axis. Diffraction peaks from secondary 

phases were absent. Similar diffraction peaks were also seen in case of the thicker LBSO/STO 

film. The bulk lattice constant of BaSnO3 is 4.115(1) Å, while the measured out-of-plane lattice 

constant of BSO films on SSO and STO respectively are 4.117(2) Å and 4.122(1) Å, indicating 

that the undoped films are not completely relaxed. In case of single phase bulk lanthanum doped 

BaSnO3, the lattice constant increases by 0.072% to 4.118(4) Å for Ba0.97La0.03SnO3 (x = 3%).
25

 

A similar trend is also observed in the La-doped films where the lattice constant increases to 

4.122(1) Å and 4.127(1) Å on SSO and STO respectively, an expansion of 0.12% compared to 

the undoped films. Assuming that the Vegard’s law observed in the bulk is the same in the films, 

this lattice expansion would correspond to a doping level of x = 5% in the films. The crystalline 

quality is assessed by measuring the rocking curves of the (002) reflection for the doped samples. 

The top left inserts in figures 1(a) and 1(b) show the fitted RC. The measured full width half 

maximum (FWHM) for LBSO/STO and LBSO/SSO are 0.093
o
 and 0.090

o
 respectively which 

are comparable to the films of similar nominal compositions
20

 making it possible to compare the 

electrical properties. The pendellosung fringes and size broadening (middle inserts in figure 1(a) 

and (c)) of the (002) Bragg peak of the films indicate that coherent growth with good 

crystallinity and smooth surfaces is sustained in the out-of-plane direction. Analysis of the 

Pendellosung fringes gives thicknesses of 37.1 nm on STO and 34.7 nm on SSO substrates. AFM 

measurements showed that films on either substrate were smooth with a root mean square 
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roughness of less than 0.6 nm and are in agreement with the XRR model.
27

 Asymmetrical RSM’s 

were measured to ascertain the strain state in these films (Figure 1(b) and (d) for STO and SSO 

respectively). LBSO films on either of the substrates are not fully strained to the substrate due to 

the large mismatch, excluding the possibility of strain affecting the electrical properties. The 

more pronounced broadening in Qx for the film grown on STO compared to the film grown on 

SSO indicates the presence of a larger number of dislocations in the film. Although 

stoichiometric transfer from the target is often assumed to be achieved using PLD, as done in 

previous work on LBSO films, the analytical quantification of dopants in the actual films is 

crucial information in order to control and understand the electrical properties. RBS was used to 

determine the film thickness, while PIXE was used for chemical quantification, with the results 

plotted in figure 2(a) and 2(b) respectively. The film thickness was determined to be about 320 

nm by simulating the RBS spectrum. PIXE data was analyzed using a variable width digital top 

hat filter function to suppress the background components and fitted using a  least squares 

procedure. The atomic concentration of La was calculated as [Ba] at. conc. * La/[Ba] mass * ([Ba] at. 

weight/ La at. weight). The La content was 8±2% indicating that the targeted La doping level is 

achieved in the films, consistent with stabilization as films of compositions inaccessible in 

conventional bulk synthesis. If each La
3+

 dopant produces one free electron, the expected carrier 

concentration in the Ba0.93La0.07SnO3 film would be 9.8  10
20

 cm
-3

. 

The electrical transport parameters (resistivity, carrier concentration and mobility) of the 

doped films are shown in Figure 3(a) and 3(b) for LBSO/SSO and LBSO/STO respectively. Hall 

effect measurements showed that the majority carriers in the films are electrons and have a room 

temperature effective carrier concentration of 1.38  10
20

 cm
-3

 for LBSO/SSO and 1.36  10
20

 

cm
-3

 for LBSO/STO, indicating that the number of free carriers donated by La is the same 
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irrespective of the substrates on which the films are grown. These values are lower than the 

carrier concentration expected assuming 1 electron/ La dopant and give a dopant activation rate 

of 14% which is much lower than the one reported previously.
20

 The analytically determined 

carrier concentration is beyond the bulk solid solution limit and may drive enhanced carrier 

trapping associated with dopant clustering, producing the observed lower effective carrier 

concentrations.
28

 The temperature dependence is consistent with a degenerate semiconductor 

with metallic-like behavior and follows the same trend in both cases, with carrier concentration 

decreasing as temperature is reduced as ionized dopant start to freeze-out. The films are more 

conducting on SSO than on STO (4.4 mΩcm and 7.8 mΩcm at room temperature respectively). 

Although similar FWHM are measured for the two films, dislocations that are formed due to 

lattice mismatch between film and substrate can reduce the mobility because they act as double 

Schottky barriers.
29

 Although the carrier concentration is similar on the two substrates, a slight 

improvement in the lattice mismatch reduces the scattering by dislocations in the lower 

mismatched films thereby increasing the mobility, as seen for the films on STO (5.8 cm
2
 V

-1
s

-1
) 

versus those on SSO (10.11 cm
2
 V

-1
s

-1
). The mobilities increase as the temperature is decreased 

and saturate near 40 K suggesting that phonon scattering is the main process in this temperature 

regime. The mobilities obtained are consistent with the values expected for the total amount of 

impurity introduced in the lattice.
30

 

 

In summary, we have successfully grown heteroepitaxial thin films of BSO and 7% La-

doped BSO on STO and SSO substrates by PLD. Analytical chemical quantification by PIXE 

measurements indicates that the lanthanum doping concentration is 8±2% demonstrating that 

PLD gives higher La concentrations than possible in bulk ceramic synthesis. The influence of the 
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substrate, specifically the lattice mismatch has been studied and we have shown that increased 

mobility can be achieved by lowering the misfit. The dopant activation rate in our film was 

found to be lower than the reported values and could be attributed to the samples being over-

doped. The resulting compositionally-determined materials have electrical properties that are 

consistent across substrates with different mismatch and redox characteristics. The conductivities 

reported in this study, are close to alternative indium-free transparent conducting oxide thin films 

on both substrates and show that perovskite-compatible transparent electrodes can be developed. 

 

This work is funded by the European Research Council (ERC Grant agreement 227987 

RLUCIM). 
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Figure 1(a) and (c):- θ-2θ scans for the BSO and LBSO films on STO and SSO substrates. Left 

inserts in (a) and (c) shows the rocking curve data with fitting of the full width half maximum, 

while the middle insert shows the pendellosung fringes with the associated fitting to derive the 

thickness. (b) Reciprocal space maps around STO (103) reflection (d) Reciprocal space maps 

around SSO (420) reflection.  
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Figure 2 (a): Rutherford back scattering measurements for the thicker films along with the data 

fittings shown by red line. (b) PIXE spectra of the La0.07Ba0.93SnO3 films on SrTiO3 substrates. 

Dotted lines indicate emission from thin film elements. The asterisks (*) indicate emission from 

the substrate elements. 
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Figure 3(a) and (b):- Temperature dependent resistivity, mobility and carrier concentration 

measurements for LBSO films on STO and SSO substrates respectively.  
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Supplementary information 

  



In figure S1 (a) and (b), the x-ray reflectivity measurements along with a calculated model are 

plotted for the films on SrTiO3 and SmScO3 substrates respectively. The thicknesses (roughness) 

are 37 nm (0.45 nm) for SrTiO3 and 34 nm (0.6 nm) for SmScO3. 

 

Figure S1: X-ray reflectivity measurements (black dots) and models (red line) for 

La0.07Ba0.93SnO3 films on (a) SrTiO3 and (b) SmScO3 substrates  

  



AFM morphology for the films is shown in figure S2 (a) and (b) for films on SrTiO3 and 

SmScO3 with the root mean square (RMS) roughness of 0.597 nm and 0.47 nm respectively  

 

Figure S2: AFM surface morphology of the La0.07Ba0.93SnO3 films grown on (a) SrTiO3 and (b) 

SmScO3 substrates 

 


