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A New Measure for Analyzing and Fusing
Sequences of Objects.

John Y. Goulermas, Senior Member, IEEE, Alexandros Kostopoulos, Tingting Mu, Member, IEEE

Abstract—This work is related to the combinatorial data analysis problem of seriation used for data visualization and exploratory
analysis. Seriation re-sequences the data, so that more similar samples or objects appear closer together, whereas dissimilar ones are
further apart. Despite the large number of current algorithms to realize such re-sequencing, there has not been a systematic way for
analyzing the resulting sequences, comparing them, or fusing them to obtain a single unifying one. We propose a new positional
proximity measure that evaluates the similarity of two arbitrary sequences based on their agreement on pairwise positional information
of the sequenced objects. Furthermore, we present various statistical properties of this measure as well as its normalized version
modeled as an instance of the generalized correlation coefficient. Based on this measure, we define a new procedure for consensus
seriation that fuses multiple arbitrary sequences based on a quadratic assignment problem formulation and an efficient way of
approximating its solution. We also derive theoretical links with other permutation distance functions and present their associated
combinatorial optimization forms for consensus tasks. The utility of the proposed contributions is demonstrated through the comparison
and fusion of multiple seriation algorithms we have implemented, using many real-world datasets from different application domains.

Index Terms—seriation, sequencing, consensus/ensemble seriation, combinatorial data analysis, positional proximity coefficient,
quadratic assignment problem.
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1 INTRODUCTION

COMBINATORIAL data analysis (CDA) [1], [2] is the
broader field of methodologies operating through the

arrangement, ordering, grouping or other discrete structural
manipulation with the aim of revealing and summarizing
data properties and trends. Examples include data cluster-
ing, community detection in graphs, prototype reduction,
feature subset selection, sample or feature ranking. This
work is concerned with an exploratory CDA methodology
referred to as seriation (or sequencing). Its objective is the
linear repositioning of a set of data objects, such that the
more similar ones are arranged in proximity whereas the
more dissimilar appear further apart. There exist many
different seriation algorithms to generate such data order-
ings, and these are based on different assumptions and
cost functions. Their input is typically a set of inter-object
relational measurements provided by the user in the form
of a (dis)similarity matrix.

Seriation is largely cross-disciplinary and it has its roots
in the work proposed by Petrie [3] back in 1899 for archaeol-
ogy. Some examples of situations where seriation has been
very useful include the following. In [3] graves were initially
characterised by sets of morphological characteristics of
artifacts, such as pottery, found inside them. Subsequently,
the graves were chronologically ordered to provide what
is referred to as sequence dating. In a similar example in
paleontology, we can have as the objects to be ordered to be
sites of excavation and their features the presence or absence
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of certain mammal genera remains. Using site similarity
and also auxiliary site age information the sites can then
be ordered in a biochronological order [4]. In machine
learning seriation can be used to pre-estimate the number
of clusters or assess the tendency of the data patterns
to form clusters. This is important for several clustering
algorithms whose parameterization makes direct or indirect
use of the approximate cluster number, or for the user to
analyse and interpret the clustering tendency [5]. A related
application is the use of seriation for data visualisation. In
bioinformatics and for microarray gene expression data, for
instance, the gene-by-array matrix can be reordered either
along the row or the column to reveal the latent structure
of multidimensional data [6]. Exploratory data analysis of
biological data using seriation is very important as it can
identify biological dynamics, such as successive cell differ-
entiation stages or cell cycles [7]. Text mining is another
application example. Given a corpus, datasets represented
as word-by-document matrices can be compiled. Applying
seriation to such matrices using, for example, cosine simi-
larities between documents, can facilitate multiway spectral
cluster assignments [8], or track the flow of conversation in
newsgroup postings [4]. In sociology, tabular arrangements
of data measuring social relationships, referred to as so-
ciomatrices, can be subjected to row and column rearrange-
ments in order to produce improved and more standardized
representations of the sociometric tests [9]. Seriation has also
been applied to psychiatric data where patient-by-symptom
matrices are available. For example, two correlation ma-
trices, one between patients and one between symptoms,
can be constructed and seriated. The resulting orders can
provide the means for interaction linkage analysis between
the two types of objects [10]. Overall, seriation has been
intensely used and often reinvented in numerous fields such
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as archaeology, anthropology, biology, bioinformatics, car-
tography, sociology, database design, document processing,
network analysis, psychology, ecology, linguistics, manufac-
turing, circuit design, as well as data analysis, visualization
and machine learning. For a comprehensive overview of its
applications and theoretical details, the reader is redirected
to the reviewing works of [1], [2], [9], [11]–[15].

In the following, we demonstrate the exploratory value
of seriation using the two very simple synthetic 2D datasets
of Figs.1(a,b). The different structures in the two sets have
been labeled to aid the subsequent discussion. Using the
Euclidean distance as a measure of dissimilarity between
the points in each dataset, we obtain the corresponding dis-
similarity maps. These are plotted in Figs.1(c,d), by linearly
mapping the matrix data range to the available colormap.
Because the original sample order does not need to obey any
structure, these two maps appear completely unstructured
and convey no meaningful information. Using seriation the
samples can be reordered so that more similar/proximate
ones are placed closer. This new order can be used to
simultaneously reorder both rows and columns of the un-
ordered maps in Figs.1(c,d) and produce their seriated ver-
sions shown in Figs.1(e,f). Although the latter maps contain
exactly the same information as the unordered ones, object
sequencing reveals many interesting data properties.

For example, all samples within each of the tight clusters
A and C in Fig.1(a) correspond to the darker (of higher
similarity or shorter distance) diagonal blocks A and C,
respectively, in Fig.1(e). These blocks are very discernible
as all points within each associated cluster are far closer to
each other than to any other point. By contrast, the points
composing the long and thin cluster B cannot correspond
to a solid block in Fig.1(e), but a rather patterned one.
Specifically, this block contains a band of high similarity
values along its main diagonal, that reveals the continuum
of few proximate samples along the path of the cluster. The
radially decreasing off-diagonal similarities within block B
represent samples located far from each other as a result of
the span and shape of the cluster. The off-diagonal blocks
in Fig.1(e) capture key between-structure variations. For ex-
ample, block D displays the gradual variation from shorter
distances (left side of block) between points in cluster A and
bottom part of cluster B, to larger distances (right side of
block) between A and the top of B and cluster C. Also, block
E in Fig.1(e) contains mostly low-varying large distances.
This reflects the fact that clusters A and C are compact and
far apart from each other relative to their diameters.

Similar observations can be made for the flower dataset.
For example, the leaves G, H, I and the petals J in Fig.1(b)
can be clearly identified by the four blocks along the main
diagonal of the seriated map in Fig.1(f). Unsurprisingly, the
almost linear thin stem structure F gives rise to the small
block F containing diagonally concentrated short distances.
The patterns in the three top-row blocks between F and K in
Fig.1(f) reflect the passing of the stem F by each of the leaves
G, H and I. The larger distances in block K show that most
of the constituent points of stem F lie far from the petals J.
More observations can be made for the remaining blocks of
both seriated maps.

Although practical applications of seriation involve data
of much higher complexity and dimensionality, analysis of
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Fig. 1. Data visualization applying seriation to two synthetic datasets.
(a,b): Original 2D datasets, with labels A-C and F-J corresponding to
structures. (c,d): Symmetric distance matrices using a random initial
sample placement. (e,f): Row/column ordered distance maps, with la-
bels A-K corresponding to individual blocks.

the seriated (dis)similarity maps notably aids the under-
standing of the properties, distributions and tendencies of
the data. Many different algorithms to seriate data objects
have been proposed (we experiment with a representative
set in Section 4.1). These either employ heuristics to seek
permutations that maintain proximity of objects which are
more similar to each other, or combinatorial optimization
procedures that rely on merit or loss functions to locate
the exact or approximate optimal, in that sense, ordering.
Such functions are typically defined to act on the seriated
(dis)similarity maps and evaluate the seriation quality or er-
ror by aggregating comparisons between the matrix entries.
For a detailed analysis, the reader is referred to [13], [15].

This work introduces novel tools to facilitate both the ap-
plication and evaluation of seriation results. Specifically, one
contribution is a new measure and its associated coefficient
to compare arbitrary orderings in terms of how proximately
or distantly they arrange the objects. We also present several
useful algebraic and statistical properties of this coefficient.
Comparing two orderings is very important in order to eval-
uate the output of different seriation algorithms or when
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designing a new one. For example, when for a particular
experimental domain, an approximate but fast algorithm
is constantly producing results very similar to a slower
algorithm that relies on exact combinatorial optimization,
the former could be more practical to the user for regular
application. The second contribution is a new formulation
for fusing multiple arbitrary orderings. This is important for
achieving consensus (or ensemble) seriation. For example,
when one seriation method cannot be preferred over an-
other one, then multiple ones can be applied and have their
outputs combined in a single unifying ordering. We express
the underlying model as a quadratic assignment problem
and we offer a fast approximate procedure for solving it.
The third contribution is that we analyze existing measures
for comparing permutations in terms of what type of fusion
models they produce and what type of optimization such
models require. Finally, we include various experimental
case studies to demonstrate the applicability and usefulness
of our contributions.

The structure of this paper is as follows. Section 2 revisits
some previous methods related to data ordering and con-
sensus analysis. Section 3 contains the main contributions.
Specifically, after setting out some basic concepts in Section
3.1, we introduce the new similarity measure in Section
3.2. The coefficient version of the measure and a summary
of its key properties are presented in Section 3.3. Section
3.4 contains the proposed consensus seriation approach,
while Section 3.5 discusses its relative links with existing
measures. Experimentations, comparisons and results are
included in Section 4, while Section 5 concludes the work.

2 PREVIOUS WORK

In order to obtain a measure of association between two
given arrangements of a collection of objects, we can rely on
the comparison of their corresponding permutations. This is
because such orderings can be directly represented as per-
mutation vectors. There exist various metrics for comparing
permutations, such as the Hamming distance, Spearman
footrule, Spearman coefficient, Kendall coefficient, Cayley
distance, etc. [16]. However, such measures are mostly ap-
plicable to rankings of objects where within each specified
arrangement the precedence or priority of some objects over
others is of importance. For example, ordering documents
subject to search keywords or ordering algorithms according
to their performance across multiple datasets. As will be
explained in Section 3.2, in order to compare two seriation
sequences we need to take into account the relative object
positions within the sequences and not their precedence,
as the latter does not directly reflect the character and
goals of seriation. Existing permutation measures are not
necessarily designed to take this into account. Examples
include the popular Kendall coefficient that enumerates
discordant object pairs between two rankings, the Spearman
coefficient based on the sum of squared rank differences, or
the Hamming distance that counts matching object locations
(see Section 3.5).

With regard to consensus analysis whereby the results
of multiple algorithms are combined to a single unifying
outcome ⌧ , a lot has been done. One instance of such work

is consensus ranking [17]–[21]. The procedure relies on the
minimization of a cost typically defined as

bX

k=1

wkd (⌧ ,⇡k) , (1)

where a set of b permutations or relations ⇡k with k =

1, . . . , b, possibly weighted by some positive wk, are given.
The function d(·, ·) is used to measure the distance between
two given permutations or relations. As it is to be expected,
the specific choice of this function defines the characteristics
of the resulting outcome ⌧ as well as the possible options for
optimizing Eq.(1). A popular way of solving this problem is
to represent each ⇡k as a binary asymmetric relation Rk,
where Rk

ij is equal to 1 when object i is given precedence
over object j (disregarding ties). Then, the consensus or
median relation R can be recovered by solving

min

Rij2{0,1}:
1i<jn

nX

1i<jn

QijRij (2)

s.t. 0  Rij + Rjk � Rik  1, 81  i < j < k  n,

where Qij =
Pb

k=1

⇣
2wkRk

ij � 1

⌘
. This is an NP-hard, com-

putationally prohibitive for large dimensionalities problem,
but various procedures have been proposed to tackle it
[18]–[20]. Although, in this work we target the finding of
a consensus permutation ⌧ based on a formulation similar
to Eq.(1), as we are not concerned with object precedence,
we do not use existing permutation metrics. Instead, we
propose a new measure d(·, ·) to fit the current problem and
we also show how the resulting consensus formulation can
lend itself to an efficient approximation (see Section 3.4).

Another example of consensus analysis is that of con-
sensus (or ensemble) clustering [22], [23], where the objective
is to fuse a set of data partitions resulting from different
clustering scenarios. A typical formulation of this prob-
lem for finding its median partition ⌧ , is expressed as in
Eq.(1), but with each ⇡k representing the dataset partition
generated by the kth clustering algorithm. Again, various
functions d(·, ·) have been proposed to measure the distance
between two partitions (such as the Mirkin distance or the
Rand index) and various procedures to solve the consequent
optimization problem [23]. Of relevance to our work is the
rationale for why a consensus solution would be of any
value or need. One reason is that when different algorithms
produce different solutions and there is no reason to prefer
any particular one over the others, then a solution that com-
bines them all may be the most reasonable to adopt. Sim-
ilar to consensus clustering, such a solution could exhibit
better average performance across the datasets and reduce
sensitivity to noise, outliers and sampling variations [22].
Additionally, when a single algorithm is executed multiple
times and produces a different outcome in each run (because
it is non-deterministic and sensitive to initial conditions, or
different experimental conditions have been repeated, e.g.,
in gene expression analysis) then it often becomes necessary
to combine its multiple outcomes.

In terms of consensus seriation very little has been done
so far. A recent method [6] proposes to combine two specific
seriation algorithms by taking advantage of their operating
characteristics. An ordering sequence based on hierarchical
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clustering is initially obtained and then the nodes of the
associated dendrogram are suitably flipped to bias the or-
der towards the one generated by a second algorithm. In
this way, the fused sequence combines the benefits from
both algorithms, such as the local object behavior from the
clustering and the global pattern grouping from the latter
method. Another type of consensus seriation [4] relies on the
adjustment of a specific seriation algorithm to accommodate
an external permutation vector. This vector could either be
the output of another algorithm or some ordering based on
user domain knowledge. The method works by modifying
the Laplacian matrix of a spectral seriation method to bias it
towards the external order. Although both of the above ap-
proaches are achieving in a sense consensus seriation, they
operate upon very specific seriation algorithms and they
cannot be generalized to fuse multiple arbitrary sequences.
In a recent major seriation review [15], consensus seriation
is stated to be a natural extension of the current status,
when sequences from multiple algorithms are used or when
varying control parameters lead to more robust solutions.
Although it is advocated that this can be achieved through
formulations similar to Eq.(2), as previously explained such
solutions may not be appropriate because of the underlying
distance function d(·, ·) relying on object precedences.

3 PROPOSED METHODOLOGY

3.1 Preliminaries

A permutation ⇡ of n objects is an one-to-one mapping
from {1, 2, · · · , n} onto itself. Frequently, a permutation ⇡

is written as the vector listing the objects (or indices) in their
permuted order, that is object ⇡(i) is assigned the position i,
or conversely, ⇡�1

(i) is the position of object i (although the
reverse convention can be used where ⇡(i) denotes the rank
of the ith object). There are a total of n! distinct permutations
whose container set is denoted by Sn.

For every permutation ⇡ 2 Sn we can directly define an
n⇥ n permutation matrix P⇡ as

[P⇡]ij =

⇢
1 if ⇡(i) = j,
0 otherwise. (3)

Multiplying any arbitrary conformable matrix X from the
left (right) with a permutation matrix P⇡ , will permute
accordingly the rows (columns) of X. The operation P⇡XPT

⇡
will permute both rows and columns simultaneously ac-
cording to the order dictated by ⇡.

Furthermore, two permutations ⇡ and ⌧ can be com-
bined to produce a new permutation. For example, given
a vector x 2 Rn, the sequence P⌧P⇡x, applies P⇡ first
to permute x and then P⌧ . This is equivalent to applying
⇡ � ⌧ to x (where ⇡ � ⌧ is defined as the standard function
composition that maps i to ⇡(⌧ (i)), and is often denoted as
the product ⇡⌧ ). This is because [P⌧P⇡x]i = [P⇡x]⌧ (i) =

x⇡(⌧ (i)) = x(⇡⌧ )(i) = [P⇡⌧x]i.
Of relevance to this work, are two popular combinatorial

problems whose solutions rely on finding permutations
that optimize some performance index. One is the linear
assignment problem (LAP) [24], [25] with the objective of
finding an optimal allocation of n objects (e.g., facilities) to
n different objects (e.g., locations), given costs Xij of placing

the ith facility to the jth location. Two possible expressions
of the overall minimizing cost are given by

LAP(X) def
=

nX

i=1

Xi,⇡(i) = tr
h
XPT

⇡

i
, (4)

where the sought permutation ⇡ assigns the ith facility to
the ⇡(i)th location. The optimal solution of LAP can be
found using the Hungarian method of complexity O(n3

).
A related but NP-hard variation is the quadratic as-

signment problem (QAP) [25]–[29]. Its objective is also to
minimize the overall cost associated with the one-to-one
assignment ⇡ between two different types of n objects
(e.g., facilities and locations), but it is based on two n ⇥ n
coefficient matrices. For example, Xij can correspond to
the distance between locations i and j and Yij to the
flow between facilities i and j. Two of the many possible
expressions of the QAP are given by

QAP(X,Y) def
=

nX

i,j=1

X⇡(i),⇡(j)Yij = tr
h
P⇡XPT

⇡ YT
i
. (5)

3.2 Positional Proximity Measure
We firstly introduce here a positional proximity measure dP :

Sn ⇥ Sn ! R+ that calculates the similarity between any
two given permutations ⌧ ,⇡ 2 Sn. We define this as

dP (⌧ ,⇡)
def
=

nX

j=2

j�1X

i=1

(⌧ (i)� ⌧ (j))
2 · (⇡(i)� ⇡(j))

2
. (6)

This measure aggregates information from all individual
pairs (i, j) with 1  i < j  n within ⌧ and ⇡, on how
proximate the positions of objects i and j are in relation to
each other1. The individual positional distances in Eq.(6) are
squared, so that the actual orders in which the two objects
occur are ignored2. Therefore, if the relative distance be-
tween ⌧ (i) and ⌧ (j) is the same as the one between ⇡(i) and
⇡(j), then the contribution of the pair (i, j) will be the same
regardless of where i and j are placed in each permutation.
As an example, we can consider the extreme case where e⇡
is a flipped version of ⇡, i.e., e⇡(i) = ⇡(n� i+1). Using the
above measure, we have dP (⌧ ,⇡) = dP (⌧ , e⇡) for any ⌧ .

This precedence invariance is not the case, however, for
other similarity measures or distance metrics between per-
mutations [16]. The reason is that they take into account the
occurrence order of elements, as they conceptually assume
the permutations to represent rankings or priorities between
the n objects. This is likely to be the case for many applica-
tions, and we discuss such measures as well as their links to
the proposed measure later in Section 3.5. The precedence

1. Strictly speaking, following the convention of Section 3.1, the
two squared distances should be written as (⌧�1(i) � ⌧�1(j))2 and
(⇡�1(i) � ⇡�1(j))2, since ⌧�1(i) and ⇡�1(i) denote the positions of
the object i. For example, let us consider ⌧ = [2, 5, 4, 1, 3]T to represent
a listing of permuted objects. Then, we have ⌧�1 = [4, 1, 5, 3, 2]T and
so the positional distance within ⌧ between objects i = 2 and j = 1
equals ⌧�1(2) � ⌧�1(1) = 1 � 4 = �3. Henceforth, for notational
simplicity we drop the explicit use of mapping inversion and assume it
implicit unless otherwise stated.

2. The measure could also be alternatively defined as dP (⌧ ,⇡) =P
1i<jn |⌧ (i)� ⌧ (j)| · |⇡(i)� ⇡(j)|. However, the former formu-

lation allows a direct approximation of the consensus seriation model
presented in Section 3.4.
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invariance of the proposed dP is much more suitable to the
underlying character of seriation that requires more similar
objects to be positioned closer together, without paying
attention to their actual precedence.

It can be seen from Eq.(6), that because dP is a sum
of products of terms (with these terms being the squared
distances from each of the ⌧ and ⇡), for each pair (i, j), the
more similar in magnitude the two terms are, the higher the
summation becomes. This can be justified more formally by
defining the

�n
2

�
-length vector !⌧ = [(⌧ (1)�⌧ (2))

2, (⌧ (1)�
⌧ (3))

2, (⌧ (1)�⌧ (4))

2, · · · , (⌧ (i)�⌧ (j))2, · · · , (⌧ (n � 1)�
⌧ (n))2]T to contain in some predetermined order all
squared distances enumerated by the summation in Eq.(6).
Then, for a similarly defined accompanying !⇡ , dP can be
simply expressed as the inner product !T

⌧ !⇡ . Based on that,
we can employ a rearrangement theorem from [30] which
states that given any two vectors x,y 2 Rn and their
corresponding versions x

+ and y

+ sorted in ascending
order, we have

nX

i=1

x

+
i y

+
n�i+1 

nX

i=1

xiyi 
nX

i=1

x

+
i y

+
i . (7)

From the rightmost inequality, we can see that !

T
⌧ !⇡ ob-

tains its maximum when the vectors !⌧ and !⇡ are ordered
similarly, which occurs when ⌧ and ⇡ have identical posi-
tional distance terms (⌧ (i)�⌧ (j))2 and (⇡(i)�⇡(j))2. The
more similar the two terms are on average for each (i, j),
the higher !

T
⌧ !⇡ and accordingly dP become. Note, that

for any ⌧ 2 Sn, its corresponding !⌧ is always composed
of exactly the same elements (e.g., n � 1 ones, n � 2 fours,
n� 3 nines, . . . , one occurrence of (n� 1)

2) but these occur
in different restricted order within !⌧ for each different ⌧ .

A desirable property when working with permutations
is the right-invariance one which is shared by most mea-
sures [16]. This property requires the comparison between
two permutations to be independent to any arbitrary rela-
beling of the n objects. This is also a reasonable expectation
for the object sequencing applications we consider here. The
proposed dP is right-invariant because

dP (⌧ ,⇡) = dP (⌧�,⇡�), 8⌧ ,⇡,� 2 Sn, (8)

as a result of Eq.(6) not changing when � simultaneously
permutes the ranks in ⌧ and ⇡ to realize the object re-
labeling. Because of this, we can simplify the similarity
estimation as dP (⌧ ,⇡) = dP (⌧⇡

�1, e), where e denotes
the identity permutation defined by e(i) = i.

Some further useful observations can be obtained if we
expand and then simplify Eq.(6) using some basic properties
of permutations. We can finally reach the equivalent expres-
sion

dP (⌧ ,⇡) = n
nX

i=1

⌧ (i)2⇡(i)2 + 2

 
nX

i=1

⌧ (i)⇡(i)

!2

�2k1

nX

i=1

�
⌧ (i)2⇡(i) + ⌧ (i)⇡(i)2

�
+ k22, (9)

which depends on sums of products of components from the
two vectors, and involves constants k1 = ⌧

T1n =

n(n+1)
2

and k2 = ⌧

T
⌧ =

n(n+1)(2n+1)
6 (1n is the column vec-

tor containing n ones, and the notation ⌧ is used inter-
changeably to denote both the underlying mapping and

the column vector corresponding to the permutation). It is
noteworthy, that Eq.(9) is equivalent to a nonlinear mix-
ture of the central cross-moments of order two and three
between ⌧ and ⇡. An mth order central cross-moment
between two stochastic variables X and Y is defined as
µ
(mX ,mY )
XY = E [(X � E[X])

mX · (Y � E[Y ])

mY
], for any

mX ,mY 2 Z+ with m = mX + mY . Specifically, we can
rewrite Eq.(9) as

dP (⌧ ,⇡) = n2µ(2,2)
⌧⇡ + 2n2

⇣
µ(1,1)
⌧⇡

⌘2
+

(n3 � n)2

12

2
. (10)

This can be easily proved by re-expressing the covariance as

µ(1,1)
⌧⇡ =

1

n
⌧

T
⇡ � k21

n2
, (11)

and one of the three possible cokurtosis measures as

µ(2,2)
⌧⇡ =

1

n

nX

i=1

⌧ (i)2⇡(i)2 +
4k21
n3

nX

i=1

⌧ (i)⇡(i)

� 2k1
n2

nX

i=1

�
⌧ (i)2⇡(i) + ⌧ (i)⇡(i)2

�
� 3k41

n4
+

2k21k2
n3

. (12)

The simplifications in Eqs.(11,12) rely on the fact that all
permutations have the same mean k1

n and the same sum of
squares k2. From the latest formulation of the measure in
Eq.(10), it can be seen that dP increases when the squared
covariance increases. This corresponds to both permutations
⌧ and ⇡ ordering the objects with their positions corre-
lated or anti-correlated. Additionally, dP increases when the
cokurtosis increases. In general, this statistic measures the
degree of peakedness of one variable with respect to the
other, but in the current context the increase corresponds to
how the squared distances from the mean for each individ-
ual variable match those in the other variable. In either case,
the actual precedence between objects is ignored so that,
as previously mentioned, even a mirrored version e⇡ yields
squared covariance, cokurtosis and consequently dP values
equal to those as when comparing ⇡ with a reference ⌧ .
Other measures, such as Spearman correlation (discussed
later in Section 3.5) can also be expressed directly using
the covariance, but it is sensitive to the actual precedence
between objects.

3.3 Positional Proximity Coefficient

We now define two matrix functions A,B : Sn ! Rn⇥n as

A(⌧ ) = B(⌧ )� B(⌧ ), (13)
B(⌧ ) = ⌧1T

n � 1n⌧
T , (14)

where the symbol � denotes the Hadamard matrix prod-
uct. These two compact notations provide us with ma-
trix elements of the form [A(⌧ )]ij = (⌧ (i) � ⌧ (j))2 and
[B(⌧ )]ij = ⌧ (i)� ⌧ (j).

Using the above, we can obtain a very convenient ex-
pression for dP that can be used to establish a more direct
link with the combinatorial problems considered here (see
Section 3.4) and also with other existing permutation mea-
sures (see Section 3.5). Specifically, the positional proximity
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measure in Eq.(6) can be equivalently re-expressed using
matrix notation as

dP (⌧ ,⇡) =
1

2

nX

i,j=1

[A(⌧ )]ij [A(⇡)]ij

=

1

2

tr
h
A(⌧ )A(⇡)

T
i
. (15)

The latter expression can be used to provide an instance of
the generalized correlation coefficient [31], [32]

�(x,y)
def
=

P
i,j XijYijqP

i,j X2
ij

P
i,j Y2

ij

(16)

between two vectors of observations x and y. The elements
Xij and Yij of the two auxiliary matrices X and Y, are some
type of scores associated with the sample pairs (xi,xj) and
(yi,yj), respectively. By setting the auxiliary score matrices
in Eq.(16) to be A(⌧ ) and A(⇡), we can define a positional
proximity coefficient given by

�P (⌧ ,⇡) =
tr
⇥
A(⌧ )A(⇡)

T
⇤

p
tr [A(⌧ )A(⌧ )

T
] tr [A(⇡)A(⇡)

T
]

=

tr
⇥
A(⌧ )A(⇡)

T
⇤

tr [A(⌧ )A(⌧ )

T
]

. (17)

This is equivalent to normalizing dP in Eq.(15) with the
maximum possible value it can assume. It further simplifies
to

�P (⌧ ,⇡) =
tr [A(⌧ )A(⇡)]

n6

15 � n4

6 +

n2

10

, (18)

because from Eqs.(13,14) A(⇡) is symmetric and also the
denominator is independent of the chosen permutation
and therefore constant (see Supplementary material, Ap-
pendix A). �P is positive because of the trace quantities
being positive and it cannot exceed one because of the
Cauchy-Bunyakovskii-Schwarz inequality. The more similar
the positional information two given permutations ⌧ and ⇡

contain, the higher the value of �P will be.
The proposed coefficient can be used, for example, to

measure the degree by which two different sequences agree.
These sequences could be the output of two different seri-
ation algorithms or the output from one algorithm executed
with two different conditions (e.g., different initial state
or randomization, different sample (dis)similarity measures
applied on the raw dataset, etc.). Coefficient values could
also be combined over multiple datasets (from different or
a specific problem domain) to examine the gross agreement
between two or more algorithms (Section 4 exemplifies its
use in similar setups).

It is of interest to derive some basic statistics of �P (⌧ ,⇡)
that could contribute to such comparisons. Using the right-
invariance property, discussed in Section 3.2, this is equiv-
alent to deriving statistics for a unary reformulation of �P ,
expressed as �̂P (⇢) ⌘ �P (⇢, e) for a random permutation
⇢ 2 Sn and the identity permutation e. Assuming a uniform
distribution imposed over all n! permutations ⇢, the mean
and variance of �̂P and thus �P can be derived as functions
of n. This can be achieved by employing certain formulae

for more general QAP matrices [32], which (as shown in
Supplementary material, Appendix B) eventually lead to

E[�̂P ] =
5n(n+ 1)

6(2n2 � 3)

, (19)

�2
(�̂P ) =

(n� 2)(2n4
+ 37n3

+ 42n2 � 45n� 54)

18n(n� 1)(2n2 � 3)

2
. (20)

The above can be useful for statistically analyzing obser-
vations using, for instance, Chebyshev’s or Cantelli’s in-
equalities. Also, z-scores �̂P (⇢)�E[�̂P ]p

�2(�̂P )
can be used for more

useful interpretation of comparisons; for example, when
comparing the performance of algorithms using multiple
datasets of different sizes in order to make the evaluation
independent of n. Also, although the distribution of �̂P
appears to be heavy right-tailed, it has been demonstrated
in [32] for more general QAP expressions that it can be well
approximated by a normal distribution, and in this case
standard normal tables can also be utilized.

The minimum value attainable by �P (⌧ ,⇡) corresponds
to two sequences ⌧ and ⇡ containing object positions in total
disagreement. Because of the way the proximity measure
is defined in Eq.(6), however, this minimum value of �P
can never reach zero. We can calculate its minimum by
finding the constant permutation ⇠ (we refer to it as the
bounce permutation) that mimimizes �̂P (⇠). This permu-
tation, which resembles but is not equal to the zig-zag
permutation defined in [25], [26] for a certain class of QAP
problems, is given by

⇠(i)
def
=

8
>><

>>:

m� i+ 1, if i  m and i is odd,
m+ i, if i  m and i is even,
i�m, if i > m and i is odd,
n+m� i+ 1, if i > m and i is even,

(21)

for i = 1, · · · , n with m =

n
2 . We only investigate the case

for even n here (see Supplementary material, Appendix D).
Eq.(21) can also be expressed more concisely as

⇠(i) = m+(�1)

i
⇣
m� |i�m|�mod(i, 2)+ [i > m]

⌘
, (22)

where [·] is the Iverson bracket. For example, for n = 12

we have ⇠ = [6, 8, 4, 10, 2, 12, 1, 11, 3, 9, 5, 7]T . This vector
relocates all the objects to be maximally apart (in terms of
their squared pairwise positional distances evaluated by dP )
from e = [1, 2, 3, · · · , 12]T . For instance, objects 1 and 12

which appear furthest within e are moved to be the closest
in ⇠; then objects 2 and 11 from the next largest distance
within e are moved on immediately next to 1 and 12, and
the pattern carries on by alternating the placement of each
subsequent pair.

To find the minimum value of dP , we need to compute
dP (⇠, e) =

1
2 tr
⇥
A(⇠)A(e)

T
⇤
=

P
1i<jn(⇠(i)� ⇠(j))2(i�

j)2. We can express this value in terms of n (see Supplemen-
tary material, Appendix C) as

min

⌧ ,⇡2Sn

dP (⌧ ,⇡) =
13n6 � 20n4

+ 52n2

1440

+

mod(m, 2)

2

,

(23)
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which is valid for both cases of m being even or odd. We
can further normalize this quantity as in Eq.(18), in order to
obtain the minimum value of �P

L�P (n)
def
= min

⌧ ,⇡2Sn

�P (⌧ ,⇡)

=

13n4 � 20n2
+ 52 +

720
n2 mod(m, 2)

24(n� 1)(n+ 1)(2n2 � 3)

. (24)

It can be seen that L�P ! 13
48 = 0.2708¯3 as n ! inf . This

value can be useful as an alternative way of facilitating com-
parisons between sets of sequences with different lengths,
by scaling the coefficient as �P (⌧ ,⇡)�L�P

(n)
1�L�P

(n) so that it spreads
across the entire [0, 1] range.

A final observation is that the proposed proximity coeffi-
cient can be used to derive a metric distance. The properties
of non-negativity, definiteness and reflexivity, as well as
symmetry can be satisfied with the simple transformation
1 � �P (⌧ ,⇡). The triangle inequality can also be satisfied
using transformations based on concave metric preserving
functions [33].

3.4 Consensus Seriation and Sequence Fusion
We now turn our attention to achieving consensus seriation
using the proposed positional proximity measure. That is,
as discussed in Section 2, combining multiple sequences
by fusing their constituent positional information, so that
objects that frequently appear closer in different sequences
are more likely to appear closer in the unifying sequence.
Given a set of b positive weights wk which sum to unity and
b associated permutations ⇡k 2 Sn, with k = 1, · · · , b, the
objective is to find the optimal permutation

⌧

⇤
= argmax

⌧2Sn

bX

k=1

wkdP (⌧ ,⇡k) . (25)

The weights wk are optionally used to alter the impor-
tance of the different permutations. The above optimization
employs a weighted summation similar to Eq.(1) for con-
sensus ranking and consensus clustering models, but it is
based on the proposed positional similarity measure dP of
Eq.(6) to maximize the average pairwise object similarities
between the sought ⌧ ⇤ and each ⇡k. In the following, we
will elaborate on the formulation of Eq.(25), establish links
with combinatorial optimization problems and suggest an
efficient approximation to solve it.

Using Eq.(15), the above maximand can be written (ad-
justing for constant terms) as

2

bX

k=1

wkdP (⌧ ,⇡k) =

bX

k=1

wktr
h
A(⌧ )A(⇡k)

T
i

= tr

"

A(⌧ )

bX

k=1

wkA(⇡k)
T

#

= tr
h
A(⌧ )KT

i
. (26)

The symmetric positional distance matrix K =

Pb
k=1 wkA(⇡k)

contains the combined positional information for the prob-
lem at hand. Each ijth element

Kij =

bX

k=1

wk (⇡k(i)� ⇡k(j))
2 (27)

corresponds to the positional distances between objects i
and j, weighted and aggregated over all permutations ⇡k.
The intuitive character of the optimization can be easily
observed if we express Eq.(26) as

Pn
i,j=1(⌧ (i) � ⌧ (j))2Kij .

Each positional distance term Kij can be thought of as a
reference weight. The larger this weight is, the stronger the
maximization for that ijth term will be, and therefore the
further apart the positions ⌧ (i) and ⌧ (j) are pushed.

The optimization problem of Eq.(25) is in fact a QAP one
(see Section 3.1). We can show this, by observing that the
maximand can be rewritten from Eq.(26) as

tr
h
A(⌧ )KT

i
= tr

h
A(P⌧e)KT

i
= tr

h
P⌧A(e)PT

⌧ KT
i
, (28)

since for any ⌧ and its corresponding permutation matrix
P⌧ , we have [P⌧A(e)PT

⌧ ]ij = (⌧ (i) � ⌧ (j))2 = [A(⌧ )]ij .
Eq.(28) matches the definition of Eq.(5) and it therefore cor-
responds to QAP (A(e),�K). The two defining QAP coeffi-
cient matrices are the distance A(e) (a constant symmetric
Toeplitz matrix with ijth elements of the form (i� j)2) and
the flow matrix �K (negated to indicate maximization).

The maximizing quantity of Eq.(26) can also be ex-
pressed more conveniently as follows

nX

i,j=1

(⌧ (i)� ⌧ (j))
2 Kij (29)

= 2

nX

i=1

⌧ (i)2
nX

j=1

Kij � 2

nX

i,j=1

⌧ (i)⌧ (j)Kij

= 2

nX

i=1

⌧ (i)2Ki•1n � 2⌧

T K⌧ = 2⌧

T L⌧ , (30)

where Ki• is the ith row vector of K. The last expression
makes use of a symmetric Laplacian matrix defined as
L = diag(K1n)�K, where diag(K1n) is the diagonal matrix
whose ith diagonal element is formed by the sum of Ki•.
The expression in Eq.(30), for continuous ⌧ and similarities
Kij , rather than distances, between vertices/objects i and
j, is similar to the quadratic quantity commonly seen in
spectral embedding methods [34], [35].

It can be easily seen that the quadratic form in Eq.(30)
can give rise to an alternative but equivalent QAP formula-
tion because

⌧

T L⌧ = (P⌧e)
T LP⌧e = tr

h
P⌧ee

T PT
⌧ L
i
. (31)

The expression in Eq.(31) also matches the definition of
Eq.(5) and corresponds to QAP

�
ee

T ,�L
�
, with ee

T being
the distance matrix and �L the flow. A similar QAP formu-
lation has also been used in [36] for a different problem, the
2-sum one, to model matrix envelope reduction.

Any QAP solver [27]–[29] can be used to optimize either
of the two QAP formulations. For example, one could con-
sider an exact solver based on dynamic programming, cut-
ting planes or branch and bound methods. However, for the
sequencing problems considered here with dimensionalities
of at least hundreds of samples, such an approach would
be impractical. An alternative would be to use a heuristic
method, such as local search, simulated annealing or evo-
lutionary optimization. However, such methods can also be
slow due to the large number of function evaluations they
require and can be sensitive to different parameterizations.
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In this work, we approximate the maximization ofPb
k=1 wkdP (⌧ ,⇡k) = ⌧

T L⌧ with ⌧ 2 Sn, using for sim-
plicity a spectral seriation approach [4], [8], [37], [38]. This
relies on the relaxation of ⌧ to a continuous vector accompa-
nied by scale constraints, which according to the Rayleigh-
Ritz theorem [39], finds the optimal solution by simply
eigen-decomposing the Laplacian. As has been shown in
[38], spectral ordering can provide the means for optimally
recovering the ordering of a symmetric similarity matrix,
if there actually exists a permutation that can bring this
matrix into a Robinson form (that is, a matrix with entries
non-increasing while moving away from the diagonal). This
substantiates the use of the method despite its approximate
character owed to the relaxation. The solving permutation in
that case is found by examining the order of the elements of
the Fiedler eigenvector (the one corresponding to the second
smallest eigenvalue). Although in most practical cases a
similarity matrix contains measurement noise and cannot
be a brought into a perfect Robinson form, as demonstrated
in the aforementioned works, the solving eigenvector gen-
erates an order that keeps strongly similar objects mostly
together.

In our case, since K contains dissimilarities and we
maximize ⌧

T L⌧ , we are only interested in the dominant
eigenvector v of L. Adapting the method of [38], if the b
permutations ⇡k are in full agreement, then matrix K can be
reordered into an anti-Robinson form (that is, one with non-
decreasing entries while moving away from the diagonal).
Although this is an ideal situation, in practical cases where
the ⇡k likely have discrepant information, object pairs i and
j with large average positional distance Kij will be mostly
positioned further apart. Here, we simply take the solution
⌧

⇤ to be the permutation that renders P⌧⇤
v monotonically

ordered in either direction. This procedure is very fast and
produces approximate but practical solutions; other spectral
variations from [4], [8], [38] can also be adapted. The cost
of the optimization does not depend on the number b of
available orderings to fuse, as the matrix K summarizes all
given ⇡k (the inverse ⇡

�1
k are actually used in Eq.(27) to

get the object positions1) and their weights wk. The cost of
eigen-decomposition is in general of O(n3

), but since only
the dominant eigenvector of the Laplacian L is needed, a
simple method such as the power iteration with converges
linearly with a cost of O(n2

) operations per step, or the
Rayleigh quotient iteration with converges cubically but
with O(n3

), or a more efficient Krylov subspace method
can be used [40].

3.5 Links To Other Methods
In this section, we present some alternative ways of opti-
mizing the quantity

Pb
k=1 wkd (⌧ ,⇡k) from Eqs.(1,25) us-

ing different existing measures d(·, ·) between permutations
[16]. Although, as previously explained such measures are
not very suitable for seriation, here we focus on the type of
combinatorial problems their consensus formulations gen-
erate for comparative purposes.

3.5.1 Hamming measure
The Hamming distance, which is commonly used in infor-
mation theory and communications, is perhaps the simplest

way for comparing two permutations. It is defined as

dH(⌧ ,⇡) =
nX

i=1

[⌧ (i) 6= ⇡(i)] . (32)

It is easy to see the relationship between the Hamming
distance of two permutations and the Frobenius norm of
their corresponding permutation matrices. Specifically, us-
ing the definition in Eq.(3), we obtain

kP⌧ � P⇡k2F =

nX

i,j=1

�
[P⌧ ]ij � [P⇡]ij

�2
= 2dH(⌧ ,⇡). (33)

Based on this and the fact that tr[P⌧PT
⌧ ] = n for any ⌧ 2 Sn,

we can rewrite the relevant minimand as

2

bX

k=1

wkdH(⌧ ,⇡k) =

bX

k=1

wk kP⌧ � P⇡kk
2
F (34)

=

bX

k=1

wk

⇣
2n� 2tr

h
P⌧PT

⇡k

i⌘

= 2n� 2tr
h
P⌧ST

i
. (35)

In the above, the real valued matrix S =

Pb
k=1 wkP⇡k is the

weighted sum of all permutations matrices corresponding to
the b given ⇡k. Therefore, minimizing the original quantity
in Eq.(34), is equivalent to maximizing tr[P⌧ST

] in Eq.(35).
This latter syntax can be seen to match the LAP definition
in Eq.(4) as it it corresponds to the form LAP (�S), with �S
being the cost matrix of the assignment.

It is interesting to additionally observe that since S is a
convex combination of permutation matrices, it is a doubly
stochastic matrix and according to Birkhoff’s theorem [25],
it belongs to the convex polytope in Rn2

defined by vertices
corresponding to all n ⇥ n permutation matrices. If we
further express the trace quantity in Eq.(35) as

tr
h
P⌧ST

i
=

1

2

⇣
n+ tr

h
SST

i
� kP⌧ � Sk2F

⌘
, (36)

we can see that the above problem is also equivalent to
minimizing kP⌧ � Sk2F . This shows that a consensus rank-
ing search based on dH , is equivalent to searching for that
vertex P⌧ that is closest (in the Frobenius norm sense)
to the interior polytope point S, formed by the convex
combination of the b selected vertices P⇡k .

3.5.2 Spearman measure
The unnormalized Spearman distance between two permu-
tations is defined [16] as

dS(⌧ ,⇡) = k⌧ � ⇡k22 . (37)

The commonly used Spearman correlation coefficient is a
normalized version of the above, designed to range within
[�1,+1]. It is given by �S(⌧ ,⇡) = 1 � dS(⌧ ,⇡)

k3
using the

constant k3 =

n(n2�1)
6 .

It is noteworthy that, as it has been observed in [31], [32],
the Spearman coefficient can be expressed as a special case
of the generalized correlation coefficient. This is possible
through the use of Eq.(16) while setting the scores Xij

and Yij to be ⌧ (i)� ⌧ (j) and ⇡(i)� ⇡(j), respectively.
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TABLE 1
Summary of the main formulations of the raw and the coefficient forms of the proposed permutation measure and other existing ones. The last

column indicates the underlying combinatorial problem for the consensus task.

Measure Unnormalized d(⌧ ,⇡) Coefficient �(⌧ ,⇡) Assignment problem

Hamming dH =
nP

i=1
[⌧ (i) 6= ⇡(i)] �H =

tr[P⌧ PT⇡ ]
n

LAP (�S)

Spearman dS = k⌧ � ⇡k22 �S =
tr[B(⌧)B(⇡)T ]

n2(n2�1)
6

LAP
�
�seT

�
, or

LAP
�
�SeeT

�

Kendall dK =
nP

i,j=1
[⌧ (i) < ⌧ (j) ^ ⇡(i) > ⇡(j)] �K =

tr[C(⌧)C(⇡)T ]
n(n�1) QAP (C(e),�N)

Positional
proximity

dP =
P

1i<jn

(⌧ (i)� ⌧ (j))2 (⇡(i)� ⇡(j))2 �P = tr[A(⌧)A(⇡)]
n6
15 �n4

6 +n2
10

QAP (A(e),�K), or
QAP

�
eeT ,�L

�

where:
A(⌧ ) = B(⌧ )� B(⌧ )
B(⌧ ) = ⌧1T

n � 1n⌧T

C(⌧ ) = sign (B(⌧ ))

S =
bP

k=1
wkP⇡k

s =
bP

k=1
wk⇡k

e = [1, 2, · · · , n]T

K =
bP

k=1
wkA(⇡k)

L = diag(K1n)� K

N =
bP

k=1
wkC(⇡k)

Further, using Eq.(14) leads to the coefficient rewritten more
conveniently as

�S(⌧ ,⇡) =
tr
⇥
B(⌧ )B(⇡)T

⇤

tr [B(⌧ )B(⌧ )T ]
=

tr
⇥
B(⌧ )B(⇡)T

⇤

nk3
, (38)

since tr[B(⌧ )B(⇡)T ] =
Pn

i,j=1(⌧ (i) � ⌧ (j))(⇡(i) � ⇡(j)).
Note, that the measure dS and the numerator above
are affine versions of each other, since tr[B(⌧ )B(⇡)T ] +
ndS(⌧ ,⇡) = nk3.

Contrasting �S in Eq.(38) to the proposed positional
proximity coefficient �P in Eqs.(17, 18), shows that they
both combine aggregate scores over all possible object pairs,
but differ in the way these individual scores are calculated.
Moreover, using the expression of the covariance µ(1,1)

⌧⇡ from
Eq.(11), we can rewrite Eq.(37) as

dS(⌧ ,⇡) = k3 � 2nµ(1,1)
⌧⇡ . (39)

This can be compared with the more complex expression of
dP in Eq.(10) that involves squared covariance and cokurto-
sis that enable it to ignore object precedences.

We focus now on the combination of multiple per-
mutations using the Spearman measure. Again, based on
Eqs.(1,25), this leads to minimizing

Pb
k=1 wkdS (⌧ ,⇡k).

Substituting with Eq.(37) we have
bX

k=1

wk k⌧ � ⇡kk22 =

bX

k=1

wk

⇣
⌧

T
⌧ + ⇡

T
k ⇡k � 2⌧

T
⇡k

⌘

= 2k2 � 2

bX

k=1

wk⌧
T
⇡k

= 2k2 � 2⌧

T
s, (40)

where s =

Pb
k=1 wk⇡k is the convex combination of all

permutations and k2 the constant defined earlier in Section
3.2. Thus, the optimization is equivalent to maximizing the
inner product ⌧T

s. However, this can be rewritten as

⌧

T
s = (P⌧e)

T
s = e

T PT
⌧ s = tr

h
se

T PT
⌧

i
, (41)

which matches the problem LAP
�
�se

T
�
, with �se

T being
the underlying cost matrix. Note, that from the definition of
S in Section 3.5.1, we have Se =

Pb
k=1 wk⇡k = s, which

shows that the LAP cost matrix can be equivalently con-
sidered to be �SeeT . In this particular case, however, the
consensus ranking solution based on the Spearman measure
can be obtained without solving the assignment problem, as
by relying on Eq.(7), maximizing ⌧

T
s is achieved by simply

finding a permutation ⌧

⇤ that orders s monotonically.

3.5.3 Kendall measure
The unnormalized Kendall distance between two permuta-
tions is defined [16] as

dK(⌧ ,⇡) =
nX

i,j=1

[⌧ (i) < ⌧ (j) ^ ⇡(i) > ⇡(j)] , (42)

which counts the number of discordant object pairs (i, j)
between ⌧ and ⇡. The commonly used Kendall correlation
coefficient is a normalized version of the above and is given
by �K(⌧ ,⇡) = 1 � dK(⌧ ,⇡)

k4
2 [�1,+1], using the constant

k4 =

n(n�1)
4 .

As with Spearman, the Kendall coefficient can be
deemed to be a special case of the generalized correla-
tion coefficient [31], [32]. This is possible by setting the
scores Xij and Yij in Eq.(16) as sign (⌧ (i)� ⌧ (j)) and
sign (⇡(i)� ⇡(j)), respectively. Based on this, we can define

C(⌧ ) = sign
�
⌧1T

n � 1n⌧
T
�
= sign (B(⌧ )) , (43)

where the function sign(·) is applied to a matrix element-
wise. Then, the coefficient can be conveniently expressed as

�K(⌧ ,⇡) =
tr
⇥
C(⌧ )C(⇡)

T
⇤

tr [C(⌧ )C(⌧ )

T
]

=

tr
⇥
C(⌧ )C(⇡)

T
⇤

4k4
. (44)

The measure dK and the numerator above are affine ver-
sions of each other, since tr[C(⌧ )C(⇡)

T
]+4dK(⌧ ,⇡) = 4k4.

This expression of �K in Eq.(44) can be compared with
the Spearman coefficient �S in Eq.(38), and the positional
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proximity coefficient �P in Eqs.(17, 18). All are special cases
of the generalized correlation coefficient by using different
types of scores over object pairs (i, j). Table 1 summarizes
all the relevant formulations for the existing and the pro-
posed measures that act on permutation vectors.

As discussed in Section 2, consensus ranking methods
[17]–[21] can rely on the minimization of Eq.(1), which
typically leads to the problem of Eq.(2) when dK is used
to measure permutation distances. Here, we provide an
alternative formulation as a QAP that can be contrasted
to the previous analysis. Similar to manipulations used in
Section 3.4, we obtain the equivalent maximization of

bX

k=1

wktr[C(⌧ )C(⇡k)
T
] = tr[C(⌧ )NT

]

= tr[P⌧C(e)PT
⌧ NT

]. (45)

The skew-symmetric matrix N =

Pb
k=1 wkC(⇡k) collects

the individual score matrices from the given permutations.
C(e) is a constant matrix with 0, �1 and +1 on, above and
below the main diagonal, respectively. It can be seen, that
maximizing Eq.(45) corresponds to QAP (C(e),�N), with
the distance and flow matrices being correspondingly C(e)

and �N. QAP formulations for consensus ranking using
other distance measure variants and based on different
formulations from the ones employed here can also be found
in [17]. Another observation is that both formulations of
Eq.(2) and Eq.(45) are making use of weighted sums of the
problem data through the matrices Q and N. However, the
former is not processing permutation vectors ⇡k or matrices
P⇡k , but rather relations Rk and seeks the median relation
matrix R using a suitable set of transitivity constraints.

4 EXPERIMENTATION AND RESULTS
We now present various experiments to demonstrate the
utility of the proposed contributions. Specifically, Section
4.1 shows how the proposed positional proximity coeffi-
cient �P can quantify the similarity between the outputs of
different seriation algorithms. Also, Section 4.2 exemplifies
the concept of consensus seriation through the merging
of sequences from multiple algorithms using the proposed
positional similarity dP and the spectral approximation. The
applicability of such tasks has been previously discussed in
Sections 1, 2 and 3.3.

4.1 Comparing Different Seriation Algorithms
For the comparative evaluation, we have employed a set
of sixteen seriation algorithms3 with varying characteristics.
These, together with short descriptions of their inner work-
ings, are given below:
• Bond energy algorithm (BEA): maximizes the measure of

effectiveness defined using local similarities within the
reordered distance matrix [15], [41].

• Correlation order (CO): relies on the angular position of the
samples from the two main eigenvectors of the correlation
matrix [42].

3. We have implemented a Matlab software toolbox that supports
many seriation algorithms, different assessment and error measures,
and various sequence manipulation routines; it is publicly available at
http://pcwww.liv.ac.uk/⇠goulerma/software/seriation.zip.

• Hierarchical clustering (HC): returns the leaf order of the
dendrogram constructed using an average linkage ag-
glomerative clustering method [6]. The second variation
improves this output by further applying optimal leaf
ordering (OLO) [43].

• Hamiltonian path (HP): minimizes the Hamiltonian path
through the graph of the object distances using a travel-
ling salesman problem solver [15].

• Linear seriation (LS): optimizes the QAP of Eq.(5) with a
distance matrix containing the distances between objects,
and a flow matrix with ijth elements defined as �|i � j|
[32], [44].

• Multidimensional scaling (MDS1): returns the order of the
objects along the first component generated using classical
scaling. The second variation (MDS2) is based on non-
metric scaling [45].

• Principal component analysis (PCA): a simple seriation
method that returns the order of objects along the first
principal component [15].

• Rank-2 elliptic seriation (R2E): locates the order of objects
on the elliptic arrangement generated from repetitive ap-
plication of correlation coefficient [10].

• Simulated annealing (SA): heuristically minimizes the anti-
Robinson events of the distance matrix [2].

• Sorting points into neighborhoods (SPIN1): based on a fixed-
point heuristic and a seriation template for the side-to-side
version [7]. The second variation (SPIN2) is based on the
neighborhood version [7].

• Spectral seriation (SS1): based on the eigen-decomposition
of the unnormalized Laplacian matrix of the correspond-
ing dissimilarity graph [46]. The second variation (SS2) is
based on a symmetric normalized Laplacian [8].

• Visual assessment of cluster tendency (VAT): based on single
linkage clustering where the order is returned via Prim’s
minimal spanning tree algorithm [5].

For LS, due to the large size of the datasets, we use
a genetic algorithm to obtain an approximate solution in
reasonable computation time. For HP, we use a heuristic
solver based on pairwise node exchanges. The results with
the SA method are entirely based on its implementation
within the R seriation package [15].

To allow for a consistent comparison we have focused on
a particular domain, namely bioinformatics, and we use the
following seven gene expression datasets (additional results
on a different domain can be found in the Supplementary
material, Appendix E). Alpha CI [47] that contains 4,579
genes and 22 arrays representing genome-wide mRNA lev-
els for yeast. Elutriation [47] that contains measured ratios
of gene expression levels for yeast with 5,981 genes and 14
arrays. Colon tissues [48] with data from 2,000 genes across
62 tissues. Grr [49] that contains the steady-state responses
to changes in growth rate of yeast from 5,454 genes and 45
arrays. Carcinoma [50] with 7,457 genes across 36 tissues.
Adenoma [50] with 7,086 genes from 8 tissues. Finally,
SRBCT [51] containing gene expression data for 2,308 genes
across 63 tissues. To enable all algorithms to produce results
in reasonable execution times, we have randomly selected
n=500 samples from each original dataset. Subsequently,
each similarity matrix between all samples is estimated us-
ing Pearson correlation, which is typical in this application
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TABLE 2
Comparisons between the 16 evaluated algorithms based on the proximity coefficient �P . The upper triangle of the table contains the mean �P

taken across all 7 datasets (values �0.8 are boldfaced), whereas the lower triangle displays the corresponding standard deviations.

BEA CO HC OLO HP LS MDS1 MDS2 PCA R2E SA SPIN1 SPIN2 SS1 SS2 VAT
BEA • 0.493 0.543 0.508 0.429 0.576 0.580 0.506 0.567 0.540 0.534 0.582 0.456 0.539 0.584 0.452

CO 0.096 • 0.572 0.552 0.416 0.586 0.585 0.557 0.556 0.471 0.630 0.579 0.417 0.556 0.575 0.450
HC 0.079 0.107 • 0.603 0.419 0.626 0.626 0.584 0.625 0.526 0.611 0.625 0.458 0.615 0.631 0.447

OLO 0.092 0.130 0.196 • 0.429 0.667 0.663 0.644 0.650 0.565 0.679 0.666 0.416 0.612 0.662 0.477
HP 0.021 0.021 0.022 0.019 • 0.434 0.435 0.428 0.430 0.426 0.427 0.436 0.412 0.425 0.435 0.416
LS 0.108 0.100 0.089 0.105 0.018 • 0.990 0.855 0.957 0.635 0.866 0.986 0.463 0.859 0.982 0.468

MDS1 0.112 0.097 0.093 0.106 0.017 0.008 • 0.848 0.965 0.635 0.857 0.997 0.465 0.860 0.994 0.466
MDS2 0.087 0.081 0.074 0.120 0.024 0.158 0.159 • 0.835 0.566 0.886 0.839 0.454 0.813 0.831 0.448

PCA 0.104 0.064 0.091 0.087 0.008 0.076 0.076 0.164 • 0.615 0.816 0.969 0.468 0.844 0.975 0.479
R2E 0.126 0.188 0.084 0.131 0.031 0.087 0.082 0.118 0.028 • 0.614 0.640 0.395 0.581 0.639 0.466
SA 0.096 0.129 0.058 0.121 0.028 0.053 0.055 0.145 0.080 0.180 • 0.846 0.447 0.799 0.834 0.465

SPIN1 0.122 0.098 0.098 0.104 0.016 0.013 0.003 0.164 0.070 0.079 0.059 • 0.465 0.855 0.998 0.468
SPIN2 0.049 0.063 0.034 0.036 0.025 0.064 0.065 0.071 0.060 0.053 0.068 0.066 • 0.447 0.464 0.427

SS1 0.074 0.063 0.068 0.114 0.013 0.204 0.205 0.203 0.226 0.073 0.140 0.210 0.060 • 0.850 0.464
SS2 0.126 0.097 0.097 0.101 0.014 0.017 0.007 0.166 0.060 0.073 0.063 0.002 0.064 0.213 • 0.469

VAT 0.070 0.076 0.092 0.087 0.020 0.072 0.072 0.027 0.095 0.062 0.065 0.073 0.042 0.037 0.077 •

domain [6], [13], [48]. As the seriation algorithms rely on
dissimilarities, the correlation values are subtracted from the
unity according to [52].

Each of the sixteen algorithms is applied independently
to the dissimilarity matrix of each of the seven datasets
and the generated ordering sequences are recorded. Then,
the similarities between all 120 possible algorithm pairs are
evaluated using the unnormalized version of the proposed
coefficient �P . For each pair, the mean �P across all seven
datasets is calculated together with the standard deviation.
All these values are collected in Table 2 with the most similar
algorithms shown boldfaced. As can be seen, there are
algorithms with highly similar output, such as the pairs {LS,
SS2}, {MDS1, SS2} and {PCA, SPIN1}, with corresponding
average �P values of 0.982, 0.994 and 0.969. Other pairs have
very low similarity; examples include {CO,HP} and {R2E,
SPIN2} with average �P of 0.416 and 0.395, respectively. The
low overall standard deviations show consistency of these
findings across the datasets. This is also supported by the
fact that the datasets are from a particular domain and are
likely to exhibit similar characteristics.

The information from Table 2 can also be used to group
the algorithms according to their pairwise similarities. A
straightforward way of doing so, is to hierarchically cluster
the algorithms using the upper part of the table. Fig.2 shows
the resulting dendrogram representing the different group
hierarchies together with the corresponding linkage values.
It can be seen that at the bottom of the figure, the algorithms
{PCA, LS, MDS1, SS2, SPIN1} are all grouped together in
a tight cluster, as all average pairwise coefficients between
them are greater than 0.95. Other algorithms such as {SA,
MDS2} form a moderately less tight group with similarity
of 0.886. Remaining algorithms show to produce less similar
seriation output; for example SPIN2 and VAT have less than
0.48 similarity with any other method.

Fig.3 presents a qualitative comparison between similar
and dissimilar generated sequences. The figure displays the
ordered distance maps for some selected algorithms applied
to a dataset. Specifically, Figs.3(a,b) which correspond to LS
and SS2 show to be almost identical, and this is corroborated
by the fact that their averaged similarity in Table 2 registers
very high (�P = 0.982). CO and HP, on the other hand, have

10.90.80.70.60.50.4

SPIN1

SS2

MDS1

LS

PCA

SS1

MDS2

SA

OLO

HC

CO

BEA

R2E

VAT

HP

SPIN2

Fig. 2. Dendrogram (of cophenetic correlation coefficient = 0.98) com-
puted using complete linkage and the averaged �P values from Table
2. Groups with linkage values (shown on the horizontal axis) of 0.8 and
over are drawn in different shades.

a much lower similarity (�P = 0.416) which can be visually
verified by the distinctly contrasting structures within the
distance maps of Figs.3(c,d). Comparably, differing visual
patterns in the maps accompanied by low coefficient values
can also be observed between the pairs SS2 and HP (�P =
0.435), LS and CO (�P = 0.586), and SS2 and CO (�P = 0.575).

Using the proposed coefficient to compare the ordering
sequences generated by different algorithms can be very
useful to the practitioners of a specific field in a variety
of ways. For example, Table 2 shows that LS and MDS1
give almost identical output (�P = 0.99). But, since MDS1
can be executed much faster than LS as it relies on an
eigen-decomposition, whereas LS needs to solve approx-
imately a QAP problem, the use of MDS1 in terms of
computational efficiency may stand as a better option. An-
other beneficial application would be to select a subset
of algorithms with mostly dissimilar results. Dissimilarly
performing algorithms could be used to capture different
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Fig. 3. Dissimilarity matrices of the Elutriation dataset, ordered using the
output from four different algorithms.

views and structural characteristics of a given dataset. Their
output could also be used as sequences for fusion by a
consensus seriation approach (see Section 4.2), or even as
multiple seed solutions in heuristic seriation algorithms,
such as the population-based optimizer for LS used here.
It is also possible, instead of comparing two different algo-
rithms across multiple datasets, to compare the output of
a single algorithm on measurements obtained by varying
the experimental conditions, or a single dataset where the
sample (dis)similarities are obtained in different ways (e.g.,
using Lp distances, kernels, correlations, divergences, etc.).

4.2 Consensus Seriation Experiments
In this section, we demonstrate the use of the consensus
seriation method proposed in Section 3.4. For the purpose of
presenting different examples, from the total of sixteen algo-
rithms we choose five subsets Ti that contain between three
and six algorithms whose outputs are fused independently.
These subsets are: T1 = {MDS1, R2E, VAT}, T2 = {MDS1,
SS1, VAT}, T3 = {MDS1, OLO, SS1, VAT}, T4 = {BEA, LS,
MDS2, SS1, VAT}, and T5 = {HP, LS, MDS1, MDS2, SS1,
VAT}. The members of these subsets are mostly chosen
randomly, but as it is not very useful to combine sequences
that are too similar, care was taken to avoid having many
similar ones for the shorter subsets (relying on Table 2).
For example, the most similar pair in T1 is {MDS1, R2E}
with �P = 0.635, and in T2 and T3 only the pair {MDS1,
SS1} has relatively high �P = 0.86 whereas the other pairs
have �P < 0.665. For the remaining two larger subsets more
similar pairs are allowed. We also set varying degrees of
overlap between the subsets to examine the corresponding
differences between the results. For example, T2 and T3

have three common members, and T4 and T5 have five.
The ordering sequences used for fusion are the exact same
ones that resulted from the experiments in Section 4.1 using
n=500 samples per dataset. The Hamming based consensus
method is implemented using a LAP solver (Section 3.5.1),
the Spearman using sorting (Section 3.5.2) and the Kendall
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(a) Alpha CI
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(b) Carcinoma
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Fig. 4. ARGAR errors for consensus seriation results obtained with the
proposed, Hamming, Spearman and Kendall measures, showing also
the average of the original algorithms comprising each Ti.

using a genetic algorithm to approximate the underlying
QAP (Section 3.5.3). In all experiments, as Hamming, Spear-
man and Kendall are not insensitive to the orientation
of sequences, to make the comparison more objective for
those three methods, we repeat the fusion procedure with
all possible combinations of having each sequence flipped
and keep the best outcome. Also, for simplicity we set all
weights wk to be equal; this renders equal significance to all
fused sequences.

To quantitatively compare the seriation results, we use
the relative generalized anti-Robinson events (RGAR) er-
ror measure [6]. Given a symmetric dissimilarity matrix
D 2 Rn⇥n, the measure counts the number of negative
gradients horizontally and vertically away from the main
diagonal. In essence, it counts the number of object triples
that make D depart from an ideal anti-Robinson form (see
Section 3.4), which is a natural expectation in seriation [15].
This measure is further restricted by a window of size �
and is normalized by the maximum number of negative
gradients. In a simplified form, it can be expressed as

RGAR(D, �) =

P
j��i<k<j

[Dik > Dij ] +
P

j��i<k<j
[Dkj > Dij ]

(

2
3 � n)� + n�2 � 2

3�
3

.

The advantage of RGAR over other measures (e.g., ones
reviewed in [15]) is that by varying �, we can assess the
quality of ordering at multiple structural levels. Specifically,
smaller/larger values of � enable RGAR to inspect more the
local/global aspects of the seriated map D. In addition to
this measure, we also make use of its accumulated version
ARGAR(D) =

Pn�1
�=2 RGAR(D, �) across all window sizes.

This provides an overall image for the ordering quality.
Fig.4 displays the ARGAR errors of the proposed con-

sensus method and the ones derived from the existing
measures. For each subset Ti, each consensus method is ap-
plied to combine the sequences generated from all member
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Fig. 5. Seriated maps for the individual algorithms of subset T1 as well
as the proposed consensus method, for the dataset Alpha CI.

algorithms of that particular subset. Each experiment is also
repeated independently to four selected datasets. It can be
seen that for all the cases but one, the proposed method per-
forms better than Hamming, Spearman and Kendall based
consensus task. Only for the SRBCT dataset and subset T5,
Spearman and Kendall based fusions show to be better with
ARGAR errors of 213.0 and 212.8, respectively, compared to
213.6 of the proposed method (both Kendall and Spearman
based methods have very similar errors in most cases). The
plots in Fig.4 also include the ARGAR errors averaged over
all the individual algorithms comprising each subset Ti. It
can be seen, that only in subset T3 for the SRBCT dataset
the proposed method is worse than the average with an
ARGAR difference of 1.2. However, in all other cases the
former is consistently below the error of the average with
a mean ARGAR difference of 3.9. These observations show
that the proposed consensus fusion outperforms Hamming,
Spearman and Kendall, and is mostly better than the av-
erage error of the fused sequences. In general though, it
cannot be expected to be better than all fused sequences as
the optimization does not take into account RGAR errors.
The figure plots also show that even for subsets with large
overlap, the results can vary distinctly. For instance, T2 and
T3 in Figs.4(a,c), and T4 and T5 in Figs.4(a,d).

We use Fig.5 to qualitatively compare the seriated dis-
tance maps for the proposed method and each of the orig-
inal algorithms for the selected subset T1= {MDS1, R2E,
VAT} and dataset Alpha CI. The map of MDS1 shows two
main concentrations of samples: those with low (200) and
those with high (�300) sequence index positions. The con-
centrations are indicated by the small dissimilarity values
in the top-left and bottom-right corners of the map and the
high values in the other two corners. This map describes the
more global aspects of the dataset as it reveals the sample
separation at a larger scale. The blocky structure of the VAT
map, on the other hand, captures more the local dissimilar-
ity characteristics of the samples as it reveals multiple local
cluster fragments. The R2E map captures mostly the mid-
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Fig. 6. Seriated maps for the individual algorithms of subset T4 as well
as the proposed consensus method, for the dataset Colon tissues.

level structure of the samples, as most small dissimilarity
values are lying along the main diagonal. The map of the
fused sequence in Fig.5(d) is derived by combining all three
previous sequences. Overall, this map seems to have the
global concentration characteristics of MDS1, some of the
linear variations of R2E along the diagonal with increasing
dissimilarities moving off the diagonal, and some of the
sporadic blocky structures from VAT. This demonstrates that
consensus seriation can generate novel solutions unattain-
able by any of the original methods; this principal advantage
is also the case in consensus clustering approaches [22].
Similar observations can also be drawn from Fig.6, which
displays the maps for each of the individual algorithms
within T4 = {BEA, LS, MDS2, SS1, VAT} for another dataset.
BEA, MDS2 and VAT describe more the local aspects of the
data, while LS and SS1 the global structure. The consensus
map in Fig.6(f) resembles the LS one, but exhibits sharper
separations between the four main concentrations which is
likely owed to the three sequences emphasizing the local
structure.

To quantitatively compare the methods at different
scales, we present Fig.7 which records the RGAR errors for
the entire range � 2 [2, n � 1] of windows. The errors are
measured for the sequences of MDS1, R2E and VAT in T1,
as well as the Hamming, Spearman, Kendall based fusion
methods and the proposed one for the Alpha CI dataset. It
can be seen, that VAT performs very well at smaller window
sizes by starting off with its minimum RGAR value of 0.31 at
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Fig. 7. RGAR errors for the sequence generating algorithms in T1 and
all consensus methods plotted against all window sizes �.

�=2 and then steeply increasing to an error of 0.45 at �=70.
This confirms the local capabilities of the algorithm owed
to its linkage-based search. Conversely, MDS1 works better
on the global structure due to its projection-based ordering,
and outperforms all other methods after window size �=385,
with finally reaching a minimum RGAR of 0.33. R2E is better
at the mid-level structure (similarly observed in [6]), as it
shows lower errors at middle window sizes and reaches
a minimum RGAR of 0.29 at �=237. This is likely owed
to its gradual convergence to a low-dimensional elliptical
structure via successively iterating correlation matrices. The
proposed consensus method seems to have lower RGAR
than R2E within the first 20 and the last 80 window sizes.
Also, after �=130 with RGAR of 0.44, it performs much
better than VAT. For � values between 130 to 340, that define
mostly the mid-level structure, it outperforms both VAT and
MDS1. Only for a small window range between 340 and 410
it is worse than both R2E and MDS1. These observations,
and similarly for experiments with other algorithms and
datasets, show that consensus seriation can capture different
characteristics from the fused sequences expressed at di-
verse scales. Another observation is that the fused sequence
exhibits relatively less abrupt error variations across the
different scales. This can be seen by the RGAR ranges
(standard deviations), which for the MDS1, R2E, VAT and
the proposed consensus are 0.168 (0.056), 0.238 (0.062), 0.167
(0.020) and 0.121 (0.037), respectively; that is, the consensus
has the narrowest range and the second smallest deviation.
Finally, with regard to Hamming, Spearman and Kendall
based consensus, the proposed one performs similarly for �
values up to 35, and thereafter maintains consistently lower
RGAR errors.

5 CONCLUSION

We have introduced a novel measure for comparing arbi-
trary object sequences generated by seriation algorithms
and an instance of the generalized correlation coefficient
based on this measure. Its principal advantage, compared
to other existing measures evaluating permutation vectors,

is that it takes explicitly into account positional distances
between object pairs and it is invariant to object ordering.
Various statistical properties to aid the understanding and
applicability of the measure and the coefficient have been
presented. Furthermore, we have introduced a consensus se-
riation method formulated as a quadratic assignment prob-
lem that can be approximated by a fast spectral optimization
procedure. We have also derived the combinatorial consen-
sus formulations of the Hamming, Spearman and Kendall
measures for reasons of comparison with the proposed
model. Finally, thorough experimentations demonstrated
the utility of the introduced coefficient by comparing mul-
tiple seriation algorithms applied to various datasets. These
also supported the qualitative and quantitative analyses of
the different consensus formulations.
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APPENDIX A: SIMPLIFICATION OF THE POSITIONAL
PROXIMITY COEFFICIENT �P
In this appendix, we show how to simplify Eq.(17) of the
manuscript in order to obtain the final version �P (⌧ ,⇡) =
tr[A(⌧ )A(⇡)]
n6
15 �n4

6 +n2
10

given in Eq.(18). We firstly expand on the de-
nominator of Eq.(17) according to

tr
h
A(⌧ )A(⌧ )T

i
=

nX

i,j=1

(⌧ (i)� ⌧ (j))4 = (A.1)

nX

i,j=1

(i� j)4 =
nX

i,j=1

�
i4 + j4 � 4i3j � 4ij3 + 6i2j2

�
=

2n
nX

i=1

i4 � 8

 
nX

i=1

i3
! 

nX

i=1

i

!

+ 6

 
nX

i=1

i2
!2

. (A.2)

We can then directly replace the four summation terms in
Eq.(A.2) with the first four Faulhaber power-sum formulae
[1] that are

f1 ⌘
nX

i=1

i =
n2 + n

2
, (A.3)

f2 ⌘
nX

i=1

i2=
2n3 + 3n2 + n

6
, (A.4)

f3 ⌘
nX

i=1

i3=
n4 + 2n3 + n2

4
, (A.5)

f4 ⌘
nX

i=1

i4=
6n5 + 15n4 + 10n3 � n

30
. (A.6)

After applying thorough simplifications to the substituted
expression, we obtain the following quantity which is equal
to Eq.(A.2) and also the denominator of Eq.(18)

2n

✓
n5

5
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2
+
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3
� n
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n

6

◆2

=
n6

15
� n4

6
+

n2

10
⌘ ⇣. (A.7)

APPENDIX B: DERIVATION OF THE MEAN AND VARI-
ANCE OF �̂P
Here we show the derivation of the mean E[�̂P ] and vari-
ance �2(�̂P ) in Eqs.(19,20). For both quantities, we firstly

employ formulae for estimating the mean and variance of
generic QAP expressions, such as those of Eq.(5)

�(⇡) ⌘
nX

i,j=1

X⇡(i),⇡(j)Yij = tr
h
P⇡XPT

⇡YT
i
. (B.1)

The distance matrix X and the flow one Y are assumed fixed
n⇥ n matrices of zero diagonals and �(⇡) is parameterized
by the permutation ⇡ 2 Sn. As stated in [2] the mean is
given by

E [�(⇡)] =
1

n(n� 1)

X

i,j

Xij

X

i,j

Yij , (B.2)

where all summation limits 1 and n are henceforth dropped
for simplicity.

In the case of �̂P , however, we have the special case of
X = Y = A(e), because

�̂P (⇢) =
tr [A(⇢)A(e)]

⇣
=

tr
⇥
P⇢A(e)PT

⇢ A(e)
⇤

⇣
(B.3)

where ⇣ is the normalizing quantity derived in Eq.(A.7).
Therefore, the quantity

P
i,j Xij corresponds to

X
i,j

A(e) =
X

i,j
(i� j)2 = 2n

X
i
i2 � 2

⇣X
i
i
⌘2

= 2nf2 � 2f2
1 =

n4 � n2

6
⌘ ⇣1, (B.4)

where the last term is obtained by substituting with
Eqs.(A.3,A.4) and simplifying.

Finally, by combining Eqs.(B.2,B.3,B.4) and throughly
simplifying, we obtain the following expression for the
mean

E[�̂P ] =
1

n(n� 1)

⇣21
⇣

=
5n(n+ 1)

12n2 � 18
. (B.5)

For the derivation of the variance, we also employ a
generic formula from [2] suited for QAP expressions with
symmetric data matrices X and Y. It is given by

�2 [�(⇡)] =� ↵1

n2(n� 1)2
+

2↵2

n(n� 1)
+

4↵3

n(n� 1)(n� 2)

+
↵4

n(n� 1)(n� 2)(n� 3)
, (B.6)
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where
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Similarly as before, since X = Y = A(e), all terms ↵i

depend only on n. Firstly, from Eq.(B.4) we have

↵1 = ⇣41 , (B.11)

and from Eqs.(A.1,A.7) we have

↵2 = ⇣2. (B.12)

For ↵3 and ↵4 we need to calculate the quantity
P

i
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j Xij
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, which corresponds to
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where the last quantity is obtained by substituting the fi
terms from Eqs.(A.3-A.6) and simplifying. From Eq.(B.9), we
can then set and simplify as

↵3 = (⇣2 � ⇣)2 (B.14)

=

"
n2

�
2n5 � 4n4 � 5n3 + 10n2 + 3n� 6

�

60

#2
.

Similarly for the last term ↵4 we have

↵4 =
�
⇣21 � 4⇣2 + 2⇣
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(B.15)
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n2(n� 1)2
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5n4 � 14n3 � 19n2 + 36n+ 36

�

180

#2
.

Substituting now Eqs.(B.11,B.12,B.14,B.15) into Eq.(B.6)
and normalizing with ⇣2, we finally obtain the variance of
the coefficient as it appears in Eq.(20)

�2(�̂P ) =
(n� 2)(2n4 + 37n3 + 42n2 � 45n� 54)

18n(n� 1)(2n2 � 3)2
. (B.16)

APPENDIX C: CALCULATION OF THE MINIMUM CO-
EFFICIENT VALUE L�P (n)

This appendix shows how to calculate the lowest value
L�P (n) = �̂P (⇠), given that the bounce permutation ⇠ as
defined in Eq.(21) is the minimizing one (for even n = 2m

and for some positive integer m). We firstly estimate the
quantity 2dP (⇠, e) which is equal to

tr [A(⇠)A(e)] =
X

ij
(⇠(i)� ⇠(j))2 (i� j)2 (C.1)

=
X

ij

⇣
2i2⇠(i)2 + 2i2⇠(j)2 � 4i2⇠(i)⇠(j) (C.2)
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(C.3)

� 4f1
X

i
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| {z }
c1

⌘2
.

We now examine each of the summation terms ci defined
above with respect to the given ⇠. Firstly, we assume n

2 is
even (i.e., that m = 2k for some k). For c1 we have

c1 =
kX

i=1

⇣
2i(m+ 2i) + (2i� 1)(m� 2(i� 1)) (C.4)

+ (n+ 1� 2i)(n+ 1�m� 2i)

+ (n+ 1� 2i+ 1)(n+ 1�m+ 2(i� 1))
⌘

=
kX

i=1

⇣
n2 + n+ 8i� 3

⌘
=

n3 + 2n2 + n

4
. (C.5)

This is because, it can be seen from the definition of the
bounce permutation ⇠ that it is generated as the sequence
⇥
m,m+ 2,m� 2,m+ 4,m� 4,m+ 6, · · ·

· · · ,m� 5,m+ 5,m� 3,m+ 3,m� 1,m+ 1
⇤T

.

Its first m elements can be written concisely as

⇠(i) = m+ (�1)i(i� mod(i, 2)), (C.6)

for i = 1, · · · ,m, or by separating odd and even indices, as

⇠(2i� 1) = m� 2(i� 1),

⇠(2i) = m+ 2i,
(C.7)

for i = 1, · · · , k. Therefore, for the calculation of c1 =P
i i⇠(i), the first two summands in Eq.(C.4) rely directly

on Eq.(C.7). For the last two summands, we make use of the
observation from Eq.(21) that for each i = 1, · · · , n we have

⇠(i) + ⇠(n+ 1� i) = e(i) + e(n+ 1� i) = n+ 1, (C.8)

that is, adding ⇠ and e to their flipped versions e
⇠ and e

e,
respectively, yields constant vectors of elements n+ 1.

To calculate c2 we proceed in similar fashion as

c2 =
kX

i=1

⇣
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+ (n+ 1� 2i+ 1)(n+ 1�m+ 2(i� 1))2
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=
1

2

kX

i=1

⇣
(n+ 1)(16i2 + n2 � 2)

⌘

=
2n4 + 5n3 + 4n2 + n

12
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Similarly, we can obtain

c3 =
kX

i=1

⇣
(n+ 1)(8i2 � 4in+ n2 + 2n� 1)

⌘
= c2, (C.10)

and
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64i4 � 32i3n� 128i3 + 12i2n2 + 64i2n+ 128i2
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=
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3
+

3n3

8
+

n2

6
+

n

20
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Finally, substituting c1, · · · , c4 within Eq.(C.3) and sim-
plifying we get

dP (⇠, e) = nc4 + f2
2 � 4f1c2 + 2c21

=
13n6 � 20n4 + 52n2

1440
. (C.12)

We now examine the second case where n
2 is odd, by

setting m = 2k+1. Eq.(C.6) is still valid, but the top part of
Eq.(C.7) runs till k+1, i.e., for i = 1, · · · , k+1. Based on this
observation, we proceed in a similar fashion to calculate the
corresponding summations of Eq.(C.3), denoted now by c̄i.
For example, for the first term we have

c̄1 =
kX

i=1

⇣
2i(m+ 2i) + (n+ 1� 2i)(n+ 1�m� 2i)

⌘

+
k+1X

i=1
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(2i� 1)(m� 2(i� 1))

+ (n+ 1� 2i+ 1)(n+ 1�m+ 2(i� 1))
⌘

= c1 +
1

2
, (C.13)

where the last value is obtained after simplifications and
relies on the expression of c1 with respect to n in Eq.(C.5).
Similarly, for the remaining terms we obtain c̄2 = c̄3 = c2 +
n+1
2 and c̄4 = c4 +

(n+1)2

2 . Finally, substituting in Eq.(C.3)
results in

dP (⇠, e) =
13n6 � 20n4 + 52n2

1440
+

1

2
, (C.14)

which together with Eq.(C.12) for even m = n
2 , leads

to Eq.(23). To obtain L�P (n), we calculate 2dP (⇠,e)
⇣ us-

ing Eqs.(C.12,C.14) and the normalizing quantity ⇣ from
Eq.(A.7). After simplifying, we obtain the value

L�P (n) =
13n4 � 20n2 + 52 + 720

n2 mod(m, 2)

24(n� 1)(n+ 1)(2n2 � 3)
, (C.15)

for even or odd m.

APPENDIX D: PROOF THAT ⇠ MINIMIZES dP FOR
EVEN n

We now provide a possible proof that dP (⇠, e)  dP (⇡, e),
for all ⇡ 2 Sn. Using Eq.(10), we can rewrite dP as

dP (⌧ ,⇡) = nh⌧ 2,⇡2i+ 2h⌧ ,⇡i2 + (n3�n)2

122 , (D.1)

since µ(2,2)
⌧⇡ = h⌧2,⇡2i

n and µ(1,1)
⌧⇡ = h⌧ ,⇡i

n . In the above, for
simplicity we denote by h·, ·i the inner product, by ⌧

2 the
vector ⌧ � ⌧ , and by ⌧ the centred version of ⌧ with ⌧ (i) =
⌧ (i)�µ, where µ = f1

n = n+1
2 is the mean of the elements of

a permutation. Eq.(D.1) can also be obtained by expanding
1
2 tr [A(⌧ )A(⇡)] = 1

2

P
ij (⌧ (i)� ⌧ (j))2 (⇡(i)� ⇡(j))2 as in

Eqs.(C.1,C.2), because for any ⌧ we have A(⌧ ) = A(⌧ ).
Now, we will show that ⇠ minimizes dP (⌧ , e), because

it minimizes simultaneously the first two terms in Eq.(D.1);
that is

⇠ = argmin
⌧2Sn

h⌧ 2, e2i = argmin
⌧2Sn

h⌧ , ei2. (D.2)

To show the former minimization, we firstly note that
since e(i) = 2i�1�n

2 , we have

e

2 =
h
( 1�n

2 )2, ( 3�n
2 )2, · · · , (�3

2 )2, (�1
2 )2,

( 12 )
2, ( 32 )

2, · · · , (n�3
2 )2, (n�1

2 )2
iT

. (D.3)

Also, from Eq.(C.6) and using µ = m + 1
2 , we have

⇠(i) = (�1)i(i�mod(i, 2))� 1
2 , for i = 1, · · · ,m, while from

Eq.(C.8), for i = m+1, · · · , n, we have ⇠(i) = �⇠(n+1� i)

(since ⇠ + e
⇠ = ⇠ + e

⇠ � 2µ1n = 0n). Therefore, we have

⇠

2
=

h
(�1

2 )2, ( 32 )
2, · · · , ( 3�n

2 (�1)m)2, (n�1
2 (�1)m)2,

( 1�n
2 (�1)m)2, (n�3

2 (�1)m)2, · · · , (�3
2 )2, ( 12 )

2
iT
. (D.4)

We can now observe from Eqs.(D.3,D.4), that the vectors
e and ⇠ are, ignoring signs, circularly shifted versions of
each other. Formally, by defining �k(i) = mod(i�1�k, n)+
1 to be the circular shift permutation that shifts all elements
by k positions (rightwards for k > 0), we have ⇠

2
= P�me

2;
this is exemplified in Fig.D.1(b).

Additionally, we can see that both vectors are symmetric

about their middle, since ⇠

2
= (�e

⇠)2 = e
⇠

2
, and similarly
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Fig. D.1. Example plots of various transformations of the identity e and
the bounce permutation ⇠ for n = 30.
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for e. The first m elements of e

2 are decreasing, because
( 2i�1�n

2 )2 > ( 2j�1�n
2 )2, for 1  i < j  m, and the

last m increasing due to the symmetry. On the other hand,
because of its shift by m positions, ⇠

2
has the first and last

m elements increasing and decreasing, respectively.
Relying on this observation, we can now obtain a sorted

version of each of the vectors, by defining a folding per-
mutation ' = [1, n, 2, n � 1, · · · , n

2 ,
n
2 + 1]T . Because e

2

and ⇠

2
are symmetric, it is easy to see that P'e

2 occurs in
decreasing order, whereas P'⇠

2
in increasing. By using the

notations x

+ and x

� to denote two versions of a vector x

sorted in ascending and descending order, respectively, we
have P'e

2 = e

2� and P'⇠
2
= e

2+; see the example in
Fig.D.1(c).

Finally, because for all permutations ⌧ 2 Sn, their cor-
responding transformations ⌧

2 are composed of the same
elements {e2(i)}ni=1 occurring in differing positions, we can
employ the rearrangement theorem from Eq.(7) to state the
inequality

h⇠2, e2i = hP'⇠
2
,P'e

2i = he2+, e2�i
 h⌧ 2,⇡2i, 8⌧ ,⇡ 2 Sn. (D.5)

The quantity he2+, e2�i which is constant and can be
shown to be n5+14n

480 , is the minimum possible value the
inner product can assume. The above establishes that1

⇠ = argmin⌧2Sn
h⌧ 2, e2i.

To conclude Eq.(D.2) we need to additionally show that
⇠ = argmin⌧2Sn

h⌧ , ei2. We firstly re-express the squared
inner product of any two centred vectors as

h⌧ ,⇡i2 = h⌧ ,⇡i2 � 2nµ2h⌧ ,⇡i+ n2µ4. (D.6)

We can then see that h⇠, ei2 can be calculated by re-using
the term h⇠, ei = c1 = n3+2n2+n

4 from Eq.(C.5), assuming
for the moment an even m = n

2 . By substituting in Eq.(D.6)
we have

h⇠, ei2 = c21 � 2nµ2c1 + n2µ4. (D.7)

The above expression is, however, independent to n as it
simplifies to zero, which is the smallest possible value the
non-negative quantity h⌧ ,⇡i2 can assume.

For the case now where m is odd, from Eq.(C.13) we
have h⇠, ei = c̄1 = n3+2n2+n+2

4 . Substituting as above, this
leads to h⇠, ei2 = 1

4 . This value is also the minimum possible
value h⌧ , ei2 can assume. To see this, we need to examine
the minimum of the quadratic in Eq.(D.6). This occurs at
� = nµ2 = n(n+1)2

4 . In the previous case, where m is even
and we have n = 4k for some k, this quantity becomes
16k3+8k2+k, which is an integer. When m is odd, however,
and we have n = 4k+2, it becomes � = 16k3+32k2+21k+

1. ⇠ is not a unique minimizer of h⌧2, e2i. From its definition, it
can be seen that ⇠ is composed by a half-length shift �m, followed by
further swaps between selected symmetric elements. Formally, if we
define ⇣k to be the permutation with elements ⇣k(k) = n + 1 � k,
⇣k(n + 1 � k) = k and ⇣k(i) = i for the remaining elements, then
⇠ = �m⇣1⇣3⇣5 · · · ⇣m+mod(m,2)�1. For h⌧2, e2i however, all possible
2m permutations created by the composition of �m with arbitrary
sequences of ⇣k compositions are also its minimizers (see Fig.D.2(a)),
since �m⇣k

2
= �2

m = ⇠
2.
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Fig. D.2. Example plots of the minimizing quantities of interest and for
all possible permutations ⌧ 2 S6 (generated from the factoradic of the
index values 1, · · · , n! in the horizontal axes). All the minima (⇥) are
marked at the bottom of each plot.

4+ 1
2 , which is not an integer for the inner product h⌧ , ei to

assume and make Eq.(D.7) zero.
Nevertheless, it is easy to see that there are al-

ways two permutations whose inner product assumes ev-
ery possible integer value from within the range � =
[he�, e+i , he+, e+i] = [(n+ 1)f1 � f2, f2]; in fact, � is
always in the middle of �. Therefore, the minimum value
of the quadratic h⇠, ei2 must occur in any of the integer
values immediately adjacent to �, that is � ± 1

2 . Substituting
these into Eq.(D.6) and simplifying, gives h⌧ ,⇡i2 = 1

4
for both sides, which completes the proof that2

⇠ =
argmin⌧2Sn

h⌧ , ei2.
From the above, Eq.(D.2) holds and via Eq.(D.1) ⇠ is

shown to minimize dP and �P for even values of n. We
have not investigated the case for odd n and its associated

2. Again, ⇠ is not a unique minimizer of h⌧ , ei2, because any
permutation ⌧ such that h⌧ , ei = n(n+1)2

4 for even m (offset by ± 1
2

for odd m) is also a minimizer. Fig.D.2(b) exemplifies this by showing
the many possible minima for a specific n. In general, for even n and
as demonstrated in the example of Fig.D.2(c), the set of minimizers of
dP and �P is the intersection of the sets of minimizers of h⌧2, e2i and
h⌧ , ei2. This includes at least two permutations presented in this work,
that is ⇠ and e⇠, but it should be noted that there can be additional ones.
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L�P (n), but it can be analyzed similarly3.

APPENDIX E: ADDITIONAL EXPERIMENTATION AND
RESULTS

In this appendix, we provide additional application ex-
amples for the proposed contributions using data from a
domain other than bioinformatics (given in Section 4 of the
manuscript).

E.1 Comparing Different Seriation Algorithms
This section presents experiments with eight datasets from
the text-mining domain, where document samples are rep-
resented through word frequencies. Four of these datasets
(CT3, CT4, CT6 and CT9) are extracted from a large clinical
trial collection [3] where topics are based on queries such
as asthma, breast cancer, lung cancer, prostate cancer, car-
diovascular, HIV, leukemia, depression, and schizophrenia.
Each of the four datasets contains 500 randomly selected
clinical trial samples from 3, 4, 6 and 9 topics, respectively.
The remaining four datasets (R2, R5, R8 and R12) are from
the Reuters-21578 Text Categorisation Test Collection [4]
containing articles from the Reuters newswire. They were
originally annotated with topics such as earn, trade, money-
fx, interest, ship, sugar, money-supply, coffee. Each of the
four datasets contains 500 randomly selected articles from
2, 5, 8, and 12 topics, respectively. All distance matrices are
computed from a second-order similarity measure relying
on the cosine similarity between inner-products of articles,
which reflects second-order links between articles via word
co-occurrences.

Table E.1 summarizes the proximity coefficient �P values
averaged across the eight datasets for the sixteen algorithms
described in Section 4.1, and also the respective standard de-
viations. As can be seen, for this domain’s datasets the algo-
rithm pairs with the highest similarities are {MDS1, PCA},
{MDS1, SS2} and {PCA, SS2}, with average �P values
of 0.942, 0.942 and 0.985, respectively. The corresponding
dendrogram constructed from Table E.1 is shown in Fig.E.1.
The most similar algorithms {MDS1, SS2, PCA} are shown
to form a tight cluster, since all pairwise coefficients are
over 0.94. Other groups show to be less similar, such as the
cluster {OLO, R2E, CO} with pairwise similarities around
0.73. Overall, compared to the bioinformatics datasets in

3. It has to be noted, that for this case the corresponding ⇠ has a
different pattern due to the lack of symmetry. However, the analysis
can be similar. For example, we can verify that h⌧2, e2i also assumes
the minimum value of he2+, e2�i which, for the associated e2, is now
equal to n5+10n3�11n

480 . Also, the quantity h⌧ , ei2 can decrease down to
zero (for n > 3), because for both cases of n = 4k + 1 and n = 4k + 3,
h⌧ ,⇡i assumes an integer value at � 2 �. It is straightforward to find
that when both of these quantities have common minimizers, then from
Eq.(D.1) we have min⌧ ,⇡2Sn dP (⌧ ,⇡) = 13n6+10n4�23n2

1440 and the
positional proximity coefficient has lower bound L�P (n) = 13n2+23

24(2n2�3)

with the same limit of 13
48 as the even case. However, for certain cases

(e.g., n= 5 or 11), the quantities h⌧2, e2i and h⌧ , ei2 are not minimized
simultaneously by any single permutation. In such cases, a correction
offset of +2 needs to be added to the minimum value of dP , to account
for the fact that the least suboptimal value of h⌧ , ei2, where h⌧2, e2i
is minimized, is exactly 1. In general, for the case of odd n, we have
empirically observed that dP has many more minimizing permutations
than the even case.

Section 4, different similarity patterns arise here between
algorithm pairs. This is to be expected, as different domains
and different ways of estimating object (dis)similarities, can
have diverse effects in the operation of each algorithm. In
general, it is reasonable to expect that within a particular
domain a group of datasets is much more likely to exhibit
similar ordering patterns by certain algorithms, than for
datasets from different domains.

Fig.E.2 displays various ordered distance maps for the
qualitative comparison between similar and dissimilar se-
quences. It shows the image maps of two similar algorithms
PCA and SS2, along with the two dissimilar ones SPIN2
and CO for a selected dataset. Visually, the map of PCA
is almost identical to a rotated version of the map of SS2,
with the largest block in the top left rather than the bottom
right. This is related to the fact that in Table E.1 these
two algorithms show to be on average very similar (�P =
0.985). The four blocks in the maps correspond to the four
main document topics of the dataset CT4. The map of CO
also identifies four blocks as PCA, but in a different order
and sharpness (average �P between CO and PCA is 0.702).
SPIN2 identifies multiple sample concentrations and varies
significantly from PCA, SS2 and CO (with corresponding
average �P values in Table E.1 of 0.403, 0.402 and 0.411).

Fig.E.3 presents a further example for four algorithms
and a different dataset. The images of CO and R2E show
relatively similar when rotated (�P = 0.746). The maps of
HP and SA, although they have also identified the three
main document concentrations of CT3, appear with very
different sample orderings within each block (�P = 0.574).
Also, within each block of the HP map, more local structure
has been identified compared to the more gradually varying
global structure captured in the blocks of the other methods.

Another example is given in Fig.E.4 using dataset R5.
The maps of MDS1 and OLO show relatively similar when
rotated (with average �P = 0.741), both having a large and

10.90.80.70.60.50.4
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VAT
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Fig. E.1. Dendrogram (of cophenetic correlation coefficient = 0.86) com-
puted using complete linkage and the �P values from Table E.1. Groups
with linkage values (shown on the horizontal axis) of 0.8 and over are
drawn in different shades.
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TABLE E.1
Comparisons between the 16 evaluated algorithms based on the proximity coefficient �P . The upper triangle of the table contains the mean �P

taken across all 8 text datasets (values �0.8 are boldfaced), whereas the lower triangle displays the corresponding standard deviations.

BEA CO HC OLO HP LS MDS1 MDS2 PCA R2E SA SPIN1 SPIN2 SS1 SS2 VAT
BEA • 0.503 0.500 0.569 0.488 0.450 0.570 0.501 0.579 0.526 0.503 0.520 0.448 0.486 0.582 0.428

CO 0.083 • 0.525 0.718 0.527 0.467 0.741 0.627 0.702 0.746 0.600 0.585 0.411 0.521 0.703 0.496
HC 0.112 0.065 • 0.554 0.511 0.514 0.490 0.490 0.512 0.551 0.603 0.510 0.502 0.540 0.517 0.533

OLO 0.140 0.153 0.099 • 0.584 0.471 0.741 0.632 0.699 0.735 0.652 0.614 0.457 0.563 0.699 0.503
HP 0.151 0.139 0.127 0.171 • 0.487 0.544 0.496 0.508 0.580 0.574 0.518 0.478 0.587 0.504 0.524
LS 0.052 0.055 0.061 0.074 0.047 • 0.475 0.466 0.476 0.494 0.547 0.496 0.494 0.485 0.474 0.462

MDS1 0.146 0.157 0.050 0.095 0.133 0.095 • 0.733 0.942 0.714 0.605 0.722 0.403 0.526 0.942 0.544
MDS2 0.134 0.147 0.063 0.117 0.089 0.061 0.272 • 0.719 0.594 0.562 0.636 0.454 0.519 0.705 0.534

PCA 0.143 0.183 0.079 0.141 0.107 0.093 0.103 0.295 • 0.665 0.569 0.741 0.403 0.490 0.985 0.522
R2E 0.129 0.222 0.073 0.110 0.157 0.069 0.099 0.117 0.119 • 0.717 0.575 0.469 0.569 0.670 0.518
SA 0.130 0.169 0.093 0.159 0.162 0.083 0.094 0.065 0.077 0.163 • 0.529 0.540 0.605 0.565 0.540

SPIN1 0.110 0.165 0.075 0.157 0.094 0.123 0.225 0.239 0.207 0.143 0.083 • 0.509 0.508 0.738 0.465
SPIN2 0.104 0.055 0.143 0.108 0.085 0.063 0.033 0.073 0.044 0.107 0.120 0.109 • 0.515 0.402 0.483

SS1 0.129 0.191 0.111 0.207 0.171 0.055 0.175 0.126 0.137 0.240 0.219 0.146 0.130 • 0.482 0.537
SS2 0.141 0.187 0.084 0.141 0.107 0.091 0.110 0.288 0.022 0.116 0.075 0.204 0.048 0.140 • 0.507

VAT 0.094 0.097 0.138 0.094 0.076 0.052 0.051 0.035 0.045 0.116 0.104 0.094 0.051 0.104 0.053 •
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(d) SPIN2
Fig. E.2. Dissimilarity matrices of the CT4 dataset, ordered using the
output from four different algorithms.

a smaller block in either corner and a lot of fragmentation
in the remaining regions. Although the maps of HP and SS1
also identify two main blocks, they vary considerably (�P
= 0.587) in the overall order of the blocks and the object
distributions within them.

E.2 Consensus Seriation Experiments
In this section, we use some datasets from Section D.1,
to compare the consensus seriation results quantitatively
and qualitatively. The five subsets used for the analysis
are T1 = {HC, MDS1, R2E}, T2 = {MDS2, OLO, SS1}, T3

= {HC, LS, OLO, R2E, SS2}, T4 = {CO, HC, MDS2, OLO,
PCA}, and T5 = {LS, MDS1, MDS2, OLO, R2E, SPIN1, SS1}.
The individual members of each subset are mostly chosen
randomly, but more dissimilar pairs and smaller overlap
is preferred for the shorter subsets. For example, the most
similar pair in T1 and T2 is the {MDS1, R2E} with average
�P = 0.714, while the remaining pairs have �P  0.632.
Larger subsets are allowed to have more similar members,
but not over 0.8.
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Fig. E.3. Dissimilarity matrices of the CT3 dataset, ordered using the
output from four different algorithms.

Fig.E.5 displays the ARGAR errors for each subset,
calculated for the proposed method, the existing consen-
sus methods Hamming, Spearman and Kendall, and the
average of the individual algorithms in each subset. Each
of these five subsets is also applied to the four different
datasets CT3, CT4, R5 and R12, chosen to cover a wide
base of the data. It can be seen, that in over fifteen out of
the total of twenty experiments, the proposed consensus
method performs better than the average of the individual
components. Also, it always outperforms Hamming, and
the Spearman and Kendall methods in all but three cases.

In Fig.E.6, the maps of the three individual algorithms in
T1 = {HC, MDS1, R2E} applied to dataset CT4 are shown,
together with the map of the proposed consensus method.
The map of HC seems to identify blocks with apparent
local structure within each block. Both MDS1 and R2E also
have four visible blocks, but within each block more of the
global structure is captured. The consensus map shows to
be different from the contributing three maps. The blocks
are not as fragmented as in HC, but also not as smoothly
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Fig. E.4. Dissimilarity matrices of the R5 dataset, ordered using the
output from four different algorithms.
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Fig. E.5. ARGAR errors for consensus seriation results obtained with the
proposed, Hamming, Spearman and Kendall measures showing also
the average of the original algorithms comprising each Ti.

varying as some regions of the MDS1 and R2E maps.
Fig.E.7 is another such example and displays the maps

of the individual algorithms in T2 = {MDS2, OLO, SS1} and
the proposed method applied to dataset CT3. The map of
MDS2 shows a lot of fragmentation of the three main topics.
OLO and SS1 capture the main blocks, with OLO showing
more local structure within blocks than SS1. The consensus
map is more similar to that of SS1, but it exhibits more local
within-block structure and less sharp transition between the
top two blocks of SS1.

A third example is given in Fig.E.8 that contains the
maps for the T3 member algorithms and their consensus, for
the R2 dataset. All methods seem to identify one of the two
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Fig. E.6. Seriated maps for the individual algorithms of subset T1 as well
as the proposed consensus method, for the dataset CT4.
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Fig. E.7. Seriated maps for the individual algorithms of subset T2 as well
as the proposed consensus method, for the dataset CT3.

document topics with partial weaker concentrations further
away. The map of the combined sequence shows to have
the main block defined sharper than LS and R2E, without
the very strong local structure within the block in HC, OLO
and SS2. Overall, it appears to be different from all five
contributing methods.

Finally, Fig.E.9 plots the full range of RGAR errors
against the window sizes, for the original MDS2, OLO and
SS1 algorithms in T2, the consensus methods Hamming,
Spearman and Kendall and also the proposed one, applied
to the CT3 dataset. It can be seen, that OLO starts off with
a very low RGAR error of 0.28 and rapidly increases to
0.4 at � = 27. No other algorithm or consensus method
outperforms OLO for small windows due to its local struc-



8

HC

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(a) HC

LS

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(b) LS

OLO

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(c) OLO

R2E

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(d) R2E

SS2

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(e) SS2

Consensus

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

(f) Consensus

Fig. E.8. Seriated maps for the individual algorithms of subset T3 as well
as the proposed consensus method, for the dataset R2.

ture concentration through its leaf ordering. SS1 seems
to work better on global structure, since it outperforms
all algorithms and gradually reaches the smallest possible
error. MDS2 works better in the early to middle structure
region, while subsequently fluctuates. The proposed consen-
sus starts off with a high RGAR error of 0.53, and thereafter
follows a gradual decrease to a minimum of 0.18. Although
in this dataset, it does not outperform the contributing SS1,
it shows that on average it keeps a balance between SS1
and the other two contributors MDS2 and OLO, and it does
not get affected by the high errors of MDS2. For the initial
ranges, however, it shows to be worse than all three contrib-
utors, which can be owed to being unable to reconcile the
ordering information at local scales from the contributing
sequences. This could be related to the strong class separa-
bility of the documents in these datasets to different topics,
which gives rise to the strong blocky structures visible in
the maps. Fig.E.9 also shows that Hamming, Spearman and
Kendall have the highest error for the majority of window
ranges, apart from MDS2 for the second half of the window
range.
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