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ABSTRACT

It is often assumed that agents in multiagent systems with
state uncertainty have full knowledge of the model of dy-
namics and sensors, but in many cases this is not feasible.
A more realistic assumption is that agents must learn about
the environment and other agents while acting. Bayesian
methods for reinforcement learning are promising for this
type of learning because they allow model uncertainty to be
considered explicitly and offer a principled way of dealing
with the exploration/exploitation tradeoff. In this paper, we
propose a Bayesian RL framework for best response learn-
ing in which an agent has uncertainty over the environment
and the policies of the other agents. This is a very general
model that can incorporate different assumptions about the
form of other policies. We seek to maximize performance
and learn the appropriate models while acting in an online
fashion by using sample-based planning built from power-
ful Monte-Carlo tree search methods. We discuss the theo-
retical properties of this approach and experimental results
show that the learning approaches can significantly increase
value when compared to initial models and policies.

1. INTRODUCTION
While there has been a large amount of recent work and

success in planning problems for multiagent systems with
state uncertainty [6, 14, 7, 26, 20], in many domains, agents
will not have access to a full model of the domain or the
ability to coordinate to compute a policy. Instead, more re-
searchers have begun to consider agents that can adapt to an
environment and the actions of the other agents (e.g., in ad
hoc teamwork [30]). For example, if a robot is sent to Mars
for exploration or construction, factors such as gravity and
soil composition may have effects that are hard to predict
and older robots may already be working on the mission. As
such, our goal is to endow our agent with the capability to
learn about both the dynamics of its environment, as well as
the behavior of possible teammates. In addition, it should
optimize its behavior with respect to prior knowledge and
partial (and potentially noisy) sensor information it receives.
Bayesian reinforcement learning methods are a promising

manner to conduct this type or learning because they allow
us to incorporate prior knowledge and, in principle, give
an optimal exploration/exploitation trade-off with respect
to this prior belief. In many real-world situations, the true
model may not be known, but a prior can be expressed over
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a class of possible models. This belief over modes can be
used to choose actions that will maximize expected value,
reducing uncertainty as needed to improve performance.

Unfortunately, in multiagent systems, only a few Bayesian
RL methods have been considered. For example, the Bayesian
RL framework has been used in stochastic games [9] and fac-
tored Markov decision processes (MDPs) [32]. While either
model is intractable to solve optimally, both approaches gen-
erate approximate solutions (based on the value of perfect in-
formation) which perform well in practice. Both approaches
also assume the state of the problem is fully observable (or
can be decomposed into fully observable components). This
is a common assumption to make, but many real-world prob-
lems have partial observability due to noisy or inadequate
sensors as well as a lack of communication with the other
agents. In fact, very few multiagent RL approaches of any
kind consider partially observable domains (notable excep-
tions, e.g., [1, 10, 21]), and only our previous work [3] falls
in the category of Bayesian RL.

In this previous paper we proposed to fill this void by
proposing two approaches for Bayesian RL for multiagent
systems with state uncertainty [3]: one approach considers
a team of communicating agents, the other approach mod-
els the problem from the perspective of a single agent that
tries to learn a best response in a team of other agents. In
this work, we significantly generalize the latter approach by
presenting a much more general framework of best-response
models (BRMs). Using these general best-response models,
we explore uncertainty about the environment with either
1) all other agents’ models being fixed and known, or 2) all
other agents’ policies being unknown. To capture these un-
certainties, we build upon the Bayes Adaptive partially ob-
servable Markov decision process (BA-POMDP) framework
[23, 24]. We discuss how the resulting BA-BRM has the
earlier history-based representation of [3] as its special case,
and how it can directly also work on policies represented as
finite-state controllers. As any BA-POMDP, the BA-BRM
can be characterized and solved as a (possibly infinite state)
POMDP, but the resulting problem is typically intractable
to solve optimally. As an alternative, we present a novel
sample-based planning method, called root-sampling Bayes-
adaptive POMCP (RS-BA-POMCP), based on Monte-Carlo
tree search which is much more scalable while retaining con-
vergence guarantees. This framework represents a gen-
eral method for reasoning about other agents and learning
in multiagent domains with state uncertainty, incorporating
available knowledge in a wide range of scenarios.
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2. BACKGROUND
This section provides a concise description of POMDPs,

which we will use the basis for our best-response methods,
as well as previous work on Bayesian RL for POMDPs.

2.1 POMDPs
POMDPs represent a framework for planning under un-

certainty and partial observability [18]. Formally, a POMDP
is a tuple 〈S,A,Z, D,R, L〉 with: S, a finite set of states
with designated initial state distribution b0; A, a finite set
of actions; Z, a finite set of observations; D the dynam-
ics function specifying D(s′,z|s, a) the probability of a next
state s′ and observation, given a current state s and action
a; R, a reward function: R(s, a), the immediate reward for
being in state s and taking action a; L, the horizon.
We note that we deviate from the standard formulation

of a POMDP [18], which specifies D in a factored way,
using a transition and observation model: D(s′,z|s, a) =
T (s′|s, a)O(z|a, s′). We point out the our formulation is a
strict generalization: any POMDP can be represented using
the D formulation. Moreover, we will encounter POMDPs
that can not be represented in a factored fashion.
Most research concerning POMDPs has considered the

task of planning : given a full specification of the model,
determine an optimal policy (e.g., [18, 27]). However, in
many real-world applications, the model is not (perfectly)
known in advance, which means that the agents have to
learn about their environment during execution. This is the
task considered in reinforcement learning (RL) [31].

2.2 Bayesian RL for POMDPs
A fundamental problem in RL is that it is difficult to

decide whether to try new actions in order to learn about
the environment, or to exploit the current knowledge about
the rewards and effects of different actions. In recent years,
Bayesian RL methods have become popular because they
potentially can provide a principled solution to this explo-
ration/exploitation trade-off [12, 13, 22, 34].
In particular, we consider the framework of Bayes-Adaptive

POMDPs [23, 24]. Due to lack of space, we are forced to give
only a very concise overview; we refer to the original papers
and [3] for more detail. This framework utilizes Dirichlet
distributions to model uncertainty over transitions and ob-
servations1 (typically assuming the reward function is cho-
sen by the designer and thus known). In particular, if the
agent could observe both states and observations, it could
maintain a vector χ with the counts of the occurrences for

all 〈s, a, s′, z〉 tuples. We write χs′z
sa for the number of times

that s,a is followed by s′,z.
While the agent cannot observe the states and has un-

certainty about the actual count vector, this uncertainty
can be represented using the regular POMDP formalism.
That is, the count vector is included as part of the hidden
state of a special POMDP, called BA-POMDP. Formally, a
BA-POMDP is a tuple 〈SBP ,A,Z, DBP , RBP , L〉 with some
modified components in comparison to the POMDP.
First, we point out that actions and observations remain

the same as the case where there is no uncertainty about the
transition and observation function (i.e., the same as a reg-
ular POMDP). However, the state of the BA-POMDP now
includes Dirichlet parameters: sBP = 〈s, χ〉. The reward

1[23, 24] follow the standard T,O POMDP formalism, but we will give
a description that matches with our D formalism.

model remains the same (since it is assumed to be known),
RBP (〈s,χ),a) = R(s,a). The dynamics functions, DBP ,
however, are modified when compared to a POMDP. Given
χ we can define the expected transition as Dχ(s

′,z|s, a) =

E[D(s′,z|s, a)|χ] =
χs′z
sa∑

s′z χs′z
sa

. These expectation can now be

used to define the transitions for the BA-POMDP. If we let
δs

′z
sa denote a vector of the length of χ containing all zeros
except for the position corresponding to 〈s,a,s′,z〉 (where it
has a one), and if we let Ia,b denote the Kronecker delta
that indicates (is 1 when) a = b, then we can define DBP as
DBP (s

′,χ′,z|s,χ, a) = Dχ(s
′,z|s, a)I

χ′,χ+δs
′z

sa
.

Remember that these counts are not observed by the agent,
since that would require observations of the state. The agent
can only maintain belief over these count vectors. Still, when
interacting with the environment, the ratio of the true—but
unknown—count vectors will converge to coincide with the
true transition and observation probabilities in expectation.
It is important to realize, however, that this convergence of
count vector ratios does not directly imply learnability by
the agent: even though the ratio of the count vectors of the
true hidden state will converge, the agent’s belief over count
vectors might not.

3. BA-BRM : A GENERAL FORMULATION
In this paper, we are interested in problems with multiple

agents that each receive their own observations. In some
such settings, agents can communicate to share their expe-
riences about the environment around them, which means
that the problem of deciding how to act can be reduced to a
(larger) single-agent problem. This situation is captured by
the multiagent POMDP (MPOMDP) model. Due to the re-
duction to a single-agent problem, it is possible to extend the
BA-POMDP to such settings, yielding the BA-MPOMDP
which can deal with unknown environment in team settings
[3, 4]. In many real-world scenarios, however, agents must
learn about the environment and any other agents during
execution based solely on their own local information. This
is true in any situation where instantaneous, noise-and cost-
free communication is not possible, practical or sensible. For
instance, in competitive settings, this type of communication
often does not make sense, and even in strictly cooperative
settings there are often communication limitations.

In this section, we describe a different way of applying
Bayesian RL techniques in multiagent systems by giving a
subjective description of the problem. That is, we describe
the problem from a single agent’s perspective by defining
its best-response model (BRM). We propose a Bayesian ap-
proach to online learning which represents the combined ef-
fect of the initial model and policies for the other agents us-
ing priors and updates probability distributions over these
models as the agent acts in the real world.

Throughout the remainder of the paper, we consider an
interactive setting from the perspective of a single agent i.
This agent will interact with a number of other agents j (col-
lectively also indicated as −i). We describe a very general
model of other agents, and how that in general can be used
to compute a best response. Then we extend this framework
to learning settings where the protagonist agent is uncertain
about the working of the environment or the other agents.

3.1 The Behavior of Other Agents
In order to describe other agents j, we introduce a very



general model for their behavior: A model mj for agent j is
a tuple mj = 〈Aj ,Ωj ,Ij ,πj ,βj ,Ij〉 with Aj the set of actions,
Ωj the set of observations, Ij a set of internal states, a policy
πj : Ij → ∆(Aj), a belief update function βj : Ij × Aj ×
Ωj → ∆(Ij) and Ij the current internal state of the agent.
We will also refer to fj = 〈Aj ,Ωj ,Ij ,πj ,βj〉 as a frame for
agent j, such that a model is given by mj = 〈fj ,Ij〉.
Notice that this definition does not restrict the set of in-

ternal states. Moreover, policies and belief update functions
can be represented as look-up tables, but also be computa-
tional procedures themselves. Therefore, the formulation is
extremely general, including most notions of agent, and in
particular types such as MDP- or POMDP-based agents.
Also note that we treat the models of different agent as

‘independent’, i.e., each other agent j is supposed to have
a model mj that does not depend on the model of others.
The resulting behavior is decentralized, but not necessarily
independent. In contrast, by using rich internal state spaces
and by making use of the correlations between observations
agents receive, very complicated team behaviors can be cap-
tured. We believe that this is not different from teamwork
as it would arise in a human team of, e.g., soccer players.

3.2 Computing a Best-Response
Models such as the ones introduced above can be used by

agents in all kinds of environments. In the remainder of this
paper, we will focus on a protagonist agent i that is situ-
ated in a POMDP-like environment. In particular, we de-
fine a multiagent environment (MAE) for agent i as a tuple
MAEi =

〈

S, {Ai}
n

i=1 ,T, {Zi}
n

i=1 ,O,Ri

〉

where: S is the set
of states of the environment; {Ai}

n

i=1 is the collection of the
sets of individual actions of the agents; T is the transition
function that specifies T (s′|s,ai,a−i); {Zi}

n

i=1 is the collec-
tion of the sets of individual observations of the agents; O is
the observation function that specifies Pr(zi,z−i|ai,a−i,s

′);
Ri is the reward function that specifies Ri(s,ai,a−i). That
is, a MAE is a partially observable stochastic game (POSG)
[16] that only specifies the reward component for the pro-
tagonist agent i.
In this setting, we will assume that agent i will have knowl-

edge about the frame of the other agents f−i although it is
still uncertain about their internal states I−i. Let us write
M−i = {f−i} × I−i for the set of models consistent with
f−i. Given M−i and given a MAEi, agent i can compute
how to act optimally by constructing and solving an aug-
mented POMDP [19]. Here we give a slight generalization
of the formulation of [19] that extends to our general no-
tion of agent. We will refer to this as a best-response model
(BRM). Formally, a best-response model for agent i is a tu-
ple BRMi(MAEi,M−i) =

〈

S̄,Ai,Zi,D̄i,R̄i

〉

that consists of

a set of states s̄ = 〈s,I−i〉, such that S̄ = S × I−i; the sets
of actions Ai and observations Zi; D̄i, the dynamics func-
tion D̄i(s̄,ai,s̄

′,zi), a combined transition/observation func-
tion that specifies:

D̄i(s̄
′
, zi|s̄, ai) =

∑

a−i

∑

z−i

T (s′|s,a)O(z|a,s′)

∏

j 6=i

βj(I
′
j |Ij ,aj ,zj)πj(aj |Ij); (3.1)

R̄i, a reward function

R̄i(s̄,ai) = R̄i(s,I−i,ai) =
∑

a−i

Ri(s,a)
∏

j

πj(aj |Ij). (3.2)

Note that (3.1) shows that D̄i in general cannot be factored.2

Since a BRM is a POMDP, we can define beliefs b̄i(s̄) and
value functions Vi(b̄i), in the usual way. As such, the BRM
may be solved with standard POMDP methods [18, 27, 29].

3.3 Transition & Observation Uncertainty
Here we consider the setting where agent i is uncertain

about the transition and observation function, but knows
the model for all other agents. That is, T,O in MAEi are
unknown, butM−i (the set of models consistent with frames
f−i) is given. The direct consequence is that BRMi is also
unknown. However, since the BRM is a POMDP, we can in-
corporate uncertainty about the transition and observation
model by transforming it to its Bayes’ adaptive variant.

We define a BA-BRM as a tuple M̆i =
〈

S̆i,Ai,Zi,D̆i,R̆i,h
〉

where Ai and Zi are the sets of actions and observations of
agent i; S̆ is the set of states s̆ = 〈s̄,χ〉 = 〈s,I−i,χ〉 where

χ is the vector of counts χs̄′z
s̄a counting how often s̄,ai was

followed by s̄′,zi; D̆ is the combined transition and observa-
tion function (see below); R̆ is the reward function defined as

R̆i(s̆,ai) = R̄i(s̄,ai) via (3.2); h, the horizon. The dynamics
function of the BRM (3.1) is transformed to a variant that
takes into account the uncertainty as follows:

D̆(s̆′,zi|s̆,ai) = Dχ(s̄
′
,zi|s̄, ai)Iχ′,χ+δs̄

′z
s̄a

(3.3)

where δs̄
′z

s̄a is a vector with entries for all possible transitions
(all of these are 0 except for the entry for (s̄,ai) → (s̄′,zi)),
and where

Dχ(s̄
′
,z|s̄,a) ,

χs̄′z
s̄a

∑

s̄′,z χ
s̄′z
s̄a

. (3.4)

is the expected transition-observation function induced by χ.
Remember that in a partially observable environment, χ

usually cannot be observed directly. That is why χ is part of
the hidden state. Nevertheless, we can think about how we
would expect the true (unobserved) count vector to evolve
over time. Let us denote the true count vector at stage t as
X(t), and note that X(t) is a random variable that depends
on the actual dynamics and behavior of the other agents.
Even though the counts will continue to grow with time, it
is easy to show that the induced ratio Dχ(s̄

′,z|s̄,a) converges
in probability to the true probability as defined by (3.1):

∀s̄,a,s̄′,z DX(t)(s̄
′
,z|s̄,a)

p
→ D̄i(s̄

′
,z|s̄,a). (3.5)

As was the case for the BRM, the BA-BRM is just a
POMDP, which means that also in this case, the usual POMDP
theory holds. The difficulty, however, is that the number of
states s̆ is (countably) infinite, which means that exactly

representing the beliefs b̆i and value function becomes im-
possible. Fortunately, since a BA-BRM is a special case of
BA-POMDP, all the BA-POMDP theory holds even with
the inclusion of other agent histories as part of the state
information. Therefore, as for the BA-POMDPs, there are
two ways to overcome this difficulty: constructing a finite ǫ-
optimal approximate POMDP, or using sample-based (i.e.,
‘particle-based’) representations of the belief in combination
with sample-based planning. Note that, given s̆ = (s̄,χ) and

2However, in case of independent observations, O(z|a,s′) =
∏n

i=1Oi(zi|ai,s
′), it can be split in the more common

formulation that specifies a separate transition and obser-
vation model: Ō(ai,s̄

′,zi) = O(zi|ai,s
′), T̄ (s̄,ai,s̄

′) =
∑

a−i

∑

z−i
T (s′|s,a)

∏

j 6=iO(zj |aj ,s
′)βj(I

′
j |Ij ,aj ,zj)πj(aj |Ij).



ai, it is trivial to sample a next state s̆′ = (s̄′,χ′) and obser-
vation zi by sampling from (3.4):

〈

s̄
′
,zi

〉

∼ Dχ(·|s̄,ai) (3.6)

and setting χ′ = χ+ δs̄
′z

s̄a .
Prior distributions over environment and agent models

can be represented as initial count vectors. As is clear from
3.5, the count ratios correspond to (should converge to) the
true probability D̄i(s̄

′,z|s̄,a). If these probabilities can be es-
timated, the count vectors can be set to ratios representing
this quantity. Then, the confidence in this estimation can
be reflected in a scaling factor of the various counts. In this
way, different aspects of the agent and environment mod-
els can have different parameters and confidence based on
knowledge of the problem. In the absence of domain knowl-
edge a uniform prior with small counts can be utilized.

3.4 Policy Uncertainty
In the above, we assumed that the policies (i.e., the frames

f−i) of other agents are fixed and known. However, a key ob-
servation is that in the construction of the dynamics function
of the BA-BRM the knowledge about π−i and β−i is never
employed : the transition-observation D̆i only depends on
the counts via (3.4), but not on π−i or β−i.
This does not make the BA-BRM completely independent

of π−i, because the reward function R̆i still depends on π−i

via (3.2). However, in many cases, the rewards of the agent
might be independent (e.g., if the agents are only coupled
through their transitions [5]). Moreover, even in cases where
Ri does depend on the actions of other agents, it is still
possible to find a new representation of the internal state
of the other agents that renders R̄i independent of π−i. In
particular, if we define σj , 〈Ij ,aj〉 as the new internal state,
then s̄ = 〈s, σ−i〉, and we can directly use that stored action
to retrieve the right reward:

R̄i(s̄,ai) = R̄i(s, 〈I−i,a−i〉,ai) = Ri(s,ai,a−i). (3.7)

This means that we can have a description of the BA-BRM
that is completely independent of π−i or β−i. Of course,
knowledge about the aggregate of these functions can still
be incorporated through the initial count vectors, but other
than that we have no dependence on π−i and β−i. This
means that the BA-BRM in fact can deal with uncertainty
regarding the policy of other agents.
To clarify, consider how this would work for sample-based

planning. The first step would make sure that the reward
function R̄i is independent of the other agents (potentially
by converting to sequence-form internal states σ). Second,
we specify an initial count vector χ0 that represents our ini-
tial belief about the situation. This initial count vector will
induce a distribution Dχ0 over BRM transitions as specified
by (3.4) and therefore aggregates our belief about T,O, π−i

and β−i (if our beliefs are accurate, we can specify the counts
such that they induce precisely the distribution D̄i given by
(3.1)). Finally, we sample a state s̄0 from our initial belief,
form s̆0 = 〈s̄0, χ0〉 and use this to sample an episode using
(3.6) and a rollout policy πi. Repeating this procedure gives

us a Monte Carlo estimate of V̆i(πi).
A different way of including uncertainty about the policy

of the other agent is by explicitly absorbing π−i,β−i in the
BRM state: s̄ = 〈s, π−i,β−i,I−i〉. This approach is taken in
I-POMDPs [14]. A downside of this approach, however, is

that the number of BRM states immediately becomes infi-
nite, making formulations of expected transitions and exten-
sions of BA-POMDPs difficult. Moreover, our analysis here
shows that such explicit modeling may not be necessary.

Finally, we point out that, when other agents are adaptive,
the assumption of a unknown, but fixed policy is violated.
This is no fundamental limitation, though; any adaptive al-
gorithm can be cast as a model mj provided that we have
enough computational power to deal with all the required
internal states Ij . Also, in practice methods such as Q-
learning have been shown to be effective in such adaptive
domains [25, 33]. Therefore, we expect that it might be
possible to deal with this issue by, for instance, performing
discounting of counts while learning during execution.

3.5 Bounded Loss for Policy Uncertainty
The BA-BRM framework brings another nice insight: it

can be used to bound the loss of computing a best re-
sponse to one particular policy while in fact the agent uses
a different one. To show this, we assume that there is
a single other agent and that for two policies πx

j ,π
y
j of

agent j we have that ∀ajIj

∣

∣πx
j (aj |Ij) − π

y
j (aj |Ij)

∣

∣ ≤ ǫ.
Assume that πx

j is the true policy of agent j, in that

case the count ratios will converge to
χ
s̄′zi
s̄a (x)

∑
s̄′z χs̄′z

s̄a (x)

p
→

∑

aj

∑

zj
D(s′,z|s,ai,aj)βj(I

′
j |Ij ,ajzj)π

x
j (aj |Ij) and similar

for πy
j . If this has happened, we loosely refer to these as

converged count vectors χ∗
x and χ∗

y. As such, we can bound

∣

∣

∣

χs̄′z
s̄a (x)

∑

s̄′z χ
s̄′z
s̄a (x)

−
χs̄′z
s̄a (y)

∑

s̄′z χ
s̄′z
s̄a (y)

∣

∣

∣
≤

∑

aj

∑

zj

D(s′,z|s,a)

βj(I
′
j |Ij ,ajzj)

∣

∣π
x
j (aj |Ij)− π

y
j (aj |Ij)

∣

∣ ≤ ǫ
∑

aj

P (s̄′,zi|s̄,ai,aj)

and therefore
∑

s̄′

∑

zi

∣

∣

∣

∣

∣

χ
s̄′zi
s̄a (x)

∑

s̄′z χ
s̄′z
s̄a (x)

−
χ
s̄′zi
s̄a (y)

∑

s̄′z χ
s̄′z
s̄a (y)

∣

∣

∣

∣

∣

≤= ǫ |Aj | (3.8)

Theorem 1. Given χ∗
x and χ∗

y, the converged count vec-
tors as described above, for all stages-to-go t, then for any
t-steps-to-go policy for agent i, the associated values are
bounded:

max
s∈S

∣

∣αt(s,χ
∗
x,)− αt(s,χ

∗
y)
∣

∣ ≤
ǫ |Aj | (γ − γt) ‖R‖∞

(1− γ)2
(3.9)

Proof. The proof is analogous to the proof in [3], but
makes use of the modified (3.8).

The implication of this theorem is that if we compute a
best response against some policy πx

j which differs from π
y
j ,

the true policy used by agent j, by at most ǫ, then the loss
in value is bounded by (3.9). This generalizes our previous
[3] from history-based best-response representations to the
general BRM formulation from Sec. 3. The difference is that
the bound here (3.9) additionally depends on the size of the
other agent’s action set. Also note that this bound, while
inspired by the Bayes-adaptive formulation, is a standalone
result that only requires that the other agent’s behavior can
be represented by our general notion of a model, as defined
in Sec. 3.1. This stands in contrast to results that appear
similar, but pose sharp restrictions on the class of policies
that other agent can use [17].



4. SPECIALIZED REPRESENTATIONS
In this section we discuss several specific instantiations

of our general BA-BRM formulation. In particular, we will
first treat the case where policies of the other agents are
specified as mappings from histories to observations. Next,
we consider policies represented as finite-state controllers.

4.1 History-Based Policies
A special case of our framework, also investigated in [3],

is when other agents remember their full histories of actions
and observations and use those for action selection. That
is, when the internal state is the action-observation history:
Ij = hj . This case is special in that we have that s̄′ =
〈s′, h′

−i〉 specifies the actions and observations for the other
agents. Therefore (3.1) can be written as

D̄i(s̄
′
,zi|s̄,ai) = T (s′|s,a)O(z|a,s′)π−i(a−i|h−i)

= O(zi|ai, s
′
, h

′
−i)[T (s

′|s,a)O(z−i|a,s
′)π−i(a−i|h−i)]

where π−i(a−i|h−i) =
∏

j 6=i πj(aj |hj). As a result, it is
possible to maintain the count vectors in a factored form. In

particular we have counts χs̄′

s̄a and χz′

s̄′a (denoted φ and ψ in
[3]) counting the number of (s̄,ai,s̄

′) and (s̄′,ai,zi) separately.
While very general, using action-observation histories as

the basis for the policies of other agents has disadvantages.
In particular, when the other agents use a deterministic pol-
icy, these can be more compactly represented as mappings
from observation histories (OHs) to actions. While i is case,
D̄i does not factor, it is still likely that a factored represen-
tation of the counts allows for a more compact description,
and thus faster learning, that is a good approximation.

4.2 Finite-State Controller Policies
The internal states of the agents can be formalized as

nodes in a finite-state controller. In a (Moore) controller,
for each agent, the policy πj , is a mapping from nodes in
the controller to actions and the belief update, βj , is given
by the transitions in the controller in the same way as de-
fined in Section 3.1. This controller-based representation is
potentially more concise than the history-based representa-
tion (which is exponential in the horizon) as it incorporates
a bound on memory of the other agents. The approaches
discussed above can be directly applied to this model.

5. SOLVING BA-POMDPS
BA-BRMs are special cases of BA-POMDPs, and as such

have the same computational difficulties associated with
them. While sample-based planners have provided some
leverage [24], the typical BA-BRM is a very large BA-
POMDP, and further improvements are required. In this
section, we propose a novel sample-based planning method,
RS-BA-POMCP, that is particularly aimed at solving BA-
POMDPs. It is based on POMCP, but performs an even
more aggressive form of ‘root sampling’. We also prove its
convergence to an ǫ-optimal value function.
POMCP [28] is a recent Monte Carlo tree search method

for POMDPs that constructs a tree of action-observation
histories h, each of which have a particle-based representa-
tion of the belief at that history. A key innovation is that it
‘root samples’ a hidden state s0, which is subsequently used
to sample a trajectory of states. This way, it is possible
to incrementally build up the particle-based representations

at the nodes, h, and thus it avoids doing expensive belief
updates during the Monte Carlo simulations.

Since a BA-BRM is a POMDP, POMCP directly applies,
yielding BA-POMCP. This method ‘root-samples’ a full
augmented state s̆0 = 〈s0,χ0〉, and subsequently, maintains
such states s̆d = 〈sd,χd〉 throughout the simulation. At
every step it samples from the expected dynamic (3.6).

Sampling from (3.6), however, is expensive since at every
step of a Monte Carlo rollout, we need to create a new ex-
pected dynamic and sample from it. As such, this forms a
bottleneck in BA-POMCP. To overcome this problem, we
propose RS-BA-POMCP. This method performs the nor-
mal root sampling of a hidden state s̆0 = 〈s0,χ0〉, but at
the start of each simulation, it additionally root samples a
single dynamics function Droot from which is sampled for
the remainder of the entire simulation, thus avoiding the
construction of a new model to sample from at every step.

Remark 1. We point out that while this seems superfi-
cially similar to BAMCP [15]—which is POMCP applied to
a BA-MDP [12]—it is substantially different. BAMCP root
samples a transition model T and uses that throughout, be-
cause a BA-MDP is a POMDP with hidden states 〈s, T 〉 of
which the hidden transition model component is stationary.
In a BA-POMDP, however, the hidden state is s̆ = 〈s, χ〉
where χ is not stationary, which means that the transition
(dynamics) function is different for all states sampled in a
state trajectory.

While RS-BA-POMCP is more efficient, it is not directly
clear that the method is still sound, i.e., whether it still
converges to an ǫ-optimal value function. Here we show that
it is. The main steps in this proof are similar to the proof
in POMCP. We point out however, that the technicalities of
proving the components are far more involved. Due to lack
of space we will defer a detailed presentation to an extended
version of this paper.

We use the following notation: hd is an action-observation
history at depth d of a simulation, hd = (a0,z1, . . . ,ad−1,zd).

Hd is a full history at depth d, Hd = 〈s0:d,hd〉. H
(i)
d the

full history at depth d corresponding to simulation i. χ(Hd)
denotes the vector of counts at simulated full history Hd.
Note that if χ0 is the count vector at the root of simulation,
we have that χ(Hd) = χ0 +∆(Hd), with ∆(Hd) the vector
of counts of all (s,a,s′,z) quadruples occurring in Hd.

The full-history BA-POMDP rollout distribution is the
distribution over full histories of a BA-POMDP, when per-
forming Monte-Carlo simulations according to a policy π is

P
π(Hd+1) = Dχ(Hd)(sd+1,zd+1|as,sd+1)π(ad|hd)P

π(Hd)
(5.1)

with Pπ(H0) = b0(〈s0,χ0〉) the belief at the root.
The full-history RS-BA-POMDP rollout distribution is

the distribution over full histories of a BA-POMDP, when
performing Monte-Carlo simulations according to a policy
π in combination with root sampling of the transition and
observation models. This distribution, for a particular stage
d, is given by P̃π

K(Hd) , 1
Kd

∑Kd

i=1 IHdH
(i)
d

, where K is the

number of simulations in the empirical distribution, H
(i)
d is

the history specified by the i-th simulation at stage d.

Lemma 1. The full-history RS-BA-POMDP rollout dis-
tribution converges in probability to full-history BA-POMDP



rollout distribution:

∀Hd
P̃

π
Kd

(Hd)
p
→ P

π(Hd). (5.2)

Proof. The proof of this lemma is substantialy more
complex than the corresponding lemmas in [28, 15]. A proof
sketch is provided in the appendix.

Theorem 2. Given a suitable exploration constant (e.g.,
c > Rmax

1−γ
), the RS-BA-POMCP converges in probability to

an ǫ-optimal value function: V (〈s,χ〉 ,h)
p
→ V ∗

ǫ (〈s,χ〉 ,h).

Proof. This proof is identical to the theorems in [28, 15].
We focus on [28]: since a BA-POMDP is a POMDP, the
guarantees of the theorem hold if the same requirements are
met. Lemma 1 from [28] holds for all POMDPs, Lemma 2
from [28] corresponds to our Lemma 1.

Intuitively, given the same rollout policy, the RS-BA-
POMCP simulations converge to the same rollout distribu-
tion as does BA-POMCP, which means that the methods
evaluate nodes in the same way and therefore the theoreti-
cal guarantees extend to RS-BA-POMCP.

6. EXPERIMENTAL EVALUATION
To empirically verify the effectiveness of different versions

of the BA-BRM model in dealing with uncertain interactive
environments, we implemented a version of RS-BA-POMCP
where the protagonist agent interacts with an environment
over a number of episodes (Nepisodes), each of a finite length
L. At the end of each episode, the protagonist’s belief over
states is reset to the initial belief, but the belief over count
vectors is maintained. That way, the agent learns across all
the episodes. In each stage of each episode, RS-BA-POMCP
performs a number of simulations (Nsimulations) in order
to estimate the values and choose an action. For illustra-
tion, we show the value achieved as the number of learning
episodes increases. The value is averaged over a number of
runs (Nruns). Note that at the start of each run the count
vectors are reset, so there is no learning across runs — these
are only to determine average values. These experiments
were run on a 2.5 GHz Intel i7 using a maximum of 8GB
of memory. We evaluate our approach by performing online
learning using the common decentralized tiger benchmark
[19] and a meeting in a grid domain where the agent must
find and stay in the same grid square as another agent [8].
Two-agent tiger problem. In order to convert the

tiger problem to a best-response problem, we fix the pol-
icy of one agent to an observation-history based policy. We
assumed history-based policies for the other agent and set
initial count vectors to reflect high confidence in the true
transition function and low confidence in a near uniform ob-
servation function. The observation prior counts were 100
for any action other than listening, and when listening, 6 for
both agents observing the correct door, 5 for only one agent
observing the correct door and 4 for both agents observing
the incorrect door. We performed two experiments: one in
which the protagonist agents is uncertain about the dynam-
ics of the problem, but knows what the model of the other
agent is, and one in which it also has uncertainty about that
model. When the other agent policy was not assumed to be
known, a uniform prior (all 1’s) was used over all history-
based policies of the given horizon.
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Figure 1: Value per episode in two-agent tiger prob-

lem for the BA-BRM with known and unknown

other agent policies
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Figure 2: Value per episode in the grid problem

for the BA-BRM method with known and unknown

controllers for other agent policies

In the first setting—only uncertainty about the dynam-
ics, called ’BRM-known’— the other agent uses an individ-
ual policy that corresponds to the optimal joint policy (it
listens at each step until the same observation had been
heard twice in a row). Since there is no policy uncertainty,
an internal state of OHs Ij = ~oj suffices. For this setting,
we have the agents interacting over 250 episodes, each of
L = 3. In order to take an action, the protagonist agent
performs RS-BA-POMCP using Nsimulations = 10000 sim-
ulations. The results are averaged over Nruns = 100 runs of
this experiment. The results for this setting (mean return
for a particular episode, with error bars based on standard
error) are shown in Figure 1(left). Due to the initial prior,
the first policy involves listening in most cases, but a much
better policy is quickly learned. While significant noise re-
mains in the values due to the large differences in rewards
that are possible, the value converges to be near the optimal
value in this version of the problem, 5.19.

In the second setting—an unknown model of the other
agent— the other agent uses a policy of listening no mat-
ter what observation was seen. In this setting, the pro-
tagonist agent models the internal state of the other agent

using its action-observation history: Ij = ~θj , since that in-
cludes the action as discussed in Sec. 3.4.3 For this setting
Nsimulations = 500 simulations were used and averaged over
Nruns = 50 runs. The value determined by the initial prior
reflects listening on every step and after 250 episodes it is
near the optimal value, which in this case is -0.28. Again,
we see that the protagonist agent using RS-BA-POMCP is
able to learn a near optimal policy in relatively few episodes.
Grid problem. We also consider a 2 × 2 grid with

two agents, similar to the problem described in [2], but with
more observations: the agents can observe their own position
and whether the other agent is also there. Rewards in this
problem are zero unless both agents share the same square,

3This follows the description from [3]. However, we point out that
in fact the analysis here indicates that a more compact description
Ij = 〈~oj , aj〉 also suffices.



so the goal for our agent is to navigate to the other agent’s
location as quickly as possible and stay in the same square
as the other agent. We consider episodes of length L = 5.
In order to convert to a best-response problem, we assume
the other agent uses a three node controller that specifies
the following behavior: the agent moves up until in the top
row, then moves left until in the top-left corner, then stays.
In this problem, we set the prior so the agent had high

confidence in its own (true) transitions and observations of
its own location (1000 times the true probabilities), but
was uniform over the other agent transition and observa-
tion function (all 1’s) and with regard to the probability
of observing the other agent. These priors reflect the idea
of coordinating with an unknown agent without much prior
knowledge of that agent.
Again we consider the same two settings (known and un-

known policy of the other agent). For the known policy case,
the internal state is the controller node: Ij = nj . For the un-
known policy setting we expanded the internal state descrip-
tion with the last action and observation of the other agent:
Ij = 〈nj , zj , aj〉.

4 For the unknown case a uniform prior
was used over three node controllers for the other agent.
For both settings RS-BA-POMCP used Nsimulations = 2000
simulations for action selection. Results are averaged over
Nruns = 10 runs. Fig. 2 shows the results for this do-
main. Because the prior had very little information about
the other agent, the policy began very far from the optimal
value of 1.94. As expected, learning is faster in the case of
a known other agent policy, but in both cases, learning is
observed. While the value after 250 episodes is not close to
the optimal value, it is promising that agents are able to
learn in such domains with limited initial knowledge and a
noisy and partial learning signal.

7. RELATED MODELS
Work on POSGs [16] typically takes a game-theoretic (i.e.,

equilibrium) perspective: both the POSG, as well as the
fact that all the agents are rational are assumed common
knowledge. In contrast, while the MAE builds upon the
same way of specifying the components of the problem, it
does not impose any assumptions of rationality.
The BRM is closely related to interactive POMDPs [14].

In particular, S̄ is referred to as the ‘interactive state space’
in the context of I-POMDPs, and the optimal value func-
tion for I-POMDPs [14] is essentially the same as Vi(b̄i). A
difference in formulation is that the BRM does not include
the set of joint actions, but is strictly a POMDP. A bigger
difference is that, as with POSGs, work on I-POMDPs tends
to focus on other agents that are assumed to be (approxi-
mately) rational. For instance, most work on I-POMDPs
concerns finitely nested I-POMDPs that assume that the
other agent is rational up to a certain strategy level (i.e., it
is a form of level-k model or cognitive hierarchy [35]), and
thus is complementary to our approach.
Finally, as explained in Section 3.5, I-POMDPs implement

a different type of learning: they take the perspective that
the dynamics of the environment (i.e., the MAE) is known,
as well as the set of fixed candidate models Mj . Bayesian
updating is the mechanism by which the true model mj will
be inferred. In contrast, we consider the setting where the

4Inclusion of zj was convenient in our implementation, but 〈nj , aj〉
also suffices.

MAE is not known. Additionally, our formulation decom-
poses the uncertainty over the behavior of the other agent
into uncertainty about the behavior at its internal states;
that is rather than having an explicit set of known candi-
date models, we consider that there is one true model that
we try to estimate by estimating the behavior at internal
states. We point out that while the latter difference can
be interpreted as merely a shift in perspective, it is this
shift that enables the application of Bayesian reinforcement
learning techniques that integrate learning about the envi-
ronment as well as the other agents.

8. CONCLUSIONS
In this paper, we presented a first framework for Bayesian

Reinforcement learning of best-responses in multiagent set-
tings under state uncertainty. While approaches exist for
acting optimally with respect to a belief over models of other
agents [14], these cannot deal with uncertainty in the envi-
ronment. In contrast, by building on BA-POMDPs [24], our
BA-BRM framework can deal with both these types of un-
certainty. Moreover, we show that by reasoning over the
aggregate influence of environment and other agents, we can
avoid explicit reasoning over infinitely many policies of other
agents. To perform learning in these best-response mod-
els we developed RS-BA-POMCP, a scalable sample-based
planning method based on Monte Carlo tree search, and
prove its convergence. Results show significant learning can
take place after a small number of episodes assuming differ-
ent forms of other agent policies.

These approaches can serve as a framework for many fu-
ture research directions in multiagent learning. Our proof-
of-concept experiments clearly indicate the potential to
learn, but we expect that more efficient methods that exploit
all of our insights could greatly improve performance. Ad-
ditionally, analytical results regarding the expected/worst-
case/best-case time to convergence could be useful to better
understand differences between problems such as the two
used in our evaluation. A promising direction is to inves-
tigate settings that additionally have uncertainty regarding
Ij , the set of internal states. We expect that this can be
tackled with tools from non-parametric Bayesian inference.
In particular, we expect that it may be possible to map the
BRM to an infinite POMDP [11]. Such an extension would
be important for many applications, since it may be difficult
to specify the number of internal states in practise.
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APPENDIX
At the start of every simulation RS-BA-POMCP root samples
a Droot. Let us write P̃π(Hd) for the probability that RS-BA-

POMCP generates Hd at depth d. Clearly P̃π
Kd

(Hd)
p
→ P̃π(Hd).

Moreover, it is possible to show that P̃π(Hd)

=

∫

P̃π (Hd|Droot)Dir(Droot|χroot)dDroot

= b0(s0)

[

d
∏

t=1

π(at−1|ht−0)

]





∏

〈s,a〉

B(χsa(H0))

B(χsa(Hd))



 , (.1)

with B(α) =
Γ(α1+...·+αk)
Γ(α1)·...·Γ(αk)

the normalization term of a Dirich-

let distribution with parametric vector α. Note that a history



Hd+1 = (Hd,ad,sd+1,zd+1) only differs from Hd in the counts
for sdad. Therefore (.1) can be written in recursive form as

P̃π(Hd+1) = P̃π(Hd)π(ad|hd)
B(χsdad

(Hd))

B(χsdad
(Hd+1))

where the last

term is the result of dividing out the contribution of the old counts
for sdad and multiplying in the new contribution.

Note that Hd+1 = (Hd,ad,sd+1,zd+1), as far as transitions
are concerned, only differs from Hd in that it has one extra
transition for the (sd,ad,sd+1,zd+1) quadruple. Let us write

T =
∑

sz χ
sz
sdad

(Hd) and N = χ
sd+1zd+1
sdad

(Hd) . We also know

that
∑

sz χ
sz
sdad

(Hd+1) = T + 1 and χ
sd+1zd+1
sdad

(Hd+1) = N + 1.
Therefore we can write

B(χsdad
(Hd))

B(χsdad
(Hd+1))

=
Γ(T )/

∏

s′z Γ(χ
s′z
sdad

(Hd))

Γ(T + 1)/
∏

s′z Γ(χ
s′z
sdad

(Hd+1))

= · · · =
Γ(T )

Γ(T + 1)

Γ(N + 1)

Γ(N)

Since the gamma function has the property that Γ(x+1) = xΓ(x)
this equals

Γ(T )
TΓ(T )

NΓ(N)
Γ(N)

= N
T
. Therefore we get

P̃π(Hd+1) = P̃π(Hd)π(ad|hd)
χ
sd+1zd+1
sdad

(Hd)
∑

sz χ
sz
sdad

(Hd)
. (.2)

the r.h.s. of this equation is identical to (5.1) except for the dif-
ference in between P̃π(Hd) and P

π(Hd). This can be resolved by

forward induction with base step: P̃π(H0) = b0(〈s0,χ0,ψ0〉) =
Pπ(H0), and the induction step directly following from (5.1)

and (.2). Therefore we conclude that P̃π(Hd+1) = Pπ(Hd+1),

and that ∀Hd+1
P̃π
Kd+1

(Hd+1)
p
→ Pπ(Hd), thus proving the

result.
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