
Linear Support for
Multi-Objective Coordination Graphs

Diederik M. Roijers
Informatics Institute

University of Amsterdam
Amsterdam, the Netherlands

d.m.roijers@uva.nl

Shimon Whiteson
Informatics Institute

University of Amsterdam
Amsterdam, the Netherlands

s.a.whiteson@uva.nl

Frans A. Oliehoek
DKE / Informatics Institute

Maastricht University /
University of Amsterdam
f.a.oliehoek@uva.nl

ABSTRACT
Many real-world decision problems require making trade-
offs among multiple objectives. However, in some cases, the
relative importance of these objectives is not known when
the problem is solved, precluding the use of single-objective
methods. Instead, multi-objective methods, which compute
the set of all potentially useful solutions, are required. This
paper proposes variable elimination linear support (VELS),
a new multi-objective algorithm for multi-agent coordina-
tion that exploits loose couplings to compute the convex
coverage set (CCS): the set of optimal solutions for all pos-
sible weights for linearly weighted objectives. Unlike ex-
isting methods, VELS exploits insights from POMDP solu-
tion methods to build the CCS incrementally. We prove the
correctness of VELS and show that for moderate numbers
of objectives its complexity is better than that of previous
methods. Furthermore, we present empirical results showing
that VELS can tackle both random and realistic problems
with many more agents than was previously feasible. The
incremental nature of VELS also makes it an anytime al-
gorithm, i.e., its intermediate results constitute ε-optimal
approximations of the CCS, with ε decreasing the longer it
runs. Our empirical results show that, by allowing even very
small ε, VELS can enable large additional speedups.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: multi-agent
systems

General Terms
Algorithms

Keywords
Multiple objectives, game theory, coordination graphs

1. INTRODUCTION
In cooperative multi-agent decision problems, agents must

work together to maximize their common utility. Key to
coordinating efficiently is exploiting loose couplings between
agents: each agent’s behavior directly affects only a subset
of the other agents. Such independence can be captured in
a graphical model called a coordination graph, and exploited
using methods such as variable elimination [13, 17].

Appears in: Alessio Lomuscio, Paul Scerri, Ana Bazzan,
and Michael Huhns (eds.), Proceedings of the 13th Inter-
national Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2014), May 5-9, 2014, Paris, France.
Copyright c© 2014, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

This paper considers a cooperative loosely coupled multi-
agent setting in which there are multiple objectives. Many
real-world problems have several objectives [23], e.g., maxi-
mizing a computer network’s performance while minimizing
power consumption [28] or maximizing the economic benefits
of timber harvesting while minimizing environmental dam-
age [6, 12]. These problems typically have a small number
of objectives that are not aligned, i.e., there is no solution
that simultaneously maximizes utility in all objectives.

The presence of multiple objectives in itself though, does
not necessarily require special solution methods. If the prob-
lem can be transformed by scalarizing the vector-valued util-
ity function, i.e., converting it to a scalar function, it may
be solvable with existing single-objective methods. How-
ever, this approach is not applicable when the weights of
the scalarization function are not known in advance or are
difficult to quantify. For example, consider a company that
produces different resources whose market prices vary. If
there is not enough time to re-solve the problem for each
price change, then we need multi-objective methods to com-
pute a set of solutions optimal for all possible scalarizations.

An important class of multi-objective problems is the multi-
objective coordination graph (MO-CoG), which can model
a range of multi-agent multi-objective tasks [9, 26]. Sev-
eral methods have been developed for solving MO-CoGs [8,
10, 19]. For instance, Rollón and Larrosa [26, 27] intro-
duce an algorithm that we call Pareto multi-objective vari-
able elimination (PMOVE), which solves MO-CoGs by iter-
atively solving local subproblems to eliminate agents from
the graph. However, because these methods compute the
Pareto coverage set (PCS), i.e., the Pareto front, they scale
poorly in the number of agents. In many cases, the size of
the PCS, and therefore the runtime of the algorithm, grows
rapidly with the number of agents [24].

Fortunately, it is not always necessary to compute the
PCS. In the highly prevalent case where we know the scalar-
ization function is linear (e.g., in clinical trials [18] or re-
source gathering [2, 24]), the convex coverage set (CCS)
suffices. Since the CCS is a subset of, and typically much
smaller than, the PCS, computing the CCS can be much
cheaper. Convex MOVE (CMOVE) [24] is a variant of
PMOVE that computes the CCS. However, even though
CMOVE is much more efficient than MOVE, the CCS can
still grow rapidly with the number of agents.

To address this difficulty, we propose variable elimina-
tion linear support (VELS), which exploits insights from
POMDP planning in order to build the CCS incrementally.
We prove the correctness of VELS and show that, for mod-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80775447?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

31 2 3

u u1 2

1 3

3

1

u4

a b c

u

Figure 1: (a) A three agent, two local payoff func-

tion MO-CoG. (b) After the elimination of agent 2 with

(MO)VE. (c) After agent 3 is eliminated as well.

erate numbers of objectives, its complexity is better than
that of previous methods. Furthermore, we present empiri-
cal results showing that VELS is much faster than existing
methods on both randomized and realistic MO-CoGs.

In addition, the incremental nature of VELS makes it an
anytime algorithm, i.e., if there is not enough time to com-
pute the entire CCS, the intermediate solutions computed
by VELS can serve as approximations to the CCS that im-
prove the longer it runs. VELS provides an upper bound
on the maximum error in scalarized payoff with respect to
the full CCS of these approxations. This also implies that
when provided with a maximum scalarized error ε, VELS
can compute an ε-CCS, i.e., an ε-optimal CCS. An ε-CCS is
useful, not only when computing the full CCS is too compu-
tationally expensive, but when the full CCS is too large to
store or iterate over at runtime (at which point the weights of
the scalarization function are known). Our empirical results
show that VELS can compute an ε-CCS in only a fraction
of the time it takes to compute the full CCS.

2. BACKGROUND
In this section, we formally define a MO-CoG and briefly

describe existing methods for it and closely related problems.

2.1 MO-CoGs
A multi-objective coordination graph (MO-CoG)1 [24] is a

tuple 〈D,A,U〉 where: D = {1, ..., n} is the set of n agents;
A = A1×...×An is the set of all possible joint actions a, the
Cartesian product of the finite action spaces of all agents;
and U =

{
u1, ...,uρ

}
is the set of ρ, d-dimensional local pay-

off functions. A local payoff function has limited scope e,
i.e., only a subset of agents participate in it. The total team
payoff2 is the sum of all local payoffs: u(a) =

∑ρ
e=1 ue(ae).

The superscript e is an index for the payoff factor, and ae is
a joint action of the agents participating in ue. We use ui to
indicate the value of the i-th objective. We refer to the set
of all possible payoff vectors as V = {u(a) : a ∈ A}. A MO-
CoG can be visualized with a factor graph as in Figure 1a,
in which the circles denote agents, the squares denote the
local payoff functions, and the edges denote which agents
participate in the given local payoff functions. Such a fac-
tor graph represents the conditional independencies between
agents [5], e.g., agent 1 is independent of agent 3, given that
agent 2 has already determined its action.

We assume there exists a scalarization function f that
converts u(a) to a scalar payoff uw(a) = f(u(a),w).3 This
function is parameterized by a weight vector w, which is
unknown when the MO-CoG is solved but known when the

1We previously referred to this setting as multi-objective col-
laborative graphical games [25].
2Because this is a fully cooperative setting, the team payoff
is the same for all agents.
3Note that the bold subscript w indicates a scalarized value.

agents must select a joint action. The solution to a MO-
CoG is the coverage set (CS) [3], i.e., all joint actions a and
associated values u(a) that are optimal for some w:

CS =
{
u(a) : u(a)∈V ∧ ∃w∀a′ uw(a) ≥ uw(a′)

}
.

From the CS we can compute the optimal scalarized payoff
function u∗CS(w), which, given a weight vector, produces the
optimal scalarized payoff:

u∗CS(w) = max
u(a)∈CS

f(u(a),w). (1)

If u∗CS is computed in advance, then at runtime, when w
becomes known, the agents can use it to quickly select the
best joint action, since doing so requires iterating only over
CS, not V. This is especially important when w can change
rapidly, e.g., as market prices fluctuate.

What the CS looks like depends on what we assume about
f . A very minimal assumption is that f is monotonically
increasing in all objectives. Under this assumption, a joint
action a is better than another strategy a′ when it Pareto-
dominates it, u(a) �P u(a′):

u(a) �P u(a′)↔
(
∀i ui(a) ≥ ui(a′)

)
∧
(
∃i ui(a) > ui(a

′)
)
.

The coverage set for strictly monotonically increasing f is
the Pareto coverage set (PCS) (i.e., the Pareto front), the
set of all strategies that are not Pareto-dominated [23]:

PCS =
{
u(a) : u(a)∈V ∧ ¬∃a′ u(a′) �P u(a)

}
.

Most research [8, 19, 26] on multi-objective decision prob-
lems focusses on calculating the PCS. However, the PCS is
often prohibitively large. Even if it can be computed and
stored, its size can make it infeasible to select the best joint
action at runtime using u∗PCS(w) as defined by Equation 1.
Therefore, many methods (e.g., [8, 19]) resort to approxi-
mating the PCS, with few or no guarantees regarding the
error in the scalarized payoff.

Fortunately, there is often more information about f that
we can leverage to define smaller coverage sets. A highly
prevalent case is when the scalarization function is linear:
f = w · u(a). In this case, we can restrict ourselves to the
convex coverage set (CCS):

CCS=
{
u(a) : u(a)∈V ∧ ∃w∀a′ w·u(a) ≥ w·u(a′)

}
,

which contains all joint actions that are optimal for some
weight w. Because linear scalarization functions are a spe-
cial case of monotonically increasing ones, the CCS is a sub-
set of the PCS, CCS ⊆ PCS ⊆ V. Therefore, the CCS is
the solution concept of choice when f is linear.4 In the case
of linear f , Equation 1 becomes:

u∗CCS(w) = max
u(a)∈CCS

w · u(a).

We visualize the scalarized payoff of different (2-objective)
payoff vectors in Figure 2a, where the weights are on the
x-axis (note that w2 = 1−w1), and the scalarized payoff uw

is on the y-axis. Due to the linearity of f , each payoff vector
is a straight line. Furthermore, u∗CCS(w) (shown as the bold
line segments), is the maximum scalarized value for each w
and is thus the convex upper surface of all of these lines.

4In addition, even if f is nonlinear, the CCS still suffices
as long as stochastic strategies are permitted, since a mix-
ture of CCS actions can always be constructed that weakly
dominates any other strategy [23, 29].

Hence, u∗CCS(w) is a piecewise linear and convex (PWLC)
function. The dashed lines are the vectors that are in the
PCS but not in the CCS.

When considering partially observable Markov decision pro-
cesses (POMDPs) [7, 15], the optimal value function is also a
PWLC function.5 POMDPs and Mo-CoGs are thus related
problems, a fact we exploit in Section 3.

2.2 Methods
A popular method for solving single-objective coordina-

tion graphs is variable elimination (VE) [13]. In VE, agents
are eliminated from the coordination graph in sequence, thus
solving the problem as a series of local subproblems, one for
each agent. When an agent is eliminated, VE computes its
best response to all possible actions of its neighbors. The
local values of these best responses are then used to create a
new local payoff function, replacing those to which the elim-
inated agent was connected. Doing so exploits the graphical
structure because the size of the local subproblems depends
only on the induced width, i.e., how many agents the elim-
inated agent directly affects. VE is illustrated in Figure 1:
in (a), the original graph; in (b), the graph after agent 2 is
eliminated, introducing a new local payoff function u3 that
replaces those to which agent 2 was connected (both u1 and
u2); in (c), the graph after agent 3 is eliminated as well,
leaving only one agent and one new local payoff function.

Rollón and Larrosa [26, 27] propose a method that we
call Pareto multi-objective variable elimination (PMOVE),
which extends VE to the multi-objective setting to compute
the PCS, by computing a local PCS instead of a single best
response for the local subproblems. Roijers et al. [24] pro-
pose convex multi-objective variable elimination (CMOVE),
which combines VE with a pruning operator [11] that com-
putes the CCS. For linear scalarizations, CMOVE greatly
outperforms both PMOVE and methods which do not ex-
ploit the graphical structure of MO-CoGs.

However, the scalability of CCS methods is still limited,
as the CCS can grow rapidly with the number of agents
and objectives. In addition, like all existing multi-objective
VE-based techniques [24, 27], CMOVE deals with the multi-
objectiveness of the problem in the inner loop, at the level
of the local subproblems. As a result, the method’s perfor-
mance is all or nothing: if it is given enough time, it will
compute the entire CCS; if not, it will not return anything.

3. LINEAR SUPPORT FOR MO-COGS
In this section, we present variable elimination linear sup-

port (VELS), a new method for computing the CCS in MO-
CoGs. VELS has several advantages over CMOVE. Firstly,
for moderate numbers of objectives, its computational com-
plexity is better. Secondly, VELS is an anytime algorithm,
i.e., over time, the intermediate results become better and
better approximations of the CCS. Finally, VELS can com-
pute approximate solutions with bounded error. In partic-
ular, when provided with a maximum scalarized error ε,
VELS can compute an ε-optimal CCS.

Rather than dealing with the multiple objectives in the
inner loop (like PMOVE and CMOVE), VELS deals with
it in the outer loop and employs VE as a subroutine. More

5In particular, the belief vectors b in POMDPs correspond
to our weight vectors w and the α-vectors correspond to our
payoff vectors u(a).

specifically, VELS builds the CCS incrementally, with each
iteration of its outer loop adding (at most) one new vector
to a partial CCS. To find this vector, VELS selects a single
w (the one that offers the maximal possible improvement).
Then, in the inner loop, VELS uses VE to solve the single-
objective coordination graph (CoG) that results from fixing
w, adding the resulting vector to the partial CCS if it did
not already contain it.

The departure point for creating this algorithm is Cheng’s
linear support (CLS) [7], which was originally designed as a
pruning algorithm for POMDPs. Unfortunately, this algo-
rithm is rarely used for POMDPs because its runtime is
exponential in the number of states, which corresponds to
the number of objectives in a MO-CoG. Fortunately, while
realistic POMDPs typically have many states, many MO-
CoGs have only a handful of objectives, and scalability in
the number of agents is more important. Thus, CLS is an
attractive starting point for building an efficient MO-CoG
solution method.

First, building on CLS, we create an abstract algorithm
that we call optimistic linear support (OLS), which builds up
the CCS incrementally. Since OLS takes an arbitrary single-
objective problem solver as input, it can be seen as a generic
multi-objective method.6 Second, we integrate OLS and
VE yielding VELS, our main contribution. VELS both uses
the incremental scheme of OLS and exploits the graphical
structure.

3.1 Optimistic Linear Support
OLS constructs the CCS incrementally, by adding vectors

to an initially empty partial CCS :

Definition 1. A partial CCS, S, is a subset of the CCS,
which is in turn a subset of V: S ⊆ CCS ⊆ V.

It does so by finding the best payoff vector for specific values
of w. Because S is a partial CCS, we can also define the
scalarized value function over S, corresponding to the convex
upper surface (shown in bold) in Figure 2a:

u∗S(w) = max
u(a)∈S

w · u(a).

Similarly, we define AS(w) = arg maxu(a)∈S w · u(a) as the
optimal joint action set function with respect to S.

OLS, shown in Algorithm 1, assumes access to a function
called SolveCoG that computes the best payoff vector for
a given w, i.e., it solves the single-objective coordination
graph that results from fixing w. For now, we leave the
implementation of SolveCoG abstract. In Sections 3.2 and
3.3, we consider different implementations of SolveCoG. OLS
also takes as input m, the MO-CoG to be solved, and ε, the
maximal tolerable error in the result.

OLS starts (line 1) by initializing the partial CCS, S,
which will contain the payoff vectors in the CCS discovered
so far, as well as the the set of visited weights W. Then,
it adds the extrema of the weight simplex, i.e., those points
where all of the weight is on one objective, to a priority
queue Q (line 4). Next, OLS enters the main loop (line 6),
in which the w with the highest priority is popped (line 7),
and then SolveCoG is called (line 8) to find u, the best pay-
off vector for that w. For example, Figure 2b shows S after
two payoff vectors of a 2-dimensional MO-CoG have been
found by applying SolveCoG to the extrema of the weight

6In fact, we apply OLS to multi-objective sequential
decision-making in [22].

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

w1

V
w

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

w1

V
w

∆

wc

(1,8)
(7,2)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

w1

u
w

(1,8)
(7,2)

(5,6)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

w1

V
w

(a) (b) (c) (d)

Figure 2: (a) All possible payoff vectors for a 2-objective MO-CoG. (b) OLS finds two payoff vectors at the
extrema (red vertical lines), a new corner weight wc = (0.5, 0.5) is found, with maximal possible improvement
∆. CCS is shown as the dotted line. (c) OLS finds a new vector at (0.5, 0.5), and adds two new corner weights
to Q. (d) OLS calls SolveCoG for both corner weights, and finds no new vectors, making S = CCS = CCS.

Algorithm 1: OLS(m, SolveCoG, ε)

Input: A CoGG and an agent i to eliminate.1 S ← ∅; W ← ∅ //partial CCS, set of checked weights
2 Q← an empty priority queue
3 foreach extremum of the weight simplex we do
4 Q.add(we, ∞) // add extrema with infinite priority
5 end
6 while ¬Q.isEmpty() ∧ ¬timeOut do
7 w← Q.pop()
8 u← SolveCoG(m,w)
9 if u 6∈ S then

10 delete corner weights made obsolete by u from Q
11 Wu ← newCornerWeights(u, S)
12 S ← S ∪ {u}
13 foreach w ∈Wu do
14 ∆r(w)← calc. improvement using

maxValueLP(w, S,W)
15 if ∆r(w) > ε then
16 Q.add(w, ∆r(w))
17 end

18 end

19 end
20 W ←W ∪ {w}
21 end
22 return S and the highest ∆r(w) left in Q

simplex: S = {(1, 8), (7, 2)}. Each of these vectors must be
part of the CCS because it is optimal for at least one w: the
one for which SolveCoG returned it as a solution. The set
of weights W that OLS has tested so far are marked with
vertical red line segments.

After identifying a new vector u to add to S (line 8),
OLS must determine what new weights to add to Q. Like
CLS, OLS does so by identifying the corner weights: the
weights at the corners of the convex upper surface, i.e., the
points where the PWLC surface u∗S(w) changes slope. To
define the corner weights precisely, we must first define P ,
the polyhedral subspace of the weight simplex that is above
u∗S(w) [4]. The corner weights are then the vertices of P,
which can be defined by a set of linear inequalities:

Definition 2. If S is the set of known payoff vectors, we
define a polyhedron

P = {x ∈ <d+1 : S+x ≥ ~0,∀i, wi > 0,
∑
i

wi = 1},

where S+ is a matrix with the elements of S as row vec-
tors, augmented by a column vector of −1’s. The set of
linear inequalities S+x ≥ ~0, is supplemented by the sim-
plex constraints: ∀i wi > 0 and

∑
i wi = 1. The vector

x = (w1, ..., wd, u) consists of a weight vector and a scalar-
ized value at those weights. The corner weights are the
weights contained in the vertices of P , which are also of the
form (w1, ..., wd, u).

Note that, due to the simplex constraints, P is only d-
dimensional. Furthermore, the extrema of the weight sim-
plex are special cases of corner weights.

After identifying u, OLS identifies which corner weights
change in the polyhedron P by adding u to S. Fortunately,
this does not require recomputation of all the corner weights,
but can be done incrementally: first, the corner weights in
Q for which u yields a better value than currently known
are deleted from the queue (line 10) and then the function
newCornerWeights(u, S) at line 11 calculates the new corner
weights that involve u by solving a system of linear equations
to see where u intersects with the boundaries and the present
vectors in S.7 Figure 2b shows one new corner weight la-
belled wc = (0.5, 0.5).

Cheng showed that finding the best payoff vector for each
corner weight and adding it to the partial CCS, i.e., S ←
S ∪ {SolveCoG(w)}, guarantees the best improvement to S:

Theorem 1. (Cheng 1988) The maximum value of:

max
w,u∈CCS

min
v∈S

w · u−w · v,

i.e., the maximal improvement to S by adding a vector to it,
is at one of the corner weights [7].

However, since SolveCoG is an expensive operation, test-
ing all corner weights can be inefficient. Therefore, unlike
CLS, at each iteration OLS pops only one w off Q to be
tested. Making OLS efficient thus depends critically on giv-
ing each w a suitable priority when adding it to Q. To
this end, OLS prioritizes each corner weight according to
its maximal possible improvement, an upper bound on the
maximal improvement. This upper bound is computed with
respect to the optimistic hypothetical CCS, CCS, i.e., the
best-case scenario for the final CCS given that S is the cur-
rent partial CCS and W is the set of weights already tested
with SolveCoG. The key advantage of OLS over CLS is that

7To keep the systems of linear equations as small as possi-
ble, we use data structures that track which vector in S is
connected to which corner weight, and vice versa. The linear
equations use only a set Uc ⊆ S of payoff vectors identified
by selecting those vectors that are associated with the w that
u replaced and then recursively adding the other vectors of
corner weights for which u also provides an improvement.

these priorities can be computed without calling SolveCoG,
obviating the need to run SolveCoG on all corner weights.

Definition 3. An optimistic hypothetical CCS, CCS is a
set of payoff vectors that yields the highest possible scalarized
value for all possible w consistent with finding the vectors S
at the weights in W.

Figure 2b denotes the CCS = {(1, 8), (7, 2), (7, 8)} with a
dotted line. Note that CCS is a superset of S and the value
of u∗

CCS
(w) is the same as u∗S(w) at all the weights in W.

For a given w, maxValueLP finds the the scalarized value of
u∗
CCS

(w) by solving:

max w · v
subject to W v ≤ u∗S,W ,

where u∗S,W is a vector containing u∗S(w′) for all w′ ∈ W.
Note that we abuse the notation W, which in this case is a
matrix whose rows consist of all the weight vectors in the
set W.

Using CCS, we can define the maximal possible improve-
ment:

∆(w) = u∗CCS(w)− u∗S(w).

Note that the value of u∗
CCS

(w) needs to be calculated using
maxValueLP. Figure 2b shows ∆(wc) with a dashed line. We
use the maximal relative possible improvement, ∆r(w) =
∆(w)/u∗

CCS
(w), as the priority of each new corner weight

w ∈Wu. In Figure 2b, ∆r(wc)=
(0.5,0.5)·((7,8)−(1,8))

7.5
=0.4.

When a corner weight w is identified (line 11), it is added
to Q with priority ∆r(w) as long as ∆r(w) > ε (lines 14-16).

After wc in Figure 2b is added to Q, it is popped off again
(as it is the only element of Q). SolveCoG(wc) generates a
new vector (5, 6), yielding S = {(1, 8), (7, 2), (5, 6)}, as illus-
trated in Figure 2c. The new corner weights (0.667, 0.333)
and (0.333, 0.667) are the points at which (5, 6) intersects
with (7, 2) and (1, 8). Testing these weights, as illustrated
in Figure 2d, does not result in new payoff vectors, caus-
ing OLS to terminate. The maximal improvement at these
corner weights is 0 and thus, due to Theorem 1, S = CCS
upon termination.

In the following subsections, we provide two ways to im-
plement SolveCoG. However, any exact CoG algorithm is
applicable. Note that approximate methods for CoGs, such
as max-plus [17] would invalidate Theorem 1 since they may
return suboptimal vectors for a corner weight.

3.2 Non-Graphical Linear Support
A naive way to implement SolveCoG is to explicitly com-

pute the values of all joint actions V and select the joint
action that maximizes this value:

SolveCoG(m,w) = arg max
u(a)∈V

w · u(a).

Using this implementation of SolveCoG in OLS yields an al-
gorithm that we call non-graphical linear support (NGLS)
because it ignores the graphical structure, flattening the
CoG into a standard multi-objective cooperative normal form
game. The downside of this approach is that the computa-
tional complexity of SolveCoG is linear in |V|, which is itself
exponential in the number of agents, making it feasible only
for very small MO-CoGs.

3.3 Variable Elimination Linear Support
Key to keeping MO-CoGs tractable is exploiting the graph-

ical structure. Therefore, having dealt with the multiple ob-
jectives in the outer loop of OLS, all we need to do now is
to implement SolveCoG with a method that does so. VE is
such a method.

Because VE exploits the CoG’s graphical structure, its
computational complexity is only O(n|Amax|w) [13], where
|Amax| is the maximal number of actions for a single agent
and w is the induced width, i.e., the maximal number of
neighboring agents of an agent, at the moment when it is
eliminated. Its complexity is thus exponential only in this
induced width, which is often much less than the number of
agents. Implementing SolveCoG using VE yields variable
elimination linear support (VELS), completing our main
contribution.

4. ANALYSIS
In this section, we analyse the correctness and complexity

of VELS, and compare it to that of alternative methods.

4.1 Correctness
We begin by establishing the correctness of VELS.

Theorem 2. When ε = 0, VELS terminates, and cor-
rectly produces the CCS for m.

Proof. Because SolveCoG is implemented using VE, which
optimally solves CoGs [13], each vector u computed by call-
ing SolveCoG(w) must be optimal for w. Therefore, if u
was already in S, then the fact that u = SolveCoG(w) con-
firms that the maximal possible improvement at w is zero.
If u was not already in S, adding it to S is correct: since
it is optimal at w, it belongs in the CCS. In this case, all
the new corner weights are added to Q, guaranteeing that
Q always contains all the corner weights of S except those
whose maximal possible improvement has been confirmed
to be zero. VELS thus terminates only when the maximal
possible improvement at all the corner weights of S is zero,
which Theorem 1 implies can occur only when S = CCS.
Since V is finite and CCS ⊆ V, VELS must terminate.

If ε > 0, VELS terminates before it has found the CCS.
However, in this case, we can bound the maximal actual
relative improvement :

Definition 4. The maximal actual relative improvement
that can be made to S with respect to CCS is

∆∗ar = max
w

u∗CCS(w)− u∗S(w)

u∗CCS(w)
.

Note that, due to Theorem 1, ∆∗ar must be at one of the
corner weights. We can now define an ε-CCS:

Definition 5. An ε-CCS is a subset of the CCS for which
∆∗ar ≤ ε.

Theorem 3. During execution of VELS, S is an ε-CCS
with ε ≤ ∆r(w1), where w1 is the corner weight with the
highest priority in Q.

Proof. Because S is a partial CCS, S ⊆ CCS and thus
u∗S(w) is a lower bound on u∗CCS(w). Furthermore, since
u∗
CCS

(w) is an upper bound on u∗CCS(w), it follows that

∆r(w) =
u∗
CCS

(w)−u∗
S(w)

u∗
CCS

(w)
is an upper bound on

u∗
CCS(w)−u∗

S(w)

u∗
CCS

(w)
.

Therefore, ∆r(w1) is a bound on ∆∗ar.

Corollary 1. If a fixed ε is supplied, VELS terminates
and produces an ε-CCS.

Proof. All corner weights for which ∆r(w1) > ε are
added to Q. Therefore, VELS terminates when there are no
more corner weights with a priority higher than ε, making
S an ε-CCS.

4.2 Complexity
We now analyze the computational complexity of VELS.

Theorem 4. The runtime of VELS with ε = 0 is
O(n|Amax|w(|CCS|+|WCCS |), where w is the induced width
when running VE, |CCS| is the size of the CCS, and |WCCS |
is the number of corner weights of u∗CCS(w).

Proof. Since n|Amax|w is the runtime of VE [13], the
runtime of VELS is this quantity multiplied by the number
of calls to VE. To count these calls, we consider two cases:
calls to VE that result in adding a new vector to S and those
that do not result in a new vector but instead confirm the
optimality of the scalarized value at that weight. The former
is the size of the final CCS, |CCS|, while the latter is the
number of corner weights for the final CCS, |WCCS |.

Note that the overhead of OLS itself, i.e., computing new
corner weights (newCornerWeights(u, S)), and calculating
the maximal relative improvements by calling maxValueLP(w,
S, W), is negligible with respect to the SolveCoG calls.

For d = 2, the number of corner weights is bounded by
|CCS| and the runtime of VELS is thus O(n|Amax|w|CCS|).
For d = 3, the number of corner weights is 2 times |CCS|
(minus a constant) because, when SolveCoG finds a new pay-
off vector, one corner weight is removed and three new corner
weights are added. For d > 3, a loose bound on |WCCS | is
the total number of possible combinations of d payoff vec-
tors or boundaries: O(

(|CCS|+d
d

)
). However, we can obtain

a tighter bound by observing that counting the number of
corner weights given the CCS is equivalent to vertex enu-
meration, which is the dual problem of facet enumeration,
i.e., counting the number of vertices given the corner weights
[16].

Theorem 5. For arbitrary d, |WCCS | is bounded by

O(
(|CCS|−b d+1

2
c

|CCS|−d

)
+
(|CCS|−b d+2

2
c

|CCS|−d

)
) [1].

Proof. This result follows directly from McMullen’s up-
per bound theorem for facet enumeration [14, 21].

The same reasoning used to prove Theorems 4 can also be
used to establish the following:

Theorem 6. The runtime of VELS with ε > 0 is
O(n|Amax|w(|ε-CCS| + |Wε–CCS |), where |ε-CCS| is the
size of the ε-CCS, and |Wε–CCS | is the number of corner
weights of u∗ε–CCS(w).

In practice, VELS will often not test all the corner weights
of the polyhedron spanned by the ε-CCS, but this cannot be
guaranteed. In Section 5, we show empirically that |ε-CCS|
decreases rapidly as ε increases.

4.3 Comparison to Alternative Methods
Taking Theorems 4 and 5 together establishes that the

runtime of VELS is exponential in w and d. By contrast,

the complexity of NGLS, O(|Amax|n(|CCS| + |WCCS |), is
exponential in both n and d.

The computational complexity of PMOVE is

O(n |Amax|wd |Vl||PCS|),

where |Vl| is the size of a local subproblem, i.e., the number
of possible local value vectors as a result of a joint action of
an agent and its direct neighbors, and |PCS| to the size of
the PCS. The complexity of CMOVE8 is

O(n |Amax|w (d |Vl| |LPCS|+ |LPCS| P (d |CCS|))),

where |LPCS| is the size of the local PCS and P (d |CCS|) is
a polynomial in the size of the CCS and d, which corresponds
to the runtime of a linear program that tests whether there
is a weight for which a local payoff vector is optimal. Thus,
both PMOVE and CMOVE are polynomial in the size of
the coverage sets they compute. By contrast, VELS is only
linear in the size of the CCS for d = 2 and d = 3. However,
for d ≥ 4 the runtime of VELS becomes exponential in d.
The runtimes of the MOVE algorithms depend on d directly,
and on the sizes of the coverage sets they compute, which
is in practice polynomial in d. The complexity of VELS is
thus better for moderate number of objectives, but worse
for high d.

5. EXPERIMENTS
To compare the performance of VELS to that of PMOVE

and CMOVE, we tested these methods in two settings. The
first consists of randomly generated MO-CoGs, which allow
us to examine performance on MO-CoGs with widely vary-
ing properties. The second is Mining Day [24], a MO-CoG
benchmark derived from a realistic scenario. We do not com-
pare to NGLS or other non-graphical methods because they
proved prohibitively slow.

5.1 Random MO-CoGs
To test VELS on randomly generated MO-CoGs, we use

the MO-CoG generation procedure proposed by Roijers et
al. [24]. This procedure produces a random MO-CoG given:
n, the number of agents; d, the number of objectives; ρ the
number of local payoff functions; and |Ai|, the action space
size, which is the same for all agents.9

To determine how the scalability of exact and approxi-
mate VELS compares to that of PMOVE and CMOVE, we
tested them on random MO-CoGs with increasing numbers
of agents. The average number of factors per agent was held
at ρ = 1.5n and the number of objectives at d = 2. Figure
3a shows the results, which are averaged over 30 MO-CoGs
for each number of agents. Note that the runtimes, on the
y-axis, are in log-scale.

These results demonstrate that, as the number of agents
grows, computing the CCS is much cheaper than comput-
ing the PCS. Even though PMOVE is initially faster than
CMOVE, the runtime of CMOVE grows much more slowly
with the number of agents than PMOVE, and CMOVE out-
performs PMOVE from 70 agents onwards. Exact VELS
outperforms PMOVE from 45 agents onwards. The differ-
ence in growth rates between PCS and CCS methods can be
explained by the fact that the CCS grows much more slowly

8For brevity we consider only the“basic”variant of CMOVE,
which performed best empirically [24].
9Please see [24] for the generation procedure.

20 40 60 80 100

1
1
0
0

1
0
0
0
0

number of agents

ru
n
ti
m

e
(m

s
)

PMOVE

CMOVE

Exact VELS

e=1%

e=0.1%

20 40 60 80 100

0
1
0
0

2
0
0

3
0
0

number of agents

ru
n
ti
m

e
(m

s
)

PCS

CCS

0.1%−CCS

1%−CCS

2.0 3.0 4.0 5.0

1
e
+

0
0

1
e
+

0
4

number of objectives

ru
n
ti
m

e
(m

s
)

PMOVE

CMOVE

Exact VELS

e=0.1%

e=1%

e=10%

2.0 3.0 4.0 5.0

5
5
0

5
0
0

1
0
0
0
0

number of objectives

C
S

 s
iz

e

PCS
CCS
1%−CCS
10%−CCS

(a) (b) (c) (d)

Figure 3: (a) The runtimes of PMOVE, CMOVE and VELS with different values of ε, for varying numbers of
agents, n, and ρ = 1.5n factors, 2 actions per agent, and 2 objectives; (b) the corresponding sizes of the PCS
and CCS; (c) the runtimes of PMOVE, CMOVE and VELS with different values of ε, for varying numbers
of objectives, n = 25, ρ = 1.5n, and 2 actions per agent (d) the corresponding sizes of the PCS and CCS.

with the number of agents (Figure 3b). The runtime of ex-
act VELS (ε = 0) is on average 16 times less than that of
CMOVE. CMOVE solves random MO-CoGs with 85 agents
in 74s on average, whilst exact VELS can handle 110 agents
in 71s.

While this is already a large gain, we can also achieve a
much lower growth rate by permitting a small ε. For 110
agents, permitting a 0.1% error margin yields a gain of more
than an order of magnitude, reducing the runtime to 5.7s.
Permitting a 1% error reduces the runtime to only 1.3s. We
can thus reduce the runtime of VELS by a factor of 57, while
retaining 99% accuracy. Compared to CMOVE at 85 agents,
VELS with ε = 1% is 109 times faster.

These speedups can be explained by the slower growth of
the ε-CCS. For small numbers of agents, the size of the ε-
CCS grows only slightly more slowly than the size of the full
CCS. However, from a certain number of agents onwards,
the size of the ε-CCS grows only marginally while the size
of the full CCS keeps on growing. For ε = 1%, the ε-CCS
grew from 2.95 payoff vectors to 5.45 payoff vectors between
5 and 20 agents, and then only marginally to 5.50 at 110
agents. By contrast, the full CCS grew from 3.00 to 9.90
vectors between 5 and 20 agents, but then keeps on growing
to 44.50 at 110 agents. A similar picture holds for the 0.1%-
CCS, which grows rapidly from 3.00 vectors at 5 to 14.75
vectors at 50 agents, then grows more slowly to 16.00 at
90 agents, and then more or less stabilizes, to reach 16.30
vectors at 120 agents, while between 90 and 120 agents, the
full CCS grows from 35.07 vectors to 45.40 vectors.

To test the scalability of VELS, PMOVE and CMOVE,
with respect to the number of objectives, we tested them
on random MO-CoGs with a constant number of agents and
factors n = 25 and ρ = 1.5n, but increased the number of ob-
jectives. We kept the number of agents small in order to test
the limits of scalability in the number of objectives. Figure
3c plots the number of objectives against the runtime (log
scale). Because the PCS and CCS both grow exponentially
with the number of objectives (Figure 3d), CMOVE and
PMOVE are also exponential in the number of objectives.
VELS however is linear in the number of corner weights,
which is roughly exponential in the size of the CCS, mak-
ing VELS doubly exponential. VELS is however faster than
CMOVE for d = 2 and d = 3, and for d = 4 approximate
VELS with ε = 0.01 is 1.25 times faster, and with ε = 0.1 it
is more than 20 times faster.

Unlike when the number of agents grows, the size of the ε-

0 100 200 300 400 500
0

1
0
0
0
0

2
5
0
0
0

number of agents

ru
n
ti
m

e
(m

s
)

CMOVE

Exact VELS

e=0.0001%

e=0.001%

e=0.01%

e=0.1%

e=1%

1e−06 1e−04 1e−02

1
e
+

0
2

5
e
+

0
3

1
e
+

0
5

ε

ru
n
ti
m

e
(m

s
)

n=1000

n=500

n=250

Figure 4: (left) plot of the runtimes of CMOVE and
VELS with different values of ε, for varying n (up to
500). (right) loglogplot of the runtime of VELS on
250, 500, and 1000 agent mining day instances, for
varying values of ε.

CCS does not stabilize when the number of objectives grows,
as can be seen in the following table:

|ε–CCS| ε = 0 ε = 0.1% ε = 1% ε = 10%
d = 2 10.6 7.3 5.6 3.0
d = 3 68.8 64.6 41.0 34.8
d = 4 295.1 286.1 242.6 221.7

Thus, the ε-CCSs seem to grow exponentially with the num-
ber of objectives. Nonetheless, computing only an ε-CCS
can lead to a large speedup when there are many agents.

5.2 Mining Day
In the Mining Day benchmark [24], a mining company

mines gold and silver (objectives) from different mines (lo-
cal payoff functions) spread throughout the region in which
the company operates. The workers live in villages also
spread throughout this region. The company has supplied
one van to each village (agents) for transporting the workers
of that village and must determine every morning to which
mine each van should go (actions). A van can only travel
to mines that are close to the village (graph connectivity).
Workers are more efficient if there are many workers at a
mine. Since the company aims to maximize profit, the best
strategy depends on the fluctuating prices of gold and silver
on the market, which are not known when the plan must be
computed.10

To compare VELS to CMOVE, we generated 30 Mining
Day instances for increasing n up to 500 and averaged the
runtimes (Figure 4 (left)). At 160 agents, CMOVE has al-
ready reached a runtime of 22s, while exact VELS (ε = 0)

10For details about the problem and the generation procedure
please refer to [24].

can compute the complete CCS for 420 agents in the same
time. Thus, VELS greatly outperforms CMOVE on this
structured 2-objective MO-CoG. Moreover, when we allow
only 0.1% error (ε = 10−3), it takes only 1.1s to compute
an ε-CCS for 420 agents, a speedup of more than an order
of magnitude.

To measure the additional speedups obtainable by further
increasing ε, and to test VELS on very large problems, we
generated Mining Day instances with n ∈ {250, 500, 1000}.
We averaged over 25 instances per value of ε. On these
instances, exact VELS runs in 4.2s for n = 250, 30s for
n = 500 and 218s for n = 1000 on average. As expected,
increasing ε leads to greater speedups (Figure 4 (right)).
However, when ε is close to 0, i.e., the ε-CCS is close to the
full CCS, the speedup is small. After ε has increased be-
yond a certain value (dependent on n), the decline becomes
steady, shown as a line in the log-log plot. If ε increases by
a factor 10, the runtime decreases by about a factor 1.6.

Thus, these results show that VELS can compute the ex-
act CCS for unprecedented numbers of agents (1000) in well-
structured problems. In addition, they show that small val-
ues of ε enable large speedups, and that increasing ε leads
to even bigger improvements in scalability.

6. DISCUSSION & CONCLUSIONS
In this paper, we proposed the VELS algorithm to com-

pute the CCS for multi-objective coordination graphs. Un-
like previous methods, it deals with the multiple objectives
in the outer loop rather than the inner loop, making it an
anytime algorithm. We proved the correctness of VELS and
analyzed its complexity in terms of the size of the CCS and
the number of objectives. During execution of VELS, the
intermediate results are ε-CCSs with ε being the maximal
possible error of corner weight on top of a priority queue.
When time is short, VELS can thus produce an ε-CCS.

We have shown empirically that VELS greatly reduces
computational costs for moderate numbers of objectives when
computing the CCS, can tackle multi-objective problems
with many more agents than previous methods. Moreover,
by computing an ε-CCS instead of the full CCS, VELS can
reduce the computational costs even further. Therefore, we
conclude that computing the CCS by dealing with the mul-
tiple objectives in the outer loop can help greatly in keeping
MO-CoGs tractable.

In future work, we will combine OLS with methods other
than VE. In particular, when memory, not computation
time, is the bottleneck in computing the CCS, memory-
efficient methods can be used instead, e.g., [20].

Acknowledgements
This research is supported by the NWO DTC-NCAP
(#612.001.109) project and in part by NWO Innovational Re-
search Incentives Scheme Veni (#639.021.336).

7. REFERENCES
[1] D. Avis and L. Devroye. Estimating the number of vertices

of a polyhedron. Information processing letters,
73(3):137–143, 2000.

[2] L. Barrett and S. Narayanan. Learning all optimal policies
with multiple criteria. In ICML, pages 41–47, 2008.

[3] R. Becker, S. Zilberstein, V. Lesser, and C. Goldman.
Transition-Independent Decentralized Markov Decision
Processes. In AAMAS, 2003.

[4] D. Bertsimas and J. Tsitsiklis. Introduction to Linear
Optimization. Athena Scientific, 1997.

[5] C. M. Bishop. Pattern Recognition and Machine Learning.
2006.

[6] C. Bone and S. Dragicevic. GIS and intelligent agents for
multiobjective natural resource allocation: A reinforcement
learning approach. Trans. in GIS, 13(3):253–272, 2009.

[7] H.-T. Cheng. Algorithms for partially observable Markov
decision processes. PhD thesis, UBC, 1988.

[8] F. Delle Fave, R. Stranders, A. Rogers, and N. Jennings.
Bounded decentralised coordination over multiple
objectives. In AAMAS, pages 371–378, 2011.

[9] F. M. Delle Fave. Multi-objective decentralised
coordination for teams of robotic agents. 2011.

[10] J. Dubus, C. Gonzales, and P. Perny. Choquet optimization
using gai networks for multiagent/multicriteria
decision-making. In ADT, pages 377–389. 2009.

[11] Z. Feng and S. Zilberstein. Region-based incremental
pruning for POMDPs. CoRR, abs/1207.4116, 2012.

[12] P. Gong. Multiobjective dynamic programming for forest
resource management. Forest Ecology and Management,
48:43–54, 1992.

[13] C. Guestrin, D. Koller, and R. Parr. Multiagent planning
with factored MDPs. In NIPS, 2002.

[14] M. Henk, J. Richter-Gebert, and G. M. Ziegler. Basic
properties of convex polytopes. In Handbook of Discrete
and Computational Geometry, Ch.13, pages 243–270. CRC
Press, Boca, 1997.

[15] L. Kaelbling, M. Littman, and A. Cassandra. Planning and
acting in partially observable stochastic domains. Artificial
Intelligence, 101:99–134, 1998.

[16] V. Kaibel and M. E. Pfetsch. Some algorithmic problems in
polytope theory. In Algebra, Geometry and Software
Systems, pages 23–47. Springer, 2003.

[17] J. Kok and N. Vlassis. Collaborative multiagent
reinforcement learning by payoff propagation. J. Mach.
Learn. Res., 7:1789–1828, Dec. 2006.

[18] D. Lizotte, M. Bowling, and S. Murphy. Efficient reinforce-
ment learning with multiple reward functions for random-
ized clinical trial analysis. In ICML, pages 695–702, 2010.

[19] R. Marinescu, A. Razak, and N. Wilson. Multi-objective
influence diagrams. In UAI, 2012.

[20] R. Mateescu and R. Dechter. The relationship between
and/or search and variable elimination. CoRR,
abs/1207.1407, 2012.

[21] P. McMullen. The maximum numbers of faces of a convex
polytope. Mathematika, 17(02):179–184, 1970.

[22] D. M. Roijers, J. Scharpff, M. T. Spaan, F. A. Oliehoek,
M. de Weerdt, and S. Whiteson. Bounded approximations
for linear multi-objective planning under uncertainty. In
ICAPS, 2014. To appear.

[23] D. M. Roijers, P. Vamplew, S. Whiteson, and R. Dazeley. A
survey of multi-objective sequential decision-making.
Journal of Artificial Intelligence Research, 47:67–113, 2013.

[24] D. M. Roijers, S. Whiteson, and F. A. Oliehoek.
Computing convex coverage sets for multi-objective
coordination graphs. In ADT, pages 309–323, 2013.

[25] D. M. Roijers, S. Whiteson, and F. A. Oliehoek.
Multi-objective variable elimination for collaborative
graphical games. In AAMAS, 2013. Extended Abstract.

[26] E. Rollón. Multi-Objective Optimization for Graphical
Models. PhD thesis, Uni. Politècnica de Catalunya, 2008.

[27] E. Rollón and J. Larrosa. Bucket elimination for
multiobjective optimization problems. Journal of
Heuristics, 12:307–328, 2006.

[28] G. Tesauro, R. Das, H. Chan, J. O. Kephart, C. Lefurgy,
D. W. Levine, and F. Rawson. Managing power
consumption and performance of computing systems using
reinforcement learning. In NIPS, 2007.

[29] P. Vamplew, R. Dazeley, A. Berry, E. Dekker, and
R. Issabekov. Empirical evaluation methods for
multiobjective reinforcement learning algorithms. Machine
Learning, 84(1-2):51–80, 2011.

