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 

Abstract— Development of a panel of monoclonal 

antibodies against triad junctional membranes provided a 

powerful tool for the characterisation of multiple proteins 

participating in excitation-contraction coupling (ECC), 

including the ryanodine receptor (RyR) calcium channel, 

dihydropyridine receptor voltage-sensor and linker protein 

triadin.  Another component of ECC, termed the 90 kDa 

junctional foot protein (JFP90/JSR90) was identified with 

an antibody clone, mAb VF1c.   This protein is 

predominantly expressed in skeletal muscle, is most 

abundant in fast-twitch fibres and is phosphorylated by an 

endogenous kinase.  Additional studies indicated that it 

forms a supramolecular complex with the RyR and is 

upregulated in muscles from aged humans.  Despite its 

potential importance, the molecular identity of JFP90 was 

not determined at the time.  In the current study, the 

identity of JFP90/JSR90 was deduced by 

immunoprecipitation with mAb VF1c and proteomic 

analysis of the major proteins isolated.  Using this approach, 

it was determined that JFP90 is junctophilin 1, a 

triad-enriched protein that links the sarcoplasmic 

reticulum to the t-tubules, thereby contributing to ECC.  

Consolidated with data from previous publications, the 

current study reveals novel properties of junctophilin 1, in 

particular that it is selectively upregulated in the soleus 

muscle, but not quadriceps, of aged mice.   
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I. INTRODUCTION 

N skeletal muscle, communication between voltage-sensing 

dihydropyridine receptors (DHPR) in the t-tubular system 

and ryanodine receptor (RyR) calcium release channels in the 

terminal cisternae of the sarcoplasmic reticulum (TC-SR) is 

critical for excitation-contraction coupling (ECC),  for review 

see [1].  Triad junctions represent couplings between the 

t-tubular and the TC-SR membranes and are highly enriched in 

proteins participating in ECC.  A milestone in the 

understanding of the biochemistry of this process was the 

generation of a panel of monoclonal antibodies by 

immunisation of mice with purified triad junction membranes.  

Antibodies produced using this approach proved invaluable for 

the characterisation of multiple proteins involved in ECC, 

including the DHPR [2], RyR [3] and the junctional 

glycoprotein triadin [4]. 

 One clone from this library, monoclonal antibody (mAb) 

VF1c, recognises a component termed the 90 kDa junctional 

foot protein (JFP90) or the 90 kDa junctional SR protein 

(JSR90).  This membrane protein is highly enriched in the triad 

junctions, is phosphorylated by an endogenous kinase, is 

exclusively detected in skeletal muscle and not in other tissues, 

and is most abundant in type 2 fast-twitch fibres [5].   

Expression of JFP90 is markedly reduced in canine muscles 

treated by chronic low-frequency electrical stimulation, used as 

a model of fast-slow fibre type transition [6].  Chemical 

cross-linking studies suggested that JFP90 forms a 

supramolecular complex with the RyR and so, is potentially 

involved in the regulation or organisation of ECC [7].   Using 

mAb VF1c to probe immunoblots of vastus lateralis samples 

from male humans ranging in age from 47 to 73 years old, it 

was qualitatively demonstrated that JFP90 is upregulated in 

aged muscles [8].  Since the efficiency of ECC is reduced in 

flexor digitorum brevis myofibres from old (20-22 month) 

compared with young (3-6 months) mice [9], increased JFP90 

expression might participate in the pathology of sarcopenia, or 

might be a compensatory response to it.  Given the public 

health impact of age-related declines in muscle performance 

[10], understanding the roles of JFP90 in skeletal muscle is of 

scientific and medical merit. 
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 A major limitation in understanding the function of JFP90 

has been the failure to deduce its molecular identity.  In the 

current study, in order to address this deficiency, mAb VF1c 

was used to immunoprecipitate JFP90 from solubilised rabbit 

back muscle membranes.  Proteomic analyses of two major 

proteins isolated, of apparent molecular weight 90 kDa and 68 

kDa, indicated that they are full-length and truncated forms of 

junctophilin 1 (JPH1), a triad junction-enriched SR membrane 

protein that links TC-SR to the t-tubular system [11, 12].  

Epitope mapping indicated that mAb VF1c binds to a region 

between residues 369 and 460 of 662 amino acid protein.  

These findings are consistent with the notion that JPH1 is 

cleaved by endogenous calcium-dependent proteases, or 

calpains [13].   

 The current investigation also found that JPH1 was 

upregulated in soleus muscle from old (25 month) compared 

with adult (12 month) mice, but its expression levels were 

indistinguishable between the two age groups in quadriceps.  

Overall, this work links previous biochemical data about JFP90 

to JPH1, highlighting unexplored avenues for exploration of the 

biology of this protein.  For example, JFP90 (and therefore 

JPH1) is phosphorylated by an endogenous kinase, but the 

mechanisms and functional consequences of this have not been 

investigated to date.  ‘Filling-the-gaps’ approaches to 

consolidation of scientific knowledge, such as that presented 

here, are likely to become increasingly important in the near 

future, given the vast and expanding quantity of data that are 

available via the internet and other resources.  Part of this work 

has been presented in oral form at the Royal Academy of 

Medicine in Ireland (RAMI), Biomedical Section Meeting at 

University College Cork, 20
th

 June 2013. 

II. METHODS 

2.1.  Materials 

 

 Protease inhibitors, materials for SDS-PAGE, 3-[(3-

cholamidopropyl)dimethylammonio]-1-propanesulfonate 

hydrate (CHAPS, >98%), anti-smooth muscle myosin  mAb 

hSM-V, horse-radish peroxidase conjugated secondary 

antibodies and general reagents were from Sigma-Aldrich 

Ireland Ltd. (Arklow, Co. Wicklow, Ireland).  Dynal Protein G 

paramagnetic beads and a rabbit polyclonal antibody (pAb 

anti-JP1) generated against a C-terminal peptide from JPH1 

were purchased from Bio-Sciences Limited (Dun Laoghaire, 

Co. Dublin, Ireland).  An antibody recognising JFP90, mAb 

VF1c, was obtained from Novus Biologicals, (Littleton, USA).    

 

2.2.  Animals 

 

 All animal procedures were carried out in accordance with 

local procedures, approved by the appropriate ethics 

committees.  Experiments on the effects of ageing on muscle 

expression of JFP90 were performed in accordance with UK 

Home Office Guidelines under the Animals (Scientific 

Procedures) Act 1986.  Male C57Bl/6 mice were housed in a 

temperature controlled environment with a 12 h light-dark 

cycle and were fed ad libitum on a standard laboratory chow.  

Animals were maintained to an age of either 12 months (‘adult’) 

or 25 months (‘old’), then were initially anesthetised using 100 

µL of Dormitor (0.15 mg/mL) and Ketaset (20 mg/mL), prior to 

sacrifice using cervical dislocation. 

 

2.3.  Preparation of tissue lysates and microsomal membranes 

 

 For the preparation of lysates, tissue samples were quickly 

excised and flash-frozen in liquid nitrogen.  They were 

subsequently thawed in 10 volumes per wet weight of modified 

RIPA buffer containing 150mM NaCl, 1% NP-40, 0.5% 

sodium deoxycholate, 0.1% SDS, 200mM NaF with freshly 

added protease inhibitors (1 g/mL aprotinin, leupeptin, 

pepstatin A and 0.5 mM phenylmethylsulfonyl fluoride 

(PMSF)) and homogenised on ice with 3 by 30 s bursts of an 

Ultraturrex disperser, fitted with a T-25 probe. Insoluble 

material was removed via centrifugation at 12,000 g for 30 min 

at 4˚C.   Microsomal membranes, enriched in SR, were 

prepared from rabbit back muscle by differential 

ultracentrifugation, as described previously [14].  All samples 

were divided into 0.5 mL aliquots, flash-frozen in liquid 

nitrogen and stored at -80
o
C until use. 

 

2.4.   Solubilisation, immunoprecipitation and proteomics 

 

 Rabbit skeletal muscle microsomes (4 mg protein/reaction) 

were solubilised in 2 mL of 2% CHAPS, 0.5 M NaCl, 0.5 mM 

PMSF, 20 mM Tris-HCl pH7.4 for 1h on a shaking platform at 

room temperature (18-22
o
C).  Samples were then diluted in 8 

mL/reaction of ice-cold 0.5 mM PMSF, 20 mM Tris-HCl 

pH7.4, prior to being centrifuged to clear insoluble material 

(113,000 g, Beckman Type 65 rotor for 1 h, 4
o
C).  Supernatants 

were incubated with 50 L of Dynal Protein G paramagnetic 

beads pre-bound to 5 L of either mAb VF1c or mAb hSM-V 

(anti-smooth muscle myosin, as an isotype matched negative 

control) ascites fluid, according to the manufacturer’s 

instructions.  Following incubation for 1h at room temperature 

on a shaking platform, immune complexes bound to 

paramagnetic beads were collected using a magnetic separator 

and were resuspended in 1 mL of ice-cold 0.1% CHAPS, 0.5 

mM PMSF, 20 mM Tris-HCl pH7.4.  Following another three 

wash steps, paramagnetic beads were resuspended in 50 L of 2 

x concentrated sample buffer (1.6 % SDS, 8% glycerol, 0.04 % 

bromophenol blue, 4 mM dithiothreitol, 50 mM Tris-HCl 

pH6.8) and were heated to 95
o
C for 5 min prior to separation on 

7.5% SDS-PAGE minigels.  Following staining with 

Coomassie R250, major bands in the mAb VF1c 

immunoprecipitate were excised and analysed using a 

commercial MALDI-MS and MS/MS protein identification 

service (Proteomics service, Technology Facility, Department 

of Biology, University of York, UK).  Parallel blots were 

transferred to polyvinylidene fluoride (PVDF) prior to 

immunostaining with mAb VF1c, as described in Section 2.6.  

Identification of potential PEST motifs in target proteins was 

determined using ‘epestfind’ software at 

(http://emboss.bioinformatics.nl/cgi-bin/emboss/epestfind/).  

PEST motifs target proteins for degradation by 

calcium-dependent proteases, or calpains [15].  A PEST score 

http://www.researchpub.org/journal/cs/cs.html
http://emboss.bioinformatics.nl/cgi-bin/emboss/epestfind/
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of greater than +5 indicated that the potential motif was 

considered ‘of interest’.  

 

2.5.  Epitope mapping of mAb VF1c 

 

 In order to determine the site of interaction of mAb VF1c 

with JPH1, cDNA constructs encoding overlapping fragments 

of this protein were heterologously expressed in yeast [16], 

using protocols essentially the same as those described 

previously for ankyrin-1 [17].  The JPH1 clones corresponded 

to the following amino acid residues of human JPH1: JP1A: 

1-233, JP1B: 232-369, JP1C:369-571, JP1D: 141-278, 

JP1G:  229-460, JP1L: 154-278, JP1M: 229-550, JP1Delta: 

154-635.  These proteins were resolved on 10% SDS-PAGE 

minigels, transferred to PVDF and immunostained with mAb 

VF1c or pAb JP1 as described in Section 2.6.   To further define 

the mAb VF1c epitope within the region identified by screening 

yeast fusion proteins, peptide arrays of overlapping 18-mers 

were generated, essentially as described previously [18].  

 

2.6.  General protein methods 

 

 Protein concentrations were determined using the Bradford 

assay [19], using bovine serum albumin as a standard.  

Quantities of protein loaded onto SDS-PAGE minigels are 

noted in the figure legends.  Western transfer and 

immunostaining of proteins with mAb VF1c (1:1500 dilution ) 

or  pAb JP1 (1:1000) were performed as described previously 

[20].   Following immunostaining, PVDF blots were stained 

with Coomassie R250 as a protein loading control, essentially 

as described by Welinder and Ekblad [21]. 

 

2.7.  Statistical methods 

 

 For quantification of protein expression, images of 

immunostained or Coomassie R250 stained PVDF membranes 

were captured using a gel documentation system and exported 

as JPEG files.  The densities of immunoreactive bands, or of 

total protein in each lane, were determined using NIH ImageJ 

software (http://rsbweb.nih.gov/ij/).  The density of each 

immunoreactive band was divided by the total protein density 

in that lane and the mean values of these ratios in tissue from 

young animals was taken as 100%, for comparisons with 

corresponding tissues from old mice.  These mean normalised 

band densities were compared using one-way ANOVA with 

post hoc Tukey’s tests, taking a p value of less than 0.05 as 

significant. 

III. RESULTS 

 

3.1.  JFP90/JSR90 is Junctophilin-1 

 

 In order to determine the primary structure of JFP90/JSR90, 

microsomal membranes from rabbit back muscle were 

solubilised and  immunoprecipitated using mAb VF1c.  Several 

proteins were immunoprecipitated by mAb VF1c, but not by an 

isotype-matched negative control mAb, Fig. 1, ‘Coomassie 

R250’.  These include proteins with apparent molecular weights 

of >300 kDa, 170 kDa, 111 kDa, 90 kDa, 68 kDa and 22 kDa.  

Of these proteins, only the 90 kDa (‘Band I’) and 68 kDa 

(‘Band II’) were immunostained with mAb VF1c on a parallel 

western blot, Fig. 1, ‘mAb VF1c’.  Immunoprecipitation 

facilitated major enrichment of the mAb VF1c interacting 

proteins, since these represented minor components of 

solubilised muscle microsomes, which were not detectable in 

the solubilised material by immunoblot under these conditions.  

This purification step permitted proteomic identification of 

JFP90/JSR90 using a commercial service.  Both Band I and 

Band II were good matches to rabbit junctophilin-1 (JPH1), in 

terms of MOWSE scores (230 and 116) and coverage, Fig. 2C.   

The bands had three JPH1 peptides in common (residues 84-91, 

145-156 and 304-313), but Band I contained an additional, 

more C-terminal peptide (558-573).  This suggests that Band II 

might represent the product of proteolytic cleavage of 

full-length JPH1, Band I.  Since JPH1 is reported to be cleaved 

by calcium-dependent proteases in rat skeletal muscle [13], the 

presence of calpain cleavage sites, or PEST motifs, in rabbit 

JPH1 was examined using epestfind software.  This identified 

one strong potential PEST motif, with a score of +12.35 (the 

threshold value is +5), between residues 458 and 471, Fig. 2C.  

Calpain cleavage of 72 kDa full-length JPH1 at this site would 

generate products of 50 kDa and 22 kDa.  Although these 

calculated molecular weights do not match those determined 

experimentally (90 kDa full-length, 68 kDa product), possibly 

because of the highly basic amino acid composition (predicted 

isoelectric point of full-length JPH1= 9.4; note the anomalous 

migration of JPH1 fusion proteins in Fig. 2A and 2B), the 22 

kDa shift in molecular weight is as predicted, Fig. 2C.  This 

also raises the possibility that the minor 22 kDa protein 

immunoprecipitated by mAb VF1c is the C-terminal calpain 

cleavage product of JPH1.  Attempts to verify this by western 

blotting of the mAb VF1c immunoprecipitates with an 

anti-JPH1 antibody raised against a C-terminal peptide were 

unsuccessful, due to low signal-to-noise ratios on these blots 

(not shown). 

 
Fig. 1.  Immunoprecipitation and proteomics of JFP90 reveals that it is JPH1. 

Rabbit back muscle microsomes were CHAPS-solubilised and 

immunoprecipitated with either mAb VF1c (anti-JFP90, ‘IP VF1c) or an 
isotype-matched negative control (‘IP –ve’).  Immunoprecipitates and 

solubilised starting material were then resolved on 7.5% SDS-PAGE minigels 

and either stained with Coomassie R250, or transferred to PVDF membranes by 
western blotting and immunostained with mAb VF1c.  Immunoreactive protein 

bands (‘Band I’ and ‘II’) were excised from the Coomassie stained gels for 

protein identification.  Data shown are representative of three separate 
experiments. 

http://www.researchpub.org/journal/cs/cs.html
file:///D:/141-278,
http://rsbweb.nih.gov/ij/
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3.2 Mapping of the epitope for mAb VF1c. 

 

 To map the location of the epitope for mAb VF1c within the 

primary structure of JPH1, thereby confirming that JFP90 and 

this protein are identical, overlapping segments of this protein 

were overexpressed in yeast and probed with the antibody on 

western blots.  The anti-JFP90 antibody was strongly 

immunoreactive with fusion proteins corresponding to residues 

229-460, 229-550 and 154-635 of human JPH1, but also 

recognised a polypeptide spanning amino acid 369-571, Fig. 

2A.  This indicates that mAb VF1c recognises a segment 

spanning residues 369-460 of human JPH1, corresponding to a 

divergent/-helical region within this protein that has been 

postulated to play a role in determining the width of the gap 

between the t-tubule and SR [12].   

 

 
 
Fig. 2.  The region from residues 369-460 of human JPH1 contains the epitope 

of mAb VF1c.  A.  Fragments of human JPH1 were overexpressed in yeast, 

resolved by SDS-PAGE and immunoblotted with mAb VF1c.  The asterisk (*) 
indicates a protein present in yeast that was detected in the ‘Vector’ only 

transfected sample.  B.  A parallel blot was probed with a commercial rabbit 

antiserum directed against a C-terminal peptide from JPH1.  C.  Diagram 
summarising the relative positions of peptides derived from 

immunoprecipitated JFP90 (match from Band I only in grey font), the positions 

of the epitopes of mAb VF1c and anti-JP1 antiserum and the location of a 
potential calpain cleavage site, or PEST motif. 

  

 In attempts to further define the epitope of mAb VF1c, an 

array of overlapping 18-mer peptides was constructed that 

corresponded to this region.  However, signals detected by 

mAb VF1c on such arrays did not qualitatively differ from 

those probed with secondary antibody alone, Fig. 3, suggesting 

that this antibody might recognise an epitope that is dependent 

on higher order structure within the protein.  As anticipated, a 

C-terminally directed commercial anti-JPH1 antiserum only 

bound to a fusion protein containing the C-terminus of this 

protein, ‘Delta:154-635’,  Fig. 2B.  The relative positions of the 

mAb VF1c and anti-JP1 are shown in the diagram in Fig. 2C, 

along with the peptide sequences deduced from proteomic 

analyses and the potential calpain cleavage site.  

 

 
 

Fig. 3.  Mapping of the mAb VF1c epitope using peptide arrays. Overlapping 

18-mer peptide spots (1-26) covering residues 369-460 of rabbit junctophilin 1 
(NCBI Accession Number: NP_001075465.1) were synthesised in duplicate on 

two arrays.  One array, A, was probed with a 1:500 dilution of mAb VF1c,  

followed by washing then a 1:2500 of LiCor goat anti-mouse IgG IRDye 
680LT conjugated secondary antibody.  A parallel array, B, was probed with 

secondary antibody only.  Immunoreactive spots were detected using a LiCor 
Odyssey scanner.  Data are representative of two separate experiments.  The 

sequences of peptides are available on request. 
 

3.3.  During ageing, junctophilin-1 is significantly upregulated 

in mouse soleus but not in quadriceps. 

 

 
Fig. 4.  JP1 is upregulated in soleus, but not quadriceps, muscle from old mice. 

A.  Immunoblots of lysates (30 g protein/lane) from ‘Adult’ (12 months, n = 6) 

or ‘Old’ (25 month, n =5) mouse quadriceps (‘Quad’) or soleus muscle, probed 
using mAb VF1c.  Each blot was post stained with Coomassie R250 to estimate 

protein loading.  B.  Band densities from the immunoblots in Panel A were 

normalised to protein loading and expressed relative to the Adult group of 
animals for each muscle type.  JPH1 protein expression was significantly 

upregulated in the soleus of old mice (p =0.02 by one-way ANOVA and 

Tukey’s post-hoc test), but not in quadriceps.  Data are representative of two 
technical replicates.   

http://www.researchpub.org/journal/cs/cs.html
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 Qualitative data from another laboratory indicated that 

JFP90, demonstrated to be JPH1 in the current work, is 

upregulated with ageing in human vastus lateralis muscle [8].  

To examine this further, expression levels of JPH1 protein from 

quadriceps or soleus muscle from ‘adult’ and ‘old’ mice were 

assessed by western blotting using mAb VF1c.  Qualitatively, 

mouse quadriceps (‘Quad’) muscle expresses greater quantities 

of JPH1 than soleus (‘Soleus’), Fig. 4A.  There was an apparent 

upregulation of JPH1 in old animals in the soleus, but not in the 

quadriceps.  To quantify alterations in JPH1 protein expression 

with ageing, band densities were normalised to total protein by 

post hoc Coomassie R250 staining of PVDF membranes.  This 

demonstrated that soleus muscle from old mice expressed 

significantly greater levels of JPH1 protein than adult animals 

(240 + 50% (n = 5, mean + standard error) versus 100 + 30 % (n 

= 6); p = 0.02), whereas its abundance was not significantly 

altered in the quadriceps, Fig. 4B. 

 

IV. DISCUSSION 

 

 The data presented here strongly support the notion that 

JFP90, a protein whose molecular identity was unknown, is 

JPH1.  This permits unification of data relating to JFP90 to that 

on JPH1.  For example, JFP90 and therefore JPH1, is 

upregulated with age in human vastus lateralis muscle [8].  A 

study published by Brooks and Faulkner in 1988 [22] revealed 

that the contractile properties of soleus fibres were preserved 

between adult (9-10 months) and old (25 month) mice, whereas 

extensor digitorum longus (EDL) fibres from aged animals 

displayed significant reductions in specific maximum tetanic 

force.  In particular, ageing was associated with a prolongation 

of isometric twitch duration and a leftward shift in the 

frequency-force relationship in soleus, but not in EDL muscles.  

The authors speculated that these compensatory changes in 

soleus fibres could be related to alterations in Ca
2+-

handling.  

JPH1 plays a key role in muscle Ca
2+

 signalling, linking the 

DHPR voltage-sensor to other ECC components [16].  

Transgenic mice lacking JPH1 expression exhibit no suckling 

and early postnatal death, decreased formation of triad 

junctions  and reduced electrically evoked force production in 

muscle fibres [23].  Furthermore, shRNA-mediated 

downregulation of both JPH1 and JPH2 in C2C12 cell 

myotubes resulted in decreased Ca
2+

 transients in response to 

the RyR agonist caffeine and aberrant Ca
2+

-induced 

Ca
2+

-release, leading to chronic Ca
2+

-store depletion [24].  

Decreased JPH1 protein expression is also associated with 

early deficits in strength that occur within three days of 

eccentric exercise [25].  In addition, reduced JPH1 levels have 

been linked with muscle weakness that occurs in the murine 

mdx model of muscular dystrophy [13].  Together with the 

current findings, these studies suggest that upregulation of 

JPH1 in soleus muscle from aged mice represents a 

compensatory mechanism, to enhance triad junction density, 

sarcoplasmic reticulum Ca
2+

-loading and force production [8].  

It was unexpected that JPH1 was not detectably altered in 

mouse quadriceps, given that this muscle group contains the 

vastus lateralis, in which this protein is upregulated with ageing 

in humans.  This distinction could relate to differences in 

muscle physiology between mice and humans, or to the other 

muscle groups present in the quadriceps. 

 Other aspects of JPH1 biology unveiled by its relationship to 

JFP90 include that it is phosphorylated by an endogenous 

kinase in skeletal muscle [5].  This indicates that JPH1 function 

might be modulated by phosphorylation, an aspect that awaits 

exploration.   In different muscle types, JFP90 has been 

detected as either a single major protein (for example, mouse 

quadriceps, Fig. 3A), or a doublet (rabbit back muscle, Fig. 1), 

also see references [6] and [7].  Given that JPH1 can be cleaved 

by calpains [13] at a site within the -helical linker region, 

proteolysis might serve as another mechanism for tissue- and 

activity-dependent regulation of this protein. 

 This project was initiated by expertise-based identification of 

a gap in the knowledge of ECC, namely the molecular identity 

of JFP90.  Similar approaches will be particularly timely, given 

the quantities of scientific data and literature that are currently 

available via internet accessible databases.  Such data mining 

and integration methods are amenable to automation, which has 

already been implemented to identify knowledge gaps in 

diverse fields, including in the characterisation of red algal 

evolution [26] and in construction of  protein phosphorylation 

networks [27].  Application of related strategies to different 

areas is likely to open fruitful avenues of scientific discovery.  
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