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We report the results of a detailed numerical investigation of inertialess viscoelastic fluid flow through
three-dimensional serpentine (or wavy) channels of varying radius of curvature and aspect ratio using
the Oldroyd-B model. The results reveal the existence of a secondary flow which is absent for the equiv-
alent Newtonian fluid flow. The secondary flow arises due to the curvature of the geometry and the
streamwise first normal–stress differences generated in the flowing fluid and can be thought of as the
viscoelastic equivalent of Dean vortices. The effects of radius of curvature, aspect ratio and solvent-to-
total viscosity ratio on the strength of the secondary flow are investigated. The secondary flow strength
is shown to be a function of a modified Deborah number over a wide parameter range.

� 2013 The Authors. Published by Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

It is well known that flows within pipes and ducts can give rise
to secondary flows. In addition to the base primary flow in the
streamwise direction, a secondary flow, albeit usually much weak-
er, can develop in the cross-stream direction. In the case of Newto-
nian fluids, so-called Dean vortices [1,2] appear in curved ducts or
bends and are a consequence of flow inertia. Dean flow gives rise to
a pair of vortices in the cross-section carrying flow from the inside
to the outside of the bend across the centre and back around the
edges. (NB: Malheiro et al. [3] have recently studied the effect of
elasticity on such vortices). For Newtonian fluids in the absence
of inertia, or in the absence of curvature, i.e. in straight pipes and
ducts of uniform cross-section, there is no physical driving mech-
anism for a secondary flow and the laminar flow remains unidirec-
tional. Interestingly, Lauga et al. [4] show that a secondary flow
must develop if a channel has both varying cross-sectional area
and non-constant curvature even in the creeping-flow limit. Note
that turbulent flow can give rise to a secondary flow even in the
case of straight ducts as long as the geometry is non-axisymmetric
[5,6] i.e. not a circular pipe or a concentric annulus.
For viscoelastic fluid flows, in contrast, secondary flows can de-
velop in the absence of inertia and curvature. Weak secondary
flows are observed even for straight ducts of uniform cross-section
as long as the geometry is non-axisymmetric. Such elastically-
induced secondary flows are driven by imbalances in the second-
normal stress difference and have been studied in detail by a
number of authors [7–12]. Interestingly, Speziale [13] highlighted
the relationship between this type of secondary flow and that dri-
ven by turbulence as discussed above. As the magnitude of the sec-
ond-normal–stress difference is usually very small for most dilute
polymer solutions, being estimated to be at most 20% of the first
normal–stress difference for concentrated solutions and melts
[14], these secondary flows tend to be extremely weak being of
the order of 1% or less of the primary streamwise velocity [9]. As
a consequence, numerical simulations of viscoelastic constitutive
equations which predict a zero second normal–stress difference,
such as the upper-convected Maxwell and Oldroyd-B models
[15], the simplified Phan–Thien–Tanner (PTT) model [16] and
FENE-type models [17,18], all predict unidirectional flow in such
straight ducts, at least prior to the appearance of purely-elastic
instabilities beyond a critical Weissenberg number [19].

The combined case of duct curvature and fluid elasticity in the
inertialess limit, which has been significantly less studied, can also
give rise to secondary flows. These secondary flows can occur in
both axisymmetric as well as non-axisymmetric geometries and
can be observed even for fluids which exhibit a zero second nor-
mal–stress difference in steady simple shear flow. This has been
elegantly shown by Fan et al. [20] who investigated flow in curved
pipes. To the best of our knowledge, for flows in non-axisymmetric
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geometries the only paper which investigates inertialess secondary
flows is the recent work by Norouzi et al. [21]. They use the sec-
ond-order fluid model [22] to investigate curved ducts with square
cross-sections both with and without inertia. By varying the
parameters in the second-order fluid model to control the ratio
of first to second normal–stress differences, Norouzi et al. were
able to show that the strength and direction of the secondary flow
could be varied. When the first normal–stress difference was dom-
inant the direction of the viscoelastic secondary flow was found to
be in the same sense as that observed by Fan et al. [20], i.e. in the
same sense as inertial Dean flow, but when the first normal–stress
difference was zero and only second normal–stresses occurred the
secondary flow changed direction. The second-order fluid used by
Norouzi et al. is appropriate in the limit of vanishingly small elas-
ticity, and therefore to small Deborah numbers, and is thus useful
to investigate the qualitative behaviour of polymer flow phenom-
ena such as the direction of secondary flows. The quantitative pre-
diction of the strength of the secondary flow beyond the
asymptotic limit of vanishingly elasticity will be influenced by
the choice of constitutive equation and the effects of more realistic
constitutive equations on the strength of this elastically-driven
secondary flow has not been investigated. In the current paper
we report the results of a detailed numerical investigation of iner-
tialess viscoelastic fluid flow through three-dimensional serpen-
tine (or wavy) channels [23,24] of varying radius and aspect
ratios using the Oldroyd-B model to fully explore this secondary
flow regime. Such serpentine channels are composed of a series
of circular half loops of alternating curvature and represent proto-
type geometries for investigating curvature effects experimentally
[23,24].

2. Viscoelastic constitutive equation and numerical method

The three-dimensional numerical simulations assume isother-
mal flow of an incompressible viscoelastic fluid described by the
Oldroyd-B model [15] in a channel of rectangular cross section.
The equations that need to be solved are those of mass
conservation,

r � u ¼ 0; ð1Þ

and momentum

0 ¼ �rpþ gsr2uþr � s; ð2Þ

assuming creeping-flow conditions (i.e. the inertial terms are ex-
actly zero), where u is the velocity vector with Cartesian compo-
nents (ux, uy, uz), p is the pressure and gs is the solvent viscosity.
For the Oldroyd-B model the evolution equation for the polymeric
extra-stress tensor, s, is

sþ k
@s
@t
þ u � rs

� �
¼ gpðruþruTÞ þ kðs � ruþruT � sÞ; ð3Þ

where k and gp are the relaxation time and polymeric contribution
to the viscosity of the fluid respectively, both of which are constant
in this model. For a large number of simulations shown here we set
the solvent viscosity contribution to zero and, in this case, the
upper-convected Maxwell (UCM) model is recovered.

Although the Oldroyd-B model exhibits an unbounded steady-
state extensional viscosity above a critical strain rate (1=2k), in
shear-dominated serpentine channel geometries such model defi-
ciencies are unimportant and it is arguably the simplest differential
constitutive equation which can capture many aspects of highly-
elastic flows [25,26]. Many more complex models (e.g. the FENE-
P, Giesekus and Phan–Thien–Tanner models – see e.g. Bird et al.
[22]), simplify to the Oldroyd-B model in certain parameter limits
and thus its generality makes it an ideal candidate for fundamental
studies of viscoelastic fluid flow behaviour. The governing equa-
tions are solved using a time-marching implicit finite-volume
numerical method, based on the logarithm transformation of the
conformation tensor [27]. Additional details about the numerical
method can be found in Afonso et al. [28,29] and in other previous
studies (e.g. [30,31]). For low Wi the numerical solution converges
to a steady solution, which was assumed to occur when the L2

norm of the residuals of all variables reached a tolerance of 10�6.
Beyond a critical Weissenberg number a time-dependent purely-
elastic instability occurs [24]. The results in the current paper are
restricted to Weissenberg numbers below the occurrence of this
purely-elastic instability: thus the flow remains steady.
3. Flow geometry, dimensionless numbers and computational
meshes

The serpentine channels used in this work consist of a series of
half-loops of width W, height H and inner radius R as shown sche-
matically in Fig. 1. Although the geometries are fully three-dimen-
sional we impose a symmetry boundary condition on the
xy-centreplane to reduce the computational burden. Limited simu-
lations on the complete domain confirmed that, for the steady re-
sults shown here, the imposition of symmetry has no effect on the
results. In all the results which follow the symmetry plane is high-
lighted by a dashed boundary (see Fig. 1c for example). The inner
and outer walls are also indicated. A series of geometries were cre-
ated such that the effects of radius (R/W) and aspect ratio (a = W/H)
could be investigated in the range 1 6 R/W 6 7 and 0.5 6W/H 6 4.

For all results shown in this work the Reynolds number is iden-
tically zero. The Weissenberg number is defined as Wi ¼ kU=W ,
where k is the relaxation time of the fluid and U/W represents a
characteristic shear rate based on the channel width W and the
bulk velocity U in the channel. A Deborah number can be defined
as De ¼ kU=R based on the ratio of the relaxation time of the fluid
and a characteristic residence time in each half loop (�R/U).

The number of full(half) loops in each geometry was fixed at
two(four): tests with more loops gave identical results. The major-
ity of data pertaining to the secondary flow will be presented at the
bend in the first half loop (location A1 in Fig. 1b). For the current
results, where the Deborah number remains always less than
one, memory effects remain small and secondary flow data at sub-
sequent loops (e.g. A3 or B1) are essentially identical to the first
loop (in the least favourable case for example when R/W = 1, W/
H = 1 and Wi = 0.6 the secondary flow strength, as measured by
the maximum spanwise velocity, differs by just 0.7% between loca-
tions A1, A3, B1 and B3).

For all of the serpentine channels the computational domain
was mapped using three orthogonal blocks, one straight inlet sec-
tion of length 10 W, one block comprising four half loops of varying
curvature and a final straight exit section also 10 W in length. The
main characteristics of the meshes are provided in Table 1.
The information in Table 1 includes the total number of cells in
the meshes (NC) together with the number of control volumes in
each direction (NX, NY and NZ) and the total number of degrees
of freedom (DOF) of the computed variables. The cell sizes are uni-
form in the y- and z-directions and in the x-direction in the second
block. In the inlet(exit) channels the cell spacing in the x-direction
decreases as the cells move towards(away) from the block contain-
ing the half-loops. It is important to note that the x, y, z coordinate
system is fixed in space but that we will refer always to the veloc-
ity component in the streamwise direction as u, in the wall normal
or transverse direction as v and the velocity in the spanwise direc-
tion (z) as w. As a consequence the streamwise velocity component
u for example is only aligned with the x-direction in the straight
inlet and outlet channels (and at locations A2, A4/B0, B2). Thus



Fig. 1. Schematic of the serpentine channel (a) isometric view; (b) bird’s eye view including location nomenclature; and (c) cross-sectional view. Blue arrows indicate flow
direction. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Main characteristics of computational meshes.

W/H R/W NX NY NZ NC DOF

1 1 600 25 25 375,000 3.75 � 106

3 1000 25 25 625,000 6.25 � 106

5 1600 25 25 1,000,000 10.0 � 106

7 1800 25 25 1,125,000 11.25 � 106

1/2 1 600 25 50 750,000 7.5 � 106

2 1 600 25 25 375,000 3.75 � 106

4 1 600 25 13 195,000 1.95 � 106
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at location A0 the wall normal (or transverse) velocity is the veloc-
ity component in the y-direction but at A1, i.e. after the flow turns
90�, it is the component in the x-direction. By contrast the velocity
in the z-direction (the ‘‘neutral’’ or ‘‘spanwise’’ direction) is always
w but we consider w to be positive pointing in the direction from
the side wall (top/bottom) towards the xy-symmetry plane (thus
pointing in opposite directions on both sides of the xy-symmetry
plane).
4. Discussion

4.1. Qualitative description of secondary flow

In Fig. 2 we plot contours of the three velocity components in a
xz-plane at the outer bend in the first half loop, i.e. location A1
Fig. 2. Velocity contours for Newtonian fluid (LHS) and UCM fluid at Wi = 0.2 (RHS) in a Y
(0.2–2.0 in steps of 0.2), (b) transverse contours v/U (�0.04 to +0.04 in steps of 0.01 for W
0.030 steps of 0.005 for Wi = 0.2 only, Newtonian velocities <10�5). Negative contours in
identified in Fig. 1b, for both the Newtonian fluid and a viscoelastic
fluid (UCM model, Wi = 0.2). The data is shown for R/W = 1 and W/
H = 1. We remark that the w velocity is considered positive in the
direction of the xy-symmetry plane, as illustrated by the arrow in
Fig. 2c). As expected in the total absence of inertia for the Newto-
nian fluid the only non-zero component is the streamwise velocity
component. The transverse and spanwise velocities are zero. For
the viscoelastic fluid, although the streamwise velocity contours
are qualitatively similar, a weak secondary flow is clearly appar-
ent: the positive transverse velocity at the centreline indicates flow
moving from the inner wall towards the outer wall which, in turn,
is fed from fluid at the outer wall transported along the side wall.
At this Weissenberg number the strength of the secondary flow
components are strongest in the transverse direction (i.e. v > w)
and are at maximum 3–4% of the bulk streamwise velocity.

4.2. Projected streamlines

To further highlight the nature of the secondary flows, in Fig. 3
we show projected streamlines again in the xz-plane at the first
outer bend (location A1) for various aspect ratios at a single radius
ratio (R/W = 1). We remark that although each projected stream-
line plotted seems to be closed, indeed the starting point and the
end point do not coincide exactly. As could be inferred from the
secondary flow velocity contours in Fig. 2, the secondary flow gives
rise, at least for a P 1, to a pair of vortices – only one of which is
Z plane at location A1 for R/W = 1, a = W/H = 1; (a) streamwise velocity contours u/U
i = 0.2 only, Newtonian velocities <2 � 10�5), (c) spanwise contours w/U (�0.015 to
dicated by short dashed lines and the xy-centreplane by long dashed lines.



Fig. 3. Effect of aspect ratio (a) on projected streamlines in a xz plane at location A1
shown for R/W = 1 UCM model, at Wi = 0.1; (a) a = 4, (b) a = 2 (c) a = 1 and (d)
a = 0.5.

Fig. 4. (i) Projection of 3D trajectories taken by streamtraces in first loop onto a 2D
plane normal to streamwise direction; (ii) Bird’s eye view of 3D trajectories of
streamtraces. Released from x = 0 plane, location A0, and (z/H,y/W) locations of
(0.2,0.2), (0.4,0.2), (0.2,0.5), (0.4,0.5), (0.2,0.8) and (0.4,0.8); (a) R/W = 1, a = 1,
Wi = 0.3; (b) R/W = 1, a = 1, Wi = 0.6.
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simulated and shown here due to the symmetry boundary condi-
tion – carrying flow from the inside wall to the outside wall along
the centreline and back to the inner wall along the sidewall.

At lower aspect ratio, i.e. in a deeper channel, additional vorti-
ces appear. The strength of the additional vortex close to the outer
wall is about 100 times smaller than the primary vortex and is thus
extremely weak.

In order to elucidate the full effect of the secondary flow, Fig. 4
shows 2D projections of 3D trajectories for six fluid elements re-
leased at the entrance to the first loop (location A0 in Fig. 1b).
The pathlines are determined through numerical integration of
the flow field: dx/dt = u. Fig. 4i plots the projection of these 3D tra-
jectories onto a 2D plane normal to the streamwise direction so
that information regarding the trajectory can be more easily visu-
alised and Fig. 4ii highlights 2D projections viewed ‘‘from above’’
as is usually done experimentally using streak photography in
microfluidics (see e.g. [23,24]). The trajectories are colour-coded
with respect to their y-locations; red being trajectories released
initially close to the outer wall, blue on the centreline and purple
close to the inner wall. The effect of increasing elasticity is
highlighted by showing data for both Wi = 0.3 and Wi = 0.6. As
the secondary flow strength increases with decreasing R (discussed
in Section 4.4) and increasing Wi, the latter data set represents the
strongest secondary flow of all our results. Equivalent data for the
Newtonian fluid, not shown, shows small vertical lines in the 2D
plane-normal projections where the fluid moves towards the inner
wall as it goes into the bend and then back to towards the outer
wall as it comes out of the bend due to the shape of the geometry
and the resulting bending of the streamlines. Within some small
numerical uncertainty, much smaller than the cell size, the Newto-
nian pathline returns to its initial location at the end of the half-
loop due to the linearity of inertialess Stokes’ flow. For the visco-
elastic fluid flows the non-linearity introduced by elasticity is
apparent as the start and end points of the trajectories are signifi-
cantly different. At Wi = 0.3 the secondary flow causes a fluid par-
ticle to move lateral and vertical distances on the order of 0.2 W
and at the higher Weissenberg number this effect is accentuated.
For example the particle initially released close to the outer and
side walls (0.2,0.2) – shown in red – initially moves north west to-
wards the inner and side walls, crosses the semi-circular centre-
line, before moving vertically back towards the outer wall before
being swept back towards the symmetry plane. At Wi = 0.6 the sec-
ondary flow is strong enough such that the pathlines from different
3D trajectories, shown in Fig. 4ii as the projection from above, are
appearing to cross (we note they are in different z-planes at the
‘‘crossing’’). Of course for steady flow they cannot cross, otherwise
the crossing point would have at the same time two different
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velocities, each one pointing in the direction of each trajectory at
that point.

As already discussed, the residence time of a fluid particle in
each half loop is sufficiently long such that the fluid, even at the
highest Weissenberg numbers analysed, essentially has time to
fully relax prior to entering the subsequent loop. As a consequence,
trajectories released in the second loop, i.e. from location B0 rather
than A0, are identical. In Fig. 5 we make use of this fact to construct
2D projections of 3D trajectories in arbitrarily long serpentine
channels. To do so we take the end (y,z) location (i.e. in A4) from
the first trajectory and feed this value into a new (y,z) start point
for a subsequent trajectory at location A0. In this manner we can
follow trajectories for arbitrarily long times. Fig. 5a shows data
for the trajectory initially released from (0.2,0.2) and followed
for 60 half loops. At the end of 60 half loops the trajectory is, en-
tirely coincidentally, almost back to its starting point (to a location
of 0.20, 0.19 which is well within one cell of the trajectory origin).
In Fig. 5b we show the trajectory of a near-neighbour point over
the same number of half loops. (A ‘‘near-neighbour’’ point was se-
lected by moving one cell away in the y-direction). Although the
trajectory of the near neighbour appears qualitatively similar it is
still at a considerable distance from its starting point after 60 half
loops.
4.3. Strength of secondary flow

To quantify the strength of the secondary flow we can choose
either the maximum positive or minimum negative velocity in
either the spanwise (w) or transverse (v) directions or we can
use, as others have done [20,21], the absolute value of the maxi-
mum secondary flow strength SMAX ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ v2
p

ÞMAX : In Fig. 6 we
plot the variations of these secondary flow components at location
A1 with Weissenberg number for square channels (a = 1) at R/
W = 1 using the UCM model. Fig. 6 highlights that the transverse
components are larger than the spanwise and that the absolute va-
lue of the secondary flow strength is dominated by the transverse
component (i.e. SMAX � vMAX). Although the maximum positive and
negative transverse velocities are similar in magnitude for lower
Wi, the positive spanwise velocities (towards symmetry plane)
are stronger than the negative spanwise velocities away from the
symmetry centreplane. In addition each of the components scales
monotonically with increasing elasticity. Although the transverse
outer wall

(a) inner wall

outer wall

(b) inner wall

Fig. 5. Projection of 3D trajectories taken by streamtraces in series of 60 half-loops
onto a 2D plane normal to streamwise direction. R/W = 1, a = 1, Wi = 0.6. Released
from x = 0 plane, location A0, and (z/H,y/W) locations of (a) (0.2,0.2); (b) (0.2,0.16).
velocities are larger than the spanwise, in what follows we will
use the maximum spanwise velocity at location A1 to quantify
the secondary flow strength. Our rationale for this choice is two-
fold. Firstly, for the Newtonian simulations – where there is no sec-
ondary flow – the curvature of the geometry causes the transverse
velocity to be non-zero within the geometry except at location A1
(or A3, B1, B3): thus small extrapolation errors may affect the accu-
racy of this quantity for small values of the secondary flow. In con-
trast, the spanwise velocity component is negligible near section
A1 for the Newtonian fluid due to constant curvature and constant
channel width [4] and therefore provides an unambiguous mea-
sure of secondary flow strength regardless of radius or aspect ratio.
Secondly SMAX provides no information beyond vMAX.

The effect or curvature is shown in Fig. 7 where data for square
channels are shown both in terms of Weissenberg number (Fig. 7a)
and a Deborah number based on the residence time in each half
loop i.e. De ¼ kU=R (Fig. 7b). At constant Weissenberg number the
effect of reducing the radius of curvature of the geometry increases
the secondary flow strength. (Of course in the limit of infinite radius
of curvature, a straight channel, the secondary flow must vanish as
this model has a vanishing second-normal stress difference). When
plotted in terms of Deborah number the curvature effect on the sec-
ondary flow strength becomes encapsulated in the Deborah num-
ber and the data for different geometries collapses onto a single
curve. The secondary flow strength is seen to scale linearly with
Deborah number over the low-moderate De range. As a time-
dependent purely-elastic instability occurs just beyond the De val-
ues shown here [24] this linear scaling thus approximately holds for
the entire region over which the flow remains steady.

Fig. 8 illustrates the effect of the solvent viscosity ratio, b = gs/
(gs + gp), on the secondary flow strength for the UCM model
(b = 0) and for the Oldroyd-B model considering two different
solvent viscosity ratios (b = 0.5 and 0.9). To correctly incorporate
solvent viscosity effects we make use of a modified1 Deborah
1 This definition is not really modified in a sense and perhaps ‘‘consistent’’ Deborah
number is more apt as, in this manner, elastic effects are estimated as being
proportional to the first normal–stress difference scaled by twice the shear stress.
Instead of using solely the relaxation time to estimate a characteristic fluid time we
are using the difference between the relaxation and retardation times of the Oldroyd-
B model.



Fig. 7. Effect of curvature on maximum spanwise secondary flow velocity at location A1 for square channels (a = 1) and UCM model as a function of (a) Weissenberg number
and (b) Deborah number (data taken from [24]).

Fig. 8. Effect of solvent viscosity ratio on maximum spanwise secondary flow velocity at location A1 for a square channel (a = 1) and R/W = 1 as a function of (a) Deborah
number and (b) modified Deborah number.
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number equal to (1 � b) De and then linear collapse of the secondary
flow strength is again observed. Finally, in Fig. 9, we plot the effect of
channel aspect ratio on the secondary flow strength. For a P 1, the
strength of the secondary flow is found to be independent of the as-
pect ratio. For small aspect ratios, i.e. the deeper channel as shown in
Fig. 3d, where the secondary flow is no longer characterised by a
single pair of vortices, this simple scaling no longer holds.

5. Conclusions

The results of a systematic numerical investigation of inertialess
viscoelastic fluid flow through three-dimensional serpentine (or
wavy) channels of varying radius and aspect ratios using the Old-
royd-B/UCM model have revealed the existence of a secondary
flow which is absent for the equivalent Newtonian fluid flow.
The secondary flow arises due to the curvature of the geometry
and the streamwise first normal–stress differences generated in
the flowing fluid and can be thought of as the viscoelastic equiva-
lent of Dean vortices.

The effects of radius of curvature ratio, aspect ratio and solvent-
to-total viscosity ratio on the strength of the secondary flow are
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investigated and shown to be self-similar over a wide parameter
range using a modified Deborah number.
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