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Abstract

This thesis studies the risk-sensitive control problem for a class of non-linear
stochastic systems and its financial applications. The nonlinearity is of the square-
root type, and is inspired by applications. The problems of optimal investment
and consumption are also considered under several different assumptions on the
stochastic interest rate and stochastic volatility.

At the beginning, we systematically investigate the nonlinearity of risk-sensitive
control problem. It consists of quadratic and square-root terms in the state. Such
an optimal control problem can be solved in an explicit closed form by the comple-
tion of squares method. As an application of the risk-sensitive control in financial
mathematics, the optimal investment problem will be described in the Chapter
4. A new interest rate, which follows the stochastic process with mixed Cox-
Ingersoll-Ross (CIR) model and quadratic affine term structure model (QATSM)
is introduced. Such an interest rate model admits an explicit price for the zero-
coupon bond.

In Chapter 5, we consider a portfolio optimization problem on an infinite time
horizon. The stochastic interest rate consists not only of the quadratic terms, but
also of the square-root terms. On the other hand, the double square root process
is also introduced to establish the interest rate model. Under some sufficient
conditions, the unique solution of the optimal investment problem is found in an
explicit closed form. Furthermore, the optimal consumption problem is considered
in Chapter 6 and 7. It can be solved in an explicit closed form via the methods of
completion of squares and the change of measure. We provide a detailed discussion
on the existence of the optimal trading strategies. Such trading strategies can be
deduced for both finite and infinite time horizon cases.
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Chapter 1

Introduction

1.1 Introduction
A short literature review on the risk-sensitive control and optimal investment

problems is given. We also indicate the main contributions of the thesis.

1.2 Risk-sensitive control
The risk-sensitive control problem was introduced by Jacobson [25] in 1973.

He considered linear stochastic systems with additive Gaussian noise, and mini-
mized the expectation of the exponential of quadratic cost. Assuming full state
observation, Jacobson gave the complete solution to this problem, with the opti-
mal control being in a linear state-feedback form. He also considered the discrete
time version of this problem. For continuous-time systems with partial observa-
tion, Bensoussan and Van Schuppen [3] in 1985 obtained the complete solution,
whereas Whittle [52] solved the discrete-time partial observation problem (see
also [53]). A connection between the risk-sensitive control and robust control was
found in 1988 by Glover and Doyle [20]. For an infinite horizon criterion and a
class of nonlinear systems, the reader can refer to Fleming-McEneaney’s paper
[16] and James’s paper [26]. A connection with dynamic games can be found
in [41].

In the recent paper [12], Date and Gashi generalised the risk-sensitive control
problem by introducing a more general criterion. Such a criterion has a noise
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dependent penalties on the state and control variables. A further more general
risk sensitive control problem was considered in Date and Gashi [11], where the
system state is extended to include certain quadratic nonlinearities in the state
and control, as well as a multiplicative noise. This is an important extension of
the linear risk-sensitive control that preserves the explicit closed-form solution of
the problem.

1.3 Optimal investment and consumption
Investor’s optimal portfolio problem is to choose the optimal investment and

consumption strategies so as to maximize the utilities from terminal wealth and
consumption. This problem has a long history beginning with the work of Markowitz
[36], [37], where the mean-variance portfolio selection was introduced. This is a
one-step discrete-time portfolio model. The continuous-time portfolio problem
was introduced by Merton [38], [39]. He obtained an explicit solution to the
continuous-time portfolio problem for several different utility functions and using
the methods of stochastic control. Since then, there has been a great progress on
this problem, with the aim of considering more general market models and util-
ity functions. If the market coefficients are bounded, then the optimal portfolio
problem is largely solved under different settings (see, for example, the textbook
accounts of Korn [29], and Karatzas and Shreve [28]). However, the assumption of
bounded market coefficients can be too restrictive in some models. This is usually
the case when the model for the market coefficients, such as the interest rate and
the volatility, are given as solutions to stochastic differential equations, which are
unbounded processes in general. This means that the methods of solving the opti-
mal portfolio problem as given in [29], [28], no longer apply in this case. Moreover,
such unbounded processes include the typical models of interest rates, such as the
Vasicek model or the CIR model. Hence, other methods need to be developed to
deal with these situations. In [5], [6], [21], [32]), it is shown that the optimal
portfolio problem under a stochastic interest rate can be interpreted as a risk-
sensitive control problem. Korn and Kraft [30] gave the solution to the optimal
investment problem with the Vasicek interest rate model, and Zariphopoulou [55]
connected it with the consumption problem. Deelstra, Grasselli and Koehl [13]
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investigated the case of an interest rate model given by a square-root process. In
Date and Gashi [11], a new quadratic affine term structure model (QATSM) of
interest rate is introduced.
Despite this progress, there remain many interesting market models for which
the optimal portfolio problem has not been solved. In this thesis, we consider
several such market models which have an unbounded interest rate, and solve the
corresponding optimal control problems by the methods of risk-sensitive control.

1.4 The main contributions
• Compared with Date and Gashi’s work in [11], the risk sensitive control

problem is further extended in this thesis (see Chapter 3). It contains ad-
ditional nonlinear components of the state, which are represented by the
square-root processes. In Fei and Gashi’s work [15], the scalar case of this
problem is solved. A limitation of this study is that the admissibility of the
proposed optimal control is only assumed rather than proved. In this chap-
ter we provide such a proof and extend the results to multi-dimensional
square-root process. The key aspect of this chapter is that the explicit
closed-form solvability has been preserved. In addition, a generalised crite-
rion of risk-sensitive control is proposed, where noise dependent penalty of
state and control variables is included. The solution is obtained explicitly
by the change of measure approach.

• An extension of Merton’s portfolio model has been proposed in this thesis
(see Chapter 4, 5, 6, 7). All the interest rates described in this thesis can
be unbounded processes, which is not the case with most of the existing
literature where the interest rate is assumed to be bounded (see, e.g., [29]
and [28]). In [30], [55], [13], [11], the portfolio problem with a possibly
unbounded interest rate is considered. In [11] the authors introduce a new
interest rate model of the quadratic-affine form, and propose an extension
of the Merton’s optimal investment problem with exponential utility. In
Chapter 4, we extend their work. A new nonlinear interest rate model, which
follows a stochastic process as a combination of the square-root process and
the multi-dimensional quadratic-affine term structure model, is introduced.
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Furthermore, the mean rates of return µ(t) are established in a more general
form. The price of a zero-coupon bond is also obtained.

• An important stochastic interest rate model is the one introduced by Longstaff
[34] (also called the double square-root process). A special case of our results
in Chapter 5 is the problem of optimal investment under such an interest rate
model, and appears that this by itself is new. In that chapter, we consider a
further more general interest rate model, and solve the optimal investment
problem in an infinite horizon for the power and logarithmic utilities. In
Chapter 6 we solve the optimal investment and consumption problem un-
der the assumption that not only the interest rate but the volatility as well
follows the Longstaff model.

• Yong in [54] pointed that some care is needed when dealing with the op-
timal investment problems in a market with a CIR model for the interest
rate. In Chapter 4, we give a detailed discussion on the existence of the
optimal trading strategies for the CIR interest rate model. Furthermore, an
extension of Yong’s work to multi-dimensional square-root process is given
in Chapter 3.

• Chapter 7 gives an extension to Merton’s optimal consumption problem in
an infinite horizon with a discounted criterion [39]. This problem for the
Vasicek interest rate model was considered in [45], [44], [42]. The novelty in
this chapter is to use a quadratic-affine interest rate model. The problem
for the logarithmic utility is solved.

1.5 Summary
The results of this thesis should be of interest to individuals working in both

risk-sensitive control and mathematical finance. From the control theory point
of view, a class of nonlinear stochastic systems is considered for which the risk-
sensitive control problem has an explicit solution. The importance of this class of
control problems is illustrated with applications to mathematical finance. From
the mathematical finance point of view, the thesis introduces several interest rate
models, and solves the problems of optimal investment-consumption and bond
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pricing. A feature that runs throughout the thesis is that explicit closed-form
solutions are obtained in all cases.
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Chapter 2

Preliminaries

2.1 Introduction
We review some basic results from the risk-sensitive control and mathematical

finance. This includes the basic risk-sensitive control problem, the market model
and the self-financing trading strategy, the arbitrage in the market, the optimal
investment and consumption problem, and two nonlinear stochastic processes.
We also include some useful lemmas and theorems which will be used in the later
chapters.

2.2 Risk sensitive control
Let (Ω,F , (Ft)t≥0,P) be a complete filtered probability space, and w1(·), w2(·),

w3(·) be three independent n-dimensional standard Brownian motions . We define
Ft = σ{w(s); 0 ≤ s < t} to be the natural filtration augmented by all P-null sets
of F , where w(·) = [w1(·), w2(·), w3(·)]′.

We begin with the optimal control problem introduced by Jacobson [25] in
1973.

Consider the linear stochastic control system:
dx1(t) = [A1x1(t) +B1u(t)] dt+

n∑
j=1

C1jdw1j(t),

x(0) = x0,

(2.1)
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and the risk-sensitive cost functional:

J̄(u(·)) = γE
{
exp

[
γ

2
x′(T )Sx(T ) +

γ

2

∫ T

0

[
x′(t)Q̃x(t) + u′(t)P̃ u(t)

]
dt
]}

.

(2.2)
Here x(t) is the states of the system, and the given data are known:

A1, S ∈ Rn1×n1 , 0 ≤ Q̃ ∈ Rn1×n1 B1 ∈ Rn1×m,

0 < P̃ ∈ Rm×m 0 ̸= γ ∈ R, C1j ∈ Rn1 , j = 1, · · · , n.

The control process u(·) is assumed to be square integrable, i.e.

E
[∫ T

0

u′(t)u(t)dt
]
< ∞,

and this ensures (2.1) has a unique solution. The control problem is to find an
optimal u(t) that minimises (2.2) subject to (2.1). Date and Gashi in [11] extend
(2.1) by introducing a more general system which has quadratic terms in x1(t)

and u(t):

dx2(t) = [A12x1(t) + A22x2(t) +D (x1(t), u(t)) +B12u(t)] dt

+
n∑

j=1

[A3jx1(t) + B2ju(t) + C2j] dw1j(t),

x2(0) = x20

(2.3)

where A12, A3j ∈ Rn2×n1 , A22 ∈ Rn2×n2 , B12, B2j ∈ Rn2×m, C2j ∈ Rn2 are known
constants. The vector D (x1(t), u(t)) is defined as

D (x1(t), u(t)) =



x′
1(t)Q1x1(t) + u′(t)R1x1(t) + u′(t)P1u(t)

x′
1(t)Q2x2(t) + u′(t)R2x2(t) + u′(t)P2u(t)

...

x′
1(t)Qn2x1(t) + u′(t)Rn2x1(t) + u′(t)Pn2u(t)


,
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where
Q1, Q2, · · · , Qn2 ∈ Rn1×n1

R1, R2, · · · , Rn2 ∈ Rm×n1

P1, P2, · · · , Pn2 ∈ Rm×m,

and Qj, Pj, j = 1, · · · , n2 are symmetric matrixes. We define the matrices Q,R, P

as

Q :=


Q1

Q2
...

Qn2

 , R :=


R1

R2
...

Rn2

 , P :=


P1

P2
...

Pn2

 .

They also extend the criterion (2.2) by introducing a penalty on the state
x2(t):

J(u(·)) = γE
[
exp

{
γ

2
x′
1(T )Sx1(T ) +

γ

2

∫ T

0

[
x′
1(t)Q̃x1(t) + u′(t)P̃ u(t)

]
dt

+
γ

2

∫ T

0

[
L′
1x1(t) + L′

2x2(t) + L′
uu(t) + u′(t)R̃x1(t)

]
dt

+
γ

2
S ′
1x1(T ) +

γ

2
S ′
2x2(T )

}]
, (2.4)

The given data are:

S, Q̃ ∈ Rn1×n1 , P̃ ∈ Rm×m, R̃ ∈ Rm×n1 , L1, S1 ∈ Rn1

L2, S2 ∈ Rn2 , Lu ∈ Rm.

They solve the optimal control problem of minimising (2.4) subject to (2.1) and
(2.3). The optimal control is obtained as an affine function of the state x1(t) in
a explicit closed form (see Theorem 1 in Date and Gashi [11]). Further extension
of the Date and Gashi’s work will be described in Chapter 3 in detail.

2.3 Formulation of market model and self-financing
strategies

We consider a financial market consisting of a risk-free asset, which is a bond
or a bank account, and n risky assets, which are the stocks. Denote the price of a
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bond by S0(t) with the interest rate being r(t), and the price of stock i by Si(t),
i = 1, . . . , n. We assume the equations of these prices to be as follows (see, e.g.,
section 2.1 in Korn [29]):

dS0(t) = S0(t)r(t)dt

S0(0) = S00,
(2.5)


dSi(t) = Si(t)

(
µi(t)dt+

m∑
j=1

σij(t)dwj(t)

)

Si(0) = Si0,

(2.6)

where the vector µ(t) ∈ Rn×1, µ(t) = [µ1(t), . . . , µn(t)]
′ is the mean rate of return,

and the vectors σi(t) ∈ R1×m, σi(t) = [σi1(t), . . . , σim(t)] are the volatilities. Here
w(t) ∈ Rm×1, w(t) = [w1(t), . . . , wm(t)]

′ is an m-dimensional Brownian motion,
defined on a given complete probability space (Ω,F ,P) with the natural filtration

Ft = σ{w(s); 0 ≤ s ≤ t}, F = FT .

The following definitions are given in[29]:

Definition 2.3.1. Let T > 0 be fixed (the “time horizon”)
i) A trading strategy is an Rn-valued, Ft-adapted process v(t), t ∈ [0, T ], with∫ T

0

|v0(t)|dt < ∞ a.s.,

n∑
i=1

m∑
j=1

∫ T

0

(
vi(t)Si(t)σij

)2

dt < ∞ a.s..

ii) Let v be a trading strategy. The process

y(t) :=
n∑

i=0

(
vi(t)Si(t)

)
is called the wealth process (”value of the current holdings”) corresponding to v.
y(0) is called the initial wealth.
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iii) A non-negative, adapted process c(t), t ∈ [0, T ], with∫ T

0

c(t)dt < ∞ a.s.

will be called a consumption rate process.
iv) A pair (v, c) consisting of a trading strategy v and a consumption process c

will be called self-financing if the wealth process y(t) corresponding to v satisfies

y(t) = y(0) +
n∑

i=0

∫ t

0

vi(s)dSi(s)−
∫ t

0

c(s)ds, ∀t ∈ [0, T ].

We only consider the self-financing trading in this thesis. That is to say, apart
from the consumption at time t, the wealth before any action at time t should be
the same with the wealth after this action at time t. We first look at the discrete
time example (see Karatzas et. al. [27]):

Example 2.3.1. Let the bond and stocks with prices be S0(τ), S1(τ) at time τ ,
τ = 0, . . . , n. Let c(τ) be the consumption at time τ and v0(τ), v1(τ) be the trading
strategy. We assume that the investor trades in a self-financing way. There exists
an equation:

y(τ) = v0(τ)S0(τ) + v1(τ)S1(τ)

= v0(τ − 1)S0(τ) + v1(τ − 1)S1(τ)− c(τ)

= v0(τ − 1)[S0(τ)− S0(τ − 1)] + v1(τ − 1)[S1(τ)− S1(τ − 1)]

−c(τ) + v0(τ − 1)S0(τ − 1) + v1(τ − 1)S1(τ − 1)
...

= y(0) +
τ∑

j=1

[
v0(j)∆S0(j) + v1(j)∆S1(j)

]
−

τ∑
j=1

c(j),

where ∆Sk(τ) = Sk(τ)− Sj(τ − 1), k = 0, 1.

Then the continuous-time analogue of Example 2.3.1 is

dy(t) =
n∑

i=0

vi(t)dSi(t)− c(t)dt. (2.7)
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And the consumption C(t) is the integral of consumption rate c(t),

C(t) =

∫ t

0

c(s)ds.

We substitute (2.5) and (2.6) into (2.7), and deduce

dy(t) = v0(t)S0(t)r(t)dt+
n∑

i=1

vi(t)Si(t)[µi(t)dt+ σi(t)dw(t)]− c(t)dt

=
{
r(t)y(t) + u′(t)[µ(t)− r(t)1]− c(t)

}
dt+ u′(t)σ(t)dw(t).

Here ui(t) = vi(t)Si(t), i = 1, . . . , n, u(t) = [u1(t), . . . , un(t)]
′ is the control pro-

cess, which is the amount of wealth invested in the stock market; and 1 is a vector
of ones,

1 = [1, . . . , 1︸ ︷︷ ︸
n

].

2.4 No arbitrage of the market
We first give a definition of arbitrage (see Definition 12.1.3 in Øksendal [43]).

Definition 2.4.1. An admissible portfolio θ(t) is called an arbitrage (in the market
{Xt}t∈[0,T ]) if the corresponding value process V θ(t) satisfies V θ(0) = 0 and

V θ(T ) ≥ 0 a.s. and P[V θ(T ) > 0] > 0.

In other words, we can say that an arbitrage is a transaction which begins
with zero capital and later has an increase in the value with positive probability
without any risk of loss [50]. However, in our model of financial market, we only
consider the situation with no arbitrage. In other words, it means having an
equivalent martingale measure for the market(2.5)-(2.6). Furthermore, from I.
Karatzas and S. E. Shreve [28], if there exists a market price of risk process ϕ(t),
that satisfies the following two conditions:

µ(t)− r(t) = σϕ(t)

E[e−
∫ T
0 ϕ(t)′dw(t)− 1

2

∫ T
0 |ϕ(t)|2dt] = 1,

(2.8)

an equivalent martingale measure exists.
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2.5 Optimal investment and consumption
Let y(t) be the wealth process of an investor who has the initial wealth y0 > 0.

The problem of optimal investment and consumption is to choose some reasonable
values of the control u(t) and consumption rate c(t) to maximize the criteria. For
the finite time horizon case, the most popular criterion is

J(y;u, c) := E

[∫ T

0

U1

(
t, c(t)

)
dt+ U2

(
y(T )

)]
,

where U1(·) and U2(·) are utility functions. In [29] and [27] this optimization
problem with bounded interest rate is considered. However, in this thesis, we
focus on the unbounded interest rates, which follow nonlinear stochastic differential
equations.

For the infinite time horizon case, the following is the typical criterion:

E

[∫ ∞

0

e−ρtU
(
c(t)
)
dt
]
,

where ρ is a positive constant.
With different utility functions, an investor could have different attitudes to-

wards the risk. Assuming a twice continuously differentiable utilities, we have:
if U”(x) > 0, then the investor is risk-seeking; if U”(x) = 0, the investor is
risk-neutral; and if U”(x) < 0, the investor is risk-averse. In this thesis we only
consider the power utility and the logarithmic utility.

2.6 Square-root process and the multi-dimensional
square-root process

2.6.1 Vasicek interest rate model
In financial mathematics, there is an interest rate model, which is called the

Vasicek model [51], being utilized frequently. Let w(t), t ≥ 0, be a Brownian
motion. The stochastic differential equation for the Vasicek model is

dx(t) =
(
α− βx(t)

)
dt+ σdw(t),

12



where α, β, σ are positive constants. Its solution is:

x(t) = e−βtx(0) +
α

β

(
1− e−βt

)
+ σe−βt

∫ t

0

eβsdw(s).

2.6.2 Cox-Ingersoll-Ross (CIR) interest rate model
In Cox, Ingersoll and Ross [10], the stochastic differential equation

dx(t) = [α− βx(t)]dt+ σ
√
x(t)dw(t)

is introduced as a model of the interest rate, for some positive constants α, β, σ.
A certain constraint 2α ≥ σ2 ensures this process has a non-negative volatility.
Different from the Vasicek model, this stochastic differential equation does not
have an explicit solution. However, its advantage is that it has a positive solution
(given that its initial value is also positive). The price of a zero-coupon bond for
this model is:

B(t, T ) = ef1(t,T )−f2(t,T )r(t),

Here f1(t, T ), f2(t, T ) are the following funstions:

f1(t, T ) =
2α

σ2
ln
{

γeβτ/2
γ cosh γτ + 1

2
β sinh γτ

}
,

f2(t, T ) =
sinh γτ

γ cosh γτ + 1
2
β sinh γτ

,

τ = T − t, 2γ = (β2 + 2σ2)1/2.

2.6.3 Multi-dimensional square-root process
Duffie and Kan [14] introduced a generalisation of the CIR process with the

equation:

dx(t) = [A3x3(t) + B3] dt+ Σ


√

v1(x3) 0 · · · 0

0
√

v2(x3) · · · 0
. . .

0 · · · 0
√

vn(x3)

 dw(t),
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where A3 ∈ Rn3×n3 , B3 ∈ Rn3 ,Σ ∈ Rn3×n, and

vi(x3) = αi + β′
ix(t),

for each i, αi ∈ R, β′
i ∈ Rn. The following two conditions ensure a strictly

positive volatility:

Condition 2.6.1. For all x such that vi(x) = 0, β′
i(A3x+B3) >

β′
iΣΣ

′βi

2
.

Condition 2.6.2. For all j, if (β′
iΣ)j ̸= 0, then vi = vj.

For convenient use in a Chapter 3, we rewrite this state and denote it as x3(t):
dx3(t) = [A3x3(t) +B3] dt+

n∑
j=1

√
vj(x3)σjdw3j(t),

x3(0) = x30,

(2.9)

where A3 ∈ Rn3×n3 , B3 ∈ Rn3 and for each j, j = 1, . . . , n,

vj(x3) = αj + β′
jx3(t), αj ∈ R, β′

j ∈ Rn, σj =


σ1j

σ2j
...

σn3j

 ∈ Rn3 .

2.7 Double square-root process
We assume x(t) to be governed by the following stochastic differential equation:

dx(t) = mdt+ sdwr(t)

x(0) = x0,
(2.10)

where m, s are constants. And we let the interest rate r(t) := cx2(t), c is a positive
constant. The differential of the interest rate is:

dr(t) =
[
cs2 + 2m

√
c
√

r(t)
]
dt+ 2s

√
c
√
r(t)dwr(t), (2.11)

which can also be written as

dr(t) = kr[θr −
√
r(t)]dt+ σr

√
r(t)dwr(t), (2.12)
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where kr, σr are positive constants, and θr =
σ2
r

4kr
.

The stochastic differential equation of type (2.12) was first introduced by
Longstaff in 1989. Compared with the CIR process, it is designated as the double
square-root (DSR) process, because the square-root process

√
r appears twice in

(2.12). Several empirical comparisons of these two models are discussed in Lon-
staff [34], where this DSR model outperforms the CIR model in some situations.
The closed form expression for the price of a zero-coupon bond with Longstaff
interest rate is derived as follows:

B(t, T ) = ef1(t,T )−f2(t,T )r(t)−f3(t,T )
√

r(t),

where f1(·), f2(·), f3(·) are some known explicit functions. This bond’s yield is
such a nonlinear case of the interest rate that the bond price is not a monotone
function of current interest rate. It makes the valuation of a bond option less
straightforward than usual (see Chapter 10 in [40]).

2.8 Some useful theorems and lemmas
First, we introduce two important theorems which will be used in Chapter 3

and 4 to prove the existence of admissible control.

Theorem 2.8.1. Let ξ0 ∈ R and let b0, b1 : [0,∞]×Ω → R and σ : [0,∞]×Ω → Rd

be {Ft}t≥0-adapted processes satisfying

b0(·) ∈ L∞
F (Ω;L1(0, T ;R)), b1(·) ∈ L∞

F (0, T ;R)
σ(·) ∈ L2

F(0, T ;L
∞(Ω;Rd)), ∀T > 0.

Let ξ(·) be an {Ft}t≥0-adapted process satisfying
dξ(t) ≤

[
b0(t) + b1(t)ξ(t)

]
dt+ σ(t)′dw(t), t ≥ 0,

ξ(0) = ξ0.

(2.13)

Suppose φ : R → [0,∞) is continuous such that for some γ ∈ [0, 2] and c > 0,

lim
x→∞

φ(x)

xγ
< c. (2.14)
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Then

E

[
sup

t∈[0,T ]

eφ(ξ(t))
]
< ∞ (2.15)

provided

either γ ∈ [0, 2),

or γ = 2,

2c

[
sup

(t,ω)∈[0,T ]×Ω

exp
{
2

∫ t

0

b1(u, ω)du
}]∫ T

0

sup
ω∈Ω

e−2
∫ s
0 b1(u,ω)du|σ(s, ω)|2ds < 1.

Further,
E
[
e
∫ T
0 φ(ξ(t))dt

]
< ∞ (2.16)

provided

either γ ∈ [0, 2),

or γ = 2,

2Tc

[
sup

(t,ω)∈[0,T ]×Ω

exp
{
2

∫ t

0

b1(u, ω)du
}]∫ T

0

sup
ω∈Ω

e−2
∫ s
0 b1(u,ω)du|σ(s, ω)|2ds < 1.

Theorem 2.8.2. Let α, β : [0,∞) → (0,∞), v : [0,∞) → Rd be deterministic
maps. Suppose the short interest rate r(·) satisfies the following SDE:

dr(t) = [α(t)− β(t)r(t)]dt+
√

r(t)v(t)′dw(t),

r(0) = r0.

(2.17)

Then, for λ > 0,
E
[
eλ

∫ T
0 r(t)dt

]
< ∞ (2.18)

provided

4α(t) ≤ |v(t)|2, t ∈ [0, T ],
λT

2

∫ T

0

e
∫ s
0 β(u)du|v(s)|2ds < 1.

These two theorems are given by Yong (see Theorem 3.1 and Theorem 4.1
[54]). However, his point is only noticed by few researchers.
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Another crucial theorem is stated in Liu’s paper (see Lemma 2 in Appendix
[33]), which is also used by Rong and Chang [7]. And his idea will be utilized in
Chapter (6).

Theorem 2.8.3. Suppose that

∂f̂

∂t
+ Lf̂ = 0, (2.19)

and f̂(T,X) = 1. L is the linear operator on any function f . Then the function
f defined by

f(t,X) = α
1
γ

∫ T

t

f̂(u,X)du+ (1− α)
1
γ f̂(t,X) (2.20)

satisfies
∂f

∂t
+ Lf + α

1
γ = 0, (2.21)

and f(T,X) = (1− α)
1
γ .

The proof is omitted here.
We also introduce an important lemma (see Corollary C.2 in [4]).

Lemma 2.8.1. Suppose vector x(t) is governed by the following stochastic differ-
ential equation: 

dx(t) = [Ax(t) + a]dt+Ddw(t), t ≥ 0,

x(0) = x0,

where A,D ∈ Rn×n, a ∈ Rn and w(·) is a n-dimensional standard Brownian
motion. Then

E

[
eβ

∫ T
0 |x(t)|δdt < ∞

]
, ∀β > 0, δ ∈ [0, 2).

Furthermore, the above holds for δ = 2, provided the following holds for β > 0:

2βT

∫ T

0

|eAtD|2dt < 1.
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Chapter 3

Risk-sensitive control for a class
of non-linear processes with
multiplicative noise

In this chapter, we consider the risk-sensitive control problem for a class of
nonlinear systems. The nonlinearity consists of quadratic and square-root terms
in the state. In Fei and Gashi’s work [15], the scalar case of this problem has been
solved, and now we extend it further, which contains multiplicative noise. By
using the completion of squares method, the solution to such an optimal control
problem is obtained in an explicit closed-form. We also give some conditions on
which the risk-sensitive control problem has the unique solution.

3.1 Introduction
We begin with the Date and Gashi’s work [11] described in Section (2.2). In

this chapter, we extend their problem further, while preserving its explicit closed
form solvability. We do so by introducing further nonlinear components of the
state, which are represented in (2.9). It is the multi-dimensional square root
process first introduced by Duffie and Kan [14].

On the other hand, the system state x2(t) in (2.3) is further extended by
introducing x3(t) term. It ensures the system x2(t) containing the quadratic term
of x1(t), the control process u(t), and also the square root process x3(t). These
three states x1(t), x2(t) and x3(t) are not separated with each other.
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Thus, on the probability space defined in Section (2.2), we formulate a new
system states as follows:

dx1(t) = [A1x1(t) +B1u(t)] dt+
n∑

j=1

C1jdw1j(t),

dx2(t) = [A12x1(t) + A22x2(t) + A42x3(t) +D (x1(t), u(t)) +B12u(t)] dt

+
n∑

j=1

[A3jx1(t) +B2ju(t) + C2j] dw1j(t) +
n∑

j=1

√
vj(x3)σjdw2j(t),

dx3(t) = [A3x3(t) +B3] dt+
n∑

j=1

√
vj(x3)σjdw3j(t),

x1(0) = x10, x2(0) = x20, x3(0) = x30,

(3.1)

where

A1 ∈ Rn1×n1 , , B1 ∈ Rn1×m, C1j ∈ Rn1 , A12, A3j ∈ Rn2×n1 ,

A22 ∈ Rn2×n2 , A42 ∈ Rn2×n3 , B12, B2j ∈ Rn2×m, C2j ∈ Rn2 ,

A3 ∈ Rn3×n3 , B3 ∈ Rn3 , Σ ∈ Rn3×n

are known constants. The vector D (x1(t), u(t)) is defined as

D (x1(t), u(t)) =



x′
1(t)Q1x1(t) + u′(t)R1x1(t) + u′(t)P1u(t)

x′
1(t)Q2x2(t) + u′(t)R2x2(t) + u′(t)P2u(t)

...

x′
1(t)Qn2x1(t) + u′(t)Rn2x1(t) + u′(t)Pn2u(t)


,

where
Q1, Q2, · · · , Qn2 ∈ Rn1×n1

R1, R2, · · · , Rn2 ∈ Rm×n1

P1, P2, · · · , Pn2 ∈ Rm×m,
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and Qj, Pj, j = 1, · · · , n2 are symmetric matrixes. We denote matrixes Q,R, P

given by

Q =


Q1

Q2
...

Qn2

 , R =


R1

R2
...

Rn2

 , P =


P1

P2
...

Pn2

 .

Furthermore, function vj(x3) is represented as

vj(x3) = αj + β′
jx3(t),

for each j, αj ∈ R, β′
j ∈ Rn, and

σ1 =


σ11

σ21
...

σn31

 , σ2 =


σ12

σ22
...

σn32

 , · · · , σn =


σ1n

σ2n
...

σn3n

 ∈ Rn3 .

Under the state systems (3.1), we extend the criterion (2.4) by introducing
x2(t) and x3(t) as

J(u(·)) = γE
[
exp

{
γ

2
x′
1(T )Sx1(T ) +

γ

2

∫ T

0

[
x′
1(t)Q̃x1(t) + u′(t)P̃ u(t)

]
dt

+
γ

2

∫ T

0

[
L′

1x1(t) + L′
2x2(t) + L′

3x3(t) + L′
uu(t) + u′(t)R̃x1(t)

]
dt

+
γ

2
S ′
1x1(T ) +

γ

2
S ′
2x2(T ) +

γ

2
S ′
3x3(T )

}]
, (3.2)

and the given data

S, Q̃ ∈ Rn1×n1 , P̃ ∈ Rm×m, R̃ ∈ Rm×n1 , L1, S1 ∈ Rn1

L2, S2 ∈ Rn2 , L3, S3 ∈ Rn3 , Lu ∈ Rm.

The main contribution of this chapter is the solution to the following optimal
control problem: 

min
u(·)∈A

J(u(·))

s.t.(3.1) holds,

(3.3)
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where J(u(·)) is as defined in (3.2). The set A is the admissible control set, which
will be explained later. We obtain the solution in an explicit closed form by using
the completion of squares method. This is clearly a rare example of a stochastic
control problem that admits a fully explicit solution.

3.2 Risk-sensitive control
Let us introduce the processes h(t) and H(t) as:

dh(t) =
[
x′
1(t)Q̃x1(t) + u′(t)R̃x1(t) + u′(t)P̃ u(t) + L′

1x1(t)

+L′
2x2(t) + L′

3(t)x3(t) + L′
uu(t)] dt,

h(0) = 0,

and

H(t) = h(t) + x′
1(t)G1(t)x1(t) + g′2(t)x1(t) + g′3(t)x2(t) + g′4(t)x3(t) + g5(t).

where

G1(·) ∈ L∞(0, T ;Rn1×n1), g2(·) ∈ L∞(0, T ;Rn1),

g3(·) ∈ L∞(0, T ;Rn2), g4(·) ∈ L∞(0, T ;Rn3), g5(·) ∈ L∞(0, T ;R).

Here L∞(·) denotes the set of uniformly bounded functions, and G1(·) is symmet-
ric.

We further let G1, g2, g3, g4 be functions which satisfy the following Riccati
and linear differential equations:

4γQ̃+ 4γĠ1(t) + 8γG1(t)A1 + 4γ2

n∑
j=1

G1(t)C1jC
′
1jG1(t)

+4γg′3(t)Q+ γ2

n∑
j=1

A′
3jg3(t)g

′
3(t)A3j − 2K ′

2(t)K
−1
1 (t)K2(t) = 0,

G1(T ) = S,

(3.4)
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
L′

2 + ġ3
′(t) + g′3(t)A22 = 0,

g3(T ) = S2,

(3.5)



2γL′
1 + 2γġ2

′(t) + 2γg′2(t)A1 + 2γ2

n∑
j=1

g′2(t)C1jC
′
1jG1(t) + 2γg′3(t)A12

+γ2

n∑
j=1

C ′
2jg3(t)g

′
3(t)A3j −K ′

3(t)

[(
K−1

1 (t)
)′

+K−1
1 (t)

]
K2(t) = 0,

g2(T ) = S1,

(3.6)



4L′
3 + 4ġ4

′(t) + 4g′4(t)A3 + γ2

n∑
j=1

σ′
j

[
g3(t)g

′
3(t) + g4(t)g

′
4(t)
]
σjβ

′
j

+
γ

2
g′3(t)A42 = 0,

g4(T ) = S3,

(3.7)



2γ2

n∑
j=1

C ′
1jG1(t)C1j + γ2

n∑
j=1

C ′
1jg2(t)g

′
2(t)C1j + γ2

n∑
j=1

C ′
2jg3(t)g

′
3(t)C2j

+4γg′4(t)B3 + 4γġ5(t) + γ2

n∑
j=1

αjσ
′
j

[
g3(t)g

′
3(t) + g4(t)g

′
4(t)
]
σj

−2K ′
3(t)K

−1
1 (t)K3(t) = 0,

g5(T ) = 0,

(3.8)

where K1(t), K2(t) and K3(t) defined as following:

K1(t) ≡
γ

2
P̃ +

γ

2
g′3(t)P +

γ2

8

n∑
j=1

B′
2jg3(t)g

′
3(t)B2j > 0,
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K2(t) ≡
γ

2
R̃ + γB′

1G1(t) +
γ

2
g′3(t)R +

γ2

4

n∑
j=1

B′
2jg3(t)g

′
3(t)A3j,

K3(t) ≡
γ

2
Lu +

γ

2
B′

1g2(t) +
γ

2
B′

12g3(t) +
γ2

4

n∑
j=1

B′
2jg3(t)g

′
3(t)C2j.

Here we give a numerical example which is suitable to the system and cost
function.

Example 3.2.1. We choose the value of each parameter:

n1 = 1, n2 = 1, n3 = 1, m = 1, n = 1, γ = 2, Q̃ = 1, A1 = 1,

C11 =
√
2, Q = 1, A31 = 1, P̃ = 1, P = 1, B21 = 2, R̃ = 1,

B1 = 4, R = 1, S = 3
4
, L2 = 1, A22 = −1, S2 = 1, L1 = 1,

A12 = 1, C21 = 1, Lu = 1, B12 = 1, S1 = 1, L3 = 2, A3 = 3,

σ1 = 1, β1 = 1, A42 = 1, S3 = −1
2
, B3 = 1, α1 = 1.

Therefore, equations (3.4), (3.5), (3.6), (3.7), (3.8) become:
8 + 8Ġ1(t) + 16G1(t) + 32G2

1(t) + 8g3(t) + 4g23(t)− 2
K2

2(t)

K1(t)
= 0,

G1(T ) =
3

4
,


1 + g3(t)− g3(t) = 0,

g3(T ) = 1,


4 + 4ġ2(t) + 4g2(t) + 16g2(t)G1(t) + 4g3(t) + 4g23(t)− 2

K3(t)K2(t)

K1(t)
= 0

g2(T ) = 1,
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
8 + 4ġ4(t) + 12g4(t) + 4[g23(t) + g24(t)] + g3(t) = 0,

g4(T ) = −1

2
,


16G1(t) + 8g22(t) + 4g23(t) + 8g4(t) + 8ġ5(t) + 4(g23(t) + g24(t))− 2

K2
3(t)

K1(t)
= 0,

g5(T ) = 0,

where

K1(t) = 1 + g3(t) + 2g23(t),

K2(t) = 1 + 8G1(t) + g3(t) + 2g23(t),

K3(t) = 1 + 4g2(t) + g3(t) + 2g23(t).

Thus G1(t), g2(t), g3(t), g4(t) can be solved as follows:

G1(t) =
3

4
,

g2(t) = −2 + 3et−T ,

g3(t) = 1,

g4(t) = −3

2
+ tan

(
−t+ T +

π

4

)
,

g5(t) =
1

2
tan
(
−t+ T +

π

4

)
− 1

4
ln
(
1 +

(
tan
(
−t+ T +

π

4

))2)
+ 6 et−T

−37 t

8
+

37T

8
− 13

2
+

1

4
ln (2) .
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3.2.1 Admissible Controls
The purpose of this section is to provide some sufficient conditions which ensure

control processes u(·) belongs to admissible control set A. We use the method in
Date and Gashi [11], to deduce the set A, on which, for all u(·) ∈ A, the following
inequality holds:

J(u(·)) = γE
[
e

γ
2
H(T )

]
≤ γ

(
E
[
epγH(T )

]) 1
2p < ∞, p > 1.

Let us assume the control process follow the linear case in state x1(t), which
given by

ū(t) = K̄0 + K̄1x1(t),

where K̄0(·) ∈ L∞(0, T ;Rm) and K̄1(·) ∈ L∞(0, T ;Rm×n1). Substituting ū(t) into
equations of x1(t) and x2(t), we have new states respectively:

dx1(t) =
(
Ā1x1(t) + B̄1

)
dt+

n∑
j=1

C1jdw1j(t), (3.9)

dx2(t) =
[
Ā12x1(t) + A22x2(t) + A42x3(t) + D̄(x1, u)

]
dt

+
n∑

j=1

[
Ā3jx1(t) + C̄2j

]
dw1j(t) +

n∑
j=1

√
vj(x3)σjdw2j(t),

where Ā12 = A12 +B12K̄1, Ā3j = A3j +B2jK̄1, C̄2j = B2jK̄0 + C2j,

D̄ (x1(t), u(t)) =



x′
1(t)Q̄1x1(t) + R̄1x1(t) + P̄1

x′
1(t)Q̄2x1(t) + R̄2x1(t) + P̄2

...

x′
1(t)Q̄n2x1(t) + R̄n2x1(t) + P̄n2


,

we have
Q̄i = Qi + K̄ ′

1Ri + K̄ ′
1PiK̄1,

R̄i = K̄ ′
0Ri + 2K̄ ′

0PiK̄1,

P̄i = K̄ ′
0PiK̄0 + (B12K̄0)i,
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j = 1, · · · , n and i = 1, · · · , n2. We also denote matrixes Q̄, R̄, P̄ given by

Q̄ =


Q̄1

Q̄2
...

Q̄n2

 , R̄ =


R̄1

R̄2
...

R̄n2

 , P̄ =


P̄1

P̄2
...

P̄n2

 .

Using equations (3.5), we can deduce∫ t

0

L′
2x2(t)ds+ g′3(t)x2(t)

= g′3(0)x2(0) +

∫ n

0

[
g′3(s)Ā12x1(s) + g′3(s)A42x3(s) + g′3(s)D̄(x1, u)

]
ds

+
n∑

j=1

∫ t

0

(
g′3(s)Ā3jx1(s) + g′3(s)C̄2j

)
dw1j(s)

+
n∑

j=1

∫ t

0

√
vj(x3)g

′
3(s)σjdw2j(s),

where the product g′3(t)D̄(x1, u) can be written as

g′3(t)D̄(x1, u) = x′
1(t)g

′
3(t)Q̄x1(t) + g′3(t)R̄x1(t) + g′3(t)P̄

Next we find H(t) under the control processes ū(t)

H(t)

= g′3(0)x2(0) + x′
1(t)G1(t)x1(t) + g′2(t)x1(t) + g′4(t)x3(t) + g5(t)

+

∫ t

0

x′
1(s)

{
Q̃+ K̄ ′

1R̃ + K̄ ′
1P̃ K̄1 + g′3(s)Q̄

}
x1(s)ds

+

∫ t

0

{
K̄ ′

0R̃ + 2K̄ ′
0P̃ K̄1 + L′

1 + L′
uK̄1 + g′3(s)Ā12 + g′3(s)R̄

}
x1(s)ds

+

∫ t

0

{
K̄ ′

0P̃ K̄0 + L′
uK̄0 + g′3(s)P̄

}
ds+

∫ t

0

L′
3x3(s)ds
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+
n∑

j=1

∫ t

0

√
vj(x3)g

′
3(s)σjdw2j(s)

+
n∑

j=1

∫ t

0

(
g′3(s)Ā3jx1(s) + g′3(s)C̄2j

)
dw1j(s).

We introduce some symmetric and differentiable function M1(t) andM2(t) and
differentiable function M3(t) with the initial conditions M1(0) = 0, M2(0) = 0 and
M3(0) = 0 respectively, also the following holds:

0 = −x′
1(t)M1(t)x1(t) +

∫ t

0

x′
1(s)

[
Ṁ1(s) + 2M1(s)Ā1

]
x1(s)ds

−M ′
2(t)x1(t) +

∫ t

0

[
2B̄′

1M1(s) + Ṁ2(s) +M ′
2(s)Ā1

]
x1(s)ds

−M ′
3(t)x3(t) +

∫ t

0

[
Ṁ ′

3(s) +M ′
3(s)A3

]
x3(s)ds

+
n∑

j=1

∫ t

0

[
C ′

1jM1(s)C1j +M ′
2(s)B̄1 +M ′

3(s)B3

]
ds

+
n∑

j=1

∫ t

0

[
2C ′

1jM1(s)x1(s) +M ′
2(s)C1j

]
dw1j(s)

+
n∑

j=1

∫ t

0

√
vj(x3)M

′
3(s)σjdw2j(s).

Adding this equation to the right hand side of H(t), it can be obtained

H(t)

=

∫ t

0

x′
1(s)

{
Q̃+ K̄ ′

1R̃ + K̄ ′
1P̃ K̄1 + g′3(s)Q̄+ Ṁ1(s) + 2M1(s)Ā1

}
x1(s)ds

+

∫ t

0

{
K̄ ′

0R̃ + 2K̄ ′
0P̃ K̄1 + L′

1 + L′
uK̄1 + g′3(s)Ā12 + g′3(s)R̄

+2B̄′
1M1(s) + Ṁ2(s) +M ′

2(s)Ā1

}
x1(s)ds
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+

∫ t

0

{
L′
3 + Ṁ ′

3(s) +M ′
3(s)A3

}
x3(s)ds

+x′
1(t)
[
G1(t)−M1(t)

]
x1(t) +

[
g′2(t)−M ′

2(t)
]
x1(t) +

[
g′4(t)−M ′

3(t)
]
x3(t)

+

∫ t

0

{
K̄ ′

0P̃ K̄0 + L′
uK̄0 + g′3(s)P̄ + C ′

1jM1(s)C1j +M ′
2(s)B̄1 +M ′

3(s)B3

}
ds

+g′3(0)x2(0) + g5(t)

+
n∑

j=1

∫ t

0

[(
2C ′

1jM1(s) + g′3(s)Ā3j

)
x1(s) +

(
M ′

2(s)C1j + g′3(s)C̄2j

)]
dw1j(s)

+
n∑

j=1

∫ t

0

√
vj(x3)

[
M ′

3(s) + g′3(s)

]
σjdw2j(s).

The stochastic integral part can be written as
n∑

j=1

∫ t

0

N1j(s)dw1j(s) +
n∑

j=1

∫ t

0

N2j(s)dw2j(s)

=
n∑

j=1

{∫ t

0

N ′
j(s)dwj(s)−

1

2

∫ t

0

N ′
j(s)Nj(s)ds+

1

2

∫ t

0

N ′
j(s)Nj(s)ds

}
,

where

Nj(s) =

N1j(s)

N2j(s)

 , wj(s) =

w1j(s)

w2j(s)


and

N1j(s) =
(
2C ′

1jM1(s) + g′3(s)Ā3j

)
x1(s) +

(
M ′

2(s)C1j + g′3(s)C̄2j

)
,

N2j(s) =
√
vj(x3)[M

′
3(s) + g′3(s)]σj.

.
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Here we introduce some equations, which assumed to have a global unique
solutions:

Q̃+ K̄ ′
1R̃ + K̄ ′

1P̃ K̄1 + g′3(s)Q̄+ Ṁ1(s) + 2M1(s)Ā1

+
γp

2

n∑
j=1

(
4M ′

1(s)C1jC
′
1jM1(s) + Ā′

3jg3(s)g
′
3(s)Ā3j

+4M ′
1(s)C1jg

′
3(s)Ā3j

)
= 0,

M1(0) = 0,

(3.10)



K̄ ′
0R̃ + 2K̄ ′

0P̃ K̄1 + L′
1 + L′

uK̄1 + g′3(s)Ā12 + g′3(s)R̄ + 2B̄′
1M1(s) + Ṁ2(s)

+M ′
2(s)Ā1 + γp

n∑
j=1

(
2M ′

2(s)C1jC
′
1jM1(s) + C̄ ′

2jg3(s)g
′
3(s)Ā3j

+2g′3(s)C̄2jC
′
1jM1(s) +M ′

2(s)C1jg
′
3(s)Ā3j

)
= 0,

M2(0) = 0,

(3.11)



γp

2

n∑
j=1

σ′
j[M3(s) + g4(s)][M

′
3(s) + g′4(s)]σjβ

′
j + L′

3 + Ṁ ′
3(s) +M ′

3(s)A3 = 0,

M3(0) = 0.

(3.12)

Under these equations (3.10), (3.11) and (3.12), function γpH(t) becomes∫ t

0

γp

{
K̄ ′

0P̃ K̄0 + L′
uK̄0 + g′3(s)P̄ + C ′

1jM1(s)C1j +M ′
2(s)B̄1 +M ′

3(s)B3
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+
γp

2

n∑
j=1

(
C ′

1jM2(s)M
′
2(s)C1j + C̄ ′

2jg3(s)g
′
3(s)C̄2j

+2C ′
1jM2(s)g

′
3(s)C̄2j + αjσ

′
j[M3(s) + g3(s)][M

′
3(s) + g′3(s)]σj

)}
ds

+γp

{
x′
1(t)
[
G1(t)−M1(t)

]
x1(t) +

[
g′2(t)−M ′

2(t)
]
x1(t) +

[
g′4(t)−M ′

3(t)
]
x3(t)

+g5(t) + g′3(0)x2(0) + g′4(0)x3(0)

}

+
n∑

j=1

{∫ t

0

γpN ′
j(s)dwj(s)−

1

2

∫ t

0

γ2p2N ′
j(s)Nj(s)ds

}
.

Applying Hölder’s inequality, the expected value of γpH(t) is

E
[
eγpH(t)

]
≤ E

[
expγpp1

{∫ t

0

(
K̄ ′

0P̃ K̄0 + L′
uK̄0 + g′3(s)P̄ + C ′

1jM1(s)C1j +M ′
2(s)B̄1

+M ′
3(s)B3 +

γp

2

n∑
j=1

(
C ′

1jM2(s)M
′
2(s)C1j + C̄ ′

2jg3(s)g
′
3(s)C̄2j

+2C ′
1jM2(s)g

′
3(s)C̄2j + αjσ

′
j[M3(s) + g3(s)][M

′
3(s) + g′3(s)]σj

))
ds

+g5(t)

}] 1
p1

E

[
expγpp2

{
g′3(0)x2(0) + g′4(0)x3(0)

}] 1
p2

E

[
expγpp3

[
g′4(t)−M ′

3(t)
]
x3(t)

] 1
p3

E

[
expγpp4

{
x′
1(t)
[
G1(t)−M1(t)

]
x1(t) +

[
g′2(t)−M ′

2(t)
]
x1(t)

}] 1
p4

E

[
expγpp5

n∑
j=1

{∫ t

0

γpNj(s)dwj(s)−
1

2

∫ t

0

γ2p2N ′
j(s)Nj(s)ds

}] 1
p5

30



≤ C(t)E

[
expγpp4

{
x′
1(t)
[
G1(t)−M1(t)

]
x1(t) +

[
g′2(t)−M ′

2(t)
]
x1(t)

}] 1
p4

E

[
expγpp3

[
g′4(t)−M ′

3(t)
]
x3(t)

] 1
p3

,

where

C(t)

= E

[
expγpp1

{∫ t

0

(
K̄ ′

0P̃ K̄0 + L′
uK̄0 + g′3(s)P̄ + C ′

1jM1(s)C1j +M ′
2(s)B̄1

+M ′
3(s)B3 +

γp

2

n∑
j=1

(
C ′

1jM2(s)M
′
2(s)C1j + C̄ ′

2jg3(s)g
′
3(s)C̄2j

+2C ′
1jM2(s)g

′
3(s)C̄2j + αjσ

′
j[M3(s) + g3(s)][M

′
3(s) + g′3(s)]σj

))
ds

+g5(t)

}] 1
p1

E

[
expγpp2

{
g′3(0)x2(0) + g′4(0)x3(0)

}] 1
p2

< ∞,

and
1

p1
+

1

p2
+ · · ·+ 1

p5
, p1, p2, · · · , p5 > 1.

For the technical reason, we let

κ1(t) ≡ γpp4[G1(t)−M1(t)]

κ′
2(t) ≡ γpp4[g

′
2(t)−M ′

2(t)]

κ′
3(t) ≡ γpp3[g

′
4(t)−M ′

3(t)],

and introduce some lemmas and assumptions.

Assumption 3.2.1. Φ(t) > 0, ∀t ∈ [0, T ].
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Assumption 3.2.2. Φ0(t) ≡ (Φ−1 − 2κ1(t))
−1 > 0,∀t ∈ [0, T ].

Lemma 3.2.1. Let the Assumption 3.2.1, 3.2.2 hold, then there exists an inequal-
ity , which is

E
[
exp
{
x′
1(t)κ1(t)x1(t) + κ′

2(t)x1(t)

}]
< ∞.

Proof. From (3.9), x1(t) follows normal distribution

x1(t) ∼ N
(
µ(t),Φ(t)

)
Here µ(t) is the solution to the linear differential equation

µ̇(t)− Ā1µ(t)− B̄1 = 0,

µ(0) = µ0,

and Φ(t) = Ψ(t)− µ(t)µ′(t) with Ψ(t) being the solution to
Ψ̇(t)− Ā1Ψ(t)−Ψ(t)Ā′

1 − B̄1µ
′(t)− µ(t)B̄′

1 −
n∑

j=1

C1jC
′
1j = 0,

Ψ(0) = E[x0x
′
0].

Under Assumption 3.2.1, 3.2.2, the following holds

E
[
exp
{
x′
1(t)κ1(t)x1(t) + κ′

2(t)x1(t)

}]

=

∫
Rn1

exp
{
x′κ1(t)x+ κ′

2(t)x

}
1

(2π)n1/2|Φ|1/2

×exp
{
− 1

2

(
x− µ

)′
Φ−1

(
x− µ

)}
dx

=
|Φ0|1/2

|Φ|1/2

×exp
{
− 1

2

(
κ′
2(t) + Φ−1µ

)′(
Φ−1 − 2κ1(t)

)−1(
κ′
2(t) + Φ−1µ

)
− 1

2
µ′Φ−1µ

}
×
∫
Rn1

1

(2π)n1/2|Φ0|1/2
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×exp
{
−1

2

(
x− Φ0[κ

′
2(t) + Φ−1µ]

)′
Φ−1

0

(
x− Φ0[κ

′
2(t) + Φ−1µ]

)}
dx

=
|Φ0|1/2

|Φ|1/2

×exp
{
− 1

2

(
κ′
2(t) + Φ−1µ

)′(
Φ−1 − 2κ1(t)

)−1(
κ′
2(t) + Φ−1µ

)
− 1

2
µ′Φ−1µ

}
< ∞.

Assumption 3.2.3. vi(x3) = β̄iM
′x3, where β̄i is a constant and M is a column

vector.

Assumption 3.2.4. A3 = NM ′, where N is a column vector.

Lemma 3.2.2. Let the Assumption 3.2.3, 3.2.4 hold, and let x̄3 = M ′x3, M̄ =

cM , c is a positive constant, then there exists an inequality , which is

E
[
eM̄ ′x3(t)

]
< ∞,

provided

M ′B3 ≤
1

4

n∑
j=1

β̄jσ
′
jMM ′σj,

c

2

(
n∑

j=1

β̄2
jσ

′
jMM ′σj

)
1− e−M ′NT

M ′N
eM ′Nt < 1.

Proof. Recall stochastic differential equation,

dx3(t) = [A3x3(t) + B3] dt+
n∑

j=1

√
vj(x3)σjdw3j(t),

we can deduce
∂
√
x̄3

∂x3

=
1

2
(M ′x3)

− 1
2M ′

∂2
√
x̄3

∂x2
3

= −1

4
(M ′x3)

− 3
2MM ′.
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Thus

d(
√
x̄3) =

[
1

2
(M ′x3)

− 1
2M ′(A3x3 +B3)−

1

8
(M ′x3)

− 3
2

n∑
j=1

vj(x3)σ
′
jMM ′σj

]
dt

+
1

2
(M ′x3)

− 1
2M ′

n∑
j=1

√
vj(x3)σjdw3j.

Due to Assumption (3.2.3) and (3.2.4), d(
√
x̄3) can be rewritten as follows

d(
√
x̄3) =

[
1

2
(M ′x3)

− 1
2M ′NM ′x3 +

1

2
(M ′x3)

− 1
2M ′B3

−1

8
(M ′x3)

− 3
2 (M ′x3)

n∑
j=1

β̄jσ
′
jMM ′σj

]
dt

+
1

2
(M ′x3)

− 1
2M ′(M ′x3)

1
2

n∑
j=1

β̄jσjdw3j

=

[
1

2
(M ′x3)

1
2M ′N +

1

2
(M ′x3)

− 1
2

{
M ′B3 −

1

4

n∑
j=1

β̄jσ
′
jMM ′σj

}]
dt

+
1

2
M ′

n∑
j=1

β̄jσjdw3j.

When
M ′B3 −

1

4

n∑
j=1

β̄jσ
′
jMM ′σj ≤ 0,

the following inequality holds

d(
√
x̄3) ≤

1

2
(M ′x3)

1
2M ′Ndt+ 1

2
M ′

n∑
j=1

β̄jσjdw3j.

Let ξ(t) =
√
x̄3, φ(ξ) = c(ξ(t))γ, γ = 2, and applying Lemma (2.8.1), we can

prove
E
[
ecM ′x3(t)

]
< ∞,

provided
c

2

n∑
j=1

(
β̄jM

′σj

)2 eM ′Nt1− e−M ′NT

M ′N
< 1.
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Theorem 3.2.1. Let the Assumptions (3.2.1), (3.2.2), (3.2.3) and (3.2.4) hold.
Then the control process u(t) = K̄0 + K̄1x1(t) belongs to set A.

Proof. We denote the vector κ3(t) =


κ31(t)
κ32(t)

...
κ3n3(t)

 . According to equation (3.7) and

(3.11), g4(t) and M3(t) are assumed to have unique global solutions. In other
words, it is obvious that g4(t) and M3(t) are bounded. Thus there exists a vector

M̃ , such that M̃ =


M̃1

M̃2
...

M̃n3

 =


maxκ31(t)
maxκ32(t)

...
maxκ3n3(t)

, which means each element in M̃ is

the upper bound of the correspond element in κ3(t).
Now we take M̄ = M̃ . Then it can be obtained

E
[
eκ′

3(t)x3(t)
]
≤ E

[
eM̄ ′x3(t)

]
.

By using Lemma 3.2.1 and Lemma 3.2.2, we can prove

E
[
eγpH(t)

]
≤ C(t)E

[
ex′

1(t)κ1x1(t)+κ′
2x1(t)

] 1
p4

E

[
eκ′

3(t)x3(t)

] 1
p3

< ∞.

3.2.2 Solution of the Problem
Theorem 3.2.2. Let G1(·), g2(·), g3(·), g4(·) and g5(·) be solutions of differential
equations (3.4), (3.6), (3.5), (3.7) and (3.8) respectively, then there exists a unique
solution to problem (3.3) given by

u∗(t) = −1

2
K−1

1 (t) [K2(t)x1(t) +K3(t)] (3.13)
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where K1(t), K2(t) and K3(t) defined on page 22.
The optimal cost functional is:

J∗ = γE
[
exp

{γ
2
[x′

10G1(0)x10 + g′2(0)x10 + g′3(0)x20 + g′4(0)x30 + g5(0)]
}]

.

Proof. Firstly, we introduce a new function G(t), which is

G(t) = e
γ
2
H(t).

From the definitions of H(t), h(t) and their initial conditions, obviously have
following:

J(u(·)) = γE[G(T )].

Applying for Itô’s Lemma, the differential of G(t) is

dG(t)

= G(t)

[
γ

2
x′
1(t)Q̃x1(t) +

γ

2
u′(t)R̃x1(t) +

γ

2
u′(t)P̃ u(t) +

γ

2
L′
1x1(t) +

γ

2
L′

2x2(t)

+
γ

2
L′

3x3(t) +
γ

2
L′
uu(t)

]
dt

+ G(t)

{
γ2

8

n∑
j=1

[
C ′

1j

(
2G1(t) + [2G1(t)x1(t) + g2(t)] [2G1(t)x1(t) + g2(t)]

′
)
C1j

]
+
γ

2

[
2G1(t)x1(t) + g2(t)

]′[
A1x1(t) +B1u(t)

]
+

γ

2
x′
1(t)Ġ1(t)x1(t)

+
γ

2
ġ2

′(t)x1(t)

}
dt

+ G(t)

{
γ

2
g′3(t)

[
A12x1(t) + A22x2(t) + A42x3(t) +D

(
x1(t), u(t)

)
+B12u(t)

]
+
γ2

8

n∑
j=1

g′3(t)
(
vj(x3)σjσ

′
j +
[
A3jx1(t) + B2ju(t) + C2j

]
×
[
A3jx1(t) +B2ju(t) + C2j

]′)
g3(t) +

γ

2
ġ3

′(t)x2(t)

}
dt

+ G(t)

{
γ

2
ġ4

′(t)x3(t) +
γ

2
g′4(t)[A3x3(t) +B3] +

γ2

8

n∑
j=1

vj(x3)σ
′
jg4(t)g

′
4(t)σj

}
dt
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+ G(t)
γ

2
ġ5(t)dt+

n∑
j=1

G(t)
γ

2
g′3(t) [A3jx1(t) +B2ju(t) + C2j] dw1j(t)

+
n∑

j=1

G(t)
γ

2
[2G1(t)x1(t) + g2(t)]

′C1jdw1j(t) +
n∑

j=1

G(t)
γ

2

√
vj(x3)g

′
4(t)σjdw2j(t)

We arrange the equation into a nicely organized form, and deduce the expres-
sion of J(u(·)), which is

J(u(·))

= γE [G(0)]

+γE

[∫ T

0

G(t)x′
1(t)

{
γ

2
Q̃+

γ

2
Ġ1(t) + γG1(t)A1 +

γ2

2

n∑
j=1

G1(t)C1jC
′
1jG1(t)

+
γ

2
g′3(t)Q+

γ2

8

n∑
j=1

A′
3jg3(t)g

′
3(t)A3j

}
x1(t)dt

]

+γE

[∫ T

0

G(t)

{
γ

2
L′

1 +
γ

2
ġ2

′(t) +
γ

2
g′2(t)A1 +

γ2

2

n∑
j=1

g′2(t)C1jC
′
1jG1(t)

+
γ

2
g′3(t)A12 +

γ2

4

n∑
j=1

C ′
2jg3(t)g

′
3(t)A3j

}
x1(t)dt

]

+γE

[∫ T

0

G(t)

{
γ

2
L′

2 +
γ

2
ġ3

′(t) +
γ

2
g′3(t)A22

}
x2(t)dt

]

+γE

[∫ T

0

G(t)

{
γ

2
L′

3 +
γ

2
ġ4

′(t) +
γ

2
g′4(t)A3 +

γ

2
g′3(t)A42

+
γ2

8

n∑
j=1

σ′
j

[
g3(t)g

′
3(t) + g4(t)g

′
4(t)
]
σjβ

′
j

}
x3(t)dt

]

+γE

[∫ T

0

G(t)

{
γ2

4
C ′

1jG1(t)C1j +
γ2

8

n∑
j=1

C ′
1jg2(t)g

′
2(t)C1j +

γ

2
g′4(t)B3
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+
γ

2
ġ5(t) +

γ2

8

n∑
j=1

αjσ
′
j

[
g3(t)g

′
3(t) + g4(t)g

′
4(t)
]
σj

+
γ2

8

n∑
j=1

C ′
2jg3(t)g

′
3(t)C2j

}
dt
]

+γE

[∫ T

0

G(t)

{
γ

2
L′

uu(t) + γx′
1(t)G1(t)B1u(t) +

γ

2
g′2(t)B1u(t)

+
γ

2
g′3(t)B12u(t) +

γ2

4

n∑
j=1

C ′
2jg3(t)g

′
3(t)B2ju(t) +

γ

2
x′
1(t)R̃u(t)

+
γ

2
x′
1(t) (R

′g3(t))u(t) +
γ2

4

n∑
j=1

x′
1(t)A

′
3jg3(t)g

′
3(t)B2ju(t)

+
γ

2
u′(t)P̃ u(t) +

γ2

8

n∑
j=1

u′(t)B′
2jg3(t)g

′
3(t)B2ju(t)

+
γ

2
u′(t) (g′3(t)P )u(t)

}
dt
]
. (3.14)

It is observed that only the last expectation above contains the control process
u(·). Thus we use the completion of squares method, the last can be written as:

γE

[∫ T

0

G(t)

(
u′(t)K1(t)u(t) + u′(t)K2(t)x1(t) + u′(t)K3(t)

)
dt
]

= γE

[∫ T

0

G(t)

{
− 1

4

(
K2(t)x1(t) +K3(t)

)′
K−1

1 (t)
(
K2(t)x1(t) +K3(t)

)
+

[
u(t) +

1

2
K−1

1 (t)
(
K2(t)x1(t) +K3(t)

)]′
K1(t)

×
[
u(t) +

1

2
K−1

1 (t)
(
K2(t)x1(t) +K3(t)

)]}
dt
]
,

where K1(·), K2(·) and K3(·) defined before.
The sum of the terms that are quadratic in x1(t) in (3.14) should be zero due
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to (3.4), indeed,

x′
1(t)

{
γ

2
Q̃+

γ

2
Ġ1(t) + γG1(t)A1 +

γ2

2

n∑
j=1

G1(t)C1jC
′
1jG1(t) +

γ

2
g′3(t)Q

+
γ2

8

n∑
j=1

A′
3jg3(t)g

′
3(t)A3j −

1

4
K2(t)K

−1
1 (t)K2(t) = 0

}
x1(t) = 0.

Similarly, the sums of the terms linear in x1(t), x2(t) and (x3(t) are also zero:{
γ

2
L′
1 +

γ

2
ġ2

′(t) +
γ

2
g′2(t)A1 +

γ2

2

n∑
j=1

g′2(t)C1jC
′
1jG1(t) +

γ

2
g′3(t)A12

+
γ2

4

n∑
j=1

C ′
2jg3(t)g

′
3(t)A3j −

1

4
K ′

3(t)

[(
K−1

1 (t)
)′

+K−1
1 (t)

]
K2(t)

}
x1(t) = 0,

{
γ

2
L′
2 +

γ

2
ġ3

′(t) +
γ

2
g′3(t)A22

}
x2(t) = 0,

{
γ

2
L′
3 +

γ

2
ġ4

′(t) +
γ

2
g′4(t)A3 +

γ

2
g′3(t)A42

+
γ2

8

n∑
j=1

σ′
j

[
g3(t)g

′
3(t) + g4(t)g

′
4(t)
]
σjβ

′
j

}
x3(t) = 0.

The remaining sum of the terms that are independent of the states x1(t), x2(t),
x3(t) and control u(t), obviously equals to zero due to our assumption on g5(t).

Therefore, the cost function J(u(·)) for all u(·) ∈ A can be written as following:

J(u(·))
= γE[G(0)]

+γE

[∫ T

0

G(t)

{[
u(t) +

1

2
K−1

1 (t)
(
K2(t)x1(t) +K3(t)

)]′
K1(t)

×
[
u(t) +

1

2
K−1

1 (t)
(
K2(t)x1(t) +K3(t)

)]}
dt
]

39



≥ γE[G(0)].

It means the cost function J(u(·)) achieves the lower bound

γE
[
exp

{γ
2
[x′

10G1(0)x10 + g′2(0)x10 + g′3(0)x20 + g′4(0)x30 + g5(0)]
}]

if and only if
u∗(t) = −1

2
K−1

1 (t) [K2(t)x1(t) +K3(t)] .

3.3 Generalised risk-sensitive control
Date and Gashi [12] generalised the classical risk sensitive by introducing a

more general criterion which has noise dependent on the state x1(t) and control
u(t). In this section, we extend this problem further, which contains the square
root process x3(t). Hence the generalised risk sensitive criterion is given by

J̃(u(·))

= γE

[
exp
{
γ

2
x′
1(T )Sx1(T ) +

γ

2

∫ T

0

[
x′
1(t)Q̃x1(t) + u′(t)P̃ u(t)

]
dt

+
γ

2

∫ T

0

[
L′

1x1(t) + L′
2x2(t) + L′

3x3(t) + L′
uu(t) + u′(t)R̃x1(t)

]
dt

+
γ

2
S ′
1x1(T ) +

γ

2
S ′
2x2(T ) +

γ

2
S ′
3x3(T ) +

γ

2

∫ T

0

[Qx1x1(t) +Ruu(t)]
′ dw1(t)

+
γ

2

∫ T

0

Q′
x3
V (x3)dw2(t)

}]
, (3.15)

where Qx1 ∈ Rn×n1 , Ru ∈ Rn×m, Qx3 ∈ Rn×1 and

V (x3) =


√

v1(x3) o · · · 0

0
√

v2(x3) · · · 0
. . .

0 · · · 0
√

vn(x3)

 .
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In this section, we build the risk sensitive control problem to be
min
u(·)∈Ã

J̃(u(·))

s.t.(3.1)holds,

(3.16)

where the set Ã is a new admissible control set. By using change of measure, we
introduce the new probability measure P̃, under which the problem (3.16) can be
transformed and applied the the Theorem 3.2.2 directly.

Let us introduce a stochastic process θ(t):

θ(t) =


−γ

2

(
Qx1x1(t) +Ruu(t)

)
−γ

2
V (x3)Qx3

 ,

and the process Z(t):
Z(t) = exp

{
−
∫ t

0

θ′(s)dw(s)− 1

2

∫ t

0

θ′(s)θ(s)ds
}
,

Z(T ) = Z.

Here we denote Z to be a random variable. In order to ensure that E[Z] = 1, we
give an assumption which satisfies the Novikov condition

Assumption 3.3.1.
E
[
e 1

2

∫ T
0 θ′(s)θ(s)ds

]
< ∞.

Now we introduce a new probability measure P̃, which is

P̃(α) =
∫
α

Z(ω)dP(ω),∀α ∈ F .

By Girsanov theorem, the standard Brownian motion w̃(t) under probability mea-
sure P̃ is defined

w̃(t) ≡

w1(t)

w2(t)

+

∫ t

0


−γ

2

(
Qx1x1(t) +Ruu(t)

)
−γ

2
V (x3)Qx3

 ds.

41



Under P̃, now we deduce the criterion (3.15) as

J̃(u(·))

= γẼ

[
exp
{
γ

2
x′
1(T )Sx1(T ) +

γ

2

∫ T

0

[
x′
1(t)Q̃x1(t) + u′(t)P̃ u(t)

]
dt

+
γ

2

∫ T

0

[
L′

1x1(t) + L′
2x2(t) + L′

3x3(t) + L′
uu(t) + u′(t)R̃x1(t)

]
dt

+
γ

2
S ′
1x1(T ) +

γ

2
S ′
2x2(T ) +

γ

2
S ′
3x3(T ) +

γ

2

∫ T

0

γ

4
Q′

x3
V (x3)V (x3)Qx3dt

+
γ

2

∫ T

0

γ

4
[Qx1x1(t) +Ruu(t)]

′ [Qx1x1(t) +Ruu(t)] dt
}]

= γẼ

[
exp
{
γ

2
x′
1(T )Sx1(T ) +

γ

2

∫ T

0

[
x′
1(t)Q̂x1(t) + u′(t)P̂ u(t)

]
dt

+
γ

2

∫ T

0

[
L′

1x1(t) + L′
2x2(t) + L̂′

3x3(t) + L′
uu(t) + u′(t)R̂x1(t)

]
dt

+
γ

2
S ′
1x1(T ) +

γ

2
S ′
2x2(T ) +

γ

2
S ′
3x3(T ) + C

}]
, (3.17)

where

Q̂ = Q̃+
γ

4
Q′

x1
Qx1 , P̂ = P̃ +

γ

2
R′

uQx1 , R̂ = R̃ +
γ

4
R′

uRu

L̂′
3 = L′

3 +
γ

4

n∑
j=1

Q2
x3j

β′
j, C =

γ

2
T
γ

4

n∑
j=1

Q2
x3j

αj.

It is observed that equation (3.17) has a similar form compared with equation
(3.2). To ensure under the same probability measure P̃, we need to change the
measures of x1(t), x2(t) and x3(t).

dx1(t)

= [A1x1(t) + B1u(t)]dt+
n∑

j=1

C1j

[
dw̃1j(t) +

γ

2

(
Qx1jx1(t) +Ruju(t)

)
dt
]
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= [Ã1x1(t) + B̃1u(t)]dt+
n∑

j=1

C1jdw̃1j(t) (3.18)

dx2(t)

= [A12x1(t) + A22x2(t) + A42x3(t) +D (x1(t), u(t)) +B12u(t)] dt

+
n∑

j=1

[A3jx1(t) +B2ju(t) + C2j] dw̃2j(t) +
n∑

j=1

√
vj(x3)σjdw̃3j(t)(3.19)

dx3(t)

= [A3x3(t) + B3] dt+
n∑

j=1

√
vj(x3)σj

[
dw̃3j(t) +

γ

2

√
vj(x3)Qx3jdt

]
=

[
Ã3x3(t) + B̃3

]
dt+

n∑
j=1

√
vj(x3)σjdw̃3j(t) (3.20)

where

Ã1 = A1 +
γ

2

n∑
j=1

C1jQx1j, B̃1 = B1 +
γ

2

n∑
j=1

C1jRuj

Ã3 = A3 +
γ

2

n∑
j=1

Qx3jσjβ
′
j, B̃3 = B3 +

γ

2

n∑
j=1

Qx3jαjσj

Qx1j ∈ R1×n1 , Ruj ∈ R1×m, Qx3j ∈ R.

It is notable that the control problem of minimizing (3.17) subject to (3.18),
(3.19) and (3.20) is similar to the problem (3.3). Thus it can be solved by the same
method. The only difference is the terminal condition g5(T ) = C in equation (3.8).
Therefore, under Assumption 3.3.1, these two problems have the same solutions.

Theorem 3.3.1. Under Assumption 3.3.1, there exists a unique solution to prob-
lem (3.16) given by

ũ∗(t) = −1

2
K−1

1 (t) [K2(t)x1(t) +K3(t)]

where K1(t), K2(t) and K3(t) defined before.

Proof. The proof is similar to that of Theorem 3.2.2.
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3.4 Summary
In this chapter, we consider the risk-sensitive control problem for a class of

nonlinear systems. We extend our previous work [15] with multiplicative noise.
And we generalised the classical risk sensitive control by introducing a more gen-
eral criterion which has noise dependent on the state x1(t), x3(t) and control u(t).
Under some assumptions, the solution to such optimal control problem is obtained
in an explicit form. Applications of these results to mathematical finance, such as
interest rate modelling, bond pricing, and optimal investment, will be considered
in later chapters.

44



Chapter 4

Interest rate modelling, bond
pricing and optimal investment

4.1 Introduction
The optimal investment problem is an important application of the risk sen-

sitive control. In Date and Gashi [11], they outline the results of a new interest
rate model, which is a quadratic affine term structure (QATS) interest rate model.
They propose a generalisation of the classical optimal investment problem with
exponential utility. In this chapter, we extend this optimal investment problem
by introducing a further nonlinear interest rate, which is a combination of the CIR
and the multi-dimensional quadratic term structure model. The explicit solutions
with logarithmic and power utilities are obtained in closed-form. Furthermore,
we take into consideration Yong’s result [54] about CIR model’s limitation. We
also derive the zero-coupon bond price for such an interest rate model.

4.2 Interest Rate Model
Recalling the systems (2.1) and (2.9), we choose the value

A1 = A ∈ Rn1×n1 , B1 = 0, C1j = [D1j, D2j, . . . , Dn1j]
′ ∈ Rn1 ,

A3 = α ∈ R, B3 = −β ∈ R, Σ = v ∈ R, v3(x3) = x3.

And let w1(t), w3(t) be d1–dimensional and one-dimensional standard Brownian
motions respectively. We define a new filtered probability space (Ω,F , (Ft),P)
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with the natural filtration

Ft = σ{w(s); 0 ≤ s ≤ t},F = FT ,

where w(·) = [w1(·), w2(·)]′ is a d1 + 1 dimensional standard Brownian motion.
The factor processes x1(t) and x3(t) are governed by the following SDEs:

dx1(t) = Ax1(t)dt+Ddw1(t), t ≥ 0

x1(0) = x10

(4.1)

 dx3(t) = [α− βx3(t)] dt+
√
x3(t)vdw3(t), t ≥ 0

x3(0) = x30

(4.2)

We propose the following model for the short interest rate r(t), which has the
quadratic and mixed CIR term,

r(t) = q′1x1(t) + x1(t)
′Q2x1(t) + δx3(t), (4.3)

where q1 ∈ Rn1 , Q2 ∈ Rn1×n1and δ ∈ R. Compared this model with the known
interest rate models, it has a more general case: when Q2 and δ chosen the value
zero, it becomes the Vasicek interest rate model directly; and let q1 = 0, Q2 = 0,
it is CIR process; in particular, when δ are zero, our interest rate turns to be the
traditional QATSM.

4.3 Zero-coupon Bond
The price of a zero-coupon bond can be observed in an explicit closed-form by

using equation (3.2). It is denoted to be B(t, T ) at mature time T :

B(t, T ) = E
[
e−

∫ T
t r(τ)dτ

]
.

Substituting r(t) from (4.3), we obtain the expression of bond price, which is

B(t, T ) = E
[
e−

∫ T
t

{
q′1x1(τ)+x1(τ)′Q2x1(t)+δx3(τ)

}
dτ
]
. (4.4)
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Beginning with time t, rather than time zero, the criterion (3.2) has the following
coefficients:

γ = 1, S = 0, Q̃ = −2Q2, P̃ = 0, L1 = −2q1, L2 = 0,

L3 = −2δ, Lu = 0, R̃ = 0, S1 = 0, S2 = 0, S3 = 0.

Therefore, the relevant differential equations from (3.4), (3.5), (3.6), (3.7), (3.8)
can be rewritten as follows:

−2Q2 + Ġ1(t) + 2G1(t)A+G1(t)D
′DG1(t) = 0,

G1(T ) = 0,

(4.5)

g3(t) = 0, (4.6)


−2q′1 + ġ2

′(t) + g′2(t)A+ g′2(t)D
′DG1(t) = 0,

g2(T ) = 0,

(4.7)


−8δ + 4ġ4(t) + 4αg4(t) + v2g24(t) = 0,

g4(T ) = 0,

(4.8)


2

n∑
j=1

C ′
1jG1(t)C1j + g′2(t)DD′g2(t)− 4βg4(t) + 4ġ5(t) = 0,

g5(T ) = 0,

(4.9)

Corollary 4.3.1. Let equations (4.5), (4.7), (4.8) and (4.9) have unique global

47



solutions, then the price of zero-coupon bond at time t is

B(t, T ) = E
[
exp

{
1

2
[x′

1(t)G1(t)x1(t) + g′2(t)x1(t) + g4(t)x3(t) + g5(t)]

}]
,

where G1(t), g2(t), g4(t) and g5(t) are solutions of differential equations (4.5),
(4.7), (4.8) and (4.9) respectively. �

Proof. We can obtain the result from Theorem 3.2.2.

This gives us a closed form of bond pricing with a new interest rate model.

4.4 Market Model
As described in Section 2.3, we consider a financial market consists of a bond,

and n stocks. Denote the price of a bond to be S0(t) with the interest rate r(t),
and the price of stock number i to be Si(t), i = 1, . . . , n. In our model, we assume
these prices processes whose differentials are

dS0(t) = S0(t)r(t)dt

S0(0) = S00,
(4.10)


dSi(t) = Si(t)

(
µi(t)dt+

m∑
j

σij(t)dwj(t)

)

Si(0) = Si0,

(4.11)

where the vector µ(t) ∈ Rn, µ(t) = [µ1(t), . . . , µn(t)]
′ is the mean rates of return,

and the vectors σi(t) ∈ R1×m, σi(t) = [σi1(t), . . . , σim(t)] is the volatility.
We use the factor processes x1 and x3 defined in Section refsection 4.2. Ac-

cording to H. Kraft [31] and T. R. Bielecki, S. Pliska and J. Yong [4], the drift
process is defined: µ(t) = 1r(t) + λx1(t). In this chapter, we introduce a more
general case of µ(t), which is µ(t) = 1r(t) + λ1x̃(t) + λ2x1(t) + λ3,

48



x̃(t) =



√
(x1(t)− µ1)′K11(x1(t)− µ1) + k21x3(t) + k31√
(x1(t)− µ1)′K12(x1(t)− µ1) + k22x3(t) + k32

...√
(x1(t)− µ1)′K1n(x1(t)− µ1) + k2nx3(t) + k3n


,

.
where

K1i ∈ Rn×n, k2i, k3i ∈ R, µ1 ∈ Rn, λ1, λ2 ∈ Rn×n,

λ3 ∈ Rn, σ ∈ Rn×d, 1 = [1, . . . , 1︸ ︷︷ ︸
n

].

It should has two assumptions:

Assumption 4.4.1. σσ′ > 0

Assumption 4.4.2.
λ1

′(σσ′)
−1
λ2 = 0

λ3
′(σσ′)

−1
λ1 = 0

λ1
′(σσ′)

−1
λ1 = diag(θ1, θ2, . . . , θn) i.e. a diagonal matrix,

where at least one θi is zero.

Example 4.4.1. We give a numerical example of Assumption 4.4.1 and 4.4.2.

n = 2, σ =


√

21

5

√
4

5

0
√
5

 , σσ′ =

5 2

2 5

 , λ1 =

0 2

0 3

 ,

λ2 =

11 −11

−4 4

 , λ3 =

11
−4

 , diag(θ1, θ2) =

0 0

0
41

21

 .
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4.4.1 No Arbitrage of the Market
According to section 2.4, if there has a market price of risk process ϕ(t), that

satisfying the following two conditions:
µ(t)− r(t) = σϕ(t)

E[e−
∫ T
0 ϕ(t)′dw(t)− 1

2

∫ T
0 |ϕ(t)|2dt] = 1,

(4.12)

then the market has no arbitrage. Thus it is necessary to prove the existence
of ϕ(t). According to Theorem 8.6.4 of B. ksendal [43], if the Novikov condition
holds:

E[e
1
2

∫ T
0 |ϕ(t)|2dt] < ∞, (4.13)

then the second equation of (4.12) holds.
We first define ϕ(·) to be

ϕ(t) = σ−1 (µ(t)− 1r(t)) = σ−1(λ1x̃(t) + λ2x1(t) + λ3),

and substitute ϕ(t) into
E[e

1
2

∫ T
0 |ϕ(t)|2dt].

It can be deduced as follows:

E
[
exp

(
1

2

∫ T

0

[λ1
˜x(t) + λ2x1(t) + λ3]

′(σσ′)−1[λ1x̃(t) + λ2x1(t) + λ3]dt
)]

≤

{
E

[
exp

(
p1
2

∫ T

0

x1(t)
′

[
λ′
2(σσ

′)−1λ2 +
n∑

i=1

θiK1i

]
x1(t)dt

)]}1/p1

{
E

[
exp

(
p2

∫ T

0

[
λ′
3(σσ

′)−1λ2 −
n∑

i=1

θiµ
′
1K1i

]
x1(t)dt

)]}1/p2

{
E

[
exp

(
p3

∫ T

0

x2(t)
n∑

i=1

θik2idt
)]}1/p3

{
E

[
exp

(
p4

∫ T

0

[
λ′
3(σσ

′)−1λ3 +
n∑

i=1

θi(µ
′
1µ1 + k3i)

]
dt
)]}1/p4

,
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where p1, p2, p3, p4 > 1 and 1
p1

+ 1
p2

+ 1
p3

+ 1
p4

= 1.
The next work is to check the existence of following inequalities.

E[eκ
∫ T
0 x1(t)′Λx1(t)dt] < ∞,

E[eκ
∫ T
0 λ′x1(t)dt] < ∞,

E[eκ
∫ T
0 x2(t)dt] < ∞,

where κ is a positive constant, and

Λ ≜ [λ′
2(σσ

′)−1λ2 +
n∑

i=1

θiK1i]

λ ≜ [λ′
3(σσ

′)−1λ2 −
n∑

i=1

θiµ
′
1K1i]

′

In the Section 4.5, the proofs of these three inequalities will be illustrated.

4.4.2 Wealth processes
Suppose an investor has an initial wealth y0 > 0 and takes self-finance trading

strategies. The stochastic differential equation of wealth process y(t) will satisfy
as follows:

dy(t) = {r(t)y(t) + u(t)′[µ(t)− 1r(t)]}dt+ u(t)′σdw(t)

y(0) = y0.
(4.14)

We call u(t) the control process of the portfolio, and define b := [µ(t)− 1r(t)].

4.5 Admissible Trading Strategies
The purpose of this section is to provide a set of admissible controls A[0, T ] .

For any initial state y0 and admissible control u(·) ∈ A[0, T ], the state equations
(4.14) admits a unique solution.
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Recall (4.14), if we take u(·) = 0, which means putting all money into the
bank account, then the wealth process y(·) is given by

y(t) = exp
{∫ t

0

r(s)ds
}
y0,

Now we consider that y(t)τ should be integrable for τ > 0, which means it
should request the following type of estimate:

E
[
eτ

∫ t
0 r(s)ds

]
< ∞,∀τ > 0.

Lemma 4.5.1. Let x1(·), x2(·) be the solution of (4.1), (4.2) respectively, and
r(t) = q′1x1(t) + x1(t)

′Q2x1(t) + δx2(t). Then

E
[
exp

{
τ

∫ t

0

r(s)ds
}]

< ∞, ∀τ > 0

provided the following holds:

2τT 2|eLAL−1

LD|2 < 1,where L is an invertible matrix and Q2 = L′L,

4α ≤ |v|2, τT

2β
|v|2

(
eβT − 1

)
< 1.

Proof. Substituting the interest rate model into E
[
e
∫ t
0 r(s)ds

]
, we have the following

inequality:

E
[
exp

{∫ t

0

[q′1x1(s) + x1(s)
′Q2x1(s) + δx2(s)]ds

}]

≤
{
E
[
exp

{
p5

∫ t

0

q′1x1(s)ds
}]}1/p5

{
E
[
exp

{
p6

∫ t

0

x1(s)
′Q2x1(s)ds

}]}1/p6

{
E
[
exp

{
p7

∫ t

0

δx2(s)ds
}]}1/p7

,

where p5, p6, p7 > 1 and 1
p5

+ 1
p6

+ 1
p7

= 1.

Since E
[
exp

{
p5
∫ t

0
q′1x1(s)ds

}]
can be written as E

[
exp

{
n∑

i=1

p5q1i

∫ t

0

x1i(s)ds
}]

,
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again using Hölder’s inequality, and by Corollary C.2 from T. R. Bielecki, S. Pliska
and J. Yong’s paper [4], we can prove

E
[
exp

{
p5

∫ t

0

q′1x1(s)ds
}]

< ∞.

Then, by Cholesky decomposition, there exists a invertible matrix L such that
Q2 = L′L. Moreover, x1(t)

′Q2x1(t) = x1(t)
′L′Lx1(t) = z(t)′z(t), where we denote

z(t) = Lx1(t). Recall the first equation (4.1),

dx1(t) = Ax1dt+Ddw1(t)

dLx1(t) = LAx1(t)dt+ LDdw1(t)

dLx1(t) = LAL−1Lx1(t)dt+ LDdw1(t)

dz(t) = Az(t)z(t)dt+Dz(t)dw1(t)

we denote Az = LAL−1 and Dz = LD.

Again applying Corollary C.2 from T. R. Bielecki, S. Pliska and J. Yong’s
paper [4], we can show

E
[
exp

{
p6

∫ t

0

x1(s)
′Q2x1(s)ds

}]
= E

[
exp

{
p6

∫ t

0

z(s)′z(s)ds
}]

< ∞

with condition

2τT 2|eLAL−1

LD|2 < 1,where L is an invertible matrix and Q2 = L′L, τ > 0.

According to Theorem 4.1 from J. Yong [54], we can prove

E
[
exp

{
p7

∫ t

0

δx2(t)ds
}]

= E
[
exp

{
τ

∫ t

0

x2(t)ds
}]

< ∞

provided
4α ≤ |v|2, τT

2β
|v|2

(
eβT − 1

)
< 1, τ > 0

Thus, it is proved.
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The next step is taking u(·) ̸= 0, and supposing y(·) to be the solution of
(4.14). We define ρ(t) := u(t)/y(t).

By Itô’s formula, we have

d[lny(t)] =
{
r(t) + ρ(t)′[µ(t)− 1r(t)]− 1

2
ρ(t)′σσ′ρ(t)

}
dt+ ρ(t)′σdw(t).

This implies:

y(t) = y0exp
{∫ t

0

[
r(s) + ρ(s)′[µ(s)− 1r(s)]− 1

2
ρ(s)′σσ′ρ(s)

]
ds

+

∫ t

0

ρ(s)′σdw(s)
}
.

Again if y(·) is well defined, there should exist a constant κ > 0, such that the
following inequality holds:

E [y(t)κ] < ∞

Here we introduce an assumption:

Assumption 4.5.1.

ρ(·) = C(σσ′)−1[µ(·)− 1r(·)], where C is a constant, C > 0

And we state another lemma below:

Lemma 4.5.2. Under Assumptions (4.4.1), (4.4.2), (4.5.1), let y(·) to be the
solution of (4.14), µ(t) = 1r(t) + λ1x̃(t) + λ2x1(t) + λ3 and r(t) = q′1x1(t) +

x1(t)
′Q2x1(t) + δx2(t). Then

E [y(t)κ] < ∞,∀κ > 0

provided the following holds:

2κT 2|eLAL−1

LD|2 < 1,where L is an invertible matrix and Q2 = L′L,

2κT 2|eL̃AL̃−1

L̃D|2 < 1,where L̃ is an invertible matrix and Λ = L̃′L̃,

4α ≤ |v|2, κT

2β
|v|2

(
eβT − 1

)
< 1.
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Proof. In order to prove it, we use Bielecki, Pliska and Yong’s approach [4].

E [y(t)κ]

= yκ0E
[
exp

{∫ t

0

κ

(
r(s) + ρ′[µ(s)− 1r(s)]− 1

2
ρ′σσ′ρ

)
ds+

∫ t

0

κρ′σdw(s)
}]

= yκ0E
[
exp

{∫ t

0

κ

(
r(s) + ρ′[µ(s)− 1r(s)]− p8κ− 1

2
ρ′σσ′ρ

)
ds
}

exp
{

1

p8

∫ t

0

p8κρ
′σdw(s)− 1

2p8

∫ t

0

(p8κ)
2ρ′σσ′ρds

}]

≤ yκ0

{
E
[
exp

(
p9κ

∫ t

0

r(s)ds
)]}1/p9 {

E
[
exp

(
p10κ

∫ t

0

ρ′[µ(s)− 1r(s)]ds
)]}1/p10

{
E
[
exp

(
p11

p8(κ
2 − κ)

2

∫ t

0

ρ′σσ′ρds
)]}1/p11

{
E
[
exp

{∫ t

0

p8κρ
′σdw(s)− 1

2

∫ t

0

(p8κ)
2ρ′σσ′ρds

}]}1/p8

where p8, p9, p10, p11 > 1 and 1
p8

+ 1
p9

+ 1
p10

+ 1
p11

= 1.

From Lemma (4.5.1), we can show

E
[
exp

(
κ

∫ t

0

r(s)ds
)]

< ∞.

with two conditions:

2κT 2|eLAL−1

LD|2 < 1,where L is an invertible matrix and Q2 = L′L,

4α ≤ |v|2, κT

2β
|v|2

(
eβT − 1

)
< 1.

Under Assumptions (4.4.1), (4.4.2), (4.5.1), we have

E
[
exp

{
p10κ

∫ t

0

ρ′[µ(s)− 1r(s)]ds
}]
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= E
[
exp

{
p10κC

∫ t

0

[µ(s)− 1r(s)]′(σσ′)−1[µ(s)− 1r(s)]ds
}]

≤

{
E

[
exp

(
p12κ

∫ t

0

x1(s)
′

[
λ′
2(σσ

′)−1λ2 +
n∑

i=1

θiK1i

]
x1(s)ds

)]}1/p12

{
E

[
exp

(
p13κ

∫ t

0

[
λ′
3(σσ

′)−1λ2 −
n∑

i=1

θiµ
′
1K1i

]
x1(s)ds

)]}1/p13

{
E

[
exp

(
p14κ

n∑
i=1

θik2i

∫ t

0

x2(s)ds
)]}1/p14

{
E

[
exp

(
p15κ

∫ t

0

[
n∑

i=1

θi(µ
′
1µ1 + k3i) + λ′

3(σσ
′)−1λ3

]
ds
)]}1/p15

where p12, p13, p14, p15 > 1 and 1
p12

+ 1
p13

+ 1
p14

+ 1
p15

= 1.

Similar to the proof of Lemma (4.5.1), we prove three inequalities.

E

[
exp

(
p12κ

∫ t

0

x1(s)
′

[
λ′
2(σσ

′)−1λ2 +
n∑

i=1

θiK1i

]
x1(s)ds

)]

= E
[
exp

(
κ

∫ t

0

x1(s)
′Λx1(s)ds

)]
< ∞, (4.15)

provoded 2κT 2|eL̃AL̃−1
L̃D|2 < 1, where L̃ is an invertible matrix and Λ = L̃′L̃.

E

[
exp

(
p13κ

∫ t

0

[
λ′
3(σσ

′)−1λ2 −
n∑

i=1

θiµ
′
1K1i

]
x1(s)ds

)]

= E
[
exp

(
κ

∫ t

0

λ′x1(s)ds
)]

< ∞ (4.16)
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E
[
exp

(
κ

∫ t

0

x2(s)ds
)]

< ∞, provided 4α ≤ |v|2, κT

2β
|v|2

(
eβT − 1

)
< 1.

(4.17)

Therefore, from inequalities (4.15), (4.16), (4.17), we proved

E
[
exp

(
κ

∫ t

0

ρ′[µ(s)− 1r(s)]ds
)]

< ∞

provided the following holds:

2κT 2|eL̃AL̃−1

L̃D|2 < 1,where L̃ is an invertible matrix and Λ = L̃′L̃,

and
4α ≤ |v|2, κT

2β
|v|2

(
eβT − 1

)
< 1.

The expectation E
[
exp

(
p11

p8(κ
2 − κ)

2

∫ t

0
ρ′σσ′ρds

)]
can be written as

E
[
exp

{
k

∫ t

0

(µ(s)− 1r(s))′(σσ′)−1(µ(s)− 1r(s))ds
}]

< ∞,

where k is some constant. The proof is similar and omitted.

Using the fact

E
[
exp

{∫ t

0

|p8κρ′σ|dw(s)−
1

2

∫ t

0

|p8κρ′σ|2ds
}]

< 1.

Finally, E [y(t)κ] can be proved to be finite with some sufficient conditions:

2κT 2|eLAL−1

LD|2 < 1,where L is an invertible matrix and Q2 = L′L,

2κT 2|eL̃AL̃−1

L̃D|2 < 1,where L̃ is an invertible matrix and Λ = L̃′L̃,

4α ≤ |v|2, κT

2β
|v|2

(
eβT − 1

)
< 1.
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Then, we introduce the following set A[0, T ]:

A[0, T ] =
∪
κ>0

{u(·) | E [y(t)κ] < ∞} .

where the sufficient conditions of E [y(t)κ] < ∞ are mentioned in Lemma (4.5.2).

4.6 Solution of Problems
In this section, we define the optimal cost function follows two types of utilities,

one is Logarithm Utility and the other is Power Utility. It is denoted by:

J(u(·)) =


E [−lny(T )]

E [−y(T )γ] ,where γ ∈ (0, 1).
(4.18)

Then our problem is to seek a u(·) that minimizes J(u(·)).

4.6.1 Logarithmic Utility
Problem 4.6.1. For given t ∈ [0, T ], find a u(·) ∈ A[0, T ] such that

min
u∈A

E[−lny(T )]

Theorem 4.6.1. Under Assumption (4.4.1), Problem (4.6.1) has a unique solution
with the optimal control u(·) ∈ A[0, T ] given by

u∗(t) = (σσ′)−1b (4.19)

The optimal cost is

lny0E
[∫ T

0

(
1

2
b′(σσ′)−1b+ r(s)

)
ds
]
. (4.20)

Proof. By using Itô’s formula and taking expectation, we have

J(u(·))

= E [−lny0]E
[∫ T

0

(
−r(s)− u(s)′b+

1

2
u(s)′σσ′u(s)

)
ds
]
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= E [−lny0]E
[∫ T

0

{
1

2

[
u(s)− (σσ′)−1b

]′
σσ′[u(s)− (σσ′)−1b

]
−1

2
b′(σσ′)−1b− r(s)

}
ds
]

≥ −E [−lny0]E
[∫ T

0

(
1

2
b′(σσ′)−1b+ r(s)

)
ds
]

Therefore, when u(t) = u∗(t) = (σσ′)−1b, J(t) can choose the minimum value,
which is

E [lny0]E
[∫ T

0

(
1

2
b′(σσ′)−1b+ r(s)

)
ds
]
.

4.6.2 Power Utility
Recall the second equation of (4.18), we build the Problem (4.6.2).

Problem 4.6.2. For given t ∈ [0, T ], find a u(·) ∈ A[0, T ] such that

min
u∈A

E[−y(T )γ],where γ ∈ (0, 1)

In order to solve Problem (4.6.2), we introduce another function F (t, x1, x2, y)

such that

F (t, x1, x2, y) = exp {g1(t)′x1(t) + x1(t)
′G2(t)x1(t) + g3(t)x2(t)}h(t)y(t)γ (4.21)

with the terminal condition g1(T ) = 0, G2(T ) = 0, g3(T ) = 0, h(T ) = −1, where

g1(·) ∈ L∞(0, T ;Rn), G2(·) ∈ L∞(0, T ;Rn×n), g3(·) ∈ L∞(0, T ;R).

Compared F (t, xt, x2, y) with −y(T )γ, it can be seen when t = T , these two
functions will be the same

F (t, x1, x2, y) = −y(T )γ.

We further introduce another assumption
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Assumption 4.6.1. Under Assumption (4.4.1), (4.4.2), functions g1, G2, g3, h

satisfy the following differential equations (4.22),(4.23),(4.24),(4.25):

ġ1
′(t) + g′1(t)A+ 2g′1(t)DD′G2(t) + γq′1

+
γ

1− γ

[
λ′
3(σσ

′)−1λ2 −
n∑

i=1

θiµ
′
1K1i

]
= 0

g1(T ) = 0

(4.22)



Ġ2(t) + 2G2(t)A+ 2G2(t)DD′G2(t) + γQ2

+
γ

2(1− γ)

[
n∑

i=1

θiK1i + λ′
2(σσ

′)−1λ2

]
= 0

G2(T ) = 0

(4.23)


ġ3(t) + g3(t)β +

1

2
g23(t)v

2 + γδ +
γ

2(1− γ)

n∑
i=1

θik2i = 0

g3(T ) = 0

(4.24)



ḣ(t) + h(t)g3(t)α +
1

2
h(t)tr [(2G2(t) + g1(t)g

′
1(t))DD′]

+
γh(t)

2(1− γ)

[
n∑

i=1

θi(µ
′
1µ1 + k3i) + λ′

3(σσ
′)−1λ3

]
= 0

h(T ) = −1.

(4.25)

Now we can state the main results of this section.

Theorem 4.6.2. Under Assumption (4.6.1), there exist s a unique solution to
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Problem (4.6.2) given by

u∗(t) =
1

1− γ
(σσ′)−1[µ(t)− 1r(t)]y(t) (4.26)

The optimal cost function is

J∗(t) = E [exp{g1(0)′x10 + x′
10G2(0)x10 + g3(0)x20}h(0)yγ0 ] . (4.27)

with g1, G2, g3, h being solutions of differential equations (4.22),(4.23),(4.24),(4.25)
corresponding.

Proof. We now suppose F (t, x1, x2, y) = f1(t, x1, x2)f2(t, y), where functions f1(·)
and f2(·) related to x1(t), x2(t) and y(t) corresponding

f1(t, x1) = exp{g1(t)′x1(t) + x1(t)
′G2(t)x1(t) + g3(t)x2(t)}

f2(t, y) = h(t)y(t)γ

By Itô’s Lemma, we have the following differential equations

dF (t) = f1(t)
{
ḣ(t)y(t)γ + γh(t)y(t)γ−1 {r(t)y(t) + u(t)′ [µ(t)− 1r(t)]}

+
1

2
u(t)′σσ′u(t)γ(γ − 1)h(t)y(t)γ−2

}
dt

+f1(t)f2(t)
{
ġ1(t)

′x1(t) + x1(t)
′Ġ2(t)x1(t) + g1(t)

′Ax1(t)

+2g1(t)
′DD′G2(t)x1(t) + 2x1(t)

′G2(t)DD′G2(t)x1(t)

+2x1(t)
′G2Ax1(t) +

1

2
tr[D′(2G2(t) + g1(t)g1(t)

′)D]

}
dt

+f1(t)f2(t)

{
ġ3(t)x2(t) + g3(t)[α− βx2(t)] +

1

2
g3(t)

2x2(t)v
2

}
dt

+f1(t)f2(t)g3(t)
√
x2(t)vdw2(t) + f1(t)f2(t)[g1(t) + 2G2(t)x1(t)]

′Ddw1(t)

+f1(t)u(t)
′σγh(t)y(t)γ−1dw(t)

Then we substitute f2(t) = h(t)y(t)γ into dF , take the expectation of dF and
arrange the equation into a nicely organized form, and deduce the expression of
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J(u(·)):

J(u(·))

= E [F (0)]

+E
[∫ T

0

f1(t)y(t)
γ{h(t)ġ1(t)′ + h(t)g1(t)

′A

+ 2h(t)g1(t)
′DD′G2(t) + γh(t)q′1}x1(t)ds

]
+E

[∫ T

0

f1(t)y(t)
γx1(t)

′{h(t)Ġ2(t) + 2h(t)G2(t)A

+ 2h(t)G2(t)DD′G2(t) + γh(t)Q2}x1(t)ds
]

+E
[∫ T

0

f1(t)y(t)
γx2(t)

{
h(t)ġ3(t)− h(t)g3(t)β

+
1

2
h(t)g3(t)

2v2 + γh(t)δ

}
ds
]

+E
[∫ T

0

f1(t)y(t)
γ
{
ḣ(t) + h(t)g3(t)α

+
1

2
h(t)tr [(2G2(t) + g1(t)g1(t)

′)DD′]

}
ds
]

+E
[∫ T

0

f1(t)
{
γh(t)y(t)γ−1u(t)′(µ(t)− 1r(t))

+
1

2
u(t)′σσ′u(t)γ(γ − 1)h(t)y(t)γ−2

}
ds
]

Only the last expectation above contains the control process u(·), and it can
be written as:

E
[∫ T

0

f1(s)
γ(γ − 1)h(s)y(s)γ

2

{
ρ(s)′σσ′ρ(s) +

2

γ − 1
ρ(s)′[µ(s)− 1r(s)]

}
ds
]
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= E
[∫ T

0

f1(s)
γ(γ − 1)h(s)y(s)γ

2

{[
ρ(s) +

1

γ − 1
(σσ′)−1(µ(s)− 1r(s))

]′
(σσ′)

[
ρ(s) +

1

γ − 1
(σσ′)−1(µ(s)− 1r(s))

]

− 1

(γ − 1)2
(µ(s)− 1r(s))′(σσ′)−1(µ(s)− 1r(s))

}
ds
]

The sum of the terms that are quadratic in x1(t) in (4.28) is zero due to equa-
tion (4.23) in Assumption (4.6.1), indeed,

x1(t)
′
{
h(t)Ġ2(t) + 2h(t)G2(t)A+ 2h(t)G2(t)DD′G2(t)

+γh(t)Q2 +
γh(t)

2(1− γ)

[
n∑

i=1

θiK1i + λ′
2(σσ

′)−1λ2

]}
x1(t) = 0

Similarly, the sums of the terms linear in x1(t), x2(t) are also zero:

{
h(t)ġ1(t)

′ + h(t)g1(t)
′A+ 2h(t)g1(t)

′DD′G2(t)

+γh(t)q1(t)
′ +

γh(t)

(1− γ)

[
λ′
3(σσ

′)−1λ2 −
n∑

i=1

θiµ
′
1K1i

]}
x1(t) = 0

x2(t)

{
h(t)ġ3(t)− h(t)g3(t)β +

1

2
h(t)g3(t)

2v2 + γh(t)δ +
γh(t)

2(1− γ)

n∑
i=1

θ1k2i

}
= 0

The remaining sum of the terms that are independent of the states x1(t), x2(t)

and control u(t), is also zero due to our assumption on h(t).

ḣ(t) + h(t)g3(t)α +
1

2
h(t)tr [(2G2(t) + g1(t)g1(t)

′)DD′]
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+
γh(t)

2(1− γ)

[
n∑

i=1

θi(µ
′
1µ1 + k3i) + λ′

3(σσ
′)−1λ3

]
= 0

Therefore, the cost function J(u(·)) for all u(·) ∈ A can be written as follows:

J(u(·))

= E
[∫ T

0

f1(s)
γ(γ − 1)h(s)y(s)γ

2

{
ρ(s) +

1

γ − 1
(σσ′)−1(µ(s)− 1r(s))

}′

(σσ′)

{
ρ(s) +

1

γ − 1
(σσ′)−1(µ(s)− 1r(s))

}
ds
]
+ E [F (0)]

≥ E [F (0)]

It means the cost function J(u(·)) has the lower bound if and only if

u(t) = u∗(t) =
1

1− γ
(σσ′)−1[µ(t)− 1r(t)]y(t).

Similar to Section 3.2, we give a numerical example which is suitable to the
model.

Example 4.6.1. Let Example 4.4.1 holds, and

γ =
1

2
, A =

1 0

0 1

 , D =

1 0

0 1

 , q1 =

2
4

 , µ1 =

1
2

 ,

K12 =

−21 21

21 −21

 , Q2 =


1

8

1

8

1

8

1

8

 , β = 1, v = 1, δ = 2,

k22 = −21

44
, α =

7

4
, k32 = −16.
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Then equations (4.22),(4.23),(4.24),(4.25) become:
ġ′1(t) + g′1(t)

1 0

0 1

+ 2g′1(t)

1 0

0 1

G2(t) +

1
2

 = 0,

g1(T ) = 0,



Ġ2(t) + 2G2(t)

1 0

0 1

+ 2G2(t)

1 0

0 1

G2(t) +


1

16

1

16

1

16

1

16

 = 0,

G2(T ) = 0,


ġ3(t) + g3(t) +

1

2
g23(t) +

1

2
= 0,

g3(T ) = 0,


ḣ(t)− 73

4
h(t)g3(t) +

1

2
h(t)tr

{(
2G2(t) + g1(t)g

′
1(t)
)1 0

0 1

}+ h(t) = 0,

h(T ) = −1.

Thus g1, G2, g3, h can be solved as follows:

g1(t) =


−eT−t(T − t− 2) + 5T − 5t+ 2

2(T − t− 2)

eT−t(T − t− 2)− (7T − 7t− 2)

2(T − t− 2)

 ,
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G2(t) =


− T − t

8(T − t− 2)
− T − t

8(T − t− 2)

− T − t

8(T − t− 2)
− T − t

8(T − t− 2)

 ,

g3(t) =
T − t

T − t− 2
,

h(t) = − 1

240
(T − t− 2)40exp

{
1

8(T − t− 2)

[
(e2(T−t) − 4eT−t)(T − t− 2)

+112(T − t)2 − 365(T − t)− 6

]}
.

4.7 Summary
In this chapter, we introduce a further nonlinear interest rate model, which is a

combination of the CIR and the multi-dimensional quadratic term structure. The
price of the zero-coupon bond with such type of interest rate model is calculated.
The explicit solutions with logarithmic and power utilities are obtained in closed-
form. In addition, Yong’s result [54] about CIR model’s limitation is carefully
considered.
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Chapter 5

Optimal investment with
stochastic interest rate in an
infinite horizon

We consider the optimal investment problem with a nonlinear stochastic inter-
est rate in an infinite horizon. The nonlinearity consists not only of the quadratic
but also of the square-root terms. The optimal investment is found in an ex-
plicit closed form by using the completion of squares and the change of measure
methods.

5.1 Introduction
We consider the probability space defined in Section (2.2). Let n = 1, and

define a new three-dimensional Brownian motion w(t) =
[
w1(t), w2(t), w3(t)

]′
, t ≥

0.
The processes x1 and x2 are the factor processes, and we assume that they are

the solutions to the following equations:
dx1(t) = [a1x1(t) + a2]dt+ bdw1(t),

x1(0) = x10,

(5.1)
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
dx2(t) = k[θ −

√
x2(t)]dt+ σ2

√
x2(t)dw2(t),

x2(0) = x20,

(5.2)

where a1, a2, b are constants, k, σ2 are positive constants, and θ =
σ2
2

4k
.

The state (5.1) is clearly a linear stochastic differential equation, whereas (5.2)
is the Longstaff model [34]. The Longstaff model is different from the CIR model
in that the square-root process √x2 appears twice, and thus is called the double
square-root (DSR) process. An empirical comparison of CIR and DSR models is
done by Longstaff, who suggests that DSR process outperforms the CIR model in
most circumstances.

We consider a financial market consisting of two assets: the bank account with
price B(t) and the stock with price S(t). The equations of these two prices are:

dB(t) = r(t)B(t)dt,

B(0) = B0 > 0.

(5.3)


dS(t) = S(t)

[
µ(t)dt+ σdw3(t)

]
,

S(0) = S0 > 0,

(5.4)

for some positive constant σ. Here r(t) is the interest rate. Based on the factor
processes x1 and x2, we assume the interest rate to be of the form

r(t) = q1x
2
1(t) + q2x1(t) + q3x2(t) + q4

√
x2(t),

for some constants q1, q2, q3, q4. This interest rate model has quadratic and linear
terms in x1, which means it contains the QATSM as a special case. It also con-
tains a linear term in x2, and thus contains the Longstaff interest rate model as
a special case. In addition, it contains a square-root term in x2, which makes it a
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new interest rate model, in addition to being a rather general one. The motivation
for introducing this additional term has mainly to do with the explicit solvability
of the optimal investment problems that we consider.

In the optimal investment problems that deal with a stochastic interest rate,
it is usually assumed that there is a certain relation between the drift µ(t) of the
stock and the interest rate r(t). In Bielecki, T.R., Pliska, S. & Yong, J., 2004,
and Kraft, H., 2005, they assume that µ(t) = r(t) + λx1(t). Similarly to this, we
assume the following relation to hold:

µ(t) = r(t) + λ

√
κ1x2

1(t) + κ2x2(t) + κ3

√
x2(t) + κ4,

where λ, κ1, κ2, κ3, κ4 are constants.

In the above defined financial market, we consider an investor with the initial
wealth of y0 > 0 that can invest in the bank account and in the stock. The value
of his/her self-financing portfolio is:

dy(t) =
{
r(t)y(t) + u(t)

[
µ(t)− r(t)

]}
dt+ u(t)σdw3(t),

y(0) = y0,

(5.5)

where u(t) denotes the amount of wealth invested in the stock.

The main objective of this chapter is to formulate and solve the optimal in-
vestment problem in an infinite horizon. In addition to the market model being
new, our approach to solving this problem, which is based on the completion of
squares and the change of measure methods, also appears to be new. The infinite
horizon criteria that we use are the average type power and logarithmic utilities,
given by, respectively:

J(u(·)) = lim
T→∞

1

T
logE

[
yγ(T )

]
, γ ∈ (0, 1), (5.6)

J(u(·)) = lim
T→∞

1

T 2
E
[
log y(T )

]
. (5.7)
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The optimal investment problem is the following optimal control problem:


max
u(·)∈A

J(u(·)),

s.t. (5.1), (5.2), (5.5),

(5.8)

where A is the set of admissible controls. We define A as the set of all Ft-
adapted processes u(t) under which there exists of a positive and unique solution
to equation (5.5), and the corresponding cost J(u(·)) is finite.

5.2 Power utility
Let u(·) ∈ A, and define ρ(t) := u(t)/y(t). The solution to (5.5) is

y(t) = y0exp
{∫ t

0

[
r(s) + ρ(s)

[
µ(s)− r(s)

]
− 1

2
ρ2(s)σ2

]
ds
}

exp
{∫ t

0

ρ(s)σdw3(t)

}
. (5.9)

Consider the following equations:

d
(
g1x

2
1(t) + g2x1(t)

)
=

[(
2g1x1(t) + g2

)(
a1x1(t) + a2

)
+ g1b

2
]
dt

+
(
2g1x1(t) + g2

)
bdw1(t), (5.10)

d
(
g3x2(t) + g4

√
x2(t)

)
=

[(
g3 +

1

2
g4

1√
x2(t)

)
k
(
θ −

√
x2(t)

)
− 1

8
g4σ

2
2

1√
x2(t)

]
dt
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+
(
g3 +

1

2
g4

1√
x2(t)

)
σ2

√
x2(t)dw2(t), (5.11)

for some constants g1, g2, g3, g4, yet to be specified. After integration these become:

0 = −g1x
2
1(T )− g2x1(T ) + g1x

2
10

+g2x10 +

∫ T

0

[(
2g1x1(t) + g2

)(
a1x1(t) + a2

)
+ g1b

2
]
dt

+

∫ T

0

(
2g1x1(t) + g2

)
bdw1(t) (5.12)

0 = −g3x2(T )− g4
√
x2(T ) + g3x20 + g4

√
x20

+

∫ T

0

[(
g3 +

1

2
g4

1√
x2(t)

)
k
(
θ −

√
x2(t)

)
− 1

8
g4σ

2
2

1√
x2(t)

]
dt

+

∫ T

0

(
g3 +

1

2
g4

1√
x2(t)

)
σ2

√
x2(t)dw2(t) (5.13)

By combining (5.9) with (5.12) and (5.13), we obtain

E [yγ(T )]

= yγ0αE

[
exp
{
γ

∫ T

0

[
q1x

2
1(t) + q2x1(t) + q3x2(t) + q4

√
x2(t) + ρ(t)

[
µ(t)− r(t)

]
−1

2
ρ2(t)σ2 +

(
2g1x1(t) + g2

)(
a1x1(t) + a2

)
+ g1b

2

+
(
g3 +

1

2
g4

1√
x2(t)

)
k
(
θ −

√
x2(t)

)
− 1

8
g4σ

2
2

1√
x2(t)

]
dt
}

exp
{
− γg1x

2
1(T )− γg2x1(T )− γg3x2(T )− γg4

√
x2(T )

}
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exp
{
γ

∫ T

0

σ̃′(t)dw(t)
}]

, (5.14)

where σ̃(t) and α are defined as follows:

σ̃(t) :=


b
(
2g1x1(t) + g2

)
(
g3 +

1
2
g4

1√
x2(t)

)
σ2

√
x2(t)

ρ(t)σ

 ,

α := exp
{
γg1x

2
10 + γg2x10 + γg3x20 + γg4

√
x20

}
.

We define the process Z(t) and the random variable Z as
Z(t) := exp

{
−
∫ t

0

γσ̃′(s)dw(s)− 1

2

∫ t

0

γ2σ̃′(s)σ̃(s)ds
}
,

Z := Z(T )

Based on Z we introduce the new probability measure P̃ as

P̃(A) =
∫
A

Z(ω)dP(ω), ∀A ∈ F . (5.15)

We define the process w̃(t) as

w̃(t) ≡


w̃1(t)

w̃2(t)

w̃3(t)

 =


w1(t)

w2(t)

w3(t)

+ γ

∫ t

0



(
2g1x1(t) + g2

)
b

(
g3 +

1

2
g4

1√
x2(t)

)
σ2

√
x2(t)

ρ(t)σ


ds,

which is a standard Brownian motion under P̃ by Girsanov’s theorem.
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We can now rewrite (5.14) as

E [yγ(T )]

= yγ0αE

[
exp
{
γ

∫ T

0

(
[q1 + 2a1g1 + 2γb2g21]x

2
1(t)

+[q2 + a1g2 + 2a2g1 + 2γb2g1g2]x1(t)

+[q3 +
γ

2
g23σ

2
2]x2(t) + [q4 +

γ

2
g3g4σ

2
2 − g3k]

√
x2(t)

+[g1b
2 + g3kθ + a2g2 −

1

2
g4k +

1

2
γg22b

2 +
γ

8
g24σ

2
2]
)
dt
}

exp
{
γ

∫ T

0

(
ρ(t)[µ(t)− r(t)]− 1

2
ρ2(t)σ2 +

1

2
γρ2(t)σ2

)
dt
}

exp
{
− γg1x

2
1(T )− γg2x1(T )− γg3x2(T )− γg4

√
x2(T )

}

exp
{
γ

∫ T

0

σ̃dw − 1

2

∫ T

0

γ2σ̃′σ̃dt
}]

= yγ0αẼ

[
exp
{
γ

∫ T

0

([
q1 + 2a1g1 + 2γb2g21 +

λ2κ1

2(1− γ)σ2

]
x2
1(t)

+
[
q2 + a1g2 + 2a2g1 + 2γb2g1g2

]
x1(t)

+
[
q3 +

γ

2
g23σ

2
2 +

λ2κ2

2(1− γ)σ2

]
x2(t)

+
[
q4 +

γ

2
g3g4σ

2
2 − g3k +

λ2κ3

2(1− γ)σ2

]√
x2(t)

+
[
2g1b

2 + g3kθ + a2g2 −
1

2
g4k +

1

2
γg22b

2
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+
γ

8
g24σ

2
2 +

λ2κ4

2(1− γ)σ2

]
−(1− γ)σ2

2

[
ρ(t)− µ(t)− r(t)

(1− γ)σ2

]2 )
dt
}

exp
{
− γg1x

2
1(T )− γg2x1(T )− γg3x2(T )− γg4

√
x2(T )

}]
.

We introduce the following assumption:

Assumption 5.2.1.

△1 := a21 − 2γb2
(
q1 +

λ2κ1

2(1− γ)σ2

)
≥ 0,

2a1 −
√
△1 < 0,

κ2

q3
< 0.

We also define the coefficients g1, g2, g3, g4, as

g1 :=
−a1 +

√
△1

2γb2

g2 := −q2γb
2 + a2

√
△1 − a1a2

γb2(
√
△1 − a1 + a2)

g3 :=

√
− λ2κ2

γ(1− γ)σ2σ2
2q3

g4 :=
2g3k − λ2κ3

(1−γ)σ2 − 2q4

γg3σ2
2

.
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Due to this selection of coefficients g1, g2, g3, g4, the sum of the terms in
E [yγ(T )] that are quadratic in x1(t) and linear in x1(t) are zero. Similarly, the
sum of the terms that are linear in x2(t) and linear in

√
x2(t) are also zero. Thus

we have:

E[yγ(T )]

= yγ0αẼ

[
exp
{
γ

∫ T

0

(
Λ1 −

(1− γ)σ2

2

[
ρ(t)− µ(t)− r(t)

(1− γ)σ2

]2 )
dt
}

exp
{
− γg1x

2
1(T )− γg2x1(T )− γg3x2(T )− γg4

√
x2(T )

}]

where

Λ1 = g1b
2 + g2a2 + g3kθ −

1

2
g4k +

1

2
γg22b

2 +
γ

8
g24σ

2
2 +

λ2κ4

2(1− γ)σ2
.

Since x1, x2 are independent of the control u(t), we have that for all u(·) ∈ A and
for any fixed T > 0 the following upper bound holds:

E[yγ(T )] ≤ yγ0αeγΛ1T Ẽ
[
exp
{
− γg1x

2
1(T )− γg2x1(T )− γg3x2(T )− γg4

√
x2(T )

}]
.

This upper bound is achieved if and only if

ρ(t) = ρ∗(t) :=
µ(t)− r(t)

(1− γ)σ2
, (5.16)

in which case we have

E[yγ(T )] = yγ0αeγΛ1T Ẽ
[
eM1x2

1(T )+M2x1(T )

]
Ẽ
[
eM3x2(T )+M4

√
x2(T )

]
, (5.17)

where M1 = −γg1, M2 = −γg2, M3 = −γg3, M4 = −γg4.

In order to show that (5.16) is indeed the optimal control, it remains to show
that it belongs to the set A. One of the requirements for the control to belong
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to A is for J(u(·)) to be finite. From (5.17) it is clear that we need to study
the behavior of the expectations of the exponential processes based on x1 and x2.
This is our next task. We begin with the following assumption, the motivation
of which becomes clear when considering the finiteness of these expectations in
what follows.

Assumption 5.2.2. We assume that gi > 0, i = 1, 2, 3, 4.

Equation (5.1) can be rewritten as:

dx1(t) =
[
(a1 − 2γb2g1)x1(t) + (a2 − γb2g2)

]
dt+ bdw̃1(t)

=
[
A1x1(t) +B1

]
dt+ bdw̃1(t), (5.18)

where A1 := a1 − 2γb2g1 and B1 := a2 − γb2g2. Denoting by µ1(t) := Ẽ[x1(t)] and
Σ1(t) := Ṽ ar[x1(t)] it is clear that x1(t) ∼ N(µ1(t),Σ1(t)). The equation of µ1(t)

is 
µ̇1(t) = A1µ1(t) +B1,

µ1(0) = µ10,

(5.19)

whereas for the variance we have that Σ1(t) = Φ1(t) − µ2
1(t), where Φ1(t) is the

solution of 
Φ̇(t) = 2A1Φ1(t) + 2B1µ1(t) + b2

Φ1(0) = x2
10.

(5.20)

The solutions to these two equations are:

µ1(t) =
A1µ10 +B1

A1

exp{A1t} −
B1

A1

,

Φ1(t) =
1

2A1

(
2A1x

2
10 + B̄1

)
exp{−2Ā1}exp{2Ā1eA1t} − B̄1

2A1

,
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where Ā1 ≡ 2B1
A1µ10 +B1

A1

and B̄1 ≡ b2 − 2B2
1

A1

. We thus have

Σ1(t) =
2A1x

2
10 + B̄1

2A1

exp{−2Ā1}exp{2Ā1eA1t}+ Ā1

A1

exp{A1t} −
(

B̄1

2A1

+
B2

1

A2
1

)
.

Lemma 5.2.1. The following holds

lim
T→∞

Ẽ
[
eM1x2

1(T )+M2x1(T )

]
< ∞.

Proof.

Ẽ
[
eM1x2

1(t)+M2x1(t)
]

(5.21)

=

∫
R
exp{M1x

2 +M2x}
1√

2π
√
Σ1(t)

exp
{
− 1

2
[x− µ1(t)]

2Σ−1
1 (t)

}
dx

=

√
Σ̄1(t)√
Σ1(t)

exp
{ [ µ1(t)

Σ1(t)
+M2

]2
2[ 1

Σ1(t)
− 2M1]

− µ2
1(t)

2Σ1

}
∫
R

1
√
2π
√
Σ̄1(t)

exp
{
− 1

2
[x− µ̄1(t)]

2Σ̄−1
1 (t)

}
dx,

where 
µ̄1(t) ≡

µ1(t) +M2Σ1(t)

1− 2M1Σ1(t)
,

Σ̄1(t) ≡
Σ1(t)

1− 2M1Σ1(t)
.

Since M1 = −γg1 < 0, we have that Σ̄1(t) > 0, and thus∫
R

1
√
2π
√

Σ̄1(t)
exp
{
− 1

2
[x− µ̄1(t)]

2Σ̄−1
1 (t)

}
dx = 1,

which reduces (5.22) into
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Ẽ
[
eM1x2

1(T )+M2x1(T )
]

=

√
1

1− 2M1Σ1(T )
exp
{
M2

2Σ
2
1(T ) + 2M2µ1(T )Σ1(T ) + 2M1µ

2
1(T )Σ1(T )

2Σ1(T )[1− 2M1Σ1(T )]

}

Since we have assumed A1 < 0, we have:
µ1(T ) → −B1

A1

(T → ∞),

Σ1(T ) → C1 (T → ∞),

where
C1 ≡

2A1x
2
10 + B̄1

2A1

e−2Ā1 −
( B̄1

2A1

+
B2

1

A2
1

)
.

We thus finally have

lim
T→∞

Ẽ
[
eM1x2

1(T )+M2x1(T )

]
= C̄1,

where

C̄1 =

√
1

1− 2M1C1

exp
{M2

2C1 − 2M2
B1

A1
+ 2M1

B2
1

A2
1

2(1− C1M1)

}
.

The proof of the following result proceeds in a similar way, and we thus omit
the details.

Lemma 5.2.2. The following holds

lim
T→∞

Ẽ
[
eM3x2(T )+M4

√
x(T )

]
< ∞.

Referring to equation (5.17), and with the help of Lemma 5.2.1 and Lemma5.2.2,
we have established that under the control (5.16) we have

lim
T→∞

1

T
logE

[
yγ(T )

]
= γΛ1,

Since the control u(t) = ρ∗(t)y(t) is a linear function of y(t), it ensures the posi-
tivity of y(t). Therefore, we have proved the following main result of this chapter.
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Theorem 5.2.1. Let assumptions 5.2.1 and 5.2.2 hold. There exists a unique
solution to the problem

max
u(·)∈A

lim
T→∞

1

T
logE

[
yγ(T )

]
, γ ∈ (0, 1),

s.t. (5.1), (5.2), (5.5),

(5.22)

given by
u∗(t) =

µ(t)− r(t)

(1− γ)σ2
y(t).

The corresponding optimal cost is

J∗ = γΛ1.

Now we give a numerical example which is suitable to Assumption 5.2.1, 5.2.2.

Example 5.2.1. Let a1 = 2, a2 = 1, b = 5, q1 = 4, q2 = 1, q3 = 1, q4 = 1, k1 =

−5, k2 = −1, k3 = −1, σ = 3, σ2 = 1, λ = 3.
Thus, the coefficients g1, g2, g3, g4 are:

g1 =

√
29− 2

25
,

g2 =
2
√
29 + 21

25(
√
29− 1)

,

g3 = 2,

g4 = 4.
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5.3 Logarithmic Utility
Here we consider the following optimal control problem:

max
u(·)∈A

lim
T→∞

1

T 2
E
[
log y(T )

]

s.t. (5.1), (5.2), (5.5).

(5.23)

Remark 5.3.1. Initially, we build the logarithmic utility with T 1+ϵ averaging,
which is 1

T 1+ϵ
E[log y(T )]. With some calculation, it is found that only ϵ ≥ 1,

the objective can be converged in an infinite time horizon. Thus, to simplify the
problem, we let ϵ = 1. For this specific technical reason, the criteria is defined
with the squared time averaging.

Assumption 5.3.1. q3 +
λ2κ2

2σ2 = 0 and a1 < 0.

We define the following coefficients:

Λ2 := 2b2g1 + a2g2 + kθg3 −
1

2
kθg4 +

λ2

2σ2
κ4,

g1 := −λ2κ1 + 2σ2q1
4a1σ2

,

g2 :=
a2λ

2κ1 + 2σ2(a2q1 − a1q2)

2a21σ
2

,

g3 :=
q4
k

+
λ2κ3

2σ2k
,

g4 :=
4b2

kθ
g1 +

2a2
kθ

g2 + 2g3 +
λ2κ4 − 2Λ2σ

2

kθσ2
.

(5.24)
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Lemma 5.3.1. If a1 < 0, then

lim
T→∞

E
[
− g1x

2
1(T )− g2x1(T )

]
= Ĉ1,

where Ĉ1 is some constant.

Proof. We define µ̂1(t) := E[x1(t)], which is the solution to
˙̂µ1(t) = a1µ̂1(t) + a2,

µ̂1(0) = µ̂10.

(5.25)

We also define Φ̂1(t) := E[x2
1(t)], which is the solution to

˙̂
Φ1(t) = 2a1Φ̂1(t) + 2a2µ̂1(t) + b2,

Φ̂1(0) = x2
10.

(5.26)

By solving (5.25) and (5.26), we deduce

E[x(t)] =
a1µ̂10 + a2

a1
exp{a1t} −

a2
a1

,

E[x2(t)] =
1

2a1

(
2a1x

2
10 + ā2

)
exp{−2ā1}exp{2ā1ea1t} −

ā2
2a1

,

where ā1 = 2a2
a1µ̂10 + a2

a1
and ā2 = b2 − 2a22

a1
.

Thus, due to assumption of a1 < 0, when T → ∞, we obtain the following
results: 

E[x(T )] → −a2
a1

,

E[x2(T )] → 1

2a1

(
2a1x

2
10 + ā2

)
exp{−2ā1} −

ā2
2a1

,
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and
lim
T→∞

E
[
− g1x

2
1(T )− g2x1(T )

]
= Ĉ1,

where Ĉ1 = −g1

[
1

2a1

(
2a1x

2
10 + ā2

)
exp{−2ā1} −

ā2
2a1

]
+ g2

a2
a1

.

From the Longstaff (1989) paper we know that for a suitable positive constant
c, and constants m and s, it holds that x2(t) = cx2(t), where x(t) is the solution
to the following equation

dx(t) = mdt+ sdw2(t)

x(0) = x0.

(5.27)

Also recall the following basic result concerning the normal random variables.

Lemma 5.3.2. If X ∼ N(µX , σX), then

E[|X|] = 2σX√
2π

cosh(µX/σX) + µX [N(µX/σX)−N(−µX/σX)]. (5.28)

Lemma 5.3.3. The following holds:

lim
T→∞

1

T 2
E
[
− g3x2(T )− g4

√
x2(T )

]
= −g3cm

2.

Proof. It is clear that x(t) ∼ N(x0 + mt, s2t). This in particular means that
the relation between the mean and the variance of x(t) tends to a constant, i.e.
limt→∞(x0 +mt)/s2t = m/s2. Note that E[x2(t)] = s2t+ x2

0 + 2x0mt+m2t2, and√
x2(t) =

√
c|x(t)|. By making use of these facts and (5.28), we obtain

1

T 2
lim
T→∞

E[−g3x2(T )] = −g3cm
2, and 1

T 2
lim
T→∞

E[−g4
√
x2(T )] = 0.

Theorem 5.3.1. If assumptions 5.3.1 holds, then there exists a unique solution
to the control problem (5.23), given by

u∗(t) =
µ(t)− r(t)

σ2
y(t).

The corresponding optimal cost is J∗ = −g3cm
2.
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Proof. Recall equation (5.5), according to Itô’s lemma, the expected value of
log y(T ) can be written as:

E[log y(T )] = log y0 + E

[∫ T

0

{
r(t) + ρ(t)[µ(t)− r(t)]

1

2
σ2ρ2(t)

}
dt
]
. (5.29)

Similarly to the approach for the power utility, we combine (5.12), (5.13) with
(5.29) to obtain:

E[log y(T )]

= log y0 + g1x
2
10 + g2x10 + g3x20 + g4

√
x20

+E

[∫ T

0

{
− 1

2
σ2
(
ρ(t)− µ(t)− r(t)

σ2

)2
+

[µ(t)− r(t)]2

2σ2

+q1x
2
1(t) + q2x1(t) + q3x2(t) + q4

√
x2(t)

+
(
2g1x1(t) + g2

)(
a1x1(t) + a2

)
+ g1b

2

+
(
g3 +

1

2
g4

1√
x2(t)

)
k
(
θ −

√
x2(t)

)
− 1

8
g4σ

2
2

1√
x2(t)

}
dt
]

+E

[
− g1x

2
1(T )− g2x1(T )− g3x2(T )− g4

√
x2(T )

]

= log y0 + g1x
2
10 + g2x10 + g3x20 + g4

√
x20

+E

[∫ T

0

{
− 1

2
σ2
(
ρ(t)− µ(t)− r(t)

σ2

)2
+
(
q1 + 2a1g1 +

λ2

2σ2
κ1

)
x2
1(t)

+
(
q2 + a1g2 + 2a2g1

)
x1(t) +

(
q3 +

λ2

2σ2
κ2

)
x2(t)

+
(
q4 − kg3 +

λ2

2σ2
κ3

)√
x2(t) + Λ2

}
dt
]
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+E

[
− g1x

2
1(T )− g2x1(T )− g3x2(T )− g4

√
x2(T )

]
.

The sum of the terms that are quadratic in x1(t) and linear in x1(t) that appear
in the integrand part of E[log y(T )] is zero. Indeed,(

q1 + 2a1g1 +
λ2

2σ2
κ1

)
x2
1(t) +

(
q2 + a1g2 + 2a2g1

)
x1(t) = 0.

Similarly, the part that contains the sum of the terms that are linear in x2(t) and
linear in

√
x2(t) is also zero:(

q3 +
λ2

2σ2
κ2

)
x2(t) +

(
q4 − kg3 +

λ2

2σ2
κ3

)√
x2(t) = 0.

It is clear that:

E[log y(T )] = E

[∫ T

0

{
− 1

2
σ2
(
ρ(t)− µ(t)− r(t)

σ2

)2
+ Λ2

}
dt
]

+E

[
− g1x

2
1(T )− g2x1(T )− g3x2(T )− g4

√
x2(T )

]

+ log y0 + g1x
2
10 + g2x10 + g3x20 + g4

√
x20

≤

{
E

[
− g1x

2
1(T )− g2x1(T )− g3x2(T )− g4

√
x2(T )

]

+ log y0 + g1x
2
10 + g2x10 + g3x20 + g4

√
x20 + TΛ2

}
. (5.30)

This upper bound is achieved if and only if we choose the following control u∗(t) =
µ(t)− r(t)

σ2
y(t). It is then clear that the optimal cost is J∗ = −g3cm

2.-
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5.4 Summary
We have considered the problem of optimal investment in an infinite horizon. A

stochastic interest rate model is introduced with two factor processes, one being
linear and the other being the Longstaff model. We give the solution to the
investment problem for certain infinite horizon power and logarithmic utilities.
The optimal investment strategy is a linear function of the wealth.
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Chapter 6

Optimal investment and
consumption with a double
square-root stochastic interest
rate and volatility

6.1 Introduction
We consider the problem of optimal investment and consumption in a market

with a stochastic interest rate and a stochastic volatility. We assume that the
interest rate and the volatility follow the Longstaff model. It is shown that there
exists a unique optimal trading strategy and a consumption process that maximize
the logarithmic and power utility. These are obtained in an explicit closed-form
by the completion of squares method.

6.2 Formulation of the problem
Considering the probability space defined in Section refsection 2.2, we choose

n = 1, and let wr(·) = w1(·), ws(·) = w2(·), wη(·) = w3(·).

We assume the interest rate r(t) follows the model introduced by Longstaff
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[34], i.e. the interest rate is a double square-root process given by dr(t) = kr[θr −
√

r(t)]dt+ σr

√
r(t)dwr(t)

r(0) = r0 > 0,
(6.1)

where kr, σr are positive constants, and θr =
σ2
r

4kr
.

We consider a financial market consisting of two assets with equations:
dB(t) = r(t)B(t)dt,

B(0) = B0 > 0,
(6.2)


dS(t) = S(t)

[
µ(t)dt+ σ

√
η(t)dws(t)

]
,

S(0) = S0 > 0,

(6.3)

where σ > 0 is given. Here B(·) is the bank account, whereas S(·) is the stock
price. Similarly to Kraft [31], Bielecki, Pliska and Yong [5] and Chang and Rong
[7], we assume that µ(t) = r(t) + κ

√
η(t), where κ is a constant.

We also assume that the volatility η(t) satisfies the following Longstaff equa-
tion:  dη(t) = kη[θη −

√
η(t)]dt+ ση

√
η(t)dwη(t)

η(0) = η0 > 0,
(6.4)

where kη, ση are positive constants, and θη =
σ2
η

4kη
.

In summary, the novelty in this market is the use of the Longstaff model for
both the interest rate and the volatility processes. Note that the market price of
risk in this case is

ϕ(t) :=
µ(t)− r(t)

σ
√
η(t)

=
1

σ
,
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and thus there exists a unique risk-neutral probability measure, which ensures the
absence of any arbitrage opportunities.

In this market we consider an investor with an initial wealth of y0 > 0 that fol-
lows a self-financing trading strategy and is permitted to consume. The equation
of her/his wealth y(t) is thus

dy(t) =
{
r(t)y(t) + u(t)

[
µ(t)− r(t)

]
− c(t)

}
dt+ u(t)σ

√
η(t)dws(t),

y(0) = y0,

(6.5)

where u(t) denotes the amount of wealth invested in the stock at time t, and c(t)

is the consumption rate.

The main contribution of this chapter is to solve the following optimal invest-
ment and consumption problem:

max
u(·),c(·)∈A

J(u(·), c(·)),

s.t. (6.1), (6.4), (6.5),
(6.6)

where

J(u(·), c(·)) = E

[∫ T

0

e−βtU1

(
c(t)
)
dt+ e−βTU2

(
y(T )

)]
, (6.7)

and U1(·), U2(·) are either power or logarithmic utilities. Here β > 0 is a given
subjective discount rate. The set A of admissible controls is the set of all Ft-
adapted processes u(t) and c(t) that ensure the existence of a unique and positive
solution to (6.5) and the finiteness of the cost J(u(·), c(·)).

6.3 Admissible controls
In this section we consider the admissability of the controls u(t) and c(t) that

are linear functions of y(t). Let us thus consider the following controls:

u(t) =
K[µ(t)− r(t)]

σ2η(t)
y(t), (6.8)
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c(t) =
y(t)

H(t)
, (6.9)

where K is a constant and H(t) is some positive process. Provided that the
wealth process y(t) under these controls has sufficient integrability, then this set
of controls belongs to A. Indeed, since these controls are linear in y(t) the solution
to (6.5) will exist and be positive. In addition, the cost will be finite for the utilities
that we consider. Thus, our task is to show that the wealth process under these
controls has the following integrability:

E[y(t)] ≤
(
E [yp(t)]

) 1
p
< ∞, p > 1.

Therefore, the problem becomes to prove the following inequality:

E [yp(t)] < ∞, p > 1.

Substituting (6.8) and (6.9) into (6.5) makes it a linear stochastic differential
equation with random coefficients. The expected value of its solution raised into
power p is:

E [yp(t)] = E

[
yp0 exp

{
p

∫ t

0

[
r(s) +

Kκ2

σ2
− 1

H(s)
− 1

2

K2κ2

σ2

]
ds
}

× exp
{
p

∫ t

0

Kκ

σ
dws(s)

}]

= E

[
yp0 exp

{
p

∫ t

0

[
r(s)− 1

H(s)
+ K̄

]
ds
}

× exp
{
p

∫ t

0

Kκ

σ
dws(s)−

1

2

∫ t

0

p2
K2κ2

σ2
ds
}]

,

where
K̄ :=

Kκ2

σ2
− 1

2

K2κ2

σ2
+

p

2

K2κ2

σ2
.

Due to the positivity of H(t), we have:

exp
{
p

∫ t

0

[
r(s)− 1

H(s)
+ K̄

]
ds
}

≤ exp
{
p

∫ t

0

[
r(s) + K̄

]
ds
}
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By applying the Hölder’s inequality, we obtain:

E [yp(t)] ≤ K̃(t)E

[
exp

{
pp1

∫ t

0

r(s)ds
}] 1

p1

E

[
exp

{
pp3

∫ t

0

Kκ

σ
dws(s)−

1

2

∫ t

0

p2p23
K2κ2

σ2
ds
}] 1

p3

≤ K̃(t)E

[
exp

{
pp1

∫ t

0

r(s)ds
}] 1

p1

,

where

K̃(t) = E

[
ypp20 exp

{
pp2

∫ t

0

K̄ds
}] 1

p2

< ∞, ∀t ∈ [0, T ],

1

p1
+

1

p2
+

1

p3
= 1, p1, p2, p3 > 1.

Consider the following stochastic differential equation:
dx(t) = mdt+ sdwr(t)

x(0) = x0,
(6.10)

where m, s are constants. From Longstaff [34], we have that r(t) = cx2(t), with c

being a positive constant. The differential of r(t) can be obtained as

dr(t) =
[
cs2 + 2m

√
c
√

r(t)
]
dt+ 2s

√
c
√
r(t)dwr(t),

which when compared with

dr(t) = kr[θr −
√
r(t)]dt+ σr

√
r(t)dwr(t), (6.11)

gives the relation between kr, σr, θr and c, s,m.

Lemma 6.3.1. If 2βs2t2 < 1 for some β > 0 and t ∈ [0, T ], then

E
[
exp

{
β

∫ t

0

x2(s)ds
}]

< ∞.
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Proof. This follows from Corollary 3.2 of Bielecki, Pliska and Yong [4], by taking
A = 0 in their result.

From this result it immediately follows that if 2pp1cs2T 2 < 1 for some p, p1 > 1,
then

E

[
exp

{
pp1

∫ T

0

r(s)ds
}] 1

p1

< ∞,

which concludes the proof that E [yp(T )] < ∞.
By substituting 2s

√
c = σr, σ2

r = 4θrkr into inequality 2pp1cs
2T 2 < 1, we can

deduce
T <

1√
2θrkrpp1

<
1√
θrkr

,

where p, p1 > 1. We thus introduce the following sufficient condition.

Condition 6.3.1. The parameters kr, θr and T are such that T <
1√
θrkr

.

6.4 Power Utility
In this section we give the solution to the optimal investment and consumption

problem (6.6) for the power utility, i. e. we consider the following criterion

Jpower(u(·), c(·)) := E

[∫ T

0

e−βt 1

γ
cγ(t)dt+ e−βT y

γ(T )

γ

]
. (6.12)

We introduce functions g1, g2, g3, g4, g5, which satisfy the following differential
equations:

ġ1(t) +
γ

1− γ
+

1

2
σ2
rg

2
1(t) = 0

g1(T ) = 0

(6.13)


ġ2(t)− krg1(t) +

1

2
σ2
rg1(t)g2(t) = 0

g2(T ) = 0

(6.14)
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
ġ3(t) +

1

2
σ2
ηg

2
3(t) = 0

g3(T ) = 0

(6.15)


ġ4(t)− kηg3(t) +

1

2
σ2
ηg3(t)g4(t) = 0

g4(T ) = 0

(6.16)



ġ5(t) +
σ2
r

4
g1(t)−

1

2
krg2(t) +

1

8
σ2
rg

2
2 +

σ2
η

4
g3(t)−

1

2
kηg4(t) +

1

8
σ2
ηg

2
4

+
γκ2

2(1− γ)2σ2
− β

1− γ
= 0

g5(T ) = 0

(6.17)

Example 6.4.1. Let γ =
1

2
, then g1, g2, g3, g4, g5 can be solved as follows:

g1(t) =

√
2 tan[

√
2
2
σr(T − t)]

σr

,

g2(t) =

√
2kr

√
1 + tan[

√
2
2
σr(T − t)]2

{√
cos[

√
2σr(T − t)] + 1−

√
2
}

σ2
r

,

g3(t) = g4(t) = 0,
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g5(t) =

∫ T

t

{
1

4σ2
r cos

(√
2
2
σr(T − s)

)2
[
4k2

r cos
(√2

2
σr(T − s)

)

−2
√
2k2

r cos
(√2

2
σr(T − s)

)√
cos
(√

2σr(T − s)
)
+ 1

+
√
2σ3

r sin
(√2

2
σr(T − s)

)
cos
(√2

2
σr(T − s)

)
+2

√
2k2

r

√
cos
(√

2σr(T − s)
)
+ 1 + k2

r cos
(√

2σr(T − s)
)

+3k2
r

]}
ds− (

k2

σ2
− 2β)(T − t).

We further introduce two new functions h(·) and ĥ(·), with terminal conditions
h(T ) = 1 and ĥ(T ) = 1, respectively. We use the idea from Liu [33] (see Lemma
2 in the Appendix of his paper).

Lemma 6.4.1. Suppose that

∂ĥ

∂t
+ f(ĥ) = 0,

f is the linear operator on any function ĥ. Then the function h defined
h(r, η, t) = ĥ(r, η, t) +

∫ T

t

ĥ(r, η, s)ds

ĥ(r, η, T ) = 1,

(6.18)

satisfies
∂h

∂t
+ f(h) + 1 = 0.

and h(r, η, T ) = 1

Proof. It is obvious that h(r, η, T ) = 1. Furthermore,

∂h

∂t
+ f(h) =

∂
(∫ T

t
ĥds
)

∂t
+

∫ T

t

f(ĥ)ds
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= −ĥ−
∫ T

t

∂ĥ

∂s
ds = −ĥ− [ĥ(T )− ĥ] = −1.

The particular forms of ĥ(t) and h(t) that we need are:

ĥ(t) := exp
{
g1(t)r(t) + g2(t)

√
r(t) + g3(t)η(t) + g4(t)

√
η(t) + g5(t)

}
,

h(t) := exp
{
g1(t)r(t) + g2(t)

√
r(t) + g3(t)η(t) + g4(t)

√
η(t) + g5(t)

}
+

∫ T

t

exp
{
g1(s)r(s) + g2(s)

√
r(s) + g3(s)η(s) + g4(s)

√
η(s) + g5(s)

}
ds.

The following is the main result of this section.

Theorem 6.4.1. Let g1, g2, g3, g4 and g5 be solutions of differential equations
(6.13)-(6.17) respectively. There exists a unique solution to the problem (6.6) with
criterion (6.12), given as:

u∗(t) =
µ(t)− r(t)

(1− γ)σ2η(t)
y(t), (6.19)

c∗(t) =
y(t)

h(t)
. (6.20)

The corresponding optimal cost is

E
[
yγ0h(0)

1−γ

γ

]
.

Proof. Let the process v(t) be defined as v(t) := e−βt y
γ(t)
γ

h1−γ(r, η, t). Its differ-
ential is

dv(t) = e−βty
γ(t)

γ

{
∂(h1−γ)

∂t
+ kr[θr −

√
r(t)]

∂(h1−γ)

∂r
+

1

2
σ2
rr(t)

∂2(h1−γ)

∂r2
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+kη[θη −
√
η]
∂(h1−γ)

∂η
+

1

2
σ2
ηη(t)

∂2(h1−γ)

∂η2

}
dt

+e−βth1−γ(r, η, t)

{[
r(t)y(t) + u(t)

(
µ(t)− r(t)

)
− c(t)

]∂(yγ
γ
)

∂y

+
1

2
u2(t)σ2η(t)

∂2(y
γ

γ
)

∂y2

}
dt

−βe−βty
γ(t)

γ
h1−γ(r, η, t)dt+ e−βty

γ(t)

γ
σr

√
r(t)

∂(h1−γ)

∂r
dwr(t)

+e−βty
γ(t)

γ
ση

√
η(t)

∂(h1−γ)

∂η
dwη(t)

+e−βth1−γ(r, η, t)u(t)σ
√
η(t)

∂(y
γ

γ
)

∂y
dws(t).

After integrating both sides and taking the expectation, we obtain:

E[v(T )]

= E

[∫ T

0

{
e−βty

γ(t)

γ

[
kr[θr −

√
r(t)]

∂(h1−γ)

∂r
+

1

2
σ2
rr(t)

∂2(h1−γ)

∂r2

+e−βty
γ(t)

γ

[
kη[θη −

√
η]
∂(h1−γ)

∂η
+

1

2
σ2
ηη(t)

∂2(h1−γ)

∂η2

]

+e−βth1−γ(r, η, t)

[(
r(t)y(t) + u(t)[µ(t)− r(t)]− c(t)

)∂(yγ
γ
)

∂y

+
1

2
u2(t)σ2η(t)

∂2(y
γ

γ
)

∂y2

]
+ e−βty

γ(t)

γ

∂(h1−γ)

∂t

−βe−βty
γ(t)

γ
h1−γ(r, η, t)

}
dt
]
+ E[v(0)],

Therefore, we can deduce Jpower(u(·), c(·)) as:

Jpower(u(·), c(·))
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= E

[∫ T

0

{
e−βty

γ(t)

γ

[
kr[θr −

√
r(t)]

∂(h1−γ)

∂r
+

1

2
σ2
rr(t)

∂2(h1−γ)

∂r2

+e−βty
γ(t)

γ

[
kη[θη −

√
η]
∂(h1−γ)

∂η
+

1

2
σ2
ηη(t)

∂2(h1−γ)

∂η2

]

+e−βth1−γ(r, η, t)

[(
r(t)y(t) + u(t)[µ(t)− r(t)]− c(t)

)∂(yγ
γ
)

∂y

+
1

2
u2(t)σ2η(t)

∂2(y
γ

γ
)

∂y2

]
+ e−βty

γ(t)

γ

∂(h1−γ)

∂t

−βe−βty
γ(t)

γ
h1−γ(r, η, t) + e−βt c

γ(t)

γ

}
dt
]
+ E[v(0)]

= E[v(0)]

+E

[∫ T

0

{
(1− γ)e−βty

γ(t)

γ
h−γ(r, η, t)

∂(h1−γ)

∂t
− βe−βty

γ(t)

γ
h1−γ(r, η, t)

+r(t)e−βth1−γ(r, η, t)yγ(t)

+(1− γ)e−βty
γ(t)

γ
kr[θr −

√
r(t)]h−γ(r, η, t)

∂h

∂r

+
1

2
(1− γ)e−βty

γ(t)

γ
σ2
rr(t)h

−γ(r, η, t)
∂2h

∂r2

+(1− γ)e−βty
γ(t)

γ
kη[θη −

√
η(t)]h−γ(r, η, t)

∂h

∂η

+
1

2
(1− γ)e−βty

γ(t)

γ
σ2
ηη(t)h

−γ(r, η, t)
∂2h

∂η2

+u(t)[µ(t)− r(t)]e−βtyγ−1(t)h1−γ(r, η, t)
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+
1

2
(γ − 1)u2(t)σ2η(t)yγ−2(t)e−βth1−γ(r, η, t)

+e−βt c
γ(t)

γ
− e−βtc(t)yγ−1(t)h1−γ(r, η, t)

}
dt
]

= E[v(0)] + E

[∫ T

0

Λ(t)dt
]
.

Now the problem is equivalent to find the optimal u(t), c(t) such that

max
u,C∈A

Λ(t), (6.21)

where

Λ(t)

= (1− γ)e−βty
γ(t)

γ
h−γ(r, η, t)

∂(h1−γ)

∂t
− βe−βty

γ(t)

γ
h1−γ(r, η, t)

+r(t)e−βth1−γ(r, η, t)yγ(t) + (1− γ)e−βty
γ(t)

γ
kr[θr −

√
r(t)]h−γ(r, η, t)

∂h

∂r

+
1

2
(1− γ)e−βty

γ(t)

γ
σ2
rr(t)h

−γ(r, η, t)
∂2h

∂r2

+(1− γ)e−βty
γ(t)

γ
kη[θη −

√
η(t)]h−γ(r, η, t)

∂h

∂η

+
1

2
(1− γ)e−βty

γ(t)

γ
σ2
ηη(t)h

−γ(r, η, t)
∂2h

∂η2

+u(t)[µ(t)− r(t)]e−βtyγ−1(t)h1−γ(r, η, t)

+
1

2
(γ − 1)u2(t)σ2η(t)yγ−2(t)e−βth1−γ(r, η, t)

+e−βt c
γ(t)

γ
− e−βtc(t)yγ−1(t)h1−γ(r, η, t)
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By using the completion of squares method, It is observed that when the
control u∗(t) =

µ(t)− r(t)

(1− γ)σ2η(t)
y(t), and consumption c∗(t) =

y(t)

h(t)
, the equation

Λ(t) can be the maximum value, which is

Λ∗(t) =
1− γ

γ
eβtyγ(t)h−γ(r, η, t)

{
− βh(r, η, t)

1− γ
+

∂h

∂t
+

γ

1− γ
r(t)h(r, η, t)

+kr[θr −
√

r(t)]
∂h

∂r
+

1

2
σ2
rr(t)

∂2h

∂r2
+ kη[θη −

√
η(t)]

∂h

∂η
+

1

2
σ2
ηη(t)

∂2h

∂η2

+
γ

2(1− γ)2
[µ(t)− r(t)]2

η(t)σ2
h(r, η, t) + 1

}

=
1− γ

γ
eβtyγ(t)h−γ(r, η, t)

{∂h
∂t

+ f(h) + 1
}

(6.22)

where

f(h) = − βh

1− γ
+

γ

1− γ
r(t)h+ kr[θr −

√
r(t)]

∂h

∂r
+

1

2
σ2
rr(t)

∂2h

∂r2

+kη[θη −
√

η(t)]
∂h

∂η
+

1

2
σ2
ηη(t)

∂2h

∂η2
+

γ

2(1− γ)2
[µ(t)− r(t)]2

η(t)σ2
h

Now we focus on the expression ∂ĥ

∂t
+ f(ĥ). Substituting

ĥ(t) = exp{g1(t)r(t) + g2(t)
√

r(t) + g3(t)η(t) + g4(t)
√

η(t) + g5(t)},

it obviously can be written as

ĥ(t)
[
ġ1(t)r(t) + ġ2(t)

√
r(t) + ġ3(t)η(t) + ġ4(t)

√
η(t) + ġ5(t)

]
+(krθr − kr

√
r(t))

[
g1(t) +

1

2
g2(t)r

− 1
2 (t)
]
ĥ(t)

+
1

2
σ2
rr(t)

[
g21(t) + g1(t)g2(t)r

− 1
2 (t) +

1

4
g22(t)r

−1(t)− 1

4
g2(t)r

− 3
2 (t)
]
ĥ(t)
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+(kηθη − kη
√

η(t))
[
g3(t) +

1

2
g4(t)η

− 1
2 (t)
]
ĥ(t)

+
1

2
σ2
ηη(t)

[
g23(t) + g3(t)g4(t)η

− 1
2 (t) +

1

4
g24(t)η

−1(t)− 1

4
g4(t)η

− 3
2 (t)
]
ĥ(t)

− β

1− γ
ĥ(t) +

γ

1− γ
r(t)ĥ(t) +

γ[µ(t)− r(t)]2

2(1− γ)2σ2η(t)
ĥ(t) (6.23)

Because of the values of µ(t), krθr and kηθη, we can arrange the equation into
a nicely organized form, and deduce the whole expression, which is

ĥ(t)

{[
ġ1(t) +

γ

1− γ
+

1

2
σ2
rg

2
1(t)
]
r(t) +

[
ġ2(t)− krg1(t) +

1

2
σ2
rg1(t)g2(t)

]
r

1
2 (t)

+
[
ġ3(t) +

1

2
σ2
ηg

2
3(t)
]
η(t) +

[
ġ4(t)− kηg3(t) +

1

2
σ2
ηg3(t)g4(t)

]
η

1
2 (t)

+
[
ġ5(t) +

σ2
r

4
g1(t)−

1

2
krg2(t) +

1

8
σ2
rg

2
2 +

σ2
η

4
g3(t)−

1

2
kηg4(t) +

1

8
σ2
ηg

2
4

+
γκ2

2(1− γ)2σ2
− β

1− γ

]}
(6.24)

The sums of the terms in r(t) and r
1
2 (t) in equation (6.24) should be zero due

to equantion (6.13) (6.14), indeed,[
ġ1(t) +

γ

1− γ
+

1

2
σ2
rg

2
1(t)
]
r(t) = 0,

[
ġ2(t)− krg1(t) +

1

2
σ2
rg1(t)g2(t)

]
r

1
2 (t) = 0.

Similarly, according to equation (6.15) (6.16), the sums of the terms in η(t)

and
√
η(t) are also zero:[

ġ3(t) +
1

2
σ2
ηg

2
3(t)
]
η(t) = 0,

[
ġ4(t)− kηg3(t) +

1

2
σ2
ηg3(t)g4(t)

]
η

1
2 (t) = 0.

The remaining sum of the terms that are independent of r(t), r 1
2 (t), η(t) and

η
1
2 (t) obviously equals to zero due to our assumption on g5(t).
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Thus, it is calculated that ∂ĥ

∂t
+ f(ĥ) = 0. Due to Lemma 6.4.1 and function

h(·) 
h(r, η, t) = ĥ(r, η, t) +

∫ T

t

ĥ(r, η, s)ds

ĥ(r, η, T ) = 1,

then the equation Λ∗(t) =
1− γ

γ
eβtyγ(t)h−γ(r, η, t)

{∂h
∂t

+ f(h) + 1
}
= 0

Therefore, the cost function Jpower(u(·), c(·)) for all
(
u(·), c(·)

)
∈ A can be

written as:

Jpower(u(·), c(·)) = E[v(0)] + E

[∫ T

0

Λ(t)dt
]
≤ E[v(0)]

It means the cost function Jpower(u(·), c(·)) has the upper bound

E
[
yγ0
γ
h1−γ(0)

]
if and only if

u∗(t) =
µ(t)− r(t)

(1− γ)σ2η(t)
y(t),

c∗(t) =
y(t)

h(t)
.

6.5 Logarithmic Utility
In this section we give the solution to the optimal investment and consumption

problem (6.6) for the logarithmic utility, i. e. we consider the following criterion

Jlogarithmic(u(·), c(·)) = E

[∫ T

0

e−βt ln c(t)dt+ e−βT ln y(T )
]
. (6.25)
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We introduce the linear differential equation
ġ6(t)− βg6(t) + 1 = 0

g6(T ) = 1.

(6.26)

From (6.26), g6 can be solved as

1

β
−

eβt
(

1
β
− 1
)

eβT .

Theorem 6.5.1. Let the Condition 6.3.1 hold. There exists a unique solution to
the problem (6.6) with criterion (6.25), given as:

u∗(t) =
µ(t)− r(t)

σ2η(t)
y(t),

c∗(t) =
y(t)

g6(t)
.

The corresponding optimal cost is:

g6(0) ln y0 + E

[∫ T

0

{
g6(t)e−βtr(t) + g6(t)e−βt κ

2

2σ2
− e−βt

(
ln g6(t)− 1

)}
dt
]

Proof. We define v̄(t) as v̄(t) := g6(t)e−βt ln y(t). Its differential is:

dv̄(t) = g6(t)e−βt

{
r(t) +

u(t)

y(t)

[
µ(t)− r(t)

]
− c(t)

y(t)
− u2(t)

2y2(t)
σ2η(t)

}
dt

+g6(t)e−βtu(t)

y(t)
σ
√
η(t)dws(t) + ġ6(t)e−βt ln y(t)dt− βe−βtg6(t) ln y(t)dt.

By integrating both sides an taking the expectation we can obtain E[v̄(T )],
through which we derive:

Jlogarithmic

(
u(·), c(·)

)
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= E[v̄(0)]

+E

[∫ T

0

{
ġ6(t)e−βt ln y(t)− βg6(t)e−βt ln y(t) + g6(t)e−βtr(t)

+g6(t)e−βt

[
u(t)

y(t)

(
µ(t)− r(t)

)
− 1

2

u2(t)

y2(t)
σ2η(t)

]

+e−βt

[
ln c(t)− g6(t)

c(t)

y(t)

]}
dt
]
.

The maximum of Jlogarithmic

(
u(·), c(·)

)
is achieved for u∗(t) = µ(t)−r(t)

σ2η(t)
y(t) and

consumption c∗(t) = y(t)
g6(t)

, which give

J∗
logarithmic

(
u(·), c(·)

)
= E[v̄(0)]

+E

[∫ T

0

{
ġ6(t)e−βt ln y(t)− βg6(t)e−βt ln y(t) + e−βt ln y(t)

+g6(t)e−βtr(t) + g6(t)e−βt κ
2

2σ2
− e−βt

(
ln g6(t)− 1

)}
dt
]

= E[v̄(0)] + E

[∫ T

0

{
g6(t)e−βtr(t) + g6(t)e−βt κ

2

2σ2
− e−βt

(
ln g6(t)− 1

)}
dt
]
.

Remark 6.5.1. Due to Theorem 6.4.1 and 6.5.1, it is illustrated that the optimal
solution contains the volatility η(t). However, this η(t) is from (6.4), cannot be
observed in practice. We need to infer volatility from other observable prices. This
is the limitation of this research.
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6.6 Summary
The optimal investment and consumption problem in a finite horizon is con-

sidered in this chapter. The market model has a stochastic interest rate and
a stochastic volatility. Both these processes are assumed to follow a Longstaff
model. The corresponding optimal control problems are solved by a kind of com-
pletion of squares method, which is a combination of the approach of Liu [33] and
the completion of squares method of stochastic control, and it appears to be new.
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Chapter 7

Optimal investment and
consumption in an infinite
horizon

7.1 Introduction
We consider the problem of optimal investment and consumption in an in-

finite horizon. The optimality criterion is a discounted logarithmic utility from
consumption, and the market is assumed to have a stochastic interest rate that
follows a quadratic-affine model. The volatility of the stock is also assumed to be
stochastic, and it follows the CIR model.

7.2 Formulation of the problem
Recalling the Brownian motions defined in (6.2), we let wr(·) = wx(·), and

consider the stochastic differential equation:
dx(t) = mx(t)dt+ sdwx(t)

x(0) = x0,
(7.1)

where m > 0 and s are given constants. We assume that for some constants q1

and q2 the interest rate is defined as:

r(t) := q1x
2(t) + q2x(t).
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We consider a market consisting of a bank account and a stock, the prices of
which are denoted by B(t) and S(t), respectively, and satisfy the equations

dB(t) = r(t)B(t)dt,

B(0) = B0 > 0.
dS(t) = S(t)

[
µ(t)dt+ σ

√
η(t)dws(t)

]
,

S(0) = S0 > 0.

We assume that the volatility process η(t) is the solution to the following equation

dη(t) = kη[θη − η(t)]dt+ ση

√
η(t)dwη(t), (7.2)

where kη, θη, ση are constants.

Similarly to the work of Bielecki, T.R., Pliska, S. and & Yong, J., 2004, Kraft,
H., 2005, and Chang and Rong [7], we make a certain assumption on the relation of
the drift µ(t) with r(t) and η(t). In this case we assume that µ(t) := r(t)+k

√
η(t).

In this market, we consider an investor with an initial wealth of y0 > 0 and
that follows a self-financing trading strategy and is permitted to consume. The
equation of her/his wealth y(t) is

dy(t) =
{
r(t)y(t) + u(t)

[
µ(t)− r(t)

]
− c(t)

}
dt+ u(t)σ

√
η(t)dws(t), (7.3)

where u(t) denotes the amount of wealth invested in the stock, whereas c(t) de-
notes the consumption rate.

Let the discounted cost from consumption be defied as

JT (u(·), c(·)) = E
[∫ T

0

e−βtlnc(t)dt
]
.
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The objective of this chapter is solve the following infinite horizon optimal
control problem for some β > 0.

max
u(·),c(·)∈A

lim
T→∞

JT (u(·), c(·)),

s.t. (7.1), (7.2), (7.3).
(7.4)

Here A is the set of admissible controls u(t) and c(t) that ensure the existence
of a unique and positive solution of (7.3), and that limT→∞ JT (u(·), c(·)) is finite.

7.3 Solution of the problem
We introduce the following linear ordinary differential equations:

ġ(t)− βg(t) + 1 = 0,

g(T ) = 0,

(7.5)


ġ1(t)− βg1(t) + 2mg1(t) + q1g(t) = 0,

g1(T ) = 0,

(7.6)


ġ2(t)− βg2(t) +mg2(t) + q2g(t) = 0,

g2(T ) = 0.

(7.7)

By solving equations (7.5), (7.6) and (7.7),we have:
g (t) = β−1 − eβ t

β eβ T
,

g(0) =
1

β
− 1

β eβ T
,
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

g1 (t) =

(
−q1e2Tm+β tβ + qeβ t+2 tmβ − 2 q1eβ t+2 tmm+ 2 qmeβ T+2 tm

)
e−β T−2 tm

2β (β − 2m)m
,

g2 (t) =

(
−q2eTm+β tβ + qeβ t+tmβ − qeβ t+tmm+ qmeβ T+tm

)
e−β T−tm

β (β −m)m
,



g1 (0) = − q1
β (−β + 2m)

+
1

2

q1e−β T

β m

− 1

eT (β−2m)

(
− q1
β (−β + 2m)

+
1

2

qeT (β−2m)−β T+2Tm

β m

)
,

g2 (0) =

(
−q2eTmβ + β q2 − q2m+ q2meβ T

)
e−β T

β (β −m)m
.

We further introduce the equation:

g1(t)e−βtx2(t) + g2(t)e−βtx(t)

= g1(0)x
2
0 + g2(0)x0

+

∫ t

0

e−βτ

{
− β

[
g1(τ)x

2(τ) + g2(τ)x(τ) + ġ1(τ)x
2(τ) + ġ2(τ)x(τ)

+
[
2g1(τ)x(τ) + g2(τ)

]
mx(τ) + g1(τ)s

2

}
dτ

+

∫ t

0

e−βτ
[
2g1(τ)x(τ) + g2(τ)

]
sdwx(τ). (7.8)

Theorem 7.3.1. If β > 2m, then there exists a unique solution to the problem
(7.4) given by

u∗(t) =
µ(t)− r(t)

σ2η(t)
y(t), c∗(t) =

y(t)

g(t)
.
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The corresponding optimal cost is:

J∗ =
ln(y0)
β

+
q1

β(β − 2m)
+

q2
β(β −m)

+
q1s

2

m2β2(β − 2m)

+
1

2β2σ2

[
2βσ2ln(β) + k2 − 2βσ2

]
.

Proof. We define the process v(t) as v(t) := g(t)e−βtlny(t). Its differential is

dv(t) = g(t)e−βt

{
r(t) +

u(t)

y(t)

[
µ(t)− r(t)

]
− c(t)

y(t)
− u2(t)

2y2(t)
σ2η(t)

}
dt

+g(t)e−βtu(t)

y(t)
σ
√
η(t)dws(t) + ġ(t)e−βtlny(t)dt

−βe−βtg(t)lny(t)dt (7.9)

We can thus write the cost functional as

JT (u(·), c(·)) = E

[∫ T

0

e−βtlnc(t)dt+ g(T )e−βT lny(T )
]

= E[v(0)]

+E

[∫ T

0

{
ġ(t)e−βtlny(t)− βg(t)e−βtlny(t) + g(t)e−βtr(t)

+g(t)e−βt
[u(t)
y(t)

(
µ(t)− r(t)

)
− 1

2

u2(t)

y2(t)
σ2η(t)

]

+e−βt
[
lnc(t)− g(t)

c(t)

y(t)

]}
dt
]

= E
[
v(0)

]

+E

[∫ T

0

{(
ġ(t)− βg(t) + 1

)
e−βtlny(t) + g(t)e−βtr(t)
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+g(t)e−βtσ2η(t)
(u(t)
y(t)

− µ(t)− r(t)

σ2η(t)

)2
+ g(t)e−βt k

2

2σ2

+e−βt
(
ln c(t)
y(t)

− g(t)
c(t)

y(t)

)}
dt
]

(7.10)

Due to equation (7.5), the sum of the terms containing lny(t) is zero. Moreover,
the following upper bound holds

JT (u(·), c(·)) ≤ E
[
v(0)

]
+ α1(T ) + α2(T ),

and it is archived if and only if we choose

u(t)

y(t)
=

µ(t)− r(t)

σ2η(t)
⇒ u∗(t) =

µ(t)− r(t)

σ2η(t)
y(t),

c(t)

y(t)
=

1

g(t)
⇒ c∗(t) =

y(t)

g(t)
.

We now consider the finiteness of α1(T ) and α2(T ) as T → ∞, which are given
by

α1(T ) = E

[∫ T

0

g(t)e−βtr(t)dt
]
,

α2(T ) = E

[∫ T

0

{
g(t)e−βt k

2

2σ2
− e−βt

(
lng(t) + 1

)}
dt
]
.

With the help of (7.8) we can write the expression for α1(T ) as:

α1(T )

= E

[
g1(0)x

2
0 + g2(0)x0 − g1(T )e−βTx2(T )− g2(T )e−βTx(T )

+

∫ T

0

e−βt
[
ġ1(t)x

2(t) + ġ2(t)x(t)− βg1(t)x
2(t)− βg2(t)x(t)
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+2mg1(t)x
2(t) +mg2(t)x(t) + g1(t)s

2
]
dt

+

∫ T

0

g(t)e−βt
[
q1x

2(t) + q2x(t)
]
dt
]

= E

[
g1(0)x

2
0 + g2(0)x0 − g1(T )e−βTx2(T )− g2(T )e−βTx(T )

+

∫ T

0

e−βt
[(

ġ1(t)− βg1(t) + 2mg1(t) + q1g(t)
)
x2(t)

+
(
ġ2(t)− βg2(t) +mg2(t) + q2g(t)

)
x(t)

]
dt

+

∫ T

0

s2g1(t)e−βtdt
]

(7.11)

Due to equation (7.6), we can get rid of the terms that are quadratic in x(t),
since (

ġ1(t)− βg1(t) + 2mg1(t) + q1g(t)
)
x2(t) = 0.

Similarly, the terms that are linear in x(t) also add up to zero due to equation
(7.7): (

ġ2(t)− βg2(t) +mg2(t) + q2g(t)
)
x(t) = 0

Then our aim is to consider the remaining part, which is

α1(T ) = E

[
g1(0)x

2
0 + g2(0)x0 +

∫ T

0

s2g1(t)e−βtdt
]

When β > 2m,

lim
T→∞

α1(T )

= lim
T→∞

E

[
− q1x

2
0

β (−β + 2m)
+

1

2

q1e−β Tx2
0

β m

− x2
0

eT (β−2m)

(
− q1
β (−β + 2m)

+
1

2

q1eT (β−2m)−β T+2Tm

β m

)
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+

(
−q2eTmβ + β q2 − q2m+ q2meβ T

)
e−β Tx0

β (β −m)m

+
q1s

2
(
−β2e2Tm + 2 β2mT − 4m2β T + 4m2eβ T + β2 − 4m2

)
e−β T

4m2 (β − 2m) β2

]

=
q1x

2
0

β(β − 2m)
+

q2x0

β(β −m)
+

q1s
2

m2β2(β − 2m)
(7.12)

lim
T→∞

α2(T )

= lim
T→∞

E

[
− 1

2β2σ2
e−βT

{
2eβTσ2βln

(eβT − 1

β
e−βT

)
− 2Tβ2σ2

−2βσ2ln
(eβT − 1

β
e−βT

)
+ 2βσ2eβT + k2βT − k2eβT − 2βσ2 + k2

}]

=
1

2β2σ2

[
2βσ2ln(β) + k2 − 2βσ2

]
(7.13)

Therefore, we can deduce

lim
T→∞

JT (u
∗(·), c∗(·))

≤ ln(y0)
β

+
q1x

2
0

β(β − 2m)
+

q2x0

β(β −m)
+

q1s
2

m2β2(β − 2m)

+
1

2β2σ2

[
2βσ2ln(β) + k2 − 2βσ2

]
(7.14)

Remark 7.3.1. Similar to Remark 6.5.1, from Theorem 7.3.1, we can find the
optimal solution u∗(t) contains the volatility η(t). However, this η(t) is from (7.2),
cannot be observed in practice, and needs to be infered from other observable prices.
This is the limitation of this research.
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7.4 Summary
We formulate and solve an infinite horizon optimal investment and consump-

tion problem. The criterion has a discounting factor, the value of which must
be grater than a given constant. The market coefficients are all stochastic. The
interest rate follows a QATSM, the volatility follows a CIR model, whereas the
drift is expressed in terms of these two coefficients. We obtained the optimal in-
vestment strategy and consumption in an explicit closed-form for the logarithmic
utility. It remains an interesting open question if a similar approach can be used
to solve the problem for the power utility.
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Chapter 8

Conclusion

In this conclusion chapter, we summarize the main contributions of the thesis
and point out some interesting open questions for future research.

8.1 Contributions
• First, based on Date and Gashi’s work [11], we propose a further nonlin-

ear system, which contains the multi-dimensional square-root process. The
key contribution of Chapter 3 is that the explicit closed form solvability
has been preserved. Another relevant point is the extension of Yong’ work.
Yong in [54] points out the limitation of using the CIR model in invest-
ment. In Chapter 3, we give a detailed discussion on the this problem which
utilizes the multi-dimensional square-root process. We give some sufficient
conditions to ensure the control processes belong to the admissible set. In
addition, a generalised criterion of risk-sensitive control is proposed, where
the noise dependents on the state and control variables. Even in this situa-
tion, the solution is obtained explicitly by the change of measure approach.

• As the applications of risk sensitive control to mathematical finance, the in-
terest rate modelling, bond pricing, and optimal investment, are considered.
Several new forms of nonlinear stochastic interest rate are introduced in this
thesis. For instance, the mixed CIR and multi-dimensional quadratic term
structure interest rate model is discussed in Chapter 4 and the Longstaff
interest rate model is considered in Chapter 5, 6. We know the approach to
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obtain the price of zero-coupon bond with different kinds of stochastic in-
terest rates. For finite time horizon case, we obtain the optimal investment
strategy under a new stochastic interest rate models (see Chapter 4). In
addition, the optimal solution of the portfolio which contains consumption
is also given in an explict closed form (see Chapter 6). These results should
be quite important to individuals who work in mathematical finance. A
brief example is investment banking. The investor could know how many
shares of which asset he should hold to maximise his wealth.

On the other hand, we deal with the optimal portfolio problems not only
for finite but also for infinite time horizon case. Chapter 5 considers the
optimal investment with nonlinear stochastic interest rate on a long time.
And Merton’s optimal consumption problem for the infinite time case is
discussed in Chapter 7. The research about infinite time case is to consider
some financial instruments such as perpetual bond or perpetual options.
Under this situation, we can still obtain the optimal strategies.

8.2 Future Research
In this section, we list some open probems which can be investigated in the

future.

• A numerical study to such mathematical finance problems is a good direction
for research. Particularly, we can focus on how market parameters affect
the dynamic behaviour of optimal strategy. In addition, due to Remark
6.5.1 7.3.1, we state the limitation of research about stochastic volatility.
Therefore, how to estimated the volatility in the optimal strategy by using
observed volatility, is also a quite interesting open question.

• In Chapter 3, we simplify the problem about multi-dimensional square root
process by introducing Assumption 3.2.3, 3.2.4, when discussing the admis-
sible controls in Section 3.2.1. Our aim of future research is to avoid these
two strong assumptions or at least make them weaker.

• In Chapter 7, there remains an open question, which is the problem of
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optimal consumption with power utility on an infinite time horizon. This
work is incomplete, and is illustrated as follows:

Problem 8.2.1. Let the discounted cost from consumption be defined as

JT (u(·), c(·)) = E
[∫ T

0

e−βt c
γ(t)

γ
dt
]
.

The objective is solve the following infinite horizon optimal control problem
for some β > 0 and γ ∈ (0, 1).

max
u(·),c(·)∈A

lim
T→∞

JT (u(·), c(·)),

s.t. (7.1), (7.2), (7.3).
(8.1)

It is believable that this problem could be solved in the future research.
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Notation

Rn n-dimensional real Euclidean space

Rn×m Euclidean space of real (n×m) matrices

diag(x) a diagonal matrix with elements of vector x on its diagonal

tr(X) the trace of a square matrix X

A′ the transpose of the vector (or matrix) A

ġ(t) the derivative of function g(t)

Ω sample space

P probability measure

Ft filtration up to time t

T terminal time
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