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Abstract

Mutant knots, in the sense of Conway, are known to share the same Homfly polynomial.

Their 2-string satellites also share the same Homfly polynomial, but in general their m-

string satellites can have different Homfly polynomials for m > 2. We show that, under

conditions of extra symmetry on the constituent 2-tangles, the directed m-string satellites

of mutants share the same Homfly polynomial for m < 6 in general, and for all choices

of m when the satellite is based on a cable knot pattern.

We give examples of mutants with extra symmetry whose Homfly polynomials of some

6-string satellites are different, by comparing their quantum sl(3) invariants.

1. Introduction

This paper has been inspired by recent observations of Ochiai and Jun Murakami

about the Homfly skein theory of m-parallels of certain symmetrical 2-tangles. In [8]

Ochiai remarks that the 3-parallels of the tangle AB in figure 1 and its mirror image

AB = BA are equal in the Homfly skein of 6-tangles, in other words, in the Hecke algebra

H6, [1].

A

B

=

Fig. 1. The 2-tangle AB used by Ochiai

As a consequence, the 3-parallels of any mutant pair of knots given by composing the

2-tangles AB and BA with any other 2-tangle C and then closing, as in figure 3 will share

the same Homfly polynomial. This is in contrast with the known fact that 3-parallels of

mutant knots in general can have different Homfly polynomials, [7, 4].

There is interest in the extent to which the Homfly polynomial of m-parallels or other

m-string satellites can distinguish mutants which are closures of ABC and BAC with A

and B as above. Ochiai has found that the 4-parallels of AB and BA are different in the

skein H8.

The purpose of this paper is to show that if A and B are any two oriented 2-tangles

which have the symmetry shown in figure 2 then the m-parallels, and indeed any directed

m-string satellite, of knots ̂ABC and ̂BAC shown in figure 3 share the same Homfly

polynomial provided that m < 6. In contrast there exist examples of A, B and C where

A and B have the symmetry shown in figure 2, including Ochiai’s case with
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A = A , B = B

Fig. 2. The symmetry imposed on the tangles A and B

K =

A

B

C K
′ =

B

A

C

Fig. 3. Tangle interchange

A = , B = ,

for which the Homfly polynomials of the 6-fold parallel of K and K ′ are different. The

simplest such example, the pretzel knots shown in figure 8, uses Ochiai’s choice of sym-

metric tangles A and B.

In an unexpected extension of the main result we show that the Homfly polynomial

of a genuine connected cable, based on the (m, n) torus knot pattern, with m and n

coprime, will not distinguish mutants with symmetry above, for any number of strings,

m, although a more general connected satellite pattern can do so.

The examples which exhibit differences for the directly oriented 6-parallel can also be

used to show that the 4-parallels with two pairs of reverse strands have distinct Homfly

polynomials.

The proofs are based on the relation of the Homfly satellite invariants to quantum sl(N)

invariants, and the techniques are an extension of work with Cromwell [4] and with H.

Ryder [6]. The eventual calculations that exhibit the difference of invariants in the specific

example depend on the 27 dimensional irreducible module over sl(3) corresponding to

the partition 4, 2, and some Maple calculations following similar lines to those in [6].

2. Shared invariants of mutants

The term mutant was coined by Conway, and refers to the following general construc-

tion.

Suppose that a knot K can be decomposed into two oriented 2-tangles F and G

K = F G
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A new knot K ′ can be formed by replacing the tangle F with the tangle F ′ = τi(F )

given by rotating F through π in one of three ways,

τ1(F ) = F , τ2(F ) = F , τ3(F ) = F ,

reversing its string orientations if necessary. Any of the three knots

K ′ = τi(F ) G

is called a mutant of K.

The two 11-crossing knots, C and KT , found by Conway and Kinoshita-Teresaka are

the best-known example of mutant knots. These two knots are shown in figure 4.

C = KT =

Fig. 4. The Conway and Kinoshita-Teresaka mutant pair

2·1. Satellites

A satellite of K is determined by choosing a diagram Q in the standard annulus, and

then drawing Q on the annular neighbourhood of K determined by the framing, to give

the satellite knot K ∗ Q. We refer to this construction as decorating K with the pattern

Q, as shown in figure 5.

Q = K = K ∗ Q =

Fig. 5. Satellite construction

For fixed Q the Homfly polynomial P (K ∗ Q) of the satellite is an invariant of the

framed knot K. The invariants P (K ∗ Q) as Q varies make up the Homfly satellite

invariants of K. We use the alternate notation P (K; Q) in place of P (K ∗ Q) when we

want to emphasise the dependence on K.

The general symmetry result compares the invariants of two knots K and K ′ made up

of 2-tangles A, B and C, by interchanging A and B as in figure 3.
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Theorem 1. Suppose that A and B are both symmetric under the half-twist τ3, so

that

A = A , B = B

Let K and K ′ be knots which are the closure of ABC and BAC respectively for any

tangle C, as in figure 3. Then P (K ∗ Q) = P (K ′ ∗ Q) for every closed braid pattern Q

on m < 6 strings.

Remark 1. The proof applies equally to the case where Q is the closure of any directly

oriented m-tangle with m < 6.

In order to prove the theorem we must rewrite the Homfly satellite invariants in terms

of quantum sl(N) invariants, so we now give a brief summary of the relations between

these invariants, originally established by Wenzl. Further details can be found in [1]

and the thesis of Lukac, [3], including details of variant Homfly skeins with a framing

correction factor, x. These are isomorphic to the skeins used here but the parameter

allows a careful adjustment of the quadratic skein relation to agree directly with the

natural relation arising from use of the quantum groups sl(N).

2·2. Homfly skeins

For a surface F with some designated input and output boundary points the (linear)

Homfly skein of F is defined as linear combinations of oriented diagrams in F , up to

Reidemeister moves II and III, modulo the skein relations

(i) − = (s − s−1) ,

(ii) = v−1 , = v .

It is an immediate consequence that

= δ ,

where δ =
v−1 − v

s − s−1
∈ Λ. The coefficient ring Λ is taken as Z[v±1, s±1], with denominators

sr − s−r, r ≥ 1.

The skein of the annulus is denoted by C. It becomes a commutative algebra with a

product induced by placing one annulus outside another.

The skein of the rectangle with m inputs at the top and m outputs at the bottom is

denoted by Hm. We define a product in Hm by stacking one rectangle above the other,

obtaining the Hecke algebra Hm(z), when z = s − s−1 and the coefficients are extended

to Λ. The Hecke algebra Hm can also be regarded as the group algebra of Artin’s braid

group Bm generated by the elementary braids σi, i = 1, . . . , m − 1, modulo the further

quadratic relation σ2
i = zσi + 1.

The closure map from Hm to C is the Λ-linear map induced by mapping a tangle T

to its closure T̂ in the annulus (see figure 6). We refer to a diagram Q = T̂ as a directly

oriented pattern.

The image of this map is denoted by Cm, which has a useful interpretation as the

space of symmetric polynomials of degree m in variables x1, . . . , xN for large enough N .
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T̂ = T

Fig. 6. The closure map

Moreover, the submodule C+ ⊂ C spanned by the union ∪m≥0 Cm is a subalgebra of C

isomorphic to the algebra of the symmetric functions.

2·3. Quantum invariants

A quantum group G is an algebra over a formal power series ring Q[[h]], typically a

deformed version of a classical Lie algebra. We write q = eh, s = eh/2 when working in

sl(N)q. A finite dimensional module over G is a linear space on which G acts.

Crucially, G has a coproduct ∆ which ensures that the tensor product V ⊗ W of two

modules is also a module. It also has a universal R-matrix (in a completion of G ⊗ G)

which determines a well-behaved module isomorphism

RV W : V ⊗ W → W ⊗ V.

This has a diagrammatic view indicating its use in converting coloured tangles to

module homomorphisms.
W ⊗ V

V ⊗ W

RV W

A braid β on m strings with permutation π ∈ Sm and a colouring of the strings by

modules V1, . . . , Vm leads to a module homomorphism

Jβ : V1 ⊗ · · · ⊗ Vm → Vπ(1) ⊗ · · · ⊗ Vπ(m)

using R±1
Vi,Vj

at each elementary braid crossing. The homomorphism Jβ depends only on

the braid β itself, not its decomposition into crossings, by the Yang-Baxter relation for

the universal R-matrix.

When Vi = V for all i we get a module homomorphism Jβ : W → W , where W = V ⊗m.

Equally, a directed m-tangle T determines an endomorphism JT of W = V ⊗m. Now any

sl(N) module W decomposes as a direct sum
⊕

(Wµ ⊗ V
(N)
µ ), where Wµ is the linear

subspace consisting of the highest weight vectors of type µ associated to the module V
(N)
µ .

Highest weight subspaces of each type are preserved by module homomorphisms, and so

JT determines (and is determined by) the restrictions JT (µ) : Wµ → Wµ for each µ.

If a knot K is decorated by a pattern Q which is the closure of an m-tangle T then its

quantum invariant J(K ∗ Q; V ) can be found from the endomorphism JT of W = V ⊗m

in terms of the quantum invariants of K and the highest weight maps JT (µ) : Wµ → Wµ

by the formula

J(K ∗ Q; V ) =
∑

cµJ(K; V (N)
µ ) (2·1)

with cµ = trJT (µ). This formula follows from lemma II.4.4 in Turaev’s book [11]. Here

µ runs over partitions with at most N parts when we are working with sl(N), and we

set cµ = 0 when W has no highest weight vectors of type µ.
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Proof of theorem 1 Take V = V (N) as the fundamental module of dimension N for

sl(N). Then the only highest weight types µ which occur in equation (2·1) are partitions

of m with at most N rows. Because J(K ∗ Q; V (N)) = P (K ∗ Q) when v = s−N we can

show that P (K ∗Q) = P (K ′ ∗Q) by showing that J(K ∗Q; V (N)) = J(K ′ ∗Q; V (N)) for

all N . By equation 2·1 it is then enough to show that J(K; V
(N)
µ ) = J(K ′; V

(N)
µ ) for all

N and all partitions µ ⊢ m.

Now each tangle A and B determines an endomorphism JA, JB of Vµ⊗Vµ. If JA and JB

commute then J(K; Vµ) = J(K ′; Vµ). The endomorphisms JA and JB are determined by

their restriction JA(ν), JB(ν) to the highest weight subspaces Wν in the decomposition

Vµ ⊗Vµ =
∑

Wν ⊗Vν , so it is enough to show that JA(ν) and JB(ν) commute where Vν

is a summand of Vµ ⊗ Vµ. This is certainly the case for all ν where Wν is 1-dimensional,

which includes the case of single row or column partitions µ, [4].

As a special case of the work of Rosso and Jones, [9, 5], we know that the endomorphism

of Vµ ⊗ Vµ for the full twist ∆2 on two strings operates as a scalar ef(ν) on each highest

weight space Wν , while the half twist ∆, represented by the R-matrix RVµVµ
, operates

on Wν with two eigenvalues ±e
1

2
f(ν).

The positive and negative eigenspaces correspond to the classical decomposition of the

Schur function (sµ)2 into symmetric and skew-symmetric parts, h2(sµ) and e2(sµ), and

the dimension of each eigenspace of Wν is the multiplicity of sν in h2(sµ) and e2(sµ)

respectively.

Now A = τ3(A), so that A∆ = ∆A. Hence the endomorphism JA, and similarly JB,

preserves the positive and negative eigenspaces of each Wν . If these eigenspaces have

dimension 1 or 0 then JA and JB will commute on Wν .

The theorem is then established by checking that no sν occurs in h2(sµ) or e2(sµ) with

multiplicity > 1 for any µ with |µ| ≤ 5. The decomposition of all of these can be quickly

confirmed using the Maple program SF of Stembridge [10].

Corollary 2. Examples include the k-pretzel knots K(a1, . . . , ak) with odd ai shown

in figure 7, where the numbers of half-twists ai can be permuted without changing the

Homfly polynomial of any satellite with ≤ 5-strings.

a1 a2 ak

Fig. 7. The pretzel knot K(a1, . . . , ak)

3. Satellites with different Homfly polynomials

A further check with the program SF when |µ| = 6 shows that there are just three

partitions, µ = 4, 2, its conjugate µ = 2, 2, 1, 1 and µ = 3, 2, 1 whose symmetric square

h2[sµ] contains summands with multiplicity > 1, as does the exterior squares of µ =

3, 2, 1. Explicitly h2[s4, 2] = s8, 4 + s8, 2, 2 + s7, 4, 1 + s7, 3, 2 + s7, 3, 1, 1 + s6, 6 + s6, 5, 1 +

2 s6, 4, 2 +s6, 3, 2, 1 +s6, 2, 2, 2 +s5, 5, 1, 1 +s5, 4, 3 +s5, 4, 2, 1 +s5, 3, 3, 1 +s4, 4, 4 +s4, 4, 2, 2. This

means that, although m-string satellites of K and K ′ must share the Homfly polynomial

when m ≤ 5, it is possible for the Homfly polynomials of some 6-string satellites to differ.

We give an example now where this does indeed happen.
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K = , K′ =

Fig. 8. The pretzel knots K = K(1, 3, 3,−3,−3) and K′ = K(1, 3,−3, 3,−3)

Theorem 3. Let K and K ′ be the pretzel knots K = K(1, 3, 3,−3,−3) and K ′ =

K(1, 3,−3, 3,−3) shown in figure 8. The 6-fold parallels K ∗ Q and K ′ ∗ Q, where Q is

the closure of the identity braid on 6 strings, have different Homfly polynomials.

Proof. Write K and K ′ as the closure of the products ∆ABAB and ∆BAAB respec-

tively, where

A = , B = ,

are the partially closed 3-braids shown, and ∆ is the positive half-twist. We show that

P (K ∗ Q) 6= P (K ′ ∗ Q) when v = s−3. These values are given by the sl(3) quantum

invariants J(K∗Q; V (3)) and J(K ′∗Q; V (3)), where V (3) is the fundamental 3-dimensional

module for sl(3). Since Q is the closure of the identity braid on 6 strings it induces the

identity endomorphism on the module (V (3))⊗6. This module decomposes as
⊕

Wµ⊗V
(3)
µ

where µ runs through partitions of 6 with at most 3 rows. The trace of the identity on

Wµ is just dµ = dim Wµ, giving

J(K ∗ Q; V (3)) =
∑

dµJ(K; V (3)
µ ).

The only partition µ in this range for which the exterior or symmetric square contains

highest weight vectors of multiplicity > 1 is the partition µ = 4, 2, since the partition

µ = 2, 2, 1, 1 has 4 rows and the repeated factors for µ = 3, 2, 1 occur for partitions

with more than 3 rows. Now JA(µ)JB(µ) = JB(µ)JA(µ) for all other µ since A and B

are symmetric up to altering the framing on both strings, while maintaining the writhe.

Then

P (K ∗ Q) − P (K ′ ∗ Q) = dµ(J(K; V (3)
µ ) − J(K ′; V (3)

µ ))

when v = s−3 and µ = 4, 2. Since dµ 6= 0 it is enough to show that J(K; V
(3)
µ ) 6=

J(K ′; V
(3)
µ ). The module V

(3)
µ has dimension 27.

We now work in the quantum group sl(3) and drop the superscript (3) from the

irreducible modules.

Decompose the module Vµ ⊗Vµ as
∑

Wν ⊗Vν and compare the endomorphisms given

by the tangles T = ABAB∆ and T ′ = BAAB∆.

In this case just one of the invariant subspaces of highest weight vectors has dimension

> 1. It can be shown that the corresponding 2×2 matrices Aµ and Bµ arising from the two

mirror-image tangles A and B with 3 crossings satisfy tr(AµBµAµBµ−AµAµBµBµ) 6= 0,

which results in a difference in their sl(3) invariants J(K; Vλ).

None of the other 6-cell invariants differ on the two knots. Consequently the 6-parallels

have different sl(3) invariants. The sl(3) invariant of the 6-parallels of the two pretzel

knots coloured with the fundamental module, and thus their Homfly polynomials, are

then different.
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3·1. Use of the quantum group sl(3)q

The calculation of the 2 × 2 matrices Aν and Bν giving the effect of the two tangles

on the highest weight vectors where there is a 2-dimensional highest weight subspace of

the symmetric part of the module depends on finding the explicit action of the quantum

group on the 27-dimensional module V
(3)
µ with µ = 4, 2 and its tensor square, as well

as the homomorphism representing its R-matrix. I used the linear algebra packages in

Maple to handle the matrix working and subsequent polynomial factorisation, following

fairly closely the techniques developed with H. Ryder in the paper [6].

In the interests of reproducibility I give an account of the methods used, and some of

the checks applied during the calculations, to test against known properties.

We start from a presentation of the quantum group sl(3)q as an algebra with six

generators, X±
1 , X±

2 , H1, H2, and a description of the comultiplication and antipode.

Let M be any finite-dimensional left module over sl(3)q. The action of any one of

these six generators Y will determine a linear endomorphism YM of M . We build up

explicit matrices for these endomorphisms on a selection of low-dimensional modules,

using the comultiplication to deal with the tensor product of two known modules, and

the antipode to construct the action on the linear dual of a known module. We must

eventually determine the matrices YM for our module M = V , and find the 729×729

R-matrix, RMM which represents the endomorphism of M ⊗ M needed for crossings.

We follow Kassel in the basic description of the quantum group from using generators

H1 and H2 for the Cartan sub-algebra, but with generators X±
i in place of Xi and Yi.

We use the notation Ki = exp(hHi/4), and set a = exp(h/4), s = exp(h/2) = a2 and

q = exp(h) = s2, unlike Kassel. The generators satisfy the commutation relations

[Hi, Hj ] = 0, [Hi, X
±
j ] = ±aijX

±
j , [X+

i , X−
i ] = (K2

i − K−2
i )/(s − s−1),

where (aij) =

(
2 −1

−1 2

)
is the Cartan matrix for SU(3) (and also the Serre relations

of degree 3 between X±
1 and X±

2 ).

Comultiplication is given by

∆(Hi) = Hi ⊗ I + I ⊗ Hi,

(so ∆(Ki) = Ki ⊗ Ki, )

∆(X±
i ) = X±

i ⊗ Ki + K−1
i ⊗ X±

i ,

and the antipode S by S(X±
i ) = −s±1X±

i , S(Hi) = −Hi, S(Ki) = K−1
i .

The fundamental 3-dimensional module, which we denote by E, has a basis in which

the quantum group generators are represented by the matrices YE as listed here.

X+
1 =




0 1 0

0 0 0

0 0 0



 , X+
2 =




0 0 0

0 0 1

0 0 0





X−
1 =




0 0 0

1 0 0

0 0 0



 , X−
2 =




0 0 0

0 0 0

0 1 0





H1 =




1 0 0

0 −1 0

0 0 0



 , =




0 0 0

0 1 0

0 0 −1



 .
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For calculations we keep track of the elements Ki rather than Hi, represented by

K1 =




a 0 0

0 a−1 0

0 0 1



 , K2 =




1 0 0

0 a 0

0 0 a−1





for the module E.

We can then write down the elements YEE for the actions of the generators Y on the

module E ⊗E, from the comultiplication formulae. The R-matrix REE can be given, up

to a scalar, by the prescription

REE(ei ⊗ ej) = ej ⊗ ei, if i > j,

= s ei ⊗ ei, if i = j,

= ej ⊗ ei + (s − s−1)ei ⊗ ej , if i < j,

for basis elements {ei} of E.

The linear dual M∗ of a module M becomes a module when the action of a generator

Y on f ∈ M∗ is defined by < YM∗f, v >=< f, S(YM )v >, for v ∈ M . For the dual

module F = E∗ we then have matrices for YF , relative to the dual basis, as follows.

X+
1 =




0 0 0

−s 0 0

0 0 0



 , X+
2 =




0 0 0

0 0 0

0 −s 0





X−
1 =




0 −s−1 0

0 0 0

0 0 0



 , X−
2 =




0 0 0

0 0 −s−1

0 0 0





K1 =




a−1 0 0

0 a 0

0 0 1



 , K2 =




1 0 0

0 a−1 0

0 0 a



 .

The most reliable way to work out the R-matrices REF , RFE and RFF is to combine

REE with module homomorphisms cupEF , cupFE , capEF and capFE between the mod-

ules E⊗F , F ⊗E and the trivial 1-dimensional module, I, on which X±
i acts as zero and

Ki as the identity. The matrices are determined up to a scalar by such considerations; a

choice for one dictates the rest.

Once these matrices have been found they can be combined with the matrix R−1
EE

to construct the R-matrices REF , RFE , RFF , using the diagram shown in figure 9, for

example, to determine REF as

REF = (1F ⊗ 1E ⊗ capEF ) ◦ (1F ⊗ R−1
EE ⊗ 1F ) ◦ (cupFE ⊗ 1E ⊗ 1F ).

E F

E F

E FEF

F E E F

F E

F E

=

Fig. 9. Construction of the R-matrix REF

The module structure of M = V can be found by identifying M as a 27-dimensional
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submodule of V ⊗V , while the two 6-dimensional modules V and V are themselves

submodules of E ⊗ E and F ⊗ F respectively.

We know, by the Pieri formula, that there is a direct sum decomposition of V ⊗ V

as M ⊕ N , where M = V and N is the sum of the 8-dimensional module V and

the 1-dimensional trivial module.

We first identify the module V as a submodule of E ⊗ E, knowing that E ⊗ E is

isomorphic to V ⊗ F . The full twist element on the two strings both coloured by E

is represented by R2
EE which acts on E ⊗ E as a scalar on each of the two irreducible

submodules V and F .

Use Maple to find bases for the two eigenspaces of R2
EE . Then we can identify V

with the 6-dimensional one, and write P and Q for the 9 × 6 and 9 × 3 matrices whose

columns are these bases. The partitioned matrix (P |Q) is invertible, and its inverse, found

by Maple, can be written as

(
R

S

)
, where R is a 6×9 matrix with RP = I6 and RQ = 0.

Regard P = injM1EE as the matrix representing the inclusion of the module V into

E ⊗ E. Then R = projEEM1 is the matrix, in the same basis, of the projection from

E ⊗ E to V . For M1 = V the module generators YM1
are given by YM1

= R YEE P ,

giving the explicit action of the quantum group on V .

We perform a similar calculation on F ⊗ F to identify the module M2 = V and the

matrices injM2FF and projFFM2, giving the action of the quantum group on M2 = V

in a similar way.

We use inclusion and projection further to find the four 62 × 62 R-matrices RMiMj
.

For example, to construct RM1M2
: M1 ⊗ M2 → M2 ⊗ M1, first map M1 ⊗ M2 to

E ⊗ E ⊗ F ⊗ F by injM1EE ⊗ injM2FF . Then construct the R-matrix crossing two

strings with E ⊗ E and two with F ⊗ F as the composite of 1 ⊗ REF ⊗ 1 , REF ⊗ RFE

and 1 ⊗ RFF ⊗ 1, and finally compose with the projections projFFM2 ⊗ projEEM1, as

indicated in figure 10. A similar calculation on the module M1⊗M2 yields the submodule

M1

M1 M2

M2

E E F F

F F E E

Fig. 10. Construction of the R-matrix RM1M2

M = V . The full twist on two strings, one coloured by M1 and one by M2, is

represented by the product RM2M1
RM1M2

and will have one 27-dimensional eigenspace

M complemented by two other eigenspaces. Taking the bases of these eigenspaces in a

partitioned 36×36 matrix as above will determine a 36×27 matrix P = injMM1M2 and

a 27 × 36 matrix R = projM1M2M . The quantum group actions YM1M2
on the tensor

product are determined by the coproduct formulae, and the actions YM are then given

from these using P and R. These in turn give rise to the quantum group actions YMM

on M ⊗ M .

We are also able to construct the 272 × 272 R-matrix RMM using the same inclusion
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and projection to map M ⊗ M into M1 ⊗ M2 ⊗ M1 ⊗ M2, followed by the matrix for

crossing four strands, built up from the R-matrices RMiMj
and then the projections back

to M ⊗ M .

3·2. Completing the calculations

Remark 2. We can reach this stage directly if we know the six module generators YM

and the R-matrix RMM for the module M = V . We can then calculate the module

generators YMM using the coproduct, and the twisting element TM = (K1M )4(K2M )4.

Knowing the module generators YMM gives an immediate means of finding the highest

weight vectors as common null-vectors of X+
iMM , and their weights can be identified. All

the submodules of M ⊗ M occur with multiplicity 1 except Vν with partition ν = 6, 4, 2

whose highest weights are 2, 2. The 3-dimensional space Wν of highest weight vectors for

ν is found by solving the linear equations X+
1MMv = 0, X+

2MMv = 0, K1MMv = a2v and

K2MMv = a2v for v. We then find the 2-dimensional positive eigenspace for RMM on

Wν . The endomorphisms JA and JB will preserve this eigenspace.

Represent the 3-braid σ2σ
−1
1 σ2 in the 2-tangle A by an endomorphism FA of M ⊗M ⊗

M , using RMM and its inverse. Then use TM and the partial trace to close off one string,

hence giving the endomorphism JA of M ⊗M determined by A. Explicitly, choose a basis

{ei} of M and write

FA(v ⊗ TM (ei)) =
∑

j

fij(v) ⊗ ej

with fij(v) ∈ M ⊗ M . Then JA(v) =
∑

i fii(v). Applied to each of the two vectors in

the highest weight space this determines a 2 × 2 matrix Aν representing the restriction

of JA to this subspace. Similarly Bν is found using the mirror image braid σ−1
2 σ1σ

−1
2 .

We know that RMM acts as a scalar on the 2-dimensional space so J(K; Vµ)−J(K ′; Vµ)

is a non-zero scalar multiple of tr(AνBνAνBν − BνAνAνBν).

This difference is 2(q6 +q5 +q4 +q3 +q2 +q+1)(q4 +1)(q6 +q3 +1)2(q4−q2 +1)2(q4 +

q3 + q2 + q + 1)3(q2 + 1)4(q2 + q + 1)4(q2 − q + 1)4(q + 1)10(q − 1)18, up to a power of

q = s2 and the quantum dimension of Vν .

3·3. Further examples of difference

Using the same matrices Aν and Bν it is possible to find further pretzel knot examples

based on sequences of the tangles A and B where the 6-parallels have different Homfly

polynomial, such as the knots K(3, 3, 3,−3,−3) and K(3, 3,−3, 3,−3). The difference

here is the same as for the first example multiplied by the factor 2q32 − q31 − 3q30 +

5q29 + 3q28 − 10q27 + q26 + 14q25 − 6q24 − 19q23 + 21q22 + 20q21 − 46q20 + 2q19 + 61q18 −

48q17−35q16 +83q15−27q14−66q13 +72q12 +3q11−57q10 +40q9 +10q8−33q7 +16q6 +

7q5 − 12q4 + 7q3 − 4q + 2. The same calculations guarantee that satellites based on any

closed 6-tangle Q = T̂ will have different Homfly polynomial, provided that the trace cµ

of the endomorphism J
T̂

on the highest weight space Wµ of V ⊗6 is non-zero, where µ is

the partition 4, 2. This will be the case for most, but not all, patterns Q, and certainly

will be the case for many satellites which are knots rather than links.

The calculations in section 3·2 also show that the 4-parallels of the two pretzel knots

K(1, 3, 3,−3,−3) and K(1, 3,−3, 3,−3) with two strings oriented in one direction and

two in the opposite direction will have different Homfly polynomials, by using the de-

composition of the corresponding sl(3)q module W = V ⊗ V ⊗ V ⊗ V into a sum of
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irreducible sl(3)q modules. The only module to figure in this decomposition with any

multiplicity in its symmetric or exterior square is again V . The calculations above,

using the fact that Homfly with v = s−3 can be calculated by colouring strings with

reverse orientation by the dual module V ∗ to the fundamental module, and that this is

V for sl(3)q.

4. Cable patterns

By way of contrast, if the pattern Q is a cable on any number of strings then K ∗Q and

K ′ ∗Q share the same Homfly polynomial, where K and K ′ have the same symmetry as

in theorem 1.

Theorem 4. Suppose that A and B are both symmetric under the half-twist τ3, so

that

A = A , B = B

Let K and K ′ be knots which are the closure of ABC and BAC respectively for any

tangle C, as in figure 3. Then P (K ∗ Q) = P (K ′ ∗ Q) for every (m, n) cable pattern Q

where m and n are coprime.

Proof. As in the proof of theorem 1 we show that J(K ∗Q; V (N)) = J(K ′∗Q; V (N)) for

all N . By equation 2·1 it is then enough to show that J(K; V
(N)
µ ) = J(K ′; V

(N)
µ ) for all N

and all partitions µ ⊢ m for which the coefficient cµ 6= 0. The coefficients cµ depend on the

pattern Q and arise as the trace of the endomorphism JT when restricted to the highest

weight space Wµ ⊂ V ⊗m, where Q is the closure of the m-braid T = (σ1σ2 · · ·σm−1)
n.

It is shown in [9], (see also [5]), that for any such cable Q the only non-zero coefficients

cµ occur when the partition µ is a hook, if m and n are coprime . It is then enough to

show that J(K; V
(N)
µ ) = J(K ′; V

(N)
µ ) for all hook partitions µ.

Using the same argument as in theorem 1 it remains to check that no Schur function

sν occurs with multiplicity > 1 in the decomposition of either the symmetric or exterior

squares, h2(sµ) or e2(sµ), for any hook partition µ. This fact has been established by

Carbonara, Remmel and Yang in theorem 3 of [2], and so the proof is complete.

Remark 3. Theorem 4 highlights the importance of a precise terminology for different

types of satellite. The term cable is sometimes used to mean any satellite, while there is

a clear distiction here between the behaviour of cables and of parallels or other satellites,

which is not primarily a matter of the number of components of the satellite.
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