
Knots and algebrasH.R.Morton and P.Traczyk*Abstract.Starting from the existence of the 2-variable polynomial P for oriented links wedevelop the linear skein theory approach to give a geometric realisation of the Heckealgebras. A careful de�nition of the ring � in which P takes values makes it easierthan usual to study the representations of pieces of a knot diagram in the Heckealgebras and in specialisations of them such as the group algebras Z[Sn]:An analogous method is used to construct algebras based on Kau�man's polyno-mial. Here a similarly careful choice of ring, coupled with the use of the Dubrovnikvariant of the polynomial allows a natural specialisation to Brauer's algebras.Introduction.The 2-variable polynomial P (K) of an oriented link K was developed fromtwo di�erent starting points. One approach was through the Hecke algebras Hn[J1,J2,O], while the other combinatorial approach was through knot diagrams andeventually linear skein theory, [FYHLMO,PT]. We use here the linear skein theoryapproach based on tangles (pieces of a knot diagram) to give a geometric realisationof the Hecke algebras, assuming the existence of P (K): One important feature inthe construction as presented here is the de�nition of the ring � in which P (K)takes values, to be a subring of the more usual Laurent polynomial ring. This allowsvarious specialisations of the algebras, which result from specialising �; to be readilyconstructed.We use similar methods, starting with Kau�man's polynomial in its Dubrovnikform [K], again keeping a close watch on the ring used, to construct algebras whosespecialisations can be identi�ed with Brauer's algebras [B] in a very natural way.Such algebras have been studied in more detail by Birman and Wenzl [BW], andit was from them that we got to hear of Brauer's algebras. While their algebrasare essentially isomorphic to the ones constructed here, our choice of ring and theuse of the Dubrovnik variant of the polynomial allow us to make their conjecturedconnection with Brauer's algebras very directly both algebraically and geometrically.For this reason, and also because of the form of recently discovered connections ofboth polynomials with invariants derived from Lie algebras [T], we feel that theDubrovnik version, and the version of P which we use, both have a particularlyappropriate choice of variables.* Appears in `Contribuciones Matematicas en homenaje al profesor D. Antonio PlansSanz de Bremond', ed. E. Martin-Peinador and A. Rodez Usan, University ofZaragoza, (1990), 201-220. 1
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While this method of geometrically constructing such algebras has been knownto a number of workers in the area, we feel that it is worth expounding here as itunderlines the general strategy for computing invariants by working systematicallywith tangles.This paper is a revised version of one originally called `Knots, skeins and algebras'in which we also described how the direct connections between algebra and geometryhad provided the original basis for our work [MT] on satellites around mutants.1. The invariant P.The polynomial P (K) for an oriented link K is normally regarded as lying inZ[v�1; z�1]: We shall take the de�ning skein relation to be v�1P (K+)� vP (K�) =zP (K0); as in [M], rather than the version with all signs positive.It can be seen from the construction of P; either from the Hecke algebras [M],or via the skein relation, as in [LM] or [PT], that P always lies in a subring ofZ[v�1; z�1] isomorphic to the ring � = Z[v�1; z; �]= < v�1�v = z� > : This quotientring � is mapped injectively to Z[v�1; z�1] by the assignment � = (v�1 � v)=z:Recall that when K is the unlink with n components we have P (K) = �n�1:The combinatorial de�nition of P using the skein relation then determines P veryexplicitly as an element of � in the �rst instance rather than Z[v�1; z�1] directly,underlining the considerable restrictions on the appearance of z�1 in P:We may exploit the fact that P lies in � by considering the e�ect of the homo-morphism e : � ! Z[�] de�ned by e(v) = 1; e(z) = 0 and e(�) = �: From the skeinrelation we have e(P (K+)) = e(P (K�)); so that the evaluation e(P (K)) 2 Z[�] isunchanged under any crossing switches in a diagram of K: Since any K can be al-tered in this way to the unlink on the same number of components, it follows at oncethat e(P (K)) = �jKj�1; where jKj is the number of components of K:This gives a quick con�rmation of a result of Yetter.Theorem. (Yetter)P (K)(1 + �t; �t)! (�2�=�)jKj�1 as t! 0:Proof: In � � Z[v�1; z�1] the element P � e(P ) ! 0 as (v; z) ! (1; 0); while� = ((1 + �t)�1 � (1 + �t))=�t! �2�=� as t! 0: utRemark. The homomorphism e; which is not de�ned on the whole of the ringZ[v�1; z�1] , has the e�ect of passing from a knot diagram to its projection whereunder- and over-crossings are not distinguished. In the version of P with positivesigns in the skein relation this process requires the use of the complex number i inthe specialisation.
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2. Tangles.We shall use the language of tangles, slightly altered from Conway's originaldescriptions, to denote pieces of knot diagram lying inside a rectangle in the planeand meeting its boundary in a prescribed way.De�nition. An (m;n)-tangle is a piece of knot diagram in a rectangle R in theplane, consisting of arcs and closed curves, so that the end points of the arcs consistof m points at the top of the rectangle and n points at the bottom, in some standardposition.An example of a (4; 2)-tangle is shown in �gure 1.
Figure 1De�nition. Two tangles are ambient isotopic if they are related by a sequence ofReidemeister's moves I, II and III, (see �gure 2), together with isotopies of R �xingits boundary.They are regularly isotopic if Reidemeister move I is not used.
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Notation. Write Umn for the set of (m;n)-tangles up to regular isotopy, and Umn upto ambient isotopy.Remark. A tangle may be regarded as a sideways view of part of a knot lying ina cylinder D2 � I; meeting only its top and bottom. Ambient isotopy of tanglescorresponds to ambient isotopy of the knot within D2 � I:We shall be concerned here with two classes of tangles.The �rst, studied in connection with Kau�man's polynomial, is simply the set Unn ofall (n; n)-tangles up to regular isotopy.In working with P we need to handle oriented diagrams. We shall con�ne ourattention to those (n; n)-tangles in which each arc joins a point at the top of R toa point at the bottom. We shall further suppose that the strings have been orientedto run from top to bottom.Notation. Write Tn for the set of such oriented tangles up to regular isotopy, andT n up to ambient isotopy.Remark. Tn naturally de�nes a subset of Unn by ignoring orientation. Two elementsof Tn may yield the same element of Unn , since altering the orientation on a closedcomponent of an oriented tangle will in general give a di�erent element of Tn:Each of the four classes of tangles Unn ; Unn; Tn and T n admits an associativemultiplication, de�ned by placing representative tangles one below the other.A well-known subset Bn � T n consists of geometric braids - in this contextrepresented by tangles (necessarily without closed components) where the height co-ordinate in R increases monotonically on each component. It can be shown that Bnis the full group of units in T n under the multiplication.The closure, bT ; of an (n; n)-tangle T; is de�ned, by analogy with the closure ofa braid, to be the link diagram (or (0; 0)-tangle ) given from T by joining the pointson the top of R to those on the bottom by arcs lying outside R with no furthercrossings.We shall also write ^(T ) for the closure bT , de�ning a closure map ^ : Unn ! U00etc. for each of the classes above.3. The Dubrovnik invariant.The invariant P described above gives a map P : T 0 ! �:Kau�man's polynomial, in its Dubrovnik form, comes from a map D : U00 ! �0;for a ring �0; i.e. a function on diagrams which is unaltered by regular isotopy.This function D has the basic properties:(1) D(K+) � D(K�) = z(D(K0) � D(K1))4



where the diagrams K�; K0 and K1 di�er only as in �gure 3, and(2) D(K left ) = �D(K); D(K right ) = ��1D(K);where K left and K right are given from K by adding a left or right hand curl as in�gure 4. K+ = , K� = , K0 = , K1 = .Figure 3right hand curl = , left hand curl = .Figure 4It is usually normalised by(3) D(O) = 1;where O is the diagram of the unknot without any crossings.It also satis�es(4) D(K qO) = �D(K);where K q O is the union of K and a circle having no crossings with K or withitself, and � 2 �0 satis�es ��1 � � = z(� � 1):We shall take �0 to be the ring �0 = Z[��1; z; �]= < ��1 � � = z(� � 1) > :An invariant D of oriented links up to isotopy, also lying in �0; is readily con-structed from D as follows. Suppose that an oriented diagram K is given. We putD(K) = �w(K)D(K); where w(K) is the number of crossings in K counted withsign, to get an invariant under Reidemeister moves I, II and III. The invariant doesdepend on the choice of orientations of the components of K; but only marginally so.A `neutral' choice could be made by counting only `pure' crossings in the signed cross-ing number, that is crossings of each component with itself only, to give an isotopyinvariant which is independent of string orientations.The ring �0 is isomorphic to a subring of Z[��1; z�1] but as with � above itadmits a homomorphism e : �0 ! Z[�] with e(z) = 0; e(�) = 1 and e(�) = �:Proposition. e(D(K)) = e(D(K)) = �jKj�1:Proof: As in the previous case. utCorollary. (Wenzl)D(K)(1 + t; �t)! (1� 2=�)jKj�1 as t! 0: utRemark. The invariant D is equivalent to Kau�man's original invariant F: Thiswas proved by Lickorish shortly after Kau�man proposed the invariant D:5



Theorem. (Lickorish [L])D(K)(�; z) = (�1)jKj�1F (K)(i�; iz): utWhile this theorem e�ectively removed the need to consider D; it now appearsthat D is more natural than F in a number of contexts, in that the use of i canfrequently be avoided. The regular isotopy invariant D behaves particularly well[T,Y], especially when the alternative normalisation D(0) = � is used, i.e. D(;) = 1by use of (4).Lickorish uses the notations �� for D and F � for D; while Turaev uses Q� forD:4. Algebras.From P and T n we show how to construct an algebra Ln isomorphic to theHecke algebra Hn: A similar approach, using D and Unn gives an algebra Mn whichwe call Kau�man's algebra. It is isomorphic to the algebra produced by Birmanand Wenzl [BW], but certain features, for example its dimension, and its relationto Brauer's algebra [B], which were not directly proved in their original approach,appear here very simply, by use of the homomorphism e and the Dubrovnik invariantD: The two constructions and their properties follow very similar lines. We treat thecase of P in more detail �rst, but eventually concentrate on the less familiar ideasrelated to D:Factor out two types of relation from �[T n]; the set of all �-linear combinationsof tangles in T n; to give a �-module Ln:These relations are:(1) v�1T+ � vT� = zT 0;where T� and T 0 are represented by tangles di�ering only as in �gure 5.T+ = , T� = , T 0 = .Figure 5(2) T qO = �T;where T qO consists of T and a disjointly embedded unknotted component.Proposition 4.1. The map P �^ : T n ! � calculating the polynomial of the closureof a tangle induces a �-linear map Ln ! �:Proof: Immediate from (1) and (2). utProposition 4.2. Composition of tangles induces a �-bilinear multiplication on Lnmaking Ln an algebra over �: 6



Proof: Check that the relations carry down under the multiplication in �[T n]: utWe now show how to �nd a free basis for Ln with n! elements corresponding topermutations in Sn: The proof that the elements selected form a generating set forLn is an easy consequence of the relations (1) and (2), using the methods of Lickorishand Millett. To prove independence we need to use the existence of P ; we use thehomomorphism e to �nish the proof very quickly.We develop the notation and techniques to handle this case and the other algebraMn at the same time.De�nition. Given a tangle T; choose a sequence of base-points, consisting �rstly ofone end point of each arc, and then one point on each closed component. Say that Tis totally descending (with this choice of base points) if on traversing all the strandsof T; starting from the base point of each component in order, each crossing is �rstmet as an overcrossing.We shall make a convention about the order of base-points for the arcs of an(n; n)-tangle as follows. Order the 2n end points of the arcs, starting with thebottom left point on the boundary of the rectangle, and reading anticlockwise roundthe boundary. Assign base-points successively in this order, skipping any end pointwhose arc has already been numbered.An example of a totally descending (3; 3)-tangle is shown in �gure 6, with base-pointsnumbered according to this convention.
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2Figure 6Remark. With this convention the base-points for the tangles used in T n will startwith the n `inputs' on the bottom taken in order.Theorem 1. Ln is linearly generated by totally descending tangles.Proof: Use the techniques of Lickorish and Millett [LM]. Let T be a tangle rep-resenting an element of Ln: Choose base points for T as above. Use relation (1)at the �rst non-descending crossing of T to write T as a linear combination of twotangles, one with fewer crossings, the other with fewer non-descending crossings. Thetheorem follows by induction, �rstly on the number of crossings, then on the numberof non-descending crossings. utCorollary. Ln is linearly generated by totally descending tangles without closedcomponents. 7



Proof: If T is totally descending, with r closed components, then these componentsare unknotted curves stacked below the arcs of T; so that by (2), T = �rT 0 in Ln;where T 0 consists simply of the arcs of T: ut5. Permutations and connectors. To each tangle T in Tn we can associate apermutation perm(T ) 2 Sn by comparing the bottom and top points of the n arcs.For a general tangle we extend the idea of a permutation to that of an n �connector; de�ned to be a pairing of 2n points into n pairs. The set Cn of n -connectors has (2n)!=2nn! elements, the product of the �rst n odd integers.Take the set of 2n points to be the end points of (n; n)-tangles : The arcs of anyT 2 Unn pair these end points to give a connector, which we write as conn(T ) 2 Cn:Brauer's algebra. Brauer [B] uses Cn as the basis for an algebra over Z[�]; (writingn in place of � and f in place of n ). He divides the 2n points to be connected into twosubsets t1; : : : ; tn and b1; : : : ; bn; arranged along the top and bottom of a rectangle,and views a connector c as a set of n intervals with these 2n points as endpoints,which join the points paired by c: Two connectors c1 and c2 are composed by placingone rectangle above the other, giving n arcs whose endpoints are the new top andbottom points, together with some number r � 0 of closed curves.Brauer sets c1c2 = �rd; where d is the connector de�ned by the new arcs. Thisde�nes an associative multiplication on Z[�][Cn] = An making it an algebra overZ[�]; called Brauer's algebra.Having divided the 2n points in this way there is a natural embedding Sn � Cn:Theorem 2. Let S and T be totally descending (n; n)-tangles; without closedcomponents, such that conn(S) = conn(T ): Then S and T are ambient isotopic.Proof: Number the arcs of S and T according to the order of their base points.Since conn(S) = conn(T ); the ith arc in each tangle joins the same pair of endpoints. The arcs can be arranged to lie in disjoint levels 1 to n above the plane ofR; since arc i lies above arc j at every crossing when i < j: Each individual arc isunknotted, because the tangle is descending, so it can be isotoped to an arc withoutself-crossings in its level. The resulting tangles are then isotopic by level-preservingisotopy. utRemark. If the arcs of S and T have no self-crossings initially then S and T areregularly isotopic.Construction. For each connector c 2 Cn; construct a totally descending tanglewith connector c such that any two arcs cross at most once. (Start from such adiagram of the connector, and make it descending, by choosing the sense of eachcrossing.) The element Tc 2 Unn represented by this tangle then depends only on cby Theorem 2. 8



Remark. For c 2 Sn the resulting tangles Tc have been studied, [E], under thename `positive permutation braids'. They can be represented by a braid in Bn withpositive crossings and permutation c in which any two strings cross at most once.These braids have also been used in [MS1,2], to give easily handled generatorsfor the Hecke algebra Hn:6. The Kau�man algebra.De�nition. The Kau�man algebra, Mn; is constructed from �0[Unn ] by factoringout three sets of relations:(1) T+ � T� = z(T 0 � T1)(2) T right = ��1T; T left = �T(3) T qO = �T;where T�; T 0; T1 and T qO are related as for link diagrams.As in the case of Ln; we have a �0 -linear map Mn ! �0 induced by D � ^ :Unn ! �0 and a bilinear multiplication induced from tangle product making Mn analgebra over �0:Theorem 3. Mn is linearly generated by the �nite set fTcg; c 2 Cn:Proof: A direct analogue of theorem 1 and its corollary shows that Mn is generatedby tangles which, using theorem 2, are ambient isotopic to Tc; for various c: By useof relation (2), any tangle ambient isotopic to Tc represents �kTc in Mn; for somek: utTheorem 30 . Ln is linearly generated by fTcg; c 2 Sn:Proof: Immediate. utTheorem 4. The set fTcg; c 2 Cn forms a free �0 -basis for Mn:Proof: Write b :Mn�Mn ! �0 for the bilinear form de�ned on tangles by b(S; T ) =D(^(ST )): Represent b in terms of the generating set fTcg by a jCnj�jCnj matrix A;with entries acd = b(Tc; Td): We show that b is non-degenerate, and in addition, since�0 has no zero-divisors, that fTcg is a free basis of Mn; by proving that detA 6= 0:The link ^(TcTd) has r components, say. Each component contains at least onearc from each of Tc and Td; so r � n: When r = n each component has exactlyone arc from each, so that the connector d is the `mirror image' of c; given byinterchanging the roles of the top and bottom points. Set c = d in this case, so thatwe have r = n if and only if d = c:Now apply the homomorphism e to the entries in A: Then e(acd) = �r�1; r � n;and r = n if and only if d = c: The matrix e(A) has then one entry �n�1 in each row9



and column, so e(detA) = det(e(A)) 2 Z[�] has a non-zero coe�cient for �n(n�1):Thus e(detA) 6= 0; so detA 6= 0: utTheorem 40 . The set fTcg; c 2 Sn forms a free �-basis for Ln:Proof: The �-bilinear form on Ln constructed analogously using P is non-degenerate, by a similar proof using e : �! Z[�]: utRemark. The actual entries in the matrix A can be quite complicated. Use of emakes an enormous simpli�cation.We now look at Mn and Ln as algebras, and compare them with Brauer's algebraAn or with Z[Sn] respectively.We can modify the map conn : Unn ! Cn to give a multiplicative homomorphismc : Unn ! An; which extends to c : Mn ! An as follows. For T 2 Unn set c(T ) =�jT j conn(T ) 2 An; where jT j is the number of closed components of T: Now extendto c : �0[Unn ]! An by setting c(P �iTi) =P e(�i)c(Ti):Theorem 5. There is an induced homomorphism c :Mn ! An:Proof: The relations (1)-(3) de�ning Mn are respected. utRemark. In fact An is exactly the algebra Mn
�0 Z[�] given from Mn by replacingthe coe�cients �0 with Z[�]; using the homomorphism e:Theorem 6. There is an isomorphism of Z[�] -algebras induced by c betweenMn
�0 Z[�] and An:Proof: The map c :Mn ! An factors through a Z[�] -homomorphism Mn 
�0 Z[�]!An: Since Mn 
�0 Z[�] is generated over Z[�] by fTcg which maps onto a basis of Anof the same cardinality, this set must be a Z[�] -basis in the specialisation, and themap is hence an isomorphism. utRemark. The existence of c : Mn ! An can be viewed as the consequence ofspecialising the coe�cients so that the relations no longer distinguish under- fromover-crossings. Then tangles pass to their projections, retaining only the informationof their connectors. The crucial technical feature here is that we can specialise �0so as to retain �; while �xing � and z: Complications arise if we simply work withZ[��1; z�1]: 10



The algebra Ln admits a similar map c : Ln ! Z[�][Sn] taking tangles to theirpermutations, which similarly gives an isomorphism of Ln
� Z[�] with Z[�][Sn]; andfurther, putting � = 1; and isomorphism of Ln
� Z with Z[Sn]:7. Algebra generators.As an algebra, Ln can be generated by the elementary braids �i 2 T n; since eachTc; c 2 Sn is a composite of these. It is immediate that the generators �i satisfy thebraid relations �i�j = �j�i; ji� jj > 1; and �i�i+1�i = �i+1�i�i+1: In addition, therelation v�1�i � v��1i = z comes from applying the relation (1) in Ln to the onlycrossing in �i = T+; when we have T� = ��1i and T 0 = identity tangle :The algebra de�ned abstractly by these generators and relations is known as aHecke algebra, Hn; so that Ln is automatically a quotient of Hn: It is not di�cultto establish that Hn has a set of n! linear generators which map to fTcg; see [M] fora description of these generators in terms of ci = v�1�i: The independence of fTcgalready established in Ln then ensures that the quotient map is an isomorphism,without having to show directly that these generators of Hn are independent. ThusLn may be regarded as a concrete realisation of Hn: From this point of view thetrace funtion on the algebra Hn used in [M] can be recovered from the evaluationmap Ln ! � by taking Tr(S) = P (^(S))=�n�1:In the case of the Kau�man algebras we can similarly �nd generators and rela-tions, as in [BW], although this task is simpli�ed by knowing a linear basis already.The tangles si; s�1i and hi shown in �gure 7 satisfy the relations si�s�1i = z(1�hi)in Mn:si =
i i+1

, s�1i =
i i+1

, hi =
i i+1

.Figure 7Since the basis elements fTcg of Mn can be written as monomials in s�1i and hithen Mn can be generated by si and hi as an algebra over �0: The elements si satisfythe braid relations while the elements hi satisfy Kau�man's bracket relations, h2i =�hi; hihj = hjhi; ji� jj > 1; and hihi+1hi = hi: They also satisfy further relationsbetween hi and sj ; in particular sihi = �hi: Inclusion of enough of these to allowall products Tdsi and Tdhi to be written as �0 -combinations of fTcg will then givean explicit presentation of Mn as an algebra.The braid group Bn appears to play a slightly ambivalent role in Mn: It canclearly be represented in Mn by taking �i to �si: Its image does not linearly generatethe whole of Mn; since on composition with c : Mn ! An the image only containscombinations of permutations Sn � Cn: However it is possible to write all tangles inMn as linear combinations of braids if the coe�cient ring is extended to include z�1:(In this setting the algebra can be generated linearly by s�1i by solving the relationsfor hi: ) Birman and Wenzl make use of this representation of Bn in describing thealgebra over the ring Z[��1; z�1]: 11



Remark. This representation entails a cubic polynomial relation for si; since s2i�1 =z(si � sihi) = z(si � �hi) = zsi + �(si � s�1i � z): Then si satis�es the polynomialequation s3�(z+�)s2+(�z�1)s+� = 0; with roots �; q�1 and �q; where z = q�1�q:While it is now possible to construct a linear basis of Mn over Z[��1; z�1] consistingof braids, it does not seem to be straightforward to �nd any particularly natural choiceof jCnj braids which will work.For calculations Mn can be used to �nd D; and hence Kau�man's polynomial,for a link presented as the closure of an (n; n) -tangle. The tangle must be written asa linear combination of generators during the course of the calculation; this will behelped if it can be presented as a monomial in s�1i or s�1i and hi: A recursive cal-culation, knowing only the products of the linear generators with s�1i or with si andhi will then be enough to allow quick mechanical computation. The tangles Tc lendthemselves to reasonably simple expressions when composed with si or hi; althoughnot so simple as for the positive permutation braids used in Ln for calculating P;[MS2].8. Related ideas.We close with some remarks about a very satisfying relation between tangles andalgebras. In his beautiful work on the bracket polynomial, a near equivalent of theoriginal Jones polynomial, Kau�man describes an algebra in terms of diagrams. Thisis the subalgebra of Mn generated (as an algebra) by the elements hi; or equally,generated linearly by those Tc without any crossings (of which there are �2nn � =(n+1);the n th Catalan number). This algebra is essentially isomorphic to its image in An;and to the original algebra used by Jones. It depends on n and �; and it gave rise toan early connection with ideas from theoretical physics, where it has been known asa Temperley-Lieb algebra.The geometrical view described here can be used for example in �nding naturalideals of the algebras.De�nition. The rank of an (m;n) -tangle T is the least k for which T is theproduct of an (m; k) and a (k; n) tangle. (Cf. rank of m� n matrices.)Clearly, rank(ST ) � rank(S); rank(T ):Corollary. The submodule M (k)n of Mn generated by tangles of rank � k is anideal. utThis construction, applied to the Temperley-Lieb algebras, for example, gives alltheir ideals, except when the ring is specialised with certain choices of �: See also[HW], where such ideas are used for An: It underlines the bene�ts when workingwith an algebra of having some geometrical model available.Acknowledgments. The second author was supported during this work by SERCgrant GR/C/48974. The �rst author acknowledges the hospitality of the Universityof Zaragoza during the revision of the manuscript, and support from the SpanishMinistry of Education and Science. 12



References[BW] Birman, J.S. and Wenzl, H. Braids, link polynomials and a new algebra.Trans. Amer. Math. Soc. 313 (1989), 249-273.[B] Brauer, R. On algebras which are connected with the semisimple continuousgroups. Annals of Math. 38 (1937), 857-872.[E] Elrifai, E.A. Positive braids and Lorenz links. PhD. dissertation, LiverpoolUniversity (1988).[FYHLMO] Freyd, P., Yetter, D., Hoste, J., Lickorish, W.B.R., Millett, K.C. and Ocneanu,A.A new polynomial invariant of knots and links. Bull. Amer. Math. Soc. 12 (1985),239-246.[HW] Hanlon, P.J. and Wales, D.B. On the decomposition of Brauer's centraliser al-gebras. Preprint, Caltech. (1986).[J1] Jones, V.F.R. A polynomial invariant for knots via von Neumann algebras.Bull. Amer. Math. Soc. 12 (1985) 103-111.[J2] Jones, V.F.R. Hecke algebra representations of braid groups and link polynomials.Annals of Math. 126 (1987), 335-388.[K] Kau�man, L.H. State models for knot polynomials. Topology 26 (1987), 395-407.[L] Lickorish, W.B.R. Polynomials for links. Bull. London Math. Soc. 20 (1988),558-588.[LL] Lickorish, W.B.R. and Lipson, A.S. Polynomials of 2-cable-like links. Proc. Amer.Math. Soc. 100 (1987), 355-361.[LM] Lickorish, W.B.R. and Millett, K.C. A polynomial invariant of oriented links.Topology 26 (1987), 107-141.[M] Morton, H.R. Polynomials from braids. In `Braids', Amer. Math. Soc. Contem-porary Mathematics 78 (1988), 575-585.[MS1] Morton, H.R. and Short, H.B. The 2-variable polynomial of cable knots.Math. Proc. Camb. Philos. Soc. 101 (1987), 267-278.[MS2] Morton, H.R. and Short, H.B. Calculating the 2-variable polynomial of knotspresented as closed braids. Journal of Algorithms 11 (1990), 117-131.[MT] Morton, H.R. and Traczyk, P. The Jones polynomial of satellite links aroundmutants. In `Braids', Amer. Math. Soc. Contemporary Mathematics 78 (1988),587-592.[O] Ocneanu, A. A polynomial invariant for knots; a combinatorial and algebraicapproach. Preprint MSRI 1985.[PT] Przytycki, J. and Traczyk, P. Invariants of links of Conway type. Kobe J. Math.4 (1987), 115-139.[T] Turaev, V.G. The Yang-Baxter equation and invariants of links. Invent. Math.92 (1988), 527-553.[Y] Yamada, S. An operator on regular isotopy invariants of link diagrams. Topology28 (1989), 369-377.Version 2.2 August 1988, references updated March 1991, pictures redrawn Au-gust 1999.Department of Pure Mathematics 13



The UniversityPO Box 147LIVERPOOL L69 3BXENGLANDInstytut MatematykiPKiN IX p00-901 WARSZAWAPOLAND

14


