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Abstract
With renewable energy becoming more common, en-
ergy prices fluctuate more depending on environmental
factors such as the weather. Consuming energy without
taking volatile prices into consideration can not only be-
come expensive, but may also increase the peak load,
which requires energy providers to generate additional
energy using less environment-friendly methods. In the
Netherlands, pumping stations that maintain the wa-
ter levels of polder canals are large energy consumers,
but the controller software currently used in the indus-
try does not take real-time energy availability into ac-
count. We investigate if existing AI planning techniques
have the potential to improve upon the current solutions.
In particular, we propose a light weight but realistic
simulator and investigate if an online planning method
(UCT) can utilise this simulator to improve the cost-
efficiency of pumping station control policies. An em-
pirical comparison with the current control algorithms
indicates that substantial cost, and thus peak load, re-
duction can be attained.

Introduction
The Netherlands contains many areas that lie below sea
level. To prevent these areas, called polders, from flooding,
they are surrounded by dikes and allow their water levels to
be controlled. This is done through mechanical devices such
as windmills or, nowadays usually, pumping stations. When
rain falls and the water levels in the polders rise too high, the
water is pumped out into canals that act as a drainage system.
The operation of the pumps in these systems falls under the
responsibility of water boards and has evolved from manual
control to the use of automatic controllers.

The design of pumping station controllers can be com-
plex due to the need to reason about probabilities of rainfall
and energy prices, and the way that the actions of different
pumping stations will interact. While current state-of-the-
art controllers of our industrial partner, Nelen & Schuur-
mans (N&S), do reason about projected amounts of rain,
they do not explicitly consider the interaction of actions
taken at different pumping stations, nor do they reason about
energy prices and their uncertainty. This latter point is ex-
pected to be particularly problematic for the affordability
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of maintaining desired water levels in the future; operation
of pumping stations is energy intensive and, with the ad-
vent of more renewable energy sources such as wind and
solar, the amount of available energy and thus its price is ex-
pected to vary more [Würzburg, Labandeira, and Linares,
2013]. As with other applications that rely greatly upon
energy availability [de Nijs, Spaan, and de Weerdt, 2015;
Rogers, Ramchurn, and Jennings, 2012], controlling pump-
ing stations without taking the availability into account will
become very expensive and challenging. On the other hand,
this yields an opportunity: optimising when to pump can
save costs. Moreover, better scheduling may lead to reduced
peak load and thus a positive effect on the entire energy net-
work by reducing the amount of additional energy required
to be generated [Ketter, Peters, and Collins, 2013].

While there has been considerable research into the con-
ceptually related topic of controllers for irrigation networks
[Cantoni et al., 2007], these networks rely on gravity rather
than pumps, meaning that the energy efficiency question is
much less pressing in this domain. In this paper, we present
an initial investigation into whether AI planning techniques
can be used to improve coordination and energy use in
pumping station control. In particular, we present a detailed
yet lightweight simulation of an existing polder system in
The Netherlands, and discuss how a state-of-the-art AI plan-
ning technique, UCT [Kocsis and Szepesvári, 2006], can be
applied to it. We validate the proposed simulation model by
comparing it with more detailed industrial models, discuss
domain-specific modifications of UCT, and report on an em-
pirical evaluation that demonstrates that the resulting tech-
nique has the potential to significantly reduce costs when
compared to the solutions currently used in practice.

The Problem Domain
The pumping station control problem is a sequential deci-
sion problem under uncertainty. The main difficulty is the
requirement to coordinate between multiple pumping sta-
tions, while taking into account the uncertainty of how cir-
cumstances (such as rain and energy prices) will develop.
In this paper, we focus on the polder system called Vereen-
igde Raaksmaats- en Niedorperkoggeboezem (VRNK) (Fig-
ure 1), which is located in The Netherlands and administered
by the water board Hoogheemraadschap Hollands Noord-
erkwartier (HHNK). HHNK and N&S have identified this
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Figure 1: Illustrations of the VRNK polder system: on the
left an overview with main (controllable) polders indicated
by darkened areas and on the right the modelled VRNK pol-
der system with lines as canal parts, circles as controllable
pumping stations, triangles as uncontrollable pumping sta-
tions and a square as end drain.

system as suitable for experimentation in the form of testing
new controllers and having a large potential for energy cost
savings [Nelen & Schuurmans, 2013].

The VRNK polder system has a water surface of 163 ha
and discharges in the north. It contains 20 polders with a
typical surface between 300 ha and 700 ha. We consider the
pumping stations of seven polders to be controllable by our
method, which have been selected for real-world pilots as
they have the largest pumping capacity and thus the highest
expected cost reduction.

Currently, the inlet to and discharge from the VRNK
canals is fully automated using the controller software Con-
trol NEXT (CN) [Deltares, 2015a]. CN is based on expert-
knowledge and the results of a repeatedly running hydro-
logical simulation model, and has proven itself in practice
through its utilisation by various companies. CN bases its
pumping actions on the current water levels and the expected
amount of excess water in the future. This gives a good indi-
cation of how much pumping capacity is needed and over
what time span. However, CN does not reason about en-
ergy prices or interactions between pumping stations, which
offers great potential for improvement. Pseudocode for CN
can be found in this paper’s thesis report [Kanters, 2015].

To produce the energy required by the pumping stations,
water boards rely on purchasing energy through one of the
available markets. Like many European electricity markets,
the Dutch electricity market is held in three eponymous
stages: the Day-Ahead Auction Ea, the Intraday market Er

and the imbalance marketEi [Triple, 2015]. The Day-Ahead
Auction is held one day before delivery. The Intraday mar-
ket allows purchases at hourly intervals as well as freely
definable block orders up to 5 minutes prior to delivery.
While these two markets are two-sided and settle demand
and supply between different electricity traders, the imbal-
ance market typically employs a one-sided auction where
up- or downward regulation power (or reserve capacity) is
offered to the transmission system operator as single buyer.

All of these markets are characterised by stochastic price
developments, with decreasing transaction volume v, in-
creasing average prices µ and increasing price volatility σ,
such that vEa

> vEr
> vEi

, µEa
≤ µEr

≤ µEi
and

σEa
< σEr

< σEi
. We have selected the imbalance market

as a challenging test environment. As it is notoriously diffi-

cult to predict, we expect results to generalise to other mar-
ket price signals, given that they may be more predictable
and thus less challenging to plan for. The experiments in this
article thus use historical data of imbalance prices [TenneT,
2015].

Online AI planning
Since current pumping station controllers do not take en-
ergy prices into account, the expected cost for maintain-
ing water levels within desired limits is going to increase
if energy is obtained from volatile short term markets with
higher average prices. In this paper we investigate the ability
of online planning methods, and particularly Monte Carlo
Tree Search (MCTS) [Browne et al., 2012], to exploit the
flexibility in when to pump to benefit from the changing
prices. Like model predictive control (MPC) [Qin and Badg-
well, 2003], such methods employ models of the environ-
ment to determine which action to take while interacting
with the environment. However, in contrast to typical MPC
approaches, MCTS methods reason about different possible
execution paths that might occur (due to stochastic noise,
unpredictable events, etc.), as well as the optimal actions to
take if those paths occur.

Conceptually, these methods work by treating their envi-
ronment as a Markov decision process (MDP) [Puterman,
1994]; at every time step, or decision epoch, the environ-
ment is in a particular state s, which is affected by the ac-
tion a of the controller, or agent, leading to a next state s′.
A full MDP model specifies both the probabilities of tran-
sitions P (s′|s, a), as well as the corresponding immediate
rewards R(s, a, s′) that specify the task. The agent’s goal is
(typically) to maximise the expected sum of rewards.

MCTS methods, however, are sample-based planning
methods that do not need access to a full MDP model. In-
stead they only need a generative model, or simulator, G
from which transitions and rewards can be sampled s′, r ∼
G(s, a). They work by sampling the effects of actions and
creating a tree structure based on the results. While build-
ing the tree, MCTS uses a rollout policy to select actions
in states that are not part of the tree yet, to swiftly sample
the quality of the state. This quality is then used to update
the tree, allowing it to estimate the quality of each state in it.
MCTS navigates through its existing tree structure by select-
ing actions that it believes are worth sampling. This selection
greatly affects the performance of MCTS. One of the most
successful ways of doing this is through Upper Confidence
Bounds for Trees (UCT) [Kocsis and Szepesvári, 2006]. Us-
ing the algorithm UCB1 [Auer, Cesa-Bianchi, and Fischer,
2002], actions are selected based on their optimistic poten-
tial value.

When MCTS is applied in the real world, it uses the sim-
ulator for planning. In this paper, however, we evaluate the
proposed method in simulation. This gives rise to two differ-
ent simulators: the real simulatorMs as stand-in for the real
world, and the planning simulatorMp as generative model
given to the agent for planning purposes. In many cases,
these two simulators can be identical, but we will need to
treat them differently in some aspects as discussed later.



Polder System Simulation
This section proposes a generative model for the pumping
station domain. As sample-based techniques often require a
large number of samples that indicate effects of actions, it is
important that the simulation runs fast enough to facilitate
this. Water level simulators currently used in practice, such
as SOBEK [Deltares, 2015b], focus on accuracy more than
speed and thus are not fit for our purposes. In this section
we propose our own simulator which has a more suitable
trade-off between speed and accuracy.

The model we use for the polder system represents its
canals as a graph with canal parts as nodes. Each canal part
can have a polder or an end drain connected to it, where pol-
ders can pump water into the canal part and end drains pump
water out of the canal part. Though our controller only se-
lects actions for a number of pumping stations, as mentioned
earlier, all pumping stations are modelled in our simulation,
and by default controlled through CN. Canal parts and pol-
ders both have a number of fixed properties:
• a target (or goal) water level margin Lg in mNAP1;
• a bottom water level margin Lb in mNAP;
• a top water level margin Lt in mNAP;
• a maximum water level Lm in mNAP (exceeding this

causes flooding);
• a surface area A in m2.

Polders and end drains have one additional fixed property:
• a pumping station capacity Sc in m3/s.

State Definition Apart from fixed properties, canal parts
and polders also have variable properties, which are defined
in the state. The state also contains variable properties for
the energy prices and weather. We formally define the state
as s = 〈Lc, HCe

(t), HRf
(t)〉 where Lc is a vector contain-

ing the current water level for each canal part and polder in
mNAP, HCe

is the history of energy prices Ce in euros up
to decision epoch t and HRf

is the history of rainfall Rf

in m up to decision epoch t. The histories are used by our
simulator for transitioning states. To prevent histories from
indefinitely increasing in size over time in practice, limiting
them so that only the ten most recent observations (i.e., 2.5
hours) are stored is sufficient for planning.

Action Definition The controller selects an action a =
〈a1, ..., aNa〉 where an is the selected action value for con-
trollable pumping station n andNa is the amount of control-
lable pumping stations. The value of an linearly scales the
pumping station’s capacity to determine the pumping capac-
ity used for the transition. The possible values for an may
differ per controller. For our proposed controller, we found
the available action values per pumping station an ∈ {0, 1}
to be suitable. This discrete action space gives us a size of
2Na . If in practice it proves useful to have additional options,
this action space can easily be extended to include interme-
diate values. Control NEXT does requires additional actions,
and as such has access to action values an ∈ [0, 1].

1mNAP stands for ’meter boven Normaal Amsterdams Peil’, or
’metres above Amsterdam Ordnance Datum’, and is used as a unit
for water level height.

Effects of Actions Pumping stations with an action value
an > 0 will raise or lower water levels. In case the pumping
station is connected to a polder, the polder water level lowers
and the water level in the connected canal part rises. In case
the pumping station is an end drain and therefore not con-
nected to a polder, the water level in the connected canal part
lowers. The water levels are adjusted by Dl = anScT/A
where Dl is the water level difference in m and T is the time
spent pumping in s (the decision epoch length).

Water Flow After water levels change due to pumping,
water from one canal part can flow to its neighbours. A stan-
dard way to model this is via the Gauckler–Manning for-
mula (GMF) [Manning et al., 1891] which estimates the ve-
locity of liquid in an open channel [Kanters, 2015].

As the pumping stations can process an action every 15
minutes, we use this as our decision epoch. Between each
decision epoch, we must calculate the new water levels.
However, 15 minutes is a too coarse granularity to apply
GMF in our model. To remedy this, each decision epoch
is subdivided into multiple GMF steps that each calculate
intermediate water levels. This allows water movement to
span multiple canal parts in one decision epoch. As addi-
tional GMF steps do come at the cost of additional com-
putation, we aim for a good balance between realism and
performance. In our experiments, we found ten GMF steps
per decision epoch to be suitable.

Rainfall and Energy Price Transitions Apart from the
deterministic effects of water flow and pumping station ac-
tions, the state transition is influenced by rainfall and energy
price development. It is imaginable that there could be cor-
relations between these [Panagopoulos, Chalkiadakis, and
Jennings, 2015], which an analysis of 10 years of histori-
cal data confirms [Kanters, 2015]. We therefore propose a
method of simulation that preserves these correlations. How-
ever, we must make a discrimination between the real simu-
latorMs and the planning simulatorMp as defined earlier.

For the real simulator we propose to take a historical data
approach to simulation. In particular, we use synchronised
historical data in the form of time series. When the initial
state of the real simulator is generated, a random point in
this data is selected as the first rainfall level and energy price
(and this point is the same in both data sets). At each state
transition, the next point in the data is used to determine the
rainfall and energy price for the next state. While this lim-
its the simulation of rain and energy price to be the same
as those observed in our data set, the advantage is that it re-
spects their correlation. This could be important; ignoring
the correlation may lead to our estimations being too posi-
tive since high prices and rain are likely correlated.

For the planning simulator it is not possible to use such an
approach. As real transitions bear uncertainty, it is important
that the controller’s planning reflects this. Here, we take dif-
ferent approaches for rainfall and energy price simulation.

For the model of rainfall, we propose the utilisation of
external tools to circumvent this prediction problem. When
a UCT-based controller would be deployed in practice, it
could have access to commercially available weather fore-
casts that predict the amount of rain that will fall in the area
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Figure 2: The mean and standard deviation of all
water level differences betweenMs andMb with
Gc = 0.015 (left) and Gc = 0.03 (right).
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Figure 3: Example water levels from different canal parts in simulationMs

(red line) andMb (blue line).

of interest in the coming hours. We expect that these fore-
casts are much more accurate than any learned model of
rainfall transitions up to the point that we can argue that the
agent knows what the future rainfall will be. Therefore, in
our planning simulator the sampled rain is (roughly) equal
to the prediction. In the current simulations, we use histor-
ical data from Meteobase [STOWA, 2015] for this, but for
real world usage, forecast services like Buienradar [Buien-
radar, 2015] may be used. Of course, forecasts are not flaw-
less. Taking this into into account, we add Gaussian noise
with a standard deviation of a third of the prediction value.

For energy price data, however, no such prediction is
available. Instead, we use a technique for inferring beliefs
over scenarios [Walraven and Spaan, 2014]. This technique
attempts to find the best fits of the last few observed en-
ergy prices in the available historical data. The scenarios
in the historical data that match the observed data best are
then used for the energy price transition, where a scenario
is randomly selected based on their probability. To prevent
this technique from being reduced to a look-up of an exact
match, we supply it with a different data set than the one that
the actual simulation uses. We build upon this technique by
utilising the correlation between rainfall and energy prices
to improve its performance in our problem; we select sce-
narios not only based on the energy price fit, but on the best
fit of both the energy costs and rainfall.

Evaluation of Simulation Realism
Further into this paper, we report on experiments regarding
the performance of our proposed techniques. In order to as-
sess the implications for real-world deployment, it is impor-
tant to evaluate the accuracy of the real simulator. This eval-
uation focuses on the water transitions only. Though we also
simulate energy price transitions, in the real simulator only
historical data is used, which is realistic by definition. En-
ergy price transitions in the planning simulator affect UCT
performance, but not the representation of our results for
real-world deployment. Its accuracy is described in this pa-
per’s thesis report [Kanters, 2015].

Sufficient historical data for water flow is not available,
and thus in order to evaluate the realism of our real simulator
Ms, we use one of the state-of-the-art simulators as baseline
Mb: SOBEK by Deltares [Deltares, 2015b]. SOBEK is a
physics-based modelling suite used by water authorities and
water management consultancies for water flow simulation,
and is sufficiently accurate to be considered ground truth.
As it does not handle pumping station control, the user must
specify when pumping stations activate and the amount of
rain that will fall. Using the VRNK model that is used in

practice by HHNK, we can compare the water behaviour of
Ms andMb. In our experiment, we run a typical simulation
in SOBEK where the water levels start at their target and
are raised by heavy rain. Once the water levels reach a cer-
tain point, pumping stations will activate and water will flow
through the canals. Using the same rainfall and pumping sta-
tion actions, we mimic this simulation in our own simulator.

We determine the accuracy at each decision epoch t by us-
ing the difference of water levelsMe(t) =Ms(t)−Mb(t)
as predicted by simulatorsMs andMb. Figure 2 shows the
mean and standard deviation of the water level difference of
the different canal parts. The first 16 hours do not involve
pumping and only contain a slight rain build-up. After this
first period, pumps activate, which allows differences in wa-
ter levels between the simulations to become apparent.

Typical Gauckler-Manning coefficient Gc references sug-
gest Gc ≈ 0.03 for natural canals [Mott and Wagenaar,
2009; Te Chow, 1959; Edwards, 2000]. However, we find
that Gc = 0.015, which is typically used for smoother man-
made canals, gives us a much more realistic water flow.
Comparing the left and right plots of Figure 2, we see that
the means of both coefficients are similar, but Gc = 0.03
gives a much higher standard deviation than Gc = 0.015,
indicating that there is a lot more simulation error there. As
such, we set Gc = 0.015 in our simulation and experiments.

Examples of water levels in individual canal parts are seen
in Figure 3. The left plot shows water levels close to the end
drain, which activates three times causing the water levels to
drop sharply and rise again. The middle plot relates to wa-
ter levels south in the VRNK polder system where pumping
stations of polders activate twice. These first two plots are
examples of areas whereMs has very similar results toMb.
Figure 2 shows that there are also parts where higher error
in prediction occurs. One of these canal parts is seen in the
right plot. This shows the water levels of a branching canal
in the centre of the VRNK polder system and illustrates that
our model’s accuracy in this area can still be improved. Be-
fore using our simulation in a real world pilot, looking into
these model discrepancies together with N&S or HHNK can
likely reduce these water level differences.

Overall, our simulation Ms is sufficiently accurate and
generally keeps water levels close to those of Mb. The er-
ror seen in Figure 2, which ranges from 0.05 m below the
baseline to 0.1 m above it, could be considered a risk. We
can minimise this risk in practice by simply adjusting the
targets; placing the top target 0.05 m lower and the bottom
target 0.1 m higher will cause the controller to select safer
actions when water levels are near their target boundaries,
preventing damages from simulation error.



Controlling Pumping Stations through UCT
Having specified our simulator, we look into the controller
itself. In this section we describe how UCT can be applied
to the pumping station domain. We use a slightly modified
version of UCT that fits our model and consider the effects
of different parameters and rollout policies.

Action Quality and Rewards
The immediate quality of an action is based on the cost of
the pumping stations that were active and the resulting state.
The penalties for pumping costs, water levels and overflow
combined determine the total reward r = −

∑
n Pc(n) −∑

l Pl(l) − Po where r is the reward in euros, Pc(n) is the
pumping cost in euros for pumping station n, Pl(l) is the
water level penalty in euros for canal part or polder l and Po

is the overflow penalty in euros.

Penalty for Pumping Using data from HHNK, we found
a correlation between energy consumption relative to the
polder’s surface and the water level difference between the
polder’s target Lg and the canal’s target. This is shown
in Figure 4 where each point represents a pumping sta-
tion. The line represents the fit that we use for the simula-
tion. This gives us a cost per pumping station of Pc(n) =
CcDl(n)A(n)Ce where Cc is a constant with value 8.1 ×
10−6, Dl(n) is the water level difference in m and Ce the
energy price per MWh in euros.

Penalty for Water Levels Water levels deviating from the
target levels incur costs. Each polder and canal part have a
bottom and top target water level. When the current water
level is outside of this target, a penalty is given according to

Pl(l) =


|Lt(l)− Lc(l)|2A(l)Ct, if Lc(l) > Lt(l)

|Lb(l)− Lc(l)|2A(l)Cb, if Lc(l) < Lb(l)

0, otherwise

where Ct is the cost per squared target level excess per m2

surface in euros and Cb is the cost per squared target level
deficit per m2 surface in euros.

The amount of metres off target is squared in order to pe-
nalise larger deviation. We set Ct = Cb = 1 in consultation
with N&S. This is a rough estimation of the true cost based
on real world scenarios, but fulfils its purpose for our exper-
iments. More in-depth research into these costs can be done
to improve real world performance.

Penalty for Overflow Finally, there is an extra cost in case
of flooding, which addsPo = OCo whereO is the amount of
overflowed water in m3 and Co the cost per m3 overflowed
water in euros. As advised by N&S, the damages reported
during a flooding of Texel, a Dutch isle, are roughly repre-
sentative for those in the VRNK polder system. We therefore
set Co = 3 based on data from that event [Nationaal Water-
traineeship, 2015].

Domain-Specific UCT Extensions
In order to effectively apply UCT to the pumping station do-
main, we make a number of domain-specific design choices.

First, we introduce binning of state variables only within
the UCT search tree. I.e., for the purpose of creating nodes in
the search tree, we group the water levels and energy prices
for the UCT tree structure in bins of 1 cm and e 10 respec-
tively based on our experiments [Kanters, 2015].

Second, we consider a number of alternative rollout poli-
cies. Without domain knowledge, it is standard practice to
select a rollout policy which selects random actions. The
downside of this is that it causes UCT value actions highly
when they lead to a good outcome if a random policy takes
over later on. I.e., it does not necessarily optimise towards
states that are good when more sensible policies take over.

Using domain knowledge, it may be possible to construct
better rollout policies. One of our considered rollout poli-
cies is CN. Inspired by CN, which looks at future states that
follow after doing nothing, we also consider a do nothing
rollout policy which keeps all pumping stations inactive.

Finally, we consider a rollout policy that learns from
UCT’s sampling to determine if actions look promising in
the future: Predicate-Average Sampling Technique (PAST)
[Finnsson and Björnsson, 2010]. PAST selects actions based
on the average rewards they received since the start of
the program. The average rewards are stored per predicate,
which is based on certain features of the state that the ac-
tion was taken in. The action distribution used in PAST is
based on the predicate with the best value. We find this too
optimistic in our situation however. E.g., a predicate for low
energy prices might be selected rather than a predicate in-
dicating imminent flooding. Instead of using different pred-
icates for individual state features, we therefore have predi-
cates defined by all state features.

Empirical Evaluation
Here, we empirically investigate if our proposed application
of UCT can improve pumping station control over Control
NEXT, which currently controls the VRNK polder system,
and an alternative method commonly used in practice.

Experimental Setup One requirement of a pumping sta-
tion controller is to be able to perform well during a long
time span. To accommodate this, we let the experiment last
two (simulated) weeks such that the horizon h = 1344 deci-
sion epochs. To ensure that the controller’s task is challeng-
ing, we make the experiments difficult in two ways.

First, the initial state is generated such that water levels
are selected uniformly randomly from Lc ∈ [Lt − 0.2, Lt],
causing them to be near their top target. Second, we select
a point in the historical data where rain is just starting. This
results in a scenario where the water levels are high (some-
times dangerously so) and still rising. We generate 8 such
initial states and report the mean average results over those.

UCT has a number of parameters that can be set. Based
on experiments [Kanters, 2015], we found 65, 000 planning
simulations (which takes about about 5 seconds on a typi-
cal work station) and a search depth of 32 decision epochs
(which equates to 8 hours) to be good settings.

Rollout Policies UCT’s rollout policy uses greatly affects
its performance. As such, we first determine which policy
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yields the best results in our problem. We compare all earlier
described rollout policies: random actions, Control NEXT,
doing nothing and PAST. As seen in Figure 5, a random roll-
out policy quickly leads to very bad results. The other roll-
out policies are more feasible, with PAST and the do noth-
ing rollout policy performing much better than CN as roll-
out policy. Though close, do nothing achieved slightly lower
costs than PAST. As is it also computationally lighter, we use
the do nothing rollout policy during other experiments.

Baseline Comparison Finally, we compare UCT’s perfor-
mance to current industry baselines: Control NEXT and a
two-threshold controller (TTH). TTH is a simple on-off con-
troller with hysteresis [Aström and Murray, 2010], which
despite its simplicity is frequently used in practice [Taylor et
al., 2000; Driankov, Hellendoorn, and Reinfrank, 2013]. In
our implementation, we enable pumps when the water level
reaches a certain threshold, and disable them again when the
water level has lowered to another threshold [Kanters, 2015].

As indicated in Figure 6, TTH incurs much higher costs
than CN, which in turn is significantly outperformed by
UCT. Pumping while energy is expensive can have great ef-
fects, as is shown by the large jumps in costs at certain points
in the experiments. Comparing UCT’s behaviour to that CN
and TTH, the latter tend to pump at sudden moments while
UCT spreads this pumping time more broadly. This allows
UCT to select the cheapest moments to pump in advance,
preventing it from having to pump when energy is costly.
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Figure 6: The mean cost and standard error of UCT, Control
NEXT and TTH over time.
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Figure 7: Frequency f(x) with which water levels through-
out the experiments exceeded their top target Lt by x m.

The costs mainly consist of pumping costs, as all meth-
ods are able to keep the water levels either within margin
or close to it, even under the harsh experiment conditions.
This is shown in Figure 7, which illustrates how frequent
water levels throughout the experiments rose above certain
levels relative to their top target Lt. In particular, it shows
f(x) = 1

Nl×h
∑Nl

l=1

∑h−1
t=0 I{Lc(l, t) > Lt(l) + x}, where

Nl is the number of canal parts and polders, and I{·} is the
indicator function with value 1 if {·} is true and 0 otherwise.
We also see a behavioural difference between UCT and the
baselines; UCT keeps more water levels near their target,
which shows that it utilises the given bounds to save costs.

Conclusions and Future Work
The control of pumping stations is a critical task that re-
quires large amounts of power. With the expected increase of
price volatility due to an increased mix of renewable energy
sources, current controllers will become costly to operate.
This paper investigated the potential of AI planning tech-
niques to improve cost effectiveness of pumping station con-
trol by allowing the controller to reason about uncertainty in
energy prices, thereby also contributing to lower peak loads
for the energy network. The paper detailed how an online
planning algorithm, UCT, can be applied to this domain,
which involves the formulation of a generative model, as
well as a number of domain-specific extensions of UCT. We
performed an empirical evaluation using the VRNK polder
system in the Netherlands. The proposed generative model
was compared to the industry standard and is found to be
sufficiently accurate for purposes of online planning. More-
over, our proposed application of UCT shows a marked im-
provement over the current industry standard algorithms.

While our evaluation suggests that large savings could be
possible, it is only performed in a simulated environment. In
future research we intend to run a field evaluation where our
controller is used for the actual management of the VRNK
polder system. When applying the proposed UCT solution
to a larger number of pumping stations in a polder system,
the action space may become too large to handle properly.
In this case, decentralising the problem to a multiagent set-
ting allows it to be more scalable. An approach such as FV-
POMCP [Amato and Oliehoek, 2015] promises favourable
results and can be investigated further [Kanters, 2015].
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