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Abstract 9 

Operational modal analysis allows one to identify the modal properties (natural frequencies, 10 

damping ratios, mode shapes, etc.) of a constructed structure based on output vibration 11 

measurements only. For its high economy in implementation it has attracted great attention in 12 

theory development and practical applications. In the absence of specific loading information 13 

and under uncertain operational environment that can hardly be controlled, the identified modal 14 

properties have significantly higher uncertainty than their counterparts based on free or forced 15 

vibration tests where the signal-to-noise ratio can be directly controlled. A recent result 16 

connecting mathematically the frequentist and Bayesian quantification of identification 17 

uncertainty opens up opportunities for modeling the variability of modal properties over time 18 

when taking into account identification uncertainty. This paper presents a probabilistic model for 19 

the modal properties of a structure under operating environment, which incorporates the 20 

identification information from past data to yield the total uncertainty that can be expected in the 21 

future with similar structural and environmental characteristics in the past. The developed 22 

concepts are illustrated using synthetic, laboratory and field data. 23 
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Introduction 27 

The ‘modal properties’ of a structure include primarily its natural frequencies, damping ratios 28 

and mode shapes (Clough and Penzien 1993). They govern the structural vibration response 29 

under dynamic loads such as wind, earthquake and human excitation. Modern finite element 30 

technology has allowed the natural frequencies and mode shapes to be predicted routinely using 31 

information available at the design stage. Significant discrepancy from the actual properties can 32 

exist, depending on the assumptions made by the engineer. Notably, there is no acceptable 33 

method for predicting the damping ratios at the design stage because energy dissipation 34 

mechanisms in civil engineering structures are difficult to model using mechanical principles 35 

alone. Despite decades of research in structural-wind engineering (Davenport and Hill-Carroll 36 

1986, Jeary 1997, Satake et al. 2003, Kijewski-Correa et al. 2006), there is no accepted method 37 

for predicting the damping ratio even for buildings with regular configurations. Blind source 38 

separation method is one method recently developed and applied to highly damped structure 39 

(Yang and Nagarajaiah 2013) and bridge under traffic loading (Brewick and Smyth 2014). In the 40 

past few decades, the damping of tall building has attracted much attention, especially for the 41 

amplitude dependence characteristics (Çelebi 1996, Fang et al 1999).  Empirical models have 42 

been developed to investigate the damping in tall buildings (Bentz and Kijewski-Correa  2008, 43 

Spence and Kareem 2014). Damping values used in design are all based on rule of thumb or at 44 

best engineering judgment of the design engineer, where uncertainty can arise in this process 45 

(Bashor and Kareem 2008). These uncertainties can have significant implications on design 46 

economy of modern dynamic-prone structures, which are often featured by creative topology, 47 

light-weight materials but met with high performance standards.  48 
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Operational modal analysis (OMA) allows one to identify modal properties of a structure 49 

using only the ‘output’ vibration (often acceleration) measurements under operating environment. 50 

It is recognized as the most economical means for modal identification and has shown promise to 51 

be sustainable in civil engineering (Brownjohn 2003, Wenzel and Pichler 2005, Catbas 2011, 52 

Reynders 2012). Practical field applications have been reported in many countries and regions. 53 

For examples, in the UK, the ambient vibration test of Humber Bridge was carried out by a 54 

combined team from different countries and several OMA techniques were used to analyze the 55 

data measured (Brownjohn et al. 2010). The results obtained using different methods were 56 

investigated and compared. They were also compared with the results of a previous test about 30 57 

years ago and few significant differences were observed in the natural frequencies of the vertical 58 

and torsional modes. In the United States, an integral abutment highway bridge was measured by 59 

ambient vibration test on the basis of wireless sensors network. OMA with wireless sensor 60 

technology was demonstrated for some large civil structures (Whelan et al. 2009). In Portugal, 61 

OMA of two historical masonry structures were carried out to estimate the modal parameters and 62 

then explore damage assessment (Ramos et al. 2010). In Shanghai, a set of dynamic field tests 63 

including ambient and free vibration tests were conducted on a super high-rise building (Shi et al. 64 

2012). By OMA using ambient vibration data, it was found that the damping ratio has a larger 65 

discrepancy than natural frequency. The natural frequencies agree well with the finite element 66 

model and shaker test result. In Hong Kong, field tests of two super tall buildings were 67 

performed under norm and strong wind events (Au et al. 2012). Significant trends were observed 68 

between modal parameters and vibration amplitude. The fluctuation of modal parameters 69 

induced by environmental effects such as temperature has also attracted increasing attention in 70 

the OMA. By one year daily measurement of a tall building, the seasonal variation of modal 71 
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properties was investigated in Yuen and Kuok (2010). Based on the Timoshenko beam model, a 72 

modal frequency-ambient condition model was constructed with the effects of ambient 73 

temperature and relative humidity considered. For the Ting Kau Bridge in Hong Kong, one year 74 

continuous measurement data have also been collected using accelerometers, temperature 75 

sensors, etc. By statistical analysis of the measured frequencies obtained by OMA, it was found 76 

that the normal environmental change accounts for variation with variance from 0.2% to 1.52% 77 

for the first ten modes of the bridge (Ni et al. 2005). The temperature and humidity effect on the 78 

modal parameters of a reinforced concrete slab was also investigated on the basis of OMA 79 

results. Clear correlation of natural frequency and damping ratio with temperature and humidity 80 

was observed, but it was not obvious for mode shapes (Xia et al. 2006).  81 

The identified modal properties in OMA often have significantly higher uncertainty than 82 

their counterparts based on free (zero input) or forced (known input) vibration data because no 83 

specific loading information is used in the identification process and the signal-to-noise (s/n) 84 

ratio cannot be directly controlled. Quantifying and managing the identification uncertainties 85 

then become relevant and important for the proper ‘down-stream’ use of the modal properties for, 86 

e.g., vibration control, structural system identification and more generally structural health 87 

monitoring (Papadimitriou et al. 2001, Liu and Duan 2002, Steenackers and Guillaume 2006, 88 

Nishio et al. 2012 ).  89 

OMA has been traditionally performed in a non-Bayesian context. Recent years have seen 90 

efforts to quantify and compute the uncertainty of modal properties in a ‘frequentist manner’ 91 

(Pintelon et al. 2007, Reynders et al. 2008, Dohler et al. 2013, El-kafafy et al. 2013), i.e., as the 92 

ensemble variability of the identified values over uncertainty of the data. In a more fundamental 93 

manner, a Bayesian system identification approach (Beck 2010) allows the information 94 
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contained in the ambient vibration data to be processed rigorously consistent with modeling 95 

assumptions and probability logic to yield inference information on the model parameters of 96 

interest. For OMA, a frequency domain approach based on the FFT (Fast Fourier Transform) of 97 

ambient vibration data has been recently formulated (Yuen and Katafygiotis 2003) and efficient 98 

computational framework has been developed allowing practical applications in a variety of 99 

situations, see Au (2011) and Zhang and Au (2013) for well-separated modes, Au (2012a,b) for 100 

multiple (possibly close) modes, Au and Zhang (2012a) and Zhang et al. (2015) for well-101 

separated modes in multiple setups. Applications and field studies can be found in Au and To 102 

(2012), Au and Zhang (2012b) and Au et al. (2012). A review can be found in Au et al. (2013). 103 

By virtual of the one-one correspondence between the time domain data and the FFT, the method 104 

allows one to make full use of the relevant information in the data, balancing identification 105 

uncertainty and modeling error risk. The results are invariant to the FFTs in other frequency 106 

bands which are irrelevant and/or difficult to model.  107 

In applications with a long sequence of ambient vibration data, modal identification is 108 

often applied to non-overlapping segments of the data within which the modal properties are 109 

assumed to be time-invariant and the stochastic modal force of the modes of interest are assumed 110 

to be stationary. A recent mathematical theory connecting the frequentist and Bayesian 111 

quantification of uncertainty together with field studies reveals that the posterior uncertainty 112 

implied from Bayesian identification of each time segment need not coincide with the ensemble 113 

(i.e., segment to segment) variability of the modal properties (Au 2012c). In a Bayesian 114 

perspective, the posterior uncertainty obtained is used to quantify the uncertainty of the identified 115 

modal parameters, while from a frequentist perspective, the uncertainty is to describe the 116 

variability of modal parameters identified among different segments. These two perspectives are 117 
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two different concepts, and so they need not coincide with each other. The difference is a 118 

reflection of modeling error (Au 2012c), which may come from time invariance, damping 119 

mechanism, etc., although the source is subject to interpretation and further modeling. With fast 120 

Bayesian FFT method, operational modal analysis can be performed to obtain the modal 121 

parameters and the associated covariance matrix using ambient vibration data. In this paper we 122 

present a probabilistic model that interprets the discrepancy combining Bayesian and frequentist 123 

(ensemble concept) perspectives. The new developed model can incorporate the information of 124 

the modal parameters and the posterior uncertainty in non-overlapping segments of the data with 125 

similar operating environment, which enable the model to assess the distribution of the modal 126 

parameters in the future and predict the variation of these parameters. Examples based on 127 

synthetic, laboratory and field data are provided to illustrate and apply the developed theory.  128 

Theory 129 

In this section we present a theory for predicting a quantity of interest in a future event using 130 

identification information obtained from the past, assuming that the future event is under an 131 

uncertain environment that has been experienced by the monitoring database accumulated so far. 132 

Although for practical relevance the theory is developed in the context of OMA, it is generally 133 

applicable to parameters identified from a Bayesian approach. 134 

Single data set 135 

For instructional purpose, consider first inferring a set of parameters θ  of interest from data D . 136 

In a Bayesian context the posterior probability density function (PDF) of θ  acknowledging the 137 

information from D  and consistent with modeling assumption M  and probability logic is given 138 

by 139 
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)|()|()(),|( 1 MpDPDPMDp θθθ
   (1) 

 
140 

where, in the conventional terminology, the first term is a normalizing constant, the second term 141 

is the likelihood function and the third term is the prior distribution. With sufficient data the prior 142 

distribution can be considered slowly varying compared to the likelihood function and so the 143 

posterior distribution is directly proportional to the likelihood function. Assuming that the 144 

problem is ‘globally identifiable’, i.e., the posterior distribution has a single peak at the most 145 

probable value (MPV) θ̂  (say) in the parameter space of θ . In this case the likelihood function 146 

can be approximated by a second order Taylor expansion about the MPV, which gives a 147 

Gaussian distribution in the posterior distribution: 148 
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where Ĉ  is the Hessian matrix of the negative of the log-likelihood function (NLLF) evaluated 150 

at the MPV; n is the number of parameters in θ . Note that both θ̂  and Ĉ  depend on the data D , 151 

although this has not been explicitly denoted in the symbol. 152 

For a particular parameter in θ , say, , the marginal posterior distribution is also Gaussian:  153 
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where ̂  is the posterior MPV of  , equal to the corresponding entry in ̂ ; and ĉ  is the 155 

posterior variance equal to the corresponding diagonal entry of Ĉ . 156 
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Multiple data sets 157 

Suppose now we have multiple sets of data 
sNDD ,...,1 , where sN  is their number. Although 158 

theoretically one can apply the Bayesian method to obtain the posterior PDF )|( Dp   based on 159 

all the data },...,{ 1 sNDDD  , the result can be misleading because the parameter may have 160 

changed over the different time segments and there is a significant chance that the time-161 

invariance assumption implicit in the posterior PDF )|( Dp   is wrong. That is, the resulting 162 

posterior PDF can have significant modeling error that undermines its use.  163 

In view of the above, we relax the invariance assumption and allow the parameter to be 164 

different in different data sets. From each data set, say, iD  ( sNi ,...,1 ), we can perform 165 

Bayesian identification in the context of the last section to obtain the posterior PDF of the 166 

parameter  , which is a Gaussian PDF with posterior MPV î  and variance iĉ . Although this 167 

simple model does not allow us to reach a single posterior PDF to represent the inference 168 

information, it has significantly less modeling error than the previous one that assumed 169 

invariance. The setting here leads to a ‘frequentist’ picture of uncertainty, where the different 170 

data sets play the role of different realizations of an ensemble population. A simple frequentist 171 

measure of the variability of the parameter is in terms of the sample variance of the MPV î  over 172 

different data sets.  173 

One intuitive question that connects the Bayesian and frequentist perspective of 174 

identification uncertainty is whether variability of the MPVs },...,1:ˆ{ si Ni   over different data 175 

sets is consistent with the uncertainty implied by the posterior variances },...,1:ˆ{ si Nic  . This 176 

question has recently been investigated theoretically, numerically and experimentally (Au 2012c). 177 

If there is no modeling error, i.e., the data indeed results from a process following the assumed 178 
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model and the underlying (‘actual’) parameters are invariant over the data sets, then the 179 

ensemble variance of the MPVs is approximately equal to the ensemble expectation of the 180 

posterior variance among the experimental trials. In the context of a finite number of data sets 181 

sNDD ,...,1 , this means that when sN  is sufficiently large (so that the sample average is close to 182 

the ensemble average) 183 
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186 

is the sample average of the MPVs.  187 

In the general case when modeling error can exist due to, e.g., changing experimental 188 

conditions or incorrect modeling assumptions, the two quantities need not agree. Conversely, 189 

their difference is an indication of modeling error.   190 

Probabilistic modeling of the future 191 

We now develop a probabilistic model for the parameter in a future time window, making use of 192 

the information from the data sets },...,{ 1 sNDD . For this purpose we have to make some 193 

‘ergodic’ assumptions on the future environment that allow us to relate the future back to the past 194 

data, for otherwise a prediction is generally not possible. Specifically, we assume that in a future 195 

time window the environment corresponds to either one of the time windows where we have 196 

collected the data. Roughly speaking this assumes that the past data is rich enough to cover a 197 

future scenario. In the context of OMA, one may have the data for a day, based on which one 198 
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would like to make a prediction for the modal properties for the next day, which is believed to be 199 

under similar environment.  200 

In the above context, we now derive the probability distribution of a generic modal 201 

parameter   for a future time window. This is denoted by )|(Θ Dθp , where },...,{ 1 sNDDD   is 202 

the collection of all data sets in the monitoring database. This should be distinguished from203 

)|( Dp  , which in the context of the previous sections denotes the posterior PDF using all the 204 

data sets and assuming that the parameter is invariant over all the time segments (often a poor 205 

assumption). The derivation is based on the fact that the future environment is assumed to 206 

correspond to one of the time segments observed in the data set with uniform probability of 207 

occurrence. Conditional on a given time segment with data iD  (say) the PDF of   is simply the 208 

posterior PDF )|( iDp  . Let I  denote the index of the time segment that the future event may 209 

belong to. It is a random variable uniformly distributed on },...,1{ sN . Using the theorem of total 210 

probability,  211 
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Note that sNDiIP /1)|(  . Also, when iI  , only the data set iD  in D  is informative about 213 

Θ  and so 214 
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Since )|( iDp   is a Gaussian PDF with MPV î  and variance iĉ , we have 216 
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Substituting into equation (6), 218 
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219 

which is a mixture of Gaussian PDFs.  220 

This model combines the Bayesian and frequentist features of the problem. While the 221 

summand in equation (9) is the posterior PDF (Bayesian) based on information in each data 222 

segment, the average accounts for the ensemble variability of conditions over different segments. 223 

The simple average arises directly from the assumption that the future corresponds to either one 224 

of the segments with equal probability, which is justified when e.g., the time segments have 225 

equal length and there is no further information suggesting otherwise which time segment is 226 

more likely than the others. Note that a mixture distribution of Gaussian PDFs is not Gaussian 227 

and it need not be uni-modal.  228 

Bayesian operational modal analysis 229 

In the model developed in the last section, the most probable value and posterior variance of the 230 

modal parameters are indispensable. In this section, in the context of OMA we present a fast 231 

Bayesian FFT method for determining these quantities. See Au et al. (2013) for an overview, Au 232 

(2011) for the well-separated modes and Au (2012a, b) for the general multiple modes. The 233 

theory will be briefly outlined as follows. 234 

In the context of Bayesian inference, the measured acceleration is modeled as 235 

j j j y x e
  

(10) 236 
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where 
n

j Rx (j=1, 2,…, N ) is the model acceleration response of the structure depending on 237 

modal parameters θ  to be identified; and 
n

j Re  is the prediction error accounting for the 238 

discrepancy between the model response and measured data, respectively. The set of parameters 239 

θ  includes the natural frequencies, damping ratios, parameters characterizing the power spectral 240 

density (PSD) matrix of modal forces, the PSD of prediction error and the mode shape. Here, N  241 

is the number of sampling points; n  is number of measured degrees of freedom (dofs). The FFT 242 

of jy  is defined as 243 

1

2 ( 1)( 1)
exp[ 2 ]

N

k j

j

t k j

N N




  
 y iF   (11)   244 

where 2 1 i ; t  denotes the sampling interval; 1,..., qk N  with int[ / 2] 1,qN N   and int[.]245 

denotes the integer part; qN corresponds to the frequency index at the Nyquist frequency. 246 

Let 
2[Re ;Im ] n

k k k R Z F F  be an augmented vector of the real and imaginary part of kF . 247 

In practice, only the FFT data confined to a selected frequency band dominated by the target 248 

modes is used for identification. Let such collection be denoted by  kZ . Using Bayes’ Theorem, 249 

the posterior PDF of θ  given the data is given by,  250 

   ( | ) ( ) ( | )k kp p pθ Z θ Z θ    (12) 251 

where ( )p θ  is the prior PDF that reflects the plausibility of θ  in the absence of data. Assuming 252 

no prior information, the prior PDF is a constant of θ  and so the posterior PDF  ( | )kp θ Z is 253 

directly proportional to the likelihood function  ( | )kp Z θ . The MPV of modal parameters θ  is 254 

the one that maximizes  ( | )kp θ Z and hence  ( | )kp Z θ . 255 
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For large N  and small t , it can be shown that the FFT at different frequencies are 256 

asymptotically independent and their real and imaginary parts follow a Gaussian distribution  257 

(Schoukens and Pintelon 1991; Yuen and Katafygiotis 2003). The likelihood function 258 

 ( | )kp Z θ  is then a Gaussian PDF of kZ  with zero mean and covariance matrix kC  (say). For 259 

convenience in analysis and computation, it is written as   260 

)](exp[)|}({ θθZ Lp k 
   (13) 

261 

where ( )L θ  is the negative log-likelihood function (NLLF): 262 

11
( ) [ln det ( ) ( ) ]

2

T

k k k k

k

L  θ C θ Z C θ Z    (14) 
263 

The covariance matrix kC  depends on θ  and is given by 264 
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  (15)  265 

where mn

m R  ],...,[ 1 ΦΦΦ is the mode shapes matrix; m is the number of modes; eS  is the 266 

PSD of the prediction error; n2I  denotes the nn 22   identity matrix; mm

k C H  is the 267 

theoretical spectral density matrix of the modal acceleration responses and it is given by 268 

)()( *

kkk diagdiag hShH    (16)  269 

Here mmC S  denotes the PSD matrix of modal forces; m

k Ch  denotes a vector of modal 270 

transfer functions with the i -th element equal to  271 

12 )]2()1[(  ikiikikh  i   (17) 
272 

and 
mm

k Cdiag )(h  is a diagonal matrix with the i -th diagonal element equal to ikh ; ‘*’ 273 
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denotes conjugate transpose; kiik f f/  denotes frequency ratio; if denotes the i -th natural 274 

frequency; kf is the FFT frequency abscissa; i  denotes the i -th damping ratio. The ),( ji -entry 275 

of kH  is given by  276 

*),( jkikijk hhSji H   (18)  277 

where ijS  is the ),( ji -entry of S . 278 

The MPV of modal parameters can be theoretically obtained by minimizing the NLLF 279 

directly. However, the minimization process is ill-conditioned and the computational time grows 280 

drastically with the dimension of the problem, which renders direct solution based on the original 281 

formulation impractical in real applications. To solve the computational problems, fast solutions 282 

have been developed recently that allow the MPV of modal parameters and associated posterior 283 

covariance matrix to be computed typically in several seconds. The basic idea is to reformulate 284 

the NLLF in a canonical form and then the singularity with respect to the prediction error PSD 285 

eS  can be resolved with the role of the parameters separated, which allows the most probable 286 

mode shapes to be determined almost analytically in terms of the remaining parameters. 287 

Consequently, the number of modal parameters to be optimized will not increase with the 288 

number of measured dofs and only a small set of parameters needs to be optimized. See Au 289 

(2011), Zhang and Au (2013) for details on well-separated modes and Au (2012a,b) on general 290 

multiple (possibly close) modes. Analytical expressions have also been derived for the Hessian 291 

matrix and posterior covariance matrix can be determined as the inverse of the Hessian matrix. 292 

This allows the posterior uncertainty to be computed accurately and efficiently without resorting 293 

to finite difference. 294 
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For completeness the mathematical structure of the problem is briefly illustrated here. First 295 

consider the case of well-separated modes, where it is assumed that the selected frequency band 296 

contains only one mode. In this case, θ  consists of only one set of natural frequency f , 297 

damping ratio  , modal force PSD S , PSD of prediction error eS  and mode shape nRφ . 298 

Based on an eigenvector representation of kC  with one of the basis parallel to φ , the NLLF can 299 

be reformulated as  300 

)()ln(ln)1(2ln)( 1
Aφφθ

T

e

k

ekeff dSSSDSNnnNL    (19) 
301 

where φ is assumed to have unit Euclidean norm, i.e., 1)( 2/1  φφφ
T

; fN  is the number of 302 

FFT ordinates in the selected frequency band; 303 

1222 ])2()1[(  kkkD    (20) 
304 

with kf/fk   being is a frequency ratio; 305 
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kke SDS DA
1)/1(   (21)                                                                                                                                                                                                                       

306 

T

kk

T

kkk FFFF ImImReRe D   (22)                                                                                                                              
307 

 
k

k

T

kk

T

kd )ImImRe(Re FFFF   (23)                                                                                            
308 

Since the NLLF in equation (19) is a quadratic form in φ , minimizing it with respect to φ  under 309 

the norm constraint 1φ  gives the MPV of the mode shape, which is simply equal to the 310 

eigenvector of matrix A  with the largest eigenvalue. By this way, only four parameters, i.e., 311 

},,,{ eSSf  , need to be optimized numerically. Consequently, the computational process is 312 

significantly shortened with little dependence on the number of measured dofs n . 313 
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When there are multiple modes assumed in the selected band, e.g., closely-spaced modes, 314 

the MPV of mode shape cannot be determined by solving an eigenvalue problem directly. The 315 

problem is more complicated because it is not necessary for the mode shapes (confined to the 316 

measured dofs only) to be orthogonal to each other. By representing the mode shape via a set of 317 

orthonormal basis and noting that the subspace spanned by such basis does not exceed the 318 

number of modes, it is possible to reduce the complexity. In particular, the mode shape matrix 319 

mnR Φ  in the selected frequency band is represented as  320 

αBΦ '   (24) 
321 

where '' mnR B  contains a set of (orthonormal) ‘mode shape basis’ spanning the ‘mode shape 322 

subspace’ in its columns; mmR  '
α  contains the coordinates of each mode shape with respect to 323 

the mode shape basis in its columns; ),min(' mnm   is the dimension of the mode shape 324 

subspace. The MPVs of 'B  and α  need to be determined in the identification process. 325 

Based on equation (24), the NLLF can be expressed as, after a series of mathematical 326 

arguments, 327 
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328 

(25)                                                                                                                                                
329 

where  330 

'

'

me

T

kk S IααHE    (26) 
331 

is an 'm -by- 'm  Hermitian matrix.  On the basis of equation (25), the dimension of matrix 332 

computation involved becomes to be 'm , which is often much smaller than n  in applications. 333 
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The NLLF depends on the mode shape basis only through the last term in equation (25), which 334 

is a quadratic form. The most probable basis minimizes the quadratic form under orthonormal 335 

constraints. Although this does not lead to a standard eigenvalue problem, procedures have been 336 

developed that allow the most probable basis to be determined efficiently by Newton iteration. A 337 

strategy has been developed for determining the MPV of different groups of parameters, 338 

iterating until convergence (Au 2012a). 339 

Illustrative examples 340 

In this section we illustrate the developed concepts using examples based on synthetic, 341 

laboratory and field data. The example with synthetic data allows us to investigate the theoretical 342 

case when there is no modeling error, i.e., the data indeed results from the assumed mechanism; 343 

over the different data sets the modal properties are invariant and the stochastic loading are 344 

stationary. The example with laboratory experimental data investigates a similar situation under 345 

reasonably controlled environment (up to our knowledge). The example with ambient data 346 

applies the theory to the real situation where the environment can hardly be controlled.    347 

SDOF structure (synthetic data) 348 

Consider the horizontal vibration of a SDOF structure. It is assumed to have a stiffness of 39.478349 

mmKN / , a floor mass of 1000 tons and a damping ratio of 1%. The fundamental natural 350 

frequency is calculated to be 1 Hz. The structure is subjected to horizontal excitation modeled by 351 

independent and identically distributed (i.i.d.) Gaussian white noise with a one-sided spectral 352 

density of 1 Hzgμ /)( 2 . The acceleration response is calculated at a sampling rate of 20Hz. The 353 

measured acceleration is contaminated by measurement noise modeled by Gaussian white noise 354 

with a one-sided spectral density of 100 Hzgμ /)( 2 . Ambient acceleration data of 600 seconds 355 
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duration is available. The set of modal parameters to be identified consists of the natural 356 

frequency f , damping ratio ζ , PSD of modal force S  and PSD of prediction error eS . The 357 

mode shape Φ  is trivially equal to 1. 358 

Figure 1 shows the root singular value spectrum of a typical set of 600 sec data. Since 359 

there is only one measured dof, the singular value spectrum coincides with the PSD spectrum. 360 

The horizontal bar indicates the selected frequency band whose FFT data shall be used for modal 361 

identification and the dot indicates the initial guess for the natural frequency. Using this set of 362 

data the MPV and posterior covariance matrix of modal parameters can be calculated. To 363 

examine the ensemble (frequentist) statistics of the MPVs among statistically identical 364 

experimental trials, we generate 100 i.i.d. sets of data (600 sec each). Correspondingly, 100 365 

‘samples’ of the MPVs are calculated. Figure 2 shows the identified natural frequencies, 366 

damping ratios and modal force PSD corresponding to different setups, where each parameter is 367 

shown with a dot at the MPV and an error bar covering +/- 2 posterior standard deviations. The 368 

ensemble variability of the identification results of the three modal parameters over different data 369 

sets is small. 370 

Table 1 compares the frequentist and Bayesian statistics of the modal identification results 371 

among the 100 trials. The second column shows the exact parameter value that generated the 372 

data. The third column shows the MPV calculated using a typical data set. The sample mean of 373 

the MPVs from 100 data sets is shown in the fourth column. The MPV calculated using a single 374 

data set and the sample mean are quite close to the exact value. The fifth column titled ‘Freq.’ 375 

shows the sample coefficient of variation (c.o.v.) of the MPVs among the 100 trials, equal to the 376 

sample standard deviation divided by the sample mean of the MPV. The sixth column titled 377 

‘Bay.’ shows the equivalent mean posterior c.o.v. (defined as the sample root mean square 378 
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(r.m.s.) value of the posterior standard deviation / the sample mean of the MPV). It can be seen 379 

that these two quantities are quite close to each other, with the ratios of the frequentist to 380 

Bayesian quantity all close to 1(shown in the column titled ‘A/B’). The frequentist result is 381 

consistent with the posterior uncertainty of these modal parameters in a Bayesian manner. 382 

Figure 3a) shows the PDF of the modal parameters in a future scenario incorporating the 383 

information of the 100 data sets, based on the probabilistic model developed in this work, i.e., 384 

equation (9). As mentioned before, a mixture distribution of Gaussian PDFs is not necessarily 385 

Gaussian. In the present case, the distribution for the natural frequency and prediction error PSD 386 

appears to be approximately Gaussian. The same is not true for the damping ratio or the modal 387 

force PSD. The mean and c.o.v. (=standard deviation/mean) of the distribution are shown in the 388 

title of each subfigure. The mean and standard derivation (std) of the distribution )|( Dp  in 389 

equation (9) can be determined in terms of }ˆ{ i  and }ˆ{ ic  as (see Appendix): 390 
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392 

Figure 3b) shows that the distributions are similar when 1000 data sets are used. This 393 

suggests that the number of data sets (100) is sufficiently large so that the distribution is 394 

insensitive to it. On other hand, the shape of the distributions is similar when the duration of data 395 

used is doubled (Figure 3c) or halved (Figure 3d). An increase in the data length will lead to a 396 

decrease in the c.o.v.s of the modal parameters in the prediction model. This is a reflection of the 397 

amount of information used in modal identification.  398 
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It is instructive to compare the uncertainty implied by the posterior distribution of a single 399 

set of data and that implied by the prediction model in equation (9). Table 2 shows the c.o.v.s 400 

calculated based on single data set, where Cases a) to d) correspond to the Cases a) to d) in 401 

Figure 3, respectively. It is seen that the c.o.v.s in Figure 3 are larger than those in Table 2. This 402 

reveals that the uncertainty implied by the prediction model is higher than the posterior 403 

uncertainty based on a single data set, which has not incorporated possible data to data variability. 404 

Laboratory frame 405 

Consider a four-storied shear frame situated in the laboratory, as shown in Figure 4. The frame 406 

was kept in an air-conditioned room. Eight uni-axial accelerometers are instrumented at the 407 

center of the four floors to measure the response along the weak and strong direction for 20 408 

hours in a quiet environment where there was little human activities nearby. In this work, only 409 

the data collected in weak direction are investigated. In the nominal case, the first 10-hour data is 410 

divided into 60 sets, each with a time window of 10 minutes. Digital data was originally sampled 411 

at 2048 Hz and later decimated to 64 Hz for modal identification.  412 

Figure 5 shows the singular value spectrum of a typical data set and the frequency band 413 

selected for modal identification. Bayesian modal identification is performed separately for each 414 

data set. Figure 6 shows the identification result of the first mode. The MPV of natural frequency 415 

only changes slightly over the 10 hour duration. The ensemble variability of the identification 416 

results of the damping ratio and the modal force PSD over different data sets is larger than that of 417 

the natural frequency, although the MPVs are still in the same order of magnitude. For the 418 

natural frequency and damping ratio, the posterior uncertainty (say, in terms of the length of the 419 

error bar) is consistent with the ensemble variability of their MPVs over different setups and 420 

therefore the Bayesian and frequentist perspectives roughly agree. However, this is not true for 421 
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the modal force PSD, as evidenced by the typical observation that there is little overlap between 422 

the error bars of neighboring setups. This suggests that the controls applied to the laboratory 423 

environment can only maintain the modal force PSD to the same order of magnitude but not the 424 

same value (to within identification precision) in each data set. 425 

Table 3 summarizes the frequentist and Bayesian statistics among the 60 data sets. For the 426 

natural frequency and damping ratio, the sample c.o.v. may be considered similar to the 427 

equivalent mean posterior c.o.v.. This is not the case for the modal force PSD, where the sample 428 

c.o.v. is more than twice of the equivalent mean posterior c.o.v.. The sample c.o.v. largely 429 

reflects the variability in the environment because the posterior c.o.v. is relatively small, 430 

although the environment in the laboratory seems controllable. This result is consistent with 431 

Figure 6. 432 

Figure 7a) shows the PDF of the modal parameters based on the proposed probabilistic 433 

model (equation (9)) using the 60 sets of identification results, where the mean and c.o.v. of this 434 

distribution are shown above each subfigure. The distribution of the natural frequency and 435 

damping ratio appears to be roughly Gaussian but the same is hardly true for the PSD of modal 436 

force and PSD of prediction error. As a sensitivity study, Figure 7b) to d) show results using the 437 

first 10, 30 and 120 data sets. It is found that the distribution of natural frequency and damping 438 

ratio are generally similar to those in Figure 7a) but the same is not true for the PSD of modal 439 

force and the PSD of prediction error. The sensitivity of the latter quantities is reasonable 440 

because according to the proposed model the data incorporated reflects the environment that will 441 

be experienced. On the other hand, the distribution of the natural frequency and damping ratios 442 

are relatively stable because the environment has not changed significantly to the extent that will 443 

affect them.  444 
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Next, similar to the synthetic data example, the mean and c.o.v. values of these 445 

distributions are also investigated. The posterior c.o.v. of natural frequency, damping ratio, 446 

modal force PSD and PSD of prediction error for the first data set are equal to 0.059%, 33.1%, 447 

5.9% and 3.3%, respectively. As before, the posterior c.o.v. for a single data set is lower than 448 

that calculated based on the prediction model. In the prediction model, the c.o.v. does not 449 

necessarily increase when more data sets are incorporated. For example, the c.o.v. of the 450 

damping ratio and PSD of prediction error first increases and then decreases when the number of 451 

data set used changes from 10 to 120. This implies that in a similar environment, when the 452 

number of data set used is adequate, the prediction model will tend to stabilize. 453 

Super-tall building 454 

Consider a tall building situated in Hong Kong measuring 310 m tall and 50 m by 50 m in plan, 455 

as studied in Au and To (2012). Ambient data with a duration of 30 hours are collected using a 456 

tri-axial accelerometer (i.e., 3 dofs) under normal wind situation in October 2010. The data is 457 

divided into 60 data sets of 30 minutes each. Figure 8 shows the root singular value spectrum of 458 

a typical data set and the selected frequency band. Modal identification is performed for each 459 

data set separately. In the frequency band indicated in the figure there are two closely spaced 460 

modes. These two modes will be identified simultaneously. Only the results of the first mode 461 

will be discussed, however.  462 

The identification result is shown in Figure 9, with a dot at the MPV and an error bar of +/- 463 

two posterior standard deviations. Compared with the previous two examples, the MPVs of the 464 

modal parameters have larger variability over different setups. This clearly demonstrates that the 465 

posterior uncertainty in one setup does not necessarily tell what will happen to the identification 466 

result in the next setup. There is no guarantee that the MPV of the next setup will lie within the 467 
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error bars of the current setup. For example, the MPV of the natural frequency in Setup 17 lies 468 

beyond the region covered by the error bar of Setup 16. One possibility for this is that the modal 469 

properties of the structure have changed from one setup to another. This is especially obvious for 470 

the modal force PSD shown in the bottom plot of Figure 9. The short error bars imply that the 471 

modal force PSD in each setup can be identified quite accurately (within time-invariant 472 

assumption within the time window) but it is changing from one setup to another. Table 4 473 

summarizes the frequentist and Bayesian statistics. The sample c.o.v. of S  is much larger than 474 

the equivalent mean posterior c.o.v., which is likely attributed to environmental variability over 475 

different data sets. Similar to the former two examples, the frequentist and Bayesian statistics are 476 

similar for the natural frequencies and damping ratios, although the frequentist statistics is 477 

consistently larger. 478 

Figure 10 shows the PDF of the modal parameters based on the proposed probabilistic 479 

model (equation (9)) using the 60 sets of identification results, where the mean and c.o.v. of this 480 

distribution are shown above each subfigure. It is seen that the distributions of the natural 481 

frequency, damping ratio and PSD of prediction error appear to be roughly Gaussian, although 482 

the environment in the field is much different from that in the laboratory. The distribution of the 483 

modal force PSD is multi-modal. This modal parameter is quite sensitive to the environment. 484 

The c.o.v. of this quantity calculated according to the prediction model is about 100%. 485 

Note that in real environment, the probabilistic model has not explicitly taken into account 486 

the effect of the environmental conditions directly, e.g., temperature, humidity and so on, 487 

although the PSD of modal force and PSD of prediction error involved in the model can also 488 

reflect some effect from the environment. 489 
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Conclusions 490 

This paper develops a probabilistic model on the basis of the data collected, which combines 491 

Bayesian identification results with a frequentist quantification of the setup-to-setup variability. 492 

The effect of data length and the number of data sets on the probabilistic model have been 493 

investigated. Increasing the data length can reduce posterior uncertainty of modal parameters 494 

identified from each data set, to the extent that the stationary assumption within each data set is 495 

still valid. Increasing the number of data sets can generally enrich the monitoring data base and 496 

provide a more robust prediction of the future. The distributions of the natural frequency and 497 

damping ratio are found to be less sensitive to the data length and the number of data sets, 498 

compared to the distribution of the PSD of modal force and PSD of prediction error. One 499 

possible reason is that the latter two parameters are more sensitive to environmental conditions.  500 

Based on the probabilistic model, the distribution of the modal properties in a future time 501 

window under environment covered by one of the time segments obtained in the monitoring 502 

database can be assessed. This makes it possible to estimate the variability of the modal 503 

parameters in a similar operational environment in the future and then predict the dynamic 504 

characteristics of subject structure utilizing the data collected. The mean and variance of the 505 

prediction model are also derived based on the distribution. The c.o.v. values obtained tend to be 506 

larger than the posterior c.o.v. calculated utilizing single data set. This is reasonable since the 507 

prediction model takes into account the variability among different data sets. The data length and 508 

the number of data sets are two important quantities. The choice is a balance between modeling 509 

error (e.g., stationarity) and identification precision. It will be an interesting topic to investigate 510 

how much data is adequate to establish a reliable prediction model.  511 
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Appendix: Derivation of expectation and standard derivation 518 

Let ][DE  denote the expectation when   is distributed as )|( Dp   given by equation (9). The 519 

mean of   can be derived as follows.  520 
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521 

Let ][var D  denote the variance of   when it is distributed as )|( Dp  . Also, let i  522 

denote a Gaussian random variable with mean î  and variance iĉ . Then 523 
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Table 1 Sample and Bayesian statistics, SDOF synthetic data 640 
 641 

  Exact 
Single 

Set MPV 

Sample 

mean of 

MPV 

Freq.
a 

(%) A  

Bay.
b 

(%)B  
A/B  

f (Hz)  1 1.001  1.000  0.235  0.239  0.99  

ζ (%)  1 0.875  1.063  25.15  25.72  0.98  

)/)(( 2 HzgμS   1 0.980  1.018  19.61  23.62  0.83  

)/)(( 2 HzgμSe
  100 103.996  100.293  5.16  5.07  1.02  

a
Frequentist=sample c.o.v. of MPV= (sample std. of MPV)/ (sample mean of MPV).  642 

b
Bayesian= (r.m.s. of posterior std.)/ (sample mean of MPV). 643 

 644 
  645 
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Table 2 C.o.v.s calculated based on single data set in four different cases, SDOF synthetic data 646 
 647 

Case  f(%)   ζ (%) S(%)  Se(%)  

a)  0.20  24.6  20.3  4.9  

b)  0.26  23.4  21.9  5.1  

c)  0.19  17.9  17.9  3.7  

d) 0.33  40.4  40.7  7.2  
 648 

649 
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Table 3 Sample and Bayesian statistics, lab shear frame data 650 
 651 

  
Single 

Set MPV 

Sample 

mean of 

MPV 

Freq.
a 

(%) A  

Bay.
a 

(%)B  
A/B  

f (Hz)  1.379  1.380  0.058  0.070  0.83  

ζ (%)  0.181  0.236  27.19  29.99  0.91  

)/)(( 2 HzgμS   
4.01

310   

3.40
310   

17.46  6.32  2.76  

a
See Table 1 652 

653 
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Table 4 Sample and Bayesian statistics, super tall building 654 
 655 

  
Single 

Set MPV 

Sample 

mean of 

MPV 

Freq.
a 

(%) A  

Bay.
a 

(%)B  
A/B  

f (Hz)  0.154  0.154  0.20  0.17  1.18  

ζ (%)  0.615  0.499  33.07  32.30  1.02  

)/)(( 2 HzgμS   0.744  0.210  98.31  13.15  7.47  
a
See Table 1 656 

 657 
658 
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 659 

Figure 1 Root singular value (SV) spectrum of a typical data set, synthetic data 660 
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 662 

Figure 2 Modal identification results of a SDOF structure in different setups, Synthetic data 663 
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a).100 sets data, 600sec. b). 1000 sets data, 600sec. 

  
c). 100 sets data, 1200sec d). 100 sets data, 300sec. 

Figure 3 PDF of the modal parameters based on the proposed probabilistic model 

 665 

 666 

667 

0.98 1 1.02
0

100

200
Mean: 1.00; c.o.v.: 0.33%

f [Hz]

0 0.01 0.02
0

100

200
Mean: 0.0106; c.o.v.: 36%

ζ

0 1 2
0

1

2
Mean: 1.018; c.o.v.: 31%

S [(μg)2/Hz]

50 100 150
0

0.02

0.04

0.06

0.08
Mean: 100.3; c.o.v.: 7.2%

Se [(μg)2/Hz]

0.98 1 1.02
0

100

200
Mean: 1.00; c.o.v.: 0.33%

f [Hz]

0 0.01 0.02
0

100

200
Mean: 0.0106; c.o.v.: 36%

ζ

0 1 2
0

1

2
Mean: 1.025; c.o.v.: 33%

S [(μg)2/Hz]

50 100 150
0

0.02

0.04

0.06

0.08
Mean: 99.79; c.o.v.: 7.1%

Se [(μg)2/Hz]

0.98 1 1.02
0

100

200
Mean: 1.00; c.o.v.: 0.23%

f [Hz]

0 0.01 0.02
0

100

200
Mean: 0.00987; c.o.v.: 25%

ζ

0 1 2
0

1

2
Mean: 0.9757; c.o.v.: 23%

S [(μg)2/Hz]

50 100 150
0

0.02

0.04

0.06

0.08
Mean: 100.1; c.o.v.: 5.5%

Se [(μg)2/Hz]

0.98 1 1.02
0

100

200
Mean: 1.00; c.o.v.: 0.45%

f [Hz]

0 0.01 0.02
0

100

200
Mean: 0.0103; c.o.v.: 47%

ζ

0 1 2
0

1

2
Mean: 1.002; c.o.v.: 44%

S [(μg)2/Hz]

50 100 150
0

0.02

0.04

0.06

0.08
Mean: 100.1; c.o.v.: 10%

Se [(μg)2/Hz]



38 

 

 668 

Figure 4. Shear frame in the laboratory 669 

670 
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 671 

Figure 5 Root singular value (SV) spectrum of a typical data set, laboratory data 672 

673 

0 0.5 1 1.5 2 2.5 3
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

| |

Frequency [Hz]

[g
/ 

H
z
]

Root SV



40 

 

 674 

Figure 6. Modal identification results of a lab frame in different setups arranged chronologically, 675 

data from four uni-axial accelerometer 676 
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a).60 sets data. b). 10 sets data. 

  
c). 30 sets data d). 120 sets data. 

Figure 7 PDF of the modal parameters based on the proposed probabilistic model 

 

 678 
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 680 

Figure 8 Root singular value (SV) spectrum of a typical data set, super tall building 681 
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 683 

Figure 9. Modal identification results of a super tall building in different setups arranged 684 

chronologically, data from one tri-axial accelerometer 685 
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 687 

Figure 10 PDF of the modal parameters based on the proposed probabilistic model, super tall 688 

building. 689 
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