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Abstract

Bosonic string theory and superstring theory are briefly overviewed. Three
dimensional field theories are similarly discussed, with a focus on effective N = 2
supersymmetric theories. It is shown how to induced contributions to the
Chern-Simons level of the low energy theory, by integrating out massive matter. Such
effective field theories are then shown to arise from type IIB brane configurations
based on the Hanany-Witten brane configuration. Strong-weak dualities are
overviewed, leading to a discussion of the three dimensional strong-weak dualities:
Aharony duality for theories with zero Chern-Simons level, and Giveon-Kutasov
duality for theories with non-zero Chern-Simons level. In the results section, brane
configurations corresponding to three-dimensional N = 2 U(N,) field theories with
various numbers of flavour of massive matter are investigated. The resulting low
energy field theories are explained, and the flows between Aharony and
Giveon-Kutasov dualities are catalogued. Three dimensional N = 2 effective field
theories obtained through the inclusion of massive adjoint matter are also examined,
with the flows between Aharony and Giveon-Kutasov dualities, again, catalogued.
Finally, the significance of the results and the possibilities for future research, are

discussed.
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Despite being incredibly effective at describing many experimental results to a very
high degree of accuracy, it has long been known that the standard model of particle
physics leaves many mysteries unsolved !. One of the most significant (if not the most
significant) unanswered question concerns how to obtain a quantum field theory
description of gravity. Einstein’s general relativity seems at odds with quantum field
theory. For example, gravitons lead to ultraviolet divergences at two loops or higher.
Another mystery is the matter-antimatter asymmetry of the universe. The standard
model also fails to explain numerous physical parameters through theoretical means.
Such parameters are observed experimentally, and inserted into equations with no
further explanation. These mysteries lead to the conclusion that the standard model

is incomplete.

Consequently, theoretical physicists are faced with the daunting challenge of
formulating a theory that recreates all those experimental results the standard model
succeeds in describing, whilst also explaining those mysteries the standard model fails
to resolve. One famous theory that attempts to succeed the standard model is string
theory. String theory has an number of features that contribute to its elegance [1]:
String theory is a grand unified theory; all particles and their associated forces emerge
from the string dynamics. String theory also provides a successful quantum theory of
gravity. It is possible to show that the ultraviolet divergences that ail quantum field
theories when gravitons are added do not occur in the loop diagrams of string theory.
String theory necessitates the existence of more than four spacetime dimensions.
Specifically, superstring theory predicts ten spacetime dimensions. Since only four of
these are experimentally observable, the remainder are theorised to be compactified,
either geometrically or non-geometrically. [1] The fact that string theory predicts the
number of dimensions it inhabits is one of its intriguing features. This text will be
primarily interested in those string theories that also incorporate Dp-branes and
NS5-branes. Eventually, specific brane configurations of type IIB string theory will be
considered, together with the low energy three dimensional N = 2 field theories they
predict.

Three dimensional (one temporal, and two spatial dimensional) theories need little
justification for study. Since spacetime is observed to be four dimensional at
terrestrial energies, it is possible to consider ‘planar’ systems within the four
dimensional spacetime, where one spatial dimension is sufficiently small to preclude
excitations in that direction. For example an extremely thin sheet of material behaves
as a three dimensional spacetime at sufficiently low energies. Unsurprisingly, three
dimensional field theory is especially useful in the study of condensed matter systems.
It therefore seems pertinent to see how such three dimensional field theories might

arise as the low energy limits of string theory.

! Although, the relatively recent discovery of the Higgs boson only bolsters admiration of the standard
model!
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Strong-weak dualities in three dimensional N = 2 field theories are of central
importance to this text. One of the greatest obstacles faced by field theories is that of
their strongly coupled, non-perturbative regimes. Since the methods of perturbation
theory cannot be employed, such regimes are notoriously difficult to investigate. An
interesting new method for investigating the strongly coupled regimes comes in the
form of strong-weak duality. Certain classes of theory have been discovered whose
strongly coupled regime is physically equivalent to the weakly coupled regime of
another ‘dual’ theory. The theories give rise to the same observable phenomena.
Importantly the two theories are also related by a ‘duality’ transformation. Such
theories are interesting as the behaviour of the strongly coupled regime of one theory
can be ascertained by perturbatively investigating the weakly coupled regime of its
dual, and then making a duality transformation. Specifically, for effective three
dimensional N = 2 theories with zero Chern-Simons level, Aharony duality was
theorised [2], and for effective three dimensional N = 2 theories with non-zero
Chern-Simons level, Giveon-Kutasov duality was theories [3]. Such dualities only hold
in the infrared regime. The Chern-Simons level of a theory can be altered by
integrating out massive matter. Therefore, by including different flavours of massive
matter in the ultraviolet regime, the type of duality exhibited at low energies can be

altered.

The above concepts are combined together in this text. Type IIB string theories will
be considered, and specific brane configurations will be discussed. The three
dimensional N = 2 effective field theories that arise from such configurations are then
investigated. Different massive matter contents of the high energy theories are
considered, and their effects on the type of low energy dualities that arise are noted.
Theories contained massive adjoint matter are also considered, with a similar
discussion of the low energy dualities. In section 1 bosonic string theory is introduced.
Bosonic string theory, as the name suggests, only gives rise to bosonic degrees of
freedom. Despite the fact that this makes it phenomenologically unviable (observable
physics demands the existence of fermions), many of the methods used for the bosonic
string are useful in superstring theory. Furthermore many of the equations derived in
bosonic strng theory are used in the fermionic string theory (e.g. the expressions of
the bosonic Virasoro generators). In section 2 superstring theory is described. The
inclusion of supersymmetry gives rise to fermions as well as bosons. It is from these
superstrings that the realistic field theories are obtained. The differences between
type ITA and IIB string theories are also explained. In section 3 the types of branes
that are theorised to exist in type IIA and IIB string theories are explained. The
branes of both theories are discussed for completeness, although only type IIB theory
(and its associated branes) are used in the results section. In section 4 a brief
overview of the relevant concepts of three dimensional field theory are discussed.

Many of the equations and action terms introduced in this section will be referred to

14



in the results section. In section 5 it is explained how integrating out massive matter
results in contributions to the bare Chern-Simon level in the three dimensional
effective field theory. In section 6 it is explained how three dimensional N = 2
effective field theories are obtained from type IIB brane configurations. Therefore,
this section provides a direct correspondence between the string theory and field
theory of interest. In section 7 a brief pedagogical introduction to strong-weak
dualities is provided. The section concludes with explanations of Aharony and
Giveon-Kutasov dualities. In part III the results of [4] are presented: In section 8
theories without adjoint matter (only fundamental and antifundamental matter) are
discussed. Various brane configurations are presented corresponding to various
numbers of massive flavours. The resulting three dimensional N = 2 effective field
theories, and their dualities, are explained. In section 9 three dimensional N = 2
effective theories, obtained by integrating out massive adjoint matter, are discussed.
Again, the resulting dualities are catalogued. Finally, in part IV the results are

discussed, and future possibilities for research are explored.
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1 The Bosonic String

Whilst the research presented in this text primarily concerns (14 2)d N = 2 field
theories derived from superstring theories, it is useful to provide an overview of
bosonic string theory. Bosonic string theory provides an introduction to the concepts
used in superstring theory, and many of the equations derived from the bosonic string

have analogous expressions in superstring theory.

During its passage in space and time a one-dimensional extended object (a string)
traces out a two-dimensional worldsheet ¥ [1]. This is analogous to the worldline
traced out by a point particle. Classical string theory involves a map X from a
two-dimensional string worldsheet, > with metric h*?, to a target manifold M, with

metric nH¥:

X: XM (1.1)

In bosonic string theory M is often taken to be a (1 4 25)-dimensional spacetime,
whilst in superstring theory it is often a (1 + 9)-dimensional spacetime. The exact
shape of the spactime compactification can vary. Consider the example of the open
string. The string worldsheet ¥ is parameterised by two coordinates

0% = (6%, 0") = (1,0) and has a metric h*? [1]:

> with metric h®?

» Xo, ... Xp1

M with metric n#¥

Figure 1: A worldsheet ¥ in a target space M.

The map X takes a worldsheet point (7,0) to a spacetime point X, (7, 0). For
D-dimensional spacetime there are D coordinates X1 . p—1(7,0) which can be

interpreted as D scalar fields on X.
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1.1 The Nambu-Goto Action

In order to discuss dynamics an action must be formulated for the theory. To
understand how this might be achieved, it helps to first look at the point particle as
an example [5]. The worldline ¥4yt of a point particle is parameterised by a single
coordinate, 7, and a 1d metric hgp (note the metric only has a single component).
When the worldline is embedded into D-dimensional spacetime with metric n*¥, the

pullback is given as:

oXH oXY
hoo = WWT/,U‘V (1~2)

The action for the point particle can then be written:

—Spoint :/dT\/ToQ

m
_ _0XroXY (1.3)
_/dT\/ or Oor v

= 1d volume of worldline (length of trajectory)

Using the same formalism, the action emerging from the worldsheet traced out by a

string moving through spacetime is given by [5]:

—SNa
T

= 2d volume of worldsheet (area of trajectory) (1.4)

Where T is the mass per unit length of the string, called the string tension. The
subscript ‘NG’ is provided in anticipation of this action giving rise to the Nambu-Goto
action. [1, 6] The spacetime positions X = X (7, 0) are now functions of two

(worldsheet) coordinates instead of one (worldline) coordinate. Therefore, instead of:

OXH
or

(1.5)

the worldsheet has:

OXH
oo™

(1.6)

The worldsheet pullback, analogous to Equation 1.2, is then written:

oXHoX"¥

"0 = Do 908 1 (L)
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Writing equation 1.4 in the same form as equation 1.2 (with —h = —det(hqp) instead
of —hgp) gives [1, 6]:

~ONG _ /drda\/—h

T
= /dea\/m (1.8)

= 2d volume of worldsheet

Writing equation 1.7 in matrix form gives:

X1 0X, 0XFMOX,

0 0 0 1
hop = | H%u 8% %0 5%,
80’1 (900 80’1 80'1 (1 9)
OXH*9X, OXHIX, '

=| A, KX,
Oo Ot 0o Oo

X2 XX
X .x X7
= det(hag) = X2X2 — (X - X')? (1.10)

Plugging equation 1.10 in to equation 1.8 gives:

_SNG y ’ Y /
NG /decr\/(X-X )2 — X2X"2 (1.11)
Sng = —T/dea\/(X S X')2 - X2X"2 (1.12)

This is the Nambu-Goto action of the bosonic string.

1.1.1 The Canonical Momentum Densities of the String

The canonical momentum densities are defined as P, o = 0, 1:

0Ly OL

= (1.13)
0X),

Pl=0"=—
X,
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Written explicitly, these are given as:

T (X)X = (X - X)(xm)

J . (1.14)

\/(X_X/)Q — X2Xx'2

T(X2X'm — (X - X")XH
Pl = ( ) (1.15)
\/(X S X2 — X2X'2

Constraints on the Canonical Momentum Densities

The constraints on the canonical momentum densities are:

X, =0 (1.16)
I? +T%(X")? =0 (1.17)
Hean = XTI — Lng =0 (1.18)

where H.,n is the canonical Hamiltonian.

1.1.2 The Equations of Motion of the Nambu-Goto Action

Consider variation of the spacetime position X (7,0) by a small amount €(7, 0):

X(r,0)=X(1,0) +€(T,0) (1.19)

Infinitesimally, this is written:

0X =¢(r,0) (1.20)

Setting the variation of the action to zero then gives the equations of motion:

aané‘ =0 and ;jP{‘ —0 (1.21)
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1.2 The Polyakov Action

Unfortunately the Nambu-Goto action (equation 1.12) is not easy to quantise due to
the presence of the square root. Rather than attempting to quantise the Nambu-Goto

action, it will prove useful to re-express it in a new form; as the Polyakov action.

The Polyakov action is given as [7]:

T
Sp=-3 / d*oVhhP 0, X 95XV (1.22)

where h = —det(has) and h* is defined in equation 1.7. Note that the string tension

T is sometimes written as:

1 1
T= omal  2ml2 (1.23)

where o’ is the ‘Regge slope’. This gives:

Sp =

v e%

/ 2oV hhP 9, X D5 XV 1,0, (1.24)

Of course the expression for 71" can also be used to rewrite equation 1.12.

1.2.1 The Equations of Motion from the Polyakov Action

Variation of the Action with Respect to X*

Consider variation of the spacetime position X (7,0) by a small amount €(7, 0):

X(r,0) = X(1,0) +€(1,0) (1.25)

Infinitesimally, this is written:

0X =¢(r,0) (1.26)

Setting the variation of the action to zero then gives the equations of motion [§]:

O (VIR995X,,) =0 (1.27)

This is the equation of motion using the curved worldsheet metric h,g. Later,
conformal gauge will be used and the curved worldsheet metric will be replaced by

the flat one 744. It is possible to show that [8]:
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O (VRRP95X,,) = VAV V0 X, = 0 (1.28)

This gives:

VOVaX, =0 (1.29)

where V,, is a covariant derivative called the ‘Levi-Civita connection’ on (3, hqg).

Variation with Respect to the Worldsheet Metric

Imposing invariance of the action under variation of the metric gives the equation of

motion [1]:
Oy X105 X, — 200 X" 05X, h P hoys = 0 (1.30)

1.3 The Polyakov Action in Conformal Gauge

The Polyakov action is invariant under reparametrisation and Weyl transformation.
Using reparametrisation and Weyl transformations, conformal gauge can be achieved.

In this gauge the Polyakov action is given by:

Reparameterisation invariance corresponds to two local symmetries, since there are
two coordinates that can be reparameterised independently. Weyl invariance
corresponds to one more local symmetry. This gives a total of three local symmetries.
It just so happens that the 2-dimensional worldsheet metric has three independent
components, since it is a symmetric 2 x 2 matrix. The independent components are
hoo, h11 and hgp = hyp. The upshot is that three symmetries (the two coordinate
reparameterisation symmetries and Weyl symmetry) were used to fix the three

independent components of hqyg [7, 9]:

haﬂ — Mo, B (1.32)
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1.3.1 The Equations of Motion from the Polyakov Action in Conformal
Gauge

Variation of the Action with Respect to X*

Under variation with respect to X*, the Polyakov action in conformal gauge gives the

equation of motion [1]:

1P 0,0 X" =0 (1.33)

which is a wave equation. In lightcone coordinates this becomes [1]:

8 0_X" =0 (1.34)

1.3.2 Momentum Densities from the Polyakov Action in Conformal Gauge

The momentum densities of the string are given by [1]:

oL

Py = 78(%)(“) (1.35)
This gives the canonical momenta:
oL
0 PR pu—
P, = DX Ty X, (1.36)
and:
oL
- = — 79X .

1.4 The Canonical Commutation Relations

The canonical commutation relations are given by [1, 10, 11]:

[X“(T,U),X”(T, J/)] = [730“(7, U),'POV(T, O'/)] =0 (1.38)

[(XH(7,0),P"(1,0")] =in"6(c — o) (1.39)
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1.5 Solutions to the Wave Equation

It is now possible to obtain the solutions to the wave equation (equation 1.33). These
solutions are needed to eventually quantise the bosonic string, and to obtain
expressions for the creation and annihilation operators. Begin by writing the most

general solution to the wave equation [1, 10, 11]:

n*?9,05 X" = 0 (1.40)

before imposing boundary conditions.

1.5.1 Open String

Neumann and Dirichlet Boundary Conditions

An open string with wordsheet coordinates 7 (ranging from —oo to co) and o
(ranging from 0 to m) can have either Neumann or Dirichlet boundary conditions at
each end point, where the endpoints exist at ¢ = 0 and at o = w. A string whose
spacetime position is parametrised by X*(7, o), has Dirichlet boundary conditions

along the spatial dimensions a if [1]:

Xr,0)=X%1,m1)=0 (1.41)

This means that the endpoints of the string do not move in the spatial directions
labelled by a. Alternatively, the string has Neumann boundary conditions along the

spatial directions a if [1]:

dX(r,0)
do

_dX%(T,0)

= 1.42
e 0 (1.42)

O=T

o=0
In general the string has Neumann boundary conditions along the time dimension

w=0:

dX%(t,0)
do

B dXO(T,J)

- 1.4
= 0 (1.43)

O=T

o=0

Dp-branes

Dirichlet and Neumann boundary conditions allow ‘Dp-branes’ to be defined, where
the ‘D’ stands for ‘Dirichlet’ [1]. A Dp-brane is a dynamical object
p-spatial-dimensional object that strings can end on. The end points of the string can
move along those directions in which the Dp-brane extends, but they cannot move in

the directions normal to the brane. So, for example, consider a D3-brane which
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extends along x1, x5 and zg. Strings ending on this brane have Neumann boundary
conditions for X9, X!, X5 and X, and Dirichlet boundary conditions for all
remaining X (7,0) components. In this text, configurations consisting of various
Dp-branes will be used to formulate string theories that give rise to interesting low
energy (14 2)-dimensional field theories. Dp-branes are discussed further in sections 3
and 6.

Open Bosonic String with Neumann Boundary Conditions at Both Ends

If both ends of the string are free to move (i.e. They satisfy Neumann boundary

conditions) the solution to the wave equation becomes [1, 10, 11]:

H .
XH(r,0) =2t + V2T 4+ iV2a/ g a—me_zmTcos(ma) (1.44)
m
m##0

where ([1])af = v2a/p* and where Is = v/o/. Using o/ = 12 the X* mode expansion

can be rewritten:

M .
XH(r,0) = 2t + V2lafT + V2, Z a—me_”mcos(ma) (1.45)
m
m#0

Using of) = V2a/p* = V/2lp*:

M .
XH(1,0) = 2t + 2023pkT 4 iV2l, Z a—me_m”cos(ma) (1.46)
m
m#0

Open Bosonic String with Dirichlet Boundary Conditions at Both Ends

If both ends are fixed (i.e. they satisfy Dirichlet boundary conditions) the solution of

the wave equation becomes [10]:
9 . Oé% —i .
XH(r,0) = " + 20%pto — V2, g —e "Tsin(mo) (1.47)
m
m#0

1.5.2 Closed String

Closed strings have a periodic boundary condition [1]:

XH(r,0) = XH (1,0 + 2) (1.48)

With this condition in minde, the left and right moving X* modes of the closed string
are given by [1, 10, 11]:
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@ . Ju
Xi =20 27— o)+ =l Y Hemin(r) (1.49)
R sP \/5 s n .

2
n#0
XH — zh 12t i I an —in(t+0)
L= Thp (T—I-O')-F\/is;)ne (1.50)

The left and right moving modes can be combined to give [1, 10, 11] :

XH(r,0) = Xl + XV

: —2inT
_ M 2 ¢ e 2ino ~ 1 _—2inoc (151)
— 22t I o o

:L‘O sp T \/Q S 7§0 n ( ?’Le ne )

1.6 The Energy-Momentum Tensor

It can be shown that the energy-momentum tensor appears in the Noether current
associated with conformal symmetry of the pre-gauge-fixed Polyakov action [12].
Specifically, it is the conserved current associated with translational symmetry, where
translations are a specific type of conformal transformation. Consider a general

translation:

o* = o' =0%+ 60

(1.52)
= 0% 4
where ¢* = §o®. It can be shown that, up to a constant, the conserved current
contains a term of the form [12]:
1 1 6Sp

Which is called the energy-momentum tensor. Calculating the variation of the action

with respect to h*? explicitly gives the energy momentum tensor as:

1 1
Top = 500 X" 05Xy — Thash™ 0, X 05X, (1.54)

1.6.1 The Conservation of the Energy-Momentum Tensor

The energy-momentum tensor is conserved [10]:

VT3 =0 (1.55)
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In conformal gauge, where the metric is taken to be the flat space metric, the
replacement V¢ — 0% is made, since the Christoffel symbols in V® vanish. Therefore,

on the flat worldsheet (in conformal gauge) [10]:

0Tz =0 (1.56)

This result can also be achieved by demanding that current J, = Tageﬂ is conserved

for constant ¢’ [13]:

0=0%,
=9” (Tageﬁ)
0
= (0°Top) & + T (2] (1.57)
= 8‘“Ta5 =0

1.6.2 The Vanishing of the Energy-Momentum Tensor

One of the equations of motion stated above was:

Oy X105 X, — 200 X105 X, h P hys = 0 (1.58)

Which implies [7]:

Toap =0 (On-Shell) (1.59)

Since a system is on-shell when it obeys the classical equations of motion, and since
the vanishing of the energy-momentum tensor is obtained as a direct result of an
equation of motion, the vanishing of the energy-momentum is only true on-shell [7].

1.6.3 The Vanishing of the Trace of the Energy-Momentum Tensor

Since the vanishing of the energy-momentum tensor has only been proven to be true
on-shell, it is still worthwhile considering other properties of the tensor. For example

the energy-momentum tensor has zero trace [10]:

Tr(Tas) = TS = 0 (1.60)
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Since the equations of motion were not used to obtain the vanishing of the trace, it
vanishes both on-shell and off-shell. It is also possible to show the vanishing of the
trace of the energy-momentum tensor by demanding the invariance of the Polyakov
action in conformal gauge under translations. Or it can be shown from invariance of

the Polyakov action under scalings of the metric.

1.6.4 The Energy-Momentum Tensor in Lightcone Coordinates

In light-cone coordinates the energy-momentum tensor is given by [1]:

T++ — 8+X”8+XH (161)
T _=0_X"0_X, (1.62)
T =T, =0 (1.63)

The energy-momentum tensor in canonical coordinates can be written in terms of
these as [1]:

Too=Tn=T4++T__ (164)

Tor =Tio=Tyy — T—— (1.65)

1.6.5 Energy-Momentum Tensor Mode Expansions

The energy-momentum tensors for the open string can be expressed in terms of their

mode expansions as [1, 11]:

o
Typ =12 ) Lpe ™m0t (1.66)
m=—o00
© .
T =12 ) Lpe ™7 (1.67)
m=—o0
1 o
where Lm:§ Z Qm—n - Otn (1.68)
n=—oo

The energy-momentum tensors for the closed string can be expressed in terms of their

mode expansions as [1, 11]:
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Ty =12 ) Lpe ™t (1.69)
m=—o0
0 .
T =12 ) Lpe ™7 (1.70)
m=—00
- 1 &
where L,, = 3 y—n, * Op, (1.71)
n=—oo
1 o
and L,, = 3 Z Q—m, * O, (1.72)
n=—oo

1.7 The Classical Mass-shell Conditions

Recall that, in the on-shell classical theory, the energy-momentum tensor vanishes. As
a result, classically and on-shell, the Fourier modes of the energy-momentum tensor
are also expected to vanish. Equations 1.64 and 1.65 show that 7'y and T__ must
vanish identically in order for all components of the energy-momentum tensor to

vanish.

1.7.1 The Classical Open String Mass-Shell Condition

For the open string, equations 1.66 and 1.67 show that T, and 7__ vanish when
[1, 10, 11]:

Lm=0 mez (1.73)

The zero modes are then given by:

Lo=0 (1.74)

In the classical theory, L., and the oscillators a,, are not operators. This means that

a_p and a, commute. As such Ly can be written [1, 10, 11]:
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n=—oo
1 1S 1
§a0a0+ 5 Q_p - Oy + B Z Q_p - Oy
n=1 n=—0oo
1 1 & 1 &
= 5000 + B Q_p Oy + 3 Z Q- Oy, (1.75)
n=1 n=1
1 1 & 1 &
= —app + a_n-an—&—ona_n-an
2 2 n=1 2 n=1
1 (o.)
= 5040040 + Z a_p - Qp
n=1

Setting this to zero, to give the vanishing of T and T__, gives:

1 (0.0
Ly = 5000 + Z Oy -0p=0 (1.76)

n=1

Here ot = v/2a/p* and I, = Vo' [1].
0

ab = V2lpH (1.77)
1
= 5000 = Lp* (1.78)
So that:
Lo=2p"+) an-on=0 (1.79)
n=1

2 1 G
= p‘ = - Za_n e (1.80)

S n=1

Classically, the mass-shell condition is given by the energy-momentum equation from

relativity [11]:

M? = —p,pt = —p? (1.81)

Using the above result for the momentum, this becomes [11]:

1 o0
M =2 a - an (1.82)
lS n=1
This is the mass-shell condition for the open string.
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1.7.2 The Classical Closed String Mass-Shell Condition

For the closed string, equations 1.69 and 1.70 show that 7 and 7 _ vanish when
[1, 10, 11]:

Ln=Ln=0 mecZ (1.83)

The zero modes are then given by:

Lo=Lo=0 (1.84)

Using the classical expressions for Ly and Lo:

1 o0
Lo = 000 + oy an=0 (1.85)
n=1
- 1 o
n=1
gives:
1 o0
P = e Za,n -y (1.87)
S n=1
1 o0
p2 = _ﬁ Z&fn e (188)
S n=1

The momentum can be written as an average of these two expressions [1]:

> (an -t - ) (1.89)

n=1

2—_
P =79

® N

Considering the zero modes, then normal ordering and redefining as in section 1.8.2,

gives:

1 o -

This is the mass-shell condition for the closed string.
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1.8 Canonical Quantisation

Canonical quantisation is not the only method for quantising the string. It is also
possible to use lightcone quantisation (which will be used later) and modern covariant
quantisation (which will not). The latter is useful for describing string interactions

and is analogous to the path integral formulation of quantum mechanics [14].

1.8.1 The «,, Commutation Relations

Using the canonical commutation relations (the commutators of X* and P°#), the

commutators of the string oscillators af, and a4y, can be proven to be [1, 10, 11]:

v

[ads an] = [, &) = 0" mdmtno (1.91)

o, &%) = &, %] = 0 (1.92)

n m?

1.8.2 The Redefinition of L

In the quantum theory L., are promoted to operators. This introduces a normal
ordering ambiguity. The convention chosen keeps a,, with negative modes n to the
left of those with positive modes. In the case of L,, with m # 0 the normal ordering

is easy. The normal ordered Virasoro operator is written [1, 10, 11]:

e}

1
L, == Z D Qp—n * Oy (1.93)

n=—0oo

Equation 1.91 shows that the commutator of two a operators is only non-zero when
their modes are equal and opposite in sign. This means that non-zero m guarantees
that the « operators in the above expression commute. Therefore, for non-zero m, the
normal ordering is a simple case of rearranging. For m = 0 the normal ordering is

more involved. Before normal ordering, Lg is given by:

1 [oe)
Lo = 3 Z Q_y * Oy
e (1.94)

= —QpQ - O_p X - (677NN 6 7
2 0o 2n:1 n n 2n:1 n n

This can be put in normal ordered form:

1 > D&
L0:§a0a0+ Ela_n-an+2 Eln (1.95)
n= n—=
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The last term is called a ‘normal ordering constant’. Lg is now redefined such that it

does not contain this constant:

1 o0
Lo = aoa + > an-an (1.96)

n=1

Care must be taken when writing Ly. The old definition of Ly can be written in terms

of the new definition, however the normal ordering constant cannot be forgotten:

_D o
Lo (Old definition) = Lo (New definition) + > (1.97)
n=1

Similarly, Lo can be redefined to give [1, 10, 11]:

b+ Y G- (1.98)

From this point forth, the notation Ly and Lo will be reserved for the new definitions,

unless stated otherwise.

1.8.3 The Virasoro Algebra

It can be shown that the modes L,, of the energy momentum-tensor, satisfy
[1, 10, 11]:

[Lma O‘m = _na’ryn—l—n (199)

Where Ly is the redefined zero mode, which does not contain the normal ordering

constant. This commutation relation is instrumental in proving that:

D
[Lon> Ln] = (m = 1) Linon + 75 (m® —m) Smano (1.100)

This is called the ‘Virasoro Algebra’.

1.9 Lightcone Gauge Quantisation

Lightcone gauge is described in Appendix A. The Virasoro generators and oscillators

obtained in that section are used here.

The Commutation Relations
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Using the same methods as for Canonical quantisation, the oscillator mode

commutation relations can be derived [1, 10, 11]:

[al, o] = [al,,a&l] = 0" mémino (1.101)
[af,,&l] = &), al] =0 (1.102)

Also [1, 10, 11]:
[L;,a;{] = —nal ., (1.103)

which is instrumental in proving that [1]:

7D —2 (m3 - m) 6m+n,0 (1104)

(L Lt | = (4 0) L+

1.10 The Quantum Mass-Shell Condition
1.10.1 The Quantum Open String Mass-Shell Condition

It is important to find out what form the mass-shell conditions take in the quantum
string theory. Particles that obey the mass-shell condition are on-shell also (they obey
the classical equation of motion), and such particles are considered to be physical or
‘real’. Those that fail to satisfy the mass-shell condition are off-shell and unphysical,
and play the role of virtual particles. Since the mass-shell condition tells apart
physical and virtual particles it is important that it is carefully chosen for the

quantum theory.

It was explained that, in the classical theory, the energy-momentum tensor vanishes
on-shell. As a result L,, = Em = 0. Since, in the quantum theory, L,, and f/m are

promoted to operators, the naive conclusion would be that [1]:

L) = L [$) =0 (m #0) (1.105)

(Lo —a)[¥) = (Lo —a) [¥) = 0 (1.106)

Recall that the redefined Ly does not include the normal ordering constant. There is
actually some ambiguity as to exactly what normal ordering constant should be used,

so for now simply call it a. 2

2The normal ordering constant can be chosen arbitrarily, and is fixed later by requiring the absence
of negative norms states [11].
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Unfortunately, the above equations together with the Virasoro algebra only permit
trivial states (|)) = 0). A weaker set of constraints on the modes are required. It is
possible to choose that either all L,,, L,, with m > 0 annihilate the physical states or
that all Ly, L, with m < 0 annihilate the physical states. For the open string, only

L,, is used. The constraints that are kept are [1]:
L) =0 (m > 0) (1.107)

(Lo —a) ) =0 (1.108)

for on-shell states. This also gives [1]:

(V1] L [¢p2) =0 (m >0) (1.109)

for on-shell states. It would have also been acceptable to choose all L,,, with m < 0 to
annihilate the physical states instead. Hermiticity of L,, (L., = Lln), together with
the fact that L, [¢2) = 0, means that [1]:

(1] Lin |902) = (1| LE, 12) = 0 (1.110)
which means that (41| Li, = 0, since L, acts to the left.

Recall that the energy-momentum tensor was only required to vanish on-shell. Since
equations 1.107 and 1.106 were obtained using the vanishing of the energy-momentum
tensor, they are only true for quantum, on-shell states. Such states are referred to as

‘physical’ or ‘real’ states. For the open string only L,, is used.

Using the definition M? = —p?, and writing the momentum in terms of the Virasoro

generators, the mass-shell condition becomes [1, 10, 11]:

M2 ) = 1 (N — a) ) (1.111)
where
N=) an-a (1.112)
n=1

The operators are related as [1, 10, 11]:

1
M? = 5 (N —a) (1.113)
S
This is the mass-shell condition for the quantum open string. Later a will be

determined to equal one.
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1.10.2 The Quantum Closed String Mass-Shell Condition

For the closed string both L,, and L,, are used, with conditions [1, 10, 11]:

L [h) = Lin [)) =0 (m # 0) (1.114)
(Lo —a) [} = (Lo —a) [¢) = 0 (1.115)
for on-shell states. Also:
(1] Lin |th2) =0 (m > 0) (1.116)
(1| L [1h2) =0 (m > 0) (1.117)
for on-shell states. Using the definition M? = —p?, and writing the momentum in

terms of the Virasoro generators, the mass-shell condition becomes [1, 10, 11]:

1 -
2 _
M= (N YN - za) (1.118)
where:
N=> a_p-an (1.119)
n=1

N

oo

> a, (1.120)
n=1

As for the open string a will be determined to equal 1.

1.11 The Critical Dimension D = 26 and the Normal Ordering Con-
stant a =1

Rigourously proving the critical dimension and normal ordering constant for strings
using covariant quantisation is difficult. However there is quite an easy non-rigorous
way of acquiring the values of these constants in covariant quantisation using the
methods of [11]. The method uses the requirement that the theory should not have
any negative norm states. Specifically, it assumes that there is a ‘boundary’ between
negative norm states and positive norm states, and that this boundary is
characterised by the largest number of zero norm states. To find the critical value of
D - equal to or below which, no negative norm states appear - it will be necessary to
find the dimension which gives rise to the most zero norm states. The specifics of the

method are not outlined here, but the results are:
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a=1 D=2 (1.121)

Obtaining a rigorous proof is more easily achieved using lightcone quantisation. This
is one of the benefits of using lightcone quantisation over canonical quantisation.

Again, a specific derivation will not be shown, but the results are the same.

1.12 The Conformal Anomaly

In the classical theory it was shown that the vanishing of the trace of the
energy-momentum tensor was a direct result of the conformal symmetry of the
Polyakov action. In the quantum theory it is possible to show that the trace is
non-zero, and, as a result, conformal symmetry is absent from the quantum theory.

This is called a ‘conformal anomaly’ or, sometimes, a ‘Weyl anomaly’.

1.13 The Open String Spectrum

It is now possible to ascertain the open string spectrum of states. It will be easiest to
use lightcone gauge to obtain the string spectrum. In lightcone coordinates there exist

the position operators [1]:

=, xl (1.122)
and the momentum operators:
pt, o' (1.123)
where:
1=2,..25 (1.124)

Therefore, relabelling p! — pr in momentum space the ground state (or vacuum
state) is denoted [1]:

", pr) (1.125)

By the definition of the vacuum state, all oscillators with positive mode number
annihilate this state [1]:

3In some texts ‘Weyl’ and ‘conformal’ are used almost interchangeably, despite referring to two very
different transformations.
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al [p*, Fr) =0 (n>0) (1.126)

The number operator is given by:

o0
Nt = z:na,flJr -al (1.127)
n=1

It gets its name because the commutator of the number operator and creation

operators is [1]:
[Nl,a{j] = nalt (1.128)

[N{aﬂ = —nal (1.129)

The number operators act on the vacuum to give zero. This is because the number

operator is normal ordered, and the annihilation operators appear on the right [1]:

N+ |p*,pr) =0 (1.130)

In general a state will have some creation operators acting on it. In this case it is less
obvious how the number operator will act. It is easiest to see how it acts with

examples [1]:

I — I — I —
NJ_G’ZT ’p+7pT> = |:Nl7a’2T:| ’p+7pT> + GQTNJ_ ’p+,pT>

I (1.131)
=2a3" |p*, Fr) +0
Also [1]:
JTal 5 Tt] o1 - J I |
NLa3 Ta2T lpt,pr) = [NL,% T} a2T ", pr) + aj TNLa2T o+, 5r)
Itq! = Jt I -
=3a3 'ay " IpT, pr) + 203 Tad " |p*t, pr) (1.132)

Ji I —
= 5a3 TGQT |p+;pT>
This shows that the number operator acts on a state to give the sum of the modes of
the creation operators acting on the vacuum. More generally, it returns the mode
number of the creation operators minus the mode number of the annihilation

operators.
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Tachyons in the spectrum

Unfortunately, the groundstate [p™, pr) of the bosonic open string is tachyonic,
having negative squared mass. Since the ground state [p™, pr) has no spacetime

indices, it corresponds to a single scalar particle. Its mass is given by [1, 11]:

. 1 .
M2 ’p+)PT> = ﬁ(NJ_ - 1) |p+7pT>
S
1 o
= 5 (N = 1) |p*, pir) (1.133)
S
1 .
= 7172 ’p+7pT>
S

Since [, is a positive constant, this means that the mass squared of this particle is

negative.
The Bosonic Open String Spectrum

A sample of the spectrum is given below. The table is from [1]:

Table 1: A Sample of Open Bosonic String Spectrum

N+ |y) I2M? Number of States State Type
0 p*, o) -1 1 Scalar
1 a{T Ipt, pr) 0 D—-2=24 Vector
2 altalVipt,pr) 1 (D —2)(D—-1) =300 Two-tensor
2 |t pr) 1 (D—2) =24 Vector

1.14 The Closed String Spectrum

As in the previous section, lightcone gauge will be used. Determining the spectrum of
the closed string is analogous to determining the spectrum of the open string. In this
case there are left and right moving creation and annihilation operators; left movers

are denoted with a tilde, whilst right movers are tilde free.

Both left and right moving annihilation operators (a, and @!) annihilate the vacuum

state:

ay, |p*,pr) = @, |p*, ) = 0 (1.134)
The mass operator is given by [1]:
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2 .
M= (NL +NL - 2) (1.135)
S

where number operators are given by:

) oo
Nt = Z naltal Nt = Z naltal (1.136)
n=1 n=1
It can be expected that these number operators will act on states in complete analogy
to the number operator in equation 1.127. N+ will act on a state by giving the sum
of the creation operator modes minus the sum of the annihilation operator modes as

the eigenvalue. For example:

N*altall |p*, pr) = (n +m) pt, pr) (1.137)
Similarly:
N+altalt |t r) = (n+m) [p*, pr) (1.138)

How about when N1 acts on a state with d{nT or when N1 acts on a state with a{nT?

The commutation relations are:

[Ni,a{,j] —0 (1.139)
[Nl,aﬂ] ~0 (1.140)

As a result M? acts as:

2

M2aT{TC~L{nT ‘er,ﬁT) _ =
S

(34 + ¥ - 2) af el |, )

S G R A
24 bl (", 1) )

— é ((NLQ{ZT) alt |p*, gr) +alt (NLZLQ) Pt (1141)
—2a;a)! |p*, pr) )

= ;g (nagngn’r T, o) + mal talt |pt, pr)

~2a] 3l 1" 7))
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There is one more important consideration before samples of the spectrum can be

written. The level matching condition gives [1]:

Nt =Nt (1.142)

Only those states that respect the level matching condition contribute to the
spectrum [1]. In order for the level matching to be true N+ and N1 must give the
same eigenvalue when acting on a state. The only way that can be true is if the state
consists of a vacuum acted on by a's and @'s, where the mode numbers of the a's add

to the same number as the sum of the a's mode numbers. For example:

Tt~Jt~K o It ~Jt-K .
NL%TCH Ta1 T‘p+aPT> = <N02T) a Ta1 T|P+»pT>
s (1.143)
= 2a2Td1 a T|p+aﬁT>

Sl It-Jt-K . I LJAK o
NL@QT% Ta1 T’P+7PT> f (Nl fa T) \PJrapT)

o (1.144)
= 2a, Ta aj o, pr)

Since both N+ and Nt act on the state in the same way, this state respects the level
matching condition and is allowed as part of the spectrum. Note that the level
matching condition means that states made of just as or just ds acting on a vacuum
cannot be part of the physical spectrum. This means that the next lowest level state
after |p*, pr) is CL{TEL{T lp*, pr). Using the table from [1] the two lowest level states

are then given by:

Table 2: A Sample of Closed Bosonic String Spectrum

Nt Nt |y, 1@) %ZEMQ Number of States State Type
0,0 |p+, or) -2 1 Scalar
1,1 041 T Ip*,pr) O (D —2)% =576 Two-tensor

Note the ground state consists of a tachyon (a negative mass squared scalar), just as

for the open bosonic string.
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2 The Supersymmetric String

2.1 The Locally Supersymmetric (Supergravity) String Action

In this section the ‘locally supersymmetric string action’ (also called the ‘supergravity
string action’) will be introduced. It is a generalisation of the Polyakov action that
includes supersymmetry (and, therefore, fermionic degrees of freedom) whilst also

incorporating gravity.

In general the worldsheet is curved (non-Euclidean). In order to consider a
supersymmetric gauge theory on a curved worldsheet, supersymmetry is required to
be a local symmetry of the action [15]. This is because the supersymmetry algebra
generates a translation and translations are only defined locally on a curved manifold
[15, 16]. In order for local supersymmetry to be achieved a spin 3/2 Rarita-Schwinger
gravitino is introduced. The Rarita-Schwinger gravitino x4 and the zweibein e,
occupy the same supergravity multiplet [15, 17]. The gravitino is a ‘vector-spinor’
[15]. It transforms as a worldsheet vector in the « index and as a worldsheet

Majorana spinor in the A index.

The curved worldsheet has the group GL(2,R) associated with it [17, 18]. Since this
does not provide finite dimensional spinor representations it is necessary to consider
the tangent space which has an SO(1, 1) symmetry. In general, an n-dimensional
curved manifold gives the group GL(n,R), whilst the tangent space to that manifold
gives the group SO(n —1,1) [17].

At each point on the curved 2d worldsheet, it is possible to define a flat 2d Minkowski
space running tangentially to the worldsheet [15, 17, 18]. The zweibein e? relates the

worldsheet metric hqopg (o, 8 =0, 1) to the tangent Minkowski space metric 7y,
(a,b=0,1):

hag = ege%nab (2.1)

where:

n = diag(—1,1) (2.2)

An n-dimensional manifold has an associated n-bein which has n? components [17].

For the 2d case it is called a zweibein.

The locally supersymmetric (LS) action can be written:
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Sis == — / d*ov/h (haﬂaaXﬂaﬁXu + " p Vathy
) (2.3)
—2Xap5p“¢“aﬁﬁﬁb—-2¢“¢uxapﬁan5>
The Dirac conjugates are given by [11, 19]:
o =ity (2.4)
The spinors are Majorana and are given by * = ¢}, A = — + [11]:
(i
Py = (2.5)
A
where [11]:
Vi=vY4, YL =9_ (2.6)

That is, the components are real. Since the hermitian conjugate (denoted by T is the
combined action of transposition and complex conjugation, and since v is real, it
follows that:

Pr=yT = ¢ =yl (2.7)

p* are the 2d curved space (curved worldsheet) Dirac matrices given by the zwiebeins

times the flat space 2d Dirac matrices [15]:

p* = eqp* (2.8)

where p® (a =0, 1) are the flatspace 2d Dirac matrices. As before, Greek indices
represent objects in curved spactime, whilst Latin indices represent those in flat

spacetime. The flat space 2d Dirac matrices are:

0 —1 01
0 = and p'= (2.9)
1 0 1 0

V. is the covariant spinor derivative given by [15, 19, 20, 21, 22]:
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L,
vaq/)u = aoﬂ/},u - Zwab')/ab"vbu (2'10)

wgb is the spin connection. When one considers spinors as sections of a spinor bundle,
the spin connection defines parallel transport on the fibre bundle. The spin

connection is given by [20, 21, 22]:

w® = e%@aeﬁb + e%e”bfga (2.11)
where Fga is the ‘affine connection’.

The covariant spinor derivative in the case of 2d Majorana spinors is given by
pVatp = p*0q1p. The action can then be written [15]:

1 —
S1s == 5 / dovh <haﬁaaX H0p Xy + P p Dathy
T , (2.12)
—2exap’ pU PO X, — Sevud” Xap” PC“X6>

2.2 The RNS Superstring Action

2.2.1 The RNS String Action from the Locally Supersymmetric World-

sheet Action

Just as the Polyakov action could be put into conformal gauge, the locally
supersymmetric action can be put into ‘superconformal gauge’ to obtain the RNS

(Ramond-Neveu-Schwarz) superstring action [15].
Superconformal Gauge
The procedure is as follows:

1) The worldsheet metrics is made flat. This is achieved in the same way as for the
Nambu-Goto and Polyakov actions [15]. First reparameterisation invariance means
that the metric can be written in conformally flat form. Reparameterisation
invariance allows the worldsheet invariant interval to be written as [7, 17]:

ds?® = hogoo? — e M) (—(do®)? + (do)?) = 6_2A(g)na50aaﬁ (2.13)

Therefore reparameterisation gives:
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hag = € 2N nag (2.14)

In this form the metric is said to be ‘conformally flat’. This can be used in

conjunction with the Weyl transformation hag(c) — €22@h,5(0) to give:

haﬁ — Nap (2.15)

For the Polyakov action this is sufficient to bring it to conformal gauge. To bring the

locally supersymmetric action to superconformal gauge there are two more steps [15].

2) The zweibein can be brought to the form [15]:

a __ ga
ea_(sa

(2.16)

This is achieved using the bosonic symmetries of the worldsheet, corresponding to two
coordinate transformations, one local Lorentz transformation, and one Weyl
tranformation. These four symmetries are used to constrain the four components of

the zweibein. This form of the zweibein means that [15]:

p* = 0gp" (2.17)

Therefore the curved space Dirac matrices p® can be written:

0 -1 0 1
P’ = and p'= (2.18)

1 0 10

3) Since there are also four fermionic symmetries, corresponding to two
supersymmetry transformations with parameter €4, and two superconformal
transformations with parameter 7, all four components of x can be set to zero [15].
When all these steps are taken, the locally supersymmetric sting action is put into

superconformal gauge, and the RNS superstring action is obtained [15, 19]:

SrNg = — /d20'77ab (8aX“8bXM + "(z“paabi/)u) (2.19)

e/

Alternatively, step (1) from above can be skipped, leading to the alternative form of

the RNS action that appears in the literature:

1
drad

Shns = — /d20_\/ghaﬂ (OQX“QBXN + J}Hpaaﬁdju) (2.20)
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2.2.2 The RNS Action as the Supersymmetric Generalisation of the Polyakov

Action

The RNS action can be seen as the Polyakov action with the inclusion of worldsheet

supersymmetry. Consider the Polyakov action:

Sp =

/ d*aVhhP 0, X195 X" 1y (2.21)

dma/

In conformal gauge hag = 143, giving [7]:

1
Sp=— / d2onP 90 X 05 X" Ny

!
4o

_ 1 2 nao yv

= i /d 00, XH0* X 1 (2.22)
1

=— / d*000 X, 0 X"

!
4o

In order to include fermions into the action a term corresponding to the Dirac action
of D free massless two-dimensional Majorana fermions are added [11, 19]. The form of

the Dirac action is simply:

PPy = P p* Oty (2.23)

where a = 0,1, p =0, ..., D and ) = ¢tip° [11]. The RNS superstring action can be
seen as either the locally supersymmetric action in superconformal gauge, or as the

Polyakov action (in conformal gauge) with the Dirac term added:

Spns = — / 20 (80X, 0° X" + P %0 (2.24)

4o/

2.2.3 The RNS Action in Lightcone Coordinates

Calculations are often simplified by using lightcone coordinates. The RNS action in

lightcone coordinates is given by:

SrRNs = /d20 (204 X, 0-X* + iy 04— + i 0_¢y) (2.25)

2ra’

The Dirac equations are then written [11]:

i) =0_1hy =0 (2.26)
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2.2.4 Superymmetry of the RNS Action

It is important to understand what sort of supersymmetry exists on the worldsheet of
the superstring. The type of supersymmetry (e.g. N =1, N =2 etc..), the number of
supercharges and the real dimension of the minimal spinor representation are related
by:

Number of supercharges =Real dimension of minimal spinor (2.27)
x Number of supersymmetries (N) .

In (1,1)d (on the worldsheet) the minimal spinor representation is the one real
dimensional Majorana-Weyl spinor representation of the Lorentz group Spin(1,1)

[11, 23], the number of supercharges is two (given by Q4 with spinor indices A = 1,2)
[11], and this all corresponds an N = 2 worldsheet supersymmetry [24, 25].

The RNS action is invariant under the supersymmetry transformations:

5X (0%) = et (o°)

(2.28)
opH (0%) = p* (Ba X" (0%)) €
These can be written in lightcone coordinates as [11]:
OXH = eyt
=i (ergl —eyh)
(2.29)
oYt = p*0y X e
= ot = —20_Xte,
= 57,[)1 = 28+XH€,
2.3 The Energy-Momentum Tensor of the RNS string
The energy-momentum tenor is the conserved current associated with the
translational symmetry of the RNS action [11]. It is given by:
1
Tog =0, X" 08X, — 57704,387X“87X“
(2.30)

1- 1- 1 _
+ Z?l)“paﬁmbu + Z@Z’upﬁaoﬂﬁu - 1ﬁaﬁ¢“ﬁ7&y¢u
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In lightcone coordinates this is written [11]:

1
Thy = 04 X0, X" + §¢ia+¢+u
)
T =0-X,0-X" + 90y, (2.31)

T =T . =0

In lightcone coordinates the energy-momentum tensor obeys the conservation law
[11, 10):

87T++ — 87T77 — 0 (232)

This is proven using the equations of motion:

8+3_X“ = 0, (9+¢ﬁ = B_wi =0 (233)

2.4 The Supercurrent of the RNS String

The supercurrent is the conserved current associated with the global supersymmetry
of the RNS action [11]. It is given by:

1
T = =20 p 0 X" (2.34)

The supercurrent satisfies:

(Pa)ap I3 =0 (2.35)

It also satisfies the conservation equation:
0aJ3 =0 (2.36)

The supercurrent has two independent components. In lightcone coordinates these are

given by [11]:
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JJr - 1/1_7_8+XM

(2.37)
J_=4"0 X,
These then satisfy the conservation equations:
0_Jy =04+J_=0 (2.38)

The variation of the RNS action with respect to the metric gives the vanishing of the
energy-momentum tensor, whilst the variation of the locally supersymmetric action
with respect to the Rarita-Schwinger field (then choosing superconformal gauge) gives
the vanishing of the supercurrent [11]. Alternatively the locally supersymmetric
action can be varied with respect to the zweibein, then superconformal gauge can be
chosen, leading to the vanishing of the energy-momentum tensor [15]. Together these

give the super-Virasoro constraints:

T++ — T__ — J+ - J_ — 0 (239)

This is only a restriction of the on-shell theory.

2.5 Solutions to the Wave Equation

It is now possible to discuss the classical solutions of the wave equation. These
solutions will be built upon to eventually lead to the quantum results and a particle

spectrum.

2.5.1 Open String

Here the open string solutions to the wave equation are stated.

The Bosonic Fields

In the bosonic string theory section 1.5.1 it was shown that the open bosonic string

gives the following conditions:
Open String with Neumann Boundary Conditions at Both Ends

M .
XH(r,0) = a* + 22p'T + iV/2l, E a—me*ZmTcos(ma) (2.40)
m
m#0

Open String with Dirichlet Boundary Conditions at Both Ends
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o .
XH(r,0) = 2t + 22pro — iv/2I, E a—me_lstin(mJ) (2.41)
m
m##0

The Fermionic Fields

It is easier to work in lightcone coordinates. The fermionic part of the RNS action is
given by [10, 11]:

Sp=—

2ma’

[ o w-dni b0 i) (2.42)

By varying the action with respect to the fermionic fields, the folowing condtion is
obtained [10, 11]:

[0 — -89,y = [y 600y — _6_],_, =0 (2.43)

This is satisfied if [10, 11]:

Y (7,0) = ¢t (7,0) or ¢H(7,0) = = (7,0) (2.44)

and if:

wi(Tﬂr) =" (r,7) or w_’f_(T,ﬂ') = - (1, ) (2.45)

The relative sign of @bff_ and " is not physically important in and of itself. What is of
physical importance is if the relative sign between ¢} and " at o = 0 is the same as
the relative sign between ¢/ and ¢ at o = 7 [10, 11]. Therefore, following common

convention, the condition [10, 11]:

Yh(7,0) = ¢ (7,0) (2.46)

is chosen. Subsequently the choice of relative sign of ¢/ and " at o = 7 corresponds

to two different physical outcomes:
Ramond Boundary Condition

In this case the 0 = 7 end of the string has [10, 11]:

W (7, m) = () (2.47)
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This choice gives the so-called Ramond sector, or ‘R sector’, indicated by the
superscript ‘(R)’. Writing the fermions as vectors in an infinite dimensional Hilbert

space gives the mode expansions [10, 11]:

1 A
wu (R) (.0 - Z dte—(T+0)
f n

(R (2.48)
1/}# Zd,u —in(T—0)
where n = 0,£1, 42, .... It will be shown later that the R sector gives rise to
spacetime fermions [10, 11].
Neveau-Schwarz Boundary Condition
In this case the ¢ = 7 end of the string has [10, 11]:
wi(NS) (r,7) = —Wi(NS) (r,7) (2.49)

This choice gives the so-called Neveau-Schwarz sector, or ‘NS sector’, indicated by the

superscript ‘(NS)’.

Writing the fermions as vectors in an infinite dimensional Hilbert space gives the

mode expansions [10, 11]:

¢+ .0 Z b,u —ir(t+o)

| (2.50)
wli(NS) (7_’ U) _ ﬁ 2 bﬁe—zr(f—a

where r = £1/2,4+3/2,£5/2, .... It will be shown later that the NS sector gives rise to

spacetime bosons [10, 11].

2.5.2 Closed String

Here the closed string solutions to the wave equation are stated.

The Bosonic Fields

In the Bosonic String Theory section 1.5.2 it was shown that, for the closed string:
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n : n
Xi =20 27— o)+ =l Y Hemin(r) (2.51)
R sP \/§ s n .

2
n#0
XH — zh 12t i I an —in(t+0) 959
L—?-i-sp (T+U)+\/§S§)ne (5)

XH(r,0) = Xph+ XV

= xg + 2[2])/‘7- + LZS Z € (04562”10 + dgef?ma') ( )

\/5 n#0 "

The Fermionic Fields

Closed strings possess either periodic or anti-periodic boundary conditions. For a

string of length 7, the periodic boundary condition on the left movers is [10, 11]:

wﬁrR) (1,0) = w(f) (1,0 +7) (2.54)

and the periodic boundary condition on right movers is:

w(_R) (1,0) = w(_R) (1,0 + ) (2.55)

Similarly, the anti-periodic boundary condition on the left movers is:

wngS) (r,0) = —wiNs) (1,0 + ) (2.56)

and anti-periodic boundary condition on right movers is:

o8 (7,0) = =) (7,0 4+ ) (2.57)

The periodic boundary conditions correspond to the R sector, whilst anti-periodic
boundary conditions correspond to the NS sector [11]. However, these can be chosen
independently for right and for left movers. Therefore, the closed string has four
sectors: R-R, NS-NS, R-NS, and, NS-R. States in R-R or NS-NS will give rise to

spacetime bosons, whilst states in R-NS and NS-R will give rise to spacetime fermions.

2.6 Canonical Quantisation

So far the classical theory of the superstring has been considered. The next step will
be to quantise. However, in order to do this, the super-Virasoro operators need to be

ascertained.
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2.6.1 The Super-Virasoro Generators of the Open String

The Super-Virasoro generators are given by Lg{ ), Lg S), F,, and G, [10, 11, 26].

These are explained below.
L,(ﬁ‘) Generators of the Open String
The generators Lg} ) are the modes of the energy momentum tensor Ti, g in the

R-sector, given by [11]:

1 (7 :
LW == [ doemor, =L + LI®) (2.58)
™ -
where LY are the contributions of bosonic modes and Lm(R) are the contributions of
fermionic modes belonging to the R sector [11, 10]. The bosonic contributions are

given by [11]:

1
LY = 5 Z S Qg Qg (2.59)
n
with m,n € Z.

The R sector fermionic mode contribution is given by [11]:

LR — 12 <n + T) S d_p - dyn - (2.60)

with m,n € Z.

Ls}js) Generators of the Open String

The generators Lg:l S) are the modes of the energy momentum tensor 7,3 in the NS

sector, given by [11]:

1 (" ;
LS — = / doe™ T, , = LY + LN (2.61)
™ —T
As before, the bosonic contribution is given by [11]:
b 1
L= > o ampn (2.62)
n

with m,n € Z.

The NS sector fermionic mode contribution is given by [11]:
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LIS _ lz (r + @) by by (2.63)

withm € Z and r € Z+1/2.
F,, Generators of the Open String

The generators Fy, are the modes of the supercurrent .J, in the R sector, given by [11]:

_v2

s

Fp, doe™Jy =Y oy dmin (2.64)

—T

with m,n € Z.
G, Generators of the Open String

The generators G, are the modes of the supercurrent J, in the NS sector, given by
[11]:

\/§ " iro
G, = — /Tr doe"’ J, = E Q_p  brap (2.65)
withm € Z and r € Z+1/2.

2.6.2 The Super-Virasoro Algebras of the Open String

Using the expressions for Lg{ ), ng:l S), F,, and G, the algebras in the Ramond sector

are written [10, 11, 26]:

D

(L®) L®] = (m —n) L™+ S 0mino (2.66)
m

L® F = (5 - n) Foin (2.67)

[Fon, Fn) = 2L + §m25m+n70 (2.68)

In the above three equations m,n € Z. Similarly, the algebras in the Neveu-Schwarz

sector are written [10, 11, 26]:

(LD, L)) = (m — n)LgEL + %m(m2 — D)dmin0 (2.69)
m
[ngs)’ G, = (5 - r) Gmtr (2.70)
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_orNs)y Dy 1
Gy, G| =2L, ) + 5 <T 1

In the above three equations r,s € Z + 1/2.

2.7 The Quantum Mass-Shell Conditions

2.7.1 The Quantum Open String Mass-Shell Condition

(2.71)

Following the procedures of canonical quantisation, positive modes annihilate the

ground states |¢) [11, 20].

R-Sector

ah 1Y) =0 (m >0) (2.72)
dh )y =0 (n>0) (2.73)
This implies that [10, 11]:
Ly, |Y)=0 (m>0) (2.74)
F,|v)=0 (n>0) (2.75)
(LQ — aR) ’1/}> =0 (276)
Using M? = —p?, and writing the momentum in terms of the Virasoro generators, the
R-sector mass-shell condition is given by [10, 11]:
o M? = Za{naﬁ—f—an{ndﬁ (2.77)
n=1 n=1
NS-Sector
ak 1)y =0 (m >0) (2.78)
bl |w) =0 (r>0) (2.79)

This implies that [10, 11]:
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m|Y) =0 (m>0) (2.80)

Gy lY)y=0 (r>0) (2.81)
(LO — aN,g) ’w> =0 (2.82)
Using M? = —p?, and writing the momentum in terms of the Virasoro generators, the

NS-sector mass-shell condition is given by [10, 11]:

Zoz_n ol + Z bl bl — ans (2.83)

r=1/2

2.7.2 The Quantum Closed String Mass-Shell Condition

As was the case with the bosonic string, the Virasoro constraints are identical for the
open string and the closed string. The only difference is that, for the closed string,

there are two (left and right moving) versions of each Virasoro operator.

Following the methods employed for the bosonic string, the mass-shell condition is
taken as the average of the left and right moving mass-shell conditions, where each
left and right moving condition is as written for the open string. However, there are
two mass-shell conditions for the opens string, one for the R-sector and one for the
NS-sector. Combinations of these gives four mass-shell conditions, one for each sector
of the closed string [27]:

R-R Sector

o M2 — % (i anindﬁ Z ol ol + anindi - 2aR> (2.84)

R-NS Sector

| =

o
o' M? = 5 > al,a)+ an[_nd,ﬂ —ap + Z ol al Z rbl bl —ang
n=1 r=1/2

(2.85)

NS-R Sector
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1 o0
o M? = 3 Za_n al + Z rbl_rbf—aNs—i-Za_n n+anl_nd£—aR
n=1 r=1/2

(2.86)

NS-NS Sector

M? = i Dl + i rbl b +Za nah Z rbl bl —2ans | (2.87)

r=1/2 r=1/2

l\.'J\»—\

2.8 The Open String Spectrum

It is now possible to determine the open superstring spectrum of states. These states
belong to either the NS or R-sector.

The Neveu-Schwarz Sector

The mass-shell condition is [10, 11]:

Z al n Z rbl_rbr —ans (2.88)

r=1/2

where I = 2,...,10 are the transverse coordinates. The ground state |0; k) 5 g is

defined as the state which gives zero when acted on by annihilation operators [10, 11]:

al 10;k) yg =0l |0; k) yg =0 n,7 >0 (2.89)

As a result the groundstate |0; k) g gives:

o0 [e.9]
o/ M? (0 k) g = Z alon |05 k) vg + Z rbl by |05 k) v g — ans [0 K) ys
n=1 r=1/2 (2.91)
=—ans|0; k) ng

The first excited state is given by:

b£1/2 10:%) v g (2.92)
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Since the state transforms under SO(8) (it has 8 = D — 2 components) it must be
massless. This provides a means with which to verify that ayg = 1/2. Acting on the
vector state with o/ M? gives [10, 11]:

1
o MLy |05 K) yg = 5~ ans (2.93)
which is zero iff ayg = 1/2. Using this result in equation 2.91 gives o/ M? = —1/2 for
the groundstate. Therefore, as was the case for the bosonic string, the groundstate is
a tachyon. GSO projection removes this state by removing all states with negative

‘G-parity’, where G-parity is given by [10, 11]:

G = (—1)FH = (—1) X2 bhibrtd (2.94)
The Ramond Sector

The mass-shell condition is [10, 11]:

Z ol ol + Z nd’,dl + ap (2.95)
where:
ap =0 (2.96)
The groundstates satisfy [10, 11]:
ol 0Ky, =d |0;k)p =0 n>0 (2.97)

The groundstate is an irreducible Majorana-Weyl spinor of Spin(8) (corresponding to
the irreducible spinor of eight dimensional Euclidean space), with eight degrees of
freedom 4 [11, 28, 29, 30]. Acting on the groundstate by o/ M? gives:

ol ol 10;k) , +Y ndl,dl |0 k) p + ar |0; k)
Z Z f (2.98)

=010;k), +01[0; k), +0|0; k)
So the groundstate spinor is massless.

The first excited state is a spacetime spinor obtained by acting on the groundstate

spinor |0; k) , with either the vector creation operator o, or d’, [11].

“In the 10d spacetime, the irreducible spinor is Majorana-Weyl, giving it ((2°/?)/2)/2 = 8 indepen-
dent fermionic components [11]. The two divisions by two are from consecutive Majorana and Weyl
conditions.
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2.9 The Closed String Spectrum

As with the open string there are Neveu-Schwarz and Ramond sectors, however in
this case the left moving and right moving degrees of freedom of the string are
independent giving rise to four combinations, NS-NS, NS-R, R-NS and R-R [10, 11].

In contrast with the open string, which projected out the negative G-parity states,
positive G-parity states are projected out of the NS-sector in order to remove the
closed string tachyon [10, 11]. However, like the open string, there is a choice as to
whether positive or negative G-parity states of the R-sector are projected out. Two
types of theory result; ones in which the left and right moving R-sectors have the
same G-parity states projected out, and ones in which left and right moving R-sectors
have opposite G-parity states projected out. IIA theories have opposite chirality for
the surviving left and right moving R-sector states, and opposite G-parity for left and
right moving R-sector states. IIB theories have the same chirality for the surviving
left and right moving R-sector states, and the same G-parity for left and right moving
R-sector states. The R-sector ground states will be denoted [0; k), r and |0; k) _p for

positive chirality and negative chirality respectively.
ITA Closed String Spectrum

In the ITA theory the left and right moving R-sectors have opposite chirality. Using
[11]: After GSO projection, the IIB R-R, NS-NS, NS-R and R-NS sectors contain the

following massless groundstates (respectively):

05k)_p® 105 k), R (2.99)

bl 12103 K) s @071 15103 K) g (2.100)
bl o |03 K) g © (05 k) (2.101)
0;k)_p® bil/Z 10;K) v g (2.102)

Since the ITA and IIB theories each contain two Majorana-Weyl gravitinos the

theories are 10d N = 2 supergravities.
The different sectors have the following field content:

The R-R Sector) The tensor product (‘outer product’) of two Majorana-Weyl
spinors gives rise to bosonic states [10, 11]. In the ITA case these spinors have

opposite chirality, giving rise to an eight component vector field, and a three-form
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gauge field. k-forms in n-dimensions have their number of independent components

given by the binomial coefficient:

n
= Number of independent components of a k-form in n-dimensions (2.103)

k

In this case k = 3 and n = 8 giving 56 independent components for the three-form

gauge field.

The NS-NS Sector) Here there is a tensor product of two eight component vectors.
This gives a 64 component rank-2 tensor (an 8 x 8 matrix) [10, 11]. Such a matrix
decomposes into a symmetric matrix and an antisymmetric matrix. The symmetric
matrix then further decomposes in to a symmetric traceless matrix and a scalar
(corresponding to the trace). The scalar is a dilaton and counts as one component.
The antisymmetric 8 x 8 matrix is a 2-form gauge field with (64 — 8)/2 = 28
independent components. Finally, the symmetric traceless 8 x 8 matrix gives a
rank-two tensor graviton. Because it is symmetric the 64 components are reduced to
(64 —8)/2 + 8 = 36. Then the traceless condition removes one more independent

component leaving 35 independent components.

The NS-R Sector) The eight component vector and the Majorana-Weyl fermion
tensor to give a spin 3/2 gravitino with 56 independent components and a spin half

dilatino with eight independent components [10, 11].

The R-NS Sector) This sector has the same field content as the NS-R sector. Since
the theory is ITA the gravitino of this sector has the opposite chirality to the gravitino
in the NS-R sector [10, 11].

IIB Closed String Spectrum

The convention for the IIB string theory is to choose the left and right moving
R-sectors to have positive chirality. Using [11]: After GSO projection, the IIB R-R,
NS-NS, NS-R and R-NS sectors contain the following massless groundstates
(respectively):

05k) L p @ (05 k) (2.104)

514/2 0; ) yg @ bil/z 105 k) vg (2.105)
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5]—1/2 05 k) v @ [05K) | (2.106)

03y ® 71510 %)y (2.107)
The different sectors have the following field content:

The R-R Sector) The tensor product of two Majorana-Weyl spinors gives rise to
bosonic states [10, 11]. In the IIB case these spinors have the same chirality, giving
rise to a scalar field that contributes one component, an antisymmetric two-form
gauge field that has 28 independent components, and, finally, a four-form gauge field
with self dual field strength that contributes 35 independent components. Referring
to equation 2.103, in this case k = 4 and n = 8 giving 70 independent components for
the four-form gauge field. Self duality then halves this number to 35 [31].

The NS-NS Sector) This sector is the same as the NS-NS sector of type ITA theory.

The NS-R Sector) The eight component vector and the Majorana-Weyl fermion
tensor to give a spin 3/2 gravitino with 56 independent components and a spin half

dilatino with eight independent components [10, 11].

The R-NS Sector) This sector has the same field content as the NS-R sector. Since
the theory is IIB the gravitino of this sector has the same chirality as the gravitino in
the NS-R sector [10, 11].
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3 Branes in Type ITA and Type IIB String Theories

The gauge fields, charges and field strengths of (1 4+ 3)d Maxwell theory are briefly
reviewed. This is followed by a discussion of the gauge fields, charges and field

strengths of branes.

3.1 (14 3)d Maxwell Theory

In (1 4 3)d spacetime, Maxwell theory with electric and magnetic point sources gives
[11]:

dF = xJp, (3.1)
dxF = xJ, (3.2)

Where:
Im = I pda” Jo = Je pdat (3.3)

Jmyu and Je,, are both functions of current and charge density. Both are one-forms. F

is a two-form, which is related to the one-form gauge field A by [11]:

F=dA (3.4)

*[" is the ‘Hodge dual’ of F. An n-form field strength F on a D-dimensional manifold
has a (D-n)-form hodge dual [11]. Therefore, in four spacetime dimensions both F
and xF' are two-forms. When considering spacetimes of different dimensions the field

strength and its Hodge dual will not always have the same rank.

The electric charge e and the magnetic charge m are related to the field strength by
[11]:

e:/SQ*F g:/SZ)F (3.5)

Important Points to Note:

The electric and magnetic charges are point like (zero-dimensional).
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In three spatial dimensions a 2d Gaussian surface (usually taken to be a sphere) is
required to surround the point-like electric and magnetic charges. As a result, the
surfaces that are integrated over are 2d in both the electric and magnetic cases.

Correspondingly, the field strength F' is a two-form, as is xF'.

For an n-form field strength, the corresponding gauge field is an (n-1)-form. In this

case the gauge field A is a one-form.

3.2 Gauge Fields and Charges of Branes

In a D-dimensional spacetime, an object with p spatial dimensions (e.g. a p-brane)
requires an SP~P~2 sphere to surround it [11]. Consider a point on a
two-spatial-dimensional surface. This corresponds to a point in a D = 3 spacetime. In
this case the sphere required to surround the point is S*, which is simply a circle on
the two-spatial-dimensional surface. Alternatively, consider a point in 4d spacetime

(on a three-spatial-dimensional surface), this would require an S? to surround it.

Since a p-brane in D spacetime dimensions is enclosed by a sphere given by SP—P~2,

the electric charge of the p-brane is given by [11]:

ep = / *F (3.6)
SD—p—2

Where xF' is a (D — p — 2)-form. For an n-form field strength F' on a D-dimensional
manifold, the hodge dual is a (D — n)-form. This means that for a (D — p — 2)-form
hodge dual (xF'):

D—-n=D-p-2
(3.7)
=>n=p+2

The original field strength F' is therefore a p + 2-form. It follows that the gauge field
is a p + 1-form.

An electrically charged p-brane has a (p + 1)-form gauge field associated with it.

Since F'is a (p + 2)-form, the integral for the magnetic charge will be over a sphere
SP+2 11].

9p = F (3.8)

Sp+2

Since a (D — p — 2)-sphere surrounds a p-brane,
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D—p—2—p+2 (3.9)

corresponds to

p—D—-—p—4 (3.10)

So the magnetic dual of the p-brane is a (D — p — 4)-brane.

A magnetically charged (D — p — 4)-brane has a (p 4+ 1)-form gauge field

associated with it, and is the magnetic dual of the p-brane.

In superstring theory the critical spactime dimension is D = 10. In this case the

electrically charged p-brane has a magnetically charged ‘dual’ (6 — p)-brane [11].

3.3 The ITA Theory

The fields in the spectrum of the closed superstrings can have a Dp-brane® associated
with them. The dimension of a ‘Dp-brane’ is the same as for a ‘p-brane’. In this
section the types of electrically charged and magnetically charged Dp-branes

associated with each field in the ITA closed string spectrum are reviewed.

3.3.1 The R-R Sector of the ITA Theory

Consider the R-R sector of the type ITA closed string theory. The spectrum gave rise

to a one-form and a three-form gauge field [11].
Electrically Charged Dp-branes

An electrically charged Dp-brane has a (p + 1)-gauge field associated with it [11].
Therefore, the one-form gauge field must be associated with an electrically charged
DO-brane. Similarly, the three-form gauge field must be associated with an electrically
charged D2-brane.

The one-form gauge field is associated with a two-form field strength. The hodge dual
of this is an eight-form field strength, associated with a seven-form gauge field. Since
an electrically charged Dp-brane has a (p + 1)-form gauge field associated with it, the
seven-form is associated with an electrically charge D6-brane [24]. Similarly, the
three-form gauge field is associated with a four-form field strength, which is hodge
dual to a six-form field strength associated with a five-form gauge field. This five-form

gauge field is associated with an electrically charged D4-brane [24].

5D’ just stands for ‘Dirichlet’, as opposed to some constant value like the number of spacetime
dimensions.
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Magnetically Charged D(D — p — 4)-branes

Above it was explained that the magnetically charged D(D — p — 4)-brane (in (1 + 9)d
this is a D(6 — p)-brane) has a (p + 1)-gauge field associated with it, and that such a
brane is the magnetic dual of the p-brane. Therefore, the one-form gauge field must
be associated with a magnetically charged D6-brane [11]. This D6-brane is the
magnetic dual of the electrically charged DO-brane. Similarly, a three-form gauge field
must be associated with a magnetically charged D4-brane. This D4-brane is the

magnetic dual of the electrically charged D2-brane.

The one-form gauge field is associated with a two-form field strength. The hodge dual
of this is an eight-form field strength, associated with a seven-form gauge field. Since
a magnetically charged D(D — p — 4)-brane has a (p + 1)-form gauge field associated
with it, the seven-form is associated with a magnetically charge D0-brane [24].
Similarly, the three-form gauge field is associated with a four-form field strength,
which is hodge dual to a six-form field strength associated with a five-form gauge field.

This five-form gauge field is associated with a magnetically charged D2-brane [24].
The D8-brane

Given that ITA theory seems to only include branes of even spatial dimensions, a
D8-brane can also be considered [11]. Electrically, such a brane would be associated
with a nine-form gauge field and a ten-form field strength, which is not dynamical,
and so does not arise in the physical spectrum. However, such a brane is considered

in some special cases.

Summary of the R-R sector of the IIA Theory:

Associated with the one-form gauge field in the R-R sector of the ITA string
theory is an electrically charged DO-brane, and its dual magnetically charged
D6-brane.

Associated with the three-form gauge field in the R-R sector of the ITA string
theory is an electrically charged D2-brane, and its dual magnetically charged
D4-brane.

Associated with the five-form gauge field in the R-R sector of the ITA string
theory is an electrically charged D4-brane, and its dual magnetically charged
D2-brane.

Associated with the seven-form gauge field in the R-R sector of the ITA string
theory is an electrically charged D6-brane, and its dual magnetically charged
DO-brane.
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There is also a D8-brane, which electrically couples to a nine-form gauge field.

3.3.2 The NS-NS Sector of the ITA Theory

Consider the NS-NS sector of the type ITA closed string theory [24]. This contains a
rank three field strength associated with a a two-form field. This two-form field is
associated with an electrically charged 1-brane and a magnetically charged 5-brane.
The hodge dual of the rank three field strength is a rank seven field strength
associated with a six-form field. This six-form field is associated with an electrically
charged 5-brane and a magnetically charged 1-brane. The 1-brane is identified as an
‘Fl-brane’ (the ‘fundamental string’) and the 5-brane is identified as an ‘NS5-brane’
(Sometimes called a ‘solitonic 5-brane’. The F1-brane is indistinguishable from the
very strings that the spectrum arose from. It should be distinguished from the
D1-brane. Both the F1-brane and the NS5-brane behave like semi-classical solitons,

and are comparable to 't Hooft-Polyakov magnetic monopoles [32].

Summary of the NS-NS sector of the ITA Theory:

Associated with the two-form gauge field in the NS-NS sector of the IIA string
theory is an electrically charged F1-brane, and its dual magnetically charged
NS5-brane.

Associated with the six-form gauge field in the NS-NS sector of the ITA string
theory is an electrically charged NS5-brane, and its dual magnetically charged
F1-brane.

3.4 The IIB Theory

In this section the types of electrically charged and magnetically charged Dp-branes

associated with each field in the IIB closed string spectrum are reviewed.

3.4.1 The R-R Sector of the IIB Theory

Consider the R-R sector of the type IIB closed string theory. The spectrum gave rise

to a zero-form, a two-form and a four-form gauge field [11].
Electrically Charged Dp-branes

Since an electrically charged Dp-brane has a (p + 1)-gauge field associated with it, the
zero-form gauge field must be associated with an electrically charged D(—1)-brane. A
Dp-brane has p spatial dimensions. When embedded in a spacetime, these branes also
have a time dimension. Including this time dimension means the brane is described

by a (1 + p) dimensional worldvolume. Therefore, p = —1 corresponds to a brane with
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zero spacetime dimensions. It has a zero dimensional worldvolume, and corresponds to
a single point (a single instant) in spacetime - it is an instanton [11, 29]. The two-form
gauge field must be associated with an electrically charged D1-brane (D-string). The

four-form gauge field must be associated with an electrically charged D3-brane.

The zero-form gauge field is associated with a one-form field strength. The hodge dual
of this is a nine-form field strength, associated with an eight-form gauge field. Since
an electrically charged Dp-brane has a (p + 1)-form gauge field associated with it, the
eight-form is associated with an electrically charge D7-brane [24]. Similarly, the
two-form gauge field is associated with a three-form field strength, which is hodge dual
to a seven-form field strength associated with a six-form gauge field. This six-form
gauge field is associated with an electrically charged D5-brane. Lastly, the four-form

gauge field is associated with a five-form field strength, which is self-dual [24].
Magnetically Charged D(D — p — 4)-branes

The magnetically charged D(D — p — 4)-brane (in 10d this is a D(6 — p)-brane) has a
(p + 1)-gauge field associated with it. Such a brane is the magnetic dual of the
p-brane. Therefore, a zero-form gauge field must be associated with a magnetically
charged D7-brane [11]. This D7-brane is the magnetic dual of the electrically charged
D(—1)-brane. A two-form gauge field must be associated with a magnetically charged
Db5-brane. This D5-brane is the magnetic dual of the electrically charged D1-brane. A
four-form gauge field must be associated with a magnetically charged D3-brane. This

D3-brane is the magnetic dual of itself.

The zero-form gauge field is associated with a one-form field strength. The hodge
dual of this is a nine-form field strength, associated with a eight-form gauge field.
Since a magnetically charged D(D — p — 4)-brane has a (p 4+ 1)-form gauge field
associated with it, the eight-form is associated with a magnetically charge
D(—1)-brane [24]. Similarly, the two-form gauge field is associated with a three-form
field strength, which is hodge dual to a seven-form field strength associated with a
six-form gauge field. This six-form gauge field is associated with a magnetically
charged D1-brane [24]. Lastly, the four-form gauge field is associated with a five-form
field strength, which is self dual. This gives rise to a four-form gauge field strength,
associated with a magnetically charged D3-brane. [24].

The D9-brane

Given that IIB theory seems to only include branes of odd spatial dimension, a
D9-brane might be considered. Electrically, such a brane would be associated with a
ten-form gauge field and a 11-form field strength [11]. Such branes can be used in

special circumstances.
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Summary of the R-R sector of the IIB Theory:

Associated with the zero-form gauge field in the R-R sector of the ITA string
theory is an electrically charged D(—1)-brane (instanton), and its dual

magnetically charged D7-brane.

Associated with the two-form gauge field in the R-R sector of the ITA string
theory is an electrically charged D1-brane, and its dual magnetically charged
Db5-brane.

Associated with the four-form gauge field in the R-R sector of the IIA string

theory is an electrically and magnetically charged, self-dual, D3-brane.

Associated with the six-form gauge field in the R-R sector of the ITA string theory
is a electrically charged D5-brane, and its dual magnetically charged D1-brane.

Associated with the eight-form gauge field in the R-R sector of the ITA string
theory is a electrically charged D7-brane, and its dual magnetically charged
D(—1)-brane.

There is also a D9-brane, which electrically couples to a 10-form gauge field.

3.4.2 The NS-NS Sector of the IIB Theory

Consider the NS-NS sector of the type IIB closed string theory [24]. This contains a
rank three field strength associated with a a two-form field. Taking the hodge dual of
the field strength gives a rank seven field strength associated with a six-form gauge
field. Subsequently, the branes, and the fields that they are coupled to, are exactly as

in section 3.3.2.

Summary of the NS-NS sector of the IIB Theory:

Associated with the two-form gauge field in the NS-NS sector of the IIB string
theory is an electrically charged F1-brane, and its dual magnetically charged
NS5-brane.

Associated with the six-form gauge field in the NS-NS sector of the IIB string
theory is an electrically charged NS5-brane, and its dual magnetically charged
F1-brane.
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4 3d Effective Field Theory

4.1 From 3d N = 4 (Eight Supercharge) Field Theory to 3d N = 2
(Four Supercharge) Field Theory

It will be useful, to discuss the relevant 3d field theory. Then, when the brane
configurations are discussed in section 6, this section will provide some context for the
field theory results that arise. Superfields are used in this section; see Appendix B for

the conventions that are adopted.

Consider a 3d N = 4 theory. The 3d N = 4 on-shell vector multiplet consists of a 3d
vector field, three real scalars and four majorana fermions. The 3d N = 4 on-shell
hypermultiplet consists of four real scalars and four Majorana fermions. A 3d N =4
vector multiplet contains a 3d N = 2 vector multiplet V and a 3d N = 2 (adjoint)
chiral multiplet ®. The N = 4 hypermultiplet, can also be written as an N = 2 chiral
and anti-chiral superfield Q and Q, respectively. The on-shell 3d N = 2 vector
multiplet V' contains a vector field a,, a real scalar field and a Dirac fermion. The
on-shell 3d N = 2 chiral multiplet ) contains two real scalar fields and two Majorana
fermions. There is also another type of N = 4 supermultiplet called a linear multiplet,
which contains the 3d N = 2 linear multiplet ¥ [4, 33]:

= %DO‘DQV (4.1)

The superfields expressions that were used are written explicitly in Appendix B. The
3d N =4 action can be written in terms of the 3d NV = 2 superfields. The N =4

Lagrangian contains kinetic terms [4, 33, 34]:

Liin = /d20d20 (QT€QV+2im9§Q+Q~Te*qV+2im9§Q”) + [/ d29\@<I>QQ+c.c.
(4.2)
+ [ / d*0m.QQ + c.c.]

Here m is the real mass arising from the background vector multiplet [35]. The
superpotential is turned off in this case, but this would usually contribute a complex

mass term corresponding to the scalar of the background chiral multiplet.

There is a linear multiplet Lagrangian term:

1 _
~ 53 / d?0d*0x> (4.3)

Fayet-Iliopoulos terms are contained in Lagrangian terms [4, 33]:
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¢ / 20 120 (o / 2
— = | d°0d“0V — >— | d°0D 4.4
47 v 47 (4.4)

The abelian Chern-Simons terms are contained in [4, 33]:

k _
— = | d*0d?0% 4.
- / v (4.5)

Whereas the non-abelian CS-terms are contained in [33]:

1
zgﬁ / d?0d0 / dt Tr{V D" (e Doe™"V)} (4.6)
T
0

A mass term can be introducd for the 3d N = 2 adjoint chiral multiplet ® of the form:

/ d?09? (4.7)

A mass i # 0 breaks SUSY from N =4 to N = 2. This because the 3d N = 4 vector
multiplet is formed of V and ® and, in order for N = 4 SUSY to apply, V and & must
both have the same mass. The low energy theory is typically considered. In this limit

the ® fields are integrated out, and the remaining action does not contain ® terms.

4.2 3d N =2 U(1) Theory with One Flavour of Matter and Without
Antimatter

In the results section, a variety of (1 + 2)d low energy field theories are obtained. As a
result it is important to know exactly how to write the most relevant terms that
appear in the action. This section, and the following few sections, will explain what
sort of terms appear in the actions of both abelian and non-abelian (1 + 2)d field
theories, with one or more flavour. Consider, first, a 3d N = 2 U(1) matter theory,
with a single massive matter flavour. For simplicity, consider only matter and neglect

antimatter for now. Such a theory contains the following Lagrangian terms [33, 34]:

/d20d2§QTeqv+2im99Q
1 20 12 42
- d“0d-0%
e
—C/d26d26V
2T
k 20 127
I d“0d0xV

/s

(4.8)
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Much can be ascertained by analysing the scalars in the field theory. The superfields
of the above terms can be expanded out into their constituent fields. The resulting
terms which contain scalar fields and which do not contain derivatives form the

classical scalar potential. These are given by [34]:

¢ k
ED ——oD (4.9)

Vo= —5eg D+ (m+ 40)2 0 + aDlof — | - e

202
The first the term comes from the second term in 4.8, the second, third and fourth
terms come from the first term in 4.8, the fifth term comes from the third term in 4.8
and the sixth term comes from the fourth term in 4.8. ¢ and D are scalars belonging
to the 3d N = 2 vector multiplet V', ¢ comes from the 3d N = 2 chiral multiplet @

and ¢ comes from QF, giving ¢? = ¢¢. F is contained in Q and F is contained in QT,
giving F? = FF.

The F-term equation of motion is:

F=0 (4.10)

The D-term equation of motion is:

_ ¢ 2 .
D =~ (4mq|¢|* - ¢ — ko) (4.11)

This can be seen by taking the derivative of 4.9 with respect to F' and D respectively,
then setting the result to zero. Plugging these equations for F' and D back into 4.9

gives [34]:
1 et k
Vo= 557573 (4malf — ¢~ ko)’ + D (qW - % - 47#’) + (m + g0)* |9
2 2 k
—— gaa malof = ¢~ ko) + - (amalo? - ¢ ko) (alof - - o)
+ (m + q0)* ]
2 2
= — 5575 (4maloP — ¢ — ko)’ + o (4mqlof* — ¢ — ko) (4mqld]* — ¢ — ko)
+ (m+q0)* |9
2 2
=~ 55 (4malo = ¢ — ko) + 5 (4mal6 — ¢ — ko) + (m + 0)* o]
2
e (4malof? —C ko) + (m a0 9P

(4.12)
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An effective action can be obtained my integrating out the massive fields from the
theory. For a massive matter superfield @), all of its constituent fields would be
integrated out to obtain the effective action. These include a complex scalar ¢, a

(1 + 2)d two complex component Dirac spinor, and a complex auxiliary scalar F' (see
Appendix B). As discussed in section 5, integrating out the massive fermions v gives
contributions to the low energy values of k and (. Relabelling the adjusted k£ and ( as
kers and Cpyp gives the effective semiclassical potential [34]:

2

e 2
Vie = 37 (47q|p* — Cot — keto)” + (m + qo)? |¢)? (4.13)

Here ¢ is the renormalised field, containing a renormalisation factor [34]. The
effective mass of ¢ is now given by (m + go) = m(0). (e and keg are the effective
Chern-Simons and Fayet-Iliopoulos terms, obtained from integrating out the massive

matter ¢.

The effective Chern-Simons term is given by:

1
ke = k + §q2 sign(m(o)) (4.14)

Whilst the effective Fayet-Iliopoulos term is given by:

Cei = C+ %qm sign(m(o)) (4.15)

The effective Chern-Simons term is of central importance to this text, and is

discussed in section 5.

Minimising the potential gives the equations:

4rq|pf* = Cor + hefo (4.16)

m(o)p = (m+qo)p =0 (4.17)

4.3 3d N =2U(1) Theory with One Flavour of Matter and Antimatter

Consider adding the antimatter term to the action:

/ 20420 O =1V +2i00 () (4.18)
Expanding the superfields contributes the additional terms:
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(M — qo)* ¢ — qD|g|* — | F|? (4.19)

The classical scalar potential then becomes:

vcz—ﬁDQ (m +g0)* 6" + (M — q0)* |9 + 4DI¢|* — aDIo — |F|* — |F|?
_wp_kop
47 47
(4.20)

The F-term and D-term equations of motion become [34]:
F=F=0 (4.21)

: k
= (alo —aldP - = - o) (1.22)

Plugging these back into equation 4.20 gives:

1 2 2 ¢ E)? 24 2

Vom = gzt (a6~ aldP = £ = o)+ (m a0 8 + (7~ 00 13
+D (alof = dd? - £~ o)

=—2ff@WV dd”j§—4#0 + (m+q0)* |9 + (M — q0)° ||

k ~ k
& (alo —ald? =& — o) (alof - aldP - & - o)

=—2;152(hmd2—®wMF—C—bﬂ +(m+q0)? ¢ + (1 — qo)” |9
4= (amalgf? = maldf2 — ¢ — ko) (4malof? — 4maldl? - ¢ — ko)

= — 2 (amalof? — amaldf? = C— ko) + (m+ 40)? 62 + (2 — g0 o
4 (amalof — amgldf? ¢~ ko)’

—35; (4mal6P — amaldf —C— ko) + (m+q0)? 6 + (7~ 40)° |37

(4.23)

The effective semiclassical action then becomes:
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2

‘/50232 2

(4701612 — 49 — Gar — ko) +(m +40)2 |0+ — 40)2 3 (4.24)

where ¢ and ¢ contain renormalisation factors. The equations that minimise this

potential are:

4mq|@|? — 4mq|P|* — Cot — koo =0 (4.25)
(m+4qo)p=0 (4.26)
(i —qo) =0 (4.27)

4.4 3d N =2U(1) Theory with N; Flavours of Matter and Antimatter

It is easy to introduce more than one flavour of matter. Consider Ny flavours labelled
i =1,...,Ny. This corresponds to Ny chiral multiplets @; and ();. The Lagrangian

density matter and antimatter terms are written [34]:

Ny B Ny B
/d29d2§ Z (Q;[eqiv+2imi09Qi> +/d20d267 Z (Q;re—qu—i-QiﬁuOQQi) (4.28)

=1 =1

The classical scalar potential is the straightforward generalisation [34]:

V:_@D2+Z mi + ¢i0) |¢@|2+Z i —qi0)” |6
Ny ) Ny 2 2 2 . (4.29)
+;%D’¢z| ;qulqﬁll B2 — |Ey _*D_E oD
This gives the F-term and D-term equations of motion [34]:
Fi=F=0 (4.30)

Z%’QM - Z%|¢z|2 - 0 — (4.31)

Plugging these into equation 4.29 gives:
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1
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=552 Ay qildil> —4m > qildil? = (= ko | 4 (mi+ q0)? il
i=1 i=1 i=1
Ny
+) (i — qio)” |63
i=1

The effective semiclassical potential is then:

2

Ny Ny Ny
47TZ%|¢1'|2 - 47Tzqz‘|¢z‘|2 — Geff — ke | + Z (mi + qio)? il
i=1 i=1 i=1

2

e
Ve =352

+Z m; — @qi0 |d~>z|2

(4.33)

Where ¢ and ¢ contain renormalisation factors. The equations that minimise the

potential are:
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Ny Ny
Am Y qildil* =47y ail6il* — Cor — ko = 0 (4.34)

=1 =1
(mi + ¢io) ¢ =0 (4.35)
(i — o) i =0 (4.36)

4.5 3d N =2 U(N,) Theory with N; Flavours of Matter and Antimat-
ter

In order to introduce a non-abelian gauge symmetry the superfield Lagrangian

density term:

k _
— = [ d*0d*0%V 4.37
= (437)
is replaced with [33]:
i 1
big / 02602 / dt Tx [V D (¢ Dye ™)) (4.38)
Y
0

Where the vector multiplet is given by ij =Ve (Ta)j, (a=1,...,N2). The trace is
always over the colour indices (j,j’,7” =1, ..., N.). This term contributes a factor of
[33]:

- ﬁTr (oD) (4.39)

where a?/,, =0 (Ta)];,, and D JJ, := D (T,) j, Also included are the terms [34, 36, 37]:

Ny y
n § : i imi60 7 j
/d20d20 Q;r’jl (6%,V+2 199) . QZ
i=1

. (4.40)
f -/
] Z A V42im;00 ) A
+/d29d20 Q;j’ (e_%V-I-Q 199)j Q,Z]
i=1

where:

76



(6(11V+21m199> =1 + (szj + 5] 2Zm19€)
; (4.41)

1 j’ j’ . — j” j” 3 _
+ B <QiVju + (5j//21mz'99> <quj + 5j 2zm109>

and:

NG y y _
(emav2imd®)’ 1 (—qv] + & 20m00)
J (4.42)

1 -/ A ) .11 L _

+ 3 (fql-Vj,,, + 5@,/21mi90> <fquJ]. + (5Jj 2zm199>

and where the trace is taken for the colour indices 7,5, j” = 1,...N.. The exponential

expansion takes a similar form to B.11. Additionally, there are the terms [34]:

Ny
/d29 Me Z Qi,jQi’j + c.c.
=1
1
- / POd2 Tr (32) (4.43)
2¢2

_&v / d0d* Tx (V)

The classical scalar potential potential is given as:

Ny
vcz—Q—Tr (D?) +_ i (mi + gio) ¢1+Z¢1 —qi0)" 6
= (4.44)
Ny Ny ¢ k
+ 2%@0@' - 2%’@17@ —|F|* = |F|? - lT (D) = = Tr(oD)
1= 1=
Indicating the colour indices (7,5, j” = 1, ..., N..) explicitly, using summation
convention for the flavour indices (i,7’,7” = 1,..., Ny), and using the convention
q; = +1 for all ¢, this is written:
1 .
‘/;:—7TT(D2)+¢Z// //( +U 6’)(5]771 +U]5Z>¢Z’]
+ o (89— 057 (51 i = 67 ) 6+ Gy D o (4.45)
CV

- k
— 4 DY ¢V — | F | — Tr(D) = T (e D)

By |
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where mii/ and ﬁ"ﬁ; are diagonal matrices (only non-zero for i = ¢') and UJJ.-, is diagonal
via gauge rotation (only non-zero for j = j') [34]. Note that all indices contract. The

F-term and D-term equations of motion are:
Fii = Fbi = (4.46)

. L PN O
DjJ/ = 62 (QSZ’]/Q[) J— ¢i,j’¢ J— E(sj/ - EO';/ (447)

Which give:

62

Ve =302

(476550" — 46336"7 — o) — ko))
8 (47r<l—5¢,j/¢i’j — A d" — CV‘SJ'j’ B k#’)
o+ oo (8 mly + 076 ) (Fm -+ 0% 67)

~ YA A7 A YY) ~. .
o oo (8wt — o6 ) ()l — o o7 ) 67

(4.48)

after a relabelling of the colour indices. The effective semiclassical action then

becomes:

62

Vie = 3272

(476156 — 47136 — s}~ ko] )
+ q_bi”,j” ((5?,/7711‘;// + O'?/,/(;iil//) ((lemzzl + 0_]]"’51;) ¢ZJ

~ /Y] 1y A Y] ~. .
I G N CAT R A T

(4.49)

where ¢ and ¢ contain renormalisation factors. With the results of [34] in mind, ¢; are

set to equal one for all 7. Also, the scalars a;, are gauge rotated to be diagonal.

The equations that minimise this potential are [34]:

DJ x (477@7]-,&79’ — Ay B — b k;eﬁoj,) —0 (4.50)
and:
(5§'m@.’ n agi’a@’) ¢ = 0 (4.51)
7'~ 4! 3 i\ Tig
(5jmi—oj5i>¢3—0 (4.52)



4.6 Axial and Vector Masses

Above it was shown that the effective mass term of a single flavour of 3d U(1) matter

is given by [34]:

(m+ 0)2 |p|? (4.53)

where ¢ is taken to equal one, and the effective mass is given by meg = m + o.

Similarly, the effective mass term of the single flavour of antimatter is given by [34]:

(m —0)?|¢|? (4.54)

Define the ‘axial’ and ‘vector’ masses as [37]:

1 1
mAzi(m—l—ﬁz) and mvzi(m—ﬁ’L) (4.55)

respectively. m and m generally take different values. There is freedom to shift the
scalar o by an arbitrary value, allowing m and m to be set to the same value. The
result of this is that m = m = m4 and my = 0. To see this, consider an example of m

and m with different values:

m=2 m=4 (4.56)
The corresponding mass terms are:

(2+0(2))’ ¢l (4.57)

(4 - o(x)) ¢l (4.58)

Since o is added to m and taken away from m, a shift can always be introduced such
that the overall number added to o is the same in both of the terms above. In this

case the shift is o(z) = o(x) + 1, giving:

2+ (@) + 1) |¢* = (3 + ()’ 4] (4.59)

(4 —o(x) =119 = (8 = o(2))* 9] (4.60)
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So setting m = 2, m = 4 and including a shift o(z) — o(x) + 1 is equivalent to simply
using m = 1 = 3. The upshot is that the freedom to shift o(z) can be used to set

m=m = (1/2)(m + m) = my, and my = 0. In this case the mass terms become:

(ma+ (@) 4] (4.61)

(ma —o(x))* |6 (4.62)

4.7 3d N =2 with Ajoint Matter

It is possible to reduce supersymmetry from 3d N =4 to 3d N = 2 without giving
mass to the adjoint chiral superfield ®. Instead it is possible to make the transition
by giving ® a superpotential [4, 38, 39, 40, 41]:

n
/ d?0W (z) = / DY #@”H—i (4.63)
=0
Taking the derivative with respect to ® gives [41, 42]:

n n

W'(z) = Z ®" 7 = ¢ H (® —ay) (4.64)

=0 Jj=1

For some constant a;.

The second equality of equation 4.64 can be seen by choosing a value for n and
writing the terms explicitly. Consider n = 3 as an example; the first equality

becomes:

W' (x) = Z cjx"
5=0

(4.65)
—coz3 0 4 1751 + o282 + 325

:cox3 + c1x2 + cox + c3

For the second equality, n = 3 gives:
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n

W' (x) =co H (x — a;)

=co (x —a1) (x — az) (z — a3)

= (coxr — cpa1) (x — a2) (v — as) (4.66)
= (cox2 — cpzas — coal T + coalag) (z — a3)

:coa:3 — cox2a2 — coa1x2 + cparasx

— Col‘2a3 + corasas + cpairaz — cpa1a2a3

Now, a1, as and as are just constants that can be chosen to match accordingly

with ¢y, c1, co and c3. Taking ¢y = —cpas — cpa1 — cpas,
cy = cpa1a9 + cpagas + ajaz and c3 = —cpaazas gives:
W' (z) = cox® + c12? + oz + 3 (4.67)

as required.

The benefit of writing the superpotential as in the second equality of equation 4.64 is
that it shows that the superpotential equals zero (has minima) at the values z = a;.
The superpotential has up to n distinct minima corresponding to z = a; = a1, ..., ay.
Each vacua is labelled by an integer r; and the result of the superpotential is that the

gauge group is Higgsed:

U(N,) — U(r1) x U(ra) % ... x Ulry) (4.68)

This corresponds to n different gauge groups of the 3d N = 2 theory.

Aharony and Giveon-Kutasov dualities are discussed in sections 7.4.1 and 7.5.1. In
these sections generalisations of these dualities with the inclusion of adjoint matter are

mentioned. In section 9, the results for flows between these dualities are explained.
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5 Induced Chern-Simons Level from Integrating Out Mas-

sive Matter

An important feature of (1 4 2)d field theory is that massive matter can be integrated
out, resulting in a contribution to the Chern-Simons level of the low energy effective
field theory. This important mechanism is used repeatedly in the results section
(section IIT) to adjust the Chern-Simons level of a variety of low energy theories.
Since the type of strong-weak duality exhibited in the low energy theory is dependent
on the Chern-Simons level, this in turn allows a ‘flow’ between dualities to be
displayed. This section provides an explanation of why Chern-Simons levels are

induced by integrating out massive matter.

5.1 Inducing Abelian Chern-Simons Terms

Both abelian and non-abelian Chern-Simons terms can be induced in a low energy
effective field theory by integrating out matter or antimatter. A derivation of the

induced abelian Chern-Simons term is discussed here.
Integrating Out Matter in an Abelian Gauge Theory

Contained in the Lagrangian density is the matter superfield term Qfe? Q. This is
actually contained within Qfe?V+%9(Q) but expanding out the latter shows that it

contains all the terms of the former. Qfe?” Q) contains the term:

L 59(x) (id + qA(x) — igo(x)) ¥(z)

- . (5.1)
=ith(2) (@ — igA(z) — qo(x)) ()
Using ¢ = 1, the covariant derivative is written [33]:
D,=0,—-1iA
S (5.2)
=0, —iqA,

This gives:

L 3i(x) (D - qo(x)) ()
= —ip(z) (=D + qo(z)) () (5-3)
=—¢*(z) (%) (=D + qo(z)) ()

The effective action obtained by integrating out massive matter is defined [43]:
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o—Seft — /dqzdw—fw*(x)(ivo)(—lz>+qa(x))w(x)d3x (5.4)

The right hand side can be rewritten [44]:

e 7t =Det (( 0) (—lﬁ + qo(x )))
=Det ( ( D+ qo(x ))
=Det ( 'y Det (le —iqo(x
(5.5)
=Det ) Det (i) — iqo(z))

=Det (i) — igo(z))

This gives:

Ine~% =In Det (i) —iqo(x))
— —Seft =InDet (i) — igo(z))

(5.6)
— Sei = — InDet (i) — igo(z))
— InDet (Z@ +qd — iqa(x))
This can be rewritten [44]:
Set = — InDet | (id — iqo(x)) (1 — M (—HQA)>]
. (5.7)
= —1In |Det (za — iqa(a:)) Det (1 — M (+qu)>]
Using [44] :
Det (1 — ﬁ (—I—qu))
(i) — igo(x)) 5:5)

= 1
= exp (Z —gTr

n=1

(@ ) ])

SHere the relation Det(1 + y) = exp(Tr(In(1 + y))) is used, then In(1 + y) is expanded out. Thank
you to Dr Sanjaye Ramgoolam and Dr Ian Jack for pointing this out.
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this becomes:

Sef = — InDet (2(}9 - iqa(:p)) (1 — M (‘HQA)>]
. g 69
. . 1 1 ,
=—1In [Det (z& — zqa(:c)) exp (; —HTr ((z@—zqa(:c)) (+ZQA)> ] >]
Using In(aA) = In(a)I + In(A) for o € R and I = identity ":

o =1 i o)

Sef = — In [Det (uﬂ — zqa(x))] + ; ﬁTr (W_an(x)) (—i—qu)) ]
= —In [Det (i — igo(z))] + Tr <M (+z’qA)> (5.10)

1 7 . 2
ol <(i<}9—iQU(x)) (HQA)) o

Since the aim is to prove that the abelian Chern-Simons term is induced, and since
the Abelian Chern-Simons term is quadratic in the gauge field A, only the third term
on the right hand side needs to be considered [45]. Denoting the part of Seg that is

quadratic in A as Seg (o) to emphasise that it contains the Abelian gauge term:

, 2
Seft () =+ %Tr <M (—l—qu)) (5.11)

Write —igo(z) := m for convenience [45]:

sain =17y 06) -
1 [ , ' ) |
=+ iTr W (+ig4) (+igd)

TR

The terms in the square bracketes correspond to the Feynman rules in position space.

Switching to momentum space gives:

"Thanks to Panos Athanasopoulos.
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5 [ a2 [ s e (FEEZ) (S )
A e

W @mim< T W
k
(5.13)

Contained within the above expression is:

(p+k)*+m? k> +m?
(i7" pa + i7"k, — iv*m) (i’ v ke — iym)
((p + k) + m2> (k2 4+ m2)
_ =YY Y ke — 4 kY ke + Ay ke
((p +k)*+ m2) (k% + m?)
YAYIpay ' m + Yk m — Yy m?
(0 + k) 4+ m2) (62 + m?)

(5.14)

+

The abelian Chern-Simons term contains e#*? which is related to the gamma matrices
by:

Tr (Y99"yF) = —2e"P (5.15)

Therefore, in order to find the induced Chern-Simons terms, only those terms in

equation 5.14 with three s need to be considered [45]:
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VY Py m A Y kyy m A A ma Yy ke
(0 + k) +m2) (k2 + m?)
_ MY pamn + 9y kym + 4y kem
((p + k) + m2) (k% + m2)
_ Y ppm A APy Rm + Ay Pk pm
((p +k)?+ m2) (k% + m?)
_ MY ppm — APk A Atk T
((p + k) + m2> (k%2 4+ m?)
VP pem
(o -+ k) 4+ m2) (k2 + m?)
VP ppm
((p+K)” +m2) (k2 + m?)

(5.16)

As a result:

Seft (A) 2 Seff (A)(CS)

1A [ &k s —"Y Y P i
-5/ (277)3/ CoEN {< 144(=P)) (((p P 1) (k2+m2)) (ig A, (1))

_(iq?* [ dp [ Pk AP APY
= / (%)3/ @)y <Au<p>>(<(p+ ) '()kumz))(“‘”(p”

(5.17)

Using the identity 5.15 this becomes [45]:
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Seff (A)(CS)
G [ [ 20p,m
2 /(27r)3 / (2m)3 (Au(=p)) (((p+k)2 +m2> (kQ—l—m?)) (Auv(p))

e |, &k 2 Pp,m
T2 /(2@3 _(A“( p)) (/ (2m)3 (((p+k)2+m2> (k2+m2))) (Au(p))

¢ [ dPp ) A3k

- (4,(3)
((0+K)? +m2) (k2 +m2)

It is possible to show that [45]:

(5.18)

/°° a3k 1
T 3
oo (2m) ((p + k)% + m2) (k2 4+ m2) 6519

11 |
=———arcsin | ————
471'2 ‘p‘ <‘ /p2 + 4m2
The proof is lengthy, and is written in appendix C.1. Using equation 5.19, equation

5.18 becomes:

Seft (A)(CS)

2 s, |
= —(]2/ (;ZWI))E; (Au(—P)) <2m€NVppp471m.]1?arcsin (\/l%) ) (AV(P))]

2 3 I m
= —(]2/ (;lﬂ’l))g (AM(_p)) (el‘l’ppp;mparcsin (%) ) (Az/(p))]

(5.20)
The Taylor expansion of the arcsin term is taken:
[od 3 3¢5  5al
i x a a a
arcsin(z) = / Vg =a+ 5 + 0 + 15 + .. (5.21)
0
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giving:

oy, LM vesin | P
2mi [p| Vp? A+ dm?

3
L om p| 1 p|
= ePp,— +- + 5.22
Pomilpl \ \/p? +4m? 6\ \/p? + dm? (5-22)
3
1 m 1 m1 Ip|
o wp, pvp, = 07 i
< PPomi Vp? + 4m? 7 p| 6 (\/p2+4m2 "
Taking the long wavelength (p — 0) and large mass (m — oo) limit gives [45]:
1 m p|
e"Pp,— —arcsin [ ————
Pori |p| ( /02 + 4m2 | |ys0.m-s00
ey, L, Lom Ll )
Pomi \/4m? P2mi [p 6 \ v4m?
2
— #Vpppi - P pil m|p| S+
2mi 2|m 271 6
(v4m2> (5.23)
2
— Py - m Py, 1 1mip]
P 4mi |m| P2mi 6 23m3
2
— eHvry 1 m cHvp L mlp|
P 4mi |m| P96mi m2
_ oy Lo (1P
P 4mi |m| m2 )"

The second term is vanishingly small, and so only the first term needs to be plugged

back into equation 5.20:

¢ [ &p )
Seff (A)(CS) = — 2/ (2n)? [(Au(—z?))f Ppmm( v(p)) 520
2 3 :
__ ¢ 1 m [ dp o)) P
- 2 Ari |m’ (27_‘_)3 [( M( p)) € DPp (A (p))]
Switching back to coordinate space ( A, (p) = A, (z), pp, = —i0,) gives:
q2 1 m . 3 uup
Set (A)(CS) = — 5= (=) [ dz"PA,(x)0,A,(x)
2 A7 |m)|
) (5.25)
¢ 1 m

Bz P A, (2)0,A,(7)

2 dr|m]|
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Using e#’P = —elf:

? 1 m

Seﬁ‘ (A)(CS) = — ggm /dgl' EHPVAM(Z')apAV(ZL‘) (526)

Relabelling the dummy indices for aesthetics [45]:

1 m
2 4w |m]|

Seft (A)(CS) = — 3z P A, (2)0, Ay (x) (5.27)

Interpreting the result: Pauli-Villars regularisation gives the regularised action as [45]:
Re .
Seir (ay(cs) [4:m = 0] = Seq (a)(cs) [A,m = 0] — im Seqr (a)(cs) [4, M] (5.28)

The second term on the right hand side corresponds to equation 5.27. It is what is
taken away from the low energy action to give the regularised low energy action. The

result is that the low energy action has the following term added to it:

@1 m

Induced CS-term = — W%gnoo Sef (A)(CS) = EEW B GWPAM(J;')&,AP(@’) (5.29)

Integrating Out Antimatter in an Abelian Gauge Theory

The procedure for antimatter is very similar to that of matter. Where the matter

contributed a Lagrangian density term:

Qfe?VQ (5.30)

antimatter contributes:

Q™ Q = Qe QT (5.31)

The only difference when figuring out the Chern-Simons contribution is that now the

q has a minus in front. The Chern-Simons contribution is:

(-9 1 m
2 Axm |m|

Induced CS-term = — liin Seff (A)(CS) = dx P A, (2)0, Ay (x)

(5.32)
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Since ¢ = 1 is used in both the matter and antimatter cases, and since —q is squared
in the above expression, the upshot is that the Chern-Simons term contribution is the
same if matter is integrated out or if anti-matter is integrated out, provided the mass

terms m of the matter and antimatter have the same sign.

5.2 Inducing Non-abelian Chern-Simons Terms

Integrating out matter or antimatter can induce non-abelian Chern-Simons terms in

the low energy effective action.
Integrating out Matter in a Non-abelian Gauge Theory

In the non-abelian theory the matter term includes:

Tr (QTquQ) (5.33)

With the trace over the gauge indices:

Ql () @ (5.34)

J

where:

(") =1+ (av7) + % (av2) (av]") (5.35)

Here Vj, =Ve (Ta)]j'»/7 with a =1, ..., N.. Amongst the terms in the superfield

expansion is:

£3 = iy(w) (106 + ah’ (@) — iao) (2)) ! () (5.36)

Following the same methods as in section 5.1 gives the induced Chern-Simons term:

(]2 1 m 3. MV

2 Inm d’x e"PTr (Au(x)0,Ap(x)) (5.37)
where A]j = Ac (Tn) ]J ". However this is not the whole story. Recall that, for the
abelian case, only terms that were quadratic in the gauge field were considered. The
cubic gauge field terms could have been considered also, and would have given rise to

the induced term:
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2
g 1 m 3 uvp 2
—_ Tr| A A (x)A .
2 I ] d°z e 3 w(@)Ay(x)Ap(2) (5.38)

However this term is ignored in the abelian case [45]. This is because the A,, A, and
A, commute with each other, and ¢**” is antisymmetric, so the term disappears. In
the non-abelian case (where AJJ = Ae (T,) ]3 /) the gauge fields do not commute, and so
both 5.37 and 5.38 are kept. This gives the induced term:

2 m
C o [ m (@04 + 24D A A)) (5.39)

which is the non-abelian Chern-Simons term.
Integrating out Antimatter in a Non-abelian Gauge Theory

As for the abelian case, the only difference between integrating out matter and
antimatter is that ¢ acquires a negative sign in front for antimatter. Again, this is

only written symbolically since (—q)2 = (—I)Q(q)2 = g%

“2 1 m
<2q> ;ﬂm‘ i P Ty (Au<x>ayAp<x>+f,)Au(:c)Au(:c)Ap(x)) (5:40)

Integrating out Matter and Antimatter in a Non-abelian Gauge Theory

with Ny Flavours

The generalisation to multiple flavours is very straightforward. The terms are simply
summed over the N different flavours. For example, for Ny flavours in a non-abelian

gauge theory, there are N; matter terms:

QL (V) QU+ @1y (V)] Q% 4+ QY (V)T @Y (5.41)

where:

by . 1 - 11
VI
(eq’V)j =1+ (qu]J ) t3 (qu;//> <%qu ) (5.42)
For each of these flavours of matter that are massive, there is a term 5.39. So in total
there could be Ng such terms contributed. The generalisation is the same for
antimatter; for each massive flavour, a corresponding induced Chern-Simons term

5.40 is added to the effective regularised Lagrangian density.
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5.3 Fractional Chern-Simons Level

As will be seen in part III, depending on the particular brane configuration used,
sometimes the induced level of a gauge group is fractional. It should be noted that a
fractional Chern-Simons level is acceptable for abelian theories, however, for
non-abelian theories, it is inconsistent with ‘level quantisation’ [41]. Level
quantisation is explained further in appendix C.2. Note, there are some special cases
where fractional Chern-Simons level is permitted in the non-abelian theory, but these

cases are not important to this text.
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6 3d Effective Field Theories from Branes

Having discussed the types of branes that exist in ITA and IIB string theories (section
3), as well as some of the relevant field theory (sections 4 and 5), it is important to
determine how strings ending on the branes give rise to particular field theories. This
section will explain the relationship between branes and field theory, eventually
building up to brane configurations that give rise to low energy (1 + 2)-dimensional
field theories exhibiting Aharony or Giveon-Kutasov duality. Such brane

configurations are then used throughout the results section.

6.1 Strings on Dp-branes

An open bosonic string with both ends on a single Dp-brane contributes a negative
squared mass (imaginary mass) groundstate tachyon [10, 11, 38]. It also contributes
((p+ 1) — 2) massless states corresponding to the independent transverse components
of a photon. The gauge field of the string on the Dp-brane gives rise to a

(p+ 1)-dimensional U(1) gauge theory on that brane [38]. Finally, there are D —1—p
massless scalars [10, 11, 38]. All these fields exist in a (p + 1)-dimensional spacetime.
That is, they ‘live’ on the Dp-brane. Supersymmetry can be added to the this

(p + 1)-dimensional field theory to find the corresponding fermionic degrees of
freedom. GSO projection is then used to remove the tachyons and ensure
supersymmetry. When considering the low energy effective theories that arise on
branes, only the massless degrees of freedom will be kept. In this case, the string
begins and ends on the same brane, allowing the string to shrink to zero length.

Consequently, all degrees of freedom are massless.
Multiple Dp-branes and Chan-Paton Factors

When considering theories with multiple branes it will be useful to introduce the
concept of Chan-Paton factors. One endpoint of the string is labelled ¢, and the other
is labelled j. Allow these labels to run over i, = 1, ..., N.. An open string state can
then be written [10]:

N
Ipsa) = Y Ipiig) A (6.1)
ij=1
The matrices Aj; are called ‘Chan-Paton factors’ [10]. When amplitudes are
calculated with these Chan-Paton factors included in the states, the resulting
amplitudes are invariant under U(N,) transformations. This offers a clue as to how to
interpret the Chan-Paton indices ¢ and j. If there exist N, coincident Dp-branes, that

is, branes that extend along the same spacetime directions and which exist at the

93



same transverse coordinates &, then one string endpoint can end on one of N, different
Dp-branes, as can the other string endpoint. Then ¢ and j can be interpreted as a
label for which brane the string endpoints end on. For example ¢ = 1 and j = 2 would
mean that one end of the string ends on the first Dp-brane, whilst the other end of
the string ends on the second. To see this, recall that a U(N,) gauge symmetry
corresponds to N2 gauge bosons. Now imagine there is only one Dp-brane,
corresponding to N, = 1; then the only combination of ¢ and j is i = j = 1,
corresponding to both ends of string on that Dp-brane. This corresponds to only one
kind of open string state, and, as mentioned above, this string state comes with a

single massless vector boson. Therefore it gives rise to a U(1) gauge theory.

Dp-brane

XP*nd

T[‘a
ns Ve
W
j=1 ]

Figure 2: A single Dp-brane gives N, = 1 and corresponds to a U(1) gauge theory.
The arrow on the string represents its intrinsic orientiation.

\‘

Alternatively, consider a stack of two Dp-branes; then i, j = 1,2. This results in four
combinations of strings between the Dp-branes. i, j = 1 corresponds to a string with
both ends on the first Dp-brane, ¢, j = 2 corresponds to a string with both ends on
the second Dp-brane, i = 1, j = 2 corresponds to a string beginning on the first
Dp-brane and ending on the second, and, finally, ¢ = 2,j = 1 corresponds to a string
beginning on the second Dp-brane and ending on the first. Note that the strings have
an intrinsic orientation in this description, so a string from the first to the second is
distinguishable from a string from the second to the first. Consequently, there are
four different vector bosons from the four different string configurations between the

branes, corresponding to a U(2) gauge theory.

8Such branes are said to exist in a ‘stack’.
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Dp-brane 1

Dp-brane 2

Xp+’l,...,d

Tr,
ans
Verse direCt'
0n s

Figure 3: Two Dp-brane give N, = 2 and correspond to a U(2) gauge theory. The
arrow on the strings represent their intrinsic orientiation. The branes are drawn as
separated in the transverse directions, this was just to show that they are distinct, and
to clearly show the strings between them. In actuality, the left and right branes are
coincident, with zero separation in the transverse directions.

By a similar analysis of the permutations of ¢ and j values, it is clear that N, = 3
corresponds to three Dp-branes, which give rise to nine different string configurations
and nine gauge bosons. That is, a U(3) gauge theory. In conclusion, a stack of N,

Dp-branes results in a U(N,) theory with N2 vector bosons.

Note that two Dp-branes with a relative separation will have massive gauge bosons
from the strings between them (such strings have non-zero tension, and give rise to
massive vector bosons) [10]. This would correspond to two massive gauge bosons and
two massless gauge bosons. Since, for phenomenological purposes, only low energy
states are considered, massive states from separated branes are often ignored. As a
result, a stack of N1 Dp-branes and a stack of N.o Dp-branes which are separated in
the transverse directions correspond to a U(N,,1) x U(N.z2) gauge theory at low

energies.

The Chan-Paton factors of strings were originally used in describing quarks and
anti-quarks that were joined by a flux tube. They were later applied to the strings in
string theory. Remember that a quark transforms as a 3 under SU(3), and an
anti-quark transforms as a 3 under SU(3) [46]. Similarly, for a string beginning and
ending on a stack of N, D3-branes (for example), one end of the string transforms as
an N under U(N,), and the other end transforms as an N under U(N,). Also, just
as the quark and the anti-quark can take one of three different color, the ends of the

string are attributed with one of N, different charges. The different charges are
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labelled by the Chan-Paton indices 4,5 = 1, ..., N.. As a matter of convention, for a
string oriented from end point ¢ to endpoint j, it is the ¢ end that transforms as a an

N¢, and it is the j end that transforms as an N..

This text is primarily interested in (1 + 2)-dimensional effective field theories. One
way to obtain an effective (1 4 2)d U(N,) gauge theory would be to consider a stack
of N, D2-branes. However the method that will be employed is to consider stacks of
N, D3-branes, giving rise to U(N,) in (1 + 3)d. Then the D3s will be taken to be
finite and small along one direction, thereby freezing out that dimension at low

energies and giving rise to an effective (1 + 2)d U(N.) gauge theory.

Summary:

N, Dp-branes in a stack correspond to Chan-Paton indices ¢, =1, ..., N. and a
U(N,) gauge theory with N2 vector (gauge) bosons existing on their

worldvolumes. These gauge bosons transform under the adjoint action of U(N,).

A stack of N.1 Dp-branes and a stack of N.2 Dp-branes which are separated in
the transverse directions correspond to a U(N,1) x U(N.z2) gauge theory at low

energy.

A string with both ends on a stack of N, Dp-branes has one end transform as an
N, under U(N.), and the other end transforms as a N under U(N,).

A stack of N, D3-branes that are small along one direction gvie rise to a 3d

U(N,) effective theory living on the worldvolume of the D3s.

6.2 Flavour Branes

It is important to understand how to add matter fields to the theory. Consider adding
a stack of Ny D5-branes that intersect the stack of N. D3-branes. Since the D3 and
Db5-branes meet, it is possible to have strings between them of zero length (zero
tension). The D3-D3 strings (strings that begin on a D3-brane and end on a
D3-brane) give rise to a U(IN.) gauge theory, as discussed in the previous section.
There are also D5-D5 strings which give rise to NJ% gauge bosons transforming under
the adjoint action of U(Ny) [47]. The coupling of a D5-D5-string has dimensions
(length)P~3 and is proportional to energy EP~3 (where, in this case, p = 5). This
means that, at low energies, the coupling is vanishingly small. As a result, in the low

energy theory, the D5-D5-string interactions can be ignored.

The D3-D5 (or D5-D3) string states transform in the fundamental (antifundamental)
of U(N,) and in the antifundamental (fundamental) of U(Ny) [47]. That is they

transform in the bifundamental of:
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U(N.) x U(Ny) (6.2)

The D3-D5-string transforms as (N¢, N¢), and the D5-D3-string transforms as

(N¢, N¢). To see why the D3-D5 (D5-D3) strings transform like this, consider the
charges at either end of the string. The end of the D3-D5 at the D3-brane (labelled )
transforms as an N and the end at the D5-brane (labelled j) transforms as an Ng.
The Chan-Paton indices are ¢ = 1,..., N, and j = 1,..., Ny. This is completely
analogous to the strings beginning and ending on the same Dp-brane stack mentioned
above. Conversely, the D5-D3 has its end at the D5-brane (labelled i) transform as a
N¢ and the end at the D3-brane (labelled j) transforms as a N¢. The Chan-Paton
indices are ¢ = 1,..., Ny and j = 1,..., N.

However, this description is only accurate at high energies. At low energies the D5-D5
string coupling vanishes and this changes the gauge dynamics. Since the D3-D5
(D5-D3) strings interact with the D5-D5-strings with a strength given by the
D5-D5-brane coupling, at low energies, the interactions stop [47]. In this limit the
U(Ny) gauge symmetry becomes as global symmetry. The D3-D5-string spectra gives
rise to spin 1/2 fermions transforming in the fundamental of U(N.) and with a global
U(Ny) symmetry. Recall from field theory that spin 1/2 fermions with the same mass
are expected to have a global flavor symmetry. The U(Ny) group is interpreted as the
flavour symmetry group of the string fermions. The D3-D5-string fermions are said to
have Ny different flavours. Similarly, the D5-D3-string spectra gives rise to spin 1/2
fermions transforming in the antifundamental of U(N.) and with a global U(Ny)
symmetry. It is no surprise then, that the D5-branes are referred to as a ‘flavour

branes’.

Masses are introduced for these quarks by separating the stack of D5-branes from the
stack of D3-branes. The strings between the two stacks are then forced to have

non-zero length. They acquire a non-zero tension, and the quarks become massive.

Summary

In the high energy theory, a stack of Ny D5-branes intersecting a stack of N,
D3-branes gives a bifundmantal quark transforming in the fundamental of U(N,)
and the antifundamental of U(Ny), and an anti-bifundmantal quark transforming
in the antifundamental of U(N.) and the fundamental of U (Ny).

In the low energy theory, a stack of Ny D5-branes intersecting a stack of V.
D3-branes gives Ny massless quarks that transform in the fundamental rep of the
U(N.) gauge group, and which have a U(Ny) global flavour symmetry, as well as
Ny massless anti-quarks that transform in the antifundamental rep of the U(N.)

gauge group, and which also have a U(Ny) global flavour symmetry.
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To give the quarks non-zero mass, introduce a separation between the D3 and

Db5-branes, such that the D3-D5 (D5-D3) strings acquire non-zero tension.

6.3 A 3d Effective Field Theory from String Theory

The brane configurations of primary interest will be slight variations on the famous
Hanany-Witten brane configurations introduced in [48]. It will prove instructive to

build these brane configurations gradually, whilst explaining the physics at each stage.

6.3.1 An Infinite D3-brane

Consider a D3-brane extending to infinity in the (xq, z1, z2, x¢)-directions [48]. The
theory on its worldvolume is a (1 + 3)d gauge theory. It can be shown that bosonic
strings ending on the brane give rise to a groundstate tachyon,

(p+1) —2=3+1—2=2 massless states corresponding to the independent
transverse components of a vector boson, and p+ 1,..., D — 1 scalars. When
supersymmetry is added to this theory D = 10 becomes the critical dimension and
there are six such scalar states. These scalars correspond to the fluctuations of the
D3-brane in its transverse spatial directions (x3, x4, x5, X7, 3, x9). The tachyon state

is GSO projected out.

This bosonic spectrum is consistent with the bosons that appear in the on-shell vector
multiplet of (14 3)d N = 4 supersymmetry [49]. The vector multiplet contains a 4d
gauge boson, three complex scalars, and four Majorana fermions [49]. The six real
scalars of the string correspond to the three complex scalars of the multiplet. A single
Dp-brane breaks supersymmetry from 32 supercharges to 16 supercharges by reducing
the number of independent components of the supercharges. 16 supercharges
correspond to N = 4 in 4d, so it is not surprising that the bosonic degrees of freedom
match those of the 4d N = 4 vector multiplet. The fermionic superpartners of these

bosons give the four Majorana fermions.

Summary:

An infinite D3-brane along (z1, z2, zg) gives an on-shell 4d N =4 (16
supercharge) on-shell vector multiplet, containing a 4d vector boson, three

complex (six real) scalars, and four Majorana fermions.

6.3.2 A D3-brane Between two NS5-branes

Two NS5-branes are taken to extend in (x1,x2,x3, x4, x5) and are separated by a
finite distance along xg. The D3-brane is taken to extend infinitely along (z1, z2) and
finitely along xg. The D3 brane extents from one NS5-brane to the other, along the

finite zg-seperation.
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x Z7,Tg, Ty

Te

NS5
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Figure 4: A D3-brane between two NS5-branes. The spatial directions z3, x4 and x5,
that the D3 and NS5-branes have in common, could not be drawn, but they exist. As
will be the case with later diagrams, only those dimensions that clearly indicate the
relative orientations of the branes are drawn.

The zg part of the D3-brane can be taken to be small, such that there exists a (1+2)d
low energy field theory rather than a (1 + 3)d one on the worldvolume. This can be
treated as a dimensional reduction. The (1 + 3)d vector boson becomes a scalar b,
and a (1 + 2)d vector boson a,, where ;1 = 0,1,2 [48]. The scalar ‘b’ satisfies[48]:

Oub = Fg (6.3)

The boundary conditions at the D3-D5 boundary affect the spectrum of states [48].
For a D3-brane ending on an NS5-brane, the end of the D3-brane creates a boundary
in (xg,x1,x2), the dimensions that the D3 and NS5-branes have in common. The

xg-direction of the D3-brane is normal to this boundary.

/l/ NS5 (21, %2, ¥3, ¥4, T5)
x3,T4,T5

L
/

: 1, T2

|

—

1

D3 (z1, 22, 26) v

/

Figure 5: Only the relevant spatial dimensions are represented. The arrows represent
those directions in which the branes extend to infinity. The D3-brane is finite in z3 with
both ends ending on NS5-branes. In the diagram above only one of these NS5-branes
is drawn for clarity. The D3-D5 boundary is represented by the thick black line (which
is actually infinite in (21, x2).
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The D3-brane is restricted by Dirichlet boundary conditions in the directions

(z6, 27,28, 9) [48]. These are the directions, along which, the NS5-brane stops the
D3-brane from fluctuating. Six scalars on the D3-brane correspond to fluctuations of
the D3-brane in its transverse spatial directions (x3, x4, x5, 7, g, T9). The D3-brane
ending on the NS5 results in three of these scalars, corresponding to (x7,xs, z9), being
restricted by Dirichlet boundary conditions and disappearing. On the other hand, the
scalars corresponding to (z3, 4, x5) are subject to Neumann boundary conditions and

survive.

How about the vector boson? Consider the 4d vector boson A¢ (here £ =0,1,2,6, is
used in place of 1 = 0,1,2) [48]. The corresponding field strength is given by F,,.
The NS5-branes impose a Neumann boundary condition on Fg,. The effect of this is
that those components of Fg,, where one index corresponds to one of the boundary
directions, become zero. The boundary runs along (zg, 1, x2), so, the result is that
F,6=0,p=0,1,2. Using equation 6.3 this means that Neumann boundary

conditions give b = 0.

So, for the D3-brane between NS5-branes, the field b and the (z7, zs, z9) scalars

disappear.

Supercharge analysis shows that the D3-brane between two NS5-branes preserves
eight supercharges, corresponding to N = 2 in (1 + 3)d, and to N =4 in (1 + 2)d. So,
to start with, a 16 supercharge (1 4 3)d theory was considered on the infinite
D3-brane worldvolume. Then, by having the D3-brane shortened in the z¢ and ending
on NSbH-branes, this supersymmetry was broken to eight supercharges and
dimensional reduction occured ((1+ 3)d — (1 + 2)d). Now consider the (1 + 3)d
on-shell N =4 (16 supercharge) vector multiplet which contains a (1 + 3)d gauge
boson, three complex scalars, and four Majorana fermions, which corresponded to the
infinite D3-brane worldvolume theory ((1 4+ 3)d). Dimensional reduction to an N = 8
3d (also 16 supercharge) theory would give an on-shell vector multiplet containing a
3d vector boson, seven real scalars and eight Majorana fermions. This corresponds to
the spectrum of the finite D3-brane before the boundary conditions at the D3-NS5
intersections were considered; there was a gauge boson a, and a scalar b, as well as
six scalars corresponding to fluctuations in (x3, x4, x5, x7, 23, T9) (see above). Now
this N = 8 on-shell vector multiplet decomposes into a vector multiplet and a
hypermultiplet under the N = 4 subalgebra [48]. The N = 4 on-shell vector multiplet
consists of a (1 + 2)d vector field, three real scalars and four Majorana fermions. The
hypermultiplet consists of four real scalars and four Majorana fermions. The (1 + 2)d
N = 8 theory can be broken to the (1 +2)d N = 4 theory by imposing that either the
N = 4 vector multiplet or the N = 4 hypermultiplet disappears (it would be
impossible to form the N = 8 multiplet with either missing). a, and the (x3, x4, x5)

scalars are assigned to the bosonic part of the (14 2)d on-shell N = 4 vector multiplet,
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whilst b and the (z7,xs, x9) scalars are assigned to the bosonic part of the (1 + 2)d
on-shell N = 4 hypermultiplet. Above it was explained that b and the (x7,xg, x9)
scalars disappear when the D3-brane is made to end on NS5-branes. Therefore the

hypermultiplet disappears, leaving a (1 4 2)d on-shell N = 4 vector multiplet.
Gauge Coupling

The coupling of the ‘electric’® U(N,) gauge group associated with N, D3s between the
two NSbs is given by [48, 50:

2 9s
= - 6-4
9e = 1) (6.4)

where g, is the string coupling and ¢; and ¢y are the positions of the NS5s along zg.

Summary:

A finite D3-brane along (z1, z2, x6) between two NS5-branes (each along
(1,2, 23,24, x5)) gives, in the low energy limit, an on-shell 3d N = 4 (eight
supercharge) vector multiplet containing a vector a,, three real scalars
corresponding to the fluctuations of the brane along (x3, x4, x5) and four

Majorana fermions.

The coupling of the gauge group associated with the D3s is:

2 9s
_ ——_—— 6:5

where t; and 9 are the positions of the NS5s in xg.

6.3.3 A D3-brane Between two D5-branes

Now consider two D5-branes extending in (1,2, x7, zs, x9) and separated by some
finite distance in the zg-direction. Take a D3-brane to extend infinitely in (x1,z2) and

finitely in zg, with each end on the separated Db5s.

T3, Tq,T5

D3 Xr7,T8, L9

D5

D5

Figure 6: A D3-brane between two NS5-branes.

9 Associated with this ‘electric’ theory is a ‘magnetic’ theory which is mentioned in the next section.
The electric and magnetic theories are duals of each other, as discussed in [48].
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As with the NS5-D3-brane configuration of the previous section, the xg part of the
D3-brane can be taken to be small, such that there exists a (1 4 2)d low energy
theory. The (14 3)d vector boson becomes a scalar b, and a 3d vector boson a,,

where 1 =0, 1,2 [48]. The scalar ‘b’ satisfies equation 6.3.

As before, the boundary conditions affect the spectrum of states [48]. For a D3-brane
ending on an D5-brane, the end of the D3-brane creates a boundary in (zo, 21, z2),
the dimensions that the D3 and D5-branes have in common. The zg-direction of the

D3-brane is normal to this boundary.

D5 (x1, 22, %7, 28, T9)
X7,X8,T9

Ty, T2

D3 (21,22, %6) T6

Figure 7: Only the relevant spatial dimensions are represented. The arrows represent
those directions in which the branes extend to infinity. The D3-brane is finite in x5 with
both ends ending on NS5-branes. In the diagram above only one of these NS5-branes
is drawn for clarity. The D3-D5 boundary is represented by the thick black line (which
is actually infinite in (21, x2).

This time the D5-brane stops the D3-brane from fluctuating in the

(3, x4, x5)-directions, so, of the six scalars of the infinite D3-brane associated with
(3,24, 25,27, 28, T9), those associated with fluctuations along (z3,z4,25) have
Dirichlet boundary conditions and vanish. Those associated with fluctuations along

(z7,x8,x9) have Neumann boundary conditions and survive.

The D5-branes impose a Dirichlet boundary condition on the (1 + 3)d gauge boson,
where the components of F¢, with both indices taking values in §, p = 0, 1,2 become
zero (e.g Fpa = 0) [48]. The result is that:

Fu =0 (6.6)

where p, v = 0,1,2. This field strength is associated with the 3d gauge boson a,

mentioned above, so the result is that a, disappears.

Ending the D3-brane on two D5-branes causes the 3d gauge boson a, and the scalars

associated with fluctuations along (z3, x4, z5) to disappear [48]. These are the bosonic
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degrees of freedom associated with the aforementioned (1 + 2)d on-shell N =4 (8
supercharge) vector multiplet. The surviving degrees of freedom are b and the scalars
associated with fluctuations along (z7,zs, x9). These are the bosonic degrees of

freedom of the aforementioned (1+2)d on-shell N = 4 (8 supercharge) hypermultiplet.
Gauge Coupling
The coupling of the ‘magnetic’ U(N,) gauge group associated with N, D3s between

the two D5s is given by [48]:

_Ys
|21 — 22

Im (6.7)
where g, is the string coupling and z; and 2o are the positions of the NS5s along xg.

Summary:

A finite D3-brane along (z1, z2, x6) between two D5-branes (each along
(z1, 22, 27,28, x9)) gives, in the low energy limit, a 3d on-shell N = 4 (eight
supercharge) hypermultiplet containing a scalar b, three scalars corresponding to

the fluctuations of the brane along (z7,xs,x9) and four Majorana fermions.

The coupling of the gauge group associated with the D3s is:

gs

S—L - 6.8
=l (6.8)
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where z; and zy are the positions of the D5s in xg.

D3-branes ending on D5-branes are not considered in the remainder of this text, and

were mentioned for completeness.

6.3.4 A D3-brane between an NS5-brane and a D5-brane

Consider a D5-brane extending in (z1, z2, z7, s, x9) and an NS5-brane extending in
(r1,x2,x3, %4, x5), separated by some finite distance in the xg-direction. Take a
D3-brane to extend infinitely in (z1,x2) and finitely in z¢, with each end on the

separated five-branes.
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X7,T8, Ty
D3

Ze

Figure 8: A D3-brane between an NS5-brane and a D5-brane.

By combining the conditions for D3-branes between NS5-branes and the conditions
for D3-branes between D5-branes, it is clear that all the scalars corresponding to the
fluctuations of the D3-brane in the (x3, x4, x5, 27, g, T9)-directions disappear [48].

The fields a,, and b also vanish, so the low energy theory has no massless states.

The main purpose of mentioning this brane configuration is to make it clear that it

does not give an interesting spectrum of states.

6.3.5 A D3-brane between two NS5-branes and Intersected by a D5-Brane

Now consider two NS5-branes extending in (x1, xe, x3, x4, r5) and separated by some
finite distance in the xg-direction. A D3-brane is taken to extend infinitely in (z1, z2)
and finitely in xg, with each end on each NS5-brane, respectively. In addition, consider
a D5-brane extending along (z1, z2, x7, 3, Tg) intersecting the D3-brane at some point
along xg between the two NS5-branes. Note that this is not a configuration where a

D3-brane ends on the D5-brane; the D3-D5 boundary conditions are not employed.

T3, T4, L5

D3

T

NS5

NS5

Figure 9: A D3-brane between two NS5-branes, with a D5-brane intersecting the
D3-brane.

In section 6.3.2 it was shown, using boundary conditions, that the D3-brane between
the two NS5-branes give rise to a (1 + 2)d N = 4 vector multiplet containing a
(14 2)d vector a,, (n=0,1,2), three scalars corresponding to fluctuations of the

brane along (x3, x4, x5) and four Majorana fermions.

The inclusion of D5-branes does not break supersymmetry any further. D5-branes

along (z1,x9, x7,xs,x9) and NS5-branes along (x1, z2,x3, x4, z5) give an eight
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supercharge theory. The supercharge analysis shows that D3-branes extending in
(z1,x2,x6) can be added with no further supersymmetry breaking. That is, the
supercharge relation for such a D3-brane arises automatically from a combination of
the D5 and NS5 supercharge relations. This could be seen another way: the
NS5-brane and D3-brane Killing spinor relations imply the D5-brane Killing spinor
relation. Therefore the current configuration of a D3-brane between NS5-branes with
a D5-brane intersecting the D3-brane preserves the same supersymmetry as the case
of the D3-brane between two NS5-branes considered in section 6.3.2. Eight
supercharges corresponds to N =4 in (1 + 2)d.

In section 6.2 analysis of the Chan-Paton factors revealed that massless quark
flavours arise from D5-branes intersecting D3-branes. Therefore, with supersymmetry
included, the D3-D5 intersection should give rise to hypermultiplets. Note that, in the
cases above, brane boundary conditions were considered because D3-branes were
considered that were ending on either NS5-branes or D5-branes. However, in this
case, the D3-brane is intersecting the D5-brane, so there are no Dirichlet conditions
imposed on the D3 from the D5. Since the brane configuration preserves 8
supercharges corresponding to N = 4 in 3d, the on-shell hypermultiplet arising from
the D3-D5 string is the 3d on-shell N = 4 hypermultiplet consisting of four real

scalars and four Majorana spinors.

As well as this, due to the D3-brane ending on two NS5-branes, the D3-D3 strings

give rise to the vector multiplet of section 6.3.2.

Summary:

The configuration contains two NS5-branes extending in (x1, e, x3, x4, 5) and
separated by some finite distance in the xg-direction. A D3-brane is taken to
extend infinitely in (x1,z2) and finitely in x4, with each end on each NS5-brane,
respectively. In addition, a D5-brane extending along (x1,xe, 7, xs, 9) intersects

the D3-brane at some point along xg between the two NS5-branes.

The D3-D3 strings give rise to a low energy (1 + 2)d on-shell N = 4 (eight
supercharge) vector multiplet containing a vector a, (1 =0,1,2), three scalars
corresponding to fluctuations of the D3-brane along (z3, x4, x5), and four

Majorana fermions.

The D3-D5 strings give rise to a low energy (1 + 2)d on-shell N =4 (eight
supercharge) hypermultiplet containing four real scalars, and four Majorana

fermions.
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6.3.6 Rotating the Left Hand NS5-brane

Consider starting from the brane configuration of the previous section. Then rotate
one of the NS5-branes (say the left hand one) from its original orientation along

(r1, 22,23, 24, x5) to (x1,22, 23,28, 29). The rotated brane is writen with a dash
(NS5-brane) to distinquish it from the non-rotated NS5-brane. Supercharge analysis
shows that this breaks SUSY from eight supercharges to four.

I
|
xr3
I
I

D5

7
:><
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NS5

b]

NS5

Figure 10: A D3-brane between an NS5-brane and an NS5-brane, with a D5-brane
intersecting the D3-brane.

Before the NS5-brane was rotated, the configuration was shown to contain a (1 + 2)d
on-shell N = 4 (eight supercharge) vector multiplet (see the previous section). Under
(1+2)d N =2 (four supercharges) supersymmetry this vector multiplet decomposes
into a vector multiplet and an adjoint chiral multiplet. The on-shell (1 +2)d N =2
vector multiplet contains a vector field a,, a real scalar field and a Dirac fermion. The
on-shell (14 2)d N = 2 chiral multiplet contains two real scalar fields and two
Majorana fermions. The off-shell (1 + 2)d N = 2 supermultiplets can also be
considered. The off-shell vector multiplet contains a (1 4 2)d vector, a real scalar, a
Dirac fermion (two complex components), and an auxiliary real scalar D-field

[51, 52, 53]. The off-shell chiral multiplet contains a complex scalar, a Dirac fermion

(two complex components), and an auxiliary complex scalar F-field [51, 52, 53].

When SUSY is broken, by rotating the left hand NS5-brane, one of these 3d N = 2
supermultiplets disappears from the low energy theory. Specifically the adjoint chiral
multiplet becomes massive. The (1 +2)d N = 2 vector and adjoint multiplets that
make up the (1 4+ 2)d N = 4 vector multiplet are required to have the same mass in
order for N =4 SUSY to be preserved. By making the N = 2 adjoint chiral multiplet
massive, and leaving the N = 2 vector multiplet massless, the N = 4 SUSY is broken
to N = 2.

Define the complex planes [38, 54]:

v =1x4 + 15 (6.9)
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w = Tg + ix9 (6.10)

Using this description the NS5-brane extends along v and exists at w = 0, whilst the
NS5-brane extends along w and exists at v = 0. A rotation of the left NS5-brane,

from its original (x1,xe, x3, x4, x5) position, corresponds to [38, 54]:

(v, w) = (vg, wp) (6.11)

where:

vg = vecos(f) + wsin(6) (6.12)
wg = —wvsin(#) + wcos(6)

The angle 6 determines whether SUSY is broken or not. 8 equal to multiples of 27
radians (including 0 radians) corresponds to unbroken SUSY (8 supercharges), whilst

other angles correspond to broken SUSY (to 4 supercharges).

The pre-rotation NS5-brane is chosen to be located at w = 0. The NS5-brane rotated
through an angle 6, exists at wy = 0. Using equation 6.12, the rotated NS5-brane
gives [38, b4]:

—wsin(#) + wcos(f) = 0 (6.13)
= w = tan(f)v

The rotation of the brane is continuous, so it should not be surprising that the brane
angle corresponds to the some sort of continuous physical parameter [38, 54]. Since

the pre-rotated NS5-brane preserves the scalars of the (14 2)d N = 2 (4 supercharge)
adjoint chiral multiplet, and since the NS5'-brane eliminates these scalars, it is fitting

to write the adjoint chiral multiplet mass as:

pu = tan(0) (6.14)

When 0 = 0 the NS5-brane extends along (x1, x2, 3, x4, r5) and the adjoint chiral
multiplet, and its scalars, are massless. This preserves the 3d N = 4 (8 supercharge)
theory. On the other hand, § = /2 corresponds to the NS5'-brane running along
(21,2, 3,28, 9). The adjoint chiral multiplet, and its scalars, have infinite mass,
and SUSY is broken to (14 2)d N = 2 (4 supercharges) [38, 54]. The adjoint chiral

multiplets are integrated out when considering the low energy (1 + 2)d theory.
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With SUSY now reduced to (14 2)d N = 2 the D3-D5 strings give rise to a low
energy (1 + 2)d on-shell N = 2 chiral multiplet containing two real scalars, and two

Majorana fermions.

The configuration consisting of NS5-branes along (x1, x2, x3, x4, x5) and
D3-branes along (z1,x2,2s) gives a (1 +2)d N = 4 (eight supercharges) vector
multiplet.

Rotating one of the NS5-branes by an angle 0 in the (x4, z5) — (xs,x9) plane gives
a mass of p = tan(f) to the (1+ 2)d N = 2 adjoint chiral multiplet, thereby
reducing SUSY to (14 2)d N = 2 (four supercharges).

The D3-D5 strings give rise to a low energy (1 + 2)d on-shell N = 2 chiral

containing two real scalars, and two Majorana fermions.

6.3.7 Introducing Massive matter by Introducing a D3-brane D5-brane
Separation - The Naive Approach

The configuration considered in the last section was that of a D3-brane between an
NS5-brane and an NS5-brane, with a D5-brane intersecting the D3-brane. Consider
the same configuration with /N, D3-branes and Ny D5-branes:

a1 | s | 23| 2a| @ s | 2y
Ny Dbs
NS5 [iifi]ifi
o NS5 i || i
Ne D3s D5 | il ilili
L6 D3 [ifi f

NS5

NS5

Figure 11: The brane configuration that gives rise to a (1+2)d four supercharge U (N,)
effective field theory containing N; massless flavours. In the table the i’s correspond to
those directions in which a brane extends infinitely. The f in the table indicates that
the D3-branes extend finitely in the zg-direction.

In order to introduce massive matter, a gap needs to be introduced between D3 and
Db5-branes, such that they no longer intersect. The result of this is that the D3-D5
(D5-D3) strings become stretched and acquire non-zero tension, thereby giving mass
to the groundstates in their spectrum. The most obvious way to introduce a D3-brane

D5-brane gap would be to simply move the D5-branes away from the D3-branes in
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either the x3, x4 or xs-directions [55]. The displacement in the x3-direction
corresponds to a real mass for the quarks, whilst a displacement in the x4 and
x5-directions corresponds to a complex mass for the quarks. The real mass is given by
the ‘vector mass’ my mentioned in section 4.6 [37]. The complex mass corresponds to

Lagrangian density term:

/ d*0m.QQ (6.15)
mentioned in equation 4.2.

How about the axial mass m4 that was mentioned in section 4.67 This can be
understood by considering the D5-branes moving to the left along zg until they
intersect the NS5-brane [37]. They can then split into two halves, with one half
displaced upwards in the xs-direction, and the other displaced the same distance in

the opposite direction. Consider the (naive) picture below:

Ny D5*s

4 = i — —
m; = Mg, Mi = —Mg, 0= —My

/ \

N, D3s

- m; =m; =0=0

- i =i =
m; = —Mg, M; = Mg, 0 =1Mg

Ny D57s

!

ot

NS5

Figure 12: A naive method for splitting the D5-brane in two on the NS5-brane.

Recall that, for general N. and general Ny, the semiclassical scalar potential is

minimised by imposing:

(5§’m3’ + 0;1’5@’) ¢ =0 (6.16)

(67 m% — o 87) 69 =0 (6.17)
The N, D3-brane positions determine the N, values of the diagonal of 0'];. The above
diagram gives o} = 0% = ... = UJX,CC = (. The positions of the D5"-branes correspond

to the values of the diagonal matrix mzl/ In this case those values are
my=mi=. = m]]\fv’; = my. The positions of the D5~ -branes correspond to the

values of the diagonal matrix mg’ . In this case those values are
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my =mi=.. = ﬁl]]\\[[ff = mg. The result is Ny flavours of quark with mass m and Ny

flavours of anti-quark with mass m,. Note that, in order for the above equations to

be satisfied, all components of ¢ and g?) must be zero.

6.3.8 Brane Deformations and the (p, q)-web

Unfortunately, the brane configuration in figure 12 considered above is not correct.
The reason for this is that, when one fivebrane ends on another fivebrane, the branes

are deformed; they do not meet at convenient right angles [56].
The Db5-brane ending on the NS5-brane

The D5-brane extends in the (z1, 22, 27, xs, 29)-directions, and the NS5'-brane that it
ends on extends in the (x1, z9, x3, g, 29)-directions [55]. The D5 and NS5'-branes can
be imagined as deforming one another at the point of intersection. Before including

this deformation the picture looks like:

|
I
|
I
|
I
|
x
D5-brane I
|
|
|
|
|
|
|

NS5 -brane

Figure 13: The NS5-brane and D5-brane intersection before deformations are ac-
counted for.

The NS5'-brane has four transverse directions (x4, x5, 26, x7). The x7-direction is the
only transverse direction of the NS5-brane that the D5-brane extends along.
Similarly the D5-brane has the transverse directions (x3, x4, x5, xg), out of which the
NS5-brane extends along x3. As a result, it is expected that the x3 position of the
NS5-brane depends on the x7 position of the D5-brane. z7 can be written as a
function of z3, where the function is required to minimize the worldvolume of the
NS5-brane. For large x3 the two positions of the branes are related by the

one-dimensional Laplace equation [55]:
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V2zy = 6(x3) (6.18)

The solution to this equation is [55]:

1
T7 = §|x3\ +cx3+d (6.19)

where ¢ and d are constants. At large and negative xg the solution is expected to
correspond to a the NS5-brane located at x7 = 0. With this in mind the constants

are chosen to take the values ¢ = 1/2 and d = 0. This gives:

1 1

Therefore, for a D5-brane ending on an NS5-brane at x3 = 27 = 0, the configuration
is drawn [55]:

(«?)

(1,1)-brane

D5-brane I
|
|
|
|
|
|
|

NS5 -brane

Figure 14: The NS5-brane and D5-brane intersection results in a (1, 1)-brane bound-
state.

The diagonal brane is interpreted as a (1,1)-brane. A (1,1)-brane is a (p, ¢)-brane
with p = ¢ =1, and a (p, ¢)-brane is a bound state of p NS5-branes and ¢ D5-branes
[55]. The (1,1)-brane is required to extend at 90° in the (x3,x7) plane in order for
supersymmetry not to be broken. It also extends along (z1, z9, zs, z9). In general a

(p, ¢)-brane must be oriented at an angle § where [55]:

tan(f) = p/q (6.21)

111



in order to preserve supersymmetry.

It is clear that the brane configuration in figure 12 is not drawn accurately. The

D5-branes should actually split along the NS5-brane as in the diagram below [37]:

T M = Mg, My = —My, 0= —M,
—+ i i —
m; =m; =0=0

- i il —
mp = —Mg, M =Ma, 0 =Mq

NS5

Figure 15: The correct splitting of D5-branes on the NS5-brane.

The (p, g)-brane extends at an angle § = tan~'(1/Ny) in the (z3,z7) plane, and also

extends along (1, x2, xs, T9).

Note that not all of the D5-branes need be split as above. An aribitrary number of
the Ny D5-branes can be formed in to the NS5'-D5-(p, ¢) ‘web’, whilst the remaining

can be left in their original position intersecting the D3-branes.
The Bare FI-term from NS5-brane Separations in (x7,xsg,X9)

The Fayet-Iliopoulos D-term coefficient ( is given by the separation of the NS5-branes
in the (z7,zs, x9)-directions [48]:

{ = i — (6.22)

Here w; and wy are the (z7,xg, x9) positions of the two NS5-branes. The Fl-term is
associated with the center of the U(1) € U(N,.) of the gauge group U(N,) that arises
from D3-D3 strings. In this case the (p, ¢)-web introduces a displacement of the two
halves of the NS5'-branes in the z7-direction. The top NS5'-brane moves to positve x7
whilst the bottom one moves to negative x7. The result is that the bare value of ¢
associated with the U(N.) group is given by the difference in z7 positions of the two
NS5’-branes. This is the same ¢ that appears in equation 4.4, and in subsequent
equations in section 4. The value of this coupling in the effective theory is then

adjusted by integrating out massive matter, according to equation 4.15.
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This FI-term ( is actually mirror dual to the mass term that corresponds to the
Db5-brane position in x3. The mirror dual of an NS5-brane extending along

(21,2, 3,24, x5) and at position (z7,xs,x9) = (a,b,c) is a D5-brane extending along
(1,22, 27,28, x9) and at position (z3,z4,z5) = (a,b,c). As well as exchanging
NS5-branes with D5-branes, the duality exchanges the (z3, x4, x5) positions with
(x7,x8,29). The D5-brane position in (x3, x4, x5) corresponds to mass terms for the
fundamental hypermultiplet associated with NS5-D3 strings. Therefore mirror
symmetry also corresponds to m <> f [34, 57]. The (p, q)-web gives rise to D5s
displaced in z3. This displacement corresponds to the real mass m found in the
background vector multiplet (see equation 4.2). The mirror dual is an NS5-brane

displaced in z7, corresponding to a real FI parameter ¢ [35].
D3-branes ending on Fivebranes

When considering brane deformations, the situation is different for a D3-brane ending
on a fivebrane [56]. Consider the D3-brane ending on the NS5'-brane: The D3-brane
extends along (z1, zg, x¢) whilst the NS5'-brane extends along (z1, z2, 3, T3, xg9). The
NS5-brane has one transverse direction zg that the D3-brane extends in, whilst the
D3-brane has three transverse directions (z3,xs,x9) which the NS5-brane extends in.
As a result the x¢ position of the NS5-brane is dependendent on (3, xs, xg9), and the
resulting Laplacian is 3d. Such a solution to the Laplacian gives a constant as

x3,x8, 9 — 00. This constant just corresponds to the NS5-brane position and the
brane is not drawn any differently. The same reasoning applies to the NS5-brane. The
NS5-brane extends along the (x1,x2, 3, x4, x5). This has a transverse direction xg
that the D3-brane extends along, whilst the D3-brane has the transverse directions
(3,74, x5) that the NS5-bane extends along. Again, this results in a 3d Laplacian
and the position of the NS5-brane is just a constant at large (3, 24, z5). Finally, the
Db5-brane extends along (x1, x2,x7, g, x9). This has a transverse direction z¢ that the
D3-brane extends along, whilst the D3-brane has the transverse directions (z7, rs, z9)
that the D5-bane extends along. So, again, the D5-brane position is just a constant at

large (x7,xs,x9) and the brane is not drawn any differently.

6.3.9 A D3-brane between the (p,q)-brane and the NS5-brane

Consider D3-branes with one end at any point along the (p, ¢)-brane and one end on
the NS5-brane, as in figure 15.

Mass Term for the Vector Multiplet from (p,q)-brane Angle

In section 6.3.6 it was explained that rotating the NS5-brane to give the NS5'-brane
means suppressing the x4 and x5 fluctuations of the D3-brane. This corresponds to
making the (1 + 2)d N = 2 adjoint chiral multiplet infinitely massive (the two real

scalars in this multiplet correspond to the x4 and x5 positions of the D3-brane). A

113



similar process occurs when the (p, ¢)-brane is introduced. Before the creation of the
(p, q)-brane, the D3-brane was free to fluctuate in the z3-direction. The (p, g)-brane
restricts fluctuation in this direction, in the same way that an NS5-brane at an angle
in the (z4x5, xgx9) plane restricts restricts fluctuation in the x4 and xs-directions [41].
x3 fluctuations correspond to the real scalar of the 3d N = 2 vector multiplet, and so
the D3-branes between the (p, ¢)-brane and the NS5-brane results in this scalar
becoming massive. However, the configuration preserves SUSY, and so all the fields in
the 3d N = 2 vector multiplet must acquire the same mass [41]. Take the angle of the
(p, q)-brane to be that between the (p, ¢)-brane and the x3 axis:

x3
A

(1, Ny)-brane

Figure 16: The angle of the (1, Nf)-brane in the 3, z7 plane.

The vector multiplet mass uy is proportional to the angle, ¢37 of a (p, ¢)-brane as:

py = tan(¢s7) (6.23)

Above it was mentioned that, in order to preserve SUSY, the angle of the (p, ¢)-brane
in the (z3,z7) plane is related to the number of NS5-branes, p, and the number of
Db5-branes, g, by [55]:

tan(gs7) = § (6.24)

Hence:

(6.25)

D
py ==
q

Making the vector multiplet massive would usually result in a breaking of the gauge

symmetry in the effective theory. However in (1 4 2)d the gauge symmetry can be

preserved by using Chern-Simons terms in the Lagrangian [41, 58].

The Bare Chern-Simons Level from (p, ¢)-brane Angle
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The angle ¢3 7 of the (p, ¢)-brane also determines the bare Chern-Simons level k&
associated with the gauge group of D3s ending on it [37, 41, 58, 59]:

k= g = tan(¢s7) (6.26)

The second equality is required to preserve supersymmetry. Comparing with
equations 6.24 and 6.25 shows that & is equal to the mass of the (1 +2)d N =2
vector multiplet associated with gauge groups of D3s between the (p, ¢)-brane and the
NS5-brane. As stated in equation 4.14 and explained in section 5, the bare CS-level is
subject to adjustment from further factors that are obtained by integrating out

massive matter.
Displaced D3-branes

It is not only the D5-branes that can be displaced, the D3-branes can be moved up or
down along the (p, ¢)-brane. However, since the ends of the (p, ¢)-branes are displaced
in the x7-direction, the D3-branes cannot end further up or further down the

(p, q)-brane and end on the NS5-brane without existing at an angle in the (xg, z7)

plane. This is shown in the configuration on the left in the figure below:

|
|
I Ny D5ts
|
|

(1, Ny)-brane (1, Ny)-brane

Ny D57 Ny D57s

NS5 NS5 N8P

Figure 17: On the left is the configuration for a displaced D3-brane ending on the NS5’,
D5%, (1, Ny) intersection, and on the NS5-brane. This D3 is at an angle in the (g, z7)
plane and breaks supersymmetry. Note that the hexahedron drawn with thin lines
which extend in the (z3,xg, x7)-directions does not represent a configuration of branes,
but is simply there to make the orientation of the D3-brane in the (x¢, z7) plane easier to
see. On the right hand side is the configuration which preserves supersymmetry. A new
NS5-brane is introduced so that the displaced D3-brane extends along the xg-direction,
as required.

The D3-brane is required to extend along the (x1, x2, x¢)-directions in order for
(1+2)d N = 2 supersymmetry to be preserved; an orientation along any other
direction breaks supersymmetry. As a result, in order to preserve SUSY, the

D3-brane still needs to extend along (1, z2,z6) even in its displaced position. To
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solve this a second NS5-brane (extending along (x1, z2, x3, x4, x5)) is introduced,
which is displaced in x7 as far as the left-most end of the D3-brane, and which allows
the D3-brane to extend along (z1,z2,x¢), as on the right hand diagram in the above

figure.
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7 Strong-Weak Dualities in 4d and 3d Field Theories

Strong-weak duality (or ‘S-duality’) initially arose in the form of the electromagnetic
duality of classical electrodynamics together with quantum considerations (the Dirac
quantisation condition). It was then shown that S-duality could be generalised to a
variety of non-abelian and/or supersymmetric theories. Two generalisations which are
of central importance to this text are the Aharony and Giveon-Kutasov dualities of
(14+2)d N =2 field theory. In this section a (very) brief overview of the different
dualities will be presented, along with a description of the Aharony and

Giveon-Kutasov dualities.

7.1 Electromagnetic Duality
7.1.1 Classical EM Duality

For a region with no electric or magnetic charges, Maxwell’s equations are given by

[60]:

d-E=0 (7.1)
. . 0B
OxE——E (7.2)
d-B=0 (7.3)
- - OE
OxB =" (7.4)

where natural units are used. It is clear that these equations are invariant under the

electromagnetic duality transformations [60]:

E—--B B-E (7.5)
The above Maxwell’s equations can be written in manifestly Lorentz invariant form as
[60]:

8, F* =0 (7.6)

8, x P = (7.7)

Here xF*” denotes the Hodge dual of F#”. In this case the electromagnetic duality

transformation is given by:
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F* — xF*  x FW — —FM (7.8)

In order for electromagnetic duality to exist for the case with sources, both electric

and magnetic charges are required [60]:

8, F1 = jt (7.9)

By * M = fH (7.10)

Now the electromagnetic duality transformations are given by [60]:

Fr — xFW  x FW — — (7.11)

L Iy T 1 (7.12)

The magnetic monopole is said to be the electromagnetic dual of the electric

monopole.

7.1.2 The Quantum Electromagnetic Duality as a Strong-Weak Duality

Note that, so far, electromagnetic duality is not a strong-weak duality (S-duality).
Such dualities refer to the equivalence of the strongly coupled limit of one theory to
the weakly coupled limit of another. However, it is possible to show that
electromagnetic duality, supplemented with the Dirac quantisation condition gives
rise to a strong-weak duality [61]. The Dirac quantisation condition relates the

electric charge ¢ with the magnetic charge g by [23, 24, 60, 61]:

_ 4mhn

; nez (7.13)

g

In natural units A = 1. Under electromagnetic duality the electric and magnetic
charges are exchanged; what ever value ¢ was becomes the new value of g and visa

versa [62]:

g—=9 g——q (7.14)

The Dirac quantisation condition means that a theory with large ¢ has small g.
Under the duality transformation this gives a theory with large g and small ¢q. This is

interesting as the large ¢ in the former theory cannot be studied perturbatively.
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However, information about the former electric theory can be garnered by performing
the duality transformation, and then investigating the dual electric theory (with small

q) perturbatively.

As will be discussed, strong-weak dualities can be strange. Sometimes individual
electric quanta (which are fundamental) are dual to composite (non-fundamental)

magnetic charges [61].

7.1.3 Dirac Monopole (Dirac String)

Now there is a problem. The introduction of a magnetic charge means that the
magnetic field has a non-zero divergence. This would mean that a magnetic field can
no longer be described as the curl of A (as B =V x A). Undesirable results occur

when this relation is abandoned.

To preserve the curl of magnetic field, Dirac proposed the ‘Dirac monopole’, also
called the ‘Dirac String’. Classically, the Dirac monopole is indistinguishable from a
semi-infinite and infinitesimally thin solenoid, hence the latter name [60, 63]. The end
of the solenoid resembles the source of the magnetic field. Quantum mechanically
such a solenoid generally exhibits an interference pattern, which would distinguish it
from the magnetic monopole. The special case in which the interference pattern
disappears corresponds to the Dirac quantisation condition (equation 7.13) being
satisfied [60, 63]. Everywhere in space, except at points along the Dirac string,

B =V x A is satisfied. Since this is not the case along the solenoid (at the points
corresponding to the solenoid, the potential A blows up [64]) the position of the Dirac

string is subtracted from the spacetime manifold. This is sometimes called a ‘defect’.

7.2 Montonen-Olive Duality

Remarkably, electromagnetic duality can be generalised to Yang-Mills theories. An
early attempt at generalising the electromagnetic duality to non-abelian gauge
theories was made by Montenon and Olive, when they tried to argue that S-duality
was a feature of the non-supersymmetric Georgi-Glashow model [60]. Whilst there
were many promising features of this theory that suggested a duality, it eventually
became clear that duality did not apply after all. To remedy the issues that were
faced, the N = 2 supersymmetric Yang-Mills theory was considered next.
Unfortunately, the supermultiplet of the magnetic monopole did not contain a spin-1
state necessary for Montonen-Olive duality. Thus N = 2 supersymmetric Yang-Mills
theory was also deemed unsuitable. Next Montonen-Olive duality was considered in
the framework of N = 4 super-Yang-Mills. This theory successfully fulfills the criteria

for Montonen-Olive duality. These models are described briefly below.
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7.2.1 The Georgi-Glashow Theory

This duality was conjectured by Montonen and Olive in their paper [65]. The
semiclassical Georgi-Glashow theory, saturating the BPS bound '°, contains the

following spectrum [60, 66] (table copied from [60]):

Table 3: Particle Properties in the Georgi-Glashow Model

Particle Mass | Electric Charge | Magnetic Charge | Spin
Photon 0 0 0 +1
Higgs boson 0 0 0 0
W4 boson aq +q 0 1
M4 monopole | ag 0 +g 0

q is an electric charge, g is a magnetic charge and a is a complex parameter. The
theory can also contain dyons - particles with both electric and magnetic charge. All
particles in the spectrum have mass ay/q% + g2. It is clear that the theory is left

invariant by the duality transformation [66]:

=9 g——q (7.15)

provided that the W-boson is exchanged with the magnetic monopole. In the above
‘electric theory’ the W boson is a single elementary point particle, whilst the
magnetic monopole is a topological soliton, made out of a collection of excitations

[60, 66, 67, 68]. In the dual ‘magnetic’ theory, the W-boson becomes a soliton made of
numerous excitations, whilst the magnetic monopole becomes a single elementary
point particle. The single point particles have ‘Noetherian charge’ whilst the solitons
have ‘topological charge’ [68]. Since the states saturate the BPS bound, the magnetic
monopole is sometimes called a BPS monopole [69]. In fact the magnetic monopole is
an example of a 't Hooft-Polyakov magnetic monopole [60]. Since the Dirac
quantisation condition still applies, the duality relates a theory with strong coupling

to one with weak coupling (it is an S-duality).
Evidence for Duality:

1) The duality exchanges magnetic monopoles with W-bosons, so it is expected that
the dual theories have similar interactions [66]. This is indeed the case: The monopole

is not self-interacting, but a monopole and an anti-monopole do interact. Similarly,

Y0 All particles in the spectrum have mass equal to the modulus of the central charge.
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equal charge W-bosons don’t interact whilst those with different charges do. The

interactions have been shown to be identical [60].

2) The mass formula for all the particles (including the dyons) is given by [66]:

M = av/¢? + ¢? (7.16)
This is clearly invariant under the duality transformation (equation 7.15).

3) The electromagnetic duality of the spectrum comes as no surprise since the BPS
bound is left invariant under the duality, and since the above spectrum saturates this
bound [60].

Unfortunately, there are features of the duality that bring into question its validity.
Evidence Against Duality

1) Generally BPS bounds and the mass formula change under renormalisation due to
loop corrections [60, 66]. This can result in the BPS equation and the mass formula
no longer being invariant under the duality transformation. Therefore, the spectrum,

which saturates the bound, will no longer be left invariant under duality.

2) In the dual (magnetic) theory the magnetic monopoles play the role of gauge
particles [60, 66]. They would then be expected to have spin 1, as opposed to spin 0.
They need spin 1 in order to be dual to the W-bosons.

A better understanding of strongly coupled physics is required to investigate the loop
corrections and determine the validity of the duality. In order to avoid the problems
mentioned above, the duality can be reformulated in a supersymmetric theory [60].
The bosonic and fermionic renormalisation contributions cancel, avoiding
renormalisation of the mass formula [66]. Also, the correct supersymmetric theory
provides a spin-1 't Hooft Polyakov monopole that could potentially play the role of a

gauge particle in the magnetic theory.

7.2.2 The N = 2 super-Yang-Mills Theory

An attempt to realise a consistent strong-weak duality in a non-abelian gauge theory
was made in [70]. The authors proposed a generalisation of the Montonen-Olive
duality to (1 +3)d N = 2 super-Yang-Mills theory. Unfortunately the attempt was

not successful.
The N = 2 super-Yang-Mills action is given by [66]:
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. B .
L= /d20d20 B2V P — Re Z/d207WO‘Wa +he (7.17)
e? 167
This can be rewritten [66, 70]:
1 __
L= "Tm {7‘ (2/d20d20 P2V + /d20 Wawaﬂ (7.18)
Y
where [66, 70]:
o 4
T— o tim (7.19)

W is the superfield strength related to the N = 2 vector superfield V' by [66, 71]:

1 _
W, = —ZDQDO[V (7.20)

® is the N = 2 adjoint chiral superfield [66].

The on-shell N = 2 vector superfield has the combined field content of the on-shell
(1+3)d N =1 vector multiplet and the on-shell (1 + 3)d N = 1 adjoint chiral
multiplet [49, 71]. The former contains a gauge boson and a Majorana fermion, the
latter contains a complex scalar and a Majorana fermion. The on-shell N = 2 adjoint
chiral superfield contains the combined field content of a (14 3)d N = 1 adjoint chiral
multiplet (a complex scalar and a Majorana fermion) and a (1 + 3)d N = 1 adjoint
chiral multiplet in the conjugate representation (a complex scalar and a Majorana

fermion, both in the conjugate representiation) [49, 71].

The theory contains solitons that are dyons as well as 't Hooft-Polyakov magnetic

monopoles, just like in the Georgi-Glashow model.
Semiclassical Results

The complex scalar ¢ of the adjoint chiral superfield ® can be written in terms of real
scalars A4 and As as [66]:

¢ = 5 (A5 +id4) (7.21)

Take a4 and a5 to be the asymptotic values of A4 and Aj respectively [66]. Then
define a to be the asymptotic value of ¢:

a= % (a5 + iayq) (7.22)
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The BPS bound is given by [66]:

a’ a ,
M > ;\/q2+g2 = ﬂ’e‘lq+zg| (7.23)

where @ is simply related to a by [66]:

d =V2|a| = |as + iay] (7.24)
Here, the relation |q +ig|* = (¢ +ig)(q — ig) = ¢* + g* — |q¢ +ig| = \/¢* + ¢? is used.
Therefore BPS states saturating the bound have mass [66]:

a/ a .
=L v =vai g (7.25)

The first equality shows that the mass is left invariant under the duality

transformation of the charges. The electric charge is given by [66]:

q = Ne€ (7.26)
and the magnetic charge is given by:
4
g= o (7.27)
e

where n. and n,, are integers [66]. Introducing a 6 angle via 7 (see equation 7.19), the

mass is then written:

M = 2|a||ne + mnm| (7.28)

The BPS condition (the mass formula) of this theory can be derived as a result of the
supersymmetry algebra [66]. Since the supersymmetry algebra is valid in both
classical and quantum regimes, states that saturate the bound do not experience
quantum correction to their mass. Naively, this would suggest that the mass formula
is not subject to any change. Actually the parameter a, corresponding to the moduli
space, is only accurate in the weakly coupled regime. In the strongly coupled regime
the mass formula must be modified. Consequently, N =2 SYM theory fails to keep a

consistent mass formula in the strong regime and the strong-weak duality cannot

apply.
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In addition, the 't Hooft-Polyakov monopole is part of an N = 2 ‘BPS multiplet’
containing two spin-0 states and two spin-1 states [66]. The (1 + 3)d N = 2 chiral
multiplet contains four spin-0 states and four spin—% states, and so it is made of two
BPS multiplets. At most the monopole can have spin—%, where as spin-1 is required

for duality with the gauge boson.

In summary, whilst the mass formula is free of quantum corrections, the a parameter
found in the mass formula changes upon transition from the weak to the strong
coupling regime. Furthermore, whilst the magnetic monopole has non-zero spin, the
spin—% it does have is insufficient to make it a magnetic dual of the gauge particle.
The N = 4 super-Yang-Mills theory of the next section succeeds where the N = 2
theory fails.

7.2.3 The N =4 super-Yang-Mills Theory

It was shown in the previous section that N =2 SYM contains a mass formula that
changes in transition between weak and strong coupling regimes. It was also shown
that the magnetic monopoles didn’t have the same spin as the gauge fields. This
prompted Osborn (see [72]) to consider (1 + 3)d N = 4 super-Yang-Mills theory [66].
It was hoped that the greater amount of supersymmetry would give rise to spin-1

monopoles and that changes in the mass formula would not occur.

The N = 4 super-Yang-Mills Lagrangian density is given by [66]:

w

L= / d20d%0 Z 2V d, + —Im ( / dZHTWO‘Wa>

P (7.29)
_ </ d20/ 28, D5 + h.c.)

The above Lagrangian density is written in terms of the (1 + 3)d N = 2 vector
multiplet V" and the (14 3)d N = 2 chiral multiplet ®. See the previous section for
their field content.

As in the N = 2 SYM theory, for BPS saturated states, the SUSY algebra of the
N =4 SYM theory gives rise to the mass formula [66]:

/

M:%\/q“rg2

:\f\aHne + 7|
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As in the N =2 SYM theory, this mass formula is not subject to renormalisation
from loop contributions as the supersymmetry algebra holds true in both the classical

and the quantum theories [66]. The parameter a is not subject to adjustment.

Furthermore, the W-bosons and the magnetic monopoles belong to supermultiplets
with the same field content, and can therefore have the same spin [66]. The N = 4
supermultiplet containing the monopole consists of one spin-1 state, four spin—% and
five spin-0 states [66, 72]. The vector boson belongs in a short supermultiplet with
the same fields. The supermultiplet of the monopole and the short supermultiplet of

the gauge boson are isomorphic [60].

The evidence suggests the existence of an S-duality in (1 + 3)d N =4 SYM theory.

7.3 Seiberg Duality

In 1994 Seiberg proposed ([73]) a new type of S-duality in which the non-abelian
S-duality is applied to N = 1 theories. The idea is that, at high energies, the electric
and magnetic theories do not exhibit a duality. Instead the two theories flow to a

common infra-red fixed point, exhibiting S-duality at low energies.

Consider a supersymmetric QCD theory, called SQCD. SQCD extends the concept of
QCD with an SU(3) gauge group, to include supersymmetry and a more general
SU(N,) gauge group. The name ‘quark’ will refer to a field transforming in the
fundamental of SU(N,.) [73, 74].

7.3.1 S-Duality in the Conformal Window

The bound 3N, < Ny < 3N, is known as the ‘conformal window’ [74]. Call the SQCD
with gauge group SU(N,) and flavour group U(Ny) in the conformal window the
electric theory. The conjectured magnetic dual of this theory is SU(n.) gauge theory
with Ny flavours satisfying n. = Ny — N,.. This duality was originally proposed by
Seiberg in 1994 [73].

For the electric SQCD, denote the quarks as @, the anti-quarks as @, and the meson
(QQ boundstate) as M [74]. Denote the quarks of the magnetic SQCD ¢, and denote
the anti-quarks q. The electric SQCD does not have a superpotential, whilst the
magnetic SQCD has a superpotential [74]:

Wy ~ Mqq (7.31)

Here the subscript ‘m’ simply stands for ‘magnetic’. Note that the magnetic theory
superpotential is written in terms of magnetic SQCD quarks and an electric SQCD

meson. The electric and magnetic theories are only dual to each other at low energies,
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where they flow to a common ‘Banks-Zaks fixed point’ [74]. Importantly the electric
SQCD is asymptotically free, whilst the magnetic SQCD is IR free. The gauge groups
of two dual theories need not match, but the global symmetries of one theory in the
UV should match the global symmetry of the other theory in the IR. The global
symemetries of the electric theory in the UV are (table copied from [74]):

Table 4: Global Symmetries of the Electric SQCD in the UV

Particle | SU(N;) | SU(Ny) | SUNy) |U(1) | U()r
N;—N.
Q 0 0 1 1 i
_ _ B SN,
O m 1 0 1 -

The global symemetries of the magnetic theory in the IR are (table copied from [74]):

Table 5: Global Symmetries of the Magnetic SQCD in the IR

Particle | SU(N.) | SU(N;) | SUNy) | U(1)p | U1)g
q O [ 1 Nf]\ich JJ\\;;
q o 1 0 | 5% =
M 1 0 O 0 |2 o Ne

The meson M is identified with the QQ bound state, but only in the IR where the
duality holds [74]. This can be seen from the canonical dimensions of the fields. In
the UV the canonical dimension of the meson is 1 whilst that of the QQ boundstate is
2. However, when a RG flow is made to the Bank-Zaks fixed point, these particles
pick up anomolous dimensions which adjust both their canonical dimensions to

(3Ny —3N,.)/N¢. The UV meson M, and the IR meson M are related by [74]:

M = QQ = uM,, (7.32)
The superpotential of the magnetic SQCD can be rewritten [74]:
1 _
Wy = —Mqq (7.33)
7

Just as in the N = 2 SYM theory, the holomorphic gauge coupling can be written [74]:
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0 A

where e is the electric coupling. This allows the ‘holomorphic dynamical scale’ to be
defined as [74]:

A = pet?mt/T (7.35)

The holomorphic scale of the electric theory is denoted A whilst that of the magnetic
theory is denoted A. UV consideration of the electric theory and IR consideration of

the magnetic theory relates these scales as [74]:

A3Ne=Ng 3Ne=2Nj _ (_1)Ny=Ne Ny (7.36)

The RHS of the above equation is a constant. Subsequently, as one holomorphic scale
increases the other decreases. Then, as one theory becomes strongly coupled the other

becomes weakly coupled [74].
Quantum Anomalies

An anomaly is a symmetry of a classical theory (for example a gauge symmetry) that
does not extend to the corresponding quantum theory [75]. Mathematically,
symmetries of the classical theory are those symmetries that leave the action
invariant. Subsequently, the classical equations of motion are unchanged by the
symmetry transformation. To say that the quantum theory is not invariant under the
symmetry transformation is to say that the path integral is changed by the
transformation. Since the action is left invariant under the transformation, the
exponential of the action is also left invariant. This means that, in order for a
quantum anomaly to exist, the only part of the path integral that can be left
unchanged by the transformation is the integration measure. Therefore, the

integration measure is the source of the quantum anomaly.

There are different types of quantum anomaly depending on the symmetry in
question. Anomalies can occur for both global or local symmetries (e.g. gauge
symmetries) of the theory. Anomalies can often be cancelled, such that the symmetry
in question applies to both the classical and the quantum theory [76]. This is achieved
by imposing extra constraints on the quantum theory. The exact constraints are

theory and symmetry dependent, and need to be considered on a case by case basis.

’t Hooft Anomaly Matching
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The 't Hooft anomaly matching condition claims that the anomaly of a given theory
should be independent of energy scale. Subsequently, for theories with couplings that
change with energy scale, the anomaly should be the same for all couplings. The idea

was originally proposed by 't Hooft in 1980 (see [77]).

't Hoofts original reasoning went as follows [77, 78, 79]: Consider an SQCD with
gauge group SU(N.) and with a large global symmetry group Gg. This global
symmetry can be gauged (made to be a local symmetry) and, just like for global
symmetries, there can be an associated anomaly. The anomaly is cancelled by adding
matter fields (quarks), called ‘spectators’, that are not coupled to the SU(N.) boson
(not charged under SU(N,)) and which are arbitrarily weakly coupled to the vector
boson associated with the now local Gp. Since the spectators do not transform under
the SU(N,) group, they are unaffected by RG flows of the SU(N.) coupling
associated with changes in scale (changes in energy). The spectators can also be
taken to be weakly coupled to the Gr group at all energies. As such the spectators
are unaffected by RG flow, and cancel the anomaly in the same way at all energies
and at all couplings of the SU(N,) group. The conclusion drawn is that the anomaly
is unchanged also; if it did change the behaviour of the spectators would need to
change in order to compensate, but the spectators are known to have the same

interactions at all scales.

't Hooft anomaly matching has become a useful criterion for assessing whether a
given theory is a candidate for the low energy limit (high energy limit) of another
high energy (low energy) theory [79]. If the anomalies of the two theories do not
match then such a theory is not a candidate. This criterion, as evidence for such
theories being different energy limits of the same overall theory, carries different
weight depending on the theory. In many cases there are numerous candidates, all
with the same anomalies and in this case 't Hooft anomaly matching does not single
out one above the other. For the case of the SQCD with SU(N,.) gauge group, ‘t
Hooft anomaly matching is a particularly strong indicator of a link between the high

and low energy limits [79].
Global Anomalies of the Electric and Magnetic Theories

Evidence for S-duality is given by the fact that the global anomalies of the electric
and the magnetic theories are the same [74]. The global anomalies are gauged (made

to be local symmetries) before the anomalies are calculated.

The anomalies are characterised by their ‘anomaly coefficient’ [80]. For a symmetry

with generator T, the coefficient is defined as:

Agpe = Tr (T{T},, T.}) (7.37)
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where {1}, T.} is an anticommutator. The trace is over all colours and all flavours

[80]. The current associated with the symmetry is related to Agp. by [80]:

A
OnJ) = ﬁeﬂ”aﬁgmnggﬂ (7.38)

For a symmetry of the theory, the current is conserved and the right hand side equals
zero. Subsequently, Agp. # 0 corresponds to a breaking of the symmetry [80]. Each of
the three generators Ty, T and T, can correspond to a different global symmetry. So,
for example T, can correspond to one of the SU(Ny) symmetries, whilst T}, and T¢.
both correspond to U(1)p. In this case one could say that Ag. is labelled by
SU(Ny¢) x U(1)%. Note that there is only one U(1)p symmetry (see tables 4 and 5),
but the associated generator emerges twice in this particular Agp.. A different

anomaly coefficient Aup. can be written for all combinations of the symmetries.

The global anomalies of the electric and the magnetic theory are (table copied from
[81]):
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Table 6: Global Anomalies of the Electric and Magnetic N =1 U(N,) SQCDs

Global Symmetry Electric Anomaly Magnetic Anomaly
SU(Ny)? —(Nf = Nc) + Ny N.
N, 1 N,
1 N;)? ———(N;— N.)= =
U(1)p x SU(Ny) Nf—NC( ! )3 5
N.— N 1 N?
1 Ny)?2 —e Ny - N, -
U(L)r x SU(Ny) N, (Ny )3 oN;
Ny—2N, 1
S TeN,.
TN, Y3
U 0 0
U(l)p 0 0
U(l)p x U(1)% 0 0
N,— N
ULk Loy — NNy —NZ -1
Ny
Ny —2N,
Ny f
+(Nf - NC)2 -1
U(1)3 Ne — Ny 32(1\/ N,)N oNe 4 N2
R Nf f c f N]% c
Ny — 2N,
N2
" ( Ny ) !
+(Nf — Nc)2 -1
N, >N.— N
1 2 1 ¢ ¢ f _2N2
v ve | (55 ) Y :
X 2Nf(Nf — Nc)

In the table above, a quick simplification of the expressions in the ‘Electric Anomaly’
column will show that each ‘Electric Anomaly’ entry matches the corresponding
‘Magnetic Anomaly’ entry along the same row. Therefore the anomalies associated

with global symmetries of the electric and magnetic theories match.
Matching of the Moduli Spaces

Further evidence for duality is provided by the matching of the moduli spaces of the
electric and magnetic theories [74]. This can be seen by examining the baryons and

mesons of the electric theory as well as those of the magnetic theory.

Square of the Duality Transformation
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Another check for the duality is to see if the duality transformations applied twice
returns the original theory [74]. For example, beginning with the electric theory, the
duality transformation gives the magnetic theory, then a further application of the
duality transformation should return the original electric theory. It can be shown that
taking the dual of the dual of the electric theory returns the original scaling of the
electric theory as well as the original particle content. For example taking the dual
gives the superpotential that appears in the magnetic theory, then taking the dual

again allows this superpotential to be set to zero.

7.4 Aharony Duality

Seiberg duality can be generalised to (1 + 2)-dimensional field theories. The type of
duality that is obtained depends on whether Chern-Simons terms are included or not.
For theories without such terms, the duality obtained is called ‘Aharony duality’ (see

[2] for the original paper).

The electric theory is a (1 +2)d N =2 U(N,) gauge theory with Ny chiral multiplets
(); in the N representation and Ny anti-chiral multiplets Q; in the N, representation,

where i,7 = 1,..., Ny [2]. The Higgs branch is parameterised by mesons:

M= QQ' (7.39)

which are gauge singlets (gauge invariant) under U(N,) [34, 2, 82]. The Coulomb

branch is parameterised by the chiral superfield monopole operators [2, 82, 83]:

Vi~ o9 (7.40)

Vo~ 29 (7.41)

where ¥ = 0 + i7. o is the real scalar belonging to the (14 2)d N = 2 vector
multiplet, v is the scalar dual of the gauge boson that exists in the (1 +2)d N =2
vector multiplet [82]. Such a duality between the scalar and the vector field is unique
to (1 4 2)-dimensions, and is not part of the S-duality currently being explained.
Finally, g is the coupling of the gauge group [82].

The global symmetries, after quantum corrections, are given by (table copied from

[2]):
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Table 7: Global Symmetries of Electric SQCD

Particle | U(1)y | SU(Ny) | SU(Ny) | U(1)a Ul)r
Q 0 Ny 1 1 0
Q 0 1 Ny 1 0
M 0 Ny Ny 2 0
Vi +1 1 1 ~Ny | Ny —N.+1
V_ ~1 1 1 —Ny | Ny —N.+1

The magnetic dual theory is (1 4 2)-dimensional N =2 U(Ny — N.) with N flavours
of quark ¢; in the N¢ — N representation of U(Ny — N,) and Ny flavours of
anti-quark q? in the Ny — N, representation. Note that the magnetic gauge group is
U(N¢ — N.), the same as in the (1 + 3)d Seiberg duality described in the previous

section.

The global symmetries after quantum corrections are given by (table copied from [2]):

Table 8: Global Symmetries of Magnetic SQCD

Particle | U(1); | SU(Ny) | SU(Ny) | U(1)a U)r
q 0 Ny 1 -1 1
q 0 1 Ny ~1 1
M 0 Ny Ny 2 0
V +1 1 1 Ny | Ny—N.+1
V_ -1 1 1 Ny | Np—N.+1

Here V, and V_ are the Coulomb branch parameters of the dual theory ( the
monopole operators of the magnetic theory) [2, 83]. The M, V and V_ field of the
electric theory are gauge singlets under the U(Ny — N.) group of the magnetic theory
[2]. In the magnetic theory M is interpreted as a fundamental field, whilst, in the
electric theory, it is a composite of @ and Q). A magnetic theory meson (¢g) can be

considered as well, however it does not appear in the electric theory.

As was the case for S-duality in (1 + 3)-dimensions, the magnetic theory contains a

superpotential. In this case it is given by [2]:

W = Miq'gi + Vi Vo + V.V, (7.42)
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The presence of the monopole operators in the superpotential (and so, in the

Lagrangian) is a weird feature of the magnetic dual theory.

Tests of Aharony Duality:

The dual of the dual gives the original theory [2].

The moduli spaces of the electric and magnetic theories match [2].
Matching of the global symmetries [2].

Matching of the partition functions of electric and magnetic theories with non-zero

real masses and non-zero Fl-terms [83, 84].

Matching of the superconformal index [83, 85].

7.4.1 Aharony Duality with Adjoint Matter

Aharony duality was also formulated for the case of (14 2)d N = 2 field theory

containing adjoint matter [86].

As before, the electric theory is a (1 +2)d N =2 U(NN.) gauge theory with N chiral
multiplets @; in the N representation and Ny anti-chiral multiplets Q; in the N¢
representation, where i,i = 1,..., N ¢ [86]. There are also the monopole operators V.
and V_, and M is composite field (meson). In addition there is the adjoint chiral
multiplet ®.

The electric theory contains the superpotential [86]:

_ - Ci n+l—i
We_gn_i_l_z_Tr (@) (7.43)

With the inclusion of adjoint matter, the magnetic dual theory is a (14 2)d N =2
theory with a U(nNy — N.) gauge group [86]. The magnetic theory contains chiral
multiplets ¢; in the nN¢ — N representation and anti-chiral multiplets g; in the
nN¢ — N, representation. There are also the monopole operators V, and V_, and M
is a fundamental field. In addition, there is an adjoint multiplet ®. The magnetic

theory includes a superpotential [86]:

n—1 n—1
Wi, = Trdnt! + Z qui)n—l—]q + Z (V+,i‘77,n+17i + Vf’if/ﬁnflf@') (7.44)
=0 i=0

As before, this is an IR duality for zero Chern-Simons level (k = 0).
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7.5 Giveon-Kutasov Duality

For theories with non-zero Chern-Simons level the S-duality is called a
‘Giveon-Kutasov duality (see [3] for the original paper). The electric theory is a
(1+2)d N =2 U(N,)j gauge theory with Ny chiral multiplets @; in the N¢
representation and Ny anti-chiral multiplets Q; in the N, representation, where

i,i=1,..., Ny. Here the subscript k& denotes the Chern-Simons level.

The global symmetries are SU(Ny) x SU(Ny) x U(1)a x U(1)r x U(1); [3]. As was
the case in the discussion of Aharony duality, the Higgs branch of the Giveon-Kutasov

duality is parameterised by the meson:

M} = QQ (7.45)

and the Coulomb branch is parameterised by the chiral superfield monopole operators

[83]:

Vi~ eSl9 (7.46)

Vo~ e 29 (7.47)
where, again, ¥ = o + 7.

The fields of the electric theory transform under the same global symmetries as the

electric theory of Aharony duality (table copied from [87]):

Table 9: Global Symmetries of Electric SQCD

Particle | U(1)y | SU(Ny) | SU(Ny) | U(1)a U)r
Q 0 Ny 1 1 0
Q 0 1 Ny 1 0
M 0 Ny Ny 2 0
Vi +1 1 1 ~Ny | Ny —N.+1
V_ ~1 1 1 ~Ny | Ny —N.+1

The magnetic dual theory is (1 + 2)-dimensional N =2 U(Ny + |k| — N.)—x with N
flavours of quark ¢; in the N¢ 4+ k — N¢ representation of U(Ny + |k| — N;) and Ny
flavours of anti-quark g’ in the N¢ 4 [k| — N, representation [3]. The Coulomb
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branch is parameterised by V. and V_,which are singlets under U(Ny + |k| — Ne)_p.
In the magnetic theory M is interpreted as a fundamental field, whilst in the electric

theory it is a composite of Q and Q.

The fields of the magnetic theory transform under the same global symmetries as the

magnetic theory of Aharony duality (table copied from [87] and using [2]):

Table 10: Global Symmetries of Magnetic SQCD

Particle | U(1); | SU(Ny) | SU(Ns) | U(1)a U)r
q 0 Nf 1 -1 1
q 0 1 Ny -1 1
M 0 Ny Ny 2 0
i +1 1 1 Ny | Ny —N.+1
v -1 1 1 Ny | Ny —N.+1

Unlike Aharony duality, Giveon-Kutasov duality does not contain monopole operators

in the superpotential of the magnetic theory:

W = Mqq (7.48)
Tests of Giveon-Kutasov Duality:
The dual of the dual gives the original theory.
The moduli spaces of the electric and magnetic theories match [3].
Matching of the global symmetries.

Matching of the partition functions of electric and magnetic theories with non-zero

real masses and non-zero FI-terms [84].

7.5.1 Giveon-Kutasov Duality with Adjoint Matter

Aharony duality was also formulated for the case of (14 2)d N = 2 field theory

containing adjoint matter [41, 42].

As before, the electric theory is a (1 4+2)d N =2 U(NN,) gauge theory with Ny chiral
multiplets @; in the N, representation and N anti-chiral multiplets Q; in the N¢
representation, where i,i =1,..., N ¢. There are also the monopole operators V; and
V_, and M is composite field (meson). In addition there is the adjoint chiral multiplet
® [41, 42).
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The electric theory contains the superpotential [41, 42]:

n Ci )
We=)» ————"H~ 4
; n+1-—q (7.49)

With the inclusion of adjoint matter, the magnetic dual theory is a (14 2)d N =2
theory with a U(nNy + n|k| — N.) gauge group [41, 42]. Here n is the integer that

appeared in section 4.7. The magnetic theory contains chiral multiplets g; in the

nN¢ + n|k| — N¢ representation and anti-chiral multiplets g; in the nN¢ + n|k| — N¢
representation. There are also the monopole operators V, and V_, and M is a

fundamental field. In addition, there is an adjoint multiplet ®.

The magnetic theory contains a superpotential which is absent of monopole operators
[41, 42]:

n _ n
Wi = — #Tﬁ)”“_i +) GM;g®" g (7.50)
=0 i=1

¢; and ¢; are functions of ¢;. Alternatively this can be written [41, 42]:

n
CO = 1 -
W, = ————Trd"t M;gd" " 7.51
m=— +; g0 g (7.51)

As before, this is an IR duality for k # 0.
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8 Theories with Massive Fundamental and Antifundamen-
tal Matter

In [4], configurations of the form of the right hand diagram in 17 are considered, with
various numbers of D5-branes and D3-branes displaced along the x3-direction. When
a D5-brane is displaced, it becomes part of a (p, ¢)-NS5-D5-web; one half of the brane
is displaced in the positive z3-direction and labelled as D5, whilst the other half is
displaced in the negative x3-direction and lablled as D5~. When a D3-brane is
displaced, the whole brane is moved either in the positive z3-direction or in the
negative xs-direction. In this section a variety of such configurations are considered.
The massive and massless states that arise from these configurations are found. The
induced Chern-Simons terms that arise in the low energy theory are determined, and

the resulting flows between Aharony and Giveon-Kutasov dualities are stated.

Notation: Throughout this section all 7 indices (including those with dashes) are
flavour indices. All j, k, I, m, n, p, ¢ indices (including those with dashes) are colour

indices.

8.1 One Displaced Flavour Brane

Consider the simplest non-trivial case first: Out of the Ny D5-branes, take the N}h
Db-brane to be displaced along the x3-direction. The D5-brane splits into two parts,
with a D5" at 3 = m and a D5~ at 23 = —m. These positions correspond to

m]]\\% = m and Th]]\\% = m respectively. It is then possible to look at a number of cases,
corresponding to different numbers of D3-branes displaced along the 3 in either the

positive or negative direction.

8.1.1 No Displaced D3-branes

For the case of one displaced D5-brane, the simplest possibility for the D3-branes is to
have none displaced in the x3-direction. This case will be explained in detail, then, for
brevity, future sections will only display the results: The D5-branes labelled by the
flavour indices 1,..., Ny — 1 are at x3 = 0, corresponding to

Ng—1 ~ ~ ~ Ng—1 . .
mY,m3, ...,mN’;_l = mb, m3, ...,mNJ;_l = 0. The N}h D5-brane is displaced and

split into a D5 at 3 = m and a D5~ at 3 = —m, corresponding to
m]]\\f,’; = mNJ; = m. The D3-branes labelled by the colour indices 1, ..., N, are at

x3 = 0, corresponding to aﬁ, 022, e 0%2 = 0. The configuration is given by:
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p NS5's

T3

z7
(p, 1)-brane

Z6

D57s

p NS5's

Recall that the following equations (4.51 and 4.52) need to be satisfied:

(5§'m@’ + a§’5§’> ¢ =0 (8.1)
(5§'m§' - o=§.’5§’> $ =0 (8.2)

where ¢; are chosen to equal one for all i =1, ..., Ny, where m, m and o are diagonal
matrices (they are only non-zero when their lower and upper indices match), and
where 7,7 =1, ..., N.. The scalars of the chiral and anti-chiral multiplet are set to
zero (¢h) = q~5” = 0). Subsequently, a];, m”zl and m@’ can take any value, and the
positions of the D3-branes and D5-branes are unrestricted. In this case all a]j/ equal

zero, m’, and M’ equal zero for i =1, ..., Ny —1, and m’ and m’ equal m for i = Ny.

The mass terms of the chiral (matter) multiplets are given by:

Ny Ny _

Vie ) 6i(mi+00:) ¢+ ) i (1iv; — 06:)°
i=1 i=1 (8.3)

=Gur o (5 miy + o067 ) (8 ml + 07 67) 679 ‘
tan g (8510 — 51 ) (8 — o7 7) 59

where 7,4,7" = 1,..., Ny and where j, j/, j” =1, ..., N.. Consider, first, the Ny — 1

Db5-branes. It is expected that the zero length strings between them and the D3-brane

stack will give rise to Ny — 1 flavours of massless matter. Indeed, m = m = 0 and

o = 0 for the flavours 1,..., Ny — 1. Subsequently, there are Ny — 1 flavours of

massless matter and antimatter transforming in the fundamental and antifundamental

of U(N,).
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The N}h flavour corresponds to the D5% and the D5~ branes in the above diagram.

The D5™ position corresponds to m]]VV’; = m and the D5~ position corresponds to

_N .
m N’; = m. These give the mass terms:

Ve 26,0 (8 m+ (0087, ) (5 m + (0)8% ) o7 (8.4)

Vae 30,30 (% m = (0)8%, ) (& m — (0)87) ) 63+ (8.5)
This corresponds to a flavour of matter and antimatter with mass m each.

All the matter (antimatter) transforms under the fundamental (antifundamental) of
the U(N,) gauge group, due to the stack of N D3-branes.

Matter Content:

Ny — 1 flavours of massless matter transforming in the fundamental of U(N,).

Ny — 1 flavours of massless antimatter transforming in the antifundamental of
U(N.).

One flavour of massive matter, with mass m, transforming in the fundamental of

U(N,).

One flavour of massive antimatter, with mass m, transforming in the
antifundamental of U(N,).

Aharony and Giveon-Kutasov Duality:

In the above brane configuration, the number of NS5'-branes in the web is left

unspecified as p. This is because the Chern-Simons level is determined by:

_b
k=t (8.6)

where ¢ is the number of D5-branes in the (p, ¢)-web. Since the brane configuration
above corresponds to ¢ = 1, in order for k to to be left as general and unfixed, any

number of NS5'-branes is permitted.
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As was explained in section 5.2, integrating out the massive matter field gives rise to

the term:

2 m
qwlﬂm‘ 43z P Ty (A#(mayAp(x) + §Au(x)Au(x)Ap(x>> (8.7)

in the low energy effective action. m/|m| corresponds to the sign of the mass
(m/|m| = sign(m)), which in this case is +1. Also, ¢ = +1. Subsequently, the above
expression corresponds to half of a non-abelian Chern-Simons term, which is just a
contribution k£ — k + % There is also a massive antimatter field which, when

integrated out, contributes:

21 om
( 2q) 4177|m] d3x P Ty <Au(:v)3w4p(3«")+zAu(i’f)Av(f’f)Ap(x)> (88)

Again m/|m| = 41 and ¢ = +1, so the contribution is another half Chern-Simons

term.

In total £k — k + 1. Integrating out the massive matter means the transition from a
high energy U(N.); theory, with Ny — 1 massless flavours and one massive flavour, to

a low energy U(Nc)p+1 theory, with Ny — 1 massless flavours.

Consider the high energy theory with £ = 0. Without the inclusion of massive
flavours, this would give rise to a low energy k = 0 theory which would exhibit
Aharony duality. With the inclusion of one flavour of massive matter, this transitions
from a high energy U(N,)o theory to a low energy U(N,); theory. The electric
U(N¢)1 theory is Giveon-Kutasov dual to a U((Ny —1) +1 — N¢)—1 = U(Ny — Ne)—1
magnetic theory. In this case the theory is said to flow from an Aharony to a
Giveon-Kutasov duality. For a high energy theory with U(N.)_1, the low energy
theory becomes U(N.)o which is Aharony dual to U(Ny — 1 — N.)o. In this case the
flow is from a Giveon-Kutasov duality to an Aharony Duality. For U(N,); with

k # 0,—1 the low energy theory has Chern-Simons level that is neither 1 or 0 and
there is no flow between dualities, although the low energy theories do exhibit

Giveon-Kutasov duality.

High energy theory is U(N.); with Ny — 1 massless flavours of matter and
antimatter and one massive flavour of matter and antimatter. Low energy theory

is U(Ne)g+1 with Ny — 1 flavours of massless matter and antimatter.

k = 0 results in a flow from Aharony duality to Giveon-Kutasov duality, where
the electric theory is U(N,)1 and the magnetic theory is U(Ny — N¢)_1.

k = —1 results in a flow from Giveon-Kutasov duality to Aharony duality, where
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the electric theory is U(N,)o and the magnetic theory is U(Ny — 1 — N¢)o.

k # 0, —1 results in no flows between dualities. The low energy theory exhibits
Giveon-Kutason duality, where the electric theory is U(N,)g+1 and the magnetic
theory is U(Ny — 1+ |k + 1| — Ne)—p—1.

8.1.2 One D3-brane Displaced Upwards

Now consider a slightly more complicated case. As well as the single displaced (N}Eh)
NS5-brane, out of the N. D3-branes, take the Nﬁh D3-brane to be displaced in the
positive z3-direction: The D5-branes labelled by the flavour indices 1,..., Ny — 1 are
at x3 = 0, corresponding to mll, m22, ey m]]Vfo:ll = fnll, fn%, ey ﬁl]]\/v’;:ll = 0. The NJEh
D5-brane is displaced and split into a D51 at 23 = m and a D5~ at x3 = —m,
corresponding to m]]VVf = erJX}; = m. The D3-branes labelled by the colour indices
1,...,N. — 1 are at z3 = 0, corresponding to 011,022, ...,J%Ccill = 0. Lastly, the thh

D3-brane is at x3 = m, corresponding to JJJV\,é = —m. The configuration is given by:

<

S

p NS

x7

Z6

p NS5's

NS5
NS5

Matter Content:
Ny — 1 flavours of massless matter transforming in the fundamental of U (N, — 1).

Ny — 1 flavours of massless antimatter transforming in the antifundamental of
U(N.—1).

One flavour of massive matter, with mass m, transforming in the fundamental of

U(N. —1).

One flavour of massive antimatter, with mass m, transforming in the antifundamental

of U(N. —1).
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Ny — 1 flavours of massive matter, with mass —m, transforming in the fundamental of
U(1).

Ny — 1 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(1).
One flavour of massless matter transforming in the fundamental of U(1).

One flavour of massive antimatter, with mass 2m transforming in the

antifundamental of U(1).
Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Ne = D x U(1)g (8.9)

with the matter content as listed in the box above. The low energy theory is:

U(Ne = Di1 X U(D)gr1/2 (8.10)
with only the massless content of the box above.
Dualities:

k = —1) The high energy theory is U(N. — 1)1 x U(1)_1, the low energy theory is
U(Ne —1)o x U(1)_1/2. The U(N, — 1) gauge theory exhibits a flow from
Giveon-Kutasov to Aharony Duality. The U(1) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = —1/2) The high energy theory is U(N. — 1)_1/2 x U(1)_1/2, the low energy
theory is U(Ne — 1)1/2 x U(1)o. The U(N, — 1) gauge theory exhibits no flow in
dualities, and is Giveon-Kutasov dual at low energies. The U(1) gauge theory exhibits

a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(N. — 1)o X U(1)g. The low energy theory is
U(Ne— 1)1 x U(1)1 /2. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k # —1,—1/2,0) In this case there is no flow between dualities, and both gauge

groups exhibit Giveon-Kutasov duality at low energies.
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8.1.3 One D3-brane Displaced Downwards

In the previous section, one D3-brane was displaced in the positive x3-direction.
Alternatively, it is possible to displace a single D3-brane in the negative x3-direction:

The D5-branes labelled by the flavour indices 1,..., Ny — 1 are at x3 = 0,
corresponding to m}, m3, ,m]]\\%:ll =m},m3, ...,mjj\\;ffil = 0. The N}h D5-brane is
displaced and split into a D5 at 23 = m and a D5~ at at 23 = —m, corresponding to
mjj\\[,ff = m]J\\[}; = m. The D3-branes labelled by the colour indices 1, ..., N, — 1 are at
x3 = 0, corresponding to 011, 022, o a]}\[fc:ll = 0. Lastly, the thh D3-brane is at

r3 = —m, corresponding to a]]\\[;; = m. The configuration is given by:

's

p NS:

<

x3

7

T

p NS5's

Matter Content:
Ny — 1 flavours of massless matter transforming in the fundamental of U(N, — 1).

Ny — 1 flavours of massless antimatter transforming in the antifundamental of

U(N, - 1).

One flavour of massive matter, with mass m, transforming in the fundamental of

U(N, —1).

One flavour of massive antimatter, with mass m, transforming in the antifundamental

of U(N, —1).

Ny — 1 flavours of massive matter, with mass m, transforming in the fundamental of
U(1).

Ny — 1 flavours of massive antimatter, with mass —m, transforming in the

antifundamental of U(1).
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One flavour of massive matter, with mass 2m, transforming in the fundamental of

U(1).
One flavour of massless antimatter transforming in the antifundamental of U(1).
Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc — 1)k X U(l)k (8.11)

with the matter content as listed in the box above. The low energy theory is:

U(Ne = Vi1 X U(D)g11/2 (8.12)
with only the massless content of the box above.
Dualities:

k = —1) The high energy theory is U(N. — 1)_; x U(1)_1, the low energy theory is
U(Ne—1)o x U(1)_1 /2. The U(N. — 1) gauge theory exhibits a flow from
Giveon-Kutasov to Aharony Duality. The U(1) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = —1/2) The high energy theory is U(N. — 1)_1/5 X U(1)_1/2, the low energy
theory is U(Ne — 1)1/ X U(1)o. The U(N. — 1) gauge theory exhibits no flow in
dualities, and is Giveon-Kutasov dual at low energies. The U(1) gauge theory exhibits

a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(N. — 1) x U(1)g. The low energy theory is
U(Ne — 1)1 x U(1)1/5. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k # —1,—1/2,0) In this case there is no flow between dualities, and both gauge

groups exhibit Giveon-Kutasov duality at low energies.
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8.1.4 Two D3-branes Displaced Upwards

As a further generalisation, consider displacing two D3-branes in the positive

x3-direction: The D5-branes labelled by the flavour indices 1, ..., Ny — 1 are at x3 = 0,
corresponding to mb,m%, ..., m]]\\f,’:t:ll =mY,m3, ..., mjx,’;:ll = 0. The N}h Db5-brane is
displaced and split into a D5 at #3 = m and a D5~ at at 3 = —m, corresponding to
m]]\\f,’; = m]]v\}; = m. The D3-branes labelled by the colour indices 1, ..., N. — 2 are at

x3 = 0, corresponding to o}, 03, ..., 0%6;22 = 0. Lastly, the (N, — 1) and Nh

_ . Ne—1 _ _Ne _ L
D3-branes are at x3 = m, corresponding to o'\ ~; = 037 = —m. The configuration is
given by:
p NS5's

m
1]

1]

1]

ih +
il D5*s
1]

1]

1]

1]

7

o

p NSH's

NS5

Matter Content:
Ny — 1 flavours of massless matter transforming in the fundamental of U (N, — 2).

Ny — 1 flavours of massless antimatter transforming in the antifundamental of
U(N. —2).

One flavour of massive matter, with mass m, transforming in the fundamental of

U(N, - 2).

One flavour of massive antimatter, with mass m, transforming in the antifundamental

of U(N. —2).

Ny — 1 flavours of massive matter, with mass —m, transforming in the fundamental of
U(2).

Ny — 1 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(2).

One flavour of massless matter transforming in the fundamental of U(2).
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One flavour of massive antimatter, with mass 2m transforming in the

antifundamental of U(2).
Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc—Q)k X U(Q)k (8.13)

with the matter content as listed in the box above. The low energy theory is:

U(Ne = 2)k41 X U(2)p11/2 (8.14)
with only the massless content of the box above.
Dualities:

k = —1) The high energy theory is U(N. —2)_; x U(2)_1, the low energy theory is
U(Ne—2)o x U(2)_1/2. The U(N, — 2) gauge theory exhibits a flow from
Giveon-Kutasov to Aharony Duality. The U(2) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = —1/2) The high energy theory is U(N, — 2)_1/2 x U(2)_1/2, the low energy
theory is U(Ne — 2)1/2 X U(2)o. The U(N, — 2) gauge theory exhibits no flow in
dualities, and is Giveon-Kutasov dual at low energies. The U(2) gauge theory exhibits

a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(N. — 2)¢ x U(2)g. The low energy theory is
U(Ne —2)1 X U(2)1/5. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k # —1,—1/2,0) In this case there is no flow between dualities, and both gauge

groups exhibit Giveon-Kutasov duality at low energies.

8.1.5 Two D3-branes Displaced Downwards

Consider displacing two D3-branes in the negative x3-direction: The D5-branes

labelled by the flavour indices 1,..., Ny — 1 are at x3 = 0, corresponding to

my,m3, .., m]]Vfo C=mlmd, m],vvff | = 0. The Ni* D5-brane is displaced and split
into a D57 at #3 = m and a D5~ at at x3 = —m, corresponding to m]]Vfo = mﬂv\,; =m.
The D3-branes labelled by the colour indices 1, ..., N, — 2 are at 3 = 0, corresponding
to o},03, ...,0%‘;2 = 0. Lastly, the (N, — 1)™ and N'" D3-branes are at 23 = —m,

corresponding to J]]\\ffc__ll = JJ]VV’Z = m. The configuration is given by:
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p NS

<

S

x3

7

(N. —2) D3s -

p NS5's

Matter Content:
Ny — 1 flavours of massless matter transforming in the fundamental of U (N, — 2).

Ny — 1 flavours of massless antimatter transforming in the antifundamental of
U(N.—2).

One flavour of massive matter, with mass m, transforming in the fundamental of

U(N, —2).

One flavour of massive antimatter, with mass m, transforming in the antifundamental

of U(N. — 2).

Ny — 1 flavours of massive matter, with mass m, transforming in the fundamental of

U(2).

Ny — 1 flavours of massive antimatter, with mass —m, transforming in the

antifundamental of U(2).

One flavour of massive matter, with mass 2m, transforming in the fundamental of

U(2).
One flavour of massless antimatter transforming in the antifundamental of U(2).
Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Ne—2)p x U(2)g (8.15)
with the matter content as listed in the box above. The low energy theory is:
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U(Ne = 2)p11 X U(2)k 4172 (8.16)
with only the massless content of the box above.
Dualities:

k = —1) The high energy theory is U(N. — 2)_; x U(2)_1, the low energy theory is
U(Ne —2)o X U(2)_1/2- The U(N, — 2) gauge theory exhibits a flow from
Giveon-Kutasov to Aharony Duality. The U(2) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = —1/2) The high energy theory is U(N. — 2)_1/5 X U(2)_1/2, the low energy
theory is U(N. — 2)1/2 X U(2)o. The U(N, — 2) gauge theory exhibits no flow in
dualities, and is Giveon-Kutasov dual at low energies. The U(2) gauge theory exhibits

a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(N, — 2)o X U(2)p. The low energy theory is
U(Ne—2)1 X U(2)1/2- Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k # —1,—1/2,0) In this case there is no flow between dualities, and both gauge

groups exhibit Giveon-Kutasov duality at low energies.

8.1.6 One D3-brane Displaced Upwards and One D3-brane Displaced Down-

wards

Consider displacing one D3-brane in the positive z3-direction and one D3-brane in the
negative xz-direction: The D5-branes labelled by the flavour indices 1,..., Ny — 1 are
at x3 = 0, corresponding to m},m3, ..., m]]\\[,ff:ll =ml,m3, ,m]]Vfo’_ll = 0. The N}h
D5-brane is displaced and split into a D5 at 23 = m and a D5~ at at 23 = —m,
corresponding to m]]VV’; = m]]\([ff = m. The D3-branes labelled by the colour indices
1,...,N. — 2 are at z3 = 0, corresponding to o}, 03, ""UJZ\\]/(;:QQ = 0. Lastly, the

(N, — 1)t D3-brane is at 3 = —m corresponding to JJJVVCC:II = m and the prh

D3-brane is at x3 = m corresponding to o\ ¢ = —m. The configuration is given by:
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p NS5's

e

Matter Content:
Ny — 1 flavours of massless matter transforming in the fundamental of U(N, — 2).

Ny — 1 flavours of massless antimatter transforming in the antifundamental of
U(N. —2).

One flavour of massive matter, with mass m, transforming in the fundamental of

U(N, —2).

One flavour of massive antimatter, with mass m, transforming in the antifundamental
of U(N. — 2).

Ny — 1 flavours of massive matter, with mass m, transforming in the fundamental of
U(1).

Ny — 1 flavours of massive antimatter, with mass —m, transforming in the

antifundamental of U(1).

One flavour of massive matter, with mass 2m, transforming in the fundamental of

U(1).
One flavour of massless antimatter transforming in the antifundamental of U(1).

Ny — 1 flavours of massive matter, with mass —m, transforming in the fundamental of

U(1).

Ny — 1 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(1).

One flavour of massless matter transforming in the fundamental of U(1).

150



One flavour of massive antimatter, with mass 2m transforming in the

antifundamental of U(1).
Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(N. — 2)i x U(L) x U(1); (8.17)

with the matter content as listed in the box above. The low energy theory is:

U(Ne = 2)kt1 X U(D) k172 X U(D) k172 (8.18)
with only the massless content of the box above.
Dualities:

k = —1) The high energy theory is U(N. — 2)_1 x U(1)_1 x U(1)—_1, the low energy
theory is U(Ne —2)o x U(1)_1/2 X U(1)_ /2. The U(N. — 2) gauge theory exhibits a
flow from Giveon-Kutasov to Aharony Duality. The U(1) gauge theories exhibit no

flows between dualities, and is Giveon-Kutasov dual at low energies.

k = —1/2) The high energy theory is U(N. —2)_1/2 x U(1)_1/2 x U(1)_1 2, the low
energy theory is U(N, — 2)1/2 x U(1)o x U(1)o. The U(N, — 2) gauge theory exhibits
no flow in dualities, and is Giveon-Kutasov dual at low energies. The U(1) gauge

theories exhibit a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(N,. — 2)p x U(1)o x U(1)g. The low energy theory
is U(Ne —2)1 x U(1)1/2 x U(1)1/2. All gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k # —1,—1/2,0) In this case there is no flow between dualities, and both gauge

groups exhibit Giveon-Kutasov duality at low energies.
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8.2 Two Displaced Flavour Branes

Consider a further generalisation, where, of the Ny D5-branes, the (N; — 1) and the
N]tch both split to form a web consisting of a (p, 2)-brane with p NS5-branes and two
D5"-branes on one end, and p NS5-branes and two D5~ -branes on the other end.
The D5T branes are placed at w3 = m whilst the D5~ branes are placed at x3 = —m.
As in the previous section, it is possible to look at a number of cases, corresponding
to different numbers of D3-branes displaced along the x3 in either the positive or

negative direction.

8.2.1 No Displaced D3-branes

For the case of two displaced D5-branes, the simplest possibility for the D3-branes is
to have none displaced in the x3-direction. This case will be explained in detail, then,
for brevity, future sections will only display the results: The D5-branes labelled by
the flavour indices 1, ..., Ny — 2 are at o3 = 0, corresponding to

ml,m3, m]]Vfo‘j = 1}, m2, m]]Vfo‘j = 0. The (Nj — 1) and N D5-branes are
displaced and split into two D5Ts at 3 = m and two D57s at 3 = —m,
corresponding to m]]\\[ffill = mJ]\\f,’; = m]]Vfoj = ﬁ”LJX,fJI = m. The D3-branes labelled by
the colour indices 1, ..., N, are at z3 = 0, corresponding to a},03, ..., 0]]\\,[2 = 0. The

configuration is given by:

p NS

(S

S

x7

Ze

p NSH's

Recall that the following equations (4.51 and 4.52) need to be satisfied:

(5§'m2’ + a@’&@’) ¢ =0 (8.19)
(5;1’7712’ - 0;1’5@’) $ =0 (8.20)



Note that, since the scalars of the chiral multiplet are set to zero (¢*/ = &9 =0), 0];,
mll/ and m’; can take any value. As a result the positions of the D3-branes and

Db-branes are unrestricted. In this case all a]; equal zero.

The mass terms of the chiral (matter) multiplets are given by:

Ny

— -/ -1 /A7 =/ 3 Yl ..

Vie Y Gun o (8mly + 0380 ) (8 mi + 07 67 ) 97
i=1

(8.21)

N

! ~ j// _ g j// " j/ _ 4/ j/ i 74,5

+ E (l)i“J” (Sj/mi/ —O'j/(s,i/ (Sjmz —03(52 (Z)7
=1

Consider, first, the Ny — 2 D5-branes. It is expected that the zero length strings
between them and the D3-brane stack will give rise to Ny — 2 flavours of massless

matter. This is evident from the mass terms

Vee 3 G130 (8,(0) + (0)8%, ) (&7 (0) + (0)57 ) o™
+ Ga g (5@’,’(0) + (0)55,’) (55(0) + (0)533'7) o (8.22)
o+ By a (5@.’,’ (0) + (0)53]’,’) (5@1’(0) + (0)7 ) N1 =2

J

All the N, values of the diagonal matrix o jl are zero since all the D3-branes are

placed a 3 = 0. On the other hand only those diagonal entries of miz-’ corresponding
toi,i’ =1,..., Ny — 2 take the value zero, due to Ny — 2 of the D5-branes being placed

at x3 = 0. This corresponds to Ny — 2 massless flavours of matter. Similarly:

Vi 3 b1 (8 0) = (008)) (87 (0) - (087 ) 6
+ n g (890) = (0037 ) (9 (0) - (087 ) ¢ (8.23)
ot Do (5@1’,’ (0) — (0)55,’) (5@1’(0) - (0)53]1’) GNr =2

This gives rise to Ny — 2 massless flavours of antimatter.

The two D5T-branes and two D5~ -branes are expected to contribute two flavours of

massive matter and antimatter to the theory. The matter has mass terms:

Ve 2 ¢_5fo1,]'~ ((V;jm + (0)(5@7) (5?/771 + (0)59;) d)Nf_laj

_ .17 .17 -/ . . (824)
+ Oy (5]3‘/ m+ (0)5jjz> ((WJ m+ (0)57]) N1
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where m]]\\[,f __11 = m]]VVf = m due to the two D5"-branes displaced upwards in the
f f

x3-direction. This corresponds to two flavours of matter with mass m. Similarly:

Vae 3 dyoage (Fm = @) (#m — ©87) 3271
by (5Lm— ©7)) (5m — 0157 ) 559 (8.2

- Ny— - N : .
where m N’; _11 =m N’; = m due to the two D57 -branes displaced downwards in the

xg-direction. This corresponds to two flavours of antimatter with mass m.

All the matter (antimatter) transforms under the fundamental (antifundamental) of
the U(N,) gauge group, due to the stack of N, D3-branes.

Matter Content:

Ny — 2 flavours of massless matter transforming in the fundamental of U(N,).

Ny — 2 flavours of massless antimatter transforming in the antifundamental of
U(N.).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(N,).

Two flavours of massive antimatter, with mass m, transforming in the
antifundamental of U(N,).

Aharony and Giveon-Kutasov Duality:

A U(N.)i, theory with Ny massless flavours of matter corresponds to an NS5'-brane in
place of the web of branes, and all Ny D5-branes at x3 = 0. Mass is introduced to two
flavours by changing to the brane configuration above. Integrating out the two

massive matter fields gives rise to:

2
g1l m 3 2
X 2 Inm] d’z P Tr (Au(ac)ﬁyAp(a:) + 3AM(JZ)A,/($)AP(CC)> (8.26)
m/|m| corresponds to the sign of the mass (m/|m| = sign(m)), which in this case is
+1. Also, ¢ = +1. Therefore the above corresponds to two times a half of a
non-abelian Chern-Simons term, which is just a contribution of an extra
Chern-Simons term k — k + 1. There are also two massive antimatter fields which,

when integrated out, contribute:
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(—¢)> 1 m 2
2 Ax |m)|

2 X d3z e PTr <Au(a:)8VAp(a;) + SAM(x)AV(x)Ap(x)> (8.27)

Again m/|m| = 41 and ¢ = +1, so the contribution is another Chern-Simons term.

In total £k — k + 2. Integrating out the massive matter means the transition from a
high energy U(N.);, theory, with Ny — 2 massless flavours and 2 massive flavours, to a

low energy U(N,)xt2 theory, with Ny — 2 massless flavours.

Consider the high energy theory with £ = 0. Without the inclusion of massive
flavours, this would give rise to a low energy k = 0 theory which would exhibit
Aharony duality. With the inclusion of two flavours of massive matter this transition
is from a high energy U(N.)p theory to a low energy U(N.)2 theory. The electric
U(N.)2 theory is Giveon-Kutasov dual to a U((Nf —2) +2 — N¢)—2 = U(Ny — N¢)—2
magnetic theory. In this case the theory is said to flow from an Aharony to a
Giveon-Kutasov duality. For a high energy theory with U(N.)_o the high energy
theory becomes U(N.)o which is Aharony dual to U(Ny —2 — N.)o. In this case the
flow is from a Giveon-Kutasov duality to an Aharony Duality. For U(N,); with

k # 0, —2 the low energy theory has Chern-Simons level that is neither 2 nor 0 and
there is no flow between dualities, although the low energy theories do exhibit

Giveon-Kutasov duality.

High energy theory is U(N.); with Ny — 2 massless flavours of matter and
antimatter and 2 massive flavours of matter and antimatter. Low energy theory

is U(Ne)p+2 with Ny — 2 flavours of massless matter and antimatter.

k = 0 results in a flow from Aharony duality to Giveon-Kutasov duality, where
the electric theory is U(N,)2 and the magnetic theory is U(Ny — N¢)_a.

k = —2 results in a flow from Giveon-Kutasov duality to Aharony duality, where
the electric theory is U(N.)o and the magnetic theory is U(Ny — 2 — N.)o.

k # 0, —2 results in no flows between dualities. The low energy theory exhibits
Giveon-Kutason duality, where the electric theory is U(N,)i42 and the magnetic
theory is U(Ny — 2+ |k + 2| — N¢) 2.

8.2.2 One D3-brane Displaced Upwards

As well as the displaced (Ny —1)™ and N}h NS5-branes, out of the N. D3-branes,
take the N'" D3-brane to be displaced in the positive x3-direction: The D5-branes
labelled by the flavour indices 1,..., Ny — 2 are at x3 = 0, corresponding to

155



1,2 Ni=2 _ -1 =2 = Np=2 _ th th
M, MG, ey My g = T, T, oy TN = 0. The (Ny —1)*" and N§* D5-branes are

displaced and split into two D5Ts at 3 = m and two D5~s at 3 = —m,
. Ny~1 Ny  _Nyg=1 _ _N;y
corresponding to m Nyl =My, =My | =My =m. The D3-branes labelled by

the colour indices 1, ..., N. — 1 are at x3 = 0, corresponding to o}, 0%, ...,JJX,Z:E = 0.

Lastly, the N'" D3-brane is at 23 = m, corresponding to O']]VVCC = —m. The

configuration is given by:

p NS5's

7

p NSH's

NS5
NS5

Matter Content:
Ny — 2 flavours of massless matter transforming in the fundamental of U(N, — 1).

Ny — 2 flavours of massless antimatter transforming in the antifundamental of
U(N. —1).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(N, —1).

Two flavours of massive antimatter, with mass m, transforming in the
antifundamental of U(N, — 1).

Ny — 2 flavours of massive matter, with mass —m, transforming in the fundamental of
U(1).

Ny — 2 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(1).
Two flavours of massless matter transforming in the fundamental of U(1).

Two flavours of massive antimatter, with mass 2m transforming in the

antifundamental of U(1).
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Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Ne — 1), x U(1)y, (8.28)

with the matter content as listed in the box above. The low energy theory is:

U(NC — 1)k+2 X U(l)k+1 (829)
with only the massless content of the box above.
Dualities:

k = —2) The high energy theory is U(N. — 1)_2 x U(1)_q2, the low energy theory is
U(Ne—1)g x U(1)—1. The U(N. — 1) gauge theory exhibits a flow from
Giveon-Kutasov to Aharony Duality. The U(1) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = —1) The high energy theory is U(N. — 1)_; x U(1)_1, the low energy theory is
U(Ne.—1)1 x U(1)p. The U(N. — 1) gauge theory exhibits no flow in dualities, and is
Giveon-Kutasov dual at low energies. The U(1) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(N. — 1) x U(1)g. The low energy theory is
U(N. —1)2 x U(1);. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k # —2,—1,0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.

8.2.3 One D3-brane Displaced Downwards

Take the N* D3-brane to be displaced in the negative z3-direction: The D5-branes
labelled by the flavour indices 1,..., Ny — 2 are at x3 = 0, corresponding to
mb,m, ,m]]\[v’:c:é =m},m3, ,Th]]\fv’;:é = 0. The (Ny — 1) and Nj" D5-branes are

displaced and split into two D5s at .LU3 =m and two D57 s at z3 = —m,
. Ny—1 Ny  _Ng=1 . Np
corresponding to M, =My, =My ) =My, =M. The D3-branes labelled by

the colour indices 1, ..., N, — 1 are at 3 = 0, corresponding to 011,022, ...,a]]\\%:ll =0.

Lastly, the N'! D3-brane is at 3 = —m, corresponding to J]]\(fc = m. The

configuration is given by:
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p NS5's

"
1
1l
i
1l 2 D5*s
1l
1
1l
1l
1l

T3

X7

(p, 2)-brane

p NS5H's

Matter Content:
Ny — 2 flavours of massless matter transforming in the fundamental of U (N, — 1).

Ny — 2 flavours of massless antimatter transforming in the antifundamental of
U(N.—1).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(N, — 1).

Two flavours of massive antimatter, with mass m, transforming in the
antifundamental of U(N, — 1).

Ny — 2 flavours of massive matter, with mass m, transforming in the fundamental of
U(1).

Ny — 2 flavours of massive antimatter, with mass —m, transforming in the

antifundamental of U(1).

Two flavours of massive matter, with mass 2m, transforming in the fundamental of

U(1).
Two flavours of massless antimatter transforming in the antifundamental of U(1).
Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(NC* l)k X U(l)k (8.30)
with the matter content as listed in the box above. The low energy theory is:
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U(Nc — 1)k+2 X U(l)k+1 (831)
with only the massless content of the box above.
Dualities:

k = —2) The high energy theory is U(N. — 1)_2 x U(1)_2, the low energy theory is
U(Ne.—1)g x U(1)—1. The U(N. — 1) gauge theory exhibits a flow from
Giveon-Kutasov to Aharony Duality. The U(1) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = —1) The high energy theory is U(N. — 1)_; x U(1)_1, the low energy theory is
U(N.— 1)1 x U(1)p. The U(N. — 1) gauge theory exhibits no flow in dualities, and is
Giveon-Kutasov dual at low energies. The U(1) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(N, — 1)o X U(1)p. The low energy theory is
U(N.—1)2 x U(1);. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k # —2,—1,0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.

8.2.4 Two D3-branes Displaced Upwards

Take the (N, — 1)*" and N D3-branes to be displaced in the positive z3-direction:

The D5-branes labelled by the flavour indices 1,..., Ny — 2 are at x3 = 0,
corresponding to m}, m3, ,mJJVVJ;:QQ =m},m3, ,ﬁmjjvv’;:i = 0. The (Ny —1)* and
N}h D5-branes are displaced and split into two D5%s at 23 = m and two D57 s at
x3 = —m, corresponding to mjj\%:ll = m]]\fvff = m]]\\fé:ll = ﬁz]]\\[}; = m. The D3-branes
labelled by the colour indices 1, ..., N. — 2 are at x3 = 0, corresponding to

011, 022, - a]]\(fc:% = 0. Lastly, the (N, — 1)th and thh D3-branes are at x3 = m,

corresponding to J%Cc:ll = UJ]VVCC = —m. The configuration is given by:
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p NS5's

7

p NSH's

NS5

Ny — 2 flavours of massless matter transforming in the fundamental of U(N, — 2).

Ny — 2 flavours of massless antimatter transforming in the antifundamental of
U(N. —2).

Two flavours of massive matter, with mass m, transforming in the fundamental of
U(N.—2).

Two flavours of massive antimatter, with mass m, transforming in the
antifundamental of U(N, — 2).

Ny — 2 flavours of massive matter, with mass —m, transforming in the fundamental of

U(2).

Ny — 2 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(2).
Two flavours of massless matter transforming in the fundamental of U(2).

Two flavours of massive antimatter, with mass 2m transforming in the

antifundamental of U(2).
Aharony and Giveon-Kutasov Duality:

The high energy theory is:

with the matter content as listed in the box above. The low energy theory is:

U(Ne = 2)is2 X U(2)pi1 (8.33)
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with only the massless content of the box above.
Dualities:

k = —2) The high energy theory is U(N. — 2)_2 X U(2)_2, the low energy theory is
U(Ne—2)o x U(2)—1. The U(N. — 2) gauge theory exhibits a flow from
Giveon-Kutasov to Aharony Duality. The U(2) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = —1) The high energy theory is U(N. —2)_; x U(2)_1, the low energy theory is
U(N;—2)1 x U(2)p. The U(N. — 2) gauge theory exhibits no flow in dualities, and is
Giveon-Kutasov dual at low energies. The U(2) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(N, — 2)o X U(2)p. The low energy theory is
U(N.—2)2 x U(2);. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k # —2,—1,0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.

8.2.5 Two D3-branes Displaced Downwards

Take the (N, — 1)** and N D3-branes to be displaced in the negative z3-direction:
The D5-branes labelled by the flavour indices 1,..., Ny — 2 are at x3 = 0,
corresponding to m}, m3, ,mlj\\%:é =m},m3, ,mjj\\f,ff:é = 0. The (N; — 1) and

N}h D5-branes are displaced and split into two D5%s at 23 = m and two D5 s at

xr3 = —m, corresponding to mjj\%:ll = m]]Vfo = m]}(,ff :11 = ﬁl]]\\% = m. The D3-branes
labelled by the colour indices 1, ..., N. — 2 are at x3 = 0, corresponding to
ol,od, .., 0%2122 = 0. Lastly, the (N, — 1)* and N!" D3-branes are at 3 = —m,

corresponding to a]]\(fc:ll = UJ]\\T,CC = m. The configuration is given by:

p NSH's

n
1
1
1
1
i 2 D5%s
1
1
1
1

1
1
1
1
it
5—g
2D57s i
1
1
1
1
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Matter Content:
Ny — 2 flavours of massless matter transforming in the fundamental of U(N, — 2).

Ny — 2 flavours of massless antimatter transforming in the antifundamental of
U(N. —2).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(N, —2).

Two flavours of massive antimatter, with mass m, transforming in the
antifundamental of U(N, — 2).

Ny — 2 flavours of massive matter, with mass m, transforming in the fundamental of
U(2).

Ny — 2 flavours of massive antimatter, with mass —m, transforming in the

antifundamental of U(2).

Two flavours of massive matter, with mass 2m, transforming in the fundamental of

U(2).
Two flavours of massless antimatter transforming in the antifundamental of U(2).
Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(N, —2)p x U(2) (8.34)

with the matter content as listed in the box above. The low energy theory is:

U(Ne—2)ga2 X U(2)k11 (8.35)
with only the massless content of the box above.
Dualities:

k = —2) The high energy theory is U(N, — 2)_2 x U(2)_2, the low energy theory is
U(Ne—2)o x U(2)—1. The U(N. — 2) gauge theory exhibits a flow from
Giveon-Kutasov to Aharony Duality. The U(2) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.
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k = —1) The high energy theory is U(N. — 2)_; x U(2)_1, the low energy theory is
U(N;—2)1 x U(2)p. The U(N. — 2) gauge theory exhibits no flow in dualities, and is
Giveon-Kutasov dual at low energies. The U(2) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(N. — 2)¢ x U(2)g. The low energy theory is
U(N. —2)2 x U(2)1. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k # —2,—1,0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.

8.2.6 One D3-brane Displaced Upwards and One D3-brane Displaced Down-

wards

Take the (N, — 1)™ brane to be displaced in the negative x3-direction and the N
D3-brane to be displaced in the positive x3-direction: The D5-branes labelled by the

flavour indices 1,..., Ny — 2 are at x3 = 0, corresponding to

Ny— 1~ . Nj—

mb,m, ...,mef_Q2 =m},m3, ...,mN’;_22 = 0. The (Ny — 1) and Nj" D5-branes are
displaced and split into two D5's at 23 = m and two D57 s at 23 = —m,

. Ny=1 Ny  _Ng=1 Ny
corresponding to m Nl =My, =My | =My =m. The D3-branes la]l\)[elled by
the colour indices 1, ..., N, — 2 are at 3 = 0, corresponding to 011,022, ...,O'NCC:QQ =0
Lastly, the (N. — 1) D3-brane is at #3 = —m corresponding to ajyvccill = m and the
NI D3-brane is at 23 = m corresponding to a]]\\ffc = —m. The configuration is given
by:

7

L6

p NS5's

Matter Content:

Ny — 2 flavours of massless matter transforming in the fundamental of U (N, — 2).
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Ny — 2 flavours of massless antimatter transforming in the antifundamental of
U(N.—2).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(N, — 2).

Two flavours of massive antimatter, with mass m, transforming in the
antifundamental of U(N,. — 2).

Ny — 2 flavours of massive matter, with mass m, transforming in the fundamental of

U(1).

Ny — 2 flavours of massive antimatter, with mass —m, transforming in the

antifundamental of U(1).

Two flavours of massive matter, with mass 2m, transforming in the fundamental of

U(1).
Two flavours of massless antimatter transforming in the antifundamental of U(1).

Ny — 2 flavours of massive matter, with mass —m, transforming in the fundamental of
U(1).

Ny — 2 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(1).
Two flavours of massless matter transforming in the fundamental of U(1).

Two flavours of massive antimatter, with mass 2m transforming in the

antifundamental of U(1).
Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(NC — Q)k X U(l)k X U(l)k (836)

with the matter content as listed in the box above. The low energy theory is:

U(Nc — 2)k+2 X U(l)k+1 X U(l)k+1 (837)
with only the massless content of the box above.

Dualities:
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k = —2) The high energy theory is U(N, — 2)_2 x U(1)_2 x U(1)_2, the low energy
theory is U(N. — 2)o x U(1)—1 x U(1)—1. The U(N,. — 2) gauge theory exhibits a flow
from Giveon-Kutasov to Aharony Duality. The U(1) gauge theories exhibit no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = —1) The high energy theory is U(N, —2)_; x U(1)_1 x U(1)_1, the low energy
theory is U(N. —2)1 x U(1)g x U(1)g. The U(N, — 2) gauge theory exhibits no flow in
dualities, and is Giveon-Kutasov dual at low energies. The U(1) gauge theories

exhibit a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(N, —2)o x U(1)p x U(1)g. The low energy theory
is U(N. —2)2 x U(1); x U(1);. All gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k # —2,—1,0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.

8.2.7 Two D3-branes Displaced Upwards and One D3-brane Displaced

Downwards

Take the (N, — 2)'" brane to be displaced in the negative 23-direction and the

(N, — l)th and the N, Cth D3-branes to be displaced in the positive x3-direction: The
D5-branes labelled by the flavour indices 1,..., Ny — 2 are at x3 = 0, corresponding to
my,m3, ,m]]\[\,’;:é =ml,m3, ,m]fvﬁj = 0. The (Ny —1)" and N]tch D5-branes are

displaced and split into two D5's at 23 = m and two D57 s at 23 = —m,

. Ny;=1 Ny  _Ng=1 Ny
corresponding to M, 1 =My, =My, =My, =M. The D3-branes la]li)[elled by
the colour indices 1, ..., N. — 3 are at 3 = 0, corresponding to 011,022, ...,JNCC:?:’,) =0.
The (N, — 2)™" D3-brane is at 23 = —m corresponding to J]]\\[;’C__QQ = m. Lastly, the
(N. — 1)™ and the N!" D3-branes are at 23 = m corresponding to
0']]\\][2__11 = U]]\\fi = —m. The configuration is given by:

p NS5's

m
1l
1l
i
i 2D5%s
1l
1l
1l
1l
1l

T3

/

™ //

7
(p, 2)-brane

I§

1
1]
I
1]
I
2D57s ”
1]
I
1]
I

p NS5's
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Matter Content:
Ny — 2 flavours of massless matter transforming in the fundamental of U(N, — 3).

Ny — 2 flavours of massless antimatter transforming in the antifundamental of

U(N, - 3).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(N, —3).

Two flavours of massive antimatter, with mass m, transforming in the
antifundamental of U(N, — 3).

Ny — 2 flavours of massive matter, with mass m, transforming in the fundamental of
U(1).

Ny — 2 flavours of massive antimatter, with mass —m, transforming in the

antifundamental of U(1).

Two flavours of massive matter, with mass 2m, transforming in the fundamental of

U(1).
Two flavours of massless antimatter transforming in the antifundamental of U(1).

Ny — 2 flavours of massive matter, with mass —m, transforming in the fundamental of

U(2).

Ny — 2 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(2).
Two flavours of massless matter transforming in the fundamental of U(2).

Two flavours of massive antimatter, with mass 2m transforming in the

antifundamental of U(2).
Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Ne = 3)i x U, x U(2)s, (8.38)

with the matter content as listed in the box above. The low energy theory is:

U(NC — 3)k+2 X U(l)k+1 X U(?)k+1 (839)
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with only the massless content of the box above.
Dualities:

k = —2) The high energy theory is U(N, — 3)_2 X U(1)_2 x U(2)_2, the low energy
theory is U(N. — 3)o x U(1)—1 X U(2)—1. The U(N. — 3) gauge theory exhibits a flow
from Giveon-Kutasov to Aharony Duality. The U(1) and U(2) gauge theories exhibit

no flows between dualities, and are Giveon-Kutasov dual at low energies.

k = —1) The high energy theory is U(N, —3)_1 x U(1)_1 x U(2)_1, the low energy
theory is U(N. —3)1 x U(1)g x U(2)g. The U(N, — 3) gauge theory exhibits no flow in
dualities, and is Giveon-Kutasov dual at low energies. The U(1) and U(2) gauge

theories exhibit a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(N. — 3)o x U(1)g x U(2)g. The low energy theory
is U(N. —3)2 x U(1)1 x U(2);. All gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k # —2,—1,0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.

8.2.8 Two D3-branes Displaced Downwards and One D3-brane Displaced
Upwards

Take the (N, — 2)th brane to be displaced in the positive z3-direction and the
(N. — 1)™ and the N!" D3-branes to be displaced in the negative x3-direction: The
Db5-branes labelled by the flavour indices 1,..., Ny — 2 are at x3 = 0, corresponding to

1,2 Ni=2 _ -1 =2 = Np=2 _ th th
M MG, ey My g = T, TG,y TN = 0. The (Ny —1)*" and N§* D5-branes are

displaced and split into two D5Ts at 3 = m and two D57s at 3 = —m,

. Ny=1 Ny _ _Ny=1 _ _ Ny
corresponding to m Nyl =My, =My | =My = m. The D3-branes la]l\)[elled by
the colour indices 1, ..., N. — 3 are at x3 = 0, corresponding to o}, 03, ...,Jj\i:‘é = 0.
The (N, — 2)'" D3-brane is at 23 = m corresponding to a]]\\[,‘;:% = —m. Lastly, the
(N, — 1) and the N D3-branes are at x3 = —m corresponding to

Ne—1 _ _Ne _ D .
o'n_1 =0 = m. The configuration is given by:
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p NS!

S

Z
(Ny — 2) D5s ’

T7

Lo

Matter Content:
Ny — 2 flavours of massless matter transforming in the fundamental of U (N, — 3).

Ny — 2 flavours of massless antimatter transforming in the antifundamental of
U(N. — 3).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(N, —3).

Two flavours of massive antimatter, with mass m, transforming in the
antifundamental of U (N, — 3).

Ny — 2 flavours of massive matter, with mass m, transforming in the fundamental of

U(2).

Ny — 2 flavours of massive antimatter, with mass —m, transforming in the

antifundamental of U(2).

Two flavours of massive matter, with mass 2m, transforming in the fundamental of
U(2).

Two flavours of massless antimatter transforming in the antifundamental of U(2).

Ny — 2 flavours of massive matter, with mass —m, transforming in the fundamental of
U(1).

Ny — 2 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(1).

Two flavours of massless matter transforming in the fundamental of U(1).
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Two flavours of massive antimatter, with mass 2m transforming in the

antifundamental of U(1).
Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(N, — 3) x U(2)x x U(1)y (8.40)

with the matter content as listed in the box above. The low energy theory is:

U(NC - 3)k+2 X U(2)k+1 X U(l)k+1 (841)
with only the massless content of the box above.
Dualities:

k = —2) The high energy theory is U(N, — 3)_2 X U(2)_2 x U(1)_2, the low energy
theory is U(N. — 3)o x U(2)—1 x U(1)—1. The U(N,. — 3) gauge theory exhibits a flow
from Giveon-Kutasov to Aharony Duality. The U(1) and U(2) gauge theories exhibit

no flows between dualities, and are Giveon-Kutasov dual at low energies.

k = —1) The high energy theory is U(N. — 3)_1 x U(2)_1 x U(1)_1, the low energy
theory is U(N, —3)1 x U(2)g x U(1)g. The U(N. — 3) gauge theory exhibits no flow in
dualities, and is Giveon-Kutasov dual at low energies. The U(1) and U(2) gauge

theories exhibit a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(N, — 3)o x U(2)p x U(1)g. The low energy theory
is U(N. — 3)2 x U(2); x U(1);. All gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k # —2,—1,0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.

8.2.9 Two D3-branes Displaced Upwards and Two D3-branes Displaced

Downwards

Take the (N, — 3)'" D3-brane and the (N, — 2)™" D3-brane to be displaced in the
positive z3-direction, and take the (N, — 1) D3-brane and the N D3-brane to be
displaced in the negative x3-direction: The D5-branes labelled by the flavour indices
1,....,Ny — 2 are at x3 = 0, corresponding to

Ny—2 4 . _Np—2
mb,m, ...,mef_2 =m},m3, ...,mN’;_Q = 0. The (Ny — 1) and N}h D5-branes are
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displaced and split into two D5Ts at 3 = m and two D57s at 3 = —m,

corresponding to m]]VV’; __11 = m];]v; = Th]]\\f,’; __11 = m]]\f\,’; = m. The D3-branes labelled by

the colour indices 1, ..., N, — 4 are at x3 = 0, corresponding to 011,022, ""U]J\\]/i:i = 0.
The (N, — 3)*™" and the (N, — 2)*® D3-branes are at 3 = m corresponding to
UJX;;:% = U]]\\]fc__% = —m. Lastly, the (N, — l)th and the thh D3-branes are at x3 = —m

corresponding to a]]\\f,cc:ll = UJJVVCC = m. The configuration is given by:

p NSH's

n
1
1l
1l
1l
m 2 D5%s
1l
1l
il
1]l

.
(Ny —2) D5s ’

/

x7
(p, 2)-brane

% W\ //

N.—4) D3s Tg
( ) 6

p NS5's

Matter Content:
Ny — 2 flavours of massless matter transforming in the fundamental of U(N, — 4).

Ny — 2 flavours of massless antimatter transforming in the antifundamental of

U(N, — 4).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(N, — 4).

Two flavours of massive antimatter, with mass m, transforming in the
antifundamental of U(N, — 4).

Ny — 2 flavours of massive matter, with mass m, transforming in the fundamental of
U(2).

Ny — 2 flavours of massive antimatter, with mass —m, transforming in the

antifundamental of U(2).

Two flavours of massive matter, with mass 2m, transforming in the fundamental of

U(2).
Two flavours of massless antimatter transforming in the antifundamental of U(2).

170



Ny — 2 flavours of massive matter, with mass —m, transforming in the fundamental of
U(2).

Ny — 2 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(2).
Two flavours of massless matter transforming in the fundamental of U(2).

Two flavours of massive antimatter, with mass 2m transforming in the

antifundamental of U(2).
Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(N, — 4) x U(2) x U(2) (8.42)

with the matter content as listed in the box above. The low energy theory is:

U(Ne = 4)pr2 X U(2)k+1 X U(2) k41 (8.43)
with only the massless content of the box above.
Dualities:

k = —2) The high energy theory is U(N, — 4)_2 X U(2)_2 x U(2)_2, the low energy
theory is U(N —4)p x U(2)—1 x U(2)—1. The U(N, — 3) gauge theory exhibits a flow
from Giveon-Kutasov to Aharony Duality. The U(2) gauge theories exhibit no flows

between dualities, and are Giveon-Kutasov dual at low energies.

k = —1) The high energy theory is U(N, —4)_1 x U(2)_1 x U(2)_1, the low energy
theory is U(N —4)1 x U(2)p x U(2)o. The U(N, — 4) gauge theory exhibits no flow in
dualities, and is Giveon-Kutasov dual at low energies. The U(2) gauge theories

exhibit a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(N. — 4)o X U(2)p x U(2)g. The low energy theory
is U(N. —4)2 x U(2)1 x U(2);. All gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k # —2,—1,0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.
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8.3 Two Displaced Flavour Branes, Displaced by Different Amounts

As a generalisation of the previous section, the two displaced D5-branes can be
displaced by different amounts in the x3-direction. This is achieved by using an
extended web of branes. One D57 is displaced in the positive z3-direction by ms, and
the second D5 brane is displaced in the positive x3-direction by m1, where m; > mso.
Similarly, one D57 is displaced in the negative x3-direction by me, and the second
D5~ brane is displaced in the negative x3-direction by m;. In this context, the
subscripts 1 and 2 are not flavour or colour indices, they are simply there to show that

the displacements are of different size. For brevity, only the results will be stated.

8.3.1 No Displaced D3-branes

The D5-branes labelled by the flavour indices 1,..., Ny — 2 are at z3 = 0,
corresponding to m},m3, ,mjjv\,ff__é = mi,m3, ,m%j = 0. The (N; — 1)t

D5-brane is displaced and split into a D5" at 23 = mo and a D5~ at 23 = —mo,
corresponding to m]]VV’; __11 = m])\%__ll = my. The N}h D5-brane is displaced and split
into a D5' at x3 = m; and a D5~ at x3 = —my, corresponding to m]]Vfo = ﬁz]]\\f,’; =mq,

where m1 > ms. The D3-branes labelled by the colour indices 1, ..., N, are at 3 = 0,

corresponding to o}, 0%, ..., 0']]\\,72 = 0. The configuration is given by:

pa NSH's

(p2, 1)-brane

p1 NSH's

11!
1!
1]
1]
1]
1]
1]
1]
1]
1]
1]

p2 NS5's

p3 NS5's

, 1)-brane
(pa, 1) p1 NS5's

NS5 x7

p3 NSH's 6

Matter Content:
One flavour of massive matter, with mass m;, in the fundamental of U(N,).

One flavour of massive matter, with mass mg, in the fundamental of U(N,).
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Ny — 2 flavours of massless matter in the fundamental of U(N,).

Ny — 2 flavours of massless antimatter in the antifundamental of U(N,).

One flavour of massive antimatter, with mass mg, in the antifundamental of U(N,).
One flavour of massive antimatter, with mass mj, in the antifundamental of U(N.).
Aharony and Giveon-Kutasov Duality:
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