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ABSTRACT
In cooperative multi-agent sequential decision making under
uncertainty, agents must coordinate in order find an optimal
joint policy that maximises joint value. Typical solution al-
gorithms exploit additive structure in the value function, but
in the fully-observable multi-agent MDP setting (MMDP)
such structure is not present. We propose a new optimal
solver for so-called TI-MMDPs, where agents can only af-
fect their local state, while their value may depend on the
state of others. We decompose the returns into local returns
per agent that we represent compactly in a conditional re-
turn graph (CRG). Using CRGs the value of a joint policy
as well as bounds on the value of partially specified joint
policies can be efficiently computed. We propose CoRe, a
novel branch-and-bound policy search algorithm building on
CRGs. CoRe typically requires less runtime than the avail-
able alternatives and is able to find solutions to problems
previously considered unsolvable.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Scheduling; I.2.11 [Distributed Artificial Intelligence]:
Multiagent systems

General Terms
Algorithms

Keywords
Multi-agent planning, fully observable, MMDP, transition
independence

1. INTRODUCTION
When planning in uncertain domains with sequential plan-

ning decisions, cooperative teams of agents must coordinate
to maximise their (joint) team value. For each possible state
of the environment, the agents must select a joint action
that leads to the highest expected sum of rewards [3]. In
the context of full-observability, where each agent can ob-
serve the entire state space at every planning decision, the
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availability of complete and perfect information can be ex-
ploited to develop coordination policies with higher values.
On the other hand, as such policies are conditioned on the
global state – which is typically exponentially-sized in the
number of agents – the benefit of higher values is often as-
sociated with a substantial increase in the computational
burden to find such policies. Especially, when optimal plans
are required, e.g., when dealing with strategic behavior as
part of an allocation mechanism that optimises social wel-
fare [4, 16], approaches are needed that combat this increase
in complexity as a result of full observability.

In response to this complexity, two important lines of work
developed. One line has proposed to find approximate solu-
tions by imposing and exploiting an additive structure in
the value function [6]. This approach has been applied in a
range of stochastic planning settings, fully and partially ob-
servable alike [5, 10, 8, 14]. The drawback of such methods,
however, is that typically no error guarantees can be given.

Another line of work has not sacrificed optimality, but
instead focused on specific properties of sub-classes of prob-
lems that can be exploited [2, 1, 11, 19]. In particular, a
number of methods that exploit the same type of additive
structure in the value function have been shown to be exact,
simply because the value functions of the sub-class of prob-
lems they address are guaranteed to have such shape [12, 13,
18]. However, all these approaches are for decentralised mod-
els in which the actions are conditioned only on local obser-
vations. Consequentially, optimal policies for decentralised
models typically result in lower value than could have been
achieved by optimal policies for their fully-observable coun-
terparts (shown in our experiments).

Unfortunately, fully-observable problems do not belong to
the class of problems that admit a value function that is
exactly factored into additive components. The intuition is
that, by observing the full state, it will be possible for an
agent to better predict the actions of other agents than when
only observing a local state. This in turn means that each
agent’s action should be conditioned on the full state, and
that the value function therefore also depends on the full
state, ruling out the possibility of a factored value function
in general.

Nevertheless, we contribute to the second line of work by
exploiting other properties in the fully observable context.
In particular, we exploit the reward structure of multi-agent
Markov decision processes (MMDPs) [3] in the context of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80775445?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


transition independent agents [2] (i.e., agents can influence
only their own state) with additively factored rewards (i.e.,
rewards depend on small groups of agents [12]) operating
in a fully-observable environment (i.e., there is no obser-
vation independence). We illustrate the importance of the
TI-MMDP model with a real-world, numerical maintenance
planning problem [16].

We propose to exploit the reward structure of such TI-
MMDPs by decomposing the returns of all possible execu-
tion sequences—i.e., all possible sequences of states and ac-
tions that can occur from the initial time step to the plan-
ning horizon—into returns depending only locally on rele-
vant states and actions of small subsets of agents.

That is, we suggest an approach based on three key ob-
servations: 1) Contrary to the optimal value function, re-
turns can be decomposed without loss of optimality, as they
depend only on local information about the execution se-
quence, while the optimal value depends on agents condi-
tioning their local policies on the entire joint state. 2) These
factored returns can be used in effective data structures, con-
ditional return graphs (CRGs) to compute upper and lower
bounds on the optimal (non-factored) value function. 3) We
can detect the presence of conditional reward independence,
i.e., the absence of further reward interactions, to decouple
agents during policy search.

We propose conditional return policy search (CoRe), a
branch-and-bound policy search algorithm for fully observ-
able TI-MMDPs that uses CRGs, and show that it is an
effective method when reward interactions between agents
are sparse. We evaluate CoRe on instances of the aforemen-
tioned maintenance planning problem with uncertain out-
comes and a very large state space. First we establish that
decentralised policies are inadequate in achieving optimal
coordination. Next, we demonstrate that CoRe evaluates
only a fraction of the policy search space and, as a con-
sequence, is able to find policies for previously unsolvable
instances while commonly requiring less runtime than its
alternatives.

2. MODEL
We consider a (fully-observable) transition-independent,

multi-agent Markov decision process (TI-MMDP). We as-
sume a finite-horizon of length h, and do not discount the
rewards over time. A TI-MMDP is a tuple 〈N,S,A, T,R〉:

• N = {1, ..., n} is a set of n enumerated agents,

• S = S1 × ... × Sn is the factorised state space, which
is the Cartesian product of n local factorised states
Si per agent (composed of state features f ∈ F , i.e.,
si = {f ix, f iy, . . .}),

• A = A1 × ... × An is the joint action space, which is
the Cartesian product of the n local action spaces Ai,

• T (s,~a, ŝ) =
∏
i∈N T

i(si, ai, ŝi) is the transition func-
tion, which is the product of the local transition func-
tions due to transition independence, and

• R is the set of reward functions that we assume w.l.o.g.
is structured as

{
R1, ..., Rn

}
∪Re. Here each Ri is the

local reward function for agent i and Re is a set of m
interaction rewards such that every Re ∈ Re defines
the reward over a set of agents e ⊆ N with |e| > 1. The
total team reward per time step, given a joint state s,

joint action ~a and new joint state ŝ, is the sum of the
local and interaction rewards:

R(s,~a, ŝ) =

|R|∑
e=1

Re(set ,~a
e
t , s

e
t+1)

=
∑
i∈N

Ri(si, ai, ŝi) +

m∑
e=1

Re({sj}j∈e, {~aj}j∈e, {ŝj}j∈e)

where we abuse notation such that e denotes both the
reward function index and the agent scope e ⊆ N of
that reward function.

Two agents, i and j are said to be dependent when there ex-
ists a reward function that has both agents in scope, e.g., a
two-agent reward function Ri,j(si, sj , ai, aj , ŝi, ŝj). We focus
on problems with sparse interaction rewards, i.e., those re-
ward functions Re that depend on more than one agent only
have non-zero rewards for a small subset of the local joint
actions (e.g., Ai ×Aj) in their scope. We call local joint ac-
tions with a non-zero interaction reward dependent actions.
Note that this focus is not restrictive in any way—all local
joint actions can be dependent—but just indicates a level of
sparsity.

The goal of the agents in a TI-MMDP is to find the op-
timal joint policy π∗ that maximises the expected sum of
rewards obtained from following the policy, expressed recur-
sively using the Bellman equation:

V ∗(st)= E[

h∑
x=t

|R|∑
e=1

Re(sex,~a
e
x, s

e
x+1)|st, π∗] = (1)

max
~at

∑
st+1∈S

T (st,~at, st+1)
( |R|∑
e=1

Re(set ,~a
e
t , s

e
t+1) + V ∗(st+1)

)
At the last timestep (t = h) there are no future rewards, and
V ∗(sh) = 0 for every sh ∈ S. Although this value can be
computed through a series of maximisations over the plan-
ning period, it cannot be written as a sum of independent

local value functions V ∗(s) 6=
∑|R|
e=1 V

e,∗(se) without losing
optimality [9].

Instead, we factor the returns of execution sequences, i.e.,
the sum of rewards obtained from following action sequences,
which is optimality preserving. We denote an execution se-
quence up until time t as θt = [s0,~a0, ..., st−1,~at−1, st] and
its return until time step t given θt is the sum of its re-
wards

∑t−1
x=0R(sθ,x,~aθ,x, sθ,x+1), where sθ,x, ~aθ,x and sθ,x+1

respectively denote the state and joint action at time x, and
the resulting state at time x + 1 in this sequence. A seem-
ingly trivial, but important observation is that the return
of an execution sequence can be written as the sum of local
functions:

Z(θt) =

|R|∑
e=1

t−1∑
x=0

Re(seθ,x,~a
e
θ,x, s

e
θ,x+1), (2)

where seθ,x, ~aeθ,x and seθ,x+1 denote the sets of local states
and actions from θt that are relevant for Re. Contrary to
the optimal value function, (2) is an additive function of the
reward components and, as such, can be computed locally.

The return of (2) does not directly give us the optimal
value, i.e., the expected reward achieved from following the
optimal policy. To compute the expected value of a policy,
we sum the expected returns of all possible execution paths



reachable under policy π, denoted by θh|π, such that:

∑
θh|π

Pr(θh)Z(θh) =
∑
θh|π

h−1∏
t=0

T (sθ,t, π(sθ,t), sθ,t+1)Z(θh),

(3)
Now, (3) is nicely structured such that it expresses the

value in terms of additively factored terms (the Z(θh)). How-
ever, comparing (1) and (3), we see that the price for this is
that we no longer are expressing the optimal value function,
but instead the value for some joint policy. In fact (3) cor-
responds to an equation for policy evaluation. This means
that it is not a obvious basis for dynamic programming, but
it is suited for use in policy search methods. Even though
policy search methods have their own problems in scaling to
large problems, we show in this paper that the structure of
(3) can be leveraged.

In particular, because the return of an execution sequence
can be decomposed into additive components (Eq. 2), we
decouple and store these returns locally for each agent in a
structure we call the conditional return graph (CRG). This
CRG can subsequently be used in policy search to efficiently
compute the expected value of (3) when, during evaluation,
the transition probability Pr(θ) of an execution sequence θ
becomes known. Moreover, the returns stored in the CRG
can be used to bound the expected value of sequences, al-
lowing branch-and-bound pruning. Finally, using a CRG it
is possible to dynamically detect conditional reward inde-
pendence – reward independencies as a result from previous
planning choices – between sets of agents and decouple the
remaining planning problems without losing optimality.

3. CONDITIONAL RETURN GRAPHS
Following (3), the sum of returns can be partitioned into

additive components Ri such that for each agent i ∈ N its
local reward is given by Ri = Ri ∪Rei , where Ri is the indi-
vidual reward function of that agent and Rei ⊆ Re is an (as-
signed) sub-set of interaction reward functions in which the
agent is involved. Then, a conditional return graph (CRG)
for agent i is a directed acyclic graph (DAG) that repre-
sents all possible histories of local states si (indicated by the
circles in Fig. 1a). The goal is to represent all possible lo-
cal rewards Ri that can be received for a given individual
state transition (si, ai, ŝi), which we denote with τ i. These
different rewards are encoded using differently labeled edges
(si, ŝi) between the individual states. However, clearly the
reward received can depend on states and actions of other
agents that participate in Ri. As such, each pair of individ-
ual states (si, ŝi) can be connected by many edges, each one
corresponding to a different local transition τe = (se, ae, ŝe)
(used as label) and thus potentially different local reward
Ri(se,~ae, ŝe).

While this does capture all the rewards possible, with the
DAG of Fig. 1a as a result, we would like to better represent
the structure present in the local rewards: we want to group
together all local transitions τe = (se,~ae, ŝe) that lead to
the same local reward. To this end, we introduce a slightly
more complex graph (shown in Fig. 1b) which can essentially
be interpreted as an abstraction of local transitions τe =
(se,~ae, ŝe) that lead to the same rewards. This is exactly
the CRG:

(a) (b)

Figure 1: Example of a transition graph for one agent
of a two-agent problem where (a) shows the complete
state/transition graph and (b) the equivalent but more com-
pact CRG.

Definition 1 (Conditional Return Graph φ).
Given a valid partitioning

⋃
i∈N R

e
i of the interaction re-

wards Re such that for every agent i ∈ N : Ri = Ri∪Rei , the
Conditional Return Graph (CRG) φi is a directed acyclic
graph that for every state transition τe = (se,~ae, ŝe) that
may result in a unique reward Ri(τe) contains a path con-
sisting of:

• local state nodes si ∈ se and ŝi ∈ ŝe,

• after-state nodes for every action ai of agent i in
joint action ~ae connected by action arcs such that
every after-state captures an extension of the execution
sequence by joint action ~a through individual action
arcs for every ai ∈ ~ae. Action arcs are labelled either
by a single action ai or a ‘wildcard’ ∗i to denote all
of the non-dependent actions of agent i for which no
branch exists,

• a fully-specified after-state node that is connected
to the local state si through all after-states and action
arcs for the joint action ~ae. From the fully-specified
after-state an influence arc to the new local state node
ŝi is added for the (external) state transition from se\i

to ŝe\i and this arc is labelled by reward Ri(se,~ae, ŝe).
Influence arcs can also be labelled by a ‘wildcard’ ∅.

In Fig. 1b, the local state nodes are displayed as circles,
the after-states as black dots and fully-specified after-states
as black triangles. The action arcs are labelled by their ac-
tions (e.g., a1 and ‘wildcard’ ∗2) whereas influence arcs are
labelled by external state transitions (s24 → s26). Further-
more, although Definition 1 captures the general case for
fully specified transitions, often it suffices to consider only
transitions (si ∪F e\i,~ae, ŝi ∪ F̂ e\i), where F e\i is the subset
of state features on which the reward functions assigned to
agent i depend. This again is an abstraction of transitions:
only influence arcs regarding the feature need to be included,
therefore requiring typically much less arcs. An example of
this is given later (Figure 2).

3.1 Bounding the optimal value
In addition to storing rewards compactly, we can use the

CRGs to bound the optimal value. Specifically, the maxi-
mal (resp. minimal) attainable return from a joint state st
onwards, is an upper (resp. lower) bound on the value. More-
over, the sum of bounds on local returns provides a bound
on global return and thus on the optimal value. We define



these bounds recursively:

U(si) = max
τe∈φi(si)

[
Ri(τe) + U(ŝiτ )

]
(4)

such that φi(s) is the set of available local transitions τe =
(seτ ,~a

e
τ , ŝ

e
τ ) from state si in the CRG φi. The lower bounds

L(si) are defined accordingly over minimal returns. Finally,
the bound on the global optimal value at a joint state s is

B(s) =
∑
i∈N

B(si), (5)

and for a joint transition (s,~a, ŝ),

B(s,~a, ŝ) =
∑
i∈N

Ri(s,~a, ŝ) +B(ŝi), (6)

where B is either an upper or a lower bound.

3.2 Conditional Reward Independence
Furthermore, CRGs can be used to exploit independence

in the local reward function as a result of past decisions.
In many planning problems, actions can be performed only
a limited amount of times and thereafter reward interac-
tions involving that action no longer occur. When an agent
can no longer perform its actions that may have a reward-
interaction with actions of other agents, the expected value
of the remaining decisions can be found through local opti-
misation. Moreover, when dependencies between two groups
of agents no longer occur, the policy search space can be
decoupled into independent components for which a policy
may be found separately while their combination is still glob-
ally optimal. Let θt be the current execution sequence up to
time t, then we denote the set of joint actions that are still
available after completing this sequence by A|θt and we de-
fine:

Definition 2 (Conditional Reward Independence).
Given an execution sequence θt, two agents i, j ∈ N are con-
ditionally reward independent, denoted CRI(i, j, θt), if for
all states s, ŝ ∈ S, and every joint action ~a ∈ A|θt still avail-
able given execution history θt:

∀e ⊆ N s.t. {i, j} ⊆ e : Re(s,~a, ŝ) = 0.

Although generally reward independence is concluded from
joint execution sequence θt, in some cases independence can
be determined based on the local execution sequence θit only,
for example when an agent i has completed its own set of de-
pendent actions. Such local conditional reward independence
occurs when ∀j ∈ N : CRI(i, j, θit), where A|θit contains all
joint actions except those including actions no longer pos-
sible for agent i. Local reward independence is established
during CRG generation and, from a state si that is flagged
independent, we compute the optimal policy π∗i (si) and in-
clude only the optimal transitions in the remainder of the
CRG.

3.3 Conditional Return Policy Search
All of the previous comes together in our Conditional Re-

turn Policy Search (CoRe). CoRe performs a branch-and-
bound search over the joint policy space, represented as a
DAG with nodes st and edges 〈~at, ŝt+1〉, such that a joint
policy corresponds to selecting a subset of edges (corre-
sponding to the same ~at). This search is made effective by
using the returns and bounds compactly stored in the CRGs

Algorithm 1: CoRe(Φ, θNt , h,N)

Input: The set of CRGs Φ, execution sequence θNt , the
horizon h, and a (sub)set of agents N

1 if t = h then return 0;
2 V ∗ ← 0

3 foreach N ′ ∈ SCC(N, θNt) do
// Compute weighted sums of bounds B(sθ,t,~at, st+1):

4 ∀~at : U(sθ,t,~at)←
∑
st+1

T (sθ,t,~at, st+1)U(sθ,t,~at, st+1)

5 Lmax←max~at
∑
st+1

T (sθ,t,~at, st+1)L(sθ,t,~at, st+1)

// Find joint action maximising expected reward

6 foreach ~at for which U(sθ,t,~at) ≥ Lmax do
7 V~at ← 0
8 foreach st+1 reachable from sθ,t and ~at do

9 V~at+= T (sθ,t,~at, st+1)
(
R(sθ,t,~at, st+1) +

CoRe(Φ, θNt ⊕ [~at, st+1], h,N ′)
)

10 Lmax ← max(V~at , Lmax) ; // update lower bound

11 V ∗+= max~at V~at
12 return V ∗

for fast policy evaluation and pruning, and by exploiting the
conditional reward independence between subsets of agents.

Before running CoRe, however, first the CRGs φi are con-
structed for the local rewardsRi of each agent i ∈ N . The in-
teraction rewards Rei ∈ Ri are partitioned heuristically over
the agents. In our experiments we used a heuristic that visits
the agents with the most interaction rewards in descending
order. When an agent is visited we collect all its attached
interaction reward functions. An interaction reward function
is assigned to this agent when there are no other agents left
in its scope that are unvisited. In preliminary experiments
we established this to be a reasonable heuristic; finding a
better (possibly problem or domain specific) heuristic is left
for future work.

The generation of the CRGs is done according to Defini-
tion 1 using a recursive procedure that for each local state
and local transition generates the corresponding after-states
and fully-specified after-states, connected by action arcs and
appended by influence arcs. When actions cause no reward
interaction, they are combined using the wildcard label ∗. Fi-
nally, from every fully-specified after-state that may possibly
cause a reward interaction, the influence arcs are generated,
again grouping non-interactive influences using a wildcard-
labelled arc ∅. Additionally, during generation we compute
and store bounds (Eqs. 5 and 6) and flag local states that
are locally conditionally reward independent. The procedure
to construct CRGs assesses all trajectories of the local plan-
ning problem, including external influences, and its com-
putational complexity is therefore exponential in the (aug-
mented) local problem. In practice, however, its runtime is
negligible compared to that required by policy search and
will scale much better when the problem size increases.

After the construction of the CRGs, the CoRe algorithm
performs depth-first policy search (Algorithm 1) over the
(sub)set of agents N . CoRe finds an optimal joint action for
every disjoint subset of agents N ′ in which reward depen-
dencies may still occur (line 3). These subsets are found
using a connected component algorithm SCC on a graph
with nodes N and an edge (i, j) for every pair of dependent
agents i, j ∈ N for which ¬CRI(i, j, θNt ). In the evaluation
of each subset N ′ (lines 3 to 11), we only consider state



Figure 2: The CRGs of the two agents. We have omitted
the branches for a2 and b2 from states s2c and s2c′ . The
highlighted state nodes illustrate locally reward independent
states.

space SN
′
⊆ S and joint actions ~a ∈ AN

′
, but to preserve

readability these superscripts have been omitted in the algo-
rithm. Lines 4 and 5 determine the upper and lower bounds
for this subset of agents, retrieved from the CRGs, which
are used to prune suboptimal joint actions in line 6. For
the remaining joint actions, CoRe recursively computes the
expected value by extending the current execution sequence
with the joint action ~at and all possible result states st+1 and
summing over their returned expected values times the prob-
ability of each transition (line 9) and it returns the one that
maximises expected value (line 11). Note that after evalua-
tion the lower bound can be tightened (line 10). Finally, the
optimal expected values over all agent subsets are combined
and returned in line 12.

4. CORE EXAMPLE
To illustrate the CoRe algorithm, we use an example two-

agent problem in which both agents can perform actions
a, b and c, but every action can be performed only once.
Action c2 of agent 2 is (for ease of exposition) the only
stochastic action and has possible outcomes c and c′ with
probabilities 0.75 and 0.25, respectively. In this simple prob-
lem there is only one interaction between actions a1 and a2,
and the reward depends on feature f1 of agent 1 being set
from ‘unset’ (f1?) to true (f1) or false (¬f1). Therefore
we have one interaction reward function with two unique
rewards R1,2(f1?, {a1, a2}, f1) and R1,2(f1?, {a1, a2},¬f1).
Additionally, we have local reward functions R1 and R2, and
a planning horizon of two time steps. Without specifying any
actual rewards, we demonstrate the CRG construction and
algorithm using this example.

Figure 2 illustrates the two CRGs. On the left is the
CRG φ1 of agent 1 that only includes its local reward R1.
The CRG of agent 2 includes the reward interaction func-
tion R1,2 in addition to its local reward R2. Notice that only
when sequences start with action a2, additional arcs have to
be included in CRG φ2 to account for a possible reward in-
teraction. The sequence that starts with a2 is followed by
an after-state node with two arcs: one for the case where
agent 1 is performing a1 and one for the case where it is not,
i.e., it performs either b1 or c1, denoted by the wildcard ∗1.
Finally, the interaction reward depends also on whether fea-
ture f1 is (stochastically) set to true or not from its initial
value f i?, concisely labeled f1 and ¬f1 in this illustration.
As the interaction reward only occurs when {a1, a2} is exe-

Figure 3: Example of policy evaluation. The left graph shows
(a part of) the policy search tree with joint states and joint
actions, and the right graph the CRGs per agent. One pos-
sible execution sequence θh is highlighted in thick red.

cuted, the fully-specified after-state node (the triangle below
the arcs a2 and ∗1) has only the influence arc ∅1. All other
transitions are reward independent and thus captured by a
local transition arc (si, ai, ŝi). Locally reward independent
states are highlighted green and from each of these states
only the optimal action transition is kept in the CRG. In
this example, only action arc c1 is included from s1a, which
was determined optimal from the local state, and no arc for
b1 is included.

An example of the CoRe algorithm in progress is shown
in Figure 3, with the policy search space on the left, and
the CRGs on the right, now annotated with return bounds.
Note that only a couple of the branches of the full DAG, as
well as the CRGs, are shown to preserve clarity. While there
are 9 joint actions possible with 12 result states for t = 0,
the CRGs need only 3 + 4 states and 3 + 6 transitions to
represent all rewards. Because for φ2, neither action b1 or
c1 of agent 1 can result in a reward in R2 or R1,2, we can
represent the reward by the same transition ∅1. The current
execution path θh that is evaluated by CoRe is highlighted
in thick red. This sequence starts with non-dependent ac-
tions {b1, b2}, resulting in joint state sb,b (ignore the bounds
in blue for now). The execution sequence at t = 1 is thus
θ1 = [s0, {b1, b2}, sb,b]. In the CRGs we have highlighted the
corresponding transitions to states s1b and s2b . For t = 2 CoRe
is evaluating joint action {a1, a2} that is reward-interacting
and therefore the value of state feature f1 is required to
determine the transition in φ2, here chosen arbitrarily as
¬f1

x . The corresponding execution sequence (in agent 2) is
therefore θ22 = [s20, {b1, b2}, s2b ∪ {f1?}, {a1, a2}, s2ba ∪ {¬f1}]
(remember that we are ‘setting’ f1). Had agent 1 performed
another action, we would have traversed the branch ∅1 that
directly leads to new state s2ba as no reward interaction oc-
curs for its other actions.

Branch-and-bound is shown for the evaluation at global
state sb,b, where the rewards (over the transitions) and their
bounds (at the nodes) are shown as blue figures. The bounds
stored for joint actions {a1, a2} and {a1, c2} are [13, 16] and
[12.5, 12.5] respectively, found by summing over the local
bounds stored in the CRGs. As a result, action {a1, c2} can
be pruned. Note that we can compute the expected value of
{a1, c2} exactly in the CRG, but not that of {a1, a2}. This
is because agent 2 knows the transition probability of ac-
tion c2 but it does not know what value f1 has during CRG
generation or with what probability a1 will be performed.
Still we can bound the return of action a2 over all possible
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Figure 4: Experimental results

feature values, stored in φ2, and they can be updated as the
probabilities become known during policy search.

Finally, conditional reward independence between agents
occurs in the policy search tree states highlighted in green.
After execution of joint action {b1, a2} no more reward inter-
actions can take place between the agents and therefore we
can decouple the problem into two independent sub prob-
lems. From state sb,a CoRe finds optimal policies π∗1(s1b)
and π∗2(s2a) and combines them into the optimal joint pol-
icy π∗(sb,a) = 〈π∗1(s1b), π

∗
2(s2a)〉 for that state.

5. EVALUATION
In our experiments we find optimal policies for instances of

the maintenance planning problem (MPP), in which agents
are responsible for completing a set of one-time maintenance
tasks with uncertain duration within the planning horizon
[16]. In this problem, the agents represent contractors that
participate in an allocation mechanism that optimises the
social welfare of all agents – the expected value of the joint
policy – based on their reported costs. Important is that only
when the joint plan is optimal the agents have an incentive
to report truthfully and thus optimal planning is required.

The goal in MPP is to find a contingent maintenance
schedule (i.e., policy) that minimises both individual mainte-
nance costs as well as economic loss due to traffic hindrance
caused by joint maintenance. Agents maintain a state with
start and end times of their maintenance tasks. The individ-
ual maintenance costs are task and time dependent, while
traffic hindrance is modelled through interaction rewards.
Using this domain we conduct three experiments with CoRe
to study 1) the expected value when solving centrally versus
decentralised methods, 2) the impact on the number of joint
actions evaluated and 3) the scalability in terms of agents.

For the first experiment we generated 3 sets of 1000 ran-
dom two-agent, two-activity instances with planning hori-
zons 3, 4 and 5 (rand[h]) and a set of 1000 coordination-
intensive coordint instances where decentralised policies are
likely to result in poor values. For these (all relatively easy
to solve) instances we compared the value of the optimal

decentralised Dec-MDP policy [17] against the value of op-
timal CoRe policies to confirm that decentralised policies
are suboptimal. Figure 4a shows the ratio V π∗

DEC/V π∗
MMDP .

In the rand[h] instances, the expected value of the optimal
decentralised policy is equal to the optimal MMDP value for
approx. half of the instances. However, for the coordination-
intensive instances coordint the value of a decentralised pol-
icy is much lower: an agent following a decentralised policy
cannot react directly to the outcome of another agent’s ac-
tion. The activity causes additional hindrance unless the pol-
icy reacts to this delay. Here the decentralised policy value
never matches the optimal MMDP policy value: on average
it is about 33% less but this loss can be as bad as 75%.

For our remaining experiments we thus focus only on fully-
observable approaches and for this we generated a represen-
tative random test set mpp, consisting of 2, 3 and 4 agent
problems (400 each), with 3 maintenance tasks, varying in
planning horizon, task length and delay probabilities and re-
ward interactions of the form Ri,i+1 for all i = 1, 2, . . . , n−1.
On these instances we compare CoRe against the current
state-of-the-art method for optimal MPP planning from [16],
solving a compact encoding of the problem using SPUDD [7],
and a dynamic programming algorithm with domain knowl-
edge. Finally, we included a CRG policy search algorithm
without value bounds (CRG-PS) to investigate the effec-
tiveness of branch-and-bound.

Figure 4b shows the search space size reduction that can
be achieved using CRGs in this domain. Our CRG-enabled
algorithm (CRG-PS, blue) is able to reduce the number
of evaluated joint actions by about one order of magni-
tude compared to the domain-tailored dynamic program-
ming method (DP, green). Furthermore, we can observe that
when value bounds are used (CoRe, red), this number can
be reduced even more, although its effect varies per instance.

Having seen the search space reduction CoRe can achieve,
we compare to the best-known solution for MPP from [16].
We analyse the percentage of problems of varying horizon
length from the mpp test set that both approaches are able
to solve within a fixed time limit of 30 minutes in Figure 4c
(all two-agent instances were solved and thus omitted). We



observe that the CoRe algorithm is able to solve more in-
stances than SPUDD (black) of the 3 agent problems (la-
belled N = 3). For 4 agent problems, only CRG-PS and
CoRe are able to solve any instances. The main reason for
this is that the CRGs successfully exploit the conditional ac-
tion independence that decouples the agents for most of the
planning decisions. Only in cases where reward interactions
occur, actions are coordinated between the agents, whereas
SPUDD always coordinates every joint decision.

We also compare the performance of both algorithms in
terms of runtime. As CoRe achieves a greater coverage than
SPUDD, we compare run times for all instances that have
been successfully solved by the latter (Figure 4d). We have
ordered the instances based on their SPUDD runtime and
plot both the SPUDD and CoRe runtime (including CRG
generation). Almost all of the instances solved by SPUDD
are solved faster by CoRe in both the 2 as well as the 3 agent
setting. CoRe failed to solve 3.4% of the instances solved by
SPUDD whereas SPUDD failed 63.9% of the instances that
CoRe was able to solve.

Finally, to study the agent-scalability of CoRe, we gener-
ated a test set pyra with a pyramid-like reward interaction
structure: every first action of the k-th agent depends on the
first action of agent 2k and agent 2k + 1. Figure 4e shows
the percentage of instances from the pyra test set that are
solved by SPUDD and CoRe for various problem horizons.
Whereas previous state-of-the-art could solve instances up
to only 5 agents, CoRe successfully solved about a quarter
of the 10 agent problems (h = 4) and overall solves many of
the previously unsolvable instances.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we focus on optimally solving fully-observable,

stochastic planning problems where agents are dependent
only through interaction rewards. When such interactions
are limited, we can partition individual and interaction re-
wards over agents and store them compactly in conditional
return graphs. We propose a conditional return policy search
algorithm (CoRe) that uses CRGs to greatly reduce the pol-
icy search space that needs to be evaluated to produce an
optimal policy, based on three key insights: 1) when inter-
actions are sparse, the number of unique returns per agent
is relatively small and can be stored efficiently, 2) CRGs
can maintain bounds on the return, and thus the expected
value, to guide our search, and 3) in the presence of con-
ditional reward independence, i.e., the absence of further
reward interactions, we can decouple agents during policy
search.

Our experiments show that this reduction can be by orders
of magnitude in the maintenance planning domain. This en-
abled CoRe to solve instances that were previously deemed
unsolvable. In addition, CoRe is almost always able to pro-
duce solutions faster than the previously known best ap-
proach. Moreover, CoRe is able to solve 10-agent instances
when the reward structure exhibits a high level of condi-
tional reward independence, whereas previous methods did
not scale beyond 5 agents. Finally, our experiments show
that decentralised MDP methods, for which many scalable
approaches in terms of agents and reward structures have
been researched, lead to suboptimal policies in the fully-
observable setting.

Although we focused on transition-independent MMDPs,
CRGs can be employed to solve general MMDPs when tran-

sition dependencies are sparse. This would require including
dependent-state transitions in the CRGs that are similar to
reward-interaction paths. The extension to general MMDPs
is considered future work. Other interesting avenues include
exploiting conditional reward independence between agents
during joint action generation and bounded approximations.

Furthermore, our work could be extended to apply to
multi-objective MMDPs, i.e., settings in which the agents
care about multiple goals. For example, in the MPP setting
the objectives would be to minimise traffic hindrance while
maximising revenue [15].
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