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8 Abstract

9 Modern engineering systems are becoming increasingly complex. Assessing their risk by
10  simulation is intimately related to the efficient generation of rare failure events. Subset
11  Simulation is an advanced Monte Carlo method for risk assessment and it has been
12 applied in different disciplines. Pivotal to its success is the efficient generation of
13  conditional failure samples, which 1is generally non-trivial. Conventionally an
14  independent-component Markov Chain Monte Carlo (MCMC) algorithm is used, which
15 is applicable to high dimensional problems (i.e., a large number of random variables)
16  without suffering from ‘curse of dimension’. Experience suggests that the algorithm may
17  perform even better for high dimensional problems. Motivated by this, for any given
18 problem we construct an equivalent problem where each random variable is represented
19 by an arbitrary (hence possibly infinite) number of ‘hidden’ variables. We study
20  analytically the limiting behavior of the algorithm as the number of hidden variables
21  increases indefinitely. This leads to a new algorithm that is more generic and offers
22  greater flexibility and control. It coincides with an algorithm recently suggested by
23 independent researchers, where a joint Gaussian distribution is imposed between the
24  current sample and the candidate. The present work provides theoretical reasoning and
25 insights into the algorithm.
26
27  Keywords: Curse of dimension, Rare Event, Markov Chain Monte Carlo, Monte Carlo,
28  Subset Simulation

29 1. Introduction

30 Modern engineering systems are designed with increasing complexity and expectation of

31 reliable performance. Rare failure events with high consequences are becoming more
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relevant to risk assessment and management. Unfortunately they are usually not well-
understood and can even be out of imagination based on typical experience [1][2][3].
Studying failure scenarios allows one to gain insights into their cause and consequence,
providing information for effective mitigation, contingency planning and improving
system resilience. The probability and the consequence of failure events are two basic
ingredients for trading off cost and benefit in the design of engineering systems.
Assessing risk quantitatively requires proper modelling of the ‘input’ uncertain
parameters by random variables as well as the logical/physical mechanism that predicts
the ‘output’ quantities of interest. While no mathematical model is perfect, useful
information can be gained if it is calibrated and interpreted properly, allowing one to

make risk-informed decisions.

Let X=[Xq,..., X;;] be the set of uncertain parameters in the problem, which are

modeled by random variables. Without loss of generality {X;}.; are assumed to be

standard Gaussian (zero mean and unit variance) and i.1.d. (independent and identically
distributed). Dependent non-Gaussian random variables can be constructed from
Gaussian ones by proper transformation [4]. One important problem in risk assessment

is the determination of the failure probability P(F) for a specified failure event F ,

which can be formulated as an n-dimensional integral or an expectation:
P(F) =] I(xe F)p(x)dx = E[I(X e F)] (1)

where |(-) is the indicator function, equal to 1 if its argument is true and zero otherwise;

n
#(x) = (27) "2 exp(—%z x?) X = [Xgoes X ] @)
i=1

1s the n-dimensional standard Gaussian PDF.

Monte Carlo methods [5][6][7] provide a robust means for risk assessment of complex
systems. Problems of practical significance currently pose three main challenges: small
probability, ‘high dimension’ (i.e., a large number of input random variables) and high
complexity (e.g., nonlinearity) in the input-output relationship [8][9]. Small probability
renders Monte Carlo method in its direct form computationally expensive or prohibitive.
High dimension renders geometric intuitions in low dimensional space inapplicable or
misleading [10][11]. High complexity means that the input-output relationship is only

implicitly known as a ‘black-box’.
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1.1. Subset Simulation

Advanced Monte Carlo methods generally aim at reducing the variance of estimators
beyond direct Monte Carlo method but in doing so they lose application robustness.
Subset Simulation is a method that is found to play a balance between efficiency and
robustness [12][13][14][15]. It has been applied to different disciplines and used for
developing algorithms for related problems such as sensitivity [16][17][18] and design
optimization problems [19][20][21][22][23][24]. There are variants that take advantage
of prior knowledge of the problem, e.g., casual dynamical systems [25], transition from
linear to nonlinear failure [26], meta-model [27]; or leverage on other computational

tools, e.g., delayed rejection [28], Kriging [29] and neural networks [30].

Subset Simulation is based on the idea that a small failure probability can be expressed
as the product of larger conditional probabilities of intermediate failure events, thereby
potentially converting a rare event simulation problem into a sequence of more frequent

ones. A general failure event is represented as F ={Y >b}, where Y is a suitably

defined ‘driving response’ characterizing failure. In the actual implementation, Subset
Simulation produces estimates for the values of b that correspond to fixed failure
probabilities, from large to small values. The estimates make use of samples that
populate gradually from the frequent to rare failure regions, corresponding to increasing

threshold values that are adaptively generated.

A typical Subset Simulation run starts with ‘simulation level’ 0, where N samples of X

are generated according to the parameter PDF ¢(X), i.e., direct Monte Carlo. The values
of the response Y are then calculated and sorted. The pgN +1 largest value is taken as
the threshold level by for simulation level 1, where Pg is the ‘level probability’ chosen by
the user (conventional choice is 0.1). The top pgN samples of X are used as seeds for
generating additional samples conditional on Y >y, to make up a population of N
conditional samples at level 1. The pgN +1 largest value of Y among these samples is

taken as the threshold level b, for simulation level 2. Samples for level 2 are generated

and the procedure is repeated for higher threshold levels until the level of interest is

covered.
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1.2. Generation of conditional samples
The efficient generation of conditional failure samples, i.e., samples that are conditional

on intermediate failure events, is pivotal to Subset Simulation. This is conventionally
performed using an independent-component Markov Chain Monte Carlo (MCMC)
algorithm [12][31][7], which is applicable for high dimensional problems and makes the

algorithm robust to applications. For each Xj, let p,*(,) be the proposal PDF assumed
to be symmetric, i.e., Metropolis random walk. Suppose we are given a sample

x@ = [Xl(l) s x,(})] distributed as the target conditional distribution, i.e.,

#(x| F) = P(F) I (x e F)g(x) 3)
According to the algorithm the next sample x(? =[X1(2),...,Xr(]2)] that is also

distributed as ¢(x| F) is generated as follow:

Algorithm I (independent-component MCMC)

Step I. Generate X' ={X{}';

For i=1,...,n
1. Generate & from the proposal PDF pi*(~; Xi(l)) and U; uniformly on [0,1].
2. Calculate :¢(§i)/¢(Xi(l)).

Set X{=¢ if Uj <r1;. Otherwise set Xj = Xi(l).
End i

Step II (Check failure)

Set X —x'if X' eF (accept). Otherwise set x@ - x® (reject).

In the above, ¢(X)=(272')_1/26Xp(—X2/ 2) denotes the one-dimensional standard

Gaussian PDF. The correlation among the conditional samples is an important factor
influencing the efficiency of Subset Simulation. It is high (hence low efficiency) if X' is

rejected too often in either Step I (MCMC mechanism) or Step II (not lying in the failure

region); or when {¢ }in:1 is of close proximity to X (governed by the proposal PDF).
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1.3. Objectives and key findings
Theoretical arguments and numerical experience reveal that as the number of variables

increases the rejection of the candidate X' tends to be governing by Step II; the
efficiency of Subset Simulation is insensitive to the type of proposal PDF and may even
be higher [12][15]. Motivated by this, for any given problem (generally finite
dimensional) we consider an equivalent problem with an arbitrary number of random
variables and investigate the limiting behavior of the algorithm as the number increases

indefinitely. Specifically, each Gaussian variable Xj can be represented by an arbitrary

(hence possibly infinite) number of ‘hidden’ Gaussian variables. As the key result of this
work, we show that applying Algorithm I to the equivalent problem results in the

following ‘limiting algorithm’ as the number of hidden variables is infinite:

Algorithm II (Limiting algorithm)

Step 1. Generate X' ={X{}4;

Generate X'=[X{,..., X] as a Gaussian vector with independent components, with

mean vector [g X r(]l) ooy A X r(]l)] and variances [812 yeees Sr21]

Step II (Check failure)

Set X@ =x"if X' eF (accept). Otherwise set x@ = x® (reject).

Algorithm II differs from Algorithm I only in Step I. Here, 0<s; <1 is the standard

deviation of the candidate X from the current sample and a; =4/1— 5i2 . It 1s related to
the proposal PDF but which is no longer relevant because the algorithm is now

controlled directly through {a;}'4 or equivalently {Sj} 1. This algorithm is remarkably

simple and MCMC rejection no longer appears explicitly. As the algorithm does not
depend on any details of the hidden variables, the infinite-dimensional equivalent

problem is only involved at a conceptual level to arrive at the limiting result.

The limiting algorithm shows that it is possible to generate the candidate in Step I
simply as a Gaussian vector whose statistics depend on the current sample. In fact the

same algorithm has been recently proposed by independent researchers [32] who



157
158
159
160
161
162
163
164
165
166

167
168
169
170
171

172

173

174
175
176
177
178
179

180

181
182
183
184

ingeniously imposed this condition and verified this possibility. The present work

provides a theoretical reasoning leading to the algorithm via a completely different route.

This paper is organized as follow. We first describe in Section 2 the equivalent problem
with hidden variables that links the original problem and the conceptual infinite-
dimensional problem. For ease of reading, the limiting behavior of the candidate and
hence the MCMC algorithm is summarized in Section 3. Examples are then given in
Section 4 to illustrate the results. The remaining sections provide the derivations for the

limiting behavior and the results in Section 3.

2. Equivalent problem with hidden variables

Consider the reliability problem in the last section, where the number of random
variables n need not be large. The original finite-dimensional problem can be
represented by an equivalent problem with an arbitrary (hence possibly infinite)

number of random variables as follow. First, each standard Gaussian X can be

represented by n' ii.d. standard Gaussian variables {Zj; }'},:1

10
Xj=—= Zjj 4
! Vn' j=1 ! @

This follows directly from the fact that 1) any linear combination of Gaussian variables
is also Gaussian; and 2) the RHS of (4) has zero mean and unit variance. The total
number of random variables in the problem is now n'n. Clearly, n'>1 but is otherwise
arbitrary. The representation in (4) is not unique but it is the one studied in this work.
The set of random variables in the equivalent problem is

ZZ{Zij :i:1,...,n;j:1,...,n} (5)

instead of X={XjH.; . These two sets of variables are related by a linear

transformation, X = LZ, whose form is not important and is omitted here. The response
in the original problem depends on X and not directly on Z. For this reason Z is called

the set of ‘hidden variables’.
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2.1. MCMC algorithm applied to equivalent problem
Consider now applying the independent-component MCMC algorithm (Algorithm I) to

the equivalent problem. Let Z ={Zij ;i=1..,n;j=1..,n%} be the current conditional
sample and X =LZ ={X;}.;. For each i, the one-dimensional proposal PDF for Zjj is
assumed to be symmetric and the same for different j. Without loss of generality it is
denoted through the one-argument function pi*(Z), which is symmetric about 0. That is,
if the i-th component of the current sample is zj, then the candidate & is distributed as

pi*(fi —2j) . In the above context, the MCMC algorithm for generating the next

conditional sample given the current conditional sample Z reads as follow:

Algorithm I applied to equivalent problem with hidden variables

Step I. Generate Z' :{Zi'j i=1..,n;j=1..,n%

Fori=1...,n

!

For j=1,...,n
1. Generate ¢j; from the proposal PDF pi*(fij —Zjj) and Ujj uniformly on [0,1].
2. Calculate rjj = ¢(ij)/ ¢(Zjj) -

Set Zjj = &jj if Ujj <rjj. Otherwise set Zj; = Zj; .

End j
LS
W

End i

X' =[X{,... Xp]"

Step II (Check failure)

Set the next sample equal to Z' if X' € F (accept). Otherwise set the next sample equal
to Z (reject).

In the above algorithm we have deliberately avoided the symbol for the next sample (in
Step II) to simplify notations. Although MCMC in Step I is performed in the Z -space, it

is the value of X that directly determines failure in Step II. For given X, we shall
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study the limiting distribution of X' in Step I when n' — oo. That is, we shall determine

the following conditional PDF in the limit:
PXIX (X TX) = PXS o X XL e Xy (KL X | X300 X)) (6)

where X' =[X,...,Xq] and X=[X{,....,X,] . Given X=[Xj,..,X,], {X{:i=1..,n} are

generated independent of each other because {Z{J}r};l for different i are generated

independently in the inner loop. This means that
n

Pxix (X 1) =] T pxix; O 1) (7)
i=1

It is therefore sufficient to study the one-dimensional conditional PDF py|x; (Xi %)

3. Limiting distribution of candidate

For ease of reading we summarize in this section the analysis results for the conditional

PDF of X'=[X{,..,Xp] (associated with the candidate Z') given X =[Xq,..., Xp]

(associated with the current sample Z) in the algorithm in Section 2.1. By symmetry of

the roles of X; in Step I, it is clear that the result is identical for every i=1,...,n. It can

be shown that as n"— o, conditional on Xj =X;j, X{ has a Gaussian distribution with

mean ax; and variance Si2 . That is,

' 1 1., .
Pxiix; (X 1%) ZEGXP[—?(Xi —aiXi)Z] n'— oo (8)
I i

where

i =1—2K‘i 9
5i2 = 4k —4Ki2 (10)

0 W *
ki =], wch(—g) p; (w)dw (11)

depends only on the proposal PDF pr; ®(-) is the standard Gaussian CDF (cumulative
distribution function). It can be shown that
0<ij<1 ~1<a <1 0<s;<1 a? +s? =1 (12)

Remarkably, the limiting form of the conditional PDF that governs the transition of X;

does not depend on any detail about the hidden variables {Zij}r};l. In addition, it

8
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satisfies the detailed balance condition with the standard Gaussian PDF ¢(-) as its
stationary PDF:

Pxiix; (X0 1X)P06) = Pxijx; (Xi | X)P0x) (13)
This implies that in the actual simulation one can directly generate the samples of X

without the hidden variables. The latter serve only as a conceptual vehicle to arrive at

the limiting result.

3.1. Justification for Algorithm II
Equation (13) can be used to show directly that the limiting algorithm presented in

Section 1 indeed satisfies detailed balance in the presence of the conditioning from
failure by exactly the same argument in [12]. That is, for all X(l) and X(2) ,
Py (X2 XD | F) = pyoyer P [x)g(x? | F) (14)

where ¢(X|F)=¢(X)I(xe F)/P(F) denotes the standard Gaussian PDF conditional on

failure. Essentially, Step II ensures that all samples along the Markov chain lie in the

failure region and so it suffices to check detailed balance for only those states within the

failure region, i.e., for all X(l),x(z) eF,
Py (K2 X)) = pyy e (XD [xP)g(x?) (15)
where ¢(-|F) has been replaced by ¢(-) because in this case both I(X(l) eF) and

I(X(Z) € F) are equal to 1. Thus, considering only the states in the failure region,

detailed balance does not involve the conditioning from failure. Equation (15) holds

trivially for X(l) = X(2) and so it remains to consider X(l) # X(z). In this case X(2) must

be equal to X' generated in Step I. The transition PDF px(2)|x(1) (-]*) is then equal to

the conditional PDF pxx(:|-) in (7). The latter satisfies detailed balance because its

component counterpart in (13) does:

Pxpx (X [¥)80) = T T pxapx; O 1x)206) = [ T pxix; (6 X)) = pxrx (X1 X)g(x) (16)
i=1 i=1
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3.2. Intrinsic parameter
The parameter x (omitting index i for simplicity) in (11) determines the limiting

algorithm and is an intrinsic characteristic of the proposal PDF. Figure 1 shows the

variation of x and the associated parameters a and s (omitting index i) with the
standard deviation Sp of the proposal PDF. The results for two commonly used proposal
PDF, Gaussian and uniform, are shown. Note that a uniform proposal PDF on
[X —w, X +W] around the current sample X has a standard deviation of Sy =w/ V3.
For both types of PDF there is a lower limit for a (near 0.6) and an upper limit for s

(near 0.8). These limits arise from the distribution type and not from the inequalities in

(12). Choosing directly the parameters a and s (a2 +s2 =1) rather than the proposal
PDF potentially offers more flexibility in tuning the algorithm.

0.25 1 1
—+— Gaussian
N === Uni Pl L
0.2f i \“ Uniform 08 et 0.8 /,-L\\
1 [\ P !
""\\ \\ J/ ,l \
0.15 ! \\\ 0.6 \_,’ 0.6 ‘\\
2 { \\\\ © (7] S~
01l < 0.4 0.4
0.05 0.2 0.2
0 0 0
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
So So So

Figure 1. Variation of «, a and s with standard deviation sy of proposal PDF

3.3. Generalized concept

The equality a’+s?=1 that imposes constraint on the mean and variance of the
candidate X' is highly non-trivial to reason from first principle based on the
independent-component MCMC algorithm. Not only does the derivation in the last

section show the transition PDF pyx (-|-) satisfies detailed balance, it also reveals a

new perspective for generating correlated but identically distributed standard Gaussian
samples without explicitly using MCMC. Specifically, starting with a standard Gaussian
sample X , one may ask, is it possible to generate another standard Gaussian sample
X' that is correlated to X by simply generating it as a Gaussian random variable

whose mean and variance can possibly depend on X ? The derivation shows that the

10
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answer is positive. Remarkably, the mean is just a fraction a of X and the variance is a

constant independent of X , and they must satisfy the constraint a’+s” =1.

4. TIllustrative examples

In this section we present three examples to illustrate numerically the behavior of the
independent-component MCMC algorithm for the equivalent problem with hidden variables,
i.e., Algorithm 1 in Section 2.1. In the first two examples the number of random variables in
the original problem is small, one in the first and seven in the second. In the third example
there is one variable with multiplicative effect on the response, in addition to a large number
of variables each having an infinitesimal effect. We shall demonstrate numerically that as the
number of hidden variables increases Algorithm | behaviors asymptotically as Algorithm 11
(the limiting algorithm). Note that in reality one should implement Algorithm Il rather than
Algorithm | with a large number of hidden variables. The latter is performed here only for

illustration.

In the implementation of Subset Simulation, it is assumed that py =0.1 (level probability)

and N =1000 (number of samples per level). Three simulation levels (0,1,2) are performed,
corresponding to target probabilities of 0.1, 0.01 and 0.001. The proposal PDF for all
standard Gaussian variables and for all simulation levels is chosen as uniform distribution

centered at the current sample with a maximum step length of w=1. This corresponds to a
standard deviation of sy =w/ \3~0.58 associated with the proposal PDF and a standard

deviation of s~0.47 (see Figure 1) of the candidate from the current sample.

4.1. Standard Gaussian response
Consider the failure probability defined as P(Y >b) where Y =X and X is standard

Gaussian. Clearly the number of random variables in the original problem is n=1. In the
equivalent problem, X is represented by X =Z?;1Zjlﬁ, where {Zj}rj"zl are i.i.d.

standard Gaussian hidden variables and n’ is their number.

Figure 2 shows selected statistics Algorithm 1, estimated with 1000 independent runs. In

Figure 2(a), the dashed line shows the acceptance probability in Step 1. The solid line shows

11
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the (conditional) acceptance probability in Step Il given that the candidate is accepted in Step
I. The product of these two probabilities gives the (unconditional) acceptance probability of
the candidate as the next conditional failure sample. These probabilities are estimated from
transitions between successive samples at each simulation level in each run and then
averaged over the 1000 runs. The results for simulation levels 0, 1 and 2 are denoted by ‘x’,
‘0’ and diamond. For simulation level 0 (*x’) the acceptance probability in Step I is trivially 1
because no MCMC is involved. For simulation levels 1 (*0’) and 2 (diamond), the acceptance
probability in Step I (dashed line) quickly rises to 1 as the number of hidden variables n’
increases. This increase is geometric in nature because to reject the n’ -dimensional candidate
in Step | it is required to reject the candidates in all the n" components. The acceptance

probability in Step Il (solid line) is insensitive to n’, although a slight increase is observed.

(a) Acceptance probability (b) Correlation factor (c) Failure probability c.o.v.
1 —H—0—0—6—1¢] 3 T 0.35 T
i i 0.3
0.8 E ’
i’ i 0.25}
0. 1 )
0.4} i 0.15} E
l L
0.1f s " —]
0.2f
0.5r 1 o.osf :
O 1 C k. | O 1
10° 10" 10°  10° 10" iT;]z 10° 10" 10°
No. of hidden variables, n' No. of hidden variables, n' No. of hidden variables, n'

Figure 2. Variation of (a) acceptance probability, (b) correlation factor and (c) c.o.v. of

failure probability estimate with number of hidden variables n" for Algorithm 1. ‘x’, “0’,
diamond - simulation level 0, 1, 2. Square — Algorithm I1. In (a), dashed line —
probability of candidate accepted in Step I; solid line — probability of candidate
accepted in Step 11 given that it is accepted in Step |

Figure 2(b) shows the correlation factor y; at different simulation levels (i=0,1,2). Recall

that [12] y; = ZZL\'jl_l(l— k/Ns)pi(k) where Ng =1/ pg is the number of samples per chain

and pj(k) is the correlation coefficient of the indicator functions of failure at k steps apart.

The correlation coefficients and hence the correlation factor are estimated using the samples
in the simulation. The correlation factor is presented as it directly affects efficiency. For
example, if the samples at different levels are uncorrelated, the coefficient of variation

(c.o.v.=standard deviation/mean) of the failure probability estimate at level i is

12
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approximately equal to ¢; = [Zijzo (L+77)A~-po)/ pON]l/Z. In Figure 2(b), the correlation

factor is trivially zero at simulation level 0 (‘x’, Direct Monte Carlo). At other levels it shows
a moderate decrease with n’, even though the acceptance probability in Step Il (solid line,
Figure 2(a)) is relatively constant. This suggests that increasing n" may reduce the spatial

correlation between the current sample and the candidate when it is accepted.

Figure 2(c) shows the c.o0.v. of the failure probability estimates at the three simulation levels.
Recall that a Subset Simulation run produces estimates of threshold levels corresponding to
fixed target failure probabilities, rather than estimates of failure probabilities at fixed
threshold levels. To obtain the c.o.v. at fixed threshold levels, as shown in Figure 2(c), the
‘reference’ (close to exact) threshold levels corresponding to fixed probabilities are obtained
by averaging those from the 100 simulation runs. They are then interpolated to yield the
reference threshold levels at failure probabilities 0.1, 0.01 and 0.001. The failure probability
estimates of each simulation run at these threshold levels are obtained by interpolating the
results in the run. For each threshold level calculating the sample c.o.v. of the failure
probability estimates among the 100 runs yields the values shown in Figure 2(c). It is seen

that the c.o.v. generally decreases with n’, although the extent is small.

The results obtained by Algorithm Il are shown on the right end of Figure 2(a) to (c). They
coincide visually with the results of Algorithm I for n"=100. This is expected because
Algorithm 11 is theoretically equivalent to Algorithm | for n"— c. Comparing Algorithm II
with Algorithm | with no additional hidden variables ( n’=1), for simulation level 3
(probability 0.001), the ratio of c.0.v. is 0.26/0.32 = 81%, i.e., a ratio of (0.81)°=66% in the

required number of samples to achieve the same accuracy.

4.2. Moment resisting frame
Consider a moment resisting frame with uncertainty in moment capacities &,,...,05 at the
joints and in the loads &g and &7, as shown in Figure 3 [33]. These non-Gaussian random

variables are represented by mapping standard Gaussian random variables Xi,..., X7 to

uniform variates on [0,1] and then to the target distribution via the inverse of their CDF. In

the equivalent problem, X; is further represented by n’ hidden variables {Zij}'}':l as

13
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Xj :Z?;lzij /</n" . The number of random variables is thus 7n’. Failure is defined as

collapse in any one of the three modes shown in Figure 3. This can be written as {Y >1}
where Y =max{0;,092,03} and g;s are the (dimensionless) load to capacity ratios, which

can be obtained by limit equilibrium as
50 + 567 50 56,

= = =" 17
2 + 203+ 26, + 65 92 +265 + 64 + 6 93 Oy +205+6, (a7
3 5

0 0
— ‘o 0,,..., 65: Lognormal, mean 60kN, c.0.v. 10%

0, 03 6, 5m 0s: Gumbel, mean 20kN, c.0.v. 30%

91 95 0,: Gumbel, mean 25kN, c.o.v. 30%

7777

All variates independent

[~17 711

Failure Mode 1 Failure Mode 2 Failure Mode 3

Figure 3 Moment resisting frame problem

Figure 4 shows the statistics of Algorithm | estimated using 1000 independent runs,
analogous to Figure 2. In Figure 4(a) the acceptance probability in Step | is saturated at 1
when n’=1 because in this case there are already seven variables in the problem. Different
from Figure 2(a), there is a slight decrease (rather than increase) in the acceptance probability
in Step 11 (solid lines) with n’. This reveals the problem-dependent effect of the number of
hidden variables on the success rate of candidate lying in the failure region. Similar to Figure
2(b), the correlation factor in Figure 4(b) shows a decreasing trend with n’, suggesting a
positive effect on reducing the spatial correlation between the candidate and the current

sample.

Similar to Figure 2(c), the c.o.v. of failure probability estimate in Figure 4(c) shows a small
decrease with n". The results for Algorithm Il (square) coincide with those for n'=100.
Comparing Algorithm 11 with Algorithm | with no additional hidden variables (n’=1), for
simulation level 3 the ratio of c.o.v. is 0.27/0.325 = 83%, i.e., a ratio of (0.83)? = 69% in the

required number of samples to achieve the same accuracy. This is similar to the last example.
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(a) Acceptance probability (b) Correlation factor (c) Failure probability c.o.v.
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Figure 4. Variation of (a) acceptance probability, (b) correlation factor and (c) c.o.v. of
failure probability estimate with number of hidden variables n" for Algorithm I. Same
legend as Figure 2

4.3. First passage problem with uncertain excitation intensity
Consider a single-degree-of-freedom structure starting from rest and subjected to white noise

excitation. The displacement y(t) satisfies the following governing equation:

§(O) + 2£y(t) + 0y (t) =W (1) (18)
where w = 27 rad/sec is the natural frequency, ' =2% is the damping ratio and W (t) is
white noise with power spectral density (PSD, one-sided) S (N2/ Hz). The PSD S is
exponentially distributed with mean Sp = 0.001N?/Hz. The excitation is generated in
discrete time by W(jAt):\/mzlj (j=12,..), where At=0.05 sec is the time
interval and {Z; j} j=1,2,.. are iid. standard Gaussian. Failure is defined as the

exceedance of | y(t)| over threshold b at any time instant between 0 to 10 sec, i.e.,

The random variables in the original problem comprise the exponentially distributed PSD S
and 1.i.d. standard Gaussian {Z; j}?tzl that represent the excitation. Note that S is only a

single variable but it has a multiplicative effect on the response. On the other hand,

{4 j}f}t:l appear in large number but each has an additive and infinitesimal effect on

the response. In the equivalent problem we represent S by i.i.d. standard Gaussian
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hidden variables {Z,;}]_; as S =S |nq>(zrj?:122 j/J/n'), which can be verified using
inversion principle to give an exponentially distributed variate with mean Sy. The
random variables in the equivalent problem therefore comprise {Z; j}l}tzl and {Z, j}?;l,

and their total number is n; +n" (ny =200).

Figure 5 shows the statistics of Algorithm | estimated using 1000 independent runs,
analogous to Figure 2. In Figure 5(a) the acceptance probability in Step | is saturated at 1
when n'=1 because in this case there are already 201 variables in the problem. The
acceptance probability in Step Il (solid line) is insensitive to n'. The same is also true for the
correlation factor in Figure 5(b) and the c.o.v. of failure probability estimate in Figure 5(c).
To within statistical error the results for Algorithm Il (square) are similar to those for
n'=100. The efficiency of Algorithm Il is practically the same as Algorithm | with no

additional hidden variables (n" =1).

(a) Acceptance probability (b) Correlation factor (c) Failure probability c.o.v.
3 T 0.35 T
I ] 0.3f
0.8k 2.5
2 L -
0.6p——o—o6—o6—o019) N |
3 1.5F .
0.4} i 0.15f 1
1 L -
0.1% Bl
0.2}
0.5¢ 1 o.0sf 1
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10° 10! 10°  10° 10" 10 10° 10" 10°
No. of hidden variables, n' No. of hidden variables, n' No. of hidden variables, n'

Figure 5. Variation of (a) acceptance probability, (b) correlation factor and (c) c.o.v. of
failure probability estimate with number of hidden variables n" for Algorithm I. Same
legend as Figure 2

5. Derivation of limiting behavior
In this section we derive the limiting expression (n’— ) for the conditional PDF

Pxi|x; (Xi[Xj) in (8) according to the algorithm in Section 2.1. Clearly, this PDF

depends on the proposal PDF pi* but the functional form will be identical for different i.
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It does not depend on the failure event because Xj is given. It is therefore sufficient to
study Pxi|x; (X{ | Xj) for a generic i. To simplify notation, we shall omit the index i in

the derivation. That is, the PDF shall be denoted by pxx (X'|X), the proposal PDF

shall be denoted by p*; and X; shall be denoted by
1 &
X = N j%:lz j (19)
where {Z j}rjl’:l are hidden variables. Similarly, X{ shall be denoted by
1S
X' = N jzzllz j (20)

Here, {Z]}r};l are the candidates of hidden variables generated according to the

following, adapted from the inner loop of the algorithm in Section 2.1 (omitting index i):

!

For j=1,..,n
1. Generate & j from the proposal PDF p*(f i~ Z j) and U j uniformly on [0,1].
2. Calculate rj =¢(&j)/4(Z).
Set Z =& if Uj <rj. Otherwise set Zj =Zj.
End |

We shall first study the PDF of {Z j}r};l conditional on X =X. We then obtain the
conditional PDF of X' by analyzing the transition from Zj to Z'j (j=1..,n"). The

latter is analytically intractable for each j but their overall effect on X' is manageable

in the limit as n' > .

5.1. Conditional distribution of hidden variables

Unconditionally, {Z j}rJ]'Zl are 1.1.d. standard Gaussian. The condition X = X imposes a

linear constraint er‘:lzj /\/Wz X on the standard Gaussian vector Z:[Zl,...,Zn]T.

This constraint can be written as
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! iL.4" :i'l (21)

Jn’ '

where 1:[1,...,1]T is an n’ -by-1 vector of ones. Let {a j€ Rn’}?,:l be an orthonormal

b'Z = x b=

basis with a; =b. By rotational symmetry of standard Gaussian vectors, if there is no

constraint we can write Z:zgzlfkak where §:[§1,...,§nr]T 1s an 1.i.d. standard

Gaussian vector. Note that b'Z :Zazlgkafak =& since aIal =1 and aIak =0 for
k=2,..,n". This means that (21) only imposes a constraint on &, being & = X, while

{&5,....,&'} remain unconstrained. The vector Z under (21) can therefore be represented

as the sum of Xb and a standard Gaussian vector in the orthogonal complement of b.

The latter can be obtained by taking out the projection along b from &, i.e., & — (bT E)b.

As a result,
Z=xb+[g-(b'E)b] = i—iif 1+8 (22)
N =
after substituting b =1/ Jn'. Reading the j-th component of Z,
X 10
i \/W é:j n |(Z:;|_§k (23)

Using this representation, it can be established that {Z j}?;l are jointly Gaussian with
E[Zj| X =x]=x/ N var[Z;| X =x]=1-1/n"  and  conditional  covariance

COV[Zj,Zk | X =x]=-1/n" (j #k). Consequently,

—n' - 1 X — X

(@)= ™2 1cV2exp[-Z2(z-—1)"C z-—=1 (24)

where C=1-n""111"T is the covariance matrix and |1 € R" denotes the identity matrix.
Correspondingly,

1 1 X (2

X =y (Zi)=—F/—————eXP|——=\Z; —F— 25

pZJ|X—X( J) 27(L-1/1) pl 2( i \/W) ] (25)
Pz,z,1x=x(Zj Z)

1 1 (26)

_ 2. _ 1 5
=) e el 2y e ) g )
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o17

Using a Taylor series with respect to the small parameter ¢ =1/ \/F , 1t can be shown

that, as n' — o0,
_ X 1 .2.2
pzj|X=x(Z) ¢(Z){1+Wz+ﬁ[x (z° -1 +2]} (27)

Pz;zy x=x(Zj %)
W2 _ (28)
¢(ZJ)¢(Z|<){1+\/—(Z +Zk)+ [(Z +27¢)? - 21}

where ‘~’ reads ‘asymptotic to’, denoting mathematically that the ratio of the LHS to the
RHS is equal to 1 in the limit. These asymptotic expressions shall be used for deriving

the limiting behavior of X' in the next subsection.

5.2. Conditional distribution of X'
According to the algorithm,

:%iz'j (29)
where Z'j 1s the candidate for Z j- It can be represented as
Z5=Z;+1;W; (30)
where W j is the random increment from Z j and is distributed as the proposal PDF p*;
lj =1 <#(Z;+W;j)/#(Zj)) is the indicator function of acceptance; and U;j is
uniformly distributed on [0,1]. The indicator function depends on Z j» Wjand Uj,

which are mutually independent. Given X =X, the conditional PDF of Z j is given by

(25). Correspondingly,

X'=X+—— le (X =x) (31)

5.2.1. Expectation
Taking conditional expectation on (31),

E[X'| X =x]= x+\/_ZE[IW | X =x] (32)
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Asymptotic expressions (nN'— o0) for expectations involving the products of | j and W j

are analyzed in Section 8. It is shown in Section 8.1 that E[I jW; [ X =x]~ —2rx//n’

where x = jgo w2 p" (W) D(—w/2)dw as in (11). Substituting into (32),

E[X'| X =x]~ (1-2x)x =ax (33)
where a=1-2x as in (9). It is shown in Section 10 that 0<x <1, which implies

-1<a<l.

5.2.2. Variance
Taking conditional variance on (31),

n n'
var[X'| X =x]=i,22cov[|jwj,|kwk|x =X] (34)
n -
j=1k=1

where COV[l|Wj, )W | X =X] denotes the conditional covariance between |jW; and

I W . Note that

COV[|jo, |ka | X ZX]
= E[|jo|ka | X =X]—E[|jo | X =x]E[1, W | X =x] (35)

2
~ EL1 Wiy [ X =x] - 4x? 2

since E[1;W;|X =x]~-2xx/+/n" . Substituting (35) into (34) gives

’ ’

n n
var[X'[ X =x]~1,ZZE[|jo|kwk|x = X] - 4x°x? (36)
n =
j=1k=1

The double sum can be evaluated by separating the terms for j=k and j=Kk:

3||_\

n n n' n'
1 1
- ELHWj LW | X :x]=FZE[Ijo2 | X =x]+ﬁ DELW Wi [ X =x]  (37)
j=lk=1 j=1 j£k

Since {l e j=1..,n"} are identically distributed and have the same correlation
among each other,

E[1W7 | X =x]=E[I3W | X =x] j=1..n' (38)
E[W Wy [ X =X] = E[1{W;1,W; | X = X] j#k (39)

Substituting into (37),
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j‘lH

n n

Zz [1W Wi | X =x]
J: =1

1

NELWE [ X =]+ L (02— ) LIy 1 W | X = X] (40)
~ E[I1W1 |X = x]+n'E[I1W1I2W2 | X =x]
It is shown in Sections 82 and 83 that E[IW?|X=xX]~4x and
E[1I\WyI, W, | X =x] ~ 4x?(x? —1)/n’ . Substituting into (40) and then the resulting
expression into (36) gives
var[X'| X = x] ~ 4x — 4x> (41)

Surprisingly, the variance of X' does not depend on X . Since 0 < x <1, the expression

on the RHS of (41) is always positive.

5.2.3. Central Limit Theorem

Recall from (31) that, given X =X, we can write X'= X+ZI}:1IJ-WJ- /n". Note that
{1;,w j}fj":l is a sequence of identically distributed but correlated random variables. As
n"— o, X' is asymptotically Gaussian if the proposal PDF has finite variance, i.e.,
E[W j2] < oo. This can be shown using the Central Limit Theorem for correlated random
variables [34], which requires E[|IjW;j[[X =x]<oo and varfljW;j|X =X]<o

(j=1..,n") for every n'; and var[X'| X =Xx] <o as n"— . The first two conditions can

be established using Cauchy-Schwartz inequality:

EQ W, X =x]<E[13 | X =x2EWE | X =x]H 2 <EW AT 2 <0 (42)
var[l jW; | X =x]<E[I W/ | X =x]<EW{ | X =x]= EW{]< (43)
where we have used the fact that 0< Ij <1 and Wj does not depend on X . The last

condition on the asymptotic variance of X' follows directly from (41) that

var[X'| X =X]=4K—4K2<oo as N — 0.
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5.2.4. Detailed balance
Since each Zj is generated according to MCMC, the one-dimensional PDF Pzjiz; 1)

satisfies detailed balance with a stationary PDF ¢(-) :

Pzj12; (23 12))4(z)) = Pzyz; (2 127)(Z]) (44)
As a result the joint conditional PDF pz/z(z'|z) also satisfies detailed balance with a
stationary joint PDF ¢(-) :

Pz1z(Z'|2)$(2) = pzz (2] 2)$(Z) (45)

The above argument stems directly from the original independent-component algorithm.

The transition PDF from X to X' also satisfies detailed balance with the stationary
PDF ¢(-):

Pxx (X' [ X)(X) = pxjx (X | X)g(X)) (46)
This can be shown as follow. From the foregoing results, given X =X, X' is
asymptotically Gaussian with mean ax = (1—2x)X and variance s2 = 4x — 4x® . That is,

!

, 1 1,
Px1x (X |X)=\/Zs exp[- 22 (x —ax)z] n"— oo (47)

Starting from the LHS of (46) and using (47),

P (X DOP00 = el (¢ ~a) ] p—exp(— )

1 1 (X —ax)? (48)
X —axX 2
= —opl [+ ]}
27s S
Completing the square on X, the term in the exponent can be written as
' 2 2 2 ' 12
X —aX a~+S ax X
(K= 3 ) +x2 = 5 (x— 3 2)2+ R (49)
S S a +S a +S
Substituting into (48) gives
2 2 ' 2
a®+s ax' |2 1 X
Pxx (X[ X)p(x) = e><I0[— (x— )7 1% exp(- —) (50)
| N2rx 252 a’ +s° N2rm 292452

This is equal to pyx (x| X)¢(X), Le., the RHS of (46), if and only if a”+s” =1. This

condition is always satisfied because a’+s? = @a- 2/{)2 +dr—dx? =1.
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6. Conclusions

By setting up an equivalent problem with arbitrary number of hidden variables for any
given problem, we have investigated the limiting behavior of the independent-
component MCMC algorithm (Algorithm I) for generating failure samples, which is
conventionally used in Subset Simulation for risk assessment of rare events in complex
systems. The results are remarkably simple and they lead to a simple limiting algorithm
(Algorithm II) for generating failure samples. The choice of the proposal distribution is
no longer relevant and the algorithm is directly controlled through the standard
deviation of the candidate from the current sample. The limiting algorithm coincides
with a method [31] recently proposed by independent researchers, where a joint
Gaussian distribution was ingeniously imposed. The present paper provides theoretical

reasoning and insights into the method.

The numerical examples demonstrate the effect of the number of hidden variables in the
equivalent problem and the convergence of results to the limiting algorithm. For the
examples presented there is only a small reduction in the c.o.v. of the failure probability
estimate brought by the limiting algorithm. The significance of the algorithm lies in its
simplicity and the general discovery that the candidate can in fact be generated as a
Gaussian vector whose statistics depend on the current sample. This offers new
perspectives and possibilities for increasing efficiency by tuning the statistics a priori or
adaptively based on accumulated samples. Development along this line can be found in

[31].
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8. Appendix. Expectations involving | j

In this appendix we derive the asymptotic expressions for E[I4\W;|X =X] ,
E[|1W12 | X =x] and E[I{Wj1,W5 | X =X]. These expressions are used in Section 4. Since
{l jo}rJ];l are 1.i.d., the results can be used for EJI Wi | X =x], E[I jo2 | X =x] and

E[|JWJ|ka|X :X] (J ik)

8.1. Expression for E[1\W; | X = X]
Recall that I; =1(Uq <@(Z1 +W;)/@(Z1)) , where U1,W;,Z; are mutually independent;

U, is uniform on [0,1]; and W, is distributed as p*. The condition {X = X} does not

affect the distribution of Uy or Wy but Z;. From (27):

P2y 1x=x(2) ~ ¢(z)(1+%z) ' 0 (51)
Using this expression,
E[|1W1 | X = X]
=[[[1w=< ¢(;(+Z)W))w P2yix =x (2) P (W)dudzdw (52)
~[[[1w< ¢(;(+Z)"V))w¢(z) p*(w)dudzdw+% [[[1w< ¢(;(;;’V))wz¢(z) p”(w)dudzdw
Let
gV +W)
J=1u <2V 53
U< 50) ) (53)
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be an indicator function variable where U , W and V are mutually independent; U 1is

uniform on [01]; W is distributed as p*; and V is a standard Gaussian. Then (52) can

be written as

E[I\W, | X =X] ~ E[JW]+%E[JWV] (54)

=

The expectations on the RHS no longer depend on X or n" and their determination is

purely an integration problem. They are investigated in Section 9. It is shown that
E[JW]=0 and E[JWV]=-2x where x= jg°w2 p (WD(-w/2)dw as in (11).

Substituting into (54) gives

E[l]_WllX:X]"'—Z—KX n'— o (55)

Jn'

8.2. Expression for E[I1W12 | X =x]

Using the same technique in Section 8.1,

E[IW,? | X = x] ~ E[IW 2]+ —— E[JW V] (56)
n

o

where U , V and W are defined as before. It is shown in Section 9 that

E[JW 2] =4x #0 and so it is the leading order term, giving

E[1IW2 | X = x] ~ 4x N — oo (57)

8.3. Expression for E[1\WjI1,W> | X = X]
The expectation of E[I1{W;I,W, | X = X] involves the joint PDF of Z; and Z, . Using (28),

Pzyz,x =x (21, 22)
X x2 -1 ) N’ — oo (58)
~ ¢(21)¢(22){1+T(21 +13) +W[(Z1 +25)" 2]}

Using this expression,

E[IWa I W5 | X =]
2

X x° -1
~ E[31W1~]2W2]+—n, E[J W1 IoWo (Vi +V2)]+ ——— E{I Wy I W, [(V4 V)% -2}

Jn’ 2n

(59)

where
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743
744

745

746
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748
749

750

751

752

753

754

Jp = 1(Uy <¢(V;T+k\/)\/k)) k=12 (60)

Uq,U5,V1, Vo, W), Wy are mutually independent; Uy,U, are uniformly distributed on [0,1];

V1,Vo are standard Gaussian; W;,W, are distributed as the proposal PDF p*.

For the first term in (59),

E[J W I Wo 1= E[J W JE[JW,]=0 (61)
since E[J)W;]=E[J)W,]=0 from Section 9. The second term is also zero because
E[IW I WoVi] = E[IWAVA JE[J W5 ] = E[JWiV1]x 0 =0 (62)
E[JiW1J WoVo ] = E[JW1JE[J W5V, ] = 0x E[JW5V,] =0 (63)

For the third term in (59), note that

E{IWLJ Wy [(Vy +V,)? — 2]}

= E[JW1J WoVi* ]+ E[IWg I WoV5' ]+ 2E[ I W I WMV ] - 2E[JWy I W ] o
The following shows that only the third term in (64) is non-zero:

E[IW,IoWoV2 ] = E[IWVZTE[I W, ] = E[IWpV42]x0 =0 (65)
E[IW,J5W,V5] = E[IWGTE[IWoV5] = 0x E[JWpV5] =0 (66)
E[IWLI5WoViVp] = E[J WV TE[I W,V ] = E[I WAV ]° = 4k (67)

after using E[J\WjVj]=-2k derived in Section 9. For the last term in (64),
E[JW;JoW5] =0 as shown earlier in (61). Thus, E{JWI.W>[(V; +V2)2 -2]}= 42
Substituting into (59) gives

2
xc -1
2 N — oo (68)

E[IW, 1 W, | X = X] ~ 4k

9. Appendix. Expectations involving J
In this appendix we derive the expressions for E[JW], E[JWV] and E[JW 2] where

J:I(U<%) (69)
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760

761

762

763

764
765
766
767

768
769

770
771

is an indicator function variable; U , W and V are mutually independent; U is uniform
on [0,1], W is distributed as p* and V is a standard Gaussian. The technique is

outlined as follow. First, we integrate out U to obtain, for any p,q,

ELW PV 9] = [ j; (U< %)vaq;ﬁ(v) 0™ (w)dudvdw

(70)
= [[minga, ¢(¢( 7 )}w Pyag(v) p” (w)dvdw
To evaluate the double integral the domain of (v,w) is separated into D; and Dy
D R2. VW) . D R2.PV+W) . 1
h={(v,w)e o) } 2 ={(v.w) € o0 } (71)
Correspondingly,
AV +W) ] ev)  onDy
mindh = 7Y _{¢(v+w) on D, (72)
Note that ¢(v+w)/@(v) =exp[-w(w+2v)/2] and so
Dlz{(V,W)eRZZW(W+2V)>0} D, :{(V,W)ERZZW(W+2V)£0} (73)

These domains are shown in Figure 6. With the help of this figure the integrals over D;

and D, are determined in individual cases.

wW=-2v

Figure 6. Integration domain D; and D,

For E[JW], the integral over D is given by
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785

786

787

” min{l, ¢(¢( v )}W¢(V)p (w)dvdw

= [° wp"(w) [ #w)ddw [ wp"(w) [~ pvyvew
_ jio wp” (W)D(w/ 2)cw + [ wp” (W)D(-w/ 2)dw
0

Similarly, the integral over D, is given by

“D2 min{l, ¢(¢( v "Dwa(v) p” (w)avew

= 7w ) [ g+ wyvdw + [ Cwp' W) g(v-+wydvdw
=7 wo )" pyvew+ [ wp" ()| g(v)cvew

0 * *
= [ wp (W) (w/2)dw+ jg’wp (W)D(-w/ 2)dw
=0
Combining the integral over D; and Dy we conclude that

E[JW]=0

For E[JWV], following similar steps gives

j j min{L, ¢(¢( " )}Wv¢(v)p (w)dvdw_—zj wp (W)g(w/ 2)dw

1Ty, min 2y (o

_2 j(;” wp” (W)g(w/ 2)dw — 2 j(;” w2 p” (W) D (-w/ 2)dw
Combining (77) and (78) gives,

E[JWV]= -2 j(;" w2 p* (W) (—w/ 2)dw = —2x

where k= Igo w? p*(W)dD(—W/ 2)dw as defined in (11).

For E[JWZ], following similar steps gives

L PVEW), 2 * o[ 2 _
”Dlmln{l, 50 Wweg(v) p (W)dvdw_zfO wep (Wd(—w/2)dw =2«

g 2V W) * o [Pw2n” _
”Dz min{l, 50 wa(v)p (w)dvdW_ZJ'0 wep (W)d(—w/2)dw =2k
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Substituting (80) and (81) into (61) gives

E[JW?]=4x (82)

10. Appendix. Lower and upper bound for x

This appendix shows that K=ISOW2 p*(W)d)(—W/ 2)dw defined in (11) is bounded

between 0 and 1. Let P*(W):IW p*(Z)dZ be the CDF corresponding to p*. Clearly,
-0
x> 0. To show x <1, integrating by parts gives

K= j(;” w2d(-w/2)dP” (w) = % j(‘)” P* (w)wg(w/ 2)dw— 2 j(;” P (W)wd(—w/ 2)]dw (83)

The two integrals on the RHS are non-negative. Overestimating the first with P (w) <1

and underestimating the second with P"(w)>1/2 (since w>0 and p*(W) is symmetric

about 0),
1 (o0 2 0
K'SEJ.O W ¢(W/2)dW—J.O w®d(—w/ 2)dw (84)
Integrating by parts, the second integral becomes
o0 _ _ o0 . 2 _ i 0 2
jo Wa( wlz)olw_j0 O (-w/2)d (w /2)_4j0 w2g(w/ 2)dw (85)
Substituting into (84) gives

K< % j(‘)” w2¢(W/2)dw:% j(‘)” 8w p(w)dw = fw w2p(w)dw =1 (86)
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