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Section 1 Introduction 1

1 Introduction

A recent insight in the AI literature on decentralized decision-theoretical planning is that de-
centralized POMDPs (Dec-POMDPs), can be converted to a special case of centralized model.
This centralized model is a non-observable MDP (NOMDP) and has parts of joint policies
(joint decision rules) as its actions, essentially capturing the planning process itself as a deci-
sion problem. Simultaneously, this insight has been (re-)discovered1 in the decentralized control
literature under the name of the designer approach [Mahajan and Mannan, 2014].

This document gives an overview of this reduction and provides some pointers to related
literature.

2 Background

This report deals with decision making in the context of the decentralized POMDP (Dec-
POMDP) framework [Bernstein et al., 2002, Oliehoek, 2012, Amato et al., 2013]. Here we will
use a slightly different formalization that will make more explicit all the constraints specified by
this model, and how the approach can be generalized (e.g., to deal with different assumptions
with respect to communication). We begin by defining the environment of the agents:

Definition 1 (Markov multiagent environment). The Markov multiagent environment (MME)
is defined as a tuple M = 〈D,S,A,T,O,O,R,h,b0〉, where

• D = {1, . . . ,n} is the set of n agents.

• S is a (finite) set of states.

• A is the set of joint actions.

• T is the transition probability function.

• R is the set of immediate reward functions for all agents.

• O is the set of joint observations.

• O is the observation probability function.

• h is the horizon of the problem as mentioned above.

• b0 ∈ △(S), is the initial state distribution at time t = 0.

In this paper we restrict ourselves to collaborative models: a collaborative MME is an MME
where all the agents get the same reward:

∀i,j Ri(s,a) = Rj(s,a)

which will be simply written as R(s,a).
An MME is underspecified in that it does not specify the information on which the agents

can base their actions, or how they update their information. We make this explicit by defining
an agent model.

Definition 2 (agent model). A model mi for agent i is a tuple mi = 〈Ii,Ii,Ai,Oi,Zi,πi,ιi〉, where

• Ii is the set of information states (ISs) (also internal states, or beliefs),

• Ii is the current internal state of the agent,

• Ai,Oi are as before: the actions taken by / observations that the environment provides to
agent i,

1The origins of this approach can be traced back to the seventies [Witsenhausen, 1973].
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Figure 1: Illustration of the new perspective on the Dec-POMDP for the two-agent case. The
process is formed by an environment and an agent component that together generate the inter-
action over time.

• Zi is the set of auxiliary observations zi (e.g., from communication) available to agent i,

• πi is a (stochastic) action selection policy πi : Ii → △(Ai),

• ιi the (stochastic) information state function (or belief update function) ιi : Ii×Ai×Oi×
Zi → △(Ii).

This definition makes clear that the MME framework leaves the specification of the auxiliary
observations, information states, the information state function, as well as the action selection
policy unspecified. As such, the MME by itself is not enough to specify a dynamical process.
Instead, it is necessary to specify those missing components for all agents. This is illustrated in
Figure 1, which shows how a dynamic multiagent system (in this case, a Dec-POMDP, which we
define explicitly below) evolves over time. It makes clear that there is a environment component,
the MME, as well as an agent component that specifies how the agents update their internal
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state, which in turn dictates their actions.2 It is only these two components together that lead
to a dynamical process.

Definition 3 (agent component). A fully-specified agent component can be formalized as a tuple
AC =

〈
D, {Ii} ,

{
I0i
}
, {Ai} , {Oi} , {Zi} , {ιi} , {πi}

〉
, where3

• D = {1, . . . ,n} is the set of n agents.

• {Ii} are the sets of internal states for each agent.

•
{
I0i
}
are the initial internal states of each agent.

• {Ai} are the sets of actions.

• {Oi} are the sets of observations.

• {Zi} are the sets of auxiliary observations, plus a mechanism for generating them.

• {ιi} are the internal state update functions for each agent.

• {πi} are the policies, that map from internal states to actions.

Clearly, once the MME and a fully-specified agent component are brought together, we have
a dynamical system: a (somewhat more complicated) Markov reward process. The goal in
formalizing these components, however, is that we want to optimize the behavior of the overall
system. That is, we want to optimize the agent component in such a way that the reward is
maximized.

As such, we provide a perspective of a whole range of multiagent decision problems that can
be formalized in this fashion. On the one hand, the problem designer 1) selects an optimality
criterion, 2) specifies the MME, and 3) may specify a subset of the elements of the agent-
component (which determines the ‘type’ of problem that we are dealing with). On the other
hand, the problem optimizer (e.g., a planning method we develop) has as its goal to optimize
the non-specified elements of the agent component, in order to maximize the value as given by
the optimality criterion.

In other words, we can think of a multiagent decision problem as the specification of an MME
together with a non-fully specified agent component. A prominent example is the Dec-POMDP:

Definition 4 (Dec-POMDP). A decentralized POMDP (Dec-POMDP) is an tuple 〈OC,M,AC〉,
where

• OC is the optimality criterion,

• M is an MME, and

• AC =
〈
D, · , · , {Ai} , {Oi} , {Zi = ∅}i∈D , · ,·

〉
is a partially specified agent component:

AC can be seen to partially specify the model for each agent: for each modelmi contained in
the agent component, it specifies that Zi = ∅. That is, there are no auxiliary observations,
such that each agent can form its internal state, and thus act, based only on its local
actions and observations.

The goal for the problem optimizer for a Dec-POMDP is to specify the elements of AC
that are not specified: {Ii} ,

{
I0i
}
, {ιi} , {πi}. That is, the action selection policies need to be

optimized and choices need to be made with respect to the representation and updating of
information states.

2In the most general form, the next internal states would explicitly depend on the taken action too. (Not
shown to avoid clutter).

3Alternatively, one can think of the agent component as a set of agent models for stage t = 0 together with a
mechanism to generate the auxiliary observations.
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Figure 2: A hypothetical MAA* search tree.

These choices are typically done differently in the case of a finite and infinite horizon: max-
imizing the undiscounted and discounted sum of cumulative rewards are typically considered as
the optimality criteria for the finite and infinite-horizon cases, respectively.

Also, internal states in Dec-POMDPs are often represented as nodes in a tree or finite-
state controller for each agent which are updated by local observations. In contrast, the agent
component for an MPOMDP includes auxiliary observations for all other agents and the internal
states are the set of joint beliefs.

3 The Finite-Horizon Case

Here we give an overview of the reduction to an NOMDP in the finite-horizon case. In this case,
the typical choice for the information states is to simply use the observation histories, and this
is also what we will consider in this section.

3.1 The Plan-Time MDP and Optimal Value Function

Multiagent A* (MAA*) and its extensions [Szer et al., 2005, Oliehoek et al., 2013] provide a
heuristic search framework for Dec-POMDPs. The core idea is that it is possible to search the
space of partially specified joint policies, by ordering them in a search tree as illustrated in
Figure 2. In particular, MAA* searches over past joint policies ϕt = 〈ϕ1,t, . . . ,ϕn,t〉, where each
individual past joint policy is a sequence of decision rules: ϕi,t = (δi,0, . . . ,δi,t−1) that in turn
map length-k observation histories ~oi, k = (oi,1, . . . ,oi,k) to actions: δi,k(~oi, k) = ai,k.

This perspective gives rise to a reinterpretation of the planning process as a decision-making
process in itself. In particular, it is possible to interpret the search-tree of MAA* as special
type of MDP, called plan-time MDP [Oliehoek, 2010, 2013]. That is, each node in Figure 2 (i.e.,
each past joint policy ϕt) can be interpreted as a state and each edge (i.e., each joint decision
rule δt) then corresponds to an action. In this plan-time MDP, the transitions are deterministic,
and the rewards Ř(ϕt,δt) are the expected reward for stage t :

Ř(ϕt,δt) = E [R(st,at) | b0,ϕt]

=
∑

st

∑

~ot

Pr(st,~ot|b0,ϕt)R(st,δt(~ot)).
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Figure 3: A hypothetical MAA* search tree based on plan-time sufficient statistics. Illustrated
is that two joint decision rules from the same node (here: the root node) can map to the same
next-stage statistic σ1, and that two δ1 from different nodes (the two rightmost σ1) can lead to
the same next-stage statistic σ2.

The transitions are deterministic: the next past joint policy is determined completely by ϕt

and δt, such that we can define the transitions as:

Ť (ϕt+1|ϕt,δt) =

{

1 if ϕt+1 = 〈ϕt ◦ δt〉,

0 otherwise.

Here 〈ϕt ◦δt〉 defines the concatenation of ϕt and δt (see Oliehoek 2012 for details). Given that
we have just defined an MDP, we can write down its optimal value function:

V ∗
t (ϕt) = max

δt

Q∗
t (ϕt,δt) (3.1)

where Q∗ is defined as

Q∗
t (ϕt,δt) =

{

Ř(ϕt,δt) for the last stage t = h− 1,

Ř(ϕt,δt) + V ∗
t+1(〈ϕt ◦ δt〉) otherwise.

(3.2)

This means that, via the notion of the plan-time MDP, we can define an optimal value
function for the Dec-POMDP. It is informative to contrast the formulation of an optimal value
function here to that of the value function of a particular policy (as given by, e.g., Oliehoek
[2012]). Where the latter only depends on the history of observations, the optimal value function
depends on the entire past joint policy. As a consequence, even though this optimal formulation
admits a dynamic programming algorithm, it is not helpful, as this (roughly speaking) would
result in brute force search through all joint policies [Oliehoek, 2010].

3.2 Plan-Time Sufficient Statistics

The problem in using the optimal value function defined by (3.1) is that it is too difficult to
compute: the number of past joint policies is too large to be able to compute it for most problems.
However, it turns out that it is possible to replace the dependence on the past joint policy by a
so-called plan-time sufficient statistic: a distribution over histories and states [Dibangoye et al.,
2013, Nayyar et al., 2013, Oliehoek, 2013]. This is useful, since many past joint policies can
potentially map to the same statistic, as indicated in Figure 3.
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Definition 5 (Sufficient statistic for deterministic past joint policies). A sufficient statistic for
a tuple (b0,ϕt)—with ϕt deterministic—is a distribution over joint observation histories and
states: σt(st,~ot) , Pr(st,~ot|b0,ϕt) [Oliehoek, 2013].

Such a statistic is sufficient to predict the immediate reward:

Ř(σt,δt) =
∑

st

∑

~ot

σt(st,~ot)R(st,δt(~ot)),

as well as the next statistic (a function of σt and δt). Let ~ot+1 = (~ot,ot+1) be a joint observation
history that extends ~ot with ot+1, then the updated statistic is given by

σt+1(st+1,~ot+1) = [Uss(σt,δt)](st+1,~ot+1) =
∑

st

Pr(st+1,ot+1|st,δt(~ot))σt(st,~ot). (3.3)

This means that we can define the optimal value function for a Dec-POMDP as

V ∗
t (σt) = max

δt

Q∗
t (σt,δt), (3.4)

where

Q∗
t (σt,δt) =

{

Ř(σt,δt) for the last stage t = h− 1,

Ř(σt,δt) + V ∗
t+1(Uss(σt,δt)) otherwise.

(3.5)

Since many ϕt may potentially map to the same statistic σt, the above formulation can
enable a more compact representation of the optimal value function. Moreover, it turns out that
this value function satisfies the same property as POMDP value functions:

Theorem 1 (PWLC of Optimal Value Function). The optimal value function given by (3.4) is
piecewise linear and convex (PWLC).

Proof. For the last stage, Vh−1
∗(σ) is clearly PWLC. The value is given by

V ∗
h−1(σ) = max

δ

∑

(s,~o)

σh−1(s,~o)R(s,δ(~o))

By defining Rδ as the vector with entries R(s,δ(~o)) we can rewrite this as a maximization over
inner products: maxδ

∑

(s,~o) σ(s,~o)Rδ(s,~o) = maxδ σ ·Rδ which shows that V ∗
h−1(σ) is PWLC.

For other stages, we expand

Q∗
t (σ,δ) = σ ·Rδ + V ∗

t+1(Uss(σ,δ))

if we assume, per induction hypothesis, that the next-stage value function is PWLC, then it is
representable as the maximum over a set of vectors V∗

t+1, and we can write:

Q∗
t (σ,δ) = σ ·Rδ + max

v∈V∗

t+1

Uss(σ,δ) · v

= σ ·Rδ + max
v∈V∗

t+1

∑

(s′,~o′)

[
Uss(σ,δ)(s

′,~o′)
]
v(s′,~o′)

= σ ·Rδ + max
v∈V∗

t+1

∑

(s′,~o′)

[
∑

(s,~o)

Pr(s′,~o′|s,~o,δ(~o))σ(s,~o)

]

v(s′,~o′)

= σ ·Rδ + max
v∈V∗

t+1

∑

(s,~o)

σ(s,~o)
∑

(s′,~o′)

Pr(s′,~o′|s,~o,δ(~o))v(s′,~o′)

= σ ·Rδ + max
v∈V∗

t+1

∑

(s,~o)

σ(s,~o)gvδ(s,~o)
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where we defined the back-projection of v ∈ V∗
t+1, given δ, as:

gδ,v(s,~o) ,
∑

(s′,~o′)

Pr(s′,~o′|s,~o,δ(~o))v(s′,~o′). (3.6)

As a result, we see that Q∗
t (σ,δ) = σ · Rδ +maxv∈V∗

t+1
σ · gδ,v = maxv∈V∗

t+1
σ · [Rδ + gδ,v],which

means that Q∗
t (σ,δ) is PWLC. Therefore, V ∗

t via (3.4) is a maximum over PWLC functions and
hence is itself PWLC.

3.3 A NOMDP Formulation

The PWLC property of the optimal value function seems to imply that we are actually dealing
with a kind of POMDP. This intuition is correct [Nayyar et al., 2011, Dibangoye et al., 2013,
MacDermed and Isbell, 2013]. In particular, it is possible to make a reduction to special type
of POMDP: a non-observable MDP (NOMDP) [Boutilier et al., 1999], which is a POMDP with
just one ‘NULL’ observation.

Definition 6 (Plan-time NOMDP). The plan-time NOMDP MPT for a Dec-POMDP M is a
tuple MPT (M) =

〈
Š,Ǎ,Ť ,Ř,Ǒ,Ǒ,ȟ,b̌0

〉
, where:

• Š is the set of augmented states, each št = 〈st,~ot〉.

• Ǎ is the set of actions, each ǎt corresponds to a joint decision rule δt in the Dec-POMDP.

• Ť is the transition function:

Ť (〈st+1,~ot+1〉 | 〈st,~ot〉 ,δt) =

{

Pr(st+1,ot+1|st,δt(~ot)) if ~ot+1 = (~ot,ot+1),

0 otherwise.

• Ř is the reward function: Ř(〈st,~ot〉 ,δt) = R(st,δt(~ot)).

• Ǒ = {NULL} is the observation set which only contains the NULL observation.

• Ǒ is the observation function that specifies that NULL is received with probability 1
(irrespective of the state and action).

• The horizon is just the horizon of M: ȟ = h.

• b̌0 is the initial state distribution. Since there is only one ~o0 (i.e., the empty joint obser-
vation history), it can directly be specified as

∀s0 b̌0(〈s0,~o0〉) = b0(s0).

Since a NOMDP is a special case of POMDP, all POMDP theory and solution methods apply.
In particular, it should be clear that the belief in this plan-time NOMDP corresponds exactly
to the plan-time sufficient statistic from Definition 5. Moreover, it can be easily shown that the
optimal value function for this plan-time NOMDP is identical to the formulation equations (3.4)
and (3.5).

4 The Infinite-Horizon Case

In this section we treat the infinite-horizon case. In this case, it is no longer possible to use
observation histories as information states, since there are an infinite number of them. As
such, we discuss a formulation with more abstract (but finitely many) information states. For
instance, one could use the typical choice of a finite state controller where the information states
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are represented as nodes in the controller. We essentially follow the approach by MacDermed
and Isbell [2013], but we make a distinction between the general concept of a what we will refer
to as a Dec-POMDP with information state abstraction (ISA-Dec-POMDP) and the bounded
belief Dec-POMDP (BB-Dec-POMDP) introduced by MacDermed and Isbell [2013] as a specific
instantiation of that framework.

4.1 ISA-Dec-POMDP

Similar to the transformation of finite-horizon Dec-POMDPs into NOMDPs described above,
infinite-horizon Dec-POMDPs can also be transformed into NOMDPs. The basic idea is to
replace the observation histories by (a finite number of) abstract information states:

Definition 7 (ISA-Dec-POMDP). A Dec-POMDP with information state abstraction (ISA-
Dec-POMDP) is a Dec-POMDP framework together with the specification of the sets {Ii} of
information states (ISs).

For an ISA-Dec-POMDP, using the notation of the agent components defined above, there
are two optimizations that need to be performed jointly:

1. the optimization of the joint action selection policy π = 〈π1, . . . ,πn〉, and

2. the optimization of the joint information state function ι = 〈ι1, . . . ,ιn〉.

Essentially, an ISA-Dec-POMDP can be thought of as having chosen FSCs to represent the
policies (although different choices may be made to actually represent the ISs, and IS functions)
where the nodes are represented by internal states, controller transitions are defined by the
internal state update functions and the action selection probabilities are defined by the policies.

In this section, we only consider the setting in which we search a stationary policy such that
π = δ is a (induced, via the individual decision rules) mapping from (joint) information states
to (joint) actions. In this paper, we will only consider deterministic π and ι, but extensions to
stochastic rules are straightforward.

4.2 Plan-Time Sufficient Statistics

Here, we show that given the information state update functions, we can replicate the approach
taken for the finite-horizon case. First, let I = 〈I1, . . . ,In〉 denote a joint information state. This
allows us to redefine the plan-time sufficient statistic as follows:

Definition 8 (Plan-time ISA sufficient statistic). The plan-time sufficient statistic for an ISA-
Dec-POMDP is σt(s,I) , Pr(s,I|δ0,...,δt−1).

Again, this statistic can be updated using Bayes’ rule. In particular σ′(s′,I ′) is given by

∀(s′,I′) [Uss(σ,δ)] (s
′,I ′) =

∑

(s,I)

Pr(s′,I ′|s,I,δ(I))σ(s,I) (4.1)

where—using ι(I ′|I,a,o) =
∏

i∈D ιi(I
′
i|Ii,ai,oi) for the joint internal state update probability—

the probability of transitioning to (s′,I ′) is given by:

Pr(s′,I ′|s,I,a) = Pr(s′|s,a)
∑

o

ι(I ′|I,a,o) Pr(o|a,s′), (4.2)

It is easy to show that, for a given set {ιi} of internal state update functions, one can
construct a plan-time NOMDP analogous to before:
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Definition 9 (Plan-time ISA-NOMDP). Given the internal state update functions, an ISA-Dec-
POMDP can be converted to a plan-time ISA-NOMDP MPT−ISA−NOMDP for a Dec-POMDP
M is a tuple MPT−ISA−NOMDP (M) =

〈
Š,Ǎ,Ť ,Ř,Ǒ,Ǒ,ȟ,b̌0

〉
, where:

• Š is the set of augmented states, each š = 〈s,I〉.

• Ǎ is the set of actions, each ǎ corresponds to a joint decision rule δ (which is a joint
(stationary) action selection policy) in the ISA-Dec-POMDP.

• Ť is the transition function:

Ť (
〈
s,I ′

〉
| 〈s,I〉 ,δ) = Pr(s′,I ′|s,a = δ(I))

= Pr(s′|s,a)
∑

o

ι(I ′|I,a,o) Pr(o|a,s′)

• Ř is the reward function: Ř(〈s,I〉 ,δ) = R(s,δ(I)).

• Ǒ = {NULL} is the observation set which only contains the NULL observation.

• Ǒ is the observation function that specifies that NULL is received with probability 1
(irrespective of the state and action).

• The horizon is just the (infinite) horizon of M: ȟ = h.

• b̌0 is the initial state distribution. Since the initial joint information state I0 can be
selected, it can directly be specified as

∀s0 b̌0(〈s0,I0〉) = b0(s0).

4.3 Optimizing the Information State Update Functions

In the previous setting, we showed that the NOMDP formulation can still be applied in the
infinite-horizon case, given that the information state update function is specified. However, in
the infinite-horizon setting, the selection of those internal state update functions becomes part
of the optimization task.

One idea to address this, dating back to Meuleau et al. [1999] and extended to Dec-POMDPs
by MacDermed and Isbell [2013] (discussed in the next section), is to make searching the space of
deterministic internal state update functions part of the problem. This can be done by defining
a cross-product MDP in which “a decision is the choice of an action and of a next node” —
Meuleau et al. [1999]. That is, selection of the ιi function can be done by introducing |Oi| new

‘information-state action’ variables (say, aιi = {aι,1i , . . . ,a
ι,|Oi|
i }) that specify, for each observation

oi ∈ Oi, the next internal state. In other words, we can define augmented actions āi = 〈ai,a
ι
i〉

that define the information state function via

ιi(I
′
i|Ii,āi,oi = k) = ιi(I

′
i|Ii,ai,oi = k) =

{

1 I ′i = a
ι,k
i

0 otherwise.

Letting δ̄ denote the (joint) decision rules that map information states to such augmented (joint)
actions, we can define a plan-time model where the transition function no longer depends on a
pre-specified information state update function

Ť (
〈
s,I ′

〉
| 〈s,I〉 ,δ̄) = Pr(s′|s,a)

∑

o

ι(I ′|I,ā,o) Pr(o|a,s′)

As such, it is possible to jointly optimize over action selection policies and information state
update functions in a single augmented model at the cost of an increased action space.
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4.4 BB-Dec-POMDPs: Alternating Phase ‘Optimal Belief Compression’

The simple method described above leads to a much larger action set (of size |Ai| · |Ii|
|Oi|)

for each agent. In order to avoid this increase, MacDermed and Isbell [2013] introduce the
bounded belief Dec-POMDP4 (BB-Dec-POMDP), which is a ISA-Dec-POMDP that encodes the
selection of optimal {ιi} by splitting each problem stage into two stages: one for selection of
the domain-level actions (‘belief expansion phase’) and one for selection of the information-state
update actions aιi (‘belief compression phase’).

In particular, the belief compression phase stores the observations the agent receives as part
of the state. As a result, the agents do not need to select a next information state for every
possible observation, but only for the observation actually encoded by this belief compression
state. This limits the growth of the number of actions needed per agents. For further details of
this formulation we refer to the original paper by MacDermed and Isbell [2013].

5 Efficient Point-Based Backups for NOMDPs

A bottleneck in the solution of all of the resulting NOMDP formulations (in both the finite and
infinite-horizon case) is that the actions correspond to decision rules, and the set of decision rules
is large (exponential in the number of information states). To address this problem, MacDermed
and Isbell [2013] propose a modification of the point-based POMDP backup operator [Shani
et al., 2013] (which they apply in the point-based method Perseus [Spaan and Vlassis, 2005] to
solve the NOMDP).

In more detail, the modification aims at mitigating the bottleneck of maximizing over (ex-
ponentially many) decision rules in

V ∗(σ) = max
δ

Q∗(σ,δ)

Since the value function of a NOMDP is PWLC, the next-stage value function can be represented
using a set of vectors v ∈ V , and we can write

V ∗(σ) = max
δ

∑

(s,I)

σ(s,I)



R(s,δ(I)) + max
v∈V

∑

(s′,I′)

Pr(s′,I ′|s,I,δ)v(s′,I ′)





= max
v∈V

max
δ

∑

(s,I)

σ(s,I)



R(s,δ(I)) +
∑

(s′,I′)

Pr(s′,I ′|s,I,δ(I))v(s′,I ′)





︸ ︷︷ ︸

vδ,v(s,I)

.

The key insight is that, in the last expression, the vector vδ,v constructed from v for δ (i.e, the
bracketed part) only depends on δ(I) (i.e., on that part of δ that specifies the actions for I

only). That is, we can simplify vδ,v to va,v. As such it is possible to rewrite this value as a
maximization of solutions to collaborative Bayesian games (CBG) [e.g. Oliehoek, 2010, p.19],
one for each v ∈ V :

V ∗(σ) = max
v∈V

CBG-value(σ,v).

The value of each CBG is given by

CBG-value(σ,v) = max
δ

∑

I

σ(I)Qv(I,δ(I)),

4The term ‘bounded belief’ refers to the finite number of internal states (or ‘beliefs’) considered.



Section 6 Conclusions 11

where Qv(I,a) =
∑

s va,v(s,I) is the payoff function of the CBG.

For each v ∈ V , the maximization over δ can now be performed more effectively using a
variety of methods [Oliehoek et al., 2010, Kumar and Zilberstein, 2010, Oliehoek et al., 2012].
MacDermed and Isbell [2013] propose a method based on integer programming, and empirically
found that the integer program can be optimally solved via a linear program relaxation in many
cases.5 We note that the maximizing δ directly induces a vector vδ, which is the result of the
point-based backup. As such, this modification can also be used by other point-based POMDP
methods.

6 Conclusions

This paper gives an overview of the reduction from a decentralized problem to a centralized one.
In particular, we can transform a Dec-POMDP to a NOMDP. This mapping is exact, but does
not immediately make the problem easier to solve. However, it does allow the application of so-
phisticated POMDP solution methods, which can lead to improvements in performance [Diban-
goye et al., 2013, MacDermed and Isbell, 2013].

While this document has restricted itself to the Dec-POMDP model without communication,
a similar reduction (but now to an actual POMDP) is possible in the context of k-steps delayed
communication [Oliehoek, 2010, Nayyar et al., 2011, Oliehoek, 2013], and can be further gen-
eralized to exploit all common information [Nayyar et al., 2014]. Moreover, we conjecture that
generalization to many different communication and knowledge updating protocols may be pos-
sible, by suitably adjusting the set of auxiliary observations and the mechanism that generates
them.
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