
Exploiting Anonymity in Approximate Linear Programming:
Scaling to Large Multiagent MDPs

Philipp Robbel
MIT Media Lab

Cambridge, MA, USA

Frans A. Oliehoek
University of Amsterdam

Amsterdam, The Netherlands

Mykel J. Kochenderfer
Stanford University
Stanford, CA, USA

Abstract

The Markov Decision Process (MDP) framework is a
versatile method for addressing single and multiagent
sequential decision making problems. Many exact and
approximate solution methods attempt to exploit struc-
ture in the problem and are based on value factoriza-
tion. Especially multiagent settings (MAS), however,
are known to suffer from an exponential increase in
value component sizes as interactions become denser,
meaning that approximation architectures are overly re-
stricted in the problem sizes and types they can handle.
We present an approach to mitigate this limitation for
certain types of MASs, exploiting a property that can
be thought of as ‘anonymous influence’ in the factored
MDP. In particular, we show how anonymity can lead
to representational and computational efficiencies, both
for general variable elimination in a factor graph but
also for the approximate linear programming solution
to factored MDPs. The latter allows to scale linear pro-
gramming to factored MDPs that were previously un-
solvable. Our results are shown for a disease control do-
main over a graph with 50 nodes that are each connected
with up to 15 neighbors.

1 Introduction
Cooperative multiagent systems (MASs) present an impor-
tant framework for modeling the interaction between agents
that collaborate to jointly solve a task. In the decision-
theoretic community, models like the Markov Decision Pro-
cess (MDP) and its partially observable extensions have both
seen widespread use to model and solve such complex plan-
ning problems for single and multiple agents in stochastic
worlds.

Given the well-known unfavorable complexity results as-
sociated with large action and state spaces, many problem
representations and their solution methods attempt to exploit
structure in the domain for efficiency gains. Factored (equiv-
alently, “graph-based”) MDPs (FMDPs) represent the prob-
lem in terms of a state space S that is spanned by a number
of state variables, or factors, X1, . . . , XN . Their multiagent
extension (FMMDP) exploits a similar decomposition over
the action space A and allows the direct representation of
the “locality of interaction” that commonly arises in many
multiagent settings. This paper uses the running example of
a disease control problem over a large network consisting of

both controlled an uncontrolled nodes along with the con-
nections that define possible disease propagation paths (Ho
et al. 2015; Cheng et al. 2013). The problem of guiding the
network to a desired state has a natural formulation as a fac-
tored MMDP with factored states (individual nodes in the
graph) and action variables (corresponding to the subset of
controlled nodes in the graph).

These representational benefits, however, do not in gen-
eral translate into gains for policy computation (Koller and
Parr 1999). Still, many solution methods successfully ex-
ploit structure in the domain, both in exact and approxi-
mate settings, and have demonstrated scalability to large
state spaces (Hoey et al. 1999; Raghavan et al. 2012;
Cui et al. 2015). Approaches that address larger numbers
of agents are frequently based on value factorization under
the assumption that smaller, localized value function com-
ponents can approximate the complete value function well
(Guestrin et al. 2003; Kok and Vlassis 2006). The approxi-
mate linear programming (ALP) approach of Guestrin et al.
(2003) is one of the few approaches in this class that has no
exponential dependencies on S and A through the efficient
computation of the constraints in the linear program based
on a variable elimination method. The method retains an ex-
ponential dependency on the tree-width (the largest clique
formed during variable elimination) meaning that the feasi-
bility of the approximation architecture is based on the con-
nectivity and scale of the underlying graph.

This paper presents an approach to mitigate this limita-
tion for certain types of MASs, exploiting a property that
can be thought of as “anonymous influence” in the graph.
Anonymity refers to the reasoning over joint effects rather
than identity of the neighbors in the graph. In the disease
control example, the joint infection rates of the parent nodes
rather than their individual identity can fully define the be-
havior of the propagation model. Based on this observation,
we show how variable elimination—and the complete set of
constraints in the ALP—can still be computed exactly for a
larger class of graph-based problems than previously feasi-
ble.

The contributions of this paper are as follows: first, we
define “anonymous influence” for representing aggregate ef-
fects in a graph. Second, we develop the concept in a gen-
eral variable elimination setting and show how it supports
compact representations of intermediate functions generated

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80775449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

during elimination. A key contribution is the insight into
how a property referred to as “variable consistency” during
VE admits particularly compact representations without the
need to “shatter” function scopes into disjoint subsets. Third,
based on the results for VE, we move to the planning prob-
lem and establish how all constraints in the ALP can be rep-
resented exactly (albeit more compactly) for factored MDPs
that support “anonymous influence”. Forth, we contrast the
efficiency gains from exploiting anonymous influence on a
set of random graphs that can still be solved with the nor-
mal VE and ALP methods. We demonstrate speed-ups of
the ALP by an order of magnitude to arrive at the identical
solution in a sampled set of random graphs with 30 nodes.
Last, we address the disease control problem in graph sizes
that were previously infeasible to solve with the ALP solu-
tion method. We show that the ALP policy outperforms a
hand-crafted heuristic by a wide margin in a 50-node graph
with 25 controlled agents.

The following section outlines the background on plan-
ning in factored domains and introduces the problem of con-
trolling stochastic dynamics over graphs in more detail.

2 Background
Factored MDPs
Markov decision processes are a general framework for
sequential decision making under uncertainty (Puterman
2005):
Definition 1. A Markov decision process (MDP) is defined
by the tuple 〈S,A, T,R, h〉, where S = {s1, . . . , s|S|} and
A = {a1, . . . , a|A|} are the finite sets of states and actions,
T the transition probability function specifying P (s′ | s, a),
R(s, a) the immediate reward function, and h the horizon of
the problem.

Factored MDPs (FMDPs) exploit structure in the state
space S and define the system state by an assignment to
the state variables X = {X1, . . . , Xn}. Transition and re-
ward function decompose into a two-slice dynamic Bayesian
network (2TBN) consisting of independent factors, each de-
scribed by their scope-restricted conditional probability dis-
tributions (CPDs). Following a notation similar to Guestrin
(2003), under a particular action a ∈ A the system transi-
tions according to

P a(x′ | x) =
∏
i

P a(x′i | x[Pa(X ′i)]) (1)

where Pa(X ′i) denote the parent nodes of X ′i in the graph-
ical model and the term x[Pa(X ′i)] the value of the parent
variables extracted from the current state x. A similar (ad-
ditive) decomposition holds for the reward function given
state x and action a, i.e. Ra(x) =

∑r
i=1R

a
i (x[Ca

i]) for
some subset of state factors Ca

i ⊆ {X1, . . . , Xn}. Note that
this yields one 2TBN per action in the single-agent case.
An MDP utilizing factored transition and reward models is
called a factored MDP (Boutilier, Dean, and Hanks 1999).

In the case of collaborative multiagent systems, the agent
set A = {A1, . . . , Ag} additionally spans a joint ac-
tion space A that is generally exponential in the num-
ber of agents. The factored multiagent MDP (FMMDP) is

a tractable representation that introduces action variables
into the 2TBN (formally a dynamic decision network). The
global transition function factors as:

P (x′ | x,a) =
∏
i

P (x′i | x[Pa(X ′i)],a[Pa(X ′i)]) (2)

where Pa(X ′i) now include state and action variables and
each local CPD is only defined over the relevant subsets.
Collaborative MASs further assume that each agent observes
part of the global reward and is associated with (restricted
scope) local reward function Ri, such that the global reward
factors additively as R(x,a) =

∑g
i=1Ri(x[Ci],a[Di]) for

some subsets of state and action factors Ci and Di, respec-
tively. In general, factored reward and transitions do not im-
ply a factored value function since scopes grow as the 2TBN
is unrolled over time (Koller and Parr 1999).

Further representational efficiencies are possible by ex-
ploiting context-specific independence in the model, for ex-
ample one may use decision trees or algebraic decision dia-
grams for encoding CPDs and reward functions (Hoey et al.
1999).

The Disease Control Domain
We use the domain of controlling a disease outbreak over
a graph to serve as the running example in this paper. The
control of stochastic dynamics over graphs has broad ap-
plication ranging from management of electric power grids
to network intrusion (Ho et al. 2015). Other domains aim
to minimize collateral diffusion effects while actively tar-
geting specific nodes in the graph (e.g. drugs in biological
networks) (Srihari et al. 2014).

Underlying the formulation as a FMMDP is a (directed or
undirected) graph G = (V,E) with controlled and uncon-
trolled vertices V = (Vc, Vu) and edge set E ⊆ V ×V . The
state space S is spanned by state variables X1, . . . , Xn, one
per associated vertex Vi, encoding the health of that node.
The action set A = {A1, . . . , A|Vc|} factors similarly over
the controlled vertices Vc in the graph and denote an active
modulation of the flow out of node Vi ∈ Vc. Let xi = x[Xi]
and ai = a[Ai] denote the state and action for a single node.
The reward and transition model factor on a per-node basis

R(x,a) =

n∑
i

Ri(xi, ai) (3)

P (x′ | x,a) =

n∏
i

Ti(x
′
i | x[Pa(X ′i)], ai) (4)

where the set Pa(X ′i) includes variable Xi at the previous
time step as well as all nodes that flow into Xi in G. The
known infection transmission probabilities from node j to i,
βji, and the recovery rate of node i, δi, define the transition
function Ti(x′i | x[Pa(X ′i)], ai) as follows:

Ti :=

{
(1− ai)(1−

∏
j(1− βjixj)) if xi = 0

(1− ai) (1− δi) otherwise
(5)

distinguishing the two cases that Xi was infected at
the previous time step (bottom) or not (top). Note

that this model assumes binary state variables Xi =
{0, 1} = {healthy, infected}, and actions Ai = {0, 1} =
{do not vaccinate, vaccinate} and that Au = {0} for all un-
controlled nodes Vu. The reward function factors as:

R(x,a) = −λ1 ‖a‖1 − λ2 ‖x‖1 (6)
where the L1 norm records a cost λ2 per infected node Xi

and an action cost λ1 per vaccination action at a controlled
node. All our experiments are for the infinite horizon case
on an undirected graph G of varying size and structure but
with consistent transmission and recovery rates β, δ.

Efficient Solution of Large FMMDPs
Coordinating a set of agents to maximize a shared perfor-
mance measure (the long-term reward) is challenging be-
cause of exponential state and action spaces S, A. One suc-
cessful approach that extends to both large S and A rep-
resents the joint value function as a linear combination of
locally-scoped terms. Each of these addresses a part of the
system and covers potentially multiple, even overlapping,
state factors: V(x) =

∑
i Vi(x[Ci]) for local state scopes

Ci ⊆ {X1, . . . , Xn}. Note that in the limit this representa-
tion is simply a single joint value function in the global state
x; still, one may hope that a set of lower-dimensional com-
ponents may achieve an adequate approximation in a large
structured system.

For factored linear value functions given basis function
choice H = {h1, . . . , hk}, each local Vi can be written as

Vi(x[Ci]) =

k∑
j=1

wjhj(x) (7)

where Ci is a subset of state factors, hj similarly defined
over some distinct subset of variables Chj (omitted for clar-
ity), and wj the weight associated with basis hj .

Factored Q-value Functions A factored linear state-value
function V(x) =

∑
i Vi(x[Ci]) induces local Q-functions

Qi:

Q(x,a) = R(x,a) + γ
∑
x′

P (x′ | x,a)
∑
j

wjhj(x
′)

=

r∑
i=1

Ri(x,a) + γ

k∑
j=1

wigi(x,a)

(8)

where all functions Ri, gi are again locally-scoped (omitted
for clarity) and gi(x,a) is the expectation of an individual
basis function hi, which is computed efficiently via backpro-
jection of hi through the 2TBN. Local Q-functions follow by
associating disjoint subsets of local reward and backprojec-
tion functions with each Qi. Local payoff functions Qi and
agents A1, . . . , Ag then span a factor graph, i.e. a factor-
ization of the (global) Q-function into locally-scoped terms
(see Figure 1).

The globally maximizing joint action in a given state x,
i.e. a∗ = arg maxa

∑
iQi(x,a), is computed efficiently

with a distributed max operation in the factor graph via vari-
able elimination (VE) (Koller and Friedman 2009). An im-
portant secondary effect is that agents only need to observe
the state factors associated with the components in which
they participate.

A1 A2 A3 A4 A5

Q1 Q2 Q3 Q4

Figure 1: An example factor graph with five agents
(A1, . . . , A5) and local payoff functions Q1, . . . , Q4. Edges
indicate which agent participates in which factor.

VE Variable elimination is a fundamental step for comput-
ing the maximizing joint action a in a factor graph where the
enumeration of all joint actions is infeasible. Similar to MAP
inference in a Bayesian network, the algorithm eliminates
the agents one-by-one and performs only maximizations and
summations over local terms. Let Qx denote the instantia-
tion of the Q-function in a particular state x and consider
the elimination of agent A1. Then

max
a

Qx(a) ≡ max
a\{a1}

{
Γx(a) + max

a1

Γa1
x (a)

}
(9)

where Γa1
x collects the sum of all local Q-functions that

depend on A1, and Γx = {Qi,x} \ Γa1
x those that have

no such dependency. The result is a local payoff function
e(a \ {a1}) = maxa1

Γa1
x and A1 is removed from the fac-

tor graph. The execution time is exponential in the size of
the largest intermediate term formed which depends on the
chosen elimination order.

ALP The approximate linear programming approach
computes the best approximation (in a weighted L1 norm
sense) to the optimal value function in the space spanned
by the basis functions H (Puterman 2005). The ALP formu-
lation for an infinite horizon discounted MDP given basis
functions h1, . . . , hk is given by:

min
w

∑
x α(x)

∑
i wihi(x)

s.t.
∑

i wihi(x) ≥
[R(x,a) + γ

∑
x′ P (x′ | x,a)

∑
i wihi(x

′)]∀x,a
(10)

for state relevance weightsα(x) (assumed uniform here) and
variables wi unbounded. The ALP yields a solution in time
polynomial in the sizes of S and A but both are exponential
for general MASs.

One of the key contributions of Guestrin (2003) is an ef-
ficient scheme to represent exponentially many constraints
that applies if the basis functions have local scope and tran-
sitions and rewards are factored. Reconsider the constraints
using the result for backprojections from Equation 8 and let
V̂(x) =

∑
i wihi(x):

∀x,a V̂(x) ≥ [R(x,a) + γ
∑

i wi gi(x,a)]
∀x,a 0 ≥ [R(x,a) +

∑
i wi[γgi(x,a)− hi(x)]

⇒ 0 ≥ maxx,a[
∑

r Rr(x[Cr],a[Dr]) +∑
i wi[γgi(x,a)− hi(x)]

(11)
Note that the exponential set of linear constraints has been
replaced by a single non-linear constraint and that the re-
placement is exact. Using a procedure similar to VE (over
state and action variables), the max constraint in Equation 11

can be implemented with a small set of linear constraints,
avoiding the enumeration of the exponential state and action
spaces. Consider an intermediate term e′(x[C]) obtained af-
ter eliminating a state variable Xk from e(x[C ∪ {Xk}).
Enforcing that e′ is maximal over its domain can be imple-
mented with |Dom(e′)| new variables and |Dom(e)| new
linear constraints in the ALP (Guestrin 2003):

e′(x[C]) ≥ e(x[C ∪ {Xk}]) ∀x[C ∪ {Xk}] ∈ Dom(e)
(12)

The total number of resulting linear constraints is only
exponential in the size of the largest clique formed during
VE.

3 Anonymous Influence
The FMMDPs described in the previous section may not, in
general, impose strong constraints on the connectivity of the
underlying graph. In fact, many interesting disease propa-
gation settings contain nodes with large in- or out-degrees
yielding dense connectivity in some regions of the graph,
rendering the ALP solution method intractable (see, for ex-
ample, the graphs in Figure 3). In this section we develop
a novel approach to deal with larger scope sizes than ad-
dressed previously.

At the core lies the assumption that in the graph-
based problems above, only the joint effects of the parents
Pa(Xi)—rather than their identity—may determine the out-
come at an individual node Xi. We show how under this as-
sumption variable elimination can be run exactly in graphs
with higher node and degree counts. The key insight is that
the exponential representation of intermediate functions e
may be reduced to some subscope when only the joint ef-
fects, rather than the identity, of some variables in the do-
main Dom(e) need to be considered. In the following, we
first address the representation of “joint effects” before turn-
ing to how it can be exploited at a computational level during
VE (Section 4) and in the ALP (Section 5). In our exposition
we assume binary variables but the results carry over to the
more general, discrete variable setting.

Count Aggregator Functions
We define count aggregator functions to summarize the
“anonymous influence” of a set of variables. In the disease
propagation scenario for example, the number of active par-
ents uniquely defines the transition model Ti while the iden-
tity of the parent nodes is irrelevant (for representing Ti).

Definition 2 (Count Aggregator Function). Let #{Z} :
Z1 × . . . × ZN 7→ R, Zi ∈ {0, 1}, define a count aggre-
gator function (CAF) that takes on N + 1 distinct values,
one for each setting of k ‘enabled’ factors Zi (including the
case that no factor is ‘enabled’). Note that all permutations
of k ‘enabled’ factors map to the same value.

Consider, e.g., a monotonically increasing CAF, #i, that
summarizes the number of infected parents of a node Xi in
a disease propagation graph. Here, the codomain of #i{Z}
directly corresponds to {0, . . . , N}, i.e. the number of ‘en-
abled’ factors in z ∈ Z.

We delay a discussion of conceptual similarities with gen-
eralized (or ‘lifted’) counters in first-order inference to the
comparison with related work in Section 7.

Mixed-mode Functions
We now contrast ‘proper’ variables with those variables that
appear in a counter scope.
Definition 3 (Mixed-Mode Function). Let f(X,#{Z}) de-
note a mixed-mode function over domain X × Z = X1 ×
. . .×XM ×Z1× . . .×ZN if, for every instantiation x ∈ X,
f(x,#{Z}) is a count aggregator function. We refer to
Xi ∈ X as proper variables and Zj ∈ Z as count variables
in the scope of f .

A mixed-mode function can be described with (at most)
KM (N + 1) parameters where K is an upper bound on
|Dom(Xi)|. A CAF is a mixed-mode function where X =
∅.

The definition of mixed-mode functions can be extended
to allow for multiple count scopes #i:
Definition 4. Let f(X,#i{Zi}, . . . ,#k{Zk}) denote a
mixed-mode function and assume (for now) that Zi ∩
Zj = ∅ for i 6= j. Then, for each of the KM

instantiations x ∈ X, there is the induced CAF
f(x,#i{Zi}, . . . ,#k{Zk}) which is fully defined by the
values assigned to #i{Zi}, . . . ,#k{Zk}.

Consider, e.g., g(X1, X2,#1{Pa(X1)},#2{Pa(X2)})
and let |Pa(X1)| = |Pa(X2)| = 6 and Pa(X1)∩Pa(X2) = ∅.
While the naive representation has 214 values, the mixed-
mode function g can be represented with 22 ·7·7 parameters.

We now show how mixed-mode functions can be ex-
ploited during variable elimination and during constraint
generation in the ALP.

4 Efficient Variable Elimination
Variable elimination (VE) removes variables iteratively from
a factor graph given an elimination ordering to implement
specific operations (such as marginalization or maximiza-
tion over a variable). As part of this, VE performs max-
imizations and summations over local terms. This section
shows how the max operation is implemented efficiently
when factors are mixed-mode functions (results for summa-
tion follow analogously). We begin with the special case that
counter scopes in a mixed-mode function are disjoint and
then address the general setting.

Consider maximization over proper variable A in the fac-
tor graph in Figure 2. Denote the result by the intermediate
function f ′(#{B1, B2, . . . , Bk}) computed as:

f ′(v) := max
[
f(a, v), f(ā, v)

]
(13)

for all v ∈ {0, . . . , k} that can be assigned to counter #.
This operation is implemented with k + 1 operations and
has no exponential dependency on k like normal VE when
computing f ′.

Now consider the elimination of count variable Bi

from f . The result is again a mixed-mode function
f ′′(A,#{B1, . . . , Bi−1, Bi+1, . . . , Bk}) where:

f ′′(a, v) := max
[
f(a, v), f(a,v + 1)

]
(14)

A

B1 B2
. . . Bk

#A

Figure 2: A factor graph with one factor defined by mixed-
mode function f(A,#{B1, B2, . . . , Bk}) where variables
Bi only occur in counter scope # (not the general case).

for all a ∈ A, v ∈ {0, . . . ,k− 1}, since the eliminated
count variable may increase the count by at most 1. Note
that for monotonically increasing (or decreasing) CAFs the
max in Equation 14 can be avoided.

Sums of mixed-mode functions can again be written com-
pactly in mixed-mode form. Consider N additional factors
φj(A,#{Zj}) in the factor graph and assume (for now)
that all counter scopes are mutually disjoint. Then l =

f +
∑N

j=1 φj can be represented as:

l(A,#{B1, . . . , Bk},#1{Z1}, . . . ,#N{ZN}) (15)

which is computed without exponential expansion of
any of the variables appearing in a counter scope as
l(a, v, z1, . . . , zN) := f(a, v)+

∑N
j=1 φj(a, zi) for all valid

assignments a, v, zi.

General Case
Both proper and count variables are in general not uniquely
associated with a single factor during VE. For example, in
a disease propagation graph, variables may appear as both
proper and count variables in different factors. We can dis-
tinguish two cases:

Shared proper and count variables Consider factor
e(A,#{A,B1, . . . , Bk}) where A appears as both proper
and count variable. Elimination of A requires full instanti-
ation (i.e., it can be considered proper) and it is removed
from the counter scope: e′(a, v) := e(a,a + v) for all a ∈
A, v ∈ {0, . . . , k} in a variant of Equation 14 that enforces
consistency with the choice of (binary) proper variable A,
thereby avoiding the max operation in the same Equation.
The resulting e′ has a representation that is strictly smaller
than that of e.

Non-disjoint counter scopes Consider two non-disjoint
count variable sets #i,#j in a function f , i.e. Zi ∩Zj 6= ∅.
Trivially, there always exists a partition of Zi ∪ Zj of mu-
tually disjoint sets {Y}, {Wi}, {Wj} where Wi,Wj de-
note the variables unique to #i and #j , respectively, and
Y are shared. Associate the counts #{Y}, #{Wi}, and
#{Wj}. Then the mixed-mode function f can be written as
f(X,#{Y},#{Wi},#{Wj}). This observation extends
to more than two non-disjoint count variable sets.

In the worst case, a partition of
⋃k

i=1 Zi, k ≥ 2 requires
p = 3 · 2k−2 splits into mutually disjoint sets and the result-
ing representation of f is exponential in p. The next section
shows that this ‘shattering’ into mutually disjoint sets can

be avoided and representations be kept compact if variable
consistency is enforced during VE.
Example 1. Consider f(#{A,B,C,D,E},
#{A,B,X, Y, Z}, #{A,C,W,X}) with non-disjoint
counter scopes. The direct tabular encoding of f re-
quires 6 · 6 · 5 = 180 parameters but contains invalid
entries due to overlapping counter scopes. The repre-
sentation of the identical function, f ′(#{A},#{B},
#{C},#{D,E},#{X},#{W},#{Y,Z}) with no
invalid entries requires 288 parameters.

Note that, in general, the difference in size between shat-
tered and un-shattered representations can be made arbitrar-
ily large.

Compact Representation
As shown above, a representation that avoids invalid entries
due to overlapping variable scopes is, in general, less com-
pact than one that does not. We now state a key result that
functions do not need to avoid overlapping counter scopes
to guarantee valid solutions during variable elimination.
Theorem 1. Given a mixed-mode function f with overlap-
ping counter scopes, variable elimination will never include
an invalid value in any of its operations Op (e.g., max) on
f . In particular, denote by f ′ the result of eliminating one
variable from f and consider a valid entry v in f ′. Then, the
operation Op used to compute v only involves feasible (i.e.,
consistent) values from f . This holds for any elimination or-
dering O.
Proof. The result is immediate for the case of eliminating
proper and non-shared count variables. Let f ′ be the result
of such elimination. In case of a proper variable, it follows
from Equation 13 that any valid assignment to the variables
in f ′ yields a max operation over valid entries in f . For non-
shared count variables, the corresponding counter in f ′ is
reduced by 1 and the max is over assignments v + 0, v + 1
to the reduced counter scope (Equation 14). Both count as-
signments are therefore valid in the extended counter scope
of f . We defer the result for shared count variables to the
extended version of the paper.
Corollary 1. The representation of mixed-mode function
f(X,#1{Z1}, . . . ,#N{ZN}) for proper variable set X
andN counters is of sizeO(K |X| ·LN) whereK is an upper
bound on |Dom(Xi)| and L the largest counter value.

The results above are for general variable elimination but
can similarly be exploited in the ALP for efficient constraint
generation in both single- and multiagent FMDPs.

5 Exploiting Anonymity in the ALP
For the ALP, the functions ci := γgi − hi ∀hi ∈ H , along
with reward functions Rj , j = 1, . . . , r define a factor graph
corresponding to the max constraint in Equation 11. Note
that the scopes of ci are generally larger than those of hi
since parent variables in the 2TBN are added during back-
projection. Factors are over state and action variables in the
multiagent case.

A key insight is that for a class of factored (M)MDPs de-
fined with count aggregator functions in the 2TBN, the same

intuition as in the previous section applies to implement the
non-linear max constraint in the ALP exactly.

We first establish that basis functions hi ∈ H , when back-
projected through the 2TBN (which now includes mixed-
mode functions), retain the counters in the resulting back-
projections gi. The backprojection operator is the expecta-
tion of basis function hi defined as gi(x,a) =

∑
x′ P (x′ |

x,a)hi(x) and involves summation and product operations
only (Guestrin 2003). We have established previously that
summation of mixed-mode functions preserves counters (see
Equation 15). The same result holds for multiplication when
replacing the sum operation in Equation 15 with a multipli-
cation. It follows that gi (and ci) preserve counters present in
the 2TBN and share the results for compact representations
derived in the previous section.

ALP Constraint Generation
The exact implementation of the max constraint via VE
in Equation 11 proceeds as before with compact represen-
tations. Note that the domain Dom(e) of an intermediate
(mixed-mode) term e(X,Z) with proper and count variable
sets X, Z, is reduced as established for general variable
elimination in Corollary 1. In particular, the number of vari-
ables and constraints in the ALP is exponential only in the
size of the representation of the largest mixed-mode func-
tion formed during VE. Further, the reduction is exact and
the ALP computes the identical value-function approxima-
tion V̂ = Hw.

6 Experimental Evaluation
We evaluate the method on random disease propagation
graphs with 30 and 50 nodes. For the first round of ran-
dom graph experiments, we obtain the value-function for an
uncontrolled disease propagation process and contrast run-
times of the normal VE/ALP method (where possible) with
those that exploit “anonymous influence” in the graph. We
then move to a controlled disease propagation process with
25 agents in a 50-node graph and compare the results of the
obtained policy to two heuristics.

All examples implement the disease control domain from
Section 2. For the regular VE/ALP, the parent scope in
Ti includes only ‘proper’ variables as usual. The alter-
native implementation utilizes count aggregator functions
#{Pa(X ′i)} in every Ti. We use identical transmission and
node recovery rates throughout the graph, β = 0.6, δ = 0.3.
Action costs are set to λ1 = 1 and infection costs to λ2 =
50. All experiments implement the same greedy elimination
heuristic for VE that minimizes the scope size at the next
iteration.

Random Graphs
We use graph-tool (Peixoto 2014) to generate 10 random
graphs with an out-degree k sampled from P (k) ∝ 1/k,
k ∈ [1, 10]. Table 1 summarizes the graphs and Figure 3
illustrates a subset. 60 indicator basis functions IXi

, IX̄i

(covering instantiations xi, x̄i for all 30 variablesXi), along
with 30 reward functions Ri, are utilized in the ALP. The
factor graph consists of functions ci that additionally span

Figure 3: From top left to bottom right: sample of three ran-
dom graphs in the test set with 30 nodes and a maximum
out-degree of 10 (first three). Bottom right: test graph with
an increased out-degree sampled from [1, 20].

Mean/min/max degree:
4.2/1/10 3.4/1/10 3.7/1/10 3.7/1/10 3.7/1/10
2.8/1/10 3.5/1/10 3.1/1/9 3.2/1/8 3.9/1/9

Table 1: Properties of the 10 random 30-node graphs.

the parent scope of hi. Table 1 shows minimum and max-
imum node degrees, which correspond to lower bounds on
parent scope sizes since action and state factors from the
previous time step are added in Equation 4.

The results are summarized in Table 2. Recorded are the
number of resulting constraints, the wall-clock times for VE
to generate the constraints, and the ALP runtime to solve
the value-function after constraint generation on the iden-
tical machine. The last three columns record the gains in
efficiency per graph.

Lastly, we test with a graph with a larger out-degree (k
sampled from the interval [1, 20], shown at the bottom right
of Figure 3). The disease propagation problem over this
graph cannot be solved with the normal VE/ALP because
of exponential blow-up of intermediate terms. The version
exploiting anonymous influence can perform constraint gen-
eration using VE in 124.7s generating 5816731 constraints.

Disease Control
In this section we show results of policy simulation for three
distinct policies in the disease control task over two ran-
dom graphs (30 nodes with 15 agents, and 50 nodes with
25 agents with a maximum out-degree per node of 15 neigh-
bors: |S| = 250, |A| = 225). Besides a random policy, we
consider a heuristic (referred to as “copystate” policy) that
applies a vaccination action at Xi if Xi is infected in the
current state. It is reactive and does not provide anticipatory
vaccinations if some of its parent nodes are infected. The
“copystate” heuristic serves as our main comparison metric
for these large scale graphs where optimal solutions are not
available. We are not aware of other MDP solution methods
that scale to these state sizes and agent numbers in a densely

|C1|, VE1, ALP1 |C2|, VE2, ALP2 |C2|/|C1| VE2/VE1 ALP2/ALP1
131475, 6.2s, 1085.8s 94023, 1.5s, 25.37s 0.72 0.24 0.02
24595, 1.1s, 3.59s 12515, 0.17s, 1.2s 0.51 0.15 0.33
55145, 3.5s, 30.43s 27309, 0.4s, 8.63s 0.5 0.11 0.28
74735, 3.0s, 115.83s 41711, 0.69s, 12.49s 0.56 0.23 0.11
71067, 4.16s, 57.1s 23619, 0.36s, 8.86s 0.33 0.08 0.16
24615, 1.6s, 1.15s 4539, 0.07s, 0.35s 0.18 0.04 0.30
63307, 2.2s, 141.44s 34523, 0.39s, 4.03s 0.55 0.18 0.03
57113, 0.91s, 123.16s 40497, 0.49s, 2.68s 0.71 0.54 0.02
28755, 0.54s, 17.16 24819, 0.36s, 3.86s 0.86 0.67 0.22
100465, 2.47s, 284.75s 38229, 0.62s, 36.76s 0.38 0.25 0.13

Average reduction: 0.53 0.25 0.16

Table 2: Results of random graph experiment. Shown are
constraint set sizes, VE and ALP solution times for both
normal implementation (column 1) and the one exploiting
anonymous influence (column 2). Highlighted in bold are
the maximal reductions for each of the three criteria.

connected graph (see related work in Section 7).
The ALP is solved with the exact max constraint by ex-

ploiting anonymous influence in the graph. It is not possible
to solve this problem with the normal ALP due to infeasibly
large intermediate terms being formed during VE. All nodes
are covered with two indicator basis functions IXi and IX̄i

as in the previous experiment. Results for the 30 and 50-
node control tasks are shown in Figure 4 with 95% confi-
dence intervals. The “copystate” heuristic appears to work
reasonably well in the first problem domain but is consis-
tently outperformed by the ALP solution which can admin-
ister anticipatory vaccinations. This effect actually becomes
more pronounced with fewer agents: we experimented with
6 agents in the identical graph and the results (not shown)
indicate that the “copystate” heuristic performs significantly
worse than the random policy with returns averaging up to
−20000 in a subset of the trials. This is presumably because
blocking out disease paths early becomes more important
with fewer agents since the lack of agents in other regions
of the graph cannot make up for omissions later. Similarly,
in the 50-node scenario the reactive “copystate” policy does
not provide a statistically significant improvement over a
random policy (Figure 4).

7 Related Work
Many recent algorithms tackle domains with large (struc-
tured) state spaces. For exact planning in factored domains,
SPUDD exploits an efficient, decision diagram-based rep-
resentation (Hoey et al. 1999). Monte Carlo tree search
(MCTS) has been a popular online approximate planning
method to scale to large (not necessarily factored) domains
(Silver, Sutton, and Müller 2008). These methods do not ap-
ply to exponential action spaces without further approxima-
tions. Ho et al. (2015), for example, evaluated MCTS with
3 agents for a targeted version of the graph control prob-
lem. Recent variants that exploit factorization (Amato and
Oliehoek 2015) may be applicable.

Our work is based on earlier contributions of Guestrin
(2003) on exploiting factored value functions to scale to
large factored action spaces. Similar assumptions can be ex-
ploited by inference-based approaches to planning which
have been introduced for MASs where policies are repre-
sented as finite state controllers (Kumar, Zilberstein, and

0 10 20 30 40 50
Trials

5000

4000

3000

2000

1000

R
e
tu

rn

./exp_log/graphprop/resultsReturn.csv

RAND
COPYSTATE
BIGALP2

0 10 20 30 40 50
Trials

14000

12000

10000

8000

6000

4000

2000

R
e
tu

rn

exp_log/graphprop/resultsReturn.csv

RAND
COPYSTATE
BIGALP2

Figure 4: Mean return for 50 trials of 200 steps each in the
30-node disease control domain with 15 agents (top) and 50-
nodes with 25 agents (bottom). All results are averaged over
50 runs and shown with 95% confidence intervals for each
of random, “copystate” heuristic, and ALP policy (see text).

Toussaint 2011). There are no assumptions about the pol-
icy in our approach. The variational framework of Cheng
et al. (2013) uses belief propagation (BP) and is exponen-
tial in the cluster size of the graph. Results are shown for
20-node graphs with out-degree 3 and a restricted class of
chain graphs. The results here remain exponential in tree-
width but exploit anonymous influence in the graph to scale
to random graphs with denser connectivity. A more detailed
comparison with (approximate) loopy BP is future work.

First-order (FO) methods (Sanner and Boutilier 2009;
Milch et al. 2008) solve planning problems in lifted do-
mains without resorting to grounded representations. Our
ideas share a similarity with “generalized counts” in FO
models that can eliminate indistiguishable variables in the
same predicate in a single operation. Our contributions are
distinct from FO methods. Anonymous influence applies in
propositional models and to node sets that are not necessar-
ily indistiguishable in the problem. Even if nodes appear in

a count aggregator scope of some Xi in the network, they
are further uniquely connected in the graph and are unique
instances. We also show that shattering into disjoint counter
scopes is not required during VE and show how this results
in efficiency gains during VE.

Lastly, decentralized and partially-observable frameworks
exist to model a larger class of MASs (Oliehoek, Spaan, and
Vlassis 2008). The issue of scalability in these models due
to negative complexity results is an active field of research.

8 Conclusions and Future Work
This paper introduces the concept of “anonymous influence”
in large factored multiagent MDPs and shows how it can be
exploited to scale variable elimination and approximate lin-
ear programming beyond what has been previously solvable.
The key idea is that both representational and computational
benefits follow from reasoning about influence of variable
sets rather than variable identity in the factor graph. These
results hold for both single and multiagent factored MDPs
and are exact reductions, yielding the identical result to the
normal VE/ALP, while greatly extending the class of graphs
that can be solved. Potential future directions include ap-
proximate methods (such as loopy BP) in the factor graph
to scale the ALP to even larger problems and to support in-
creased basis function coverage in more complex graphs.

Acknowledgments
F.O. is supported by NWO Innovational Research Incentives
Scheme Veni #639.021.336.

References
Amato, C., and Oliehoek, F. A. 2015. Scalable planning and
learning for multiagent POMDPs. In Twenty-Ninth Confer-
ence on Artificial Intelligence (AAAI), 1995–2002.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. Journal of Artificial Intelligence Research
11:1–94.
Cheng, Q.; Liu, Q.; Chen, F.; and Ihler, A. 2013. Variational
planning for graph-based MDPs. In Burges, C.; Bottou, L.;
Welling, M.; Ghahramani, Z.; and Weinberger, K., eds., Ad-
vances in Neural Information Processing Systems 26, 2976–
2984.
Cui, H.; Khardon, R.; Fern, A.; and Tadepalli, P. 2015. Fac-
tored MCTS for large scale stochastic planning. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artificial In-
telligence, January 25-30, 2015, Austin, Texas, USA., 3261–
3267.
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient solution algorithms for factored MDPs. Jour-
nal of Artificial Intelligence Research 19:399–468.
Guestrin, C. 2003. Planning Under Uncertainty in Complex
Structured Environments. Ph.D. Dissertation, Computer Sci-
ence Department, Stanford University.
Ho, C.; Kochenderfer, M. J.; Mehta, V.; and Caceres, R. S.
2015. Control of epidemics on graphs. In 54th IEEE Con-
ference on Decision and Control (CDC).

Hoey, J.; St-Aubin, R.; Hu, A. J.; and Boutilier, C. 1999.
Spudd: Stochastic planning using decision diagrams. In Pro-
ceedings of Uncertainty in Artificial Intelligence.
Kok, J. R., and Vlassis, N. A. 2006. Collaborative multia-
gent reinforcement learning by payoff propagation. Journal
of Machine Learning Research 7:1789–1828.
Koller, D., and Friedman, N. 2009. Probabilistic Graphical
Models: Principles and Techniques. MIT Press.
Koller, D., and Parr, R. 1999. Computing factored value
functions for policies in structured MDPs. In Proc. Sixteenth
International Joint Conference on Artificial Intelligence (IJ-
CAI), 1332–1339.
Kumar, A.; Zilberstein, S.; and Toussaint, M. 2011. Scal-
able multiagent planning using probabilistic inference. In
Proceedings of the Twenty-Second International Joint Con-
ference on Artificial Intelligence, 2140–2146.
Milch, B.; Zettlemoyer, L. S.; Kersting, K.; Haimes, M.; and
Kaelbling, L. P. 2008. Lifted probabilistic inference with
counting formulas. In Twenty Third Conference on Artificial
Intelligence (AAAI), 1062–1068.
Oliehoek, F. A.; Spaan, M. T. J.; and Vlassis, N. 2008.
Optimal and approximate Q-value functions for decentral-
ized POMDPs. Journal of Artificial Intelligence Research
32:289–353.
Peixoto, T. P. 2014. The graph-tool python library. figshare.
Puterman, M. L. 2005. Markov decision processes: discrete
stochastic dynamic programming. New York: John Wiley &
Sons. A Wiley-Interscience publication.
Raghavan, A.; Joshi, S.; Fern, A.; Tadepalli, P.; and
Khardon, R. 2012. Planning in factored action spaces
with symbolic dynamic programming. In Proceedings of
the Twenty-Sixth AAAI Conference on Artificial Intelligence,
July 22-26, 2012, Toronto, Ontario, Canada.
Sanner, S., and Boutilier, C. 2009. Practical solution tech-
niques for first-order MDPs. Artificial Intelligence 173(5-
6):748–788.
Silver, D.; Sutton, R. S.; and Müller, M. 2008. Sample-based
learning and search with permanent and transient memo-
ries. In Twenty-Fifth International Conference on Machine
Learning (ICML), 968–975.
Srihari, S.; Raman, V.; Leong, H. W.; and Ragan, M. A.
2014. Evolution and controllability of cancer networks: A
Boolean perspective. Computational Biology and Bioinfor-
matics, IEEE/ACM Transactions on 11(1):83–94.

