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ABSTRACT
Selecting a seller in e-markets is a tedious task that we might
want to delegate to an agent. Many approaches to con-
structing such agents have been proposed, building upon
different foundations (decision theory, trust modeling) and
making use of different information (direct experience with
sellers, reputation of sellers, trustworthiness of other buyers
called advisors, etc.). In this paper, we propose the SALE
POMDP, a new approach based on the decision-theoretic
framework of POMDPs. It enables optimal trade-offs of in-
formation gaining and exploiting actions, with the ultimate
goal of maximizing buyer satisfaction. A unique feature of
the model is that it allows querying advisors about the trust-
worthiness of other advisors. We represent the model as
a factored POMDP, thereby enabling the use of computa-
tionally more efficient solution methods. Evaluation on the
ART testbed demonstrates that SALE POMDP balances
the cost of obtaining and benefit of more information more
effectively, leading to more earnings, than traditional trust
models. Experiments also show that it is more robust to de-
ceptive advisors than a previous POMDP based approach,
and that the factored formulation allows the solution of rea-
sonably large instances of seller selection problems.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence - Intelligent Agents, Multiagent Systems

General Terms
Design; Performance

Keywords
Seller Selection; E-Marketplace; POMDPs

1. INTRODUCTION
In multi-agent based e-marketplaces, self-interested selling

agents can act maliciously by not delivering products with
the same quality as promised. It is thus important for buying
agents to analyze their quality and determine which sellers
to do business with. Buyers maintain beliefs over the quality
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levels of sellers, based on their previous transactions, which
may help them choose good sellers. However, realistically,
in most e-marketplaces, buyers often encounter sellers with
which they have no previous experience. In such cases, they
can query other buyers (called advisors) about the sellers.

A number of trust models (e.g., BRS [1], TRAVOS [2],
Personalized [3], BLADE [4], etc.) have been proposed by
researchers in the multi-agent community to help buyers as-
sess seller quality and choose transaction partners. These
approaches work by combining the buyer’s own belief and
those of the advisors, to estimate the true quality of the
seller [5]. However, the above approaches mainly focus on
accurately estimating the quality of sellers rather than opti-
mally choosing a seller to perform transaction; they simply
query all advisors about the sellers’ quality and fail to rea-
son when it is necessary to query advisors (about the sellers’
quality), though they may determine whom to query by an-
alyzing the quality levels (trustworthiness) of advisors. In
settings where there are costs associated with queries, such
approaches may lead to diminished utility, since the cost
of querying advisors may be greater than the value derived
from a successful transaction with the seller.

To help overcome this problem, Regan et al. [6] propose
the Advisor POMDP, which considers the seller selection
problem as a Partially Observable Markov Decision Process
(POMDP). POMDPs provide a natural model for sequential
decision making under uncertainty [7]. The main advantage
that this approach brings to the seller selection problem is
that, rather than trying to achieve the most accurate esti-
mate of sellers, it tries to select good sellers optimally with
respect to its belief. However, the Advisor POMDP does not
reason about advisors’ quality. Also, in Advisor POMDP,
each advisor, when queried, provides opinions about all sell-
ers, which may result in a lot of unnecessary information;
rather than estimating the quality of all sellers, the only
goal should be to select the seller with high quality.

This paper presents the Seller & Advisor seLEction (SALE)
POMDP, a novel POMDP based framework to deal with the
seller selection problem and overcome the above problems
by reasoning about advisor trustworthiness and selectively
querying for information. Like the Advisor POMDP, the
agent tasked with selecting the seller is modeled using a
POMDP, which allows it to trade-off the expected benefit
and cost of more information gaining action, thus aiming to
optimize the total utility for its owner (buyer). However, in
this paper we make a number of additional contributions:
1) Because the SALE POMDP models the behavior (e.g.,
quality and/or trustworthiness) of advisors as part of the
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state, it can deal with deceptive or poor quality advisors,
provided that the agent has accurate beliefs. 2) In order to
provide accurate beliefs about advisors without having to en-
gage in many costly transactions, the SALE POMDP agent
can ask advisors about other advisors. 3) Because these
so-called ‘advisor queries’ are modeled as normal POMDP
actions, the optimal policy will balance the expected bene-
fit of obtaining more information about the advisors against
the cost of obtaining this information. This results in an
agent that will selectively query about advisors’ quality just
enough to identify a trustworthy advisor to ask about the
various sellers. In this way, trust propagation becomes an
integral part of optimal sequential decision making for the
seller selection problem. 4) We show how SALE POMDP
can use both reputation information from advisors as well
as direct experience with sellers. This is crucial in settings
where there is a large number of deceptive advisors: in such
cases, the real experience allows us to identify such decep-
tive behavior. 5) While optimally solving a POMDP is a
computationally hard problem, we show that by modeling
the SALE POMDP as a factored POMDP and using solvers
that exploit this structure [8], we can overcome these issues
to a great extent. 6) We present an extensive empirical eval-
uation on the ART testbed [9] to demonstrate the efficacy of
the SALE POMDP. In particular, our experiments demon-
strate that in single transaction settings, SALE POMDP
outperforms other trust models in terms of revenue, and the
method is resilient to strategic attacks. In sequential com-
petitive settings, SALE POMDP significantly outperforms
other trust models. In addition, an analysis shows that the
performance of the SALE POMDP is quite robust to the
specification of its parameters, and that the factored formu-
lation allows it to scale to reasonably large seller selection
problems without loss in quality.

2. BACKGROUND
Formally, a Partially Observable Markov Decision Process

(POMDP) [7] is described by a tuple: 〈S,A, T,R,Ω, O〉,
with S, the set of states; A, the set of actions; T , the transi-
tion model; R, the reward function; Ω, a finite set of obser-
vations and O, the observation model. It is also common to
assume an initial state distribution b0. At each time step,
the environment has a state s ∈ S. The agent takes some
action a ∈ A, which causes a state transition from s to a
new state s′, using T , the transition model that specifies
probabilities Pr(s′|s, a). The agent also receives observa-
tions based on the observation model O, that specifies the
probabilities Pr(o|a, s′). For a transition, the agent receives
a reward R(s, a, s′). Additionally, the horizon, h, represents
the number of time steps, or stages, for which we want to
plan. We will assume that h is infinite in this paper.

When the POMDP agent interacts with the environment,
it maintains a belief b ∈ B, i.e., a probability distribution
over states via Bayes’ rule. That is, when b(s) specifies the
probability of s (for all s), we can derive b′ an updated belief
after taking some action a and receiving an observation o.
Assuming discrete sets of states and observations, this up-
date can be written as follows:

b′(s′) =
Pr(s′, o|b, a)

Pr(o|b, a)
=

Pr(o|a, s′)
Pr(o|b, a)

∑
s

Pr(s′|s, a)b(s) (1)

Here, Pr(o|b, a) is a normalization factor.

A POMDP policy π : B → A, maps a belief b ∈ B to
a prescribed action a ∈ A. A policy π is associated with a
value function Vπ(b) that specifies the expected total reward
of executing policy π starting from b:

Vπ(b) = E
[ h−1∑
t=0

γtR(s, a, s′) | π, b
]

(2)

The solution to a POMDP is an optimal policy that max-
imizes the expected total reward. Finding an optimal pol-
icy π∗ is considered to be intractable in general (PSPACE
complete [10]), however, in recent years substantial advances
have been made in approximate solutions (e.g., [11], [12], [13]).

3. THE SALE POMDP MODEL
In this section, we will introduce the SALE POMDP model,

showing how the selection problem is mapped to a POMDP.

3.1 Basic SALE POMDP
The main aim of the SALE POMDP model is to optimally

select a seller with sufficient quality to buy from. This stands
in contrast to methods that focus on accurately determin-
ing the quality of sellers. The SALE POMDP framework
assumes that both sellers and advisors have quality levels
and considers them as part of the state space. Briefly, the
model works by improving its beliefs over the quality levels
of sellers and advisors by querying advisors about the qual-
ity of sellers/other advisors in the system, until it is sure
that it has identified a seller with sufficient quality.

We will mainly focus on how the SALE POMDP models
a buying agent in a single transaction scenario, when the
buyer is in fact a newcomer to the market, which is the
case with most real world e-marketplaces. Discussions on
how the model can be extended to a multiple transaction
scenario is also presented in Sec. 3.4.

Given I advisors that can be queried about the quality
of J sellers, each SALE POMDP agent can be described in
terms of states, actions, observations and rewards as follows.

States. A state contains the quality levels1 of each seller,
advisor and the status of the transaction with the seller.
Let Q be the discrete set of seller quality levels and U be
the set of advisor quality levels. Then, a state is a tuple s =
〈~q, ~u, sat〉, where ~q ∈ QJ is a vector indicating the quality
of each seller, ~u ∈ UI a vector indicating the quality of each
advisor and sat is a variable that indicates the status of the
transaction (with values not started(ns), satisfactory(sf),
unsatisfactory(us), gave up(gu), finished(f)). We also
write qj for the j-th element of ~q and ui for the i-th element
of ~u. The end of the decision process (with initial value
sat = not started) is modeled using sets of terminal states
(satisfactory, unsatisfactory, gave up). Any transitions
from the terminal states will result in sat = finished.

Actions. The model knows the following types of ac-
tions: 1) seller queryij(SQij), ask advisor i about quality
of seller j; 2) advisor queryii′ (AQii′), ask advisor i about
quality of advisor i′; 3) buyj , buy from seller j; 3) do not buy
(DNB), decide not to buy from any seller in the market.

Transitions. We assume that when taking a query action,

1We assume discrete quality levels, in order to use standard
POMDP solvers. Extensions to continuous quality levels
lead to continuous POMDPs [14].
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Figure 1: DBN and CPT for the SALE POMDP transition and observation functions for each action type. Variables without
a CPT shown are ‘static’: they preserve the previous value with probability 1.0.

the state does not change:

∀i,j Pr(s′|s, SQij) = δss′ (3)

∀i,i′ Pr(s′|s,AQii′) = δss′ (4)

δss′ is the Kronecker delta, i.e., 1 if and only if s = s′.
When taking buyj and DNB actions, the state will always
transition to a terminal state, i.e., buyj actions may re-
sult in a successful (sat = satisfactory) or unsuccessful
(sat = unsatisfactory) transaction and DNB will result
in sat = gave up. The transition probabilities to termi-
nal states give the definition of quality levels. Generally,
chances of transition to satisfactory should be higher when
buying from ‘high quality’ sellers. Note, however, the frame-
work allows much richer interpretations of the quality lev-
els: essentially each level corresponds to a potential model
of sellers.

Rewards. There is small cost for the ask actionsR(s, SQij)
and R(s,AQii′). A reward is associated with a successful
transaction R(s, buyj , s

′ = 〈~q, ~u, sat = sf〉) = Rsat, other-
wise a penalty is levied R(s, buyj , s

′ = 〈~q, ~u, sat = us〉) =
Runsat. There is a penalty (Runsat) for taking the DNB ac-
tion, when in fact there is a seller of high quality, otherwise
there is a reward for this action (Rsat). Once the terminal
states are reached, no further rewards are given.

Observations. When a query action is performed, the
agent will receive an observation based on the set of dis-
criminated quality levels. After SQij action, the agent re-
ceives an observation o ∈ {good, bad}, corresponding to the
quality of seller j. After AQii′ action, it gets an observa-
tion o ∈ {trustworthy, untrustworthy}, corresponding to
the quality of advisor i′. On transition to a terminal state,
it receives the observation ended.

Observation Function. It specifies Pr(o|a, s′). As in the
Advisor POMDP, there is no a priori correct way to specify
the observation probabilities. Similar to the transition prob-
abilities for the buy action, the probabilities for the observa-
tion function define the meaning of different trust levels. In
general, the idea is that trustworthy advisors will give more
accurate and consistent answers than untrustworthy ones,
but again, much richer models of advisors are possible.

Initial State Distribution. It is dependent on the sub-
jective beliefs of the agent, when the need for purchasing
from sellers arises. For simplicity, one may start with a uni-
form belief over the quality levels, but a different initial be-
lief can also be obtained as a result of previous interactions.
This will be further discussed in Sec. 3.4.

3.2 Factored Representation
POMDPs with very large state spaces are impractical to

be solved by the classic solution algorithms. However, often,
such state spaces can be described using a set of state vari-
ables, and the effects of actions in terms of their effects on
these variables. Dynamic Bayesian Networks (DBNs) with
Conditional Probability Tables (CPTs) are often used to
represent these effects compactly. The resulting representa-
tions are referred to as factored representations, and solvers
such as symbolic Perseus [8] can exploit such factored na-
ture of POMDPs to resolve scalability issues that arise due
to large state spaces. The SALE POMDP can in fact be
represented as a factored POMDP, which thereby, allows it
to scale to larger seller selection problems.

To illustrate the factored nature of SALE POMDP, we
will consider a simple case of seller selection problem with
1 seller (Sel1) and 2 advisors (Adv1, Adv2) such that Q =
{H,L}, representing H(igh) and L(ow) seller quality lev-
els and U = {T,A,R}, representing advisor quality levels:
T (rustworthy), always providing true opinions; A(dversarial),
often untrustworthy providing complimentary opinions and
R(andom), being trustworthy or untrustworthy randomly.

Buy Action. Fig. 1(a) illustrates the transition probabil-
ities for the sat variable (CPT in red) and the observation
probabilities for the variable o. The probability of transfer-
ring to state s′, given that action buy1 was taken in state s,
can be factored into a product of smaller conditional distri-
butions with respect to its parent variables as in Eqn. 5.

Pr(s′|s, buy1) = Pr(u′1|u1, buy1)× Pr(u′2|u2, buy1)×
Pr(q′1|q1, buy1)× Pr(sat′|sat, q′1, buy1)

(5)

The transition probabilities are framed such that buying
from a high quality seller will lead to satisfactory with 80%
probability: Pr(sat′ = sf |〈sat = ns, q′1 = H〉, buy1) = 0.8.
Similarly, Pr(sat′ = us|〈sat = ns, q′1 = L〉, buy1) = 0.8, i.e.,
buying from a low quality seller leads to unsatisfactory
with 80% probability. Since the buy1 action always results
in a terminal state (satisfactory, unsatisfactory), the ob-
servation ended is received with probability 1.0. Also, any
further transitions from the terminal state will lead to sat′ =
finished: Pr(sat′ = f |〈sat = sf, q′1 = H〉, buy1) = 1.0.

For the DNB action, sat′ is not dependent on seller qual-
ity q′1 and leads to gave up with probability 1.0: Pr(sat′ =
gu|〈sat = ns〉, DNB) = 1.0. Since the terminal state gave up
is reached, the observation ended is received with probability
1.0 and any transitions hereon results in sat′ = finished.



Advisor Query. Fig. 1(b) shows the observation proba-
bilities for the variable o, on taking action AQ12 (query Adv1
about Adv2). Since query actions do not alter the state, all
CPTs for state factors are static. The figure clearly illus-
trates that the observation probability for this action only
depends on the trust levels of advisors: Pr(o′|u′1, u′2, AQ12).
It also shows the CPT containing the actual probabilities.
In this case, only two observations have non-zero probabil-
ity: 1) trustworthy (t), where Adv1 says Adv2 is trustwor-
thy; and 2) untrustworthy (u), where Adv1 says Adv2 is
untrustworthy. The observation probabilities encode that
asking a trustworthy (T) advisor gives more accurate obser-
vations than untrustworthy advisors, exhibiting adversarial
(A) or random (R) behavior.

Seller Query. Similarly, Fig. 1(c) shows the probabilities
for the action SQ11 (query Adv1 about Sel1). Also in this
case, the transitions are static and observation probabilities
depend on a subset of state factors: Pr(o′|u′1, q′1, SQ11). Two
observations are possible after a seller query: 1) good (g),
where Adv1 says Sel1 is high quality; and 2) bad (b), where
Adv1 says Sel1 is low quality. Again, the probabilities are
such that asking a trustworthy advisor gives more accurate
observations.

3.3 Belief Update in SALE POMDP
In the SALE POMDP, belief updates are performed such

that they correlate the state factors in meaningful ways.
Here, we briefly illustrate this process. A more detailed illus-
tration on the process of belief updating in SALE POMDP
can be found in [15].

Fig. 2 shows the partial SALE POMDP policy for our
running example (seller selection problem with 1 seller and
2 advisors). Each state s = 〈〈q1〉 , 〈u1, u2〉 , sat〉, where q1 ∈
{H,L}, u1 and u2 ∈ {T,A} (so we only consider adversarial
advisors here). The transition and observation probabilities
have the same values as mentioned in Sec. 3.2. The beliefs
prior to taking the actions (represented by nodes in Fig. 2)
are shown using tables associated with the nodes. The state
variable sat is not shown for simplicity.

Initially (before action AQ12), we assume uniform quality
levels for Sel1 (0.5 high and 0.5 low) and advisors Adv1 and
Adv1 (0.5 trustworthy and 0.5 adversarial). The belief
state corresponding to the initial state distribution is shown
in the table associated with the first AQ12 action in Fig. 2.
On receiving observation o′ = t (trustworthy) after action
AQ12, (traversing through the left child of the root in Fig. 2),
beliefs are updated (using Eqn. 1) such that states with u1

= T and u2 = T are given more weights than states with u1

= A and u2 = T . Similarly, beliefs are updated for the AQ21

actions, determining both Adv1 and Adv2 to be trustworthy
(HTT = 0.3). Here, states where q1 = L have same values
as those with q1 = H, hence not presented in the tables.
Adv1 is then queried about Sel1 (action SQ11). When

the agent receives an observation o′ = g (good), the be-
liefs for the seller are updated such that more weights are
given to the states where seller is high quality and advisor
is trustworthy, and less weights to states where seller is low
quality. We can see from Fig. 2 that (HTT = 0.55 and LTT
= 0.06) at this point, resulting in the BUY (buy1) action.
Similarly, if the agent receives an observation o′ = B (bad),
the DNB action is taken. The beliefs obtained when the
observation of AQ12 action, o′ = u (untrustworthy) can be
seen by traversing through the right child of the root.

AQ12

AQ21

AQ21

AQ21

SQ11

BUY

g

DNB

b

t

t

t

t

AQ12

AQ12

AQ12

SQ11

BUY

g

DNB

b

u

u

u

u

HTT HTA HAT HAA
0.125 0.125 0.125 0.125

LTT LTA LAT LAA
0.125 0.125 0.125 0.125

HTT HTA HAT HAA
0.23 0.02 0.05 0.20

HTT HTA HAT HAA
0.27 0.01 0.01 0.21

HTT HTA HAT HAA
0.29 0.00 0.00 0.21

HTT HTA HAT HAA
0.30 0.00 0.00 0.20

HTT HTA HAT HAA
0.55 0.00 0.00 0.08

LTT LTA LAT LAA
0.06 0.00 0.00 0.31

HTT HTA HAT HAA
0.06 0.00 0.00 0.31

LTT LTA LAT LAA
0.55 0.00 0.00 0.08

HTT HTA HAT HAA
0.02 0.23 0.20 0.05

HTT HTA HAT HAA
0.01 0.27 0.21 0.01

HTT HTA HAT HAA
0.00 0.29 0.21 0.00

HTT HTA HAT HAA
0.00 0.31 0.19 0.00

HTT HTA HAT HAA
0.00 0.55 0.08 0.00

LTT LTA LAT LAA
0.00 0.06 0.31 0.00

HTT HTA HAT HAA
0.00 0.06 0.31 0.00

LTT LTA LAT LAA
0.00 0.55 0.08 0.00

Figure 2: (Partial) SALE POMDP policy

3.4 Multiple Transactions
While the basic SALE POMDP models just a single trans-

action, it is also possible to apply the model in a sequential
setting, where the buyer may engage in multiple transac-
tions. That is, once the buyj or DBN action is performed,
the resulting belief can be used as the basis for an initial
belief for a new seller selection instantiation. In a bit more
detail, there are two sources of previous experience: 1) previ-
ous seller selection tasks: the modified belief state resulting
from advice in a previous problem can be retained; 2) ac-
tual experiences with sellers: even though in the decision
process, we model a transition to a terminal state with a
deterministic ended observation, the actual transaction will
result in the owner of the agent being satisfied or not and
this information can be used to update the final belief of
the agent’s previous seller selection task, giving a new ini-
tial belief for a new task2. This type of sequential tasks can
be implemented in two ways. First it is possible to change
the POMDP formulation, such that already during planning
we anticipate multiple transactions. While this is the most
principled solution, it will make the model more complex
and we do not expect that reasoning over future transac-
tions will bring a significant improvement. Instead, we solve
the single-transaction SALE POMDP models sequentially,
updating the beliefs in between as explained.

4. EVALUATION
We perform detailed experiments to demonstrate the ef-

fectiveness of the SALE POMDP. In particular, we compare
its performance to other trust models in a single transaction
scenario, as well as a multiple transaction setting. Addi-
tionally, since the specification of the behavior of advisors

2In fact this can be an important mechanism to deal with
advisors that are consistent but deceptive and settings in
which the majority of advisors are untrustworthy.
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Figure 3: Single transaction setting: (a-b) adversarial scenario; (c-d) random scenario

(via specification of the transition and observation model) is
done by the designer, we analyze the robustness of the SALE
POMDP to changes in these choices. Finally, we conduct ex-
periments to demonstrate the scalability achieved using the
factored formulation of the SALE POMDP.

Experimental Setup. We evaluate the SALE POMDP
model using a modified version of the Agent Reputation and
Trust (ART) testbed [9]. In this testbed, a set of agents in-
teract over the course of multiple rounds. Each agent at
every round gets a (varying) number of clients that ask it to
appraise a painting. That is, the agent should report to the
client whether the painting is of high or low quality. Addi-
tionally, each of the agents acts as an advisor for the other
agents. If an appraising agent does not have the expertise to
complete the appraisal, it can request opinions from these
advisors about the quality of the painting by paying a spec-
ified cost. The advisor providing opinion, obtains informa-
tion about the ground truth of the requested painting from
the simulation engine3, using which it may decide whether
to provide an incorrect opinion (by altering the true qual-
ity of the painting obtained from the simulation engine) or
not, before sending it to the requester. Appraisers can also
request reputation values about other appraisers at a spec-
ified cost. Again, advisors may alter the reputation values
(which are calculated by their own model) before sending it
to the requesting agent. The predicted value of the appraisal
is determined by the appraiser using advisor’s opinions and
then submitted to the testbed simulation engine. Appraisers
correctly identifying the quality of a painting (high/low), re-
ceive more clients and thus more profit, increasing his bank
balance in the long run. The client share for each appraiser
(initially evenly distributed among appraisers) is calculated
based on their average appraisal error in identifying the qual-
ity of the painting, such that the appraiser with the least
average appraisal error achieves the highest client share [9].

The ART testbed can be easily mapped to the seller selec-
tion problem as shown in Table 1. In the remainder of this
section, we will use the terms buyer, advisor and seller to
denote appraiser, opinion provider and painting respectively.

The specifications of the ART testbed are: 1) client hiring
fee 100; 2) opinion transaction cost 10; 3) reputation trans-
action cost 1; 4) certainty assessment cost 1 and 5) old client
share influence 0.1 (to update bank balance). For the SALE

3While not realistic, this allows us to focus on the quality of
the appraiser without obfuscating the results by additional
effects caused by advisors not knowing the ground truth.

Table 1: Seller selection problem using ART testbed

ART testbed Sellers Selection Problem (SSP)
appraiser buyer
painting quality seller quality
appraisal finding the seller’s quality
opinion provider advisor
opinion transaction query about seller quality
reputation transaction query about advisor quality
certainty advisor’s certainty on seller quality
client fee satisfactory transaction reward
timesteps no. of rounds of simulation
avg. no. of paintings per agent avg. no. of SSPs per buyer
appraise as high quality buy
appraise as low quality do not buy

POMDP, rewards R(s, SQij) = opinion cost, R(s,AQii′) =
reputation cost and Rsat = −Runsat = client fee. In the ex-
periments, we use symbolic Perseus [8], which exploits the
factored nature of SALE POMDP as the POMDP solver.

Using the above settings, we compare the performance of
SALE POMDP with state-of-the-art trust models BLADE,
Personalized, Advisor POMDP and TRAVOS, each of which
is modeled as a trustworthy buyer in the ART testbed. Also,
untrustworthy advisors exhibiting adversarial/random be-
havior (as described in Sec. 3.2) are introduced. The evalu-
ation metrics used are: 1) accuracy which is the percentage
of sellers, whose quality has been correctly identified by the
buyer; and 2) bank balance, the accumulated reward.

Single Transaction Setting. We first conduct experi-
ments to verify the performance of the SALE POMDP in
a single transaction setting. We assume that buyers have
no prior experience in the market (which is the case with
most real world e-marketplaces), e.g., we initialize the SALE
POMDP with a uniform belief that assigns each advisor a
50% probability of being trustworthy. The ART testbed
simulation is run for a single round and each agent only re-
ceives a single painting to appraise. For each trust model,
we perform simulations in which it interacts with 5 advisors
(some of which are untrustworthy). The results are shown
in Fig. 3, whose x-axes represents the number of untrustwor-
thy advisors (so there are ’5-x’ trustworthy advisors). Error
bars indicate the standard error over 100 iterations.

Fig. 3(a-b) show the results when untrustworthy advi-
sors act in an adversarial manner. In Fig. 3(a), accu-
racy of SALE POMDP decreases with increase in number
of adversarial advisors, due to the increase in the proba-
bility of obtaining incorrect opinion (for a uniform initial
belief, the resulting SALE POMDP policy can be inter-
preted as a smart way of performing a majority vote on
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Figure 4: Sequential setting: Majority advisors are trustworthy: (a-b) adversarial scenario (c-d) random scenario; Majority
advisors are untrustworthy: (e-f) adversarial scenario (g-h) random scenario

advisor trustworthiness). TRAVOS and Personalized obtain
100% accuracy when majority of advisors are trustworthy,
as they use the majority rule to determine seller’s quality,
when the buyer has no experience in the market. This is
also the reason why their performance drastically decreases
when majority (> 2) of the advisors are adversarial. The
Advisor POMDP shows better performance when major-
ity of the advisors are adversarial, as it considers all advi-
sors equally trustworthy and randomly chooses an advisor
to ask opinion (better than relying on the majority in this
case). Of course, since SALE POMDP generalizes the Ad-
visor POMDP, given an initial belief that reflects that all
the advisors are trustworthy, it will also find this policy.
BLADE mainly relies on previous experience with advisors
and obtains 0% accuracy for all cases (not shown in Fig. 3).

Fig. 3(b) shows the bank balance of the trust models after
the first transaction as a newcomer (corresponding to their
accuracy in Fig. 3(a)). We see that the SALE POMDP
obtains a better bank balance than TRAVOS and Person-
alized. This is because SALE POMDP uses fewer opinion
transactions (query advisors about the sellers’ quality). The
SALE POMDP mainly relies on reputation transactions4

(query advisors about other advisors’ quality) to firstly de-
termine a trustworthy advisor and then queries about the
sellers. TRAVOS and Personalized, on the other hand sim-
ply query all advisors about the seller’s quality, resulting in
high opinion costs, reducing their balance. Though the Ad-
visor POMDP achieves higher bank balance (due to fewer
opinion transactions and better accuracy), its performance
is hugely reliable on the single advisor it randomly chooses to
ask opinions, which cannot be successful at all times. Also,
its performance is lower in the sequential setting (Fig. 4).

Fig. 3(c-d) show the results when untrustworthy advisors

4The influence of query costs is shown in Fig. 6(a).

exhibit random behavior. Generally, all trust models per-
form better than the adversarial scenario, as random advi-
sors may provide correct opinions at times. TRAVOS out-
performs Personalized as it is able to correctly identify the
trustworthiness of advisors by comparing their opinions only
on similar sellers. Personalized considers advisors’ previous
opinions on all sellers, thereby increasing the chance to incor-
rectly model untrustworthy advisors with random behavior.
Again, Fig. 3(d) shows that SALE POMDP clearly outper-
forms the other models in terms of bank balance.

Sequential Setting. We also conduct experiments in
a sequential setting, where appraisers are engaged in mul-
tiple transactions. The ART testbed simulation is run for
10 rounds and average number of paintings per agent (per
round) is 10. Here, we run the different trust models in
competition: for a given buyer (say SALE POMDP), all
other buyers (BLADE, Personalized, Advisor POMDP and
TRAVOS) are trustworthy advisors, always providing cor-
rect opinions about sellers/other advisors. Untrustworthy
advisors (adversarial, random) are also introduced and com-
pete in determining the correct seller quality (using the BRS
model). For the SALE POMDP, each seller selection (paint-
ing appraisal) problem (in a given round) is modeled as a
separate POMDP. The actual result of each problem (the
client being satisfied or not) is used to update the final be-
lief of the SALE POMDP’s previous seller selection problem,
giving a new initial belief for the next problem (finding the
next painting’s quality). Fig. 4(a-d) show the results in the
sequential setting when trustworthy advisors form the ma-
jority (2 untrustworthy advisors are introduced). Fig. 4(e-h)
show the results when majority advisors are untrustworthy.

From Fig. 4, we find that accuracy and bank balance of
most trust models increase with time, depicting that experi-
ence from previous transactions can significantly affect their



performance. In Fig. 4(a-b), untrustworthy advisors are
adversarial in nature. Fig. 4(a) shows the SALE POMDP
with initial accuracy 95.0%, mainly because of the presence
of untrustworthy advisors leading to inaccurate opinions, es-
pecially when the buyer has no prior experience in the mar-
ket. However, its accuracy increases to 99.0%, at the end of
simulation, using previous transaction information to iden-
tify adversarial advisors and refrain from asking opinions.
TRAVOS and Personalized obtain a better accuracy of 100%
as majority of the advisors are trustworthy. BLADE obtains
an initial accuracy of 90.0% and reaches 98.0% by the end
of simulation. The Advisor POMDP learns about different
paintings (sellers), which is in fact not useful in this setting,
since every buyer is assigned a different painting to appraise
each round. Also, it does not learn about advisor’s behavior
and considers all advisors to be trustworthy. Therefore, its
accuracy depends on the probability of choosing a trustwor-
thy advisor to ask opinion (nearly 60%).

Fig. 4(b) shows the bank balance of trust models corre-
sponding to their accuracy in Fig. 4(a). It clearly shows that
the SALE POMDP significantly outperforms its competi-
tors. Though Advisor POMDP obtains a lower accuracy, it
uses fewer opinion transactions than BLADE, Personalized
and TRAVOS, hence obtaining a substantial bank balance.

In Fig. 4(c-d), untrustworthy advisors exhibit random be-
havior. Fig. 4(c) shows that accuracy of the SALE POMDP
increases from 90.0% to 98.5%, increasing at a slower rate
than in Fig. 4(a). This is because advisors who behave in
a random manner can give the correct advise (by chance).
SALE POMDP, thereby requires more number of transac-
tions to discriminate them from trustworthy advisors on an
average. However, this is not the case when untrustwor-
thy advisors are adversarial in nature. In fact, in the se-
quential setting, the performance of SALE POMDP is bet-
ter when advisors exhibit adversarial than random behav-
ior. Because, untrustworthy advisors who are adversarial
in nature, often provide incorrect advise and once identi-
fied, they can be more informative than random ones. Also,
in Fig. 4(c), TRAVOS and Personalized obtain an accuracy
of 100% and accuracy of BLADE increases from 90.0% to
97.5%. Again, the accuracy of Advisor POMDP depends on
the probability of choosing a trustworthy advisor (around
76%). Fig. 4(d) shows that the SALE POMDP obtains a
significantly higher bank balance than other trust models.

In Fig. 4(e-f), untrustworthy advisors are adversarial in
nature and form the majority (5 untrustworthy advisors are
introduced with a total of 9 advisors). Fig. 4(e) shows that
SALE POMDP follows a similar trend as in Fig. 4(a). But,
we find that TRAVOS and Personalized obtain an initial ac-
curacy of 80.0% and 90.0%, respectively when compared to
100% in Fig. 4(a). This is because when the buyer is a new-
comer, both approaches rely on the majority rule and since
the majority are untrustworthy in this case, their accuracy
is less. However, with experience their accuracy increases.

Fig. 4(f) shows that SALE POMDP obtains the highest
bank balance. In Fig. 4(g-h) untrustworthy advisors are
random and form the majority. The initial accuracy of
SALE POMDP is 80.0% (as compared to 90.0% in Fig. 4(c)),
due to the increase in the number of untrustworthy advisors.
The accuracy of the Advisor POMDP is also lower than that
in Fig. 4(c) (around 70%). SALE POMDP obtains the best
bank balance in Fig. 4(h), clearly showing that it performs
significantly better also in this setting.
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Figure 5: Robustness of SALE POMDP

Robustness. We analyze the robustness of SALE POMDP
in the specification of its parameters (e.g., SALE POMDP
always models advisors who show random behavior to be-
have with a 50% probability of giving correct opinion). We
consider untrustworthy advisors exhibiting various types of
random behaviors for the experiment, which is conducted
in a single transaction setting, where buyers have no prior
experience in the market and each agent only receives a sin-
gle painting to appraise. Three types of advisors showing
random behavior are considered: 1) advisors who perfectly
exhibit random behavior i.e., with a 50% probability of giv-
ing correct opinion; 2) advisors inclined to behave honestly
i.e., with a 60% probability of giving correct opinion; and 3)
advisors inclined to behave in a deceptive manner i.e., with a
40% probability of giving correct opinion. The performance
of SALE POMDP against each case of such advisor behav-
iors is represented using S(SALE) (0.5), S (0.6) and S (0.4)
in Fig. 5. We also show the performance of TRAVOS for
comparison, denoted by T (0.5), T (0.6) and T (0.4).

Fig. 5(a) shows that even when interacting with advi-
sors that act differently than those assumed in the POMDP
model, the performance of SALE POMDP is robust: per-
formance is relatively comparable to TRAVOS (with same
amounts of degradation), but in absolute sense it is still
much better. Fig. 5(b) also shows that bank balance of S
(0.5), S (0.6) and S (0.4) is much higher than TRAVOS.

Influence of Query Costs. Fig. 6(a) shows how the
bank balance of trust models (SALE POMDP (S), BLADE
(B), Personalized (P), Advisor POMDP (A) and TRAVOS
(T)) is influenced by different cases of (opinion cost, rep-
utation cost), 1: (1,1); 2: (10,1); 3: (1,10); 4: (5,5); and
5: (10,10), in a sequential setting (ART testbed simulation
is run for 10 rounds and average number of paintings per
agent is 10), where majority advisors exhibit random un-
trustworthy behavior. We find that SALE POMDP obtains
the best bank balance in all cases, demonstrating the use of
less query actions (opinion and reputation transactions) in
general, when compared to other trust models. Even in the
least favorable case, when both opinion and reputation costs
are high (10,10), SALE POMDP still accumulates the high-
est reward. In the most favorable case, i.e., when opinion
cost is high and reputation cost is low (10,1) SALE POMDP
achieves a higher balance than all other models put together.

Scalability. We also examine whether representing the
SALE POMDP in the factored form helps to overcome the
computational complexity. We use the single transaction
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Figure 6: Stacked bars: interval lengths represent values

setting in the ART testbed, where buyers have no prior ex-
perience and each agent only receives a single painting to
appraise. Fig. 6(b) shows how the performance of SALE
POMDP is influenced on scaling to larger problems, by in-
creasing the number of advisors in the market. Case 1 rep-
resents the scenario with 2 sellers, 1 trustworthy advisor and
1 untrustworthy advisor exhibiting random behavior. Sim-
ilarly, cases 2 − 5 represent the scenario with 2 sellers and
2 − 5 trustworthy and untrustworthy advisors each. The
state space for each case is also labeled in the correspond-
ing bars of Fig. 6(b). We find that bank balance of SALE
POMDP does not degrade as the problems become more
complex. This demonstrates that SALE POMDP is able to
scale to considerable limits (large seller selection problems,
intractable to be solved by non-factored methods such as
SARSOP [12]), while still preserving quality. Run times to
solve the SALE POMDP vary from 9.6s for the 2 advisor
case, to 3170s for the 10 advisor case.

5. CONCLUSION AND FUTURE WORK
The paper suggests a novel method for dealing with the

seller selection problem using POMDPs. SALE POMDP op-
timally selects the right sellers as transaction partners, bal-
ancing the trade-off between information gaining and infor-
mation exploiting actions. In addition to querying advisors
about sellers, the model also allows to selectively query ad-
visors about the trustworthiness of other advisors, which is
a novel feature the approach offers. We also represent SALE
POMDP in its factored form to allow solving POMDPs
with large number of states. Experiments using the ART
testbed verify that SALE POMDP outperforms state-of-the-
art trust models in optimally selecting quality sellers. Ex-
periments also demonstrate its robustness in the specifica-
tion of its parameters. We also show that the factored form
helps to scale to reasonably large seller selection problems.

The presented research opens up many directions of future
work. While we established that SALE POMDP is robust
against the choice of parameters for the transition and ob-
servation model, an interesting direction is to automatically
optimize these (e.g., using evolutionary optimization tech-
niques). Alternatively, it is possible to improve robustness
of the model to different types of attacks, by including more
detailed advisor models (e.g., differentiating its trustworthi-
ness in providing opinions about sellers and other advisors).
Finally, an important direction of future research is to de-
velop dedicated solution methods that further exploit the
structure of SALE POMDP to provide further scalability.
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