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Abstract

Human health and the environment are at risk of being exposed to a large number of hazardous

chemicals each day. Unfortunately, many of these chemicals have no or little recorded toxicity

information. Predictive toxicology aims to provide tools and methodologies to address this is-

sue. In combination with systems biology approaches these can provide a powerful toolbox for

understanding the impact of chemicals on biological species.

The work presented within this thesis demonstrates the effectiveness of such approaches in the

context of industrial and environmentally relevant species. More specifically we focus on char-

acterization of a general toxicity mechanism in Rattus norvegius and Daphnia magna as well

as for the first time demonstrate that the transcriptional response of D. magna is predictive not

only of chemical class but also of measured toxicity. We also show that inclusion of pathway-

level information can increase biological interpretability in non-model species. Lastly, we pro-

vide evidence supporting the application of reverse engineering methodologies in the context

of identifying adverse outcome pathways in Pimephales promelas, an environmentally relevant

species.

Ultimately, our results have shown that these approaches can provide highly relevant informa-

tion in model and non-model species. Further development building on these results could

potentially lead to improvements in risk assessment and environmental monitoring.
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Scope of Thesis

Currently, the state of the art in predictive toxicology is based on a strategy combining the

strengths of modern omics technologies with statistical modelling techniques borrowed from

the machine learning community [1]. More specifically, a number of groups have shown that

the integration of classical endpoint measurements, such as toxicity or reproduction, with these

advanced computational methods provides a suitable framework for identifying relatively small

subsets of molecular measurements, predictive of toxicological response. Despite their evident

success, a number of challenges remained open:

1. Biomarkers based on optimized variable subsets provide relatively little knowledge of the

underlying mechanism involved in the response.

2. The small number of samples available to train the classifiers can result in models that

cannot be generalized.

3. Predictive models do not allow simulation of unforeseen outcomes and therefore do not

provide a tool for in silico testing of remediation strategies.

The work described in this thesis directly address challenges 1 and 2 and set up the scene for the

development of a comprehensive modelling platform mentioned in challenge 3. In summary,

this work has demonstrated the following principles:

1. Biological interpretation is highly improved by integrating functional modules in the anal-

ysis pipeline, especially with non-model species

2. Hypotheses are strengthened and refined when combining results from multiple analysis

approaches

3. Identification of novel adverse outcome pathways is heavily facilitated by reverse engi-

neering of regulatory networks in the context of ecotoxicology
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More specifically, we demonstrate these by utilizing three relevant species in risk assessment

and environmental monitoring. Application of principles 1 and 2 to Rattus norvegius and Daph-

nia magna suggest that components of a general toxicity mechanism are shared between the

two distant species. Furthermore, for the first time we apply machine learning methodologies

to D. magna to identify models predictive of chemical class and measured toxicity. Lastly we

characterize a novel adverse outcome pathway in Pimephales promelas response to flutamide,

an anti-androgen. Ultimately, we believe our identified models can provide essential knowl-

edge towards risk assessment and environmental monitoring. Consequently an extension of the

work presented here has been successful in securing a Natural Environment Research Council

(NERC) grant to develop multi-biomarker assays using D. magna for water quality assessment.
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Chapter 1

Introduction and Background

1.1 Introduction to Predictive Toxicology

Predictive toxicology aims to provide quantitative tools to assess the hazard chemicals may pose

to human health and the environment. In the last several decades this implied exposing large

number of animals to high-doses of a stressor in mostly acute experimental setups. Uncertainty

factors could then be applied to extrapolate potential adverse outcomes to humans (pharma-

ceutical toxicology assessment) or environmental populations (ecotoxicology). These factors

account for the differences in metabolism and susceptibility to toxicity between the different

species. In addition molecular biomarkers based on the understanding of the underlying mecha-

nisms have been developed to assess potential toxicity and for use in environmental monitoring.

Among the first attempts of predicting toxicity was the development of quantitative structure-

activity relationship (QSAR) analysis. The purpose of these approaches was to predict biolog-

ical activity, such as toxicity concentration, given only the physico-chemical features (PCFs)

derived from the structure of a given chemical. Since the early 1960s technological and compu-

tational improvements have contributed to higher levels of sophistication and number of PCFs

that can be calculated by current applications. Recent reports have also shown that prediction

accuracy of such models can be increased when additional information from cell-based assays

is used [2, 3]. In parallel the identification of molecular markers predictive of toxicity has pro-

vided a powerful approach to the identification of early toxicity events. Toxicogenomics is the
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application of omics technologies to the area of toxicology. It enables simultaneous measure-

ment of thousands of mRNAs, proteins and metabolites in single experiments. The application

of bioinformatics approaches utilizing the vast information from omics datasets has proven to

be highly beneficial in the identification of biomarkers [4–7]. Steiner et al [4], for example, used

a supervised classification algorithm to identify patterns of gene expression profiles that clas-

sify hepatotoxic and non-hepatotoxic chemicals. Other successes in predicting toxicity using

gene expression data have also been published by Bulera et al [5], Hamadeh et al [8] and oth-

ers [6, 9]. Tan et al [10] used time-course gene expression profiles to successfully characterize

cadmium acetate cytotoxicity and identified a set of potential biomarkers and build a hypotheti-

cal pathway that may be representative of exposure and Ellinger-Ziegelbauer et al [7] identified

functional terms which were linked to genotoxic and non-genotoxic chemicals. These results,

even though promising, were not able to fully provide mechanistic insights to the observed tox-

icity. In response to this the idea of adverse outcome pathways has been proposed [11, 12].

These utilize reverse engineering methodologies to identify the underlying regulatory network.

Further application of computational biology tools, such as functional modularization or vari-

able selection algorithms, can identify sub-networks, which are not only predictive of toxicity

but can also propose a potential mechanism of action. In collaboration, Perkins et al [13] pub-

lished the application of these techniques to Pimephales promelas (Fathead Minnow) exposed

to flutamide, an androgen receptor. We identified a set of candidate pathways which lead to

the formation of testable hypotheses about biological processes, biomarkers or alternative end-

points for monitoring purposes. The importance of understanding and monitoring the effects of

hazardous chemicals has been well received by regulatory authorities. In Europe alone around

30,000 chemicals are produced with little or no toxicity data currently registered [14]. In re-

sponse to this the European commission approved the REACH legislation in 2007, which aims

to make registration mandatory for both future and existing chemicals [15]. This poses to be a

great challenge to industrial and non-profit organisations alike. In this context, toxicity testing

methodologies need to be improved [16–18]. A change in the toxicity paradigm has already

started with EVCAM, ICCVAM and other groups developing in vitro tests predictive of acute
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exposure, repeat dosing, or target specific in vivo toxicity tests [19–21]. The U.S. Epa ToxCast

program [22], which integrates a number of high throughput testing approaches and computa-

tional methods, utilizes in vitro methodologies to prioritize chemicals for subsequent in vivo

investigations. Such systems will provide the knowledge to transform current toxicity testing

approaches to reduce the number of animals used while testing an increased number of chemi-

cals.

1.2 Biological Systems of Relevance

In the field of toxicology animal-based tests have always been the gold standard to assess bi-

ological response. Depending on the type of toxicity (i.e. environmental hazard, hepatoxicity,

cancer or reproductive/development) specific experimental designs were developed. Most of the

human toxicity assessment has been performed in rodents such as Rattus norvegius (rat) or Mus

musculus (Mouse). More recently, other species have been included in toxicity testing portfo-

lios such as Danio rerio (zebrafish), Xenopus laevis (African clawed frog) and the non-model

Daphnia Species (water flea). In the next sections an outline of two of these species (Rattus

norvegius and Daphnia magna) is provided. These have been the bases of the work described

in this thesis.

1.2.1 Studies in Rattus Norvegicus

For many years Rattus norvegius (Rat) has been one of the systems of choice in human tox-

icity assessment. Their high reproduction rate, known genetic backgrounds and similarity to

human biology were the driving argument for toxicity testing. In most cases human toxicity

was extrapolated by establishing a No Observable Adverse Effect Level (NOAEL). Due to the

high reproduction rate, generation and genetic effects as a result of exposure have also been

studied [23–25]. The focus on this particular species is also evident when examining the sheer

volume of available omics datasets in the public domain. In particular some very large datasets,

with hundreds of chemical exposures, have been published by Iconix (Pharmaceutical Industry).

In particular the work done by Fielden et al in hepatocarcinogenity [26, 27] and renal tubular

degeneration models [28] both of which were used to derive predictive and mechanistic mark-
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ers have been of great importance. In many other cases such as the earlier described Steiner

et al [4], Tan et al [10] and other publications [6, 7, 9] rodents have been the focus in toxicity

testing. In the computational toxicology field the rat has been equally important in providing

biological endpoints for regression models based on QSAR [29, 30].

1.2.2 Daphnia Magna

The field of ecotoxicology traditionally assess the effect of anthropogenic chemicals on the en-

vironment [31]. Highly susceptible are fresh water habitats especially those close to human

populations [32]. Sewage and increased industrial activity are among the major causes for

environmental pollution. The small waterflea D. magna is one of the oldest systems used in

biological research [33]. It is widely geographically available and highly adaptive and sensitive

to chemical stressors [34, 35]. Yet, it has only recently been added to OECD and U.S. EPA

as a model organism for toxicity testing, possibly due to the lack of its genome and genetic

research [33]. It is a small planktonic crustacean, which grows up to 5mm in length and has

a short life cycle. D. magna is easy and cost-effective to cultivate and can be easily used to

monitor morphological changes in response to exposure due to its transparent shell [33]. Re-

production can be mediated through cloning or egg deposition. The latter of which can be found

in harbour sediments and utilized to study genetic adaptation in respect to change in environ-

mental stressors [36]. Furthermore the Daphnia species is central to the freshwater food webs

playing a crucial part in linking environmental problems to dietary components of fish and in-

vertebrate predators. These properties contribute to its applicability as a biosensor to closely

monitor the environment on an ecosystem-level. Although the Daphnia magna Genome has

not yet been released to the public domain, the Daphnia Genome Consortium [37] is preparing

the manuscript for publication. The same group has also recently made the Daphnia pulex, a

close relative to Daphnia magna, genome available [38]. The study identified a large number

of genes (about 30,000) which exceeds that of many other species. The authors attribute many

of these to lineage-specific gene families and a large number of paralogs that have occurred due

to duplication. Furthermore gene expression profiles of many of these duplicated genes were
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not correlated to their counterpart suggesting a change in function of these paralogs. Other

groups have also identified a phenomenon called endopolyploidy in Daphnia using flow cytom-

etry where between 7% to 12% and 14% to 37% of neonates (< 24 hours old) and adults (> 10

days old) respectively showed tetraploid nuclei [39]. The relative close phylogenetic distance

of D. pulex to D. magna may suggest that these processes could also be observed in the latter.

These attributes most likely contribute to the amazing phenotypic plasticity that has been ob-

served in the Daphnia species [40]. There are a number of publications available in the public

domain that cover a wide range of acute and chronic chemical exposures measuring ecologi-

cally relevant endpoints. Poynton et al [41] identified 2 metallothioneins and a ferritin which

were highlighted in their metal exposure study. Follow-up studies by the same authors showed

that these can be indicative of real-life exposure [42]. Studies performed by Taylor et al [43]

also showed that metabolomics on single adult daphnids or 30 neonates can provide biomarkers.

They identified N-acetylspermidine as a potential novel biomarker of copper toxicity.

1.2.3 Other Commonly Used Species

In addition to the two species outlined above many other species are used for toxicity testing. In

respect to human health mammals, such as mouse, rat, guinea pig, rabbit and higher primates,

are being used in laboratories around the world. Each of these species has a particular field of

value with mouse and rat being particularly good models for hepato and nephrotoxicity, guinea

pigs for immune system and lung tissue, rabbits for ophthalmology and primates primarily for

neurological and dermatological areas. In ecotoxicology, however, the areas are not as clear.

Different fish species around the world are used to study the effects of chemicals in their natural

environment. For example, in Europe, the stickleback (Gasterosteus aculeatus) and european

flounder (Platichthys flesus) have been successfully used in predictive toxicology [44–46]. For

laboratory experiments the zebrafish (Danio rerio) is a favourite among the scientific commu-

nity due to its well understood developmental behaviours, rapid embryonic development and

transparent embryos, just to name a few advantages. The fathead minnow (Pimephales prome-

las) is a particular favourite in the Americas. Its wide distribution across the U.S. river-network,
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robustness, animal availability and flexibility contributes towards its use in mechanistic studies

and environmental monitoring. The U.S. Army ERDC, for example, have utilized this species

to create a large compendium of transcriptomics data representing exposures to endocrine dis-

ruptors and explosive compounds [13]. In Chapter 5 we utilize this dataset to demonstrate the

effectiveness of reverse engineering approaches in identified novel adverse outcome pathways

for flutamide, a model anti-androgen. For many non-model organisms, especially in ecotoxi-

cology, functional annotation can be a limiting factor hence hindering biological interpretation.

1.2.4 Alternatives to Animal Testing

One of the biggest challenges for the toxicological community is the reduction of in vivo ex-

perimental designs. This has been a growing concern as in recent years the similarity of rat

to human biology has been challenged [47–49]. Approaches such as the ToxCast Program

employed by the U.S. EPA are trying to address these issues by integrating in silico, in vitro

and non-mammalian in vivo systems through high throughput assays to provide information to

predict toxicity outcome in humans [22]. In their initial 2-year study (phase 1) the program

characterized a total of 300 well studied chemicals (mainly pesticides). The resulting toxicity

signatures are now being evaluated on their predictive ability on over 1000 compounds includ-

ing consumer-end-products, food additives and drugs which have not been released to the mar-

ket [50]. Most current, however, is the notion of using exclusively in vitro cell based systems to

predict toxicity. The advantage of using such systems is the ability to perform toxicity testing

in the relevant species, discarding interspecies differences, and to automate it into large-scale

methods necessary for providing toxicity information for the growing number of chemicals each

year. Both Heng et al [51] and also recently Laustriat et al [52] have commented on the use of

pluripotent cells in drug discovery and concluded that protocols and techniques have to be stan-

dardized to create viable toxicity testing platforms. To be more generally applicable, however,

these methodologies must show that the in vitro systems are wholly representative of in vivo re-

sults overcoming limitations of whole body physiology and metabolism in respect to chemical

exposure.
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1.3 Data Acquisition

In the last decade the development of functional genomics approaches has been indispensable

in the field of biomarker identification and provided knowledge towards mechanistic models

of studied systems [53]. These high density and recently also high throughput technologies

provide tools that can simultaneously measure thousands of features such as mRNA, proteins

or metabolites. Computational methodologies to analyse this vast amount of data equally de-

veloped in concert with the technology. Advances within the technology of microarrays and

mass spectrometers have increased sensitivity and number of samples per run while constantly

decreasing the cost. In particular, in transcriptomics, progress made in the chemistry and tech-

nology has decreased sample-to-data time from 5 days to just about 1.5 days while introducing

multiplexing (multiple samples per experiment) and higher feature density. Independently to

these developments, computational toxicology has focused on quantitative structure-activity re-

lationship (QSAR) models. These models identify links between physico-chemical features

(PCFs) and biological activity, which can be a continuous (toxicity) or categorical (toxic / non-

toxic) variable.

1.3.1 Transcriptome Expression Profiling

The evolution of gene expression Profiling

Since the discovery of the DNA structure by Watson and Crick [54] research in molecular bi-

ology has focused on decrypting the code of life. Understanding this code would give answers

to various functions within a living organism and provide targets for alleviating diseases and

illnesses. To reach this goal many different technologies have been developed to help the scien-

tific community. The detection of RNA molecules is only one of those technologies that have

been made available and within a cell based system can give indications on disease status, pro-

tein levels and provide valuable data points for prediction purposes. Prior to the development of

microarray technology, gene expression profiling was initially performed using Northern blot-

ting technology. Introduction of reverse transcription polymerase chain reaction (RT-PCR) pro-
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vided a more sensitive approach and simultaneously reduced the need for dangerous radioactive

reagents. RT-PCR was quickly followed by q-PCR with increased detection sensitivity making

it the gold standard of gene expression profiling. However, PCR technologies are only able

to detect one mRNA molecule at one time, which hinders biomarker identification on a global

scale.

Simultaneous Expression Profiling

The development of cDNA microarrays was the first attempt to measure multiple known tran-

scripts within a single experiment. They provided a customizable and cost-effective approach

to transcriptomics. More specifically, probes (in many cases large parts of nucleotide sequence

representing the gene of interest) were designed prior to spotting onto glass slides using robots

with fine pins or needles. Commercialization of these products resulted in improvements, gain-

ing increased sensitivity, density and added multiplexing support allowing for multiple samples

to be measured within a single experiment. Today, running large-scale transcriptomics studies

using these technologies is cost and time effective allowing for identification of biomarkers,

mechanistic and predictive models to help understand how biological systems work.

Differences in microarray printing technology

In the commercial sector there are three major microarray providers. Agilent, Nimblegen and

Affymetrix use different printing methods and designs to build microarray slides. Traditionally

microarrays were spotted or printed using presynthesized oligonucleotides. This enabled high

volumes of microarrays at relatively low costs per sample. Due to the mechanisms used in this

printing technology spots rarely were aligned properly adding further time consuming effort to

extract feature information. Affymetrix who has pioneered the in silico designed microarray

platform, using their GeneChip products, created high density short oligonucleotide sequence

(25nt) arrays with the use of masked photo-lithography. Each transcript on these arrays is rep-

resented by a number of sequences. In addition each sequence feature was comprised of a

perfect and non-perfect match. This design not only allowed to measure mRNA degradation

curves and provided limited splicing knowledge but also identified unspecific binding for each
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sequence making it the gold standard for high throughput gene expression profiling. A few

years later Nimblegen presented its own microarray design based on maskless digital light pro-

cessing using micromirrors to synthesize oligonucleotides up to 70nt at specific positions on the

slide. Most innovatively however is the ink-jet technology used by Agilent to print sequences

on a small piece of glass. An offshoot of Hewlett-Packard (HP), Agilent borrowed the compa-

nies well known printing technology and adapted it to simply print nucleotide bases up to 120nt

with micron precision. This enables Agilent not only to be one of the fastest technologies to

create arrays but also gives the customer the ability to easily design custom slides at no extra

cost. This especially is useful with non-model organisms, or species for which no commercially

available microarrays exist. Furthermore both Agilent and Nimblegen have introduced multi-

plexed slides, on which multiple samples can be run in a single experiment without the loss of

feature number. Due to the different printing technologies, feature density differs greatly be-

tween the three competitors. Affymetrix, for example, can place almost 6.5 million features on

its microarrays. Scanning such dense slides however requires very specific scanning equipment

and hence the Affymetrix technology is bound to a series of specific devices making it one of

the most expensive microarray technologies. NimbleGen and Agilent on the other hand initially

competed with traditionally printed cDNA arrays and were therefore designed to use standard

microarray scanners. Only recently both companies have released scanners and accompanying

formats that can contain up to 1 million features per slide (Table 1.1). Their competitive price,

customization and sensitivity make these a much more cost-effective choice to Affymetrix. Out

of the three companies, Agilent provides one of the most comprehensive choices including a

number of various formats and low cost.

A typical Sample to Data Workflow

In essence traditional microarray technology does not differ greatly from todays improved ver-

sions. Figure 1.1 shows a schematic view of gene expression profiling using modern Agilent

microarrays (other technologies may differ slightly). Initially total or mRNA is extracted from

the sample using phenol-chloroform or column based methods (Figure 1.1 Step 1). A primer is

used to bind the desired RNA molecules within the sample and a reverse transcriptase enzyme
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creates cDNA molecules based on the original sample (Figure 1.1 Step 2). In most modern

labelling reactions amplification methods are used to decrease the amount of total RNA needed

by employing specific enzymes in the reaction. Following the creation of the cDNA molecules

a T7 RNA polymerase in the presents of either cyanine-5 (Cy5) or cyanine-3 (Cy3) bound to cy-

tosine transcribes the double stranded cDNA molecule to give labelled antisense cRNA samples

(Figure 1.1 Step 3). Most commonly in single channel experiments, where signal intensitiy is

representative of mRNA concentrations, Cy3 dye is used as it is much less susceptible to ozone

than Cy5. Due to the differences in wavelength emissions in these two dyes double channel ex-

periments can be used to represent the ratio of each gene given a treated and a reference sample.

The labelled sample is then hybridized to the microarray.

1.3.2 Proteomics and Metabolomics

The advancements in other omics technologies, beside transcriptomics, also highly contributed

to the genome-wide molecular characterization of biological systems. Mass spectrometers

(MS) used in metabolomics, proteomics and lipidomics are constantly increasing in sensitiv-

ity. Metabolomics, for example, is the study of endogenous, low molecular weight metabo-

lites [55, 56]. Measurements can be performed from cellular to whole organism levels and its

Affymetrix Agilent Nimblegen
Applications Gene Expression,

CGH, tiling ar-
rays, CHiP chip,
SNP detection

Gene Expres-
sion, CGH+SNP,
DNA Methyla-
tion, ChIP chip,
miRNA, CNV

Gene Expres-
sion, Sequence
Capture, CGH,
ChIP-chip, DNA
methylation,
CGS

Available Formats Depending on
Application

8x15k; 4x44k;
2x105k; 1x244k;
8x60k; 4x180k;
2x400k; 1x1M

4x72k; 1x385k;
12x135k;
3x720k*;
1x2.1M*;

Maximum Feature Size ∼6.5 million 1 million 2.1 million*
Cost per Sample ∼£350 From £120 From ∼£110

Table 1.1: Comparison of Modern Microarray Technologies Available. Applications across
the different Companies do not differ greatly. Cost and Formats are highly different. *not
available for gene expression arrays
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Figure 1.1: Modern mRNA Labelling Reaction. Modern Agilent microarrays use specific
enzymes to amplify total RNA samples. Using such a techniques initial RNA concentrations
can be as little as 25ng of total RNA to create enough labelled cRNA to use on the arrays.
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ability to build a snapshot of compounds including lipids, sugars and amino acids can give in-

dications about the individuals health or state of disease at a particular point in time [55, 57].

In respect to an external stressor, the metabolome often responds earlier than the transcript- or

proteome [56]. Proteomics on the other hand focuses particularly on translated products of gene

expression which can interact with mRNA to create further proteins or regulate their expression.

Therefore the information gained by this technique could potentially be more informative of the

molecular state than mRNA levels. Similarly to metabolomics proteins can be measured on

various levels across the biological system. One major challenge in both of these technologies

is the annotation of the various compounds that are identified. For the mass spectrometer to

measure a given compound it has to be firstly ionized. A number of different adduct forms of

different relative concentration can occur and in some cases a particular compound may not

even ionize at all. In addition even though highly sensitive mass spectrometers are available,

highly accurate mass to charge ratios alone are not sufficient information to differentiate be-

tween iso-forms, or molecules of similar weight.

1.3.3 Next Generation Sequencing

In addition to these omics technologies, advancements in next-generation sequencing in terms

of speed and cost have had a great impact in the omics field. In transcriptomics, the RNA

molecules of interest need to be known previous to designing the microarray. In NGS this

knowledge is not needed. Here either DNA or RNA is measured by reading each base and

constructing the genome (DNA-seq) or transcriptome (RNA-seq). Especially for non-model

species this methodology is used to generate gene expression data or to define the transcriptome

for a given species. In comparison to current transcriptomics technologies, however, RNA-seq

cannot compete financially. Data generation is almost 10x more expensive per sample and

requires a longer time frame until usable data is produced. The quality of the data in many

cases is comparable between microarrays and sequencing [58]. A particular advantage of using

NGS is the ability to characterize different splice-forms and identify even very lowly expressed

genes.
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1.3.4 Computing Physico-Chemical Features (PCFs)

The role of QSAR in predictive toxicology is highly important. It provides the researcher with a

set of tools that enables the characterization of chemicals using a set of pre-defined descriptors.

Since the early 1960s the QSAR techniques are in constant advancement and its importance in

the virtual laboratory becomes more and more present. Especially in drug discovery, imple-

mented as a high-throughput screening method, QSAR models have shown to help reduce the

number of potential unwanted chemicals [59, 60]. Virtual filtering of chemicals in the pharma-

ceutical industry is now a standard technique to remove compounds that are predicted toxic or

of poor pharmacokinetic properties but also to find compounds that are highly likely to be final

candidates [61, 62]. In essence a QSAR analysis strategy is subdivided into 3 main steps:

1. Generation of Molecular Descriptors from chemical structure,

2. Filtering of descriptors to remove redundant entries,

3. Linking Descriptors to biological activity.

In most cases the extraction of descriptors from compound structure is facilitated through soft-

ware on high performance computing clusters, some of which are freely available online. Stan-

dalone applications are also available but are usually catered for industry and hence not very

cost-effective for academic purposes. On particular free online service is E-Dragon (hosted on

www.vcclab.org). It is based on the DRAGON software which is able to calculate a set of

molecular descriptors for a given chemical. In its newest instalment (DRAGON 6) calculates

4885 features subdivided into 29 groups. These capture a range of 2D and 3D QSAR descrip-

tors which in general describe the topological, geometrical, electrostatic and atomic fragments

of a given chemical (Table 1.2).

The large number of features however presents itself with a relatively large search space.

Filtering of descriptors may be applied and this can be accomplished by a statistical, informa-

tion theory, correlation based or simple criteria (i.e. number of unique numerical values across

sample space) approach. Following the reduction of search parameters the remaining features

are then used to link biological activity to a minimal number of descriptors. To identify feature-

sub-groups variable selection algorithms, such as a Genetic Algorithm or Simulated Annealing,
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Descriptor Group No. of Features
1 Constitutional descriptors 43
2 Ring descriptors 32
3 Topological indices 75
4 Walk and path counts 46
5 Connectivity indices 37
6 Information indices 48
7 2D matrix-based descriptors 550
8 2D autocorrelations 213
9 Burden eigenvalues 96

10 P VSA-like descriptors 45
11 ETA indices 23
12 Edge adjacency indices 324
13 Geometrical descriptors 38
14 3D matrix-based descriptors 90
15 3D autocorrelations 80
16 RDF descriptors 210
17 3D-MoRSE descriptors 224
18 WHIM descriptors 114
19 GETAWAY descriptors 273
20 Randic molecular profiles 41
21 Functional group counts 154
22 Atom-centred fragments 115
23 Atom-type E-state indices 170
24 CATS 2D 150
25 2D Atom Pairs 1596
26 3D Atom Pairs 36
27 Charge descriptors 15
28 Molecular properties 20
29 Drug-like indices 27

Table 1.2: Descriptor Groups Calculated by DRAGON The 29 descriptor groups that can be
calcualted using the DRAGON software. It is available as a standalone application but it also
freely available through a web-interface.

are used. Depending on whether the biological activity is a continuous or a categorical vari-

able a regression or classification problem occurs. A regression problem involves modelling

of the dependent variable against a function of descriptors whereas in classification problems

the resulting model is defined by decision boundary where best separation between classes oc-

curs [63]. In both regression and classification problems a number of linear and non-linear

methodologies are available which can be easily implemented in the chosen variable selection
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approach.

1.4 ’Omics’ Data Analysis

To make sense of the ever increasing number of features being measured using omics tech-

nologies analysis pipelines, computational methodologies and various other tools are needed.

Initially however the challenge lies in extracting the information that has been gained by the

method used. In transcriptomics, for example, this would mean analysing the image returned

by the scanner and in metabolomics or proteomics processing of the peak list identified by the

mass spectrometer. The second even bigger challenge is to minimize the technical variation

and identify the true biological signal. Luckily during the large-scale genome initiatives in the

medical field new methodologies and statistical tests have been developed and successfully ap-

plied to many areas in biology. For almost every challenge in the analysis pipeline a selection of

tools exist that can give statistical or visual results that aid in the understanding of the biological

system being studied. There are 6 main groups of tools available encompassing raw data prepro-

cessing, clustering algorithms, differential expression approaches, functional analysis methods,

class prediction and network inference techniques. In each category a selection of applications

exist that have been developed for a particular challenge and hence creating analysis pipelines

without human interaction is very difficult.

1.4.1 Raw Data Pre-processing and Normalization

In any omics technology one particular problem is the raw data processing. Devices and labora-

tory instruments used by the techniques create noisy data and normalization techniques are used

to try and reduce this variability to reveal the true biological signal. Technologies which utilize

fluorescence to represent sample features, image analysis procedures need to be applied to ex-

tract a numeric representation of that feature. Furthermore local background for each feature

has to also be summarized to remove unwanted background effects such as washing artefacts

or impurities. A transformation, usually log2, is then applied to the data to remove low signal

intensity bias and to facilitate interpretation into fold-changes. In transcriptomics it is possible

to run 2-colour microarrays in which each feature is exposed to two different samples using
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different dyes and is then represented in the form of a ratio. The transformation is also applied

here, however ratios are much noisier when the denominator is approaching zero. Following

the transformation a normalization procedure is applied to the data. In the case of a 2-colour

array, dye bias can influence the signal intensity at each feature and specialized normalization

procedures are used to correct for these. A number of different normalization procedures are

shown in Table 1.3. Some microarray designs contain more than one feature for a given tar-

get. This can be attributed to either the availability of multiple sequences or to the simple fact

that empty spaces are available in the design. In both these cases a data summarization may

be necessary. In Affymetrix, for example, each gene target contains a number of features tiled

across the mRNA. In this case averaging across all given probes provides a good estimate of

the expression of that gene [64, 65]. In other technologies it is important to identify whether

the multiple probes are using the same or different oligonucleotide sequence. If an identical

probe is present multiple times, averaging across samples, may be an option. In addition these

multiple probes can be used to identify problematic areas of the array. On the other hand, if

there are two probes with different sequences, one may choose to allow both or the probe with

the higher signal for further analysis. The reasoning here is that features with a low expression

are usually highly variable across different biological replicates. An additional filtering step,

removing lowly expressed genes, may also be applied for the same reason. The resulting data

file can now be subjected to a series of statistical methodologies which are outlined in the next

section.

1.4.2 Identification of Differentially Expressed Genes

Often the most basic question relates to whether a set of features is differentially expressed

between the classes used in the experimental design. Initially this was approached by calculat-

ing the fold change between treated and control samples. Application of an arbitrary threshold

identified up and down regulated genes. This technique, however, was deemed unsuitable due to

missing association to statistical significance. A number of formal statistical approaches were

then developed and applied. Among the first techniques to identify differentially expressed
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Description Availability
Scale Most intuitive approach to simply scale the differences

of medians across all samples to be 0
[66]

Loess Local regression based methodology; usually applied to
2 colour arrays to adjust for dye bias; can adjust for print
tip differences (in spotted cDNA arrays print-tip-loess)

[67]

Quantile Assumes that the distribution of the signal between each
sample is identical and corrects accordingly. This type
of normalization is favoured with Affymetrix arrays.

[68]

Variable Stabliz-
ing Normaliza-
tion (VSN)

Adjusts data to have equal variance for all intensities. [69]

MAS5 A regression method used for Affymetrix data. Builds re-
gression models for a subset of all data and adjusts each
probe accordingly

[70]

rma Each probe is background corrected, quantile normalized
and then summarized.

[64]

gcrma Improved version of rma to incorporate sequence spe-
cific probe affinities

[71]

MAANOVA MicroArray ANalysis of VAriance, normalization is per-
formed by fitting an ANOVA model for fixed and mixed
effect models for each gene. It can be used to correct for
array, dye, sample or even batch effects.

[72]

Table 1.3: Selection of Available Microarray Normalization Procedures.

genes was the application of the traditional t-test. It compared the averages of up to two classes

and specified a p-value for each genes. A non-parametric version, the Wilcox-test, is also avail-

able. There is however a downside with the t-test as it provides very high scores for features

with very low variance. This essentially biases the results towards highly reproducible genes.

To compare more than two classes a generalized extension of the t-test, Analysis of Variance

(ANOVA), has been widely used to identify differentially expressed genes. This particular

technique compares all means across all sample groups reducing the need for performing 2

class comparisons for all possible combinations. Furthermore, ANOVA has been extended to

analyse multiple factors with identical classification groups (n-way ANOVA). There are a num-

ber of other methodologies which aim to address issues such as the previously mentioned low

variance in the t-test. SAM, B-statistic and samroc are among the methodologies which provide

alternatives to the t-test. A comprehensive review of these methods has been published by Kim
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et al [73]. With all statistical tests, a threshold is usually chosen by the user to define features

that are significantly differentially expressed. This is called the probability, which is of type-1

error. This error controls the number of false positives within the statistical test. However it

only assumes that one hypothesis has been tested. When many more hypothesis tests are per-

formed the problem of multiple comparisons arises. The idea is to be able to control all the

tests within a single experiment. For this reason several correction methods have been pro-

posed [74–78]. The most commonly used correction method has been published by Benjamini

and Hochberg [75] which they named the false discovery rate (FDR). This particular method

was designed to capture the highest number of true positives while controlling the number of

false positives. An FDR of 2%, for example, on average should yield 98% of true and 2% of

false positives. Modifications of this approach have also been proposed by Storey [76] which in-

cluded a bootstrap estimator for the family-wide type-1 error. SAM [79] as the only differential

expression approach incorporates this Storey [76] correction and has gained a strong standing in

the community. In addition SAM has been optimized for many different experimental designs,

be it paired, unpaired or time-course problems.

1.4.3 Exploratory Data Analysis

Probably the most used analysis tool developed for large scale data analysis are tree-based vi-

sualization and clustering algorithms. These provide a visual representation of the similarity

between genes or samples. Initially a dissimilarity matrix is created using a simple distance

measure such as Euclidean distance or Pearson correlation. Next clustering algorithms attempt

to identify variables which share a common trait. In some cases, these techniques are also

combined with an image representative of the features signal intensity illustrated using a colour

gradient heat map. In transcriptomics, the standard has been to use average linkage clustering

with the Pearson correlation as a distance measure. Other clustering algorithms also include

self-organising maps, k-means, multi-dimensional scaling and dimensionality reduction tech-

niques such as principle or independent component analysis (PCA and ICA). In particular PCA

has been widely used as it tries to reduce the overall dimensionality of the data by summarizing
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the variance across the different samples into principle components where the first component

contains most of the variance and the last the least variance from the original dataset. The first 2

or 3 components are then be represented on a 2D or even 3D plot to visually represent samples.

The distance between samples can then be indicative of the difference in signal intensity across

a number of features. Specific methodologies for toxicological studies have also been devel-

oped. These arose through the fact that many experiments in this field contain multiple levels

of classification integrating time and/or dose-responses within several different chemicals [80].

One such approach has been published by Chou et al [81]. Their method, called EPIG (Extract-

ing Patterns and Identifying co-expressed Genes), tries to find all the patterns within the data

and categorizes them on the basis of the signal to noise ratio, signal intensity and correlation of

expression profiles [81]. The integration of these allows for a much more thorough pattern dis-

covery across the dataset. Further methodologies include semisupervised clustering approaches

that integrate phenotypic data [82] and biclustering methods which partition gene expression

data into cliques (subsets of samples sharing a similar expression pattern) [83, 84].

1.4.4 Machine Learning Methods for Supervised Classification

Being able to predict the outcome, class or effects as a result of an external stressor has become

a major bioinformatics objective. Prediction algorithms exist in plenty different forms due to

many other areas also highly interested in predicting the future. They range from very simple

algorithms such as nearest centroid or k-nearest-neighbours to much more mathematically com-

plex decision trees approaches or support vector machines. The ultimate goal in this field is to

minimize the number of features needed for high prediction accuracy. To achieve this variable

selection methods are used in combination with a classification algorithm to test many different

sets of features and identify one possible solution representative of this goal. Schematically, the

method should split the input data into a training and test-set by a predefined ratio (usually 2/3

training 1/3 test). The training set is then used to train the particular classification algorithm

and is then tested against the test set. This particular setup, however, is prone to over-fitting.

Over-fit models are only able to describe the training but not the test data and are therefore not
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useable. To overcome this problem, error estimation procedures such as leave-one-out-cross-

validation, k-folds or splits are used. As each classification problem most likely contains more

than one potential good fitting model these approaches train thousands of models. A represen-

tative model is then built using the most frequently chosen features across all models. This

is done by incrementally testing the top fifty features and choosing the best predictive model.

Such a method can be found in the GALGO package in the statistical environment R. It uses a

genetic algorithm for the variable selection approach and combines it with several in-build clas-

sification algorithms such as nearest centroid, shrunken centroid, k-nearest neighbour, linear

discriminant analysis, support vector machines and even supports user built functions.

1.4.5 Functional Analysis

Through the last few years the focus on gene-level analyses has shifted towards a higher level

approach. It is known that genes rarely work by themselves but work together with other genes,

proteins or metabolites to complete their task. Clustering or differential expression analysis

alone can therefore provide little information on the full extend of molecular change. Func-

tional annotation tools are methods which can help scientists to identify potentially enriched

clusters within the studied biological system. Several web-services are available which perform

such tasks. DAVID [85] and FatiGO [86] are probably the two best known functional clustering

approaches. DAVID in particular has the ability to integrate many different functional annota-

tion databases, such as GO, KEGG, BIOCARTA, Panther and other annotation, and identifies

enriched functional categories within the user submitted features. This, however, are not the

only uses that functional analysis can offer. As databases such as KEGG or BIOCARTA utilize

information, available from the literature, to build pathway maps, these can be considered as

functional modules. In the context of KEGG specifically, pathways within their database can be

considered to be conserved across a number of species. This in particular can help in biological

interpretation with non-model organisms. A functional module can be defined as a collection of

genes either regulated by a common factor, following a similar trend in expression or have func-

tional similarities. To define a functional module therefore we can use these databases, such as
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KEGG, network inference algorithms combined with modularization techniques or use simple

clustering methods. The identified modules can then be subjected to statistical tests, prediction

algorithms or linked in regression problems to other phenotypic data.

1.4.6 Network Inference

High-throughput technologies have generated vast amount of quantitative data representing the

molecular state of cell-lines and tissues across many different species. In many cases these

are mRNA expression level dynamics captured as a result of a perturbation to the system. It

is known that proteins, which are themselves products of mRNA, have the ability to control

mRNA expression levels of either themselves or other genes. It could be therefore conceivable

that a statistical relationship between two potentially interacting genes can be formed albeit not

directly proportional. This concept has lead to several reverse-engineering approaches and is

still a matter of intense research. Some of these are designed to exploit time-course datasets

while others work by analysing large compendiums of perturbation experiments. Among the

first reverse-engineering effort was based on a Bayesian network approach which inferred prob-

abilistic relationships between variables and allowed time-course, steady state and prior knowl-

edge to be included. Correlation based and information theory approaches followed which

calculate a coefficient between all the features to build the underlying regulatory network and

were at first purely developed for steady state data. Some extensions of the information-based

approaches are now also able to use time-course data. State space models and ODE based

approaches are used to develop dynamic network models using time-course data but are only

feasible with small number of genes.

1.4.7 Building Networks: Reverse Engineering and Network Inference

Fundamental to reverse engineering the underlying molecular network is the methodology used.

A number of approach have been proposed over the last several years. Although transcriptomics

based data has been predominantly used, these applications have been applied to other high di-

mensional data such as protein-protein binding strength, protein abundance, signalling (protein

activation), and metabolic data [87, 88]. The development of mutual information (MI) based
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analyses added an important reverse engineering technique to the already existing field. In-

ference algorithms such linear regression models [89–92], Bayesian networks [93, 94] or state

space models [95,96] have been previously used. Data mining or association rule mining meth-

ods have also been proposed [97], but these rely heavily on published material which is highly

limited with non-model organisms. The general advantage of MI lies in the completeness of its

reverse engineering attempt. Many of the previously mentioned techniques can only deal with

small numbers of features. Within the MI techniques a number of methods have been proposed

(for example ARACNE [98], CLR [99] or MRNET [100]), but these generally differ by the

indirect edge removal approach. Generally such algorithms measure the dependency between

genes, proteins, metabolites, and all relevant physiological data using a scoring function. The

entropy-based MI captures a broad range of biologically relevant dependencies (positive, neg-

ative, and linear as well as nonlinear relationships) and is therefore capable of detecting more

general dependencies than measures of linear correlation (i.e. Pearson or Spearman correlation).

Similar to the linear correlation methods, higher values correlate with greater MI that is shared

between the two variables. Due to the complicated underlying biological processes involved,

causality cannot be directly inferred given a high MI score, without further validation. However

examination of the resulting relationships can provide the necessary information to postulate

adverse outcome pathways (AOPs). There is however one main issue with reverse engineering

approach. In most cases they require a large number of data points (> 50) per node [98, 99].

However, there are instances where a smaller number of data points can lead to informative

results [101]. The computational requirement for building a network using this methodology is

relatively small as the estimation of the MI score is only based on two features at a time. Other

methodologies such as Bayesian Networks rescore the entire network after each edge manipu-

lation. Therefore MI based methods can deal with tens of thousands genes whereas Bayesian

Networks for examples are limited to a few hundred or even less genes.
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1.4.8 Identification of Adverse Outcome Pathways (AOPs) using Reverse

Engineering

One application of network inference approaches is the characterization of mechanisms of ac-

tion for a given environmental stressor or the underlying pathway structure of a given gene

product. The process for developing and validating adverse outcome pathways can be struc-

tured into 3 distinct stages (Figure 1.2). Initially the network needs to be assembled using an

appropriate methodology (Figure 1.2A). There is no limitation to what types of datasets can

be included, although a pre-requisite is that the data is standardized (mean = 0, sd = 1) be-

fore attempting reconstruction. The second step is to visualize and interrogate the network

(Figure 1.2B). One important aspect of network interrogation is the identification of functional

modules. Modularization techniques identify highly connected sub-networks and a number of

these have been proposed by other groups as well as our group during my PhD. Including phe-

notypic measurements can be of great advantage when trying to identify interesting modules

as these should effectively cluster in the same region of the network. Additional functional

information can provide information on biological processes of these networks aiding in AOP

identification and biological interpretation. Lastly identifying the potential AOP and evalu-

ating it using computational and experimental techniques is imperative before proclaiming to

have a found a novel mechanism (Figure 1.2C). Computational techniques may include variable

selection approaches to build predictive models of phenotypic outcome such as toxicity (clas-

sification for discrete or regression for continuous data). The resulting features could then be

used to develop an assay which would predict the desired phenotypic outcome or early response

to a stressor. Experimental validation of the assay using a number of independent samples and

laboratories may then provide enough evidence to postulate a novel adverse outcome pathway.

1.5 Quantitative Structure-Activity Relationship Analysis (QSAR)

In the early 1960s Hansch and Fujita developed the ρ−σ−η Analysis, a first attempt of link-

ing chemical structure to a biological activity. Since then increase in level of sophistication,
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Figure 1.2: Overall Strategy for Reverse Engineering of an Adverse Outcome Pathway
(AOP). [13]
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number of chemical features and methods for identifying and correlating descriptors to bio-

logical activity have been published. A more modern term for this type of analysis is Quanti-

tative Structure-Property Relationships (QSPR) but it is also known by Quantitative Structure-

Activity Relationships (QSAR), Quantitative Structure-Toxicity Relationships (QSTR), Quanti-

tative Proteome-Property Relationships QPPR), Quantitative Sequence-Action Model (QSAM)

or Quantitative Structure-Reactivity Relationships (QSRR). The name depends on the situation

it is being used for but in all cases the building of models linking biological activity to a function

of chemical descriptors is performed. With the introduction of high throughput screening meth-

ods in the pharmaceutical industry, QSAR has become a vital virtual filtering method reducing

overall time and cost in the development of drug-like compounds [61,62]. Its ability to quickly

and rapidly identify chemicals with potential risk factors, and narrowing of the lead-like com-

pound library, reduces financial cost and animal suffering. Screening of hundreds of thousands

of potential drug candidates is therefore greatly simplified. Focused compound selections can

then be analysed using lower throughput assays [102]. These advantages however do not only

apply to the pharmaceutical industry. Toxicologists, environmental protection agencies and the

pharmaceutical industry use QSAR to identify potential compounds which may be hazardous to

human health or the ecosystem. In many cases no toxicity information exists for new chemicals

that have been manufactured or imported. In this context QSAR is used to identify and classify

potentially dangerous chemicals and to help prioritize chemicals for further toxicological analy-

ses. In the early 90s Auer et al [103] have already discussed the importance of these techniques

and their potential ability to predict potential mode of action and more recently Matthews et

al [104] showed that indeed QSAR models can be used to not only predict mechanisms of ac-

tion but also to link chemical structure to drug-induced adverse events in humans. Furthermore

the vast amount of available datasets in the public domain presents a potential supply of valuable

data for building QSAR models.
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1.5.1 Molecular Descriptors

As it is not possible to directly map chemical structure to biological activity, due to differences

between chemistry and computers science, a set of predefined molecular descriptors has been

established. A second reason for the necessity of descriptors is the fact that chemical compounds

are highly diverse and most statistical data analyses require data which is uniform in feature

space within each sample. There are two main broad families of descriptors currently being

used in QSAR research.

2D Descriptors

This family of descriptors ranges from simple constitutional, geometrical and topological prop-

erties to electrostatic and quantum-chemical descriptors. More specifically constitutional de-

scriptors summarize the elemental structure of a chemical such as molecular weight or count-

ing the number of various bond strengths. These descriptors, mostly representing biochemical

structures, have been used to build rule-based expert systems such as DEREK [105,106]. Identi-

fication of certain functional groups such as aromatic amines, acryl hydrazine or alkyl carbamate

can highlight potentially hazardous chemicals [106]. Topological descriptors, on the other hand,

are slightly more complex. Initially the chemical structure is treated in a graph format where

atoms are represented by nodes and covalent bonds by edges. Calculation of indices describ-

ing the topology of this network such as the shortest path between all pairs of non-hydrogen

atoms or the sum of geometric averages of edge degrees of atoms within a given length are

the resulting features [107–110]. Furthermore information about valence electrons can also be

included [111, 112]. Electrostatic descriptors can also provide informative features. These rep-

resent the atomic net and partial charges of a compound [113]. Molecular polarizability or areas

of high negative or positive charge may also be represented using these descriptors [114, 115].

Combinations of topological descriptors and other properties such as electronic organisation or

polarizability also exist. These usually represent the distribution of charge across the molecule

within the eigenvalues of an atom connectivity matrix [116–118]. Geometrical descriptors, as

the name suggests, relate to the spatial arrangement of a molecule. Volumetric features such as

28



the van der Waals areas [119, 120], gravitational indices [121] or principal moments [122] are

represented.

3D Descriptors

This family of descriptors is much more complex than its conventional 2D counterpart. It is

much more computationally complex to extract numerical information and in many cases is

done in a stepwise fashion. More importantly is the identification of the 3D structure from ex-

perimental data or molecular mechanics. As in most cases this information does not exist, con-

version tools such as CORINA (Molecular Networks GMBH, http://www.molecular-networks.

com/) or OMEGA (Schrödinger www.schrodinger.com) are used to define the 3D struc-

ture from the 2D representation. Within this family there are two subfamilies which describe

alignment-dependent and independent descriptors. The Comparative Molecular Field Analy-

sis (CoMFA [123]) and the Comparative Molecular Similarity Indices (CoMSIA [124]) both

belong to the alignment-dependent category and summarize the potentials of the energy fields

using Coulomb and Lennard-Jones or Gaussian-type functions respectively. Within the inde-

pendent subfamily the Comparative Molecular Moment Analysis (CoMMA [125]), Weighted

Holistic Invariant Molecular Descriptors (WHIM [126, 127]), VolSurf [128, 129] and Grid-

Independent Descriptors (GRIND [130]) are represented. These have the advantage of being

invariant to molecule rotation and translation in space [63]. CoMMA features describe the mass

distribution, including intertia and magnitudes of dipole moments, using the center of mass and

dipole within the structure. WHIM descriptors use PCA on the atomic coordinates to summa-

rize the variance in the structural space. Within that space several statistics are used to define

directional and non-directional descriptors. In addition the contribution of each atom to the PC

can be weighted by a chemical property such as mass, van der Waals volume or electrostatic

properties or indices. To define hydrophobic or hydrophilic regions within a chemical the Vol-

Surf approach is used. It virtually interacts with the molecules surface using several probes

and the resulting information is then used to define the descriptors. The GRIND descriptors

were specifically developed to maximize the biological properties of the compound while be-

ing alignment-independent. An important feature of these descriptors is the fact that due to the
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autocorrelation transform used, the original descriptors can be regenerated and then visually

represented [63].

1.5.2 Filtering of Molecular Descriptors

As described in the section above the number of methodologies and hence the number of fea-

tures is very large. Automatic approaches to reducing the feature space, removing any non-

contributing or highly similar descriptors, have been proposed. These can be subdivided into

4 sections, Simple Threshold Criteria (STC), Correlation-Based Methods (CBM), Information

Theory Approaches (ITA) and Statistical Selection Criteria (SSC). The STC approach is the

most simplest and naive method of reducing the feature space. A simple criterion, such as the

number of unique categorical values across each sample can maximize the descriptor space but

removing only those features which do not add any additional information as they are constant

in each molecule. This type of filtering works best when used in conjunction with feature se-

lection algorithms. CBMs dive further into this area by identifying descriptor pairs which share

information. If a pair exceeds a user set coefficient threshold one feature is then randomly re-

moved. This however can lead to differences in datasets and results. To combat this effect, prior

to testing each pair, the descriptors are ranked using PCA for example [131], and the feature

with the highest rank is retained. ITAs are very similar to the correlation based methods as they

quantify the information content between pairs of descriptors. The same method for removing

features can be used using this metric, but in addition network visualization and modularization

techniques can be used to identify groups of features which share large amounts of information.

Choosing a representative feature for that group can then be based on a centrally located (hub-

feature) or most connected descriptor. SSC methods, such as the Fisher ratio [132], are usually

used in conjunction with CBMs to rank the descriptors prior to estimating the correlation. In the

case where the sample space can be separated into two classes, a simple Kolmogorov-Smirnov

test [133] test can be used to compare each descriptors cumulative distribution and assign p-

values based on this difference.
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1.5.3 Linking Biological Activity to Chemical Structure

This is the crucial step in QSAR methodology as pioneered by Hansch et al. The desired final

model should minimize the number of descriptors while at the same time be highly predictive

of the observed variable. These variables can be either continuous or categorical and linear and

non-linear approaches have been developed to tackle these.

Linear Models

The model build by Hansch et al in the early 1960s was based on a simple linear model to predict

biological activity from different structural parameters. This type of model is still the most used

today but the original methodology has been replaced with multiple linear regression (MLR)

which can estimate model parameters using multiple descriptors. To identify the right parame-

ters this approach minimizes squares of the errors between the observed and predicted variable.

It has been successfully applied to various modelling problems such as predicting Caco-2 per-

meability [134] or predicting toxicity of nitrobenzene derivates to T. pyriformis [135]. Partial

least squares (PLS) [136, 137] is another linear regression algorithm. Unlike multiple linear

regression, which is restricted with large descriptors-to-compound ratios as over-fitting is more

prominent with large number of features, PLS has been developed to overcome these short com-

ings. The first step is to extract the latent variables from sampled factors (T) and responses (U).

To build the model the extracted responses U are predicted by T and the resulting values are then

used to predict the original responses. Due to its advantages to MLR, PLS has been very popu-

lar in QSAR models including a multitude of toxicity and cancer related problems [138–140].

The last modelling approach in this group is Linear Discriminant Analysis (LDA [141]). This

classification algorithm was designed to use a linear transformation of the original input ma-

trix to maximize the class difference and minimize within-class variance. Similar to the MLR

method, this approach can easily lead to over-fitting when a large feature to sample ratio is

present. In these cases a PCA can be utilized to reduce the number of total features summariz-

ing the variance across feature space. Examples of the use of LDA in the public domain include

compound prediction [142], antibacterial activity [143,144] and pesticide prediction [145], and
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in the latter has been shown to perform better than other algorithms especially with Friedmans

extension that deals with large feature to sample ratios.

Non Linear Models

Understanding and interpreting non-linear models can in some cases be much more difficult

than linear cases. However in biology linearity is rarely represented and hence non-linear meth-

ods usually become more accurate, in particular with large diverse datasets [63]. Classifica-

tion algorithms such as the Bayes Classifier [63] or K-Nearest Neighbour (KNN) [146] have

been successfully used but have been shown to perform worse than Artificial Neural Networks

(ANN) [147] or Support Vector Machines (SVM) [148, 149]. ANN in particular has been de-

veloped in the context of a biological system, a neural network as the name suggests. A number

of specific methodologies have been proposed in the literature but perceptron-based and radial-

basis approaches were favoured. In these feed-forward methodologies, information flows from

the input descriptors, through a set of layers, to the output of the network essentially predicting

the biological activity. Due to their unique design these techniques have the ability to perform

much better than other approaches [143, 150, 151]. SVM on the other hand uses a multiple di-

mension decision hyperplane to separate samples and can be extended from its linear origin to

a non-linear classifier with the use of kernel functions [149]. An adaptation of the SVM core to

support regression problems has also been published [152]. The main advantage of using SVM

is its high threshold to over-fitting and its very small error rates. In several comparisons, such

as drug-likeness prediction [153] or COX-2 inhibition [154], SVM has been shown to outper-

form other algorithms. Lastly Decision Trees (DT) [155, 156] are very different than all of the

previously outlined approaches as they employ a logic-based systems. In such an approach a

decision is taken by using a simple test criterion at each node of the tree. Once the bottom of the

tree is reached the leaf provides the value that is representative of the prediction. Algorithms of

this type exist in both regression and classification problems. Examples of application of deci-

sion trees to real world datasets include identification of individual amino acids in the Reverse

Transcriptase pocket of HIV-1 [157] and the prediction of human hepatoxicity endpoints [158].
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Ensemble Techniques

Traditionally the methods described earlier are used to build a single predictive model but more

recently ensemble methods which combine several predictive models have shown to increase

predictive power [159–162]. One such method is called Bagging [160], where a bootstrapping

algorithm creates multiple base models, using one of the previously described methods, and

uses the average of all of these models to accurately predict the outcome. Another example of

ensemble techniques includes the Random Subspace Method (RSM) [161], which uses random

feature subsets, and boosting. The RSM has been implemented in the Random Forest approach

which is based on the decision tree algorithm [163]. In a recent comparison this has shown

to achieve even higher accuracy than SVM, PLS or KNN [164, 165]. The boosting algorithm

[162,166] on the other hand is specifically designed to build models with hard to predict samples

by using a weighting system. Initially each sample has an identical weight but at each iteration

of the classification the weights are adjusted depending on the error from the previous result

regardless of the error in the next step. This allows the algorithm to create decision boundaries

maximizing the difference between the classes, similar to the SVM method [167].

Variable Selection Methods in QSAR

One topic that has not been mentioned so far is the use of variable selection algorithms in

QSAR. These methodologies combine a method for linking activity to chemical structure with

an algorithm that efficiently searches across the feature space to identify a subset of descriptors

that are highly predictive. Specifically in QSAR Genetic Algorithm (GA) [168] or Simulated

Annealing (SA) [150] based approaches are used. GAs use an evolutionary process to model

a population of solutions. The best of the, so called, chromosomes within the population are

retained by the procedure. Multiple runs ascertain that the majority of the search space is

covered. The resulting list of solutions can then be used to identify one particular model or with

a specific strategy, such as a forward selection strategy, a representative model can be formed.

In comparison SA approaches are rather simple as they only alter the current-best model by

randomly exchanging features. With each iteration a number of changes is performed, tested,
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and evaluated whether to keep the change or to discard it. The major problem with this type

of approach is the fact that it can easily get stuck in a local minima. Methods for escaping this

minima have been considered but in general a GA based approach can lead to highly predictive

models much more efficiently.

1.6 State of the Art Predictive Toxicology

The development of toxicogenomics provided the community with a much needed high-density

and high-throughput technology which allows the measuring of thousands of features for a sin-

gle sample. Statistical methods exist which can deal with such large amounts of data and help

in the interpretation of the results. More recently the concept of pathway-level analysis has

brought forward the adverse outcome pathway approach where a change in normal pathway be-

haviour is identified [13,169]. And although annotation in various species, especially ones used

in ecotoxicology, may be limited highly informative results leading to novel biomarker targets

may be identified [41, 44, 170–172]. This particularly applies to non-model species, where a

combination of homolog and local annotation can be used for pathway-level analyses. Compu-

tational toxicology also had similar advancements with QSAR predictions becoming more and

more reliable [2, 3, 173]. To further develop predictive toxicology we have to combine all these

advancements made in the last few years and provide the scientific community with an analysis

approach that can improve the predictive power and provide potential mechanistic insights. The

method developed in this thesis tackles this challenge by integrating classical QSAR method-

ologies with gene expression profiling datasets and applies it to two distinct species Rattus

norvegius and Daphnia magna. One specific problem was the high dimensionality arising from

both QSAR and microarray technologies. To reduce the search space a principal component

analysis was used to summarize the gene expression data into pathways based on the KEGG

database. Other dimensionality reduction techniques such as non-linear PCA (k-PCA) or in-

dependent component analysis can also be used but their effects have not been tested in this

thesis. In respect to the pathway definition alternative online databases such as BIOCARTA,

GO, or Panther or a more dynamic approach based on reverse engineering (ARACNE) coupled
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with a functional modularization technique (FUMO, etc) may be more beneficial depending

on the species employed. Utilizing the traditional QSAR techniques, biological activity (i.e.

toxicity) is substituted with a pathway activity index. Due to the pathway-level design biolog-

ical interpretation is highly simplified. Visualization of results indentified in both traditional

and pathway-level linked models can help identify specific global functions that may be im-

paired as a result of exposure. Using the same methodology, given the right set and sample size

of chemicals, specific mechanisms of actions for a given chemical class may also be interro-

gated. Identifying potential entry points for chemical toxicity either globally or for chemicals

with known mechanisms of action could be highly beneficial in toxicity prediction of unknown

compounds.

1.7 Concluding Remarks

There are several important issues that need to be addressed before the use of QSAR in toxi-

cology can move to the next level. The advancements in omics technologies in the last decade

have undoubtedly enriched the field of toxicology with genomics tools that are time-efficient and

cost-effective. As a result large datasets have become increasingly available in the public do-

main that specifically tackle questions related to chemical exposure. This fast growth however

has caused a few side-effects to become apparent. In particular gene annotation is proving to be

extremely difficult as many non-model organisms have little or no annotation. Using the blast

toolset or the KEGG Annotation Builder [174] gene homologs can be found relatively quickly

but in many cases only small numbers of genes can be significantly associated. This makes

biological interpretation considerably more difficult. To understand toxicity it is imperative

that one deduces the adverse pathways resulting from exposure in the biological system being

studied, which has shown to be highly informative [12, 13]. In the case of non-model species

however the results from these reverse engineering methods are hard to interpret. Neverthe-

less, it gives researchers features to focus on in subsequent studies. Computational toxicology

is plagued by similar annotation problems; however, the focus here has been changing to the

virtual laboratory [175]. The U.S. EPA, for example, is building a virtual liver model whose
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overall goal will be to accurately predict toxicity mechanisms of various compounds. Other

such models are also developed by the National Biomedical Computation Resource (NBCR;

http://nbcr.sdsc.edu/) which is building a human heart model that describes molecular

interactions, diffusion, and electrostatics. Despite all these advancements in technology and

resources, the field is still far from being able to accurately model whole organisms and ef-

fects of compounds on various numbers of species in the environment. On the other hand we

have methodologies and technologies at hand which can greatly improve the understanding of

toxicity. Integration of these techniques will prove to be indispensable to the community to un-

dertake further research and help build on the current knowledge. The ultimate future probably

lies in the development of in vitro systems which can replace in vivo experiments [16], method-

ologies which yield maximum biological information from minimal experimental research and

technologies which are even more sensitive, cost and time-effective than the current available

generation. As a stepping stone, however, the use of in vitro techniques to prioritize chemi-

cals, such as in the ToxCast Program, will be indispensable in developing predictive toxicology

further. in vitro techniques may also provide a cheap alternative to toxicity testing, essentially

reducing severity of animal testing.
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Chapter 2

Mapping Drug Physico-Chemical Features

to Pathway Activity revealsMolecular

Networks linked to Toxicity Outcome

2.1 Abstract

The identification of predictive biomarkers is at the core of modern toxicology. So far a number

of approaches have been proposed. These rely on statistical inference of toxicity response from

either compound features (i.e. QSAR), in vitro cell based assays or molecular profiling of target

tissues (i.e. expression profiling). Although these approaches have already shown the potential

of predictive toxicology we still do not have a systematic approach to model the interaction

between chemical features, molecular networks and toxicity outcome. Here we describe a com-

putational strategy designed to address this important need. Its application to a model of renal

tubular degeneration has revealed a link between physico-chemical features and signalling com-

ponents controlling cell communication pathways, which in turn are differentially modulated in

response to toxic chemicals. Overall, our findings are consistent with the existence of a general

toxicity mechanism operating in synergy with more specific single-target based mode of ac-

tions (MOAs) and provide a general framework for the development of an integrative approach

to predictive toxicology.
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2.2 Introduction

One of the most challenging tasks in toxicology is the identification of a potential toxicity

via high-throughput screening, avoiding the use of animals, at an early stage in the develop-

ment programme of a product such as a pharmaceutical or in the context of REACH [176].

Such screens can help to reduce attrition of products late in development and can help to pri-

oritise existing chemicals for more complete safety assessment. In this context, the concept

of quantitative structure activity relationship (QSAR) analysis was originally developed with

the purpose of predicting a toxicity or pharmacological response utilizing information on the

physico-chemical features (PCFs) of a chemical and the relationship to biological effects. In

the last 20 years QSAR analysis has been characterized by an increasing level of sophistication

as technological and computational developments have made it possible to measure or com-

pute a higher number of chemical and physical parameters [173]. In addition, recent reports

have shown that the prediction accuracy of QSAR models can be increased when additional

information from cell based assays is utilized [2, 3]. Independently to these developments, the

availability of functional genomics technologies facilitated the measurement of mRNA concen-

trations, proteins and metabolites in single experiments. This, together with the development of

novel computational methods suitable for the analysis and integration of very large multilevel

datasets [177], have contributed to demonstrate the usefulness of molecular fingerprinting in

predicting toxicity from an early readout of the response to chemical exposure [6, 177–180].

Toxicants can in some cases be discriminated according to their mechanism of action and their

target organs [4,181]. However, there have been no successful attempts to model the interaction

between a drug PCFs with genome wide molecular response to exposure and put this in context

with toxicity response. It is therefore still unclear whether a true integration between traditional

QSAR and functional genomics data may be possible. In this chapter we describe an analysis

strategy which addresses this issue by integrating gene expression profiling measurements in

the logical framework of QSAR analysis. We have applied this approach to a publicly avail-

able expression profiling dataset, representing the pre-phenotypic transcriptional response to
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chemical exposure in a rat model of renal tubular degeneration which is a major toxicological

response contributing to attrition during drug development [182]. Our approach has success-

fully linked a sub-set of PCFs to the activity of signalling pathways known from the literature to

drive effector pathways differentially modulated between toxic and non-toxic chemicals. This

finding suggests the existence of general toxicity mechanisms which operate in synergy with

specific single-target based MOAs. The approach we have used has general validity since it

can be applied to integrate different types of PCFs, molecular and phenotypic measurements to

identify predictors of toxicity within a mechanistic framework for biological interpretation.

2.3 Results

2.3.1 Rational of the Approach and Data Analysis Overview

The dataset we have used in this analysis is based on a wide range of chemicals. Some of

them are known to work by different mechanisms of action and have diverse chemical struc-

tures. Despite this heterogeneity it has been shown that it is possible to identify early molecular

response signatures predictive of in vivo toxicity outcome [28]. So far, it is unclear whether

these signatures represent an early convergence of the different drugs MOAs towards common

toxicity pathways or whether a component of them may represent a direct interaction between

the chemicals and cellular components. Here we address this question by using a multi-step

computational approach. Firstly, we simplify the complexity of the transcriptional response by

computing indices of overall pathway transcriptional activity (Figure 2.1, Step 1). This effec-

tively reduces the dataset from thousands of individual gene expression profiles to 148 pathway

indices. We demonstrate that toxic and non-toxic chemicals can be separated on the basis of

their ability to modify pathway activity (Figure 2.1, Step 2 and 3). This proves the biological

relevance of the pathway indices. We then hypothesize that the defined set of a drug PCFs

may be representative of the ability of a chemical to induce changes in the homeostatic state

of the target organ. In line with this hypothesis we search for statistical models based on com-

binations of PCFs and predictive of the transcriptional response to drug exposure (Figure 2.2,

Step 1). In parallel we identified which pathways are differentially modulated between samples
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treated with toxic and non-toxic drugs (Figure 2.2, Step 2). If these two pathway subsets truly

represent the interaction between chemicals and underlying molecular networks we may expect

that they would be part of a super-pathway. This hypothesis was addressed by mapping path-

ways in the two on the KEGG pathway map and testing for statistical association (Figure 2.2,

Step 3).

2.3.2 Computing Indices of Molecular Pathway Activity.

The overall aim of this study was to link PCFs to drug-induced molecular responses and phe-

notypic outcome. A key challenge in identifying subsets of PCFs predictive of transcriptional

response is the astronomical number of possible combinations of PCFs and gene subsets that

need to be tested within a statistical modelling framework. In order to address this challenge we

first simplified the complexity of the dataset by reducing thousands of individual gene expres-

sion profiles to a relatively small number of overall pathway activity indices. This was achieved

by summarizing gene expression profiles representative of a given KEGG pathway with the first

two principal components (PCs) of the gene expression matrix [183]. The choice of the number

of PCs to construct the pathway activity indices was driven by the simple criteria to represent at

least 80% of the variance present in the original dataset. By using this strategy we built a new

dataset representing 148 KEGG Pathways (44% of the KEGG pathway database). This dataset

represents 1676 out of the 7478 genes which were originally present in the processed Iconix

dataset. We found that the apparent loss of gene representation was largely (77%) associated

to the high frequency of non-annotated genes (i.e. function unknown or estimated by sequence

homology). KEGG Pathways represented in the derived dataset are a good representation of

the spectrum of functions covered by the KEGG database (See Table 2.1 and 2.2 for a detailed

breakdown in the functional representation of the KEGG pathways represented in the dataset).

KEGG Pathway Number of Genes
rno00190 Oxidative phosphorylation 34
rno04810 Regulation of actin cytoskeleton 93

Continued on Next Page. . .
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Table 2.1 – Continued
KEGG Pathway Number of Genes

rno04330 Notch signaling pathway 20
rno04080 Neuroactive ligand-receptor interaction 140
rno04010 MAPK signaling pathway 120
rno00510 N-Glycan biosynthesis 18
rno01030 Glycan structures - biosynthesis 1 40
rno05212 Pancreatic cancer 52
rno00561 Glycerolipid metabolism 21
rno00564 Glycerophospholipid metabolism 26
rno04070 Phosphatidylinositol signaling system 33
rno00330 Arginine and proline metabolism 14
rno02010 ABC transporters - General 13
rno00120 Bile acid biosynthesis 16
rno04060 Cytokine-cytokine receptor interaction 85
rno05216 Thyroid cancer 22
rno04130 SNARE interactions in vesicular transport 24
rno00980 Metabolism of xenobiotics by cytochrome P450 28
rno04610 Complement and coagulation cascades 36
rno05221 Acute myeloid leukemia 36
rno04514 Cell adhesion molecules (CAMs) 55
rno04650 Natural killer cell mediated cytotoxicity 45
rno04670 Leukocyte transendothelial migration 44
rno04120 Ubiquitin mediated proteolysis 66
rno05020 Parkinson’s disease 10
rno04350 TGF-beta signaling pathway 63
rno04520 Adherens junction 42
rno04530 Tight junction 57
rno05213 Endometrial cancer 34
rno04360 Axon guidance 50
rno04510 Focal adhesion 104
rno04512 ECM-receptor interaction 42
rno05222 Small cell lung cancer 39
rno04320 Dorso-ventral axis formation 17
rno04662 B cell receptor signaling pathway 31
rno00562 Inositol phosphate metabolism 23
rno04020 Calcium signaling pathway 108
rno04310 Wnt signaling pathway 67
rno04540 Gap junction 58
rno04720 Long-term potentiation 41
rno04730 Long-term depression 46
rno04912 GnRH signaling pathway 47
rno04916 Melanogenesis 44
rno00271 Methionine metabolism 8

Continued on Next Page. . .
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Table 2.1 – Continued
KEGG Pathway Number of Genes

rno00450 Selenoamino acid metabolism 6
rno00230 Purine metabolism 65
rno00670 One carbon pool by folate 8
rno05010 Alzheimer’s disease 19
rno00071 Fatty acid metabolism 36
rno00592 alpha-Linolenic acid metabolism 6
rno01040 Polyunsaturated fatty acid biosynthesis 15
rno03320 PPAR signaling pathway 55
rno00860 Porphyrin and chlorophyll metabolism 14
rno00010 Glycolysis / Gluconeogenesis 31
rno00260 Glycine, serine and threonine metabolism 27
rno04630 Jak-STAT signaling pathway 61
rno04640 Hematopoietic cell lineage 38
rno00910 Nitrogen metabolism 12
rno00240 Pyrimidine metabolism 25
rno00410 beta-Alanine metabolism 10
rno01430 Cell Communication 45
rno00380 Tryptophan metabolism 18
rno05210 Colorectal cancer 50
rno05220 Chronic myeloid leukemia 48
rno00590 Arachidonic acid metabolism 24
rno00591 Linoleic acid metabolism 13
rno05219 Bladder cancer 30
rno04210 Apoptosis 47
rno04920 Adipocytokine signaling pathway 56
rno01510 Neurodegenerative Diseases 17
rno05030 Amyotrophic lateral sclerosis (ALS) 16
rno00030 Pentose phosphate pathway 15
rno00051 Fructose and mannose metabolism 18
rno00052 Galactose metabolism 13
rno04910 Insulin signaling pathway 80
rno04012 ErbB signaling pathway 51
rno04110 Cell cycle 57
rno05215 Prostate cancer 52
rno04150 mTOR signaling pathway 28
rno04370 VEGF signaling pathway 35
rno04620 Toll-like receptor signaling pathway 44
rno04660 T cell receptor signaling pathway 43
rno04664 Fc epsilon RI signaling pathway 37
rno05211 Renal cell carcinoma 54
rno05214 Glioma 39
rno05218 Melanoma 38

Continued on Next Page. . .
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Table 2.1 – Continued
KEGG Pathway Number of Genes

rno05223 Non-small cell lung cancer 34
rno00350 Tyrosine metabolism 21
rno00624 1- and 2-Methylnaphthalene degradation 6
rno00641 3-Chloroacrylic acid degradation 6
rno00650 Butanoate metabolism 18
rno00040 Pentose and glucuronate interconversions 9
rno00150 Androgen and estrogen metabolism 21
rno00500 Starch and sucrose metabolism 17
rno00100 Biosynthesis of steroids 16
rno00900 Terpenoid biosynthesis 6
rno00620 Pyruvate metabolism 25
rno00640 Propanoate metabolism 16
rno05040 Huntington’s disease 18
rno05050 Dentatorubropallidoluysian atrophy (DRPLA) 7
rno00521 Streptomycin biosynthesis 7
rno04930 Type II diabetes mellitus 29
rno04950 Maturity onset diabetes of the young 15
rno00360 Phenylalanine metabolism 12
rno00400 Phenylalanine, tyrosine and tryptophan biosynthesis 10
rno00401 Novobiocin biosynthesis 6
rno00950 Alkaloid biosynthesis I 7
rno03010 Ribosome 27
rno05060 Prion disease 8
rno00920 Sulfur metabolism 7
rno00020 Citrate cycle (TCA cycle) 14
rno00251 Glutamate metabolism 17
rno00252 Alanine and aspartate metabolism 18
rno04710 Circadian rhythm 6
rno03030 DNA replication 12
rno00280 Valine, leucine and isoleucine degradation 19
rno00530 Aminosugars metabolism 9
rno00272 Cysteine metabolism 16
rno03020 RNA polymerase 6
rno01031 Glycan structures - biosynthesis 2 17
rno04940 Type I diabetes mellitus 16
rno03050 Proteasome 20
rno04115 p53 signaling pathway 23
rno00970 Aminoacyl-tRNA biosynthesis 11
rno04612 Antigen processing and presentation 23
rno00602 Glycosphingolipid biosynthesis - neo-lactoseries 7
rno04340 Hedgehog signaling pathway 12
rno05217 Basal cell carcinoma 16

Continued on Next Page. . .
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Table 2.1 – Continued
KEGG Pathway Number of Genes

rno00361 gamma-Hexachlorocyclohexane degradation 10
rno00740 Riboflavin metabolism 8
rno03022 Basal transcription factors 13
rno00710 Carbon fixation 15
rno00533 Keratan sulfate biosynthesis 7
rno00220 Urea cycle and metabolism of amino groups 8
rno00140 C21-Steroid hormone metabolism 7
rno00480 Glutathione metabolism 22
rno00340 Histidine metabolism 10
rno04740 Olfactory transduction 14
rno00310 Lysine degradation 13
rno00460 Cyanoamino acid metabolism 6
rno00600 Sphingolipid metabolism 9
rno04614 Renin-angiotensin system 10
rno00760 Nicotinate and nicotinamide metabolism 10
rno00532 Chondroitin sulfate biosynthesis 7
rno00960 Alkaloid biosynthesis II 6
rno00565 Ether lipid metabolism 11
rno00062 Fatty acid elongation in mitochondria 6
rno00534 Heparan sulfate biosynthesis 6

Table 2.1: Pathways Represented by this Dataset. This table represents the 148 Path-
ways (their KEGG ID) and their respective number of genes that we have identified in this
dataset. These provide a good representation of the spectrum of functions covered by the KEGG
database.

2.3.3 Molecular Pathway Activity in Response to Chemical Exposure is

Correlated to Toxicity.

In their original paper, Fielden et al [28] demonstrated that using statistical modelling tech-

niques it is possible to identify subsets of genes predictive of late toxicity outcome. Since our

strategy is based on simplifying the complexity of the data using indices of pathway activity we

first asked whether these were also effective indicators of toxicity response. We first approached

this question by clustering the chemicals on the basis of their ability to modify the transcrip-

tional activity of a given pathway. Figure 2.3A shows that the profile of pathway perturbation
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Figure 2.1: Analysis Strategy to Compute Indices of Pathway Activity. To compute the
indices of pathway activity the first step is to summarize the gene expression profiles using
PCA according to KEGG pathways. This results in 148 pathway indices summarized using
two PCs. These PC can then be used as an input to a T 2 Hotelling’s statistics to compute the
perturbation index for a specific drug as compared to a matched control group. The third step
is to visualize the relationship between the drugs with the use of a hierarchical clustering. We
can then show that the dimensionality reduction in step 1 is biologically relevant to use in the
subsequent analysis.
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Figure 2.2: Integrating Pathways Associated to PCFs and Toxicity. Alongside using a re-
gression based model to identify pathways associated to PCFs (Step 1) we also identified path-
ways associated to toxicity by the use of the T 2 statistics (Step 2). The resulting pathways were
then mapped onto a KEGG pathway map to identify clusters of pathways associated to both
PCFs and toxicity (Step 3). Finally we asked the question if the PCFs we have found to be
associated to pathways are a better predictor of toxicity.

is indeed informative of chemical toxicity. In particular, cluster analysis succeeded in grouping

12 out of 15 nephrotoxic chemicals within a well-defined cluster (Figure 2.3A). Analysis of the

individual PCs revealed that the second PC on its own was sufficient to reproduce clustering

of toxic chemicals without significant loss of information (Figure 2.3B and 2.3C). In order to

identify the molecular pathways differentially modulated in response to toxic chemicals we di-

rectly compared the index of pathway activity between samples treated either with nephrotoxic

or non-nephrotoxic chemicals. This analysis identified 21 pathways which were differentially

modulated (FDR<1%, Table 2.3). These can be grouped into three main functional categories:

1) metabolic pathways such as glycerophospholipid metabolism or amino sugar metabolism, 2)
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pathways with a strong signalling component such as parkinson’s disease, phosphatidylinositol

signalling and prostate cancer and 3) cell communication pathways such as cell communication

and focal adhesion. The KEGG pathway terms parkinson’s disease, prostate cancer, pancreatic

cancer and renal cell carcinoma do not specifically include the term ’signalling’ in their defini-

tion but are indeed representing primarily signalling pathways. More specifically, the pathway

parkinson’s disease represents the molecular events downstream dopamine stimulation, which

is a major player in synaptic transmission and it is effectively linked to signalling pathways

controlling vasoconstriction. This pathway is important for kidney physiology where dopamine

release induce an increase in renal blood flow, urinary volume and excretion of sodium and

potassium. This then leads to an increase in glomerular filtration rate as well as a depletion of

plasma cyclic AMP [184]. The pathway Prostate cancer represents components of the MAPK

signalling and p53 signalling pathways which are included in the response downstream of cy-

tokine stimulation. Specific signalling pathways associated to the Pancreatic cancer pathway

are ErbB, Jak-STAT, VEGF, TGF-β, MAPK and the p53 signalling pathway. These are not only

relevant to the biology of cancer (alteration in these signalling pathways destabilize growth in-

hibition and promote tumour growth activity [185]) but also to kidney response to stress and

regeneration [186].

2.3.4 Chemical Features are Predictive of Molecular Pathway Activity.

Having demonstrated that indices of pathway activity are representative of the biological effect

of chemicals we addressed the hypothesis that a subset of PCFs may be correlated to the kidney

transcriptional response to drug exposure. The statistical framework we have used to address

this hypothesis (described in detail in section 2.5.5) relies on a regression model explaining the

activity of a given pathway (which we remind is the first or second principal component com-

puted from the gene expression matrix associated to a given pathway) as a linear combination

of three chemical features. The model also includes interaction components to take into account

potential synergistic effects between chemical descriptors. We successfully identified predic-

tive models (R2 > 0.5) for 19 of the 148 pathways represented in the Iconix dataset. It is worth
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Figure 2.3: Hierarchical Clustering of Chemicals based on Pathway Modulation Profiles.
The figure shows the clustering of chemicals on the basis of the extent of change of transcrip-
tional activity in molecular pathways after exposure. Panel A represent the relationship between
the samples when the change in pathway activity is represented simultaneously by the first and
second PCs (multi-variate T 2 Hotelling test). Panels B and C represent respectively the results
of cluster analysis when the change in pathway activity is estimated by the PC1 or the PC2
(univariate t-test). Notice that toxic chemicals cluster (highlighted areas on Panels A and C)
on the basis of the multivariate test and that the information associated to toxicity is primarily
represented by the PC2. Toxic chemicals have been highlighted using a red square on the left
of each clustering.
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KEGG ID Pathway Name Number of Genes T 2 Score
rno05020 Parkinson’s disease 10 31.71
rno00564 Glycerophospholipid metabolism 25 31.29
rno05215 Prostate cancer 52 26.66
rno02010 ABC transporters - General 13 26.35
rno04070 Phosphatidylinositol signaling system 32 22.56
rno04130 SNARE interactions in vesicular transport 24 21.54
rno00760 Nicotinate and nicotinamide metabolism 10 21.17
rno01430 Cell Communication 45 21.07
rno00530 Aminosugars metabolism 9 20.77
rno04120 Ubiquitin mediated proteolysis 65 20.40
rno05030 Amyotrophic lateral sclerosis (ALS) 16 19.64
rno03010 Ribosome 26 19.54
rno03050 Proteasome 20 19.35
rno05212 Pancreatic cancer 50 19.21
rno00230 Purine metabolism 64 16.14
rno04330 Notch signaling pathway 20 15.31
rno01031 Glycan structures - biosynthesis 2 17 14.96
rno04612 Antigen processing and presentation 23 14.96
rno04510 Focal adhesion 102 14.49
rno04320 Dorso-ventral axis formation 17 14.32
rno05211 Renal cell carcinoma 52 13.71

Table 2.3: Pathways Perturbed by Toxic Chemicals. This table shows 21 KEGG pathways
that were found to be significantly perturbed by nephrotoxic chemicals (FDR < 1%). The num-
ber of genes in each pathway and the value of the T 2 hotelling statistics are shown respectively
in the third and fourth columns.

noticing that, pathway activity indices (Figure 2.3) as well as the original gene expression data

(Figure 2.5), separates toxic from non-toxic chemicals across the second PC whereas the first

component is likely to represent non-specific effects (Figure 2.5). Therefore the association be-

tween PCFs and the pathway activity indices build using the second component is biologically

reasonable. Among pathways associated to chemical features we observed a large number of

signalling pathways as well as some metabolic pathways (i.e. glycolysis, porphyrin metabolism,

chlorophyll metabolism and glutathione metabolism). Two of these pathways were also found

to be associated to toxicity in the analysis described in the previous paragraph (prostate cancer

and cell communication). PCFs selected in the models could be assigned to several descriptor

groups. Figure 2.4 summarizes in a graph format the most frequent combination of features’

descriptors groups selected in the chemical feature models. A key feature of the selected mod-
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els is the importance of interaction components which in most cases explain an average of 50%

of the model variance (Figure 2.6). Descriptor groups pairs such as descriptors that describe

patterns in the connection of specific atoms with each other (ET-State) and geometrical descrip-

tors or descriptors of special fragments that describe a path or cycle (GSFRAG) with itself are

predominantly chosen by our method. All these descriptors classes capture different types of

structural information. For example, GSFRAG descriptors identify specific chemical motives

such as the size of a ring, or the length of linear connections; ET-States descriptors describe

patterns in the connection of specific atoms with each other and geometrical descriptors are

designed to capture patterns in the overall topology of the molecule.

2.3.5 Pathways Whose Activity is Correlated to Chemical Features are

Part of a Signalling System Closely Connected with Cellular Com-

munication and Related Functions.

Regression analysis described in the previous paragraph identified 19 pathways whose activity

could be predicted by a combination of chemical features (See Figure 2.7 for some examples).

Because of the apparent similarity in the molecular functions represented in these pathways we

reasoned that these may be closely connected within the KEGG pathway map. In order to test

this hypothesis we represented the relationship between individual pathways (defined by their

degree of overlap) using hierarchical clustering. In this analysis KEGG pathways which share a

larger number of components are represented in close proximity in the dendrogram. The visual

inspection of the dendrogram confirmed that pathways, whose overall activity can be predicted

by combinations of chemical features, were grouped in a compact cluster within the KEGG map

(Figure 2.8). This cluster defines a KEGG super-pathway that represents a number of signalling

networks directly connected to effectors functions of direct relevance with tissue morphogenesis

such as actin remodelling and cell communication. Interestingly, cell communication which we

already mentioned to be associated to both PCFs and toxicity represents multiple signalling and

effectors components of the cell to cell communication machinery. These include tight junction,

gap junctions, adherence junctions, desmosomes and extracellular matrix components. The
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cluster of interconnected KEGG pathways defined by the association with chemical physical

features therefore represents a network of signalling components which directly interact with a

toxicity associated core of cell communication components.

2.3.6 PCFs Correlated to Molecular Pathway Activity are Best Predictors

of Chemical Induced Toxicity.

The functional link between pathways associated to PCFs and toxicity may imply that the se-

lected PCFs may be themselves predictive of renal tubular degeneration. In order to test this hy-

pothesis we developed multivariate statistical models predictive of toxicity selecting from PCFs

associated to molecular pathway activity. We then compared these with models developed from

PCFs which where uncorrelated to the pathway associated PCFs subsets. Figure 2.9A shows

that features predictive of molecular response are more predictive of toxicity outcome (average

accuracy of 76% versus 68%, p-value < 10−3). In order to identify the most representative

PCFs subset, we developed representative models based on the three features which were most

frequently represented in the model populations. Consistent with the previous result, the model

built using PCFs associated to molecular response has higher sensitivity and specificity (sen-

sitivity 0.781, specificity 0.871) than the one build with uncorrelated PCFs. This is reflected

by a clearer sample separation in the PCA plot (Figure 2.9B). Features represented in the most

predictive model combine two RDF descriptors and a WHIM descriptor whereas the unselected

features model contains a GSFRAG, a GETAWAY descriptor and a 2D-autocorrelation descrip-

tor. The model based on PCFs predictive of transcriptional response shows that toxic chemicals

are characterized by high polarisability (RDF020p), low electronegativity (RDF040e) and low

symmetry (G2u). Although the difference in accuracy (8%) is not particularly high, the results

confirm that PCFs chosen by our method have a significantly higher ability to discern toxic

from non-toxic chemicals.
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Figure 2.7: Example Models Linking PCFs with Molecular Pathway Activity. The figure
shows the relationships between the observed (x axis) and predicted (y axis) indices of pathway
activity for a number of exemplar KEGG pathways. Nephrotoxic samples are represented by
red dots whereas non-nephrotoxic samples are represented by black dots. Gap Junction and
ErbB Signaling Pathway contain features belonging to ET-State indices, Geometrical descrip-
tors and RDF descriptors. The R2 values are 0.55 and 0.57 respectively. Wnt Signaling Pathway
and Adipocyte Signaling Pathway contain features belonging to GSFRAG, Information indices,
Edge adjacency indices and 3D-MoRSE descriptors. The R2 values are 0.52 and 0.51 respec-
tively. Note that models containing a feature from E-State indices and RDF descriptors better
separate nephrotoxic and non-nephrotoxic samples.
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Figure 2.8: KEGG Pathway Topology Map. The Figure shows a dendrogram representing the
degree of similarity between different KEGG pathways. Pathways marked in red are pathways
that were found to be associated to chemical features (19), and pathways marked in blue have
been found to be predictive of toxicity (21). Pathways whose activity is predicted by PCFs
group in a tight cluster. Note that the majority of toxicity annotated pathways cluster towards
the lower half of the dendrogram, close to pathways linked to PCFs.
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Figure 2.9: PCFs Linked to Molecular Response are Better Predictors of Toxicity. Panel
A shows the comparison between the classification accuracy of models predictive of toxicity
and developed selecting from PCFs which are predictive of molecular response and those de-
veloped using uncorrelated PCFs. Note that PCFs linked to molecular response have a higher
predictivity (p < 10−3). Panels B and C show the PCA representation of the samples using the 3
most represented features in the model populations. The information for the best separation in
both instances is present in PC2 and PC3. The equations for panel B show that a high increase
in symmetry and high polarizability and low electronegativity is predictive of toxicity. In the
case of the unselected features panel C toxic chemicals do cluster together but are specific to
containing a nitrogen with a triple single bond and a low autocorrelation.
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2.4 Discussion

The most important finding of our study is the demonstration that specific combinations of

chemical descriptors can be predictive of the transcriptional activity of pathways, always using

the second PC, representing the molecular state of a target organ after chemical exposure. These

pathways (i.e. ErbB Signalling, Wnt signalling, Long-Term Depression, Long-Term potentia-

tion and several cancer pathways) mainly represent signalling pathways which in our model

define the main domain of interaction between chemicals and cellular molecular response (Fig-

ure 2.10). We have shown that toxicity pathways with relevance to renal tubular degeneration

are closely associated to this domain in the context of a KEGG pathway map. We explored close

pathways by integrating the networks to establish whether, beyond the topological proximity,

we could also identify a functional relationship between them. In this context we devised three

interconnected pathways that could mechanistically explain the observed connection between

chemical features, pathway activity and toxicity outcome. Figure 2.10A shows how a possi-

ble interaction between the Wnt signalling pathway, regulation of actin cytoskeleton (linked to

PCFs) and focal Adhesion (predictive of toxicity outcome) could lead to a perturbation of actin

cytoskeleton polymerization. More specifically, Wnt/Fz signalling activates the small GTPase

Rho to control cell migration during tissue remodelling and development. This activation re-

quires Dvl-Rho complex formation which is assisted by Daam1. From this it is clear that the

integration of these topologically linked pathways represent a true series of biochemical events

linking the binding of the Wnt ligand, through activation of Daam1 to the actin polymerization

machinery. A plausible disturbance of mitochondrial respiration and energy balance by means

of reactive oxygen species (ROS) generation is shown in Figure 2.10B. Lastly growth factor

mediated modulation of the cell cycle, adhesion and cell migration through TGF-α is shown in

Figure 2.10C. This pathway module results from the integration of the ErbB signalling path-

way (linked to PCFs) and Pancreatic Cancer (predictive of toxicity outcome). In this case the

pathway linked to toxicity is a sub-network of the ErbB signalling pathway which represents the

specific effects on tissue remodelling via regulation of cell growth, apoptosis and differentiation.

59



The common feature among these hypothetical mechanisms is the association between chemi-

cal features and membrane associated cellular signalling and the large overlap between this and

effectors pathways. Genes within each pathway are co-ordinately regulated across exposures

suggesting that what we are modelling is not the effect of a small subset of highly regulated

genes. Moreover, by mapping the direction of change between toxic and non-toxic chemicals

on the KEGG pathway maps we observe that chemical exposure is associated to a coordinate

overexpression of genes in signalling and effector genes (Figures 2.11 – 2.24). It is therefore not

unreasonable to hypothesize that the diverse spectrum of toxic chemicals used in this study may

act via a general mechanism involving interaction with cellular membranes. This hypothesis is

also consistent with the finding that polarisability is a key feature of the toxic chemicals studied

(Figure 2.7 and 2.9). The interaction between chemicals and cellular membranes may perturb

receptor signalling inducing changes in the expression of genes encoding for signalling compo-

nents and ultimately creating an unbalance in the expression of effectors pathways involved in

tissue dynamics and homeostasis. The regression models we built showed that, in many cases,

there is a continuum of effects influencing the molecular state of a target pathway and that, in

specific pathways, (i.e. Gap junction and ErbB signalling pathways) toxicity is observed ei-

ther above or below a given threshold of pathway activity (Figure 2.7). This is showing that

only chemicals that can substantially perturb key signalling pathways are able to induce stress

responses such as disturbance of inter-cellular communication and mitochondrial disturbances

that are frequently associated with subsequent cellular toxicity [187, 188]. It is possible that

the proposed mechanism may be a general unifying mode of toxicity probably secondary to a

range of initial specific mechanisms and that may act in parallel to the interaction with specific

molecular targets. In this context, it is known that multiple and target-specific mechanisms of

action of xenobiotics are responsible for drug induced nephropathy. For example, the targets

of the initial insult may be at the level of altered blood flow, glomerular injury, direct proxi-

mal tubule damage or other tubule or papillary targets [189]. Furthermore nephropathy might

be a direct action of the agent on nephrons or an indirect action such as via a reduction of

prostaglandin production such as with salicylic acid, or via precipitation of liver-derived alpha-
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Figure 2.10: Association between PCFs and Toxicity Associated Pathways. The figure rep-
resents the detailed relationship between pathways associated to chemical hits and pathways
associated to toxicity. Pathways with membrane component were mostly associated to chem-
ical hits whereas pathways with downstream signalling components were mostly associated to
toxicity. This figure represents three possible links between pathways associated to chemical
hits (Wnt Signaling Pathway, Long-Term Depression and ErbB Signaling Pathway) and toxic-
ity (Focal Adhesion, ALS and Pancreatic Cancer) through shared genes between the pathways.
Although each link presents a mechanism of action these were only implied by the pathway
associated to toxicity. Genes found to be up or down regulated have been marked with a red or
a blue arrow respectively.
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2-u-globulin as a result of chemical binding (e.g. d-limonene) [190]. Prominent as classes of

nephrotoxic agents are halogenated hydrocarbons such as chloroform and bromobenzene and

classes of therapeutic agents including nonsteroidal anti-inflammatory drugs, aminoglycosides

and the anticancer agent cisplatin. These facts might suggest insurmountable difficulties in

prediction of effects from structural characteristics because of a multiplicity of mechanisms.

However, the focus of this paper is predominantly on agents that directly act on the tubular

(principally proximal tubule) epithelial cells. Our study has shown that there are features of

signalling disturbance that associate with both chemical structural parameters and also with ad-

ditional molecular pathways that associate with toxicity. Integration of the datasets shows that

it is possible to link structure to pathology via the two layers of analysis allowing a reconstruc-

tion of a series of pathways. The approach offers a new dimension to the existing strategies

of databases that associate structure directly to known toxicity features through training (e.g.

DEREK and TOPKAT [106] and the OECD Toolbox (www.oecd.org).The common signalling

disturbance identified is thus hypothesised to lead to secondary effects linked to toxicity. It is

the genome-wide surveillance strategy that has allowed the identification of the linkage which

would not have been possible from more targeted analysis of individual mechanisms. Since

the time point for the molecular changes observed is five days after exposure, it is also pos-

sible that the changes represent secondary intermediate modes of change rather than specific

early mechanistic interactions. Interestingly, the modelled features associated with toxicity are

not necessarily limited to nephrotoxicity. The biological implications of this work are further

strengthened by the observation that chemical feature selection based on functional pathway

activity leads to more predictive toxicity models (sensitivity 78.1%, specificity 87.1%). There-

fore linking gene expression to chemical features identifies a sub-selection of features which

are more linked to toxicity. We therefore propose that by integrating gene expression profiles

with chemical feature information it may be possible to isolate a sub-group of features that are

highly important in characterizing specific phenotypic effects allowing for a much better char-

acterization of yet untested chemicals. The development of these methodologies is particularly

important as large datasets representing a broader spectrum of chemicals are expected to be-
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come available. An excellent example of these publicly available datasets is the ToxCastTM [22]

program which is currently running at the U. S. Environmental Protection Agency [191]. Sev-

eral potential improvements may be necessary to make the approach fully generalizable. For

example, the computation of pathway indices we have implemented is based on the use of PCs

ensuring that a large percentage of variance (80% in this case) is retained. Although this is likely

to work for most of the datasets, it is possible that PCA, which is based on a linear combina-

tion of variables, may not be able to capture more complex relationships with PCFs. Therefore

it may be useful to consider other methods such as independent component analysis or a non-

linear version of PCA. This issue is particularly important considering that in complex exposure

experiments the component of variation associated to the interesting biological effect may be

associated to non-specific effects of toxicity. It is therefore important that the procedure used

for the construction of pathway indices has the potential to decompose these effects. However,

even at the present stage of development, the broad application of the analysis strategy we have

pioneered will improve our ability to identify mechanistic markers of toxicity and will help to

better understanding the relationship between drug PCFs and cellular physiology.
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2.5 Materials and Methods

2.5.1 The Dataset.

The expression profiling dataset used in this analysis was originally developed by Iconix Bio-

sciences [28]. It is at present the largest microarray-based analysis of chemical induced tran-

scriptional response on a mammalian system available in a public domain. In this study, rat

kidneys have been profiled five days after exposure in a 28-day repeat-dose study in male

Sprague-Dawley rats. The study involved 88 chemicals, 22 of which are known to induce

renal tubular degeneration at the concentrations used in this study. Details of the experimental

protocol are available in the original publication. Here we report a summary for clarity of the

manuscript. Rats were treated daily and sacrificed on days 5 (n = 5 rats) and 28 (n = 10 rats)

for kidney histopathology evaluation. Gene expression profiles were obtained on day 5 from 3

randomly chosen rats per treatment group, before the expected appearance of the lesions. Doses

were chosen so as to not cause histological or clinical evidence of renal tubular degeneration

after 5 days of dosing, but to cause late-onset histological evidence of tubular degeneration as

expected from the literature. The negative class of this dataset was defined based on literature

knowledge of treatment effects in humans and rodents. This class included 49 non-nephrotoxic

compound treatments that were administered daily for 5 or 7 days (n = 3 rats). The dose was an

empirically determined maximum tolerated dose in order to ensure sufficient exposure, but not

to cause overt clinical toxicity. This was defined as the dose that causes approximately a 50%

decrease in body weight gain relative to controls during the course of the 5-day range finding

study, and without severe clinical signs of toxicity.

2.5.2 Summarizing the Transcriptional State of Kidney using Indices of

Pathway Transcriptional Activity.

In order to reduce the complexity of linking chemical descriptors to the kidney transcriptional

state we have computed indices of overall pathway transcriptional activity [101,192]. These in-

dices were computed by mapping the 7478 genes represented in the pre-processed dataset [28]
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onto KEGG pathways. In choosing the number of PCs we have used the simple criteria of

selecting subsequent components to explain at least 80% of the variance. In this dataset this

lead to the selection of the first two components. Using this criteria we summarized the activity

of pathways including more than 5 genes (148) by computing the first two principal compo-

nents (PCs) which were always able to summarize up to 89% of the variance. The advantage of

using PCs is that the inter-gene correlation structure is automatically incorporated into the pro-

cess of dimension reduction, so this information is not lost. Computation of the PCs has been

performed using the principal component function prcomp within the software programming

environment R [193].

2.5.3 Comparing Indices of Pathway Activity in Response to Chemical

Exposure.

In this analysis we have compared indices of pathway activity between treated samples and

matched controls (Figure 2.1, Step 2) and between toxic and non-toxic chemicals (Figure 2.2,

Step 2). In both cases significantly differentially modulated pathways have been identified by

a combination of dimension reduction via Principal Coordinates with Hotelling’s multivariate

extension of the t-test. Versions of this approach were independently developed by Kong et

al. [194] and Song et al. [195], and made available in the R Bioconductor package pcot2 [195].

As mentioned in the previous paragraph, one of the advantages of using PCs is the fact that the

inter-gene correlation structure is incorporated into the process of dimension reduction. The

Hotelling’s T 2 procedure, applied to both pathway components allows this correlation to be

included in the test statistic for each pathway modules [196]. In the first case the output of the T 2

Hotelling’s test has been used as an index of drug effectiveness to perturb the homeostatic state

(Figure 2.1, Step 2). Indices have then been used as inputs in a hierarchical clustering procedure

to compare drugs perturbation profiles. In order to identify which PC most contributes to the

separation a univariate t-test has been applied to the first and second PC separately and the

resulting dendrograms compared (Figure 2.3). In the second case the T 2 Hotelling’s test has

been used to identify pathways that are differentially modulated between toxic and non-toxic
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chemicals (Figure 2.2, Step 2). The p-values obtained from this test were corrected for multiple

testing using the Benjamini and Hochberg method [75]. Pathways with an FDR<1% were

considered differentially active between the two experimental groups.

2.5.4 Deriving Chemical Physical Features (PCFs).

PCFs were computed using the Web-based toolset e-dragon [197]. E-dragon computes 2352

chemical descriptors by integrating several publicly available methodologies. Only features

that could be computed for all chemicals in the dataset were used leading to a total of 1515

chemical physical descriptors (Dataset S1).

2.5.5 Linking Chemical Features to Pathway Activity Components.

In order to link chemical descriptors to a given pathway component we used a regression

model based on the combination of three chemical descriptors, including interaction compo-

nents (Equation 1). More precisely, we define:

PCi,k = aθ1 + bθ2 + cθ3 + dθ1θ2 + eθ1θ3 + f θ2θ3 + g + ε (2.1)

Where PCi,k is the principal component i of pathway k. θ1,θ2 and θ3 are three different given

chemical descriptors, a, b, c, d, e, f, g are model parameters and ε is the noise model com-

ponent. In order to select an optimal subset of chemical descriptors we have used a genetic

algorithm (GA) based methodology as implemented in the R package GALGO [198]. We used

this random search procedure to find an optimal sub-set of variables to maximize the model R2

value. In this application, data where split in training (2/3 of the samples) and test (1/3 of the

samples) sets. The training set was used as an input to the GA procedure to search for predictive

models. The fitness function was implemented as a linear model denoted in (2.1). The fitness

value for model selection was set to R2 > 0.5. To estimate the R2 accurately a 5-fold cross val-

idation procedure was used. The GA procedure was then allowed to run for 1000 simulations.

Pathways for which we could identify predictive models were considered for further analysis.

This resulted in the identification of 19 pathways linked to PCFs (Table 2.4). Figure 2.7 shows
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examples of models found by the GA in which the predicted values using an optimized model

are plotted against the observed PC values for a given pathway.

2.5.6 Creating and Visualizing a KEGG Pathway Map.

In order to visually represent the relationship between the different KEGG pathways we com-

puted a pathway similarity matrix based on the Jaccards Index of overlap. This is defined as

the ratio between the numbers of genes shared by any two pathways (intersection) divided by

the number of unique genes in the two combined pathways (union). The resulting matrix was

used as an input to a hierarchical clustering procedure (average linkage). The effectiveness of

the clustering procedure in representing the information described by the similarity matrix has

been verified using the cophenetic function correlation fit to the input overlap matrix (r=0.9).

2.5.7 Predicting Renal Tubular Degeneration from Chemical Descriptors.

Different subsets of chemical features were used to develop multivariate predictors of chemical

toxicity using a classis QSAR methodology. The first subset (92 features) was defined includ-

ing descriptors represented in the models predictive of pathway activity whereas the second

subset included all variables not selected in the predictive models and that were uncorrelated,

an absolute pearson coefficient of less than 0.5, to PCFs from the first group (210 features).

Models were developed using a maximal likelihood discriminant function coupled to a genetic

algorithm for variable selection using default settings [198]. A forward selection approach was

used to identify the single smallest model, with the least number of descriptors and with the

highest classification accuracy [198]. Classification accuracy was estimated using a k-folds

cross-validation procedure. Interpretation of the models has been performed with the help of

PCA.
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Chapter 3

A FunctionalModule Based Approach to

Chemical Class Prediction in Daphnia

magna

3.1 Abstract

Daphnia magna is an accepted model organism in toxicity testing by several international agen-

cies. Several molecular biomarkers have been discovered using hypothesis driven and omics

approaches. However, statistically robust prediction systems that allow the identification of

chemical contaminants from the molecular response to exposure still need to be developed. The

research described in this chapter addresses this issue using a combination of transcriptomics

and advanced machine learning approaches.

The models we developed successfully identifies the class of a given toxicant discriminating

between endocrine disruptors, metals and a group of unrelated chemicals. We also show that

models based on indices of whole pathway transcriptional activity can achieve more accurate

models and facilitate biological interpretability.
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3.2 Introduction

Assessing the impact of environmental exposures to chemicals released by human activity is of

paramount importance. Biota within the freshwater environment are at risk from a number of

pressures, including toxic substances, e.g. pesticide run-off or industrial spills, as well as from

excess nutrients, e.g. from sewage, which can be released from point or diffuse sources. In re-

sponse to this problem the European Union introduced the Water Framework Directive (WFD)

in 2000 [199], which represents the central legislation on water quality and commits European

Union member states to achieve good status of all water bodies (up to 1 km from shore) by 2015.

Importantly, good status requires an assessment of both the ecological health of water bodies as

well as chemical monitoring and comparison with chemical standards. Toxicity Identification

and Evaluation (TIE) methods have been widely used to assess water effluents by identifying

key toxicants through a series of acute toxicity tests [200]. In this context, D. magna has become

an important biosensor in both ecology and toxicology due to their wide geographic distribution,

central role in freshwater food webs, ability to adapt to a range of habitats [34] and sensitivity to

anthropogenic chemicals [35]. D. magna has been included into toxicity testing protocols by the

U.S. Environmental Protection Agency and the international Organisation of Economic Cooper-

ation and Development (OECD) [34]. Conventionally, water quality is assessed using standard

toxicity tests by exposing Daphnia neonates (age < 24h) [201]. The effect of the water sample

is quantified by its ability to immobilize the juvenile crustaceans. Although widely used, this

test is not very sensitive and importantly, does not identify the chemicals in the contaminated

water samples. In order to address this challenge a number of laboratories [28, 202–205], in-

cluding ours [46,169,206] have used a combination of omics technologies (see introduction for

an overview) to perform genome-wide unbiased biomarker screenings. Several of these studies

describe D. magna response to toxicant exposure [41,207,208]. For example, Poynton et al [41]

used a cDNA microarray to identify biomarkers of sub-lethal exposure to copper, cadmium and

zinc. This study identified genes regulated by specific metals included two metallothioneins

(MT), which are already known biomarkers of metal exposure. Furthermore their work was
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consistent with known mechanisms of metal toxicity and identified novel putative modes of ac-

tion including zinc inhibition of chitinase activity [41]. Independently to these developments,

Shaw et al also identified a set of three genes coding for the metal detoxification protein MT

(in Daphnia pulex) whose gene structures and predicted translated sequences did not match any

previously identified MTs [207]. This work showed that omics approached could lead to the

identification of novel protein family memebrs by integrating expression and sequence infor-

mation. Heckmann et al [208] studied the effect of ibuprofen on D. magna using transcriptomic

and phenotypic measurements. Their results suggested a highly similar mode of action between

vertebrates and invertebrates hence supporting the view that a non-model crustacean could be

informative of drug toxicity effects in higher vertebrates. Although encouraging, these studies

used relatively simple bioinformatics methods and did not provide truly predictive models of

toxicity response. Moreover, they also did not provide robust molecular signatures that could be

used to identify the chemical contaminants or at least the chemical class of the toxicant. There-

fore these remain unsolved challenges in the field of ecotoxicology. In this chapter we describe

the development of a predictive toxicology approach for chemical class prediction in D. magna.

Here we demonstrate for the first time, that it is possible to predict chemical class from the

transcriptional response of adult Daphnids, following exposure to sub-lethal concentrations of

a given toxicant. We have also shown that predictive models based on whole-pathway activity

indices provide more biologically interpretable results when compared to gene-level models.

Therefore our analysis sets the scene for a broader application of computational methodologies

for the development of predictive ecotoxicology.

3.3 Results

3.3.1 Analysis Overview

The aim of this study was to develop robust molecular signatures predictive of chemical class.

The analysis we performed is based on a dataset representing the transcriptional response of

adult Daphnids to sub-lethal exposures of 36 chemicals (Table 3.1). The analysis strategy that

we employed utilizes a variable selection approach to identify multi-feature markers predictive
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of the chemical class of a given toxicant. In the most comprehensive models we focused on the

discrimination of chemicals in three classes. These are: 1) metals, 2) endocrine disruptors and

3) a collection of industrial chemicals, which could not be classified in either groups defined

above (Table 3.1). Figure 3.1 represents the analysis strategy in a schematic format. Details

for each step of the approach are reported below. Microarray data are first processed to remove

Class Compounds
Metals Cadmium, Nickel, Copper, Selenium,

Zinc, Manganese, Arsenic, Silver,
Chromium

Endocrine Disruptors Pyriproxyfen, Ponasterone A, Methyl
farnesoate, Toxaphene, Beta-estradiol,
Aroclor 1242, 20-hydroxyecdysone,
Methoxyclor

Industry Relevant Compounds Methyl tert-butyl ether, Chloroform,
Acrylonitrile, Bis(2-ethylhexyl)phthalate,
Trichloroethylene, 2-chloroethyl vinyl
ether, Atrazine, Toluene, Phenol, Phenan-
threne, Dichlorobenzene, Beta-benzen
hexachloride, Permethrin, Bifenthrin,
λ-cyhalothrin, Diazinon, Parathion,
Chloropyrifos

Table 3.1: Chemical classification of the 36 chemicals in the dataset. Exposures were per-
formed at sub-lethal concentrations ( 1

10 of the experimentally derived LC50 value).

genes expressed below detection level and to eliminate duplicate probes (Figure 3.1, Step 1).

Genes with a known biological function that could be mapped to KEGG pathways were then

used to generate indices of pathway activity based on the first three Principal Components [209]

(Figure 3.1, Step 2). These two datasets (gene expression profiles and indices of pathway activ-

ity as indicated in Figure 3.1) are the inputs of the statistical modelling procedure, which uses

a combination of a genetic algorithm-based variable selection procedure and a random forest

classifier [163, 198] (Figure 3.1, Step 3). The outcome of this procedure is a collection of pre-

dictive models of comparable accuracy, representing alternative solutions to the classification

problem. These are condensed in two representative models, based on gene expression profiles

or indices of pathway activity. At this stage, statistical models are built from a subset of the
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data representing all chemicals and their accuracy is computed on a subset of data representing

an independent exposure experiment. For this reason, the accuracy of the models, which in

this case is larger than 95%, reflects the robustness of the classifier to biological and technical

variation. The ability of these models to predict chemicals that have not been used in the model

training procedure is then tested in a separate procedure (Figure 3.1, Step 4) by a leave one

out cross-validation approach (LOOCV) where one chemical in every class is taken out before

the model is trained (see materials and methods section 3.5.5 for details of the methodology).

At this stage the prediction accuracy of gene level and pathway level models can be compared.

In order to facilitate biological interpretation genes represented in the pathways identified in

the models can be used as inputs to the Ingenuity Pathway Analysis software (IPA, Ingenuity

Systems R©, www.ingenuity.com) that identify potential gene to gene connections supported

by mammalian literature (Figure 3.1, Step 6). This last step is of course limited by the relatively

small number of genes that can be mapped between these two distant species. Therefore results

have been considered indicative and used for generating hypotheses.

3.3.2 Gene-level Molecular Signatures can Discriminate Distinct Chemi-

cal Classes

In order to test whether it was possible to identify gene expression profiles predictive of chem-

ical class we first attempted to discriminate between metals and non-metals (Table 3.2). Fig-

ure 3.2A shows a graphical representation of the increase in accuracy upon addition of the

most representative genes in the model. The three most represented genes in the model pop-

ulation can already correctly classify 97% of the samples whereas the most predictive model

(100% of accuracy) require the 14 most represented genes. These genes can also separate

these two sample classes in a principle component (PC) plot (Figure 3.2B). Unfortunately, we

could only identify cross species homologues for only 4 genes, within all available species in

GeneBank. Of these, only one was functionally annotated (glycerolipid metabolism enzyme

(brummer CG5295-PA)). The success in separating between metals and non-metals and the

documented ability of D. magna to respond to endocrine disruptors [210] lead us to investi-

87



Figure 3.1: Overview of the Analysis Strategy.
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gate whether we could further differentiate between metals and, within the non-metals class,

endocrine disruptors and the group of remaining chemicals. Our procedure successfully iden-

tified a representative model based on a set of 15 genes, which had a classification accuracy

of 99% (Figure 3.3A and 3.3B). Of these, only 2 genes were functionally annotated (sarcosine

dehydrogenase and collagen) (Figure 3.3A).

Class Used Categories
Metals Metal Category

Non-metals Endocrine Disruptors + Industry Relevant Compounds
Endocrine Disruptor Endocrine Disruptors

Remaining Chemicals Industry Relevant Compounds

Table 3.2: Classification used to Predict Chemical Class. This table provides information on
the chemical classes that were used for the classification analysis. For further discrimination of
the classes see Table 3.1.

3.3.3 A Pathway-level Approach to Predicting Chemical Exposure

To address the challenge of developing more biologically interpretable predictors, we converted

our dataset into 303 indices of pathway activity representing 101 KEGG pathways and used

this as an input to our statistical modelling procedure. Similarly to the gene-level models, we

first attempted to classify between metals and non-metals. We identified a representative model,

based on the activity of five pathways, which was 99.8% accurate (Figure 3.4A). These were ox-

idative phosphorylation, alpha-Linolenic acid metabolism, synthesis and degradation of ketone

bodies, lysosome and TCA cycle. We could also develop a model discriminating between met-

als, endocrine disruptors and a class including a relatively heterogeneous mixture of non-metals

and non-endocrine disruptor chemicals. The most predictive representative model was based

on a set of 15 pathway indices (representing 14 different pathways) and was 98.5% accurate

(Figure 3.5). Interestingly the top 4 pathways identified in the set of 15 are sufficient to develop

a model that is 98% predictive. These are alpha-linolenic acid metabolism, ECM-receptor in-

teractions, pyruvate metabolism and lysosome. Two of these pathways, alpha-linolenic acid

metabolism and lysosme, were also included in the model discriminating between metals and

non-metals (Figure 3.4). We can therefore hypothesize that the remaining two pathways have
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Figure 3.2: Gene Level Model Discriminating between Metals and Non-metals. This figure
shows the result of our classification approach. Panel A represents the results from the forward
selection strategy. Genes were sorted by their selection frequency (A2). Accuracy (A3) was
calculated by incrementally adding each of the genes (top to bottom). The model was chosen
to have the highest accuracy with the smallest number of components (A3 dotted line).This
resulted in 14 genes reaching an accuracy of 100%. Annotation for these genes is shown in the
table (A1). Unfortunately, most of the annotation is missing or linked to hypothetical proteins.
Panel B represents these genes in a PC space. Samples marked in red and black are non-metals
and metals respectively. The separation of these two classes is clearly visible.
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Figure 3.3: Gene Level Model Discriminating between Metals, Endocrine Disruptors and
Remaining Industry Relevant Chemicals. Panel A represents the results from the forward
selection strategy. Genes were sorted by their selection frequency (A2). Accuracy (A3) was
calculated by incrementally adding each of the genes (top to bottom). The model was chosen
to have the highest accuracy with the smallest number of components (A3 dotted line). This
resulted in 15 genes reaching an accuracy of 99%. Annotation for these genes is shown in the
table (A1). Unfortunately, most of the annotation is missing or linked to hypothetical proteins.
Panel B represents these genes in a PC space. Samples marked in black, red and green are met-
als, endocrine and remaining chemicals respectively. Here the separation between the classes is
visible with one endocrine and three industrial chemicals clustering close to the metals group.
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the information required for specifying the identity of endocrine disruptors. Further work will

be needed to clarify this important point.

3.3.4 Estimating Chemical-Specific Classification Accuracy

The models we have developed are effective in predicting the class of a chemical from an inde-

pendent exposure experiment. Here we assessed the ability of each model to correctly classify

each individual chemical in the dataset. The gene-level models discriminating between metals

and non-metals were able to predict all chemicals in the correct class (Figure 3.6A, 100% ac-

curacy). The model discriminating between metals, endocrine disruptors and other chemicals

was 80% accurate failing to correctly classify copper, nickel, 20-hydroxyecdsone, pyripoxyfen

and bifenthrin (Figure 3.6B). Figure 3.6C and 3.6D summarize the results of the modelling

performed on the pathway-level dataset. All metals are classified correctly with the exception

of manganese (Figure 3.6C). Non-metals were classified with a 95% accuracy. More specif-

ically only 20-hydroxyecdsone was misclassified. For the classification of metals, endocrine

disruptors and remaining we see a similar trend as in the gene-level model (Figure 3.6D). The

endocrine disruptors have the lowest classification accuracy (77%) as compared to the other two

classes (91% and 97% for metals and remaining chemicals respectively). Interestingly metals

and non endocrine disruptors are classified more accurately by the pathway level model as com-

pared to the gene-level model (86% vs. 91% for metals and 95% vs. 97% for remaining chem-

icals in the gene and pathway-level respectively; Figure 3.6). Similarly to the other pathway

level model, manganese and 20-hydroxyecdsone are highly misclassified. In addition to these

two compounds methylfarnesoate, toxaphene and acrylonitrile are only classified correctly 50%

of the time. It should be noted that in 3 out of these 4 classification runs, 20-hydroxyecdsone

was misclassified every time, showing that the response of D. magna to this chemical is highly

different to other chemicals in its class.
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Figure 3.4: Pathway level Model Discriminating between Metals and Non-metals. Panel
A represents the results from the forward selection strategy. Pathways are first sorted by their
selection frequency (A2). Accuracy (A3) is then evaluated by incrementally adding the most
frequent pathway components. The dotted line in A3 shows where the model reached 99%
accuracy. The 5 pathways from the resulting model are shown in A1. Panel B shows a PCA of
the indices of pathway activity. Separation between metals and non-metals is less evident than
in the gene-level model.
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Figure 3.5: Pathway level Model Discriminating between Metals, Endocrine Disruptors
and Remaining Chemicals. Panel A represents the results from the forward selection strategy.
Pathways are first sorted by their selection frequency (A2). Accuracy (A3) is then evaluated
by incrementally adding the most frequent pathway components. The dotted line in A3 shows
where the model reached 98.5% accuracy. The list of 16 pathways identified is shown in A1.
Note that the top 4 pathways are sufficient to reach 98% accuracy. Panel B shows a PCA of
the indices of pathway activity. Samples marked in black, red and green are metals, endocrine
and remaining chemicals respectively. Separation between metals, endocrine disruptors and
industrial chemicals is less evident than in the gene-level model.
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Figure 3.6: Leave One Out Cross Validation (LOOCV) Results. The Figure represents the
prediction accuracy for each chemical, including all replicates, for the developoed models (see
materials and methods section for further information). The bars are indicative of how well
our models are able to predict each chemicals class. A and B represent the gene level models
shown in Figures 3.2 and 3.3. The gene-level model in A shows that all chemicals are correctly
classified by our model. In contrast, not all chemicals are correctly classified in panel B (for
example, 20-hydroxyecdysone is always misclassified). Panels C and D are represenative for
the pathway level models in Figures 3.4 and 3.5. It is interesting to note that the pathway level
model in D is better at classifying metals and industry related compounds as compared to the
gene level model (B). Bars across each group represent the average classification accuracy for
that class. The colours correspond to, red = metals, light blue = non-metals, green = endocrine
disruptors, blue = industry relevant chemicals.
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3.3.5 IPA Analysis Identifies a Super-Network Representing Plausible Ad-

verse Outcome Pathways and Integrating Energy Metabolism, beta-

estradiol with TGF-β and IFN-γ signalling

In order to explore whether genes most contributing to the pathway indices (top 25%) are con-

nected in the context of a higher order biological network, we performed an ingenuity pathway

analysis for each pathway-level representative model.

From the models predictive of metals versus non-metals the ingenuity pathway analysis returned

three networks, which represented the interaction between components of the oxidative phos-

phorylation (NADH2 dehydrogenases and ATPases) and growth factor/inflammation signals,

(TGFB1, IFNG and TNF). More specifically Figure 3.7A shows the interaction between hy-

drogen peroxide with NADH2 dehydrogenase and lysosomal and mitochondrial ATPase com-

ponents. In Figure 3.7B hydrogen peroxide is also connected to IFNG and TGFB1 which in

turn are connected to genes in detoxification pathways, including CYC1, COX6C, NNMT and

GLRX2, cholesterol binding/release, through VEGF to NPC1, AP1G1, AP1B1 and SMPD1

and to sugar metabolism genes including MANBA, MAN2B1, DPAGT1 and MDH2. It should

be noted that several oncogenes (FOS, RAB36) and an apoptosis regulator (BID) have also

been identified. The third and last network for this comparison (Figure 3.7C) mostly shows the

connection between TNF and various citrate cycle genes (PDHA1, PDK3) as well as preoteases

and glycoaminoglycan degradation components.

The IPA analysis of the model classifying metal, endocrine disruptors and all remaining

chemicals, returned two networks (Figure 3.8). At first glance the networks in Figure 3.8A

and 3.8B are highly similar to the networks we have previously discussed. However the in-

teraction between phospholipases, TNF, glycoaminoglycan metabolism and the previously de-

scribed cholesterol binding is much more evident (Figure 3.8A). In addition to these, Insulin

is connected to TNF which at the centre of this network is possibly the master regulator and

highly important to the response of chemical exposure. The network in Figure 3.8B goes to

further characterise the role of TGFB1 and HNF4A by showing connections to IFNG, pyruvate
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Figure 3.7: Ingenuity Pathway Analysis Networks Build using the Pathway-level Repre-
sentative Model for Metals vs. Non-metals. Dotted and continuous lines represent indirect
and direct relationships respectively. Genes coloured in red and blue are up and down regulated
respectively between metals and non-metals. Grey coloured genes are part of the input list but
did not show any significant change. Genes coloured in white were added by the ingenuity path-
way analysis. A) shows the interaction between hydrogen peroxide with NADH2 and ATPase
components, B) the interaction between hydrogen peroxide and IFNG and TGFB1 connected
to detoxification, and C) the connection between TNF and the TCA-cycle.
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metabolism and peptidase activity. It is interesting to note that beta-estradiol in this network

could be the potential signal mediating the response.
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Figure 3.8: Ingenuity Pathway Analysis Networks for the Pathway-level Representative
Model of Metal vs. Endocrine Disruptors vs. All Remaining Chemicals. Dotted and contin-
uous lines represent indirect and direct relationships respectively. Boxes next to the genes spec-
ify if they have been up (red) or down (blue) regulated within the comparisons as denoted by the
legend. Genes with white backgrounds have been added by the ingenuity analysis. A) shows
the interaction between phospholipases, TNF, glycoaminoglycan metabolism and cholesterol
binding. B) characterizes the role of TGFB1 and HNF4A through IFNG, pyruvate metabolism
and peptidase activity.
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3.4 Discussion

The most important finding of this work has been the demonstration that it is possible to predict

the identity of a toxicant from molecular signatures representing exposure to sub-lethal concen-

trations. More broadly this is the first demonstration of the validity of a integrative approach

to developing a quantitative assay for water quality assessment, informative of chemical con-

taminants and based on D. magna. Moreover we have shown that a limited annotation is not

prohibitive of developing highly predictive models of chemical class. The identified pathways

are consistent with the current understanding of Daphnia toxicology and in addition provide

novel hypotheses on previously uncharacterized AOPs.

3.4.1 Metabolic Imbalance Characterized Response of D. magna to Metal

Exposure

The top 2 most representative pathways, in the model discriminating between metals and non-

metals, are oxidative phosphorylation and alpha-linolenic acid metabolism. Abnormal ex-

pression of genes in these pathways can lead to higher production of reactive oxygen species

[211–213]. More specifically enzymes within the alpha-linolenic acid metabolism are part of

the peroxisome which is the main site within the cell where generation and removal of oxygen

free radicals occurs [211]. In fact enzymes part of this pathway, including acyl-CoA oxidase,

D-bifunctional protein (DBP), Sterol carrier protein X (SCPx) and 2-methylacyl-CoA racemase

(AMCR), have been associated with a peroxisomal beta-oxidation enzymes deficiency in hu-

mans [214–216]. Further investigation of the pathways contributing to the overall accuracy,

lysosome related genes were highly important in combination with the other components to

reach the high accuracy rate. Publications dating back to the late 60s and early 70s have shown

that heavy metals accumulate in lysosomes and in some cases such as mercury or cadmium

have the ability to inhibit specific enzyme activities [217, 218]. A more recent publication has

also shown that lysosomal activity is linked to reduced chemical toxicity in mice [219]. This

raises the interesting hypothesis that the transcriptional regulation of genes encoding for lyso-
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somal components (LAMAN, AP1G1, CTSL1, NAGLU, SMPD, GUSB, HEXA, MANBA,

NPC, GBA, GLB1, AP1B1, TCIRG1 and CTSD) may be an adaptive mechanism to metal

exposure. The remaining two pathways in this model, synthesis and degradation of ketone

bodies and TCA cycle, have also been associated to heavy metal exposure [220–224]. More

specifically hydroxymethylglutaryl-CoA synthase (HMGCS1) which creates HMG-CoA ((S)-

3-hydroxy-3-methylglutaryl-CoA) from either Acetyl-CoA or Acetoacetyl-CoA has been re-

ported to be strongly down-regulated as a result of heavy metal exposure in human HepG2

cells [220]. Within the TCA cycle several of the metals have the ability to inhibit specific steps.

Arsenic, for example, has been shown to interfere with pyruvate dehydrogenase (PDH) es-

sentially preventing oxidisation of pyruvate to acetyl-CoA [221–224]. Moreover, cadmium has

been shown to interfere with the electron transport chain, directly downstream of the TCA cycle,

inhibiting complexes II (succinate:ubiquinone oxidoreductase) and III (ubiquinol:cytochrome c

oxidoreductase) [225]. The previously described mechanisms therefore show that a metabolic

imbalance caused by the combination of energy metabolism inhibition, aggregation of metals in

lysosomes and the creation of reactive oxygen species by perturbing oxidative phophorylation

and peroxisomes may hypothetically be the mechanism of action to the response of D. magna

to metal exposure.

3.4.2 Endocrine Disrupting Chemicals may Act through Pyruvate Metabolism

and Extracellular Matrix Receptor Interaction Pathways

The model discriminating metals and endocrine disruptors included the KEGG pathways extra-

cellular matrix (ECM) receptor interaction and pyruvate metabolism. This may be consistent

with the observation that displacement of pancreatic tissue by ECM is thought to underlie many

major human endocrine diseases [226]. There is evidence that this may be mediated by epi-

dermal growth factor receptor (EGFR) signalling but the specific molecular mechanisms have

yet to be identified [227]. Pyruvate metabolism pathway, which is closely related to the TCA

cycle, may, in addition to the effects described for the citric cycle, also be linked to endocrine

perturbation [228]. An example of this connection has been shown in the exposure of two crus-
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tacean species, D. magna and Acartia tonsa, to 3,4-dichloroaniline. Although this particular

chemical is not represented within our dataset, it is also classed as an endocrine disruptor and is

included in the EU and US EPA endocrine disruptor monitoring programs [199, 229]. Its effect

on D. magna includes inhibition of pyruvate kinase (PK) and malate dehydrogenase (MDH),

and significant reduction in fecundity [230]. This was also noted by Andersen et al, suggesting

that 3,4-dichloroaniline has some specific effects on metabolic enzymes that influence growth

in A. tonsa [228]. Although this may be a unique scenario, the inclusion of this specific path-

way within that specific model may indicate that other known endocrine disruptors may have a

similar effect on D. magna.

3.4.3 Future Directions

The ultimate goal of this approach was to show that we can indeed predict the nature of chemical

contamination using an assay based on relatively simple measurements in D. magna. .Further

developments may include the development of a qPCR-based assay based on the relatively small

number of genes included in the pathways identified by the modelling procedure. In addition,

the approach should be extended to a larger number of chemicals and include a broader range

of doses and time points.

3.5 Materials and Methods

3.5.1 Exposures and LC50 measurements

The laboratory experiments, including exposures, LC50 measurements and transcriptomics anal-

yses have been performed by various group members in Chris Vulpes laboratory at the Univer-

sity of California, Berkley, USA. The data has been made available to us prior publication as

part of a collaboration to apply systems biology approaches in the field of ecotoxicology. Ge-

netically homogenous D. magna were cultured in COMBO media [231] at 23.5◦C in a Percival

environmental chamber according standard protocols [232,233]. Chemical exposures were per-

formed using ∼40 adult (16 – 18 days) D. magna placed in 2L of COMBO media for 24h. LC50

values were identified using standard protocols as described in [41]. Sub-lethal concentrations
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of chemicals at 1
10 of LC50 were added to the culture. Along side the exposure, zero concen-

tration exposures to each solvent have also been performed. Harvested D.magna were directly

ground in liquid nitrogen followed by a standard RNA isolation using Trizol (Invitrogen, Carls-

bad, CA).

3.5.2 Expression Profiling

Custom designed microarrays (Agilent Microarray ID: 023710) were ordered from Agilent and

three biological replicates of each chemical were hybridized to the array using standard Agilent

Low Input Quick-Amp Protocol v.6.0 (Agilent Technologies). The slides were then scanned on

a GenePix 4000B Scanner and data was extracted using GenePix Pro 6.0 Software. Microarray

data for each chemical were then loess normalized using the suitable control solvent microarrays

as reference samples [67]. Out of the 14338 probes available on the array 7324 genes were

expressed at a significantly higher intensity as compared to the background.

3.5.3 Computing Indices of Pathway Activity

Since the Daphnia pulex genome is completed and all coding regions have been already an-

notated on the KEGG database [174] we first mapped (by protein blast) the D. magna genes

represented in our array on the D. pulex complete genome. At the time of analysis the KEGG

database for D. pulex had 3846 genes assigned to KEGG pathway terms. To make sure that

pathway indices were representative of a significant fraction of genes within a pathway we only

considered pathways where 5 genes or more were available in the input dataset. This reduced

the list of 7324 expressed genes to 1671 KEGG annotated genes, representing 101 distinct path-

ways. These were representative of the broad spectrum of functions represented in this database.

Indices of pathway activity were then computed as the first three principal components (PC) of

the gene expression profiles representative of each KEGG pathways using the prcomp function

within the statistical environment R [234]. These represented at least 70% of variance present

in the data. This procedure generated a new derived dataset with 303 pathway components and

144 samples. This was previously demonstrated to be an effective strategy to improve biological

interpretability and reduce the computational space [209].
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3.5.4 Statistical Modelling Procedure

To identify gene and pathway-level models we employed a genetic algorithm-based variable

selection strategy coupled with the classification algorithm Random Forest [163, 235], as im-

plemented in the GALGO package [198] developed in the statistical environment R [234]. This

procedure integrates an efficient multivariate variable selection procedure designed to optimize

small subset of predictive variables and an advanced classification algorithm that minimize the

possibility of overtraining with an in-built out-of-bag cross validation procedure [163]. The

modelling procedure was initialized using the default settings in GALGO [198] with a model

size of 10. The classification accuracy was estimated as follows: Data was first split into train-

ing and test datasets, representing respectively 2
3 and 1

3 of the original data. Both training and

test sets represent all chemicals but included independent biological exposures. In order to

avoid overtraining models were trained within a second level split (2
3 training, 1

3 test) of the

training data. Up to 1000 independent models were collected and a representative model de-

veloped using a forward selection procedure, as described in [198]. This approach ranks the

model variables (genes or pathway activity indices) on the basis of the frequency they appear

in the population. The top 50 most frequent variables are then incrementally tested, by adding

each variable one by one starting with the most frequent. The model with the smaller number of

variables and the higher accuracy is then selected as the final representative model (Figure 3.1,

Step 5).

3.5.5 Computing Chemical-Specific Classification Accuracy

Although the main aim of this project was to assess whether it was possible to develop predictors

of chemical class within a defined subset of chemicals we also wanted to assess whether the

models would be able to predict chemicals that have not been used to train the model itself. We

therefore implemented a leave one cross validation (LOOCV) procedure where each chemical in

every class is removed to generate a training set. The model is then tested on the chemicals taken

out and the predictions matched against the known identity of the chemical. The procedure is

then repeated for every combination of chemicals.
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3.5.6 Ingenuity Pathway Analysis

Using the Ingenuity Pathway Analysis (IPA, Ingenuity Systems R©, www.ingenuity.com) soft-

ware we performed biological interpretation and identification of biological networks defined

by genes represented in the predictive KEGG pathways. These were identified by choosing

the top 20% most contributing genes to the particular identified PC of a given pathway. Once

the gene lists were uploaded into the application, each gene identifier was mapped to its cor-

responding gene object in the Ingenuity Pathways Knowledge Base. These genes, called focus

genes, were overlaid onto a global molecular network developed from information contained in

the Ingenuity Pathways Knowledge Base. Networks of these focus genes were then algorithmi-

cally generated based on their connectivity according to the following procedure implemented

in the IPA software application. The specificity of connection for each focus gene was calcu-

lated by the percentage of its connection to other focus genes. The initiation and the growth of

pathways proceed from the gene with the highest specificity of connections. Each network had

a maximum of 35 genes for easier interpretation and visual inspection. Pathways of highly in-

terconnected genes were identified by statistical likelihood. Networks with a Score greater than

20 and containing more than 60% of focus genes were selected for biological interpretation.
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Chapter 4

A Pathway-based Approach to Predictive

Toxicology in the Crustacean Daphnia

magna

4.1 Abstract

Identifying the response of an organism as a result to chemical exposure is vital in understanding

the impact of human activities on the environment. Freshwater species are among the most en-

dangered due to industrial spills, sewage or pesticide run offs. Unfortunately, often, the impact

of environmental pollution on the physiology of an organism and the identity of the toxicants

are hard to establish. The work described in this chapter is based on the underlying hypoth-

esis that the molecular response of a given organism when exposed to a complex mixture of

chemicals is predictive of post hoc toxicity. An extension of this principle is that even an early

response to sub-lethal exposure may be predictive of potential toxicity at higher doses. In order

to test this hypothesis, we exposed Daphnia magna adults to sub-lethal doses (10% of the mea-

sured LC50) of chemicals of environmental relevance. Here we demonstrate that components

of the whole-organism transcriptional response to exposure are predictive of toxicity outcome

(measured as LC50). In depth analysis of the pathways represented in these predictive signatures

are consistent with a perturbation at the level of signalling pathways leading to changes in the
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expression of genes encoding for enzymes involved in amino acid metabolism. Furthermore we

propose a general toxicity mechanism, which we hypothesise to be conserved across different

species.

4.2 Introduction

The U.S. EPA reported that in 2005 alone 3.8 billion pounds of toxic chemical waste was re-

leased into the environment [236]. In most cases the effects of these complex set of exposures

are only visible after they have caused severe developmental, generational and physiological

damage to the organisms in the environment. This makes remediation a very difficult task. Ex-

posure effects have been characterized either with conventional physiological endpoints or with

more advanced molecular techniques. Data on exposed fish populations showed that ambient

levels of known endocrine disruptors causes sexual disruption and experiments in developing

rodents showed a concerning change in reproductive organ development [237–241]. These and

other groups of chemicals are not only dangerous to species residing in fresh and salt water

habitats but also to the human and animal populations who regularly feed on them. Most fish,

such as the European eel, accumulate xenobiotics over their lifetime and so endanger their

predators health [242, 243]. Other dangers, particularly to humans, may include exposure to

toxins through drinking water. Although there are strict regulations on water quality assess-

ment, the employed techniques are not very sensitive or indicative of contamination source. In

most cases, information about mechanisms of action or toxicity is missing for a large num-

ber of chemicals. In this context, legislations such as REACH, have been adopted to address

this challenge. Characterizing the toxicity profile of the more than 30,000 chemicals, which

are produced by Europe alone, is however an impossible task. The development of easy to

implement quantitative and sensitive essay for predicting toxicity effects from the response of

key reference/biosensor species is a potential way forward. Other approaches, such as quan-

titative structure relationship (QSAR) analyses aim at predicting toxicity outcome from the

analysis of compound physico-chemical features (PCFs). Although effective in some appli-

cations [104, 145, 244], these methods have failed to provide a comprehensive solution to the
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problem. We have shown (Chapter 2 and [209]) that QSAR models can benefit from integrating

data representative of the molecular response to exposure to produce more accurate predictive

models [2,3]. In this chapter we report the results of a pilot study that supports the use of Daph-

nia magna as a biosensor for predicting potential toxicity effects at whole organism level. We

demonstrate that the transcriptional response to sub-lethal doses of chemicals is predictive of

toxicity outcome (measured LC50 value). Using an approach developed in chapter 2, we show

that pathways whose activity is predictive of toxicity are also linked to specific compound PCFs.

Interestingly our results suggested the existence of a general toxicity mechanism, similar to the

one described in chapter 2, raising the possibility that these mechanisms may be conserved

across philogenetically divergent species.

4.3 Results

4.3.1 Rational of the Approach and Data Analysis Overview

The work described here is based on the application of statistical modelling integrating molecu-

lar response data (mRNA expression) and compound physical chemical features to develop pre-

dictors of toxicity outcome (measured as LC50).Similarly to what was described in the previous

chapter, our strategy is based on indices of overall pathway activity that enable the development

of more biologically interpretable statistical models (Figure 4.1, Step 1). Using this technique

we can effectively reduce the complexity of a 7324 gene data set into 303 KEGG Pathway

indices, representing a total of 101 pathways. A regression modelling approach can then be

employed to identify pathway indices (these can represent individual pathways or a combina-

tion of these) predictive of LC50 values (Figure 4.1, Step 2). The degree of gene level overlap

between each of the KEGG pathways can be used to visualize the complexity of the Daphnia

whole genome pathway map either in the form of a dendrogram (using hierarchical clustering)

or as a graph (using an edge weighted layout procedure as implemented in cytoscape [245]) (see

Figure 4.1, Step 3 for an overview and Figures 4.4 and 4.7 for specific examples). These visual

representations can provide initial hypotheses based on the significantly associated pathways

(Figure 4.1 Step 4a). A QSAR approach (chapter 3) is used to identify potential pathways tar-
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geted by chemicals (Figure 4.1 Step 4b). The formulated hypothesis can then be experimentally

tested (Figure 4.1 Step 5). In this chapter we provide a proposal for experimental validation in

the discussion.

4.3.2 The Transcriptional Profile of Daphnia magna Exposed to Sub-lethal

Chemicals Concentrations is Predictive of Toxicity

We first asked whether the transcriptional response registered after 24hrs of exposure to sub-

lethal toxicants concentrations is predictive of toxicity outcome. By using the approach de-

scribed in Step 2 of Figure 4.1 we could prove that this was indeed the case. The most pre-

dictive model (Figure 4.2B, R2=0.64) was based on 7 genes. Since interaction components in

the model were significantly contributing to its accuracy (Figure 4.2A) we concluded that there

was a strong evidence for gene-gene synergic effects. The gene NDUFB8 was the only single-

gene component to significantly contribute to the model prediction. All other model compo-

nents represented the interaction between gene pairs (A4GALT -RPL18, A4GALT-ITGA8 and

SC4MOL-ITGA8) (Figure 4.2A). Pathway association and KEGG gene names are shown in

Table 4.1.

Pathway Gene Name
DM14949 Oxidative phosphorylation NDUFB8 - NADH dehydrogenase

(ubiquinone) 1 beta subcomplex 8
DM11923 Glycosphingolipid biosyn-

thesis globo series
A4GALT - lactosylceramide
4-alpha-galactosyltransferase

DM04328 Steroid biosynthesis C5orf4/SC4MOL - methylsterol
monooxygenase

DM04121 Ribosome RPL18 - large subunit ribosomal protein
L18e

DM06070 Tyrosine metabolism, Jak-
STAT signaling pathway

TPO - thyroid peroxidase

DM09549 ECM-receptor interaction ITGA8 - integrin alpha 8
DM06985 Nicotinate and nicotinamide

metabolism
NNMT - nicotinamide
N-methyltransferase

Table 4.1: Genes Predictive of Measured Toxicity (LC50). The table represents the genes
identified in our model to be predictive of measured toxicity. Association to KEGG pathways
and their human gene names, derived from the KEGG orthology database are shown.
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Figure 4.1: Analysis Strategy Overview. Step 1: We reduce the dimension of the dataset by
using the KEGG database to create pathway indices. Step 2: We link these indices to the LC50

value. Step 3: Visualizing relationship between pathways with the use of Jaccards Index and a
Force Driven layout or hierarchical clustering. Step 4a: Generate Hypotheses from the graph,
identify clusters of pathways closely related. Step 4b: We can get additional information using
the structural information of the chemicals. Step 5: We validate the generated hypotheses.

110



Figure 4.2: Model Linking Gene Expression Data to Toxicity Outcome (LC50). The figure
shows detailed information on the model we have identified. Panel A provides a graphical
representation of the strength of the coefficients (x axis) for each model component (y axis).
Significant coefficients marked in red (p−value < 0.05. Panel B shows the relationship between
the measured LC50 values (x axis) and the predicted values by the model (y axis). Chemicals that
we identified as high and low toxic have been coloured in red and blue respectively. Transparent
points represent the replicates which were used in training the model whereas opaque points
represent the test set.
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4.3.3 Computing and Validating Indices of Molecular Pathway Activity

We have already shown (chapters 2 and 3) that reducing the complexity of a gene expression

profiling dataset by using indices of pathway activity can lead to more predictive and biolog-

ically meaningful models. We therefore decided to use this approach to analyse our Daphnia

magna dataset. Once the indices are computed it is important to assess whether they still con-

tain biologically relevant information. We have addressed this question by assessing the ability

of each chemical to perturb pathways indices in respect to its suitable control (T2-hotelling

test). We then clustered the calculated statistics, showing that seven out of the nine highly toxic

chemicals (77%) cluster within a defined group (Figure 4.3).

4.3.4 The Transcriptional Activity of Some Pathways is Predictive of Tox-

icity Outcome

Having shown that indexes of pathway activity were able to discriminate between different

levels of toxicity, we set to develop statistical regression models linking the three PCs based

pathway activity indexes to the measured LC50 values. Details of the regression modelling ap-

proach are described in detail in the material and methods section of this chapter (Equation 4.2).

We could identify 31 out of a total 101 predictive pathways (Table 4.2). These represent three

major functional clusters:

1. Signalling pathways such as Wnt, Notch and TGFβ signalling,

2. Lipid metabolism representing both sphingolipid and glycosphingolipid biosynthesis,

3. Amino Acid metabolism such as histidine and tyrosine metabolism (Figure 4.4).

4.3.5 Pathway-based Models are Predictive of Toxicity Outcome

Having demonstrated that indices of pathway activity retain toxicity information and that these

can be significantly associated to toxicity, we asked the question whether we can optimize

prediction accuracy by developing models that integrate information on the activity of multiple

pathways. We not only discovered that this is possible (Figure 4.5) but that the model accuracy is

higher than the gene-level model (Figure 4.5B, R2= 0.7). In comparison to the gene-level model
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Figure 4.3: Clustering Analysis of Indices of Pathway Activity. The figure shows the re-
sults of a cluster analysis of individual chemical ability to perturb pathway activity. Chemicals
marked in black are low toxic, red highly toxic, and grey is Bis(2-ethylhexyl)phthalate which
we found to be in between these two classifications (Figure 4.10). Note that the analysis shows
a clear separation between highly toxic and less toxic chemicals.
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Figure 4.4: Hierarchical Cluster Representation of the Pathways Identified in the Dataset.
This figure highlights in a graph format the pathways predicitve of toxicity. The pathway order
is defined by the dendogram (y axis) which is based on the Jaccard’s index of overlap (see
Materials and Methods section for more detail). The predictive power (R2) of the significant
pathways is represented on the x axis. The dotted line refers to the cutoff (FDR < 1%) at which
significance was assessed.
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Toxicity R2

Inositol phosphate metabolism 0.27
Wnt signaling pathway 0.17

Ubiquitin mediated proteolysis 0.22
TGF-beta signaling pathway 0.25

Notch signaling pathway 0.22
Galactose metabolism 0.31

Glutathione metabolism 0.19
Porphyrin and chlorophyll metabolism 0.32

Drug metabolism - other enzymes 0.35
Glycosaminoglycan degradation 0.36

Glycosphingolipid biosynthesis - globo series 0.24
Other glycan degradation 0.18
Sphingolipid metabolism 0.33

Ether lipid metabolism 0.19
Arachidonic acid metabolism 0.21

Tryptophan metabolism 0.21
Glycerolipid metabolism 0.18

Pyruvate metabolism 0.20
Glycine, serine and threonine metabolism 0.34

Histidine metabolism 0.21
Tyrosine metabolism 0.19
Nitrogen metabolism 0.17

Valine, leucine and isoleucine biosynthesis 0.25
Cyanoamino acid metabolism 0.19

Taurine and hypotaurine metabolism 0.23
N-Glycan biosynthesis 0.17
Pyrimidine metabolism 0.17

RNA polymerase 0.30
Sulfur metabolism 0.29

Homologous recombination 0.20
Steroid biosynthesis 0.42

Table 4.2: Pathways Predictive of Toxicity Outcome. The table lists the predictive power
(R2) of the 31 KEGG pathways whose activity is predictive of toxicity outcome. The order was
defined by identifying the gene level overlap between the different pathways as in Figure 4.4.

we noticed that a larger number of individual pathway components significantly contributed to

the model prediction. This is consistent with the fact that the indexes we developed already

integrate information from multiple genes. The representative model we developed included 5

different pathway components. These were:

1. PC2 of taurine and hypotaurine metabolism
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2. PC3 of aminoacyl-tRNA biosynthesis

3. PC3 of nitrogen metabolism

4. PC2 of steroid biosynthesis

5. PC2 of limonen and pinene degradation.

4.3.6 Linking Compound PCFs to Pathway Activity

We have shown that the molecular pathways most contributing to the toxicity prediction rep-

resent amino acid and lipid metabolism. We reasoned that similarly to the rat kidney toxicity

model described in chapter 3, these may be somehow connected to KEGG pathways linked to

PCFs. In order to test this hypothesis, we developed regression models linking PCFs to the tran-

scriptional activity of a given pathway. We successfully identified predictive models (R2 > 0.7)

for 32 unique pathways including different combinations of PCs (a detailed overview of these

models can be found in Table 4.7). Among pathways associated to chemical features we ob-

served signalling pathways (e.g. phosphatidylinositol signalling system, mTOR signalling and

Wnt signalling pathway), several amino acid metabolism (e.g. histidine, glycine, serine and

threonine and taurine and hypotaurine metabolism) and drug metabolism (e.g. glutathione

and cytochrome P450 metabolism) pathways. Some examples of pathways linked to PCFs are

shown in Figure 4.6. Most interestingly PC2 of taurine and hypotaurine pathway (Figure 4.6D)

has the ability to separate high and low toxic chemicals and was previously identified in the

pathway-level model. We then asked the question which PCFs were among the most selected

across all identified models (Table 4.3). Within the top 4 features we find MATS6e, T(O..Cl),

BEHm2 and E1p (Table 4.3). Interestingly electronegativity and polarizability are among the

most selected features.

4.3.7 A Network Linking PCFs, Transcriptional Response to Exposure

and Toxicity Outcome

In order to assess whether KEGG pathways associated to PCFs and/or toxicity outcome are

linked within the overall KEGG pathway system we develop a graph-based representation of

their relationship (Figure 4.7). The visual inspection of the resulting graph shows that indeed
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Figure 4.5: Model Linking Indices of Pathway Activity to Toxicity. The figure describes the
results of the statistical modelling approach. We have identified 5 pathway and their interaction
components with an increased goodness of fit (R2 = 0.7). Panel A shows how strong each
coefficient contributes to the final model. Interestingly a larger number (8) of statistically sig-
nificant components as in the gene level model is observed (p-value < 0.05). Panel B shows the
experimentally measured LC50 values (x axis) versus the ones predicted by the model (y axis).
Transparent points are samples that were used in the training set where as opaque points are
from the test set. It is interesting to note that the taurine and hypotaurine metabolism pathway
is the highest contributing factor in this model.
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Figure 4.6: Examples of the Models Found using the Genetic Algorithm Approach. The
figure represents scatter plots of identified models linking PCFs to indices of pathway activity.
The x axis represents the calculated PC values for each pathway where as the y axis shows
the predicted pathway activity. Panels A and B were derived from pathways significant in
PC1 (drug metabolism - cytochrome P450 and lysine degradation respectively. Panels C and
D show models derived from PC2 (mTOR signalling pathway and taurine and hypotaurine
metabolism). Chemicals which were defined as high and low toxic are represented in red and
blue respectively. Transparent points represent the replicates which were used in the training set
and opaque points were used in the test set. It should be noted that the taurine and hypotaurine
pathway is able to separate high (red) and low (blue) toxic chemicals.
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Descriptor Frequency Description
MATS6e 250 Moran autocorrelation of lag 6 weighted by

Sanderson electronegativity (2D autocorrela-
tions)

T(O..Cl) 199 sum of topological distances between O..Cl (2D
Atom Pairs)

BEHm2 191 highest eigenvalue n. 2 of Burden matrix /

weighted by atomic masses (BCUT descriptors)
E1p 187 1st component accessibility directional WHIM

index / weighted by polarizability (WHIM de-
scriptors)

RDF155u 186 Radial Distribution Function - 155 / unweighted
(RDF descriptors)

Mor24m 180 signal 24 / weighted by mass (3D-MoRSE de-
scriptors)

H-052 138 H attached to C0(sp3) with 1X attached to next
C (Atom-centred fragments)

RDF155e 124 Radial Distribution Function - 155 / weighted
by Sanderson electronegativity (RDF descrip-
tors)

GATS4v 108 Geary autocorrelation of lag 4 weighted by van
der Waals volume (2D autocorrelations)

E1v 93 1st component accessibility directional WHIM
index / weighted by van der Waals volume
(WHIM descriptors)

Table 4.3: Top 10 PCFs Selected by our Approach. This table shows the specific descriptors
which have been most frequently chosen within models (R2 > 0.7) of significantly associated
pathways (Table 4.7). Description of the feature is given in column 3 with the descriptor groups
in parantheses.

these pathways are linked and that three main functional clusters can be defined. These are:

1. amino Aaid Metabolism

2. signalling pathways

3. lipid metabolism.

Within each of the groups we identified the pathways associated to toxicity (red), PCFs (blue)

and pathways that associated to both (green). Interestingly the pathways linked to both toxicity

and PCFs are concentrated in the amino acid metabolism cluster.
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Figure 4.7: Pathway Representation of the Identified Associations. Undirected network of
the pathways that were identified to be significantly associated to either toxicity (red), chemical
structure (blue) or both (green). The distance between nodes is approximately correlated to the
number of genes shared by two different KEGG pathways.
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4.3.8 Increased Expression of Genes Within the Amino Acid Metabolism

and Signalling Pathways is a Landmark of Toxicity Response

Having identified an amino acid metabolism and signalling cluster within Figure 4.7 we set out

to characterize each pathways gene-level response in relation to toxicity. We expect that this

may give an indication on the mechanism linked to the toxicity response. Within the amino acid

metabolism cluster we focused on pathways which were associated to both PCFs and toxicity

(glycine, serine and threonine, taurine and hypotaurine, glutathione, cyanoamino acid and por-

phoryin and chlorophyll metabolism, Figure 4.8). We show that the genes involved in amino

acid conversion and metabolism are mainly up-regulated in response to highly toxic chemi-

cals. Moreover it shows that the production of cytochrome C in the porphyrin and chrolophyll

metabolism and conversion of NADP+ to NADPH is down regulated. This leads to the hypothe-

sis that amino acids play an important role in D. magna toxicity response. Within the signalling

pathways cluster we focused on WNT signalling and two additional related pathways, Notch

and phosphatidylinositol signalling (Figure 4.9). The Wnt signalling pathway presents several

possibilities by which exposure to chemicals could lead to a molecular toxicity response. Inter-

actions between Frizzled and Dsh can lead to perturbations in cytoskeleton or induce ubiquitin

mediated proteolysis, in addition Frizzled can activate PLC, which is highly interconnected

with the phosphatidylinosotiol (PI) signalling pathway. Downstream pathways of PI signalling

include inositol phosphate metabolism, which we found to be associated to toxicity, leading to

the hypothesis that calcium may play a vital role in chemical toxicity.

4.4 Discussion

We have shown, for the first time that it is possible to identify gene and pathway-level models

predictive of toxicity outcome in D. magna. The models we have developed, contributed to the

identification of novel potential mechanisms involved in whole organism toxicity of a large set

of heterogeneous chemicals.
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Figure 4.8: A Cartoon Representation of the Amino Acid Metabolism Pathways we Iden-
tified using our Approach. Central to the remaining pathways is the Taurine and hypotaurine
metabolism pathway. Pathways in boxes marked in red and blue are associated to toxicity and
chemical structure respectively. Genes marked in red and blue are up and down-regulated as
compared to high vs. low toxic chemicals.
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Figure 4.9: Cartoon Representation of the Signalling Pathways we found to be Associated
to Toxicity and Chemical Structure. Pathways marked in red and blue are associated to
toxicity and chemical structure respectively. Genes marked in red or blue are up and down-
regulated as compared to high vs. low toxic chemicals.
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4.4.1 Amino Acid Transporters Provide the Link Between Signalling Path-

ways and Amino Acid Metabolism

We have shown that the transcriptional regulation of genes involved in amino acid metabolism

is central to toxicity prediction. We have also identified a link between signalling pathways,

such as TGF-β and the expression of these genes. There is experimental evidence, which pro-

vide a precise mechanism that may explain these statistical relationships. Perturbation in Wnt

signalling is known to affect amino acid transport through the PI pathway [246,247]. Moreover,

TGF-β also has this ability, via direct regulation of system A amino acid transporter 2 (SAT2)

in vascular smooth muscle cells [248, 249]. TGF-β can also modulate amino acid uptake in

myofibroblasts [250] and stimulate glycolysis in NRK-49F cells [251]. Other publications also

point towards a link between intracellular calcium concentrations and toxicity [252–255]. Our

results are therefore consistent with these findings.

4.4.2 Amino Acid Metabolism and Whole Organism Toxicity

In our results one pathway, taurine and hypotaurine, is particularly interesting as it was associ-

ated to both toxicity and chemical descriptors. Taurine is the only amino acid that is not used to

form proteins and is one of the most abundant free amino acids (FAA) in crustaceans [256]. In

addition taurine can be used to estimate the concentration of FAA in the system [257]. D. magna

however does not seem to be only marine species whose amino acid pool is altered as a result

of chemical exposure. Graney and Giesy showed that long-term exposure to pentachlorophe-

nol (PCP) significantly reduced free amino acid reserves within 5 days of exposure even at the

lowest tested exposure in Gammarus pseudolimnaeus Bousfield [258]. Williams et al demon-

strated that exposure to polycyclic aromatic hydrocarbons (PAHs) alters concentrations of tau-

rine, malonate, glutamate, and alanine in three-spined sticklebacks (Gasterosteus aculeatus)

while observed gene expression changes related to bile acid biosynthesis, steroid metabolism,

and endocrine function [44]. Furthermore, Katsiadaki et al then also showed changes in amino

acid concentrations in the same species exposed to ethinylestradiol [45].
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4.4.3 Blocking of Amino Acid Transporters may Reduce Toxic Effects

Our data and previous publications demonstrated that initial interaction of chemicals with the

cell membrane may cause an imbalance within signalling pathways leading to a change in

amino acid transporters [248, 249, 259], reducing the overall amino acid pool [44, 45, 258]

and concluding in toxicity. A similar connection between stimulation of receptors and amino

acid transport through accumulation of intracellular calcium has already been identified by

Turski et al [252,260]. More specifically they administered MPTP (1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine), an excitatory amino acid antagonists, to reduce the effects from neurotox-

icity [260]. Hence the observed toxicity of a chemical may depend on its ability to perturb

the cell membrane and subsequently the discussed pathways. It may therefore be possible to

identify a specific set of biomarkers, based on a combination of gene expression and amino acid

concentration levels, to accurately predict sub-lethal exposures to toxic chemicals even in the

environment.

4.4.4 Electro-Potential Features Associate to Identified Pathways

The identification of a super-pathway representing a link between signalling events and amino

acid metabolism that is both correlated to PCFs and predictive of toxicity is suggestive of a

broad functional response involving events localized on the cell membrane (signalling) and in

the cytoplasm (metabolism). This highlighted electronegativity and polarizability among the

most predictive features of molecular response. It is interesting to note that the rat model of re-

nal tubular degeneration we describe in Chapter 2 [209] was also based on a similar set of PCFs.

The models were also similar at the functional level in respect to the signalling component but

appear to diverge in the downstream effector pathways (Actin remodelling and increased ROS

production versus amino acid metabolism). We cannot rule out the possibility that the fail-

ure to identify a link between chemical exposure and changes in the expression of amino acid

metabolism genes in the rat model may be a consequence of the different time frame in moni-

toring the molecular response or the different toxicity endpoint. In any case, we speculate our

models may capture a general mechanism of response, possibly centred on membrane effects
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and shared by these two very different toxicity models.

4.5 Conclusion

The key question, which is still remaining, is whether our approach has identified mechanisms

which apply outside of the controlled laboratory environment. Can we utilize this knowledge to

build models predictive of exposure in real life scenarios entailing complex mixtures, varying

environmental properties and genetic diversity? We believe that with further experiments and

application of our computational methodology may indeed address some of these issues. For a

more detailed discussion see Chapter 6.

4.6 Material and Methods

4.6.1 The Experimental System

The work described in this paper is based on a model of chemical toxicity in Daphna magna,

developed in Prof. Chris Vulpe’s laboratory at University of California, Berkley, USA [41].

Briefly D. magna were exposed to sub-lethal ( 1
10 LC50) concentrations of 26 industry relevant

chemicals including endocrine disruptors, benzenes, pyrethroids, organophosphates, herbicide

and other unclassified chemicals (Table 4.4). Control exposures using the solvents used were

also performed. The mRNA was extracted by first grinding harvested D. magna in liquid nitro-

gen using a pestle and mortar and then using Trizol according to standard methods (Invitrogen,

Carlsbad, CA). Agilent custom microarrays (AMAID: 023710) were used for transcriptomics

measurements. Data were loess normalized using suitable solvent controls and lowly expressed

genes (twice the raw average background) were removed before further analysis.

4.6.2 Annotation of Daphnia magna Microarrays

The annotation of the Daphnia magna array, particularly in reference to the KEGG pathway

database, was crucial to our approach. The challenge was facilitated by the availability of the

complete Daphnia pulex genome sequence, which is already partly mapped in the KEGG path-

way database. More precisely, we used a protein blast to identify homologues of the 7324
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Classification Compound

Endocrine Disruptors

20-hydroxyecdysone
Beta-estradiol
Methoxychlor
Methylfarnesoate
4-nonylphenol
Ponasterone A
Pyripoxyfen
Toxaphene

Organophosphates
Chlorpyrifos
Diazinon
Parathion

Benzene Derivatives

Beta benzene hexachloride
Dichlorobenzene
Phenanthrene
Phenol
Toluene

Pyrethroids
Bifenthrin
λ-Cyhalothrin
Permethrin

Herbicide Atrazine

Industry Relevant Chemicals

2-chloro-vinyl-ether
Acrylonitrile
Bis(2-ethylhexyl)phthalate
Chloroform
MTBE
Trichloroethylene

Table 4.4: Chemicals and their Classes Represented within this Dataset. This table shows
the chemicals and their relative classes represented in this dataset.

genes represented in the Daphnia magna array in Daphnia pulex. We identified 4958 homo-

logues using the default blast settings (blastx v2.2.21 blast.ncbi.nlm.nih.gov). Further

filtering to include only marginally significant (e < 0.1) genes reduced this list to 1869. Out

those we were able to map 1686 genes to 116 Daphnia pulex KEGG pathways. Pathways rep-

resenting fewer than 5 genes in the array were removed resulting in 101 pathways representing

1671 genes. These represented an unbiased sample of the 371 possible KEGG pathways in the

original database (Table 4.5).
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Table 4.5
High Level Pathway Names Identified Path-

ways (in percent)
Total No of Path-
ways in KEGG

Metabolism 0% 3
Carbohydrate Metabolism 93.33% 15
Energy Metabolism 37.5% 8
Lipid Metabolism 70.59% 17
Nucleotide Metabolism 100% 2
Amino Acid Metabolism 92.31% 13
Metabolism of Other Amino Acids 55.56% 9
Glycan Biosynthesis and Metabolism 40% 15
Metabolism of Cofactors and Vitamins 58.33% 12
Metabolism of Terpenoids and Polyketides 10% 20
Biosynthesis of Other Secondary Metabolites 4.76% 21
Xenobiotics Biodegradation and Metabolism 15% 20
Overview of biosynthetic pathway 0% 9
Transcription 100% 3
Translation 40% 5
Folding, Sorting and Degradation 71.43% 7
Replication and Repair 71.43% 7
Membrane Transport 33.33% 3
Signal Transduction 46.67% 15
Signaling Molecules and Interaction 50% 4
Transport and Catabolism 80% 5
Cell Motility 0% 3
Cell Growth and Death 0% 7
Cell Communication 0% 4
Immune System 0% 15
Endocrine System 14.29% 7
Circulatory System 0% 2
Digestive System 0% 9
Excretory System 0% 5
Nervous System 0% 8
Sensory System 0% 4
Development 33.33% 3
Environmental Adaptation 0% 4
Cancers 0% 15
Immune Diseases 0% 7
Neurodegenerative Diseases 0% 5
Cardiovascular Diseases 0% 4
Endocrine and Metabolic Diseases 0% 3
Infectious Diseases 0% 22
Chronology: Antibiotics 0% 8
Chronology: Antineoplastics 0% 5

Continued on Next Page. . .
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Table 4.5 – Continued
High Level Pathway Names Identified Path-

ways (in percent)
Total No of Path-
ways in KEGG

Chronology: Nervous System Agents 0% 9
Chronology: Other Drugs 0% 9
Target Based Classification: G Protein-Coupled
Receptors

0% 10

Target Based Classification: Nuclear Receptors 0% 4
Target Based Classification: Ion Channels 0% 5
Target Based Classification: Transporters 0% 2
Target Based Classification: Enzymes 0% 4
Structure Based Classification 0% 5
Skeleton Based Classification 0% 7

Table 4.5: Distribution of Identified Pathways in Relation to the Full KEGG Database.
This table shows the percentage of KEGG pathways in relation to their higher level annotation.
Column 2 shows the percentage of identified pathways from our approach and column 3 shows
the total number of pathways available for each top level in the KEGG database. Note that many
of these pathways may not be directly related to crustaceans but apply generally with a slight
bias to human physiology.

4.6.3 Summarizing the Transcriptional State of Adult D. magna by using

Indices of Pathway Transcriptional Activity

In order to reduce the complexity of the transcriptional state of Daphnia magna transcriptomics,

we computed indices of overall transcriptional pathway activity. PCA was used to summarize

each pathways transcriptional activity and the number of PCs was chosen as to explain at least

70% of the variance. The advantage of using PCs is that the inter-gene correlation structure

is automatically incorporated into the process of dimension reduction, so this information is

not lost. Computation of the PCs has been performed using the principal component function

prcomp within the statistical programming environment R [234].

As mentioned above, we first mapped all the expressed probes (7324) on the Daphnia magna

microarray to the Daphnia pulex genome by protein blast. Out of these 5255 probes were

returned with significant matches. Furthermore we then mapped these to the available genes in

the KEGG database and found that 1686 genes were represented by 117 KEGG pathways. We
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discarded any pathway for which we could map fewer than 5 genes resulting in a total of 101

pathways and 1671 genes. The resulting dataset represented 87% of the up to date D. pulex

annotation in KEGG but only represented 27% of the possible total number of reference KEGG

Pathways. The relatively low coverage of the KEGG database in D. pulex may be due to the

fact that the genome sequence is still in the process of being annotated.

4.6.4 Predicting Toxicity (LC50) by Gene Expression Profiling

To predict toxicity from gene expression profiling we devised a regression model which either

takes 3 gene expression profiles or indices of pathway activity (here indicated by θ1−3) and their

interactions into account. More precisely, we define:

LC50 = aθ1 + bθ2 + cθ3 + dθ1θ2 + eθ1θ3 + f θ2θ3 + g + ε (4.1)

Where a, b, c, d, e, f, g are model parameters and ε is the noise model component. To optimally

select genes or indices within our regression model we used a genetic algorithm as implemented

in the R package GALGO. Initially the data is split by the algorithm into a training and a test

set. The training set is primarily used to train 1000 optimized models using a k-fold cross-

validation procedure. Identified models are then further validated using the test set. In our

case we identified a single representative model using a forward selection strategy [198]. This

approach initially sorts the individual features by their frequency and then incrementally tests

the top 50 most selected genes or indices. The combination of features with the highest accuracy

is then labelled as our representative model. Figures 4.2 and 4.5 show the results of the approach

for the gene and pathway level analysis respectively

4.6.5 Deriving Chemical Physical Features (PCFs).

PCFs were computed using the Web-based toolset E-dragon [197]. E-dragon computes 2352

chemical descriptors by integrating several publicly available methodologies. Only features that

could be computed for all chemicals in the dataset were used leading to a total of 1260 chemical

physical descriptors.
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4.6.6 Linking Chemical Features to Pathway Activity Components.

In order to link chemical descriptors to a given pathway component we used a regression model

highly similar to the one proposed earlier (Equation 4.1). We replace the LC50 within the equa-

tion with the pathway activity (PCi,k, where PCi,k is the principal component i of pathway k)

and θ1−3 now refers to three chemical descriptors including their interaction component. The

remaining model components stay the same. The resulting equation is shown in Equation 4.2.

PCi,k = aθ1 + bθ2 + cθ3 + dθ1θ2 + eθ1θ3 + f θ2θ3 + g + ε (4.2)

As in developing the regression models to predict toxicity outcome, here we identified variable

subsets by using a multivariate variable selection procedure based on a genetic algorithm, as

implemented in the R package GALGO. Here the data is split again into a training ( 2
3 ) and a test

( 1
3 ) set. 300 models are selected on the training set aiming to reach the fitness goal R2 > 0.7.

To estimate the R2 accurately a 5-fold cross validation procedure was used. Pathways for which

we could identify predictive models were considered for further analysis. This resulted in the

identification of 32 pathways linked to PCFs (Table 4.7 for further details). Figure 4.6 shows

examples of models found by the GA in which the predicted values using an optimized model

are plotted against the observed PC values for a given pathway.

Further we identified the PCFs, which were selected most frequently, for each significantly as-

sociated pathway by our approach. We then chose to represent the top 3 descriptors (Table 4.6).
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Table 4.6
Pathway PCF1 PCF2 PCF3 Description PCF1 Description PCF2 Decription PCF3
Citrate cycle (TCA cy-
cle) (PC1)

E1p (46) E1v (35) BEHm1
(26)

1st component accessibil-
ity directional WHIM in-
dex / weighted by polar-
izability (WHIM descrip-
tors)

1st component accessibil-
ity directional WHIM in-
dex / weighted by van der
Waals volume (WHIM de-
scriptors)

highest eigenvalue n. 1 of
Burden matrix / weighted
by atomic masses (BCUT
descriptors)

Citrate cycle (TCA cy-
cle) (PC3)

JGI7
(28)

TPSA(NO)
(19)

SEigp
(13)

mean topological charge
index of order 7 (2D auto-
correlations)

topological polar surface
area using N,O polar
contributions (Molecular
propterties)

Eigenvalue sum from po-
larizability weighted dis-
tance matrix (topological
descriptors)

Fructose and mannose
metabolism (PC2)

HATS7m
(31)

T(O..Cl)
(21)

R6p+

(19)
leverage-weighted au-
tocorrelation of lag 7
/ weighted by mass
(GETAWAY descriptors)

sum of topological dis-
tances between O..Cl (2D
Atom Pairs)

R maximal autocorrelation
of lag 6 / weighted by
polarizability (GETAWAY
descriptors)

Fatty acid elongation in
mitochondria (PC1)

BEHm2
(48)

GATS4v
(38)

RDF150p
(30)

highest eigenvalue n. 2 of
Burden matrix / weighted
by atomic masses (BCUT
descriptors)

Geary autocorrelation of
lag 4 weighted by van der
Waals volume (2D auto-
correlations)

Radial Distribution Func-
tion - 150 / weighted
by polarizability (RDF de-
scriptors)

Fatty acid metabolism
(PC1)

E1p (38) BEHm2
(30)

RDF155u
(30)

1st component accessibil-
ity directional WHIM in-
dex / weighted by polar-
izability (WHIM descrip-
tors)

highest eigenvalue n. 2 of
Burden matrix / weighted
by atomic masses (BCUT
descriptors)

Radial Distribution Func-
tion - 155 / unweighted
(RDF descriptors)

Ubiquinone and other
terpenoid-quinone
biosynthesis (PC2)

R1e+(24) MATS1e
(22)

GATS1e
(20)

R maximal autocorrelation
of lag 1 / weighted by
Sanderson electronegativ-
ity (GETAWAY descrip-
tors)

Moran autocorrelation of
lag 1 weighted by Sander-
son electronegativity (2D
autocorrelations)

Geary autocorrelation of
lag 1 weighted by Sander-
son electronegativity (2D
autocorrelations)

Continued on Next Page. . .
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Table 4.6 – Continued
Pathway PCF1 PCF2 PCF3 Description PCF1 Description PCF2 Decription PCF3
Glycine, serine and
threonine metabolism
(PC2)

RDF145v
(38)

RDF150p
(30)

RDF150v
(28)

Radial Distribution Func-
tion - 145 / weighted
by van der Waals volume
(RDF descriptors)

Radial Distribution Func-
tion - 150 / weighted
by polarizability (RDF de-
scriptors)

Radial Distribution Func-
tion - 150 / weighted
by van der Waals volume
(RDF descriptors)

Cysteine and methion-
ine metabolism (PC2)

DISPp
(21)

RDF040m
(16)

Mor06m
(10)

displacement value /

weighted by polarizability
(geometrical descriptors)

Radial Distribution Func-
tion - 040 / weighted by
mass (RDF descriptors)

signal 06 / weighted
by mass (3D-MoRSE
descriptors)

Lysine degradation
(PC1)

E1m
(31)

Dm (30) RDF040m
(24)

1st component accessibil-
ity directional WHIM in-
dex / weighted by mass
(WHIM descriptors)

D total accessibility in-
dex / weighted by mass
(WHIM descriptors)

Radial Distribution Func-
tion - 040 / weighted by
mass (RDF descriptors)

Histidine metabolism
(PC1)

Mor22m
(33)

H-052
(29)

GATS3v
(26)

signal 22 / weighted
by mass (3D-MoRSE
descriptors)

H attached to C0(sp3) with
1X attached to next C
(Atom-centred fragments)

Geary autocorrelation of
lag 3 weighted by van der
Waals volume (2D auto-
correlations)

Phenylalanine, tyrosine
and tryptophan biosyn-
thesis (PC1)

RDF155e
(66)

E1p (56) RDF155u
(54)

Radial Distribution Func-
tion - 155 / weighted by
Sanderson electronegativ-
ity (RDF descriptors)

1st component accessibil-
ity directional WHIM in-
dex / weighted by polar-
izability (WHIM descrip-
tors)

Radial Distribution Func-
tion - 155 / unweighted
(RDF descriptors)

beta-Alanine
metabolism (PC1)

RDF155e
(58)

RDF155u
(57)

HATS1m
(38)

Radial Distribution Func-
tion - 155 / weighted by
Sanderson electronegativ-
ity (RDF descriptors)

Radial Distribution Func-
tion - 155 / unweighted
(RDF descriptors)

leverage-weighted au-
tocorrelation of lag 1
/ weighted by mass
(GETAWAY descriptors)

Continued on Next Page. . .
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Table 4.6 – Continued
Pathway PCF1 PCF2 PCF3 Description PCF1 Description PCF2 Decription PCF3
Taurine and hypotau-
rine metabolism (PC2)

Mor32p
(50)

Mor32e
(46)

Mor32u
(39)

signal 32 / weighted by
polarizability (3D-MoRSE
descriptors)

signal 32 / weighted by
Sanderson electronegativ-
ity (3D-MoRSE descrip-
tors)

signal 32 / unweighted
(3D-MoRSE descriptors)

Cyanoamino acid
metabolism (PC2)

Mor24m
(55)

MATS6e
(53)

GATS6e
(14)

signal 24 / weighted
by mass (3D-MoRSE
descriptors)

Moran autocorrelation of
lag 6 weighted by Sander-
son electronegativity (2D
autocorrelations)

Geary autocorrelation of
lag 6 weighted by Sander-
son electronegativity (2D
autocorrelations)

Cyanoamino acid
metabolism (PC3)

RTe+

(22)
Mor21e
(16)

R1e+

(16)
R maximal index /

weighted by Sander-
son electronegativity
(GETAWAY descriptors)

signal 21 / weighted by
Sanderson electronegativ-
ity (3D-MoRSE descrip-
tors)

R maximal autocorrelation
of lag 1 / weighted by
Sanderson electronegativ-
ity (GETAWAY descrip-
tors)

Glutathione
metabolism (PC1)

BEHm2
(39)

E1v (30) E1p (25) highest eigenvalue n. 2 of
Burden matrix / weighted
by atomic masses (BCUT
descriptors)

1st component accessibil-
ity directional WHIM in-
dex / weighted by van der
Waals volume (WHIM de-
scriptors)

1st component accessibil-
ity directional WHIM in-
dex / weighted by polar-
izability (WHIM descrip-
tors)

Glutathione
metabolism (PC2)

MATS6e
(25)

E1p (22) GATS3v
(18)

Moran autocorrelation of
lag 6 weighted by Sander-
son electronegativity (2D
autocorrelations)

1st component accessibil-
ity directional WHIM in-
dex / weighted by polar-
izability (WHIM descrip-
tors)

Geary autocorrelation of
lag 3 weighted by van der
Waals volume (2D auto-
correlations)

Starch and sucrose
metabolism (PC3)

T(O..Cl)
(93)

G(O..Cl)
(58)

GATS6e
(34)

sum of topological dis-
tances between O..Cl (2D
Atom Pairs)

sum of geometrical dis-
tances between O..Cl 3D
Atom Pairs

Geary autocorrelation of
lag 6 weighted by Sander-
son electronegativity (2D
autocorrelations)

Continued on Next Page. . .
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Table 4.6 – Continued
Pathway PCF1 PCF2 PCF3 Description PCF1 Description PCF2 Decription PCF3
Arachidonic acid
metabolism (PC3)

MATS1e
(20)

HATS7p
(17)

R7p+

(17)
Moran autocorrelation of
lag 1 weighted by Sander-
son electronegativity (2D
autocorrelations)

leverage-weighted au-
tocorrelation of lag 7 /

weighted by polarizability
(GETAWAY descriptors)

R maximal autocorrelation
of lag 7 / weighted by
polarizability (GETAWAY
descriptors)

Glycosphingolipid
biosynthesis - globo
series (PC3)

GATS4v
(34)

G(O..Cl)
(20)

T(O..Cl)
(14)

Geary autocorrelation of
lag 4 weighted by van der
Waals volume (2D auto-
correlations)

sum of geometrical dis-
tances between O..Cl 3D
Atom Pairs

sum of topological dis-
tances between O..Cl (2D
Atom Pairs)

Propanoate metabolism
(PC1)

DISPp
(33)

E1v (28) RDF155u
(19)

displacement value /

weighted by polarizability
(geometrical descriptors)

1st component accessibil-
ity directional WHIM in-
dex / weighted by van der
Waals volume (WHIM de-
scriptors)

Radial Distribution Func-
tion - 155 / unweighted
(RDF descriptors)

One carbon pool by fo-
late (PC2)

H-052
(33)

RDF090m
(28)

TPSA(NO)
(22)

H attached to C0(sp3) with
1X attached to next C
(Atom-centred fragments)

Radial Distribution Func-
tion - 090 / weighted by
mass (RDF descriptors)

topological polar surface
area using N,O polar
contributions (Molecular
propterties)

Nicotinate and nicoti-
namide metabolism
(PC3)

Mp (58) Mv (27) TIC4
(23)

mean atomic polarizability
(scaled on Carbon atom)
(Constitutional indices)

mean atomic van der
Waals volume (scaled on
Carbon atom) (Constitu-
tional indices)

Total Information Content
index (neighborhood sym-
metry of 4-order) (Infor-
mation indices)

Porphyrin and chloro-
phyll metabolism
(PC2)

R6m+

(50)
T(Cl..Cl)
(29)

R7v+

(27)
R maximal autocorrelation
of lag 6 / weighted by mass
(GETAWAY descriptors)

sum of topological dis-
tances between Cl..Cl (2D
Atom Pairs)

R maximal autocorrelation
of lag 7 / weighted by van
der Waals volume (GET-
AWAY descriptors)

Continued on Next Page. . .
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Table 4.6 – Continued
Pathway PCF1 PCF2 PCF3 Description PCF1 Description PCF2 Decription PCF3
Porphyrin and chloro-
phyll metabolism
(PC3)

MATS3e
(40)

HATS7m
(15)

Mor09e
(10)

Moran autocorrelation of
lag 3 weighted by Sander-
son electronegativity (2D
autocorrelations)

leverage-weighted au-
tocorrelation of lag 7
/ weighted by mass
(GETAWAY descriptors)

signal 09 / weighted by
Sanderson electronegativ-
ity (3D-MoRSE descrip-
tors)

Aminoacyl-tRNA
biosynthesis (PC3)

Mor32e
(28)

RDF155u
(26)

Mor32u
(26)

signal 32 / weighted by
Sanderson electronegativ-
ity (3D-MoRSE descrip-
tors)

Radial Distribution Func-
tion - 155 / unweighted
(RDF descriptors)

signal 32 / unweighted
(3D-MoRSE descriptors)

Drug metabolism - cy-
tochrome P450 (PC1)

MATS6e
(26)

GATS8m
(22)

MATS8e
(15)

Moran autocorrelation of
lag 6 weighted by Sander-
son electronegativity (2D
autocorrelations)

Geary autocorrelation of
lag 8 weighted by mass
(2D autocorrelations)

Moran autocorrelation of
lag 8 weighted by Sander-
son electronegativity (2D
autocorrelations)

ABC transporters
(PC1)

E1e (40) MATS4v
(31)

G2u
(24)

1st component accessi-
bility directional WHIM
index / weighted by
Sanderson electronegativ-
ity (WHIM descriptors)

Moran autocorrelation of
lag 4 weighted by van der
Waals volume (2D auto-
correlations)

2nd component symmetry
directional WHIM index
/ unweighted (WHIM de-
scriptors)

DNA replication (PC1) H-052
(44)

RDF130m
(34)

MATS1v
(33)

H attached to C0(sp3) with
1X attached to next C
(Atom-centred fragments)

Radial Distribution Func-
tion - 130 / weighted by
mass (RDF descriptors)

Moran autocorrelation of
lag 1 weighted by van der
Waals volume (2D auto-
correlations)

DNA replication (PC3) MATS6e
(50)

GATS4v
(36)

MATS8e
(20)

Moran autocorrelation of
lag 6 weighted by Sander-
son electronegativity (2D
autocorrelations)

Geary autocorrelation of
lag 4 weighted by van der
Waals volume (2D auto-
correlations)

Moran autocorrelation of
lag 8 weighted by Sander-
son electronegativity (2D
autocorrelations)

Continued on Next Page. . .
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Table 4.6 – Continued
Pathway PCF1 PCF2 PCF3 Description PCF1 Description PCF2 Decription PCF3
Protein export (PC3) RDF095p

(33)
RDF095v
(30)

RDF095e
(28)

Radial Distribution Func-
tion - 095 / weighted
by polarizability (RDF de-
scriptors)

Radial Distribution Func-
tion - 095 / weighted
by van der Waals volume
(RDF descriptors)

Radial Distribution Func-
tion - 095 / weighted by
Sanderson electronegativ-
ity (RDF descriptors)

Phosphatidylinositol
signaling system (PC1)

BEHm2
(74)

RDF130m
(26)

RDF150v
(19)

highest eigenvalue n. 2 of
Burden matrix / weighted
by atomic masses (BCUT
descriptors)

Radial Distribution Func-
tion - 130 / weighted by
mass (RDF descriptors)

Radial Distribution Func-
tion - 150 / weighted
by van der Waals volume
(RDF descriptors)

Neuroactive ligand-
receptor interaction
(PC3)

FDI (73) H-052
(32)

Mor08u
(26)

folding degree index (geo-
metrical descriptors)

H attached to C0(sp3) with
1X attached to next C
(Atom-centred fragments)

signal 08 / unweighted
(3D-MoRSE descriptors)

Lysosome (PC2) Mor24m
(47)

MATS6e
(43)

T(O..Cl)
(37)

signal 24 / weighted
by mass (3D-MoRSE
descriptors)

Moran autocorrelation of
lag 6 weighted by Sander-
son electronegativity (2D
autocorrelations)

sum of topological dis-
tances between O..Cl (2D
Atom Pairs)

Endocytosis (PC3) Mor24m
(62)

MATS6e
(53)

MATS8e
(50)

signal 24 / weighted
by mass (3D-MoRSE
descriptors)

Moran autocorrelation of
lag 6 weighted by Sander-
son electronegativity (2D
autocorrelations)

Moran autocorrelation of
lag 8 weighted by Sander-
son electronegativity (2D
autocorrelations)

mTOR signaling path-
way (PC2)

MATS6p
(22)

Mor24m
(7)

GATS3e
(6)

Moran autocorrelation of
lag 6 weighted by polar-
izability (2D autocorrela-
tions)

signal 24 / weighted
by mass (3D-MoRSE
descriptors)

Geary autocorrelation of
lag 3 weighted by Sander-
son electronegativity (2D
autocorrelations)

Wnt signaling pathway
(PC2)

Mor24v
(44)

Mor24p
(42)

T(O..Cl)
(34)

signal 24 / weighted by
van der Waals volume
(3D-MoRSE descriptors)

signal 24 / weighted by
polarizability (3D-MoRSE
descriptors)

sum of topological dis-
tances between O..Cl (2D
Atom Pairs)

Continued on Next Page. . .
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Table 4.6 – Continued
Pathway PCF1 PCF2 PCF3 Description PCF1 Description PCF2 Decription PCF3
Notch signaling path-
way (PC2)

Mor24m
(9)

Mor28v
(8)

Mor24p
(7)

signal 24 / weighted
by mass (3D-MoRSE
descriptors)

signal 28 / weighted by
van der Waals volume
(3D-MoRSE descriptors)

signal 24 / weighted by
polarizability (3D-MoRSE
descriptors)

Table 4.6: PCFs most Frequently Selected by our Procedure. For each pathway which was
significantly associated to PCFs (R2 > 0.7) we identified the top 3 most frequently selected
descriptors. Numbers in parantheses within the features is the frequency. Descriptor groups of
each PCF is given in parentheses in the descriptions.
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PC1 PC2 PC3
mTOR signaling pathway 0.45 0.70 0.54

Phosphatidylinositol signaling system 0.76 0.08 0.67
Wnt signaling pathway 0.60 0.81 0.59

Endocytosis 0.67 0.36 0.74
Notch signaling pathway 0.46 0.77 0.35

Neuroactive ligand-receptor interaction 0.60 0.69 0.70
Fructose and mannose metabolism 0.66 0.71 0.55

Starch and sucrose metabolism 0.63 0.55 0.73
Glutathione metabolism 0.73 0.76 0.64

Porphyrin and chlorophyll metabolism 0.62 0.72 0.72
Drug metabolism - cytochrome P450 0.71 0.56 0.55

Glycosphingolipid biosynthesis - globo series 0.57 0.59 0.75
Lysosome 0.64 0.78 0.66

Arachidonic acid metabolism 0.64 0.37 0.73
beta-Alanine metabolism 0.75 0.45 0.50

Propanoate metabolism 0.73 0.49 0.40
Lysine degradation 0.74 0.55 0.50

Fatty acid metabolism 0.78 0.68 0.40
Fatty acid elongation in mitochondria 0.73 0.40 0.12

Citrate cycle (TCA cycle) 0.71 0.57 0.77
Cysteine and methionine metabolism 0.63 0.72 0.42

Glycine, serine and threonine metabolism 0.61 0.74 0.66
Histidine metabolism 0.74 0.66 0.61

Phenylalanine, tyrosine and tryptophan biosynthesis 0.75 0.32 0.41
Aminoacyl-tRNA biosynthesis 0.67 0.61 0.70

One carbon pool by folate 0.66 0.72 0.22
Cyanoamino acid metabolism 0.58 0.73 0.76

Taurine and hypotaurine metabolism 0.52 0.70 0.58
Ubiquinone and other terpenoid-quinone biosynthesis 0.60 0.73 0.53

Nicotinate and nicotinamide metabolism 0.62 0.66 0.73
DNA replication 0.71 0.60 0.73

ABC transporters 0.70 0.37 0.51

Table 4.7: 32 Pathways Linked to PCFs. The table lists Pathways whose median R2 across all
identified models was > 0.7. Here we show the 32 pathways for which at least one of the PCs
reached this goal. For a list of all pathways refer to Table 4.8

4.6.7 Developing a KEGG Pathway Map

In order to visually represent the relationship between the different KEGG pathways we com-

puted a pathway similarity matrix based on the Jaccards index of overlap. This is defined as

the ratio between the numbers of genes shared by any two pathways (intersection) divided by
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the number of unique genes in the two combined pathways (union). The resulting matrix was

used as an input of either a hierarchical clustering procedure (average linkage) (Figure 4.4) or

a graph visualization tool Cytoscape [245] using a force driven layout (Figure 4.7). The effec-

tiveness of the clustering procedure in representing the information described by the similarity

matrix has been verified using the cophenetic function correlation fit to the input overlap matrix

(r=-0.9). Specific KEGG pathways of interest were represented in a cartoon format indicating

the direction of change between low and high toxicity chemicals (Figure 4.8 and 4.9). These

were defined by applying arbitrary thresholds on the distribution of LC50 values. The chemical

Bis(2-tehylhexyl)phthalate was eliminated in this categorization due to an intermediate toxicity

(Figure 4.10).
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Figure 4.10: A Graphical Representation of the Toxicity Values Across the Chemical Space.
The figure represents the distribution of log LC50 values across all chemicals in the dataset. We
used this distribution to define lower and higher toxic chemicals. Higher LC50 values (x axis)
correspond to a lower toxicity. Regions of high and low toxicity were defined on the basis of
the bimodal distribution. Bis(2-ethylhexyl)phthalate was designated outside of both domains as
it falls directly in between this classfication.
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Table 4.8
Tox PCFs

(PC1)
PCFs
(PC2)

PCFs
(PC3)

mTOR signaling pathway 0.02 0.45 0.70 0.54
Regulation of autophagy 0.04 0.61 0.65 0.61
Phosphatidylinositol signaling system 0.13 0.76 0.08 0.67
Inositol phosphate metabolism 0.27 0.60 0.66 0.59
Ribosome 0.08 0.56 0.57 0.54
Hedgehog signaling pathway 0.11 0.62 0.25 0.51
Wnt signaling pathway 0.17 0.60 0.81 0.59
Ubiquitin mediated proteolysis 0.22 0.39 0.42 0.62
Progesterone-mediated oocyte maturation 0.15 0.65 0.56 0.37
TGF-beta signaling pathway 0.25 0.54 0.64 0.69
ECM-receptor interaction 0.13 0.44 0.51 0.51
Endocytosis 0.07 0.67 0.36 0.74
Spliceosome 0.15 0.60 0.70 0.62
Dorso-ventral axis formation 0.14 0.14 0.64 0.66
Notch signaling pathway 0.22 0.46 0.77 0.35
Neuroactive ligand-receptor interaction 0.08 0.60 0.69 0.70
RNA degradation 0.13 0.45 0.36 0.37
Fructose and mannose metabolism 0.15 0.66 0.71 0.55
Amino sugar and nucleotide sugar
metabolism

0.10 0.56 0.62 0.60

Galactose metabolism 0.31 0.43 0.59 0.70
Starch and sucrose metabolism 0.07 0.63 0.55 0.73
Pentose phosphate pathway 0.07 0.43 0.64 0.57
Glutathione metabolism 0.19 0.73 0.76 0.64
Pentose and glucuronate interconversions 0.11 0.47 0.56 0.62
Porphyrin and chlorophyll metabolism 0.32 0.62 0.72 0.72
Ascorbate and aldarate metabolism 0.00 0.69 0.69 0.63
Drug metabolism - cytochrome P450 0.11 0.71 0.56 0.55
Metabolism of xenobiotics by cy-
tochrome P450

0.03 0.37 0.53 0.59

Retinol metabolism 0.11 0.63 0.57 0.50
Drug metabolism - other enzymes 0.35 0.63 0.61 0.59
Glycosphingolipid biosynthesis - ganglio
series

0.15 0.55 0.61 0.56

Glycosaminoglycan degradation 0.36 0.58 0.67 0.40
Glycosphingolipid biosynthesis - globo
series

0.24 0.57 0.59 0.75

Other glycan degradation 0.18 0.58 0.64 0.61
Lysosome 0.15 0.64 0.78 0.66
Sphingolipid metabolism 0.33 0.52 0.49 0.67
Biosynthesis of unsaturated fatty acids 0.03 0.55 0.39 0.68

Continued on Next Page. . .
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Table 4.8 – Continued
Tox PCFs

(PC1)
PCFs
(PC2)

PCFs
(PC3)

Peroxisome 0.14 0.14 0.43 0.32
Caffeine metabolism 0.08 0.51 0.67 0.63
alpha-Linolenic acid metabolism 0.12 0.59 0.54 0.37
Ether lipid metabolism 0.19 0.67 0.41 0.65
Linoleic acid metabolism 0.10 0.70 0.43 0.41
Arachidonic acid metabolism 0.21 0.64 0.37 0.73
Glycerophospholipid metabolism 0.12 0.55 0.57 0.46
Limonene and pinene degradation 0.10 0.43 0.61 0.54
beta-Alanine metabolism 0.00 0.75 0.45 0.50
Butanoate metabolism 0.06 0.68 0.62 0.63
Propanoate metabolism 0.03 0.73 0.49 0.40
Valine, leucine and isoleucine degrada-
tion

0.00 0.46 0.68 0.37

Tryptophan metabolism 0.21 0.53 0.61 0.64
Lysine degradation 0.08 0.74 0.55 0.50
Fatty acid metabolism 0.09 0.78 0.68 0.40
Fatty acid elongation in mitochondria 0.05 0.73 0.40 0.12
Glycerolipid metabolism 0.18 0.56 0.61 0.56
Glyoxylate and dicarboxylate metabolism 0.17 0.47 0.60 0.61
Citrate cycle (TCA cycle) 0.09 0.71 0.57 0.77
Pyruvate metabolism 0.20 0.48 0.63 0.69
Glycolysis / Gluconeogenesis 0.09 0.46 0.53 0.69
Synthesis and degradation of ketone bod-
ies

0.02 0.49 0.54 0.49

Terpenoid backbone biosynthesis 0.08 0.57 0.66 0.57
Selenoamino acid metabolism 0.15 0.66 0.65 0.49
Cysteine and methionine metabolism 0.15 0.63 0.72 0.42
Glycine, serine and threonine metabolism 0.34 0.61 0.74 0.66
Histidine metabolism 0.21 0.74 0.66 0.61
Tyrosine metabolism 0.19 0.65 0.64 0.61
Phenylalanine, tyrosine and tryptophan
biosynthesis

0.11 0.75 0.32 0.41

Phenylalanine metabolism 0.04 0.66 0.58 0.66
Arginine and proline metabolism 0.16 0.65 0.69 0.66
Alanine, aspartate and glutamate
metabolism

0.12 0.64 0.51 0.59

D-Glutamine and D-glutamate
metabolism

0.00 0.49 0.57 0.56

Nitrogen metabolism 0.17 0.66 0.67 0.64
Valine, leucine and isoleucine biosynthe-
sis

0.25 0.66 0.41 0.57

Continued on Next Page. . .
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Table 4.8 – Continued
Tox PCFs

(PC1)
PCFs
(PC2)

PCFs
(PC3)

Aminoacyl-tRNA biosynthesis 0.08 0.67 0.61 0.70
Pantothenate and CoA biosynthesis 0.17 0.38 0.59 0.53
One carbon pool by folate 0.04 0.66 0.72 0.22
Folate biosynthesis 0.04 0.52 0.52 0.45
Cyanoamino acid metabolism 0.19 0.58 0.73 0.76
Taurine and hypotaurine metabolism 0.23 0.52 0.70 0.58
Ubiquinone and other terpenoid-quinone
biosynthesis

0.04 0.60 0.73 0.53

N-Glycan biosynthesis 0.17 0.61 0.50 0.65
Glycosphingolipid biosynthesis - lacto
and neolacto series

0.13 0.55 0.54 0.65

Fatty acid biosynthesis 0.00 0.63 0.43 0.40
Pyrimidine metabolism 0.17 0.63 0.31 0.67
Purine metabolism 0.05 0.60 0.66 0.45
RNA polymerase 0.30 0.70 0.61 0.56
Nicotinate and nicotinamide metabolism 0.13 0.62 0.66 0.73
Sulfur metabolism 0.29 0.47 0.57 0.07
Nucleotide excision repair 0.02 0.62 0.65 0.01
Mismatch repair 0.06 0.57 0.63 0.49
DNA replication 0.06 0.71 0.60 0.73
Base excision repair 0.06 0.64 0.52 0.23
Homologous recombination 0.20 0.57 0.44 0.57
Oxidative phosphorylation 0.15 0.37 0.62 0.38
Jak-STAT signaling pathway 0.11 0.68 0.63 0.38
Steroid biosynthesis 0.42 0.63 0.59 0.67
ABC transporters 0.16 0.70 0.37 0.51
O-Glycan biosynthesis 0.15 0.59 0.59 0.27
SNARE interactions in vesicular transport 0.05 0.60 0.58 0.48
Proteasome 0.04 0.69 0.42 0.58
Basal transcription factors 0.04 0.45 0.52 0.62
Protein export 0.01 0.50 0.58 0.73

Table 4.8: All R2 Values of Pathways Associated to Toxicity and PCFs. Here the results for
all pathways are shown. First column represents the results for the association to toxicity. The
threshold for 1% FDR is 0.1713. Columns 2 – 4 are representative of the association to PCFs of
PC1, PC2 and PC3 respectively. Here the median R2 across all models is shown. The threshold
for association to PCFs was chosen to be R2 > 0.7.
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Chapter 5

Application of Reverse Engineering in

Ecotoxicology

5.1 Abstract

The mechanisms of action of many chemicals of environmental concern are either unknown

or incompletely characterized. ’Omics’ technologies have provided a high-throughput unbi-

ased approach to address this issue. Statistical modelling approaches, identifying groups of

features predictive of toxicity outcome have shown to provide informative results, especially

when pathway knowledge is incorporated. This approach, however, is limited to the gene to

gene interactions represented by the functional annotation. In this context, reverse engineer-

ing methodologies have provided means of inferring the underlying regulatory network without

prior knowledge. Identification of functional modules linked to physiological outcome can then

aid in characterizing adverse outcome pathways. Here we demonstrate the application of these

approaches to a large compendium of fathead minnow (FHM, Pimephales promelas) microar-

rays developed by the U.S. Army Engineering Research and Development Center. We focus

our efforts on flutamide (FLU), an anti-androgen, to further characterize its effect. We applied

a well validated reverse engineering methodology, ARACNE (Algorithm for the Reconstruc-

tion of Accurate Cellular Networks), to infer the underlying regulatory network and identified

highly interconnected sub-networks. Our results provide evidence that FLU acts through a novel
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androgen-receptor independent pathway in the fathead minnow.

5.2 Introduction

Environmental protection agencies worldwide are presented with a huge challenge as a result

of human innovation. Large numbers of chemicals are being released into the environment

through chemical spills, sewage, industrial waste or agricultural run-offs such as excess nutri-

ents or pesticides. Many underlying mechanisms for toxicologically relevant compounds have

been characterized in the literature. There are, however, several instances where the underly-

ing mechanisms for specific responses are mediated through currently unknown or incompletely

characterized toxicity pathways. In chapters 3 and 4 we have shown that machine learning tech-

niques and pathway level analyses provide very powerful tools for identifying adverse outcome

pathways. However, these approaches do not implicitly infer the structure of the underlying

regulatory networks. In this context, network inference approaches, originally developed and

validated in other biological systems have the potential to address this issue [261–264].

This chapter will focus on demonstrating the potential of these approaches in the context of a

very relevant ecotoxicological system. This is the response of the fathead minnow (FHM) to

FLU, a model anti-androgen compound. This pharmaceutical is currently used to treat prostate

cancer as it specifically competes with testosterone for binding the androgen receptor (AR)

in the prostate gland, essentially reducing cancer cell growth [265]. In fish, FLU is assumed

to act via the same mechanism of action [266–268]. More specifically, exposure to FLU in

early development of guppies resulted in demasculinization [266], an anti-androgen response

also observed in mammalian studies [269]. Reduced fecundity, a decrease in mature oocytes

in females and degeneration of spermatocytes in addition to necrosis have also been observed

in FHM [268]. However the specific binding of FLU to fish AR(s) has revealed conflicting

results [270]. Ankley et al [271] suggested that the reason for these conflicting results was in

part due to the design of the experiment where binding of FLU was measured but its metabolite,

2-hydroxy-flutamide, was neglected. This metabolite has been shown to have a strong affinity

to both fish and mammalian AR(s) [271].
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To address whether the transcriptional response to FLU is consistent with an AR mediated

mechanism in FHMs, Garcia-Reyero et al [202] compared the response of fish treated with

FLU to fish treated with the model androgen 17β-trenbolone (TB). If FLU effects are mediated

by the canonical mechanism, exposure to these two compounds should result in opposite effects

in respect to gene expression. Interestingly a direct comparison on the gene level identified

only 70 genes that were regulated reciprocally between the two exposures. The authors also

performed a QPCR analysis on specific genes involved in steroidogenesis. The remaining 1351

differentially expressed genes did not follow the paradigm. Overall this work suggested that in

addition to its anti-androgen activity, FLU might act via a still uncharacterized yet important

mechanism.

To address this challenge we utilized a network inference approach based on an information

theoretical approach [98, 272]. The methodology was applied to, a large compendium of over

800 microarrays representing the transcriptional response of FHM ovaries to exposure of en-

docrine disruptors (Table 5.1). This dataset, provided by the U.S. Army Engineering Research

and Development Centre is ideally suited for reverse engineering [273].

This proof of concept study proved the effectiveness of the approach and provided evidence of

a novel AR independent pathway, linked to ovary development and perturbed by FLU exposure

in FHM ovaries.

5.3 Results

5.3.1 A Compendium of Gene Expression Profiling Experiments Repre-

senting in vivo and in vitro Response of the Fathead Minnow Ovary

to Endocrine Disruptors

The work described in this chapter relies on a large compendium of microarray and hormone

measurements in the FHM, made available by Dr. Ed Perkins (U.S. Army Engineer Research

and Development Center). Here we describe this dataset in some detail to facilitate the under-

standing of our modelling effort. This compendium includes transcriptomics data generated in
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Chemical
experiment

in-vivo /

in-vitro
Time Concentration conditions

no con-
trols

conditions
+ con-
trols

total Ar-
rays #

Fadrozole in-vivo 30min, 1, 2, 4,
6 hr

5, 50 uM 10 15 60

Fadrozole in-vivo 6, 12, 24 hr 50 um 3 6 24
Fadrozole in-vitro 0, 1, 2, 3, 4, 6,

8, 10, 12 hr
50 uM 8 16 64

Fadrozole in-vivo exposed (1, 2,
4, 8d), recov-
ery (1, 2 ,4,
8d)

3,30 uM 16 24 182

Flutamide in-vivo 1, 2, 4, 8, 12h 500 ug/l 5 10 39
Ketoconazole in-vitro 2, 4, 6, 8, 10,

12 hr
0.5 uM, 5
pools of 5

6 12 52

Ketoconazole in-vitro 15, 30, 45,
60, 75, 90,
105, 120, 135,
150min

0.5 uM 10 20 84

Ketoconazole in-vivo 6, 12, 24 hr 0.5 uM 3 6 24
Stages in-vivo NA Pre-

vitellogenic,
Vitellogenic,
Mature ovary,
Ovulated
eggs, Atretic

5 NA 23

Prochloraz in-vitro 2, 4, 6, 8, 10,
12 hr

2.5 uM, 5
pools of 5

6 12 53

Prochloraz in-vivo 6, 12, 24 hr 2.5 uM 3 6 22
RDX in-vivo 1, 21d 5 mg/L 2 4 22
TNT in-vivo 30min, 1, 2, 4,

6, 24 hr
5 mg/L 6 12 60

Trenbolone in-vivo exposed (1, 2,
4, 8d), recov-
ery (1, 2 ,4,
8d)

low, high dose 16 3 162

Total 99 146 871

Table 5.1: Overview of the FHM Dataset.

14 separate FHM experiments involving 7 different chemical stressors. All experiments were

continuous flow-through exposures. Chemicals were delivered in UV-treated, 0.4um filtered

Lake Superior water (LSW) without the use of carrier solvents. Nine experiments were acute
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time course studies involving a minimum of three different exposure durations, each less than

24h. Generally a single concentration per chemical was used with the exception of fadrazole.

Only female FHMs were exposed with a minimum of 8 fish per treatment group with a mini-

mum of 2 exposure replicates were performed. Fish were added after the desired concentration

has been verified and replicates were staggered to ensure collection within minutes of the in-

tended time point. In addition to these, two exposure and recovery time-course experiments

were performed. Both experiments were run for 8 days followed by a recovery phase in clean

water of similar time length using two different concentrations. The remaining two experiments

followed a slightly different approach. One of these specifically focused on profiling the differ-

ent ovary stages based on histological examination [203] while the other investigated a 21 day

reproduction effect to RDX (cyclotrimethylenetrinitramine).
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5.3.2 Estimation of Gene to Gene Connections: A Comparison of Differ-

ent MI Estimation Methods Using minet

The reverse engineering approach we have chosen is a modification of the well-validated ARACNE

methodology. Each gene-to-gene connection is inferred by using a measure of variable depen-

dency called mutual information (MI) (see methods section for a formal definition). There are

a number of MI estimation methods available, which differ by the way data is processed (dis-

cretization) and in the MI estimation procedure itself to reverse engineer the underlying regu-

latory network. Several of these are implemented in the minet package available in R [234]. A

detailed description is given in the material and methods section. Therefore we first set out to

identify which of the combinations of data discretization and MI estimation may be more appro-

priate for the analysis of this dataset. For each estimation procedure linked to a discretization

method (Shrink entropy EqualWidth (SEW), Shrink entroy EqualFreq (SEF), Empirical Equal-

Width (EEW), Miller-Madow EqualWidth (MMW) and Schurmann-Grassberger EqualWidth

(SGW)) we plotted pearson correlation against the calculated MI values to be able to visually

inspect the results of the different estimators. In order to select the method of choice we used the

criteria that the diagnostic plot should best match the theoretical relationship between pearson

correlation (R) and MI (M) (Equation 5.1 and Figure 5.1 [274, 275]):

M(X,Y) = −log
√

1 − R(X,Y)2 (5.1)

We were able to disregard three of the five tested approaches (Figure 5.9). More specifically

SEF, EEW and SGW all inflated MI values where no linear relationship was identified. SEF

in particular inflated all MI values across the sample space. The remaining two approaches

SEW and MMW both produced comparable results. Referring to the package documentation;

although the default estimation routine is the empirical estimator the authors mention that the

Miller-Madow Corrected Estimator reduces bias generated by the nave approach. This led us to

choose the MMW approach for network inference. Calculation of MI values generated from a

randomized dataset enabled the calculation of an FDR threshold (Figure 5.2). In order to extract
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Figure 5.1: Theoretical Distribution between Mutual Information and Pearson Correla-
tion. When the distribution of the Pearson correlation (y axis) in a given dataset is Gaussian
like, the relationship between Pearson Correlation and Mutual Information (x axis) should fol-
low this theoretical graph (Equation 5.1, [274, 275]).

only the most significant connections we applied a conservative threshold, which exceeded the

calculated 1% FDR value (Figure 5.2).

5.3.3 Inference of a Regulatory Network Representing the Receptor Neigh-

bourhood in Fathead Minnow

Having identified the appropriate network inference approach we set out to develop a gene

to gene interaction network representative of FHM ovaries. In order to maximize biologi-

cal interpretability we focus on reconstructing the network as a union of the neighbourhood

of biologically important hubs. We choose to focus on genes that code for receptors and in-
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Figure 5.2: Distribution of MI values in Relation to Pearson Correlation for this Dataset.
The MI values from the Miller-Madow Corrected Estimator best fit the theoretical distribution.
From the distribution of Random MI (blue dots) values a FDR threshold can be calculated. The
final threshold that was used for building the network is shown in the figure by a continuous
line and exceeds the calculated 1% FDR threshold.

152



cluded the physiological measurements (see methods section for a detailed description of the

procedure). The resulting network was then visualized within cytoscape. We then searched

for naturally occurring highly connected network modules using the network modularization

procedure MCODE [276]. The procedure identified 6 modules within our network linked to

specific biological process of potential relevance for ovary biology (Figure 5.3A). We were able

to functionally annotate four of these modules (Figure 5.3A). Furthermore we highlighted the

genes directly connected to testosterone (Figure 5.3B, yellow), serum vitellogenin (Figure 5.3B,

blue) and the gene receptors (Figure 5.3B, red). A more detailed analysis of the neighbourhood

of testosterone (defined by connections with MI > 0.47, Figure 5.4), revealed a number of

relationships supported by the literature. The direct interaction between the oestrogen recep-

tor and testosterone [277] and the link between testosterone levels and aryl hydrocarbon (or

dioxin) receptor (AhR) [278] are the two most relevant. Furthermore, opioid receptors have

also been linked to pain tolerance based on testosterone and oestrogen levels in male and fe-

male rats [279]. The fact that our results reflect known regulatory networks in respect to serum

testosterone validates our approach and provides confidence in further analysis of the rest of the

inferred network.

5.3.4 The Transcriptional Response to Flutamide is Largely Independent

of Testosterone Activity

Having developed a network model and mapped the genes linked to testosterone we set to ad-

dress the key question whether FLU activity could be related to a non-testosterone dependent

mechanism. We reasoned that if this original hypothesis would be correct genes differentially

regulated by FLU would map in a different region of the network, far from the testosterone

target genes. We discovered that the 179, differentially expressed genes (67 up, 112 down-

regulated) were only marginally linked to the testosterone neighbourhood (Figure 5.5). In fact

only 12 genes were in common between the two gene lists (566 genes linked to testosterone).

Moreover, these genes clustered in close proximity to the light-blue module shown in Fig-

ure 5.3A, which was enriched in Gene Ontology terms for translation, inflammatory response
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Figure 5.3: The Network Derived using the Algorithm for the Reconstruction of Accurate
Cellular Networks. A) Colour overlay of six modules present in the overall network. Cyan
and yellow modules were significantly enriched for Gene Ontrology biological processes. B)
Illustration that hub genes tend to be receptor genes (large red nodes) distributed throughout the
network. A large cluster of genes (yellow nodes) are linked to serum testosterone (green node),
whereas serum vitellogenin (blue) has few linked nodes.
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and actin cytoskeleton organisation. This provided further evidence that FLU does not act di-

rectly through a testosterone mediated pathway.

5.3.5 Molecular Networks Involved in Ovary Development in Fathead

Minnow

Our work has shown that impact of FLU is not directly associated to testosterone, which begs the

question what biological process FLU actually interferes with. In order to address this question

we wondered which component, of our network, was enriched in genes regulated during ovary

development and atresia. We therefore first identified 71 genes differentially expressed in during

ovary development (Figure 5.6, Table 5.2). We then asked the question where in our inferred

network these genes would map (Figure 5.7).
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Figure 5.4: Identifying the Neighbourhood of Testosterone. Sub-network Representing the
Relationship between Oestrogen Receptor, Aryl Hydrocarbon (dioxin) Receptor and Opioid
Receptor Expression.
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Figure 5.5: Mapping the Transcriptional Response to Flutamide Exposure. Genes modu-
lated by FLU exposure were mapped onto the overall ARACNE network. The genes cluster in
proximity of module 4 (light-blue in Figure 5.3A) enriched in the GO terms anatomical structure
development, cell motility, and inflammatory response (ES > 1.5).
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Figure 5.6: PCA of the Different Ovary Stages in FHM. At 10% FDR only 71 genes were
identified differentially expressed in at least one of the stages. The AT and PV stages are the
most diverse in this dataset. Initially PV stages must adapt to the VTG stage, here signified
by a change in PC2. From the VTG stage there are two options, mature or follow the artretic
pathway. Artresion can occur at any stage during maturation and hence gene expression changes
up to OE (VTG, MO and AP) are only minimal. Lastly conclusion of the artretic cycle requires
a large change in transcription, here signified by the change in PC1.
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Table 5.2
Probe ID Gene Symbol NR Accession NT Accession NT Description Human Homolog

RefSeq
UF Ppr AF 102714 LOC571170 NP 001030165 NM 001034993 Danio rerio Indian hedgehog homolog a

(ihha), mRNA
NP 000184

UF Ppr AF 107602 BAA92179 AB031424 Cyprinus carpio mRNA for CD45, complete
cds

-

UF Ppr AF 110174 YP 001304555 BC083534 Danio rerio amyloid beta (A4) precursor pro-
tein b, mRNA (cDNA clone MGC:92771 IM-
AGE:7086881), complete cds

-

UF Ppr AF 108239 smyhc1 ABW87635 XR 029314 PREDICTED: Danio rerio similar to slow
myosin heavy chain 1 (LOC100001366),
mRNA

NP 000248

UF Ppr AF 113874 fn1b AAU14809 AY725818 Danio rerio fibronectin 1b (fn1b) mRNA,
complete cds

NP 997643

UF Ppr AF 115536 LOC565021 CAP08005 BR000041 TPA: TPA inf: Danio rerio SN4TDR gene for
4SNc-Tudor domain protein, complete cds

-

UF Ppr AF 112364 nr2f1 NP 571255 BC056574 Danio rerio nuclear receptor subfamily 2,
group F, member 1, mRNA (cDNA clone
MGC:65769 IMAGE:6800668), complete cds

NP 005645

UF Ppr AF 114711 NP 001070182 BC115104 Danio rerio hypothetical protein LOC553426,
mRNA (cDNA clone IMAGE:7434433), par-
tial cds

NP 067544

UF Ppr AF 111699 EDL17202 AB034198 Carassius auratus mRNA for lamin B2, com-
plete cds

-

UF Ppr AF 107084 AAP45037 NM 001024109 Danio rerio protocadherin 1 gamma 9
(pcdh1g9), mRNA

-

Continued on Next Page. . .
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Table 5.2 – Continued
Probe ID Gene Symbol NR Accession NT Accession NT Description Human Homolog

RefSeq
UF Ppr AF 101189 myhz2 NP 694514 AB231798 Cyprinus carpio MYH emb1 mRNA for

myosin heavy chain embryonic type 1, com-
plete cds

NP 060003

UF Ppr AF 109393 igf1 AAT02176 AY533140 Pimephales promelas insulin-like growth
factor-I mRNA, complete cds

NP 000609

UF Ppr AF 108530 atp1b1b NP 571746 BC071293 Danio rerio ATPase, Na+/K+ transporting,
beta 1b polypeptide, mRNA (cDNA clone
MGC:86581 IMAGE:6896300), complete cds

NP 001668

UF Ppr AF 111501 dhcr7 NP 958487 NM 201330 Danio rerio 7-dehydrocholesterol reductase
(dhcr7), mRNA

NP 001351

UF Ppr AF 113974 zgc:109896 NP 001018353 XR 029478 PREDICTED: Danio rerio similar to collapsin
response mediator protein 2 (LOC798555),
mRNA

NP 001377

UF Ppr AF 112335 LOC563708 NP 001076305 NM 001082836 Danio rerio integrin, beta 5 (itgb5), mRNA NP 002204
UF Ppr AF 116141 wu:fc25c04 AAH80223 DQ317971 Danio rerio follistatin-like 2 mRNA, complete

cds
NP 009016

UF Ppr AF 106736 prdm1 NP 955809 DQ851841 Danio rerio PR domain containing 1c
(prdm1c) mRNA, partial cds

NP 001189

UF Ppr AF 105852 zgc:113032 NP 001038671 NM 001045206 Danio rerio si:dkeyp-119b4.5 (si:dkeyp-
119b4.5), mRNA

NP 056344

UF Ppr AF 112702 Q04956 BX649389 Zebrafish DNA sequence from clone DKEY-
28D3 in linkage group 1, complete sequence

-

UF Ppr AF 111504 dlst AAH65943 BC065943 Danio rerio dihydrolipoamide S-
succinyltransferase, mRNA (cDNA clone
MGC:77238 IMAGE:6963253), complete
cds

NP 001924

Continued on Next Page. . .
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Table 5.2 – Continued
Probe ID Gene Symbol NR Accession NT Accession NT Description Human Homolog

RefSeq
UF Ppr AF 104873 ela2 AAH42328 BC042328 Danio rerio elastase 2, mRNA (cDNA clone

IMAGE:3817357), partial cds
NP 254275

UF Ppr AF 109618 paf1l NP 001019619 NM 001024448 Danio rerio myosin, heavy polypeptide 11,
smooth muscle (myh11), mRNA

-

UF Ppr AF 117146 LOC562957 AAI33924 XM 686324 PREDICTED: Danio rerio hypothetical
LOC562957 (LOC562957), mRNA

NP 077304

UF Ppr AF 112068 nqo1 NP 991105 NM 205542 Danio rerio NAD(P)H dehydrogenase,
quinone 1 (nqo1), mRNA

NP 000894

UF Ppr AF 102176 AAI42762 BC142761 Danio rerio sulfotransferase family 2, cytoso-
lic sulfotransferase 2, mRNA (cDNA clone
MGC:165385 IMAGE:8156282), complete
cds

NP 814444

UF Ppr AF 114968 AAI41835 CP000647 Klebsiella pneumoniae subsp. pneumoniae
MGH 78578, complete sequence

NP 001034795

UF Ppr AF 106128 vox AAH92695 AC144824 Danio rerio clone CH211-172M22, complete
sequence

-

UF Ppr AF 100438 nol5a AAT68132 BC075769 Danio rerio nucleolar protein 5A, mRNA
(cDNA clone IMAGE:6900431), partial cds

NP 006383

UF Ppr AF 109131 zgc:113111 NP 001013469 AL954132 Zebrafish DNA sequence from clone DKEY-
32N7, complete sequence

-

UF Ppr AM 119089 AAR22965 NM 213362 Danio rerio epsin 1 (epn1), mRNA -
UF Ppr AF 114278 zgc:103600 NP 001103338 XM 688236 PREDICTED: Danio rerio hypothetical

LOC564918 (LOC564918), mRNA
-

UF Ppr AF 102006 zgc:101812 NP 001004619 NM 001004619 Danio rerio serine/threonine/tyrosine
interacting-like 1 (styxl1), mRNA

NP 057170

Continued on Next Page. . .
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Table 5.2 – Continued
Probe ID Gene Symbol NR Accession NT Accession NT Description Human Homolog

RefSeq
UF Ppr AF 101031 LOC555286 BAA34528 XR 030049 PREDICTED: Danio rerio similar to Thy-

mus high mobility group box protein TOX
(LOC569666), mRNA

NP 055544

UF Ppr AF 109600 flot1b NP 958864 NM 201456 Danio rerio flotillin 1b (flot1b), mRNA NP 005794
UF Ppr AF 100277 derl1 NP 998609 NM 213444 Danio rerio Der1-like domain family, member

1 (derl1), mRNA
NP 077271

UF Ppr AF 112628 lcp1 NP 571395 NM 131320 Danio rerio lymphocyte cytosolic plastin 1
(lcp1), mRNA

NP 002289

UF Ppr AF 107119 dlg7 NP 001004592 NM 001004592 Danio rerio discs, large homolog 7
(Drosophila) (dlg7), mRNA

-

UF Ppr AF 100861 ube1 NP 998227 AB035495 Carassius auratus mRNA for ubiquitin-
activating enzyme E1, complete cds

NP 003325

UF Ppr AF 118166 gna12l AAR25616 BC133071 Danio rerio guanine nucleotide binding pro-
tein (G protein) alpha 12, mRNA (cDNA
clone MGC:158144 IMAGE:6963705), com-
plete cds

NP 031379

UF Ppr AF 115320 zgc:56589 NP 957241 XM 001331559 PREDICTED: Danio rerio hypothetical pro-
tein LOC791759 (LOC791759), mRNA

NP 002632

UF Ppr AF 100723 FBXO9 NP 956012 BC076528 Danio rerio F-box protein 9, mRNA (cDNA
clone MGC:92017 IMAGE:7043937), com-
plete cds

NP 258441

UF Ppr AF 113631 ZP 01834647 BX072578 Zebrafish DNA sequence from clone CH211-
286A10 in linkage group 5, complete se-
quence

-

Continued on Next Page. . .
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Table 5.2 – Continued
Probe ID Gene Symbol NR Accession NT Accession NT Description Human Homolog

RefSeq
UF Ppr AM 119860 BAC05810 BC139644 Danio rerio zgc:136268, mRNA (cDNA clone

MGC:162844 IMAGE:2640944), complete
cds

-

UF Ppr AF 104808 zgc:63716 NP 956141 NM 199847 Danio rerio FXYD domain containing ion
transport regulator 6 (fxyd6), mRNA

NP 071286

UF Ppr AF 107159 atp1a1b P25489 BC085663 Danio rerio ATPase, Na+/K+ transporting,
alpha 1b polypeptide, mRNA (cDNA clone
MGC:92351 IMAGE:7055852), complete cds

NP 000692

UF Ppr AF 101905 slc9a3r2 AAH64290 BC064290 Danio rerio solute carrier family 9
(sodium/hydrogen exchanger), isoform 3
regulatory factor 2, mRNA (cDNA clone
MGC:77629 IMAGE:6996791), complete
cds

NP 004243

UF Ppr AF 118999 sb:cb36 NP 001093576 NM 001100106 Danio rerio Fc receptor, IgE, high affinity I,
gamma polypeptide (fcer1g), mRNA

NP 004097

UF Ppr AF 102886 zgc:114107 NP 001025433 NM 001030262 Danio rerio zgc:110411 (zgc:110411), mRNA NP 001113
UF Ppr AF 101389 cplx2 NP 001002459 NM 001002459 Danio rerio complexin 2 (cplx2), mRNA NP 006642
UF Ppr AF 109406 YP 001253881 CR478288 Zebrafish DNA sequence from clone DKEY-

118K5 in linkage group 15, complete se-
quence

-

UF Ppr AF 112259 YP 356790 NM 131465 Danio rerio l-isoaspartyl protein carboxyl
methyltransferase (pcmt), mRNA

-

UF Ppr AF 104866 zgc:100973 NP 001002740 NM 001002740 Danio rerio elongation factor-2 kinase
(eef2k), mRNA

NP 037434

UF Ppr AF 102888 csenl NP 957113 NM 200819 Danio rerio Kv channel interacting protein 3,
calsenilin, like (kcnip3l), mRNA

NP 038462

Continued on Next Page. . .
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Table 5.2 – Continued
Probe ID Gene Symbol NR Accession NT Accession NT Description Human Homolog

RefSeq
UF Ppr AF 116319 AAI52512 NM 001083050 Danio rerio family with sequence similarity

82, member C (fam82c), mRNA
NP 060615

UF Ppr AF 101077 LOC567275 ABD67515 DQ411318 Cyprinus carpio microsomal glutathione S-
transferase 3 mRNA, complete cds

NP 004519

UF Ppr AF 117736 NP 519492 CT943666 Zebrafish DNA sequence from clone CH73-
83C16 in linkage group 18, complete se-
quence

-

UF Ppr AF 112920 NP 001095148 NM 001101678 Danio rerio lysosomal-associated protein
transmembrane 4 alpha (LOC100003844),
mRNA

NP 055528

UF Ppr AF 112481 zgc:86749 NP 999945 XM 001331734 PREDICTED: Danio rerio hypothetical pro-
tein LOC791970 (LOC791970), mRNA

NP 006414

UF Ppr AF 103711 gclm NP 956139 NM 199845 Danio rerio glutamate-cysteine ligase, modi-
fier subunit (gclm), mRNA

NP 002052

UF Ppr AF 113419 foxd3 AAH95603 BC095603 Danio rerio forkhead box D3, mRNA (cDNA
clone MGC:111934 IMAGE:7432677), com-
plete cds

NP 036315

UF Ppr AF 105534 Trit1 AAI35063 NM 001044774 Danio rerio si:ch211-194e15.1 (si:ch211-
194e15.1), mRNA

NP 060116

UF Ppr AF 102915 LOC560753 NP 705954 BC152271 Danio rerio triosephosphate isomerase 1b,
mRNA (cDNA clone MGC:174772 IM-
AGE:7176806), complete cds

NP 000356

UF Ppr AF 118851 etr1 EDL38737 XM 688633 PREDICTED: Danio rerio similar to Ribonu-
cleoprotein (LOC565354), mRNA

NP 009116

Continued on Next Page. . .
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Table 5.2 – Continued
Probe ID Gene Symbol NR Accession NT Accession NT Description Human Homolog

RefSeq
UF Ppr AF 108780 EAY57363 BX908726 Zebrafish DNA sequence from clone DKEY-

74I2 in linkage group 22 Contains the 5’ end
of the gene for a novel protein similar to ver-
tebrate aryl hydrocarbon receptor family, a
novel gene, the ahr2 gene for aryl hydrocar-
bon receptor 2 and a CpG island, compl

-

UF Ppr AF 101551 CAL51952 XM 001331694 PREDICTED: Danio rerio hypothetical pro-
tein LOC791615 (LOC791615), mRNA

-

UF Ppr AF 107108 cxcl12a NP 840092 AJ627274 Cyprinus carpio mRNA for stromal cell-
derived factor 1a precursor (cxcl12a gene)

NP 001029058

UF Ppr AF 104795 zgc:110080 NP 001025309 CR376839 Zebrafish DNA sequence from clone DKEY-
75G22 in linkage group 2, complete sequence

-

UF Ppr AF 100275 NP 998535 NM 213370 Danio rerio cox4 neighbor (cox4nb), mRNA NP 006058
UF Ppr AF 110335 ppp1cb ABC94584 EF540902 Carassius auratus protein serine/threonine

phosphatase-1 catalytic subunit beta isoform
mRNA, complete cds

NP 002700

UF Ppr AF 109037 LOC560753 ABN80450 AY825430 Lepidomeda aliciae isolate tc14 TPI-B gene,
partial sequence

NP 000356

Table 5.2: Genes Differentially Expressed during Ovary Development. This table shows the
71 genes differentially expressed during ovary development. Annotation has been acquired by
identifying cross species homologs. Human homolog protein refseq IDs are shown in the last
column.
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5.3.6 Flutamide Target Genes Map in Proximity of a Network Module

Linked to Ovary Development

The 71 genes differentially expressed in ovary development all localized in the same area of the

network identified by the genes differentially expressed as a result of FLU exposure (Figure 5.7).

We therefore hypothesised that FLU has the potential to interfere with ovary development via

a non testosterone mediated pathway. This is consistent with the observation by Villeneuve et

al [203] showing that ovary development is impaired in the FHM. When assessing the overlap

between these genes and the FLU regulated genes we find that 18% of the ovary genes (13

genes) are shared. These functionally represent plasma membrane (8 genes), wound healing (4

genes) and cell motility genes (4). To specify the exact mechanism, by which FLU perturbs

ovary development, will require a number of further experiments. However, this study has

shown great potential in the investigation and identification of AOPs using network inference

within a systems biology framework in the field of ecotoxicology.

5.3.7 Ingenuity Analysis of the Flutamide Associated Sub-Network

To further characterize relationship between genes regulated by FLU and formulate hypothesis

on the mechanisms linking FLU exposure and ovary development we performed an ingenu-

ity analysis on the genes in common between the two gene lists. This resulted in one net-

work, which represents the interaction between insulin-like growth factor 1 (IGF1), collagen,

fibronectin (FN1) and hedgehog (SHH) signalling with a number of plasma membrane proteins

involved in solute transport and response to inflammatory signals (Figure 5.8).

5.4 Discussion

5.4.1 A Mechanism for Flutamide AR-independent Toxicity?

Interference of the growth hormone/IGF system has been previously shown to be mediated by

17α − ethinylestradiol (EE2) in tilapia (O. niloticus) [280]. The authors suggested that pertur-

bation of reproductive functions and growth may be mediated by cross talk between sex steroids
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Figure 5.7: Mapping of Differentially Expressed Genes during Ovary Development and in
Response to Flutamide. A) represents where the identified genes, differentially expressed dur-
ing ovary development, localize in our inferred network. B) Addition of the genes differentially
expressed as a result of FLU exposure reveal a sub-network enriched in genes from both lists.
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Figure 5.8: Ingenuity Pathway Analysis of Genes Overlapping between Ovary Develop-
ment and in Response to Flutamide. Genes marked in red and blue are up and down regulated
in response to FLU. Direct and indirect relationships are represented by a continuous and dot-
ted line respectively. Genes with white backgrounds have been added by the ingenuity pathway
analysis algorithm.
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and the IGF-1 system rather than as a direct result [280]. SHH on the other hand has shown

alteration of bone patterning in zebrafish [281] and is associated to various aspects of empry-

onic and adult organ development [282–284]. We therefore hypothesise that the effect of FLU

is directed towards a perturbation effect of IGF-1 signalling pathways including overexpression

of developmental genes such as hedgehogs causing changes in the endocrine system and the

observed reproductive effects. Further, more specific experiments will be needed to specify the

exact mechanism by which FLU acts on FHMs.

5.4.2 Further Developments

Several potential improvements of our approach may be necessary to allow it to be generally

applicably in the ecotoxicological community. Kernel based MI estimation, such as in the

original ARACNE implementation [98], is generally favoured to discretization based methods.

Although, as samples size increase, different MI estimation methods should converge, choosing

the correct methodology is imperative to the success and accuracy of the reverse engineering

approach. The accuracy of MI estimation is however not the only issue in network inference.

One important challenge is the elimination of indirect connections. ARACNE and CLR use

different strategies to achieve this. A systematic comparison may be needed to limit the number

of false positives.

To improve biological interpretation we focused our efforts to only explore receptors, pheno-

typic measurements and their neighbourhoods to identify novel AOPs. In the case of a well

characterized anti-androgen this may be favourable [13, 169]; however, with less defined com-

pounds, a more complete approach may need to be pursued. There are also a number of mod-

ularization techniques available which may be better suited for identifying functional modules

within a regulatory network [101,285–287]. In many cases, these are more sophisticated and in

need of much higher computational effort making them exclusive for the use by computational

biologists, unlike the method described in this chapter.

An additional challenge when working with a non-model species such as FHM and the relatively

large dataset is the biological variability introduced as a result of fish acquisition. Although
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these fish were cultured on an on-site facility at the US EPA Mid-Continent Ecology Division

in Duluth, MN, USA, the genetic variability and subsequent transcriptional differences can pro-

vide analytical difficulties.

Nevertheless, our approach was successful in identifying known regulatory components regard-

ing testosterone biology and identified novel adverse outcome pathways as a result of FLU

exposure.

5.5 Materials and Methods

5.5.1 Comparing MI Estimation Approaches using minet

Mutual information quantifies the information between any given pair of discrete variables by

calculating the dependencies between them. More specifically it is defined as

I(x, y) = S (x) + S (y)S (x − y), (5.2)

where each component is the entropy of an arbitrary variable. For continuous data, such as gene

expression data, the entropy is infinite. To solve this, S (x) can be replaced with the differential

entropy, which averages the log-probability density rather than the log-mass [98] for mutual

information estimation. This in combination with a Gaussian Kernel estimator provides one of

the gold standard techniques in reverse engineering [273].

Discretization

In this application we have the classic definition of MI, which involves discretizing the data

prior to estimating the MI value. More specifically if a continuous random variable is defined

by the interval [a, b], it can be discretized by sorting the data into a pre-defined number of bins.

There are a number of methodologies which address this issue such as Equal Width, Global

Equal Width or Equal Frequency. Both equal width methods are based on discretizing the data

into sub-intervals of equal size. Where the non-global approach considers discretization of each

variable separately, the global methodology discretizes based on the minimum and maximum

value across the whole dataset. On the other hand the equal frequency method tries to partition
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the bins in such as way that for each variable in the datasets each bin has the same number of

data points.

MI Estimation

Estimation of the mutual information is also available in a number of methodologies. Within the

minet package the empirical, Miller-Madow corrected, Shrink entropy or Schurmann-Grassberger

estimator are implemented. More specifically the Miller-Madow correction is an extension of

the empirical, or nave, estimator. The use of a logarithmic function within the empirical es-

timator creates an asymptotic bias which can be easily corrected by adjusting the empirical

entropy. Miller-Madow is often favoured to the nave estimator as it does not add to the compu-

tational cost and reduces bias without changing variance. The Shrink entropy estimator on the

other hand was developed as a combination of two different estimators whose advantages lied

in low variance and low bias. Particularly with small sample sizes the shrink estimator should

provide improved MI estimation. Lastly the Schurmann-Grassberger estimator is based on the

Dirichlet distribution which can be used to estimate the entropy of a discrete random variable.

Its origins lie in Bayesian statistcs where it is used as the conjugate prior of the multinomial

distribution [288].

Network Inference Methodology

Within the minet package three network inference methodologies have been implemented.

These include ARACNE, CLR, and MRNET. ARACNE [98] is based on the data process-

ing inequality which essentially reduces the weakest edge within each triplet given a selected

threshold. CLR [99] on the other hand derives a z-score related to the empirical distribution

of MI values. Finally MRNET [100] infers the network with the use of the maximum rel-

evance/minimum redundancy (MRMR) feature selection method [289, 290]. Fundamentally

each gene is defined as a target for which a variable selection procedure is performed [272].

Comparison of MI Estimation and Discretization Methodologies

We generated MI values using five different approaches (Shrink estimator with equal frequency

(SEF), Shrink estimator with equal width (SEW), Empirical estimator with equal width (EEW),
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Miller-Madow Corrected estimator with equal width (MMW) and Schurmann-Grassberger esti-

mator with equal width (SEW)). We then plotted each pair value against its pearson correlation

value (Figure 5.9). Each MI estimation and discretization procedure provides a varying result.

The empirical as well as the Schurmann-Grassberger estimator both show an increase in MI

score for gene pairs with no linear relationship. In contrast, equal frequency discretization, in-

flates all MI scores across the whole dataset. The Shrink Entropy and Miller-Madow Corrected

Estimator linked to Equal Width result in a comparable shape across the MI space. We chose to

use the MMW approach guided by the fact that the default mi estimator in the minet package is

the empirical estimator and that Miller-Madow corrects its bias.

Figure 5.9: Comparison of Various MI Estimation Techniques Coupled to Discretization
Approaches. MI values computed from the original dataset are represented in red and MI values
derived from a randomized dataset in blue. Equal Freqency discretization increases MI in both
the random and original dataset. Both the empirical and Schurmann-Grassberger Estimators
inflate the MI value with gene pairs with low linear relationships.
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5.5.2 Building and Visualizing the Identified Network

In order to develop molecular networks we combined the 868 gene expression arrays and nor-

malized these using a median centred linked to quantile normalization. In addition we added

information on plasma testosterone and vitellogenin levels. We then standardized the dataset

(mean = 0; sd = 1) using the QuantPsyc R package. We decided to focus on the phenotypic

and receptor genes represented in this dataset (Table 5.1). We hypothesised that these and their

neighbourhoods will play an important role in the context of the response of FHM to FLU. For

each of the receptors we build a network, using our chosen approach (MMW), comprised of all

potential connections to all other genes and measurements. Statistically significant connections

were chosen by calculating an FDR threshold based on MI values derived from a randomized

dataset (MI > 0.3). Individual networks were then merged and visualized using the software

application cytoscape. A force-driven layout was used to change the topology of the graph to

represent the strength of association by the value of MI of each tested pair. Genes with a strong

relationship will therefore appear in close proximity of each other.

Identifying and Annotating Functional Modules

In order to identify molecular subnetworks we utilized the cytoscape plugin MCODE which

searches for highly interconnected regions. To functionally annotate the identified modules we

used human homologs of the FHM genes as an input to the web-service DAVID. Functional

terms were chosen to have an enrichment score (ES) of >= 1.5. The enrichment score is the

overall enrichment given all the members of its class. It is calculated by taking the geometric

mean of the p-values and is therefore representative of a significant enrichment. In this case an

enrichment score of 1.5 equates a p − value < 0.03.

5.5.3 Identifying Differentially Expressed Genes

To identify genes differentially expressed in respect to FLU a one way ANOVA was performed

on the subset of FHM data containing the specific FLU exposure in TMEV [291, 292]. Re-

sulting p-values were corrected by Benjamini & Hochberg [75] false discovery rate correction
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(FDRBH). Genes differentially expressed at 10% FDR were identified and mapped onto the in-

ferred network (Table x). During ovary development a significance analysis of microarrays (as

implemented in TMEV) was applied to identify genes differentially expressed. At 20% FDR

71 genes were differentially expressed (Table 5.2). The resulting list of genes was then mapped

onto the identified network.
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Chapter 6

The Future of Predictive Toxicology: A

Systems Biology Perspective

Animal models have been the focus in toxicity testing for many years. In industry this has pro-

vided a stable base for risk assessment in human health. Traditionally, toxicological assessment

is performed by exposing laboratory animals to relatively high doses of chemicals and accept-

able concentrations in other species, including humans, were inferred by applying uncertainty

and/or safety factors. These factors were meant to represent interspecies differences in sensi-

tivity, metabolism or physiology, and include deviation in environmental variables such as food

intake, air or water properties or general stress of the system (may it be through predators or

additional environmental factors). Such experiments, however, are costly and in many cases do

not provide the relevant information to support human safety assessment [16]. In recent years

a growing interest in alternative approaches in the scientific and industrial community has been

fuelled by societys interest in animal rights, governmental pressure, financial concerns and ad-

vancements of research tools [17]. In this context, predictive toxicology provides a combination

of omics technologies and statistical modelling techniques within a framework for identifying

biomarkers relevant of the studied characteristics.

In 2007 the U.S National Research council (NRC) provided a new paradigm that would achieve

to cover a broad range of chemicals, reduce time and cost, develop robust methodologies and

subsequently reduce the need for animal testing [293]. This would encompass a number of
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computational, molecular and toxicological fields in a collaborative effort to integrate their ex-

pertise. The key to success is the understanding of the biology involved as a result of chemical

exposure. This would lead to the identification of adverse outcome pathways, which provide a

mechanistic basis to exposure.

These systems biology approaches are not novel in other fields of biology. Several stud-

ies have been published where similar methodologies were successfully applied to microbi-

ology [206, 294] or in clinical areas [169, 295, 296]. The pharmaceutical industry is already

implementing some of the in-silico [297] and in vitro [298] ideas to efficiently identify drugs

but has yet to include a systems biology approach [299, 300].

6.1 Open Challenges in Predictive Toxicology

The focus of predictive toxicology in recent years lay in biomarker discovery, identifying groups

of features predictive of phenotypic endpoints. These studies, however, did not provide much

mechanistic insight, such as toxicity or recovery mechanism. It is fundamental for risk assess-

ment or environmental monitoring to understand the underlying biological effect. Furthermore

this should enable simulation of chemical exposure and provide more accurate extrapolation to

other species by including species specific knowledge of physiology and metabolism.

In the strategy proposed by the NRC, high-throughput in vitro assays, ideally in the species of

interest (removing the need for extrapolation), would be carried out and subsequent analysis us-

ing computational methodologies provide extensive knowledge on toxicity pathways [16]. Due

to the low cost of these, a broad range of concentrations, ranging from very low (lower than en-

vironmentally relevant) to high (toxic), could be characterized. This application, however, may

provide additional challenges, especially in industry. Although, a number of in vitro models

have been developed to provide suitable alternatives to animal testing [301, 302] very few of

these have been accepted for regulatory purposes [302, 303]. This reflects the enormous chal-

lenge of representing whole organism physiology, metabolism, and the plethora of cell types in

a single in vitro experimental system. Nevertheless, progress is being made with the inclusion

of pluripotent stem cells with the ability to differentiate into a number of different cell types and

176



even form 3D structures [304].

Most importantly, for these techniques to become generally applicable, in risk assessment and

environmental monitoring, the identified mechanisms, biomarkers or adverse outcome path-

ways have to be translated into a field based monitoring program. Predicting real life scenarios,

while reducing the number of animals and achieving at least comparable prediction accuracy, is

therefore the ultimate aim of these developments in the pharmaceutical and ecotoxicology area.

Assays resulting from this innovation should conform to be: of low economic impact, easy,

minimize the use of expensive instruments and be broadly applicable.

6.2 Current Applications in Systems Toxicology

A number of groups in academia and health agencies have shown that systems biology ap-

proaches can be highly informative and relevant within the context of predictive toxicology.

Most notably are the large scale applications by the U.S. EPA including a number of pro-

grams within the computational toxicology framework CompTox [305], which includes Ex-

poCast [306], ToxCast [22], Tox21 [307] and virtual liver and embryo projects [308,309]. Tox-

Cast, in particular, was a direct response to the NRC report mentioned previously and combines

high throughput screening and computational methodologies to prioritize chemicals for further

toxicological evaluation [22]. Tox21 on the other hand combines several U.S. federal agencies

to develop models for risk assessment. The ultimate goal of this project is to provide activity

profiles for a large number of chemicals which are predictive of in vivo toxicity [307]. Smaller

projects have also shown that characterization of specific areas, such as neuro or hepatotoxic-

ity, can be analysed in a systems biology framework [296, 310, 311]. Slikker et al [311] used

such an approach to build models representative of ketamine exposure in developing rodents,

specifically focusing on neurotoxicity. Craig et al [310] integrated several omics analyses to

characterize Methapyrilene induced hepatotoxicity in rats. In ecotoxicology such application

has only been a very recent development. Large scale efforts include datasets created by the

U.S. Army ERDC to investigate the impacts of endocrine disruptors on ovary tissue in fat-

head minnow [203, 271]. A proof of concept study applying a systems biology approach to
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identify adverse outcome pathways using a preliminary dataset has been demonstrated in this

thesis (Chapter 5, [13]). Other groups such as De Wit et al [312] combined transcriptomics

and proteomics to identify the impact of tetrabromobisphenol-A on zebrafish livers. Previously

noted publications, such as Williams et al [44] and Katsiadaki et al [45], also fall within this

category. Many of these publications utilized non-model species, which can impede biological

interpretation. Among the best examples for a systems biology approach in the field of toxi-

cology employing non-model species has been published by Bundy et al [170]. The authors

focused their efforts on the earthworm Lumbricus rubellus Hoffmeister and characterized the

chronic effect (70 day exposure) to sub-lethal levels of copper. Integration of transcriptomic,

metabolomic and phenotypic endpoints clearly showed changes in oxidative phosphorylation

and carbohydrate use [170]. This shows that species heterogeneity is a particular issue in eco-

toxicology. The animals sampled from the environment may react according to their genetic

make-up, showing different responses relating to their geographical location or previous expo-

sure. On the other hand, heterogeneity may provide the biological variation needed to develop

a generalized assay, which would be applicable across a number of environments. Working

with environmental samples can also bring additional problems. Finding samples, capturing

and retrieving these back to the laboratory without causing too much external influence (stress

response, change in environment etc.) can be difficult.

6.3 Predictive Toxicology in the 21st Century

The very recent application of systems biology approaches in the field of ecotoxicology tells us

that despite the difficulties of working with non-model species useful information on adverse

outcome pathways can be obtained. Within this thesis we have provided further evidence to

strengthen this approach by integrating mainly transcriptomics and QSAR analyses (Chapter 2,

4), developing predictive models of toxicity, as measured by LC50 (Chapter 4), or chemical

class (Chapter 3) all within integrating pathway information to facilitate biological interpreta-

tion. We discussed the relevance of the results in context of the environmental stressors and

provided speculations on potential general mechanisms which may be shared between the rat
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and waterflea. In most cases our results provided important links between already existing

knowledge and showed that pathway-level analyses with non-model species is one way to suc-

ceed in identifying the impact of chemicals on biological species. Finally, we demonstrated,

within a proof of concept study, the advantages of reverse engineering in identifying novel ad-

verse outcome pathways (Chapter 5). This secondary approach is particularly advantageous

when large datasets are available. The take-home-message from this work is that to succeed

in preventing ecological disasters, identifying exogenous compounds in the environment and

chemical risk assessment, a more forward approach to toxicity testing is needed. This en-

compasses utilizing the systems biology toolbox, integrating different technologies, including

model and non-model species alike and most importantly derive mechanistic biomarkers which

are relevant to the phenotypic outcome.

6.4 Translating Mechanistic Biomarkers into Safety Assess-

ment

The ultimate goal of the work presented, is the development of predictive assays which can be

applied to real life scenarios. As mentioned earlier, these need to possess a number of charac-

teristics to become successful. Most importantly, industrial standards need to be met to become

a viable alternative. In most cases this means validating the developed assay across a number

of laboratories with a large selection of chemicals and then showing that inter-laboratory vari-

ation is at a minimum while preserving high sensitivity and specificity. In addition to these

requirements, the assay should be easily applied (ideally even by untrained staff), be economi-

cal in production and acquisition, and be easily implemented into current protocols. While the

above features should be maintained a closely as possible it should be noted that the perfect

should not be the enemy of the good. In fact rapid advances are already made in implementing

stem-cell biology [313] and computational modelling of cellular response pathways [314, 315]

into viable systems. This and the recent development of easily scalable high data content as-

says for cellular responses [316] show the field is progressing fast towards an improved toxicity

testing approach. Within this PhD, we also ventured into developing a stem cell based predic-

179



tivity toxicology approach. In our initial analysis we compared the transcriptional response of

fibroblasts derived from three different tissues (Skin, Bone Marrow, Synovium) in the context

of a abnormal wound healing response in rheumatoid and osteoarthritis. Furthermore, we are

also endeavouring towards an ecotoxicology approach to water quality assessment (see next

section).

6.5 Translating Systems Ecotoxicology into Environmental

Monitoring

To further expand our work in D. magna we have applied for a Natural Environment Research

Council (NERC) grant to focus on the development of a systems biology approach to water

quality assessment. This proposal has been funded with me as a named candidate and is set to

commence in the beginning of 2012. In the following sections I describe the overall strategy

behind this study.

6.5.1 Overall Aim and Objective

The aim of this project is to pioneer a combination of advanced compoutational modelling tech-

niques to identify adverse outcome pathways and evaluate their potential as a predictive tool in

toxicity assessment. The projects involves characterizing the response of D. magna to expo-

sure of a number of environmentally and industry relevant chemicals utilizing transcriptomics,

metabolomics, lipidomics and several physiological endpoints. These are the overall project

objectives:

1. Acquire datasets representative of the molecular and physiological responses of D. magna

to priority substances within the Water Framework Directive.

2. Develop computational models representing adverse outcome pathways that link physi-

ology to molecular responses to chemical exposure.

3. In collaboration with the Environmental Agency, validate the predictive power of the

molecular biomarkers identified in objective 2 for their ability to predict complex expo-

sure patterns from chemically defined mixtures and environmentally sampled waters with
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different degrees of contamination.

6.5.2 A new Vision for Biomarker Discovery

The current 1st generation use of biomarkers in environmental monitoring has been limited.

The difficulty is that the current set of biomarkers, such as induction of CYP1A, vitellogenin,

metallothionein, is limited to specific types of exposures and lacks a strong link between ex-

posure and biological effect. We propose that moving away from single biomarkers and em-

ploying a battery of indicators, related to AOPs, can overcome this. Even relatively simple

transcriptomic profiles have been able to distinguish between the biological MOAs of chem-

icals (e.g. genotoxic versus non-genotoxic carcinogens [7]), and similarly for metabolomics

studies of toxicant MOAs in D. magna [171]. In the clinical setting such profiles are allow-

ing improved diagnosis and prognosis; e.g. Mammaprint that offers a DNA microarray-based

in vitro analysis to predict the likelihood of tumour recurrence [317]. Added to these suc-

cesses, we have shown in a species of ecotoxicology relevance that it is possible to successfully

identify sub-networks whose activity was predictive of environmental exposure and linked to

organism health indicators (see Chapters 3–5). Thus we are now poised to be able to develop

2nd generation biomarkers, derived from omics and computational studies, that will be linked to

health, non-biased in discovery, mechanistically based and applicable to simple targeted assays.

Any successful environmental biomarker discovery program needs to be developed in close in-

teraction with regulatory authorities. We have been engaged in extensive knowledge transfer

activities to integrate such strategies into the thinking and ultimately the practice of regulators.

In close interaction with the EA we will provide proof of concept studies, exposing D. magna

to waters of known contaminants with known environmental impact. We wish to apply the AOP

determined in this project to targeted assays based on quantitative PCRs and targeted metabolite

measurements. Ultimately these targeted assays can be converted to high-throughput and thus

be readily employed in environmental monitoring. The ultimate assays will concur with the 5Rs

of Reproducibility, Representative, Responsive, Robust and Relevant that are key requirements

of monitoring techniques [318].
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Appendix A

Publications

Below I present you the list of publications to which I contributed to during my PhD. I have

highlighted publications in red where my involvement played a major role towards the publica-

tion.

A.1 In Preparation

A.1.1 First Author Papers

1. Antczak P*, Filer A*, Parsonage G, Leguault H, OToole M, Pearson M, Thomas AMC,

Scheel-Toellner D, Raza K, ONeill L, Salmon M, Buckley CD, Falciani F. Characteri-

zation of the Serum Response Programme in Rheumatoid and Osteoarthritis (Advanced

Manuscript write-up status) (* Authors contributed equally)

Author Contribution: This paper reports the results of a project I initiated at the begin-

ning of my PhD, before I shifted to predictive toxicology. The aim of the project was to

identify molecular signatures associated to wound healing and predictive of disease. My

role in this publication was to conceive the analysis strategy and defines the questions. I

then performed all analysis and wrote the paper with input from collaborators.

2. P. Antczak, J. Hun, L. Scandlan , M. Viant, C. Vulpe, F. Falciani A Pathway-based Ap-

proach to Predictive Toxicology in the crustacean Daphnia Magna (Advanced Manuscript

write-up status)
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3. P. Antczak, T. White, C. Vulpe, F. Falciani Towards a Systems Biology approach to chem-

ical class prediction in Daphnia Magna (Advanced Manuscript write-up status)

Author Contribution: The two papers above are the result of an on-going collaboration

with Chris Vulpe who shared a large transcriptomics dataset derived from D. magna ex-

posures with us to perform a rigorous bioinformatics analysis. The aim of this dataset

was to identify whether D. magna transcriptional response is predictive of chemical ex-

posure and whether such a system would be more effective in water quality assessment. I

therefore performed an in-depth analysis of this data using a number of techniques which

resulted in these 2 interesting stories (Chapters 3 and 4 of my thesis). I then wrote the

papers and revised it with the help of collaborators.

A.2 Published

A.2.1 First Author Papers

4. P. Antczak, F. Ortega, J.K. Chipman, F. Falciani. Mapping Drug Physico-Chemical Fea-

tures to Pathway Activity Reveals Molecular Networks Linked to Toxicity Outcome. PloS

one 5(8): 580-588. 2010.

Author Contribution: Fernando Ortega initially developed the proof of concept study for

this publication. I have taken his ideas and expanded these and applied this to a dataset

representing renal tubular degeneration as a result of exposure. I packaged the paper and

developed it for publication with the help of JK. Chipman and F Falciani. This paper is

part of my thesis and is discussed in chapter 2.

5. P. Antczak*, F. Soulet*, W.W. Kilarski*, J. Herbert, R. Bicknell, F. Falciani, A. Bikfalvi.

Gene signatures in wound tissue as evidenced by molecular profiling in the chick embryo

model. BMC Genomics 11(1): 495. 2010. (* Authors contributed equally)

Author Contribution: This particular project was at the very beginning of my PhD, before

I worked on predictive toxicology and the wound healing project described earlier. In fact
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the RA/OA project was initiated as a result from the analysis that I performed on a set of

data acquired by F. Soulet and W. Kilarski in A. Bikfalvi group. I performed the bioin-

formatics analysis to identify functions which provided insight into the wound healing

model of the CAM in chicken embryos. This particular system is devout of immunocom-

petent cells and so provides an interesting insight into wound healing by chemokines only.

A.2.2 Work in Collaboration

6. H. Lin, J. Halsall, P. Antczak, L. ONeill, F. Falciani, B. Turner. Up-regulated expression

of X-linked genes in mouse embryonic stem cells is consistent with Ohnos hypothesis.

Nature Genetics (In-Press)

Author Contribution: Prof. Bryan Turner approached F.Falciani and me to help in per-

forming a robust statistical analysis of the data that was generated in Prof Turners group.

I analysed the data to show that genes present on the x-chromosome are up-regulated to

be consistent with Ohnos hypothesis.

7. V. Trevino, M. G. Tadesse, M. Vannucci, P. Antczak, S. Durant, F. Al-Shahrour, J.

Dopazo, M. J. Campbell and F. Falciani. Analysis of Normal-Tumour Tissue Interac-

tion in Solid Tumours: Prediction of Prostate Cancer Features from the Molecular Profile

of Adjacent Normal Cells. PloS one 6(3): e16492 2011

Author Contribution: In this study, we needed to validate the up-regulation of pro-metastatic

chemokines CX3CL1 and CCL20 as a result of IL-1 induction. S. Durant, our technician,

and I provided support by performing the experiment to validate this hypothesis. I anal-

ysed the results and provided F. Falciani with the necessary figures.

8. E. J Perkins, J.K. Chipman, S. Edwards, T. Habib, F. Falciani, R. Taylor, G. Van Aggelen,

C. Vulpe, P. Antczak, A. Loguinov. Reverse Engineering Adverse Outcome Pathways.

Environmental Toxicology and Chemistry 2010

Author Contribution: Data generated by the US EPA was provided to show the effective-
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ness of reverse engineering of adverse outcome pathways in ecotoxicology. I provided

computational support in normalization and analysis of the data. The full analysis was

not published in this review, but is shown in Chapter 5 of my thesis.

9. N.A. Burton, M.D. Johnson, P. Antczak, A. Robinson and P.A. Lund. Novel aspects of

the acid response network of E. coli K-12 are revealed by a study of transcriptional dy-

namics. Journal of Molecular Biology 2010.

Author Contribution: P.A. Lund approached me to provide support in analysing some of

the data created by N.A. Burton. I produced several clustering figures representing the

dynamics of several promoters in related mutants (mainly Figure 7c in the paper).

10. K. Sameith, P. Antczak, E. Marston, N. Turan, D. Maier, T. Stankovic, F. Falciani. Func-

tional modules integrating essential cellular functions are predictive of the response of

leukaemia cells to DNA damage. Bioinformatics 24(22): 2602-2607. Nov 2008.

Author Contribution: This is my first paper for which I provided some support in the

analysis of the data. I also reformatted and corrected the manuscript where indicated by

the reviewers.

11. R. Gupta, A. Stincone, P. Antczak, S. Durant, R. Bicknell, A. Bikfalvi, F. Falciani. A

Computational Framework for Gene Regulatory Network Inference that Combines Mul-

tiple Methods and Datasets. BMC Systems Biology 5(1): 52 2011

Author Contribution: The method itself was implemented and validated by R. Gupta. I

contributed heavily to the processing and analysis of the experimental data before this

new method was applied.

12. A. Stincone, N. Daudi, A. Rahman, P. Antczak, I. Henderson, J. Cole, M. Johnson, P.

Lund, F. Falciani. A systems biology approach sheds new light on Escherichia coli acid

resistance. Nucl. Acids Res. 39 (17), 7512-7528.

Author Contribution: I helped A. Stincone with the analysis and interpretation of the data.
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13. Mura M, Swain RK, Zhuang X, Vorschmitt H, Reynolds G, Durant S, Beesley JF, Her-

bert JM, Sheldon H, Andre M, Sanderson S, Glen K, Luu NT, McGettrick HM, Antczak

P, Falciani F, Nash GB, Nagy ZS, Bicknell R. Identification and angiogenic role of the

novel tumor endothelial marker CLEC14A. Oncogene 2011 doi: 10.1038/onc.2011.233.

Author Contribution: I provided bioinformatics support during the analysis of this project.

I also provided experimental support for S. Durant who was running some of the microar-

rays.

14. S Moro, JK Chipman, P Antczak, N Turan, W Dekant, F Falciani, A Mally. Identification

and pathway mapping of furan target proteins reveal mitochondrial energy production and

redox regulation as critical targets of furan toxicity Toxicological Sciences 2012

Author Contribution: To help with the identification of specific groups of proteins identi-

fied by the authors approach, I analysed their proteins by their domains and grouped them

accordingly using a modified EASE score.
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tification of structure-activity relationships for adverse effects of pharmaceuticals in hu-
mans: Part C: Use of QSAR and an expert system for the estimation of the mechanism of
action of drug-induced hepatobiliary and urinary tract toxicities. Regulatory toxicology
and pharmacology. 2009;54(1):43–65.

[105] Sanderson D, Earnshaw C. Computer prediction of possible toxic action from chemical
structure; the DEREK system. Human & experimental toxicology. 1991;10(4):261.

[106] Cariello NF, Wilson JD, Britt BH, Wedd DJ, Burlinson B, Gombar V. Comparison of the
computer programs DEREK and TOPKAT to predict bacterial mutagenicity. Mutagene-
sis. 2002;17(4):321.

[107] Wiener H. Structural determination of paraffin boiling points. Journal of the American
Chemical Society. 1947;69(1):17–20.

194



[108] Randic M. Characterization of molecular branching. Journal of the American Chemical
Society. 1975;97(23):6609–6615.

[109] Balaban AT. Highly discriminating distance-based topological index. Chemical Physics
Letters. 1982;89(5):399–404.

[110] Schultz HP. Topological organic chemistry. 1. Graph theory and topological indices of
alkanes. Journal of Chemical Information and Computer Sciences. 1989;29(3):227–228.

[111] Kier LB, Hall LH. Derivation and significance of valence molecular connectivity. Journal
of Pharmaceutical Sciences. 1981;70(6):583–589.

[112] Gálvez J, Garcia R, Salabert M, Soler R. Charge indexes. New topological descriptors.
Journal of Chemical Information and Computer Sciences. 1994;34(3):520–525.
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