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Abstract

Bosonic string theory and superstring theory are briefly overviewed. Three

dimensional field theories are similarly discussed, with a focus on effective N = 2

supersymmetric theories. It is shown how to induced contributions to the

Chern-Simons level of the low energy theory, by integrating out massive matter. Such

effective field theories are then shown to arise from type IIB brane configurations

based on the Hanany-Witten brane configuration. Strong-weak dualities are

overviewed, leading to a discussion of the three dimensional strong-weak dualities:

Aharony duality for theories with zero Chern-Simons level, and Giveon-Kutasov

duality for theories with non-zero Chern-Simons level. In the results section, brane

configurations corresponding to three-dimensional N = 2 U(Nc) field theories with

various numbers of flavour of massive matter are investigated. The resulting low

energy field theories are explained, and the flows between Aharony and

Giveon-Kutasov dualities are catalogued. Three dimensional N = 2 effective field

theories obtained through the inclusion of massive adjoint matter are also examined,

with the flows between Aharony and Giveon-Kutasov dualities, again, catalogued.

Finally, the significance of the results and the possibilities for future research, are

discussed.
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Despite being incredibly effective at describing many experimental results to a very

high degree of accuracy, it has long been known that the standard model of particle

physics leaves many mysteries unsolved 1. One of the most significant (if not the most

significant) unanswered question concerns how to obtain a quantum field theory

description of gravity. Einstein’s general relativity seems at odds with quantum field

theory. For example, gravitons lead to ultraviolet divergences at two loops or higher.

Another mystery is the matter-antimatter asymmetry of the universe. The standard

model also fails to explain numerous physical parameters through theoretical means.

Such parameters are observed experimentally, and inserted into equations with no

further explanation. These mysteries lead to the conclusion that the standard model

is incomplete.

Consequently, theoretical physicists are faced with the daunting challenge of

formulating a theory that recreates all those experimental results the standard model

succeeds in describing, whilst also explaining those mysteries the standard model fails

to resolve. One famous theory that attempts to succeed the standard model is string

theory. String theory has an number of features that contribute to its elegance [1]:

String theory is a grand unified theory; all particles and their associated forces emerge

from the string dynamics. String theory also provides a successful quantum theory of

gravity. It is possible to show that the ultraviolet divergences that ail quantum field

theories when gravitons are added do not occur in the loop diagrams of string theory.

String theory necessitates the existence of more than four spacetime dimensions.

Specifically, superstring theory predicts ten spacetime dimensions. Since only four of

these are experimentally observable, the remainder are theorised to be compactified,

either geometrically or non-geometrically. [1] The fact that string theory predicts the

number of dimensions it inhabits is one of its intriguing features. This text will be

primarily interested in those string theories that also incorporate Dp-branes and

NS5-branes. Eventually, specific brane configurations of type IIB string theory will be

considered, together with the low energy three dimensional N = 2 field theories they

predict.

Three dimensional (one temporal, and two spatial dimensional) theories need little

justification for study. Since spacetime is observed to be four dimensional at

terrestrial energies, it is possible to consider ‘planar’ systems within the four

dimensional spacetime, where one spatial dimension is sufficiently small to preclude

excitations in that direction. For example an extremely thin sheet of material behaves

as a three dimensional spacetime at sufficiently low energies. Unsurprisingly, three

dimensional field theory is especially useful in the study of condensed matter systems.

It therefore seems pertinent to see how such three dimensional field theories might

arise as the low energy limits of string theory.
1Although, the relatively recent discovery of the Higgs boson only bolsters admiration of the standard

model!
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Strong-weak dualities in three dimensional N = 2 field theories are of central

importance to this text. One of the greatest obstacles faced by field theories is that of

their strongly coupled, non-perturbative regimes. Since the methods of perturbation

theory cannot be employed, such regimes are notoriously difficult to investigate. An

interesting new method for investigating the strongly coupled regimes comes in the

form of strong-weak duality. Certain classes of theory have been discovered whose

strongly coupled regime is physically equivalent to the weakly coupled regime of

another ‘dual’ theory. The theories give rise to the same observable phenomena.

Importantly the two theories are also related by a ‘duality’ transformation. Such

theories are interesting as the behaviour of the strongly coupled regime of one theory

can be ascertained by perturbatively investigating the weakly coupled regime of its

dual, and then making a duality transformation. Specifically, for effective three

dimensional N = 2 theories with zero Chern-Simons level, Aharony duality was

theorised [2], and for effective three dimensional N = 2 theories with non-zero

Chern-Simons level, Giveon-Kutasov duality was theories [3]. Such dualities only hold

in the infrared regime. The Chern-Simons level of a theory can be altered by

integrating out massive matter. Therefore, by including different flavours of massive

matter in the ultraviolet regime, the type of duality exhibited at low energies can be

altered.

The above concepts are combined together in this text. Type IIB string theories will

be considered, and specific brane configurations will be discussed. The three

dimensional N = 2 effective field theories that arise from such configurations are then

investigated. Different massive matter contents of the high energy theories are

considered, and their effects on the type of low energy dualities that arise are noted.

Theories contained massive adjoint matter are also considered, with a similar

discussion of the low energy dualities. In section 1 bosonic string theory is introduced.

Bosonic string theory, as the name suggests, only gives rise to bosonic degrees of

freedom. Despite the fact that this makes it phenomenologically unviable (observable

physics demands the existence of fermions), many of the methods used for the bosonic

string are useful in superstring theory. Furthermore many of the equations derived in

bosonic strng theory are used in the fermionic string theory (e.g. the expressions of

the bosonic Virasoro generators). In section 2 superstring theory is described. The

inclusion of supersymmetry gives rise to fermions as well as bosons. It is from these

superstrings that the realistic field theories are obtained. The differences between

type IIA and IIB string theories are also explained. In section 3 the types of branes

that are theorised to exist in type IIA and IIB string theories are explained. The

branes of both theories are discussed for completeness, although only type IIB theory

(and its associated branes) are used in the results section. In section 4 a brief

overview of the relevant concepts of three dimensional field theory are discussed.

Many of the equations and action terms introduced in this section will be referred to

14



in the results section. In section 5 it is explained how integrating out massive matter

results in contributions to the bare Chern-Simon level in the three dimensional

effective field theory. In section 6 it is explained how three dimensional N = 2

effective field theories are obtained from type IIB brane configurations. Therefore,

this section provides a direct correspondence between the string theory and field

theory of interest. In section 7 a brief pedagogical introduction to strong-weak

dualities is provided. The section concludes with explanations of Aharony and

Giveon-Kutasov dualities. In part III the results of [4] are presented: In section 8

theories without adjoint matter (only fundamental and antifundamental matter) are

discussed. Various brane configurations are presented corresponding to various

numbers of massive flavours. The resulting three dimensional N = 2 effective field

theories, and their dualities, are explained. In section 9 three dimensional N = 2

effective theories, obtained by integrating out massive adjoint matter, are discussed.

Again, the resulting dualities are catalogued. Finally, in part IV the results are

discussed, and future possibilities for research are explored.
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Background
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1 The Bosonic String

Whilst the research presented in this text primarily concerns (1 + 2)d N = 2 field

theories derived from superstring theories, it is useful to provide an overview of

bosonic string theory. Bosonic string theory provides an introduction to the concepts

used in superstring theory, and many of the equations derived from the bosonic string

have analogous expressions in superstring theory.

During its passage in space and time a one-dimensional extended object (a string)

traces out a two-dimensional worldsheet Σ [1]. This is analogous to the worldline

traced out by a point particle. Classical string theory involves a map X from a

two-dimensional string worldsheet, Σ with metric hαβ, to a target manifold M, with

metric ηµν :

X : Σ→M (1.1)

In bosonic string theory M is often taken to be a (1 + 25)-dimensional spacetime,

whilst in superstring theory it is often a (1 + 9)-dimensional spacetime. The exact

shape of the spactime compactification can vary. Consider the example of the open

string. The string worldsheet Σ is parameterised by two coordinates

σα = (σ0, σ1) = (τ, σ) and has a metric hαβ [1]:

Figure 1: A worldsheet Σ in a target space M.

The map X takes a worldsheet point (τ, σ) to a spacetime point Xµ(τ, σ). For

D-dimensional spacetime there are D coordinates X0,1,...,D−1(τ, σ) which can be

interpreted as D scalar fields on Σ.
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1.1 The Nambu-Goto Action

In order to discuss dynamics an action must be formulated for the theory. To

understand how this might be achieved, it helps to first look at the point particle as

an example [5]. The worldline Σpoint of a point particle is parameterised by a single

coordinate, τ , and a 1d metric h00 (note the metric only has a single component).

When the worldline is embedded into D-dimensional spacetime with metric ηµν , the

pullback is given as:

h00 =
∂Xµ

∂τ

∂Xν

∂τ
ηµν (1.2)

The action for the point particle can then be written:

−Spoint

m
=

∫
dτ
√
−h00

=

∫
dτ

√
−∂X

µ

∂τ

∂Xν

∂τ
ηµν

= 1d volume of worldline (length of trajectory)

(1.3)

Using the same formalism, the action emerging from the worldsheet traced out by a

string moving through spacetime is given by [5]:

−SNG

T
= 2d volume of worldsheet (area of trajectory) (1.4)

Where T is the mass per unit length of the string, called the string tension. The

subscript ‘NG’ is provided in anticipation of this action giving rise to the Nambu-Goto

action. [1, 6] The spacetime positions X = X(τ, σ) are now functions of two

(worldsheet) coordinates instead of one (worldline) coordinate. Therefore, instead of:

∂Xµ

∂τ
(1.5)

the worldsheet has:

∂Xµ

∂σα
(1.6)

The worldsheet pullback, analogous to Equation 1.2, is then written:

hαβ =
∂Xµ

∂σα
∂Xν

∂σβ
ηµν (1.7)
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Writing equation 1.4 in the same form as equation 1.2 (with −h = −det(hαβ) instead

of −h00) gives [1, 6]:

−SNG

T
=

∫
dτdσ

√
−h

=

∫
dτdσ

√
−det(hαβ)

= 2d volume of worldsheet

(1.8)

Writing equation 1.7 in matrix form gives:

hαβ =

 ∂Xµ

∂σ0

∂Xµ

∂σ0

∂Xµ

∂σ0

∂Xµ

∂σ1

∂Xµ

∂σ1

∂Xµ

∂σ0

∂Xµ

∂σ1

∂Xµ

∂σ1


=

 ∂Xµ

∂τ

∂Xµ

∂τ

∂Xµ

∂τ

∂Xµ

∂σ
∂Xµ

∂σ

∂Xµ

∂τ

∂Xµ

∂σ

∂Xµ

∂σ


(1.9)

=

 Ẋ2 Ẋ ·X ′

X
′ · Ẋ X

′2



⇒ det(hαβ) = Ẋ2X
′2 − (Ẋ ·X ′)2 (1.10)

Plugging equation 1.10 in to equation 1.8 gives:

−SNG

T
=

∫
dτdσ

√
(Ẋ ·X ′)2 − Ẋ2X ′2 (1.11)

SNG = −T
∫
dτdσ

√
(Ẋ ·X ′)2 − Ẋ2X ′2 (1.12)

This is the Nambu-Goto action of the bosonic string.

1.1.1 The Canonical Momentum Densities of the String

The canonical momentum densities are defined as Pµα , α = 0, 1:

Pµ0 ≡ Πµ ≡ ∂L
∂Ẋµ

, Pµ1 ≡
∂L
∂X ′µ

(1.13)
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Written explicitly, these are given as:

Pµ0 = Πµ =
T
(

(Ẋµ)(X ′)2 − (Ẋ ·X ′)(X ′µ)
)

√
(Ẋ ·X ′)2 − Ẋ2X ′2

(1.14)

Pµ1 =
T
(
Ẋ2X

′µ − (Ẋ ·X ′)Ẋµ
)

√
(Ẋ ·X ′)2 − Ẋ2X ′2

(1.15)

Constraints on the Canonical Momentum Densities

The constraints on the canonical momentum densities are:

ΠµX ′µ = 0 (1.16)

Π2 + T 2(X ′)2 = 0 (1.17)

Hcan = ẊΠ− LNG = 0 (1.18)

where Hcan is the canonical Hamiltonian.

1.1.2 The Equations of Motion of the Nambu-Goto Action

Consider variation of the spacetime position X(τ, σ) by a small amount ε(τ, σ):

X̃(τ, σ) = X(τ, σ) + ε(τ, σ) (1.19)

Infinitesimally, this is written:

δX = ε(τ, σ) (1.20)

Setting the variation of the action to zero then gives the equations of motion:

∂

∂τ
Pµ0 = 0 and

∂

∂σ
Pµ1 = 0 (1.21)
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1.2 The Polyakov Action

Unfortunately the Nambu-Goto action (equation 1.12) is not easy to quantise due to

the presence of the square root. Rather than attempting to quantise the Nambu-Goto

action, it will prove useful to re-express it in a new form; as the Polyakov action.

The Polyakov action is given as [7]:

SP = −T
2

∫
d2σ
√
hhαβ∂αX

µ∂βX
νηµν (1.22)

where h ≡ −det(hαβ) and hαβ is defined in equation 1.7. Note that the string tension

T is sometimes written as:

T =
1

2πα′
=

1

2πl2s
(1.23)

where α′ is the ‘Regge slope’. This gives:

SP = − 1

4πα′

∫
d2σ
√
hhαβ∂αX

µ∂βX
νηµν (1.24)

Of course the expression for T can also be used to rewrite equation 1.12.

1.2.1 The Equations of Motion from the Polyakov Action

Variation of the Action with Respect to Xµ

Consider variation of the spacetime position X(τ, σ) by a small amount ε(τ, σ):

X̃(τ, σ) = X(τ, σ) + ε(τ, σ) (1.25)

Infinitesimally, this is written:

δX = ε(τ, σ) (1.26)

Setting the variation of the action to zero then gives the equations of motion [8]:

∂α

(√
hhαβ∂βXµ

)
= 0 (1.27)

This is the equation of motion using the curved worldsheet metric hαβ. Later,

conformal gauge will be used and the curved worldsheet metric will be replaced by

the flat one ηαβ. It is possible to show that [8]:
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∂α

(√
hhαβ∂βXµ

)
=
√
h∇α∇αXµ = 0 (1.28)

This gives:

∇α∇αXµ = 0 (1.29)

where ∇α is a covariant derivative called the ‘Levi-Civita connection’ on (Σ, hαβ).

Variation with Respect to the Worldsheet Metric

Imposing invariance of the action under variation of the metric gives the equation of

motion [1]:

∂γX
µ∂δXµ − 1

2∂αX
µ∂βXµh

αβhγδ = 0 (1.30)

1.3 The Polyakov Action in Conformal Gauge

The Polyakov action is invariant under reparametrisation and Weyl transformation.

Using reparametrisation and Weyl transformations, conformal gauge can be achieved.

In this gauge the Polyakov action is given by:

SP = − 1

4πα′

∫
d2σηαβ∂αX

µ∂βX
νηµν (1.31)

Reparameterisation invariance corresponds to two local symmetries, since there are

two coordinates that can be reparameterised independently. Weyl invariance

corresponds to one more local symmetry. This gives a total of three local symmetries.

It just so happens that the 2-dimensional worldsheet metric has three independent

components, since it is a symmetric 2× 2 matrix. The independent components are

h00, h11 and h01 = h10. The upshot is that three symmetries (the two coordinate

reparameterisation symmetries and Weyl symmetry) were used to fix the three

independent components of hαβ [7, 9]:

hαβ → ηα,β (1.32)
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1.3.1 The Equations of Motion from the Polyakov Action in Conformal

Gauge

Variation of the Action with Respect to Xµ

Under variation with respect to Xµ, the Polyakov action in conformal gauge gives the

equation of motion [1]:

ηαβ∂α∂βX
µ = 0 (1.33)

which is a wave equation. In lightcone coordinates this becomes [1]:

∂+∂−X
µ = 0 (1.34)

1.3.2 Momentum Densities from the Polyakov Action in Conformal Gauge

The momentum densities of the string are given by [1]:

Pαµ =
∂L

∂(∂αXµ)
(1.35)

This gives the canonical momenta:

P0
µ =

∂L
∂(∂0Xµ)

= T∂0Xµ (1.36)

and:

P1
µ =

∂L
∂(∂1Xµ)

= −T∂1Xµ (1.37)

1.4 The Canonical Commutation Relations

The canonical commutation relations are given by [1, 10, 11]:

[
Xµ(τ, σ), Xν(τ, σ′)

]
=
[
P0µ(τ, σ),P0 ν(τ, σ′)

]
= 0 (1.38)

[
Xµ(τ, σ),Pν(τ, σ′)

]
= iηµνδ(σ − σ′) (1.39)
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1.5 Solutions to the Wave Equation

It is now possible to obtain the solutions to the wave equation (equation 1.33). These

solutions are needed to eventually quantise the bosonic string, and to obtain

expressions for the creation and annihilation operators. Begin by writing the most

general solution to the wave equation [1, 10, 11]:

ηαβ∂α∂βX
µ = 0 (1.40)

before imposing boundary conditions.

1.5.1 Open String

Neumann and Dirichlet Boundary Conditions

An open string with wordsheet coordinates τ (ranging from −∞ to ∞) and σ

(ranging from 0 to π) can have either Neumann or Dirichlet boundary conditions at

each end point, where the endpoints exist at σ = 0 and at σ = π. A string whose

spacetime position is parametrised by Xµ(τ, σ), has Dirichlet boundary conditions

along the spatial dimensions a if [1]:

Xa(τ, 0) = Xa(τ, π) = 0 (1.41)

This means that the endpoints of the string do not move in the spatial directions

labelled by a. Alternatively, the string has Neumann boundary conditions along the

spatial directions a if [1]:

dXa(τ, σ)

dσ

∣∣∣∣
σ=0

=
dXa(τ, σ)

dσ

∣∣∣∣
σ=π

= 0 (1.42)

In general the string has Neumann boundary conditions along the time dimension

µ = 0:

dX0(τ, σ)

dσ

∣∣∣∣
σ=0

=
dX0(τ, σ)

dσ

∣∣∣∣
σ=π

= 0 (1.43)

Dp-branes

Dirichlet and Neumann boundary conditions allow ‘Dp-branes’ to be defined, where

the ‘D’ stands for ‘Dirichlet’ [1]. A Dp-brane is a dynamical object

p-spatial-dimensional object that strings can end on. The end points of the string can

move along those directions in which the Dp-brane extends, but they cannot move in

the directions normal to the brane. So, for example, consider a D3-brane which
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extends along x1, x5 and x6. Strings ending on this brane have Neumann boundary

conditions for X0, X1, X5 and X6, and Dirichlet boundary conditions for all

remaining X(τ, σ) components. In this text, configurations consisting of various

Dp-branes will be used to formulate string theories that give rise to interesting low

energy (1 + 2)-dimensional field theories. Dp-branes are discussed further in sections 3

and 6.

Open Bosonic String with Neumann Boundary Conditions at Both Ends

If both ends of the string are free to move (i.e. They satisfy Neumann boundary

conditions) the solution to the wave equation becomes [1, 10, 11]:

Xµ(τ, σ) = xµ +
√

2α′αµ0τ + i
√

2α′
∑
m6=0

αµm
m
e−imτcos(mσ) (1.44)

where ([1])αµ0 =
√

2α′pµ and where ls =
√
α′. Using α′ = l2s the Xµ mode expansion

can be rewritten:

Xµ(τ, σ) = xµ +
√

2lsα
µ
0τ + i

√
2ls
∑
m6=0

αµm
m
e−imτcos(mσ) (1.45)

Using αµ0 =
√

2α′pµ =
√

2lsp
µ:

Xµ(τ, σ) = xµ + 2l2sp
µτ + i

√
2ls
∑
m6=0

αµm
m
e−imτcos(mσ) (1.46)

Open Bosonic String with Dirichlet Boundary Conditions at Both Ends

If both ends are fixed (i.e. they satisfy Dirichlet boundary conditions) the solution of

the wave equation becomes [10]:

Xµ(τ, σ) = xµ + 2l2sp
µσ − i

√
2ls
∑
m 6=0

αµm
m
e−imτ sin(mσ) (1.47)

1.5.2 Closed String

Closed strings have a periodic boundary condition [1]:

Xµ(τ, σ) = Xµ(τ, σ + 2π) (1.48)

With this condition in minde, the left and right moving Xµ modes of the closed string

are given by [1, 10, 11]:
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Xµ
R =

xµ0
2

+ l2sp
µ(τ − σ) +

i√
2
ls
∑
n6=0

αµn
n
e−in(τ−σ) (1.49)

Xµ
L =

xµ0
2

+ l2sp
µ(τ + σ) +

i√
2
ls
∑
n 6=0

α̃µn
n
e−in(τ+σ) (1.50)

The left and right moving modes can be combined to give [1, 10, 11] :

Xµ(τ, σ) = Xµ
R +Xµ

L

= xµ0 + 2l2sp
µτ +

i√
2
ls
∑
n6=0

e−2inτ

n

(
αµne

2inσ + α̃µne
−2inσ

) (1.51)

1.6 The Energy-Momentum Tensor

It can be shown that the energy-momentum tensor appears in the Noether current

associated with conformal symmetry of the pre-gauge-fixed Polyakov action [12].

Specifically, it is the conserved current associated with translational symmetry, where

translations are a specific type of conformal transformation. Consider a general

translation:

σα → σα ′ = σα + δσα

= σα + εα
(1.52)

where εα ≡ δσα. It can be shown that, up to a constant, the conserved current

contains a term of the form [12]:

Tαβ ≡ −
1

T

1√
h

δSP
δhαβ

(1.53)

Which is called the energy-momentum tensor. Calculating the variation of the action

with respect to hαβ explicitly gives the energy momentum tensor as:

Tαβ =
1

2
∂αX

µ∂βXµ −
1

4
hαβh

γδ∂γX
µ∂δXµ (1.54)

1.6.1 The Conservation of the Energy-Momentum Tensor

The energy-momentum tensor is conserved [10]:

∇αTαβ = 0 (1.55)
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In conformal gauge, where the metric is taken to be the flat space metric, the

replacement ∇α → ∂α is made, since the Christoffel symbols in ∇α vanish. Therefore,

on the flat worldsheet (in conformal gauge) [10]:

∂αTαβ = 0 (1.56)

This result can also be achieved by demanding that current Jα = Tαβε
β is conserved

for constant εβ [13]:

0 = ∂αJα

= ∂α
(
Tαβε

β
)

= (∂αTαβ) εβ + Tαβ��
��
�* 0(

∂αεβ
)

⇒ ∂αTαβ = 0

(1.57)

1.6.2 The Vanishing of the Energy-Momentum Tensor

One of the equations of motion stated above was:

∂γX
µ∂δXµ − 1

2∂αX
µ∂βXµh

αβhγδ = 0 (1.58)

Which implies [7]:

Tαβ = 0 (On-Shell) (1.59)

Since a system is on-shell when it obeys the classical equations of motion, and since

the vanishing of the energy-momentum tensor is obtained as a direct result of an

equation of motion, the vanishing of the energy-momentum is only true on-shell [7].

1.6.3 The Vanishing of the Trace of the Energy-Momentum Tensor

Since the vanishing of the energy-momentum tensor has only been proven to be true

on-shell, it is still worthwhile considering other properties of the tensor. For example

the energy-momentum tensor has zero trace [10]:

Tr(Tαβ) = Tαα = 0 (1.60)
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Since the equations of motion were not used to obtain the vanishing of the trace, it

vanishes both on-shell and off-shell. It is also possible to show the vanishing of the

trace of the energy-momentum tensor by demanding the invariance of the Polyakov

action in conformal gauge under translations. Or it can be shown from invariance of

the Polyakov action under scalings of the metric.

1.6.4 The Energy-Momentum Tensor in Lightcone Coordinates

In light-cone coordinates the energy-momentum tensor is given by [1]:

T++ = ∂+X
µ∂+Xµ (1.61)

T−− = ∂−X
µ∂−Xµ (1.62)

T−+ = T+− = 0 (1.63)

The energy-momentum tensor in canonical coordinates can be written in terms of

these as [1]:

T00 = T11 = T++ + T−− (1.64)

T01 = T10 = T++ − T−− (1.65)

1.6.5 Energy-Momentum Tensor Mode Expansions

The energy-momentum tensors for the open string can be expressed in terms of their

mode expansions as [1, 11]:

T++ = l2s

∞∑
m=−∞

Lme
−im(τ+σ) (1.66)

T−− = l2s

∞∑
m=−∞

Lme
−im(τ−σ) (1.67)

where Lm =
1

2

∞∑
n=−∞

αm−n · αn (1.68)

The energy-momentum tensors for the closed string can be expressed in terms of their

mode expansions as [1, 11]:
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T++ = l2s

∞∑
m=−∞

L̃me
−im(τ+σ) (1.69)

T−− = l2s

∞∑
m=−∞

Lme
−im(τ−σ) (1.70)

where L̃m =
1

2

∞∑
n=−∞

α̃m−n · α̃n (1.71)

and Lm =
1

2

∞∑
n=−∞

αm−n · αn (1.72)

1.7 The Classical Mass-shell Conditions

Recall that, in the on-shell classical theory, the energy-momentum tensor vanishes. As

a result, classically and on-shell, the Fourier modes of the energy-momentum tensor

are also expected to vanish. Equations 1.64 and 1.65 show that T++ and T−− must

vanish identically in order for all components of the energy-momentum tensor to

vanish.

1.7.1 The Classical Open String Mass-Shell Condition

For the open string, equations 1.66 and 1.67 show that T++ and T−− vanish when

[1, 10, 11]:

Lm = 0 m ∈ Z (1.73)

The zero modes are then given by:

L0 = 0 (1.74)

In the classical theory, Lm and the oscillators αn are not operators. This means that

α−n and αn commute. As such L0 can be written [1, 10, 11]:
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.

L0 =
1

2

∞∑
n=−∞

α−n · αn

=
1

2
α0α0 +

1

2

∞∑
n=1

α−n · αn +
1

2

−1∑
n=−∞

α−n · αn

=
1

2
α0α0 +

1

2

∞∑
n=1

α−n · αn +
1

2

∞∑
n=1

αn · α−n

=
1

2
α0α0 +

1

2

∞∑
n=1

α−n · αn +
1

2

∞∑
n=1

α−n · αn

=
1

2
α0α0 +

∞∑
n=1

α−n · αn

(1.75)

Setting this to zero, to give the vanishing of T++ and T−−, gives:

L0 =
1

2
α0α0 +

∞∑
n=1

α−n · αn = 0 (1.76)

Here αµ0 =
√

2α′pµ and ls =
√
α′ [1].

aµ0 =
√

2lsp
µ (1.77)

⇒ 1

2
α0α0 = l2sp

2 (1.78)

So that:

L0 ≡ l2sp2 +
∞∑
n=1

α−n · αn = 0 (1.79)

⇒ p2 = − 1

l2s

∞∑
n=1

α−n · αn (1.80)

Classically, the mass-shell condition is given by the energy-momentum equation from

relativity [11]:

M2 = −pµpµ = −p2 (1.81)

Using the above result for the momentum, this becomes [11]:

M2 =
1

l2s

∞∑
n=1

α−n · αn (1.82)

This is the mass-shell condition for the open string.
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1.7.2 The Classical Closed String Mass-Shell Condition

For the closed string, equations 1.69 and 1.70 show that T++ and T−− vanish when

[1, 10, 11]:

Lm = L̃m = 0 m ∈ Z (1.83)

The zero modes are then given by:

L0 = L̃0 = 0 (1.84)

Using the classical expressions for L0 and L̃0:

L0 ≡
1

2
α0α0 +

∞∑
n=1

α−n · αn = 0 (1.85)

L̃0 ≡
1

2
α̃0α̃0 +

∞∑
n=1

α̃−n · α̃n = 0 (1.86)

gives:

p2 = − 1

l2s

∞∑
n=1

α−n · αn (1.87)

p2 = − 1

l2s

∞∑
n=1

α̃−n · α̃n (1.88)

The momentum can be written as an average of these two expressions [1]:

p2 = − 1

2l2s

∞∑
n=1

(α−n · αn + α̃−n · α̃n) (1.89)

Considering the zero modes, then normal ordering and redefining as in section 1.8.2,

gives:

M2 =
1

2l2s

∞∑
n=1

(α−n · αn + α̃−n · α̃n) (1.90)

This is the mass-shell condition for the closed string.
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1.8 Canonical Quantisation

Canonical quantisation is not the only method for quantising the string. It is also

possible to use lightcone quantisation (which will be used later) and modern covariant

quantisation (which will not). The latter is useful for describing string interactions

and is analogous to the path integral formulation of quantum mechanics [14].

1.8.1 The αn Commutation Relations

Using the canonical commutation relations (the commutators of Xµ and P0µ), the

commutators of the string oscillators αµm and α̃µm can be proven to be [1, 10, 11]:

[αµm, α
ν
n] = [α̃µm, α̃

ν
n] = ηµνmδm+n,0 (1.91)

[αµm, α̃
ν
n] = [α̃µm, α

ν
n] = 0 (1.92)

1.8.2 The Redefinition of L0

In the quantum theory Lm are promoted to operators. This introduces a normal

ordering ambiguity. The convention chosen keeps αn with negative modes n to the

left of those with positive modes. In the case of Lm with m 6= 0 the normal ordering

is easy. The normal ordered Virasoro operator is written [1, 10, 11]:

Lm =
1

2

∞∑
n=−∞

: αm−n · αn : (1.93)

Equation 1.91 shows that the commutator of two α operators is only non-zero when

their modes are equal and opposite in sign. This means that non-zero m guarantees

that the α operators in the above expression commute. Therefore, for non-zero m, the

normal ordering is a simple case of rearranging. For m = 0 the normal ordering is

more involved. Before normal ordering, L0 is given by:

L0 =
1

2

∞∑
n=−∞

α−n · αn

=
1

2
α0α0 +

1

2

∞∑
n=1

α−n · αn +
1

2

∞∑
n=1

αn · α−n

(1.94)

This can be put in normal ordered form:

L0 =
1

2
α0α0 +

∞∑
n=1

α−n · αn +
D

2

∞∑
n=1

n (1.95)
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The last term is called a ‘normal ordering constant’. L0 is now redefined such that it

does not contain this constant:

L0 ≡
1

2
α0α0 +

∞∑
n=1

α−n · αn (1.96)

Care must be taken when writing L0. The old definition of L0 can be written in terms

of the new definition, however the normal ordering constant cannot be forgotten:

L0 (Old definition) = L0 (New definition) +
D

2

∞∑
n=1

n (1.97)

Similarly, L̃0 can be redefined to give [1, 10, 11]:

L̃0 ≡
1

2
α̃0α̃0 +

∞∑
n=1

α̃−n · α̃n (1.98)

From this point forth, the notation L0 and L̃0 will be reserved for the new definitions,

unless stated otherwise.

1.8.3 The Virasoro Algebra

It can be shown that the modes Lm of the energy momentum-tensor, satisfy

[1, 10, 11]:

[Lm, α
µ
n] = −nανm+n (1.99)

Where L0 is the redefined zero mode, which does not contain the normal ordering

constant. This commutation relation is instrumental in proving that:

[Lm, Ln] = (m− n)Lm+n +
D

12

(
m3 −m

)
δm+n,0 (1.100)

This is called the ‘Virasoro Algebra’.

1.9 Lightcone Gauge Quantisation

Lightcone gauge is described in Appendix A. The Virasoro generators and oscillators

obtained in that section are used here.

The Commutation Relations
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Using the same methods as for Canonical quantisation, the oscillator mode

commutation relations can be derived [1, 10, 11]:

[
αIm, α

J
n

]
=
[
α̃Im, α̃

J
n

]
= ηIJmδm+n,0 (1.101)

[
αIm, α̃

J
n

]
=
[
α̃Im, α

J
n

]
= 0 (1.102)

Also [1, 10, 11]:

[
L⊥m, α

J
n

]
= −nαJm+n (1.103)

which is instrumental in proving that [1]:

[
L⊥m, L

⊥
n

]
= (m+ n)L⊥m+n +

D − 2

12

(
m3 −m

)
δm+n,0 (1.104)

1.10 The Quantum Mass-Shell Condition

1.10.1 The Quantum Open String Mass-Shell Condition

It is important to find out what form the mass-shell conditions take in the quantum

string theory. Particles that obey the mass-shell condition are on-shell also (they obey

the classical equation of motion), and such particles are considered to be physical or

‘real’. Those that fail to satisfy the mass-shell condition are off-shell and unphysical,

and play the role of virtual particles. Since the mass-shell condition tells apart

physical and virtual particles it is important that it is carefully chosen for the

quantum theory.

It was explained that, in the classical theory, the energy-momentum tensor vanishes

on-shell. As a result Lm = L̃m = 0. Since, in the quantum theory, Lm and L̃m are

promoted to operators, the naive conclusion would be that [1]:

Lm |ψ〉 = L̃m |ψ〉 = 0 (m 6= 0) (1.105)

(L0 − a) |ψ〉 = (L̃0 − a) |ψ〉 = 0 (1.106)

Recall that the redefined L0 does not include the normal ordering constant. There is

actually some ambiguity as to exactly what normal ordering constant should be used,

so for now simply call it a. 2

2The normal ordering constant can be chosen arbitrarily, and is fixed later by requiring the absence
of negative norms states [11].
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Unfortunately, the above equations together with the Virasoro algebra only permit

trivial states (|ψ〉 = 0). A weaker set of constraints on the modes are required. It is

possible to choose that either all Lm, L̃m with m > 0 annihilate the physical states or

that all Lm, L̃m with m < 0 annihilate the physical states. For the open string, only

Lm is used. The constraints that are kept are [1]:

Lm |ψ〉 = 0 (m > 0) (1.107)

(L0 − a) |ψ〉 = 0 (1.108)

for on-shell states. This also gives [1]:

〈ψ1|Lm |ψ2〉 = 0 (m > 0) (1.109)

for on-shell states. It would have also been acceptable to choose all Lm with m < 0 to

annihilate the physical states instead. Hermiticity of Lm (Lm = L†m), together with

the fact that Lm |ψ2〉 = 0, means that [1]:

〈ψ1|Lm |ψ2〉 = 〈ψ1|L†m |ψ2〉 = 0 (1.110)

which means that 〈ψ1|L†m = 0, since L†m acts to the left.

Recall that the energy-momentum tensor was only required to vanish on-shell. Since

equations 1.107 and 1.106 were obtained using the vanishing of the energy-momentum

tensor, they are only true for quantum, on-shell states. Such states are referred to as

‘physical’ or ‘real’ states. For the open string only Lm is used.

Using the definition M2 = −p2, and writing the momentum in terms of the Virasoro

generators, the mass-shell condition becomes [1, 10, 11]::

M2 |ψ〉 =
1

l2s
(N − a) |ψ〉 (1.111)

where

N ≡
∞∑
n=1

α−n · αn (1.112)

The operators are related as [1, 10, 11]:

M2 =
1

l2s
(N − a) (1.113)

This is the mass-shell condition for the quantum open string. Later a will be

determined to equal one.
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1.10.2 The Quantum Closed String Mass-Shell Condition

For the closed string both Lm and L̃m are used, with conditions [1, 10, 11]:

Lm |ψ〉 = L̃m |ψ〉 = 0 (m 6= 0) (1.114)

(L0 − a) |ψ〉 = (L̃0 − a) |ψ〉 = 0 (1.115)

for on-shell states. Also:

〈ψ1|Lm |ψ2〉 = 0 (m > 0) (1.116)

〈ψ1| L̃m |ψ2〉 = 0 (m > 0) (1.117)

for on-shell states. Using the definition M2 = −p2, and writing the momentum in

terms of the Virasoro generators, the mass-shell condition becomes [1, 10, 11]:

M2 =
1

2l2s

(
N + Ñ − 2a

)
(1.118)

where:

N ≡
∞∑
n=1

α−n · αn (1.119)

Ñ ≡
∞∑
n=1

α̃−n · α̃n (1.120)

As for the open string a will be determined to equal 1.

1.11 The Critical Dimension D = 26 and the Normal Ordering Con-

stant a = 1

Rigourously proving the critical dimension and normal ordering constant for strings

using covariant quantisation is difficult. However there is quite an easy non-rigorous

way of acquiring the values of these constants in covariant quantisation using the

methods of [11]. The method uses the requirement that the theory should not have

any negative norm states. Specifically, it assumes that there is a ‘boundary’ between

negative norm states and positive norm states, and that this boundary is

characterised by the largest number of zero norm states. To find the critical value of

D - equal to or below which, no negative norm states appear - it will be necessary to

find the dimension which gives rise to the most zero norm states. The specifics of the

method are not outlined here, but the results are:
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a = 1 D = 26 (1.121)

Obtaining a rigorous proof is more easily achieved using lightcone quantisation. This

is one of the benefits of using lightcone quantisation over canonical quantisation.

Again, a specific derivation will not be shown, but the results are the same.

1.12 The Conformal Anomaly

In the classical theory it was shown that the vanishing of the trace of the

energy-momentum tensor was a direct result of the conformal symmetry of the

Polyakov action. In the quantum theory it is possible to show that the trace is

non-zero, and, as a result, conformal symmetry is absent from the quantum theory.

This is called a ‘conformal anomaly’ or, sometimes, a ‘Weyl anomaly’3.

1.13 The Open String Spectrum

It is now possible to ascertain the open string spectrum of states. It will be easiest to

use lightcone gauge to obtain the string spectrum. In lightcone coordinates there exist

the position operators [1]:

x−, xI (1.122)

and the momentum operators:

p+, pI (1.123)

where:

I = 2, ..., 25 (1.124)

Therefore, relabelling pI → ~pT in momentum space the ground state (or vacuum

state) is denoted [1]:

|p+, ~pT 〉 (1.125)

By the definition of the vacuum state, all oscillators with positive mode number

annihilate this state [1]:

3In some texts ‘Weyl’ and ‘conformal’ are used almost interchangeably, despite referring to two very
different transformations.
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aIn |p+, ~pT 〉 = 0 (n > 0) (1.126)

The number operator is given by:

N⊥ ≡
∞∑
n=1

naI †n · aIn (1.127)

It gets its name because the commutator of the number operator and creation

operators is [1]:

[
N⊥, aI †n

]
= naI †n (1.128)

[
N⊥, aIn

]
= −naIn (1.129)

The number operators act on the vacuum to give zero. This is because the number

operator is normal ordered, and the annihilation operators appear on the right [1]:

N⊥ |p+, ~pT 〉 = 0 (1.130)

In general a state will have some creation operators acting on it. In this case it is less

obvious how the number operator will act. It is easiest to see how it acts with

examples [1]:

N⊥aI †2 |p
+, ~pT 〉 =

[
N⊥, aI †2

]
|p+, ~pT 〉+ aI †2 N⊥ |p+, ~pT 〉

= 2aI †2 |p
+, ~pT 〉+ 0

(1.131)

Also [1]:

N⊥aJ †3 aI †2 |p
+, ~pT 〉 =

[
N⊥, aJ †3

]
aI †2 |p

+, ~pT 〉+ aJ †3 N⊥aI †2 |p
+, ~pT 〉

= 3aJ †3 aI †2 |p
+, ~pT 〉+ 2aJ †3 aI †2 |p

+, ~pT 〉

= 5aJ †3 aI †2 |p
+, ~pT 〉

(1.132)

This shows that the number operator acts on a state to give the sum of the modes of

the creation operators acting on the vacuum. More generally, it returns the mode

number of the creation operators minus the mode number of the annihilation

operators.
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Tachyons in the spectrum

Unfortunately, the groundstate |p+, ~pT 〉 of the bosonic open string is tachyonic,

having negative squared mass. Since the ground state |p+, ~pT 〉 has no spacetime

indices, it corresponds to a single scalar particle. Its mass is given by [1, 11]:

M2 |p+, ~pT 〉 =
1

l2s
(N⊥ − 1) |p+, ~pT 〉

=
1

l2s
(N⊥ − 1) |p+, ~pT 〉

= − 1

l2s
|p+, ~pT 〉

(1.133)

Since ls is a positive constant, this means that the mass squared of this particle is

negative.

The Bosonic Open String Spectrum

A sample of the spectrum is given below. The table is from [1]:

Table 1: A Sample of Open Bosonic String Spectrum

N⊥ |ψ〉 l2sM
2 Number of States State Type

0 |p+, ~pT 〉 -1 1 Scalar

1 αI †1 |p+, ~pT 〉 0 D − 2 = 24 Vector

2 αI †1 αJ †1 |p+, ~pT 〉 1 1
2(D − 2)(D − 1) = 300 Two-tensor

2 αI †2 |p+, ~pT 〉 1 (D − 2) = 24 Vector

1.14 The Closed String Spectrum

As in the previous section, lightcone gauge will be used. Determining the spectrum of

the closed string is analogous to determining the spectrum of the open string. In this

case there are left and right moving creation and annihilation operators; left movers

are denoted with a tilde, whilst right movers are tilde free.

Both left and right moving annihilation operators (aIn and ãIn) annihilate the vacuum

state:

aIn |p+, ~pT 〉 = ãIn |p+, ~pT 〉 = 0 (1.134)

The mass operator is given by [1]:
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M2 =
2

l2S

(
N⊥ + Ñ⊥ − 2

)
(1.135)

where number operators are given by:

N⊥ ≡
∞∑
n=1

naI †n a
I
n Ñ⊥ ≡

∞∑
n=1

nãI †n ã
I
n (1.136)

It can be expected that these number operators will act on states in complete analogy

to the number operator in equation 1.127. N⊥ will act on a state by giving the sum

of the creation operator modes minus the sum of the annihilation operator modes as

the eigenvalue. For example:

N⊥aJ †n aI †m |p+, ~pT 〉 = (n+m) |p+, ~pT 〉 (1.137)

Similarly:

Ñ⊥ãJ †n ãI †m |p+, ~pT 〉 = (n+m) |p+, ~pT 〉 (1.138)

How about when N⊥ acts on a state with ãI †m or when Ñ⊥ acts on a state with aI †m ?

The commutation relations are:

[
N⊥, ãI †m

]
= 0 (1.139)

[
Ñ⊥, aI †m

]
= 0 (1.140)

As a result M2 acts as:

M2aJ †n ãI †m |p+, ~pT 〉 =
2

l2S

(
N⊥ + Ñ⊥ − 2

)
aJ †n ãI †m |p+, ~pT 〉

=
2

l2S

(
N⊥aJ †n ãI †m |p+, ~pT 〉+ Ñ⊥aJ †n ãI †m |p+, ~pT 〉

−2aJ †n ãI †m |p+, ~pT 〉
)

=
2

l2S

((
N⊥aJ †n

)
ãI †m |p+, ~pT 〉+ aJ †n

(
Ñ⊥ãI †m

)
|p+, ~pT 〉

−2aJ †n ãI †m |p+, ~pT 〉
)

=
2

l2S

(
naJ †n ãI †m |p+, ~pT 〉+maJ †n ãI †m |p+, ~pT 〉

−2aJ †n ãI †m |p+, ~pT 〉
)

(1.141)
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There is one more important consideration before samples of the spectrum can be

written. The level matching condition gives [1]:

N⊥ = Ñ⊥ (1.142)

Only those states that respect the level matching condition contribute to the

spectrum [1]. In order for the level matching to be true N⊥ and Ñ⊥ must give the

same eigenvalue when acting on a state. The only way that can be true is if the state

consists of a vacuum acted on by a†s and ã†s, where the mode numbers of the a†s add

to the same number as the sum of the ã†s mode numbers. For example:

N⊥aI †2 ãJ †1 ãK †1 |p+, ~pT 〉 =
(
NaI †2

)
ãJ †1 ãK †1 |p+, ~pT 〉

= 2aI †2 ãJ †1 ãK †1 |p+, ~pT 〉
(1.143)

Ñ⊥aI †2 ãJ †1 ãK †1 |p+, ~pT 〉 = aI †2

(
Ñ⊥ãJ †1 ãK †1

)
|p+, ~pT 〉

= 2aI †2 ãJ †1 ãK †1 |p+, ~pT 〉
(1.144)

Since both N⊥ and Ñ⊥ act on the state in the same way, this state respects the level

matching condition and is allowed as part of the spectrum. Note that the level

matching condition means that states made of just as or just ãs acting on a vacuum

cannot be part of the physical spectrum. This means that the next lowest level state

after |p+, ~pT 〉 is aI †1 ãJ †1 |p+, ~pT 〉. Using the table from [1] the two lowest level states

are then given by:

Table 2: A Sample of Closed Bosonic String Spectrum

N⊥, Ñ⊥ |ψ, ψ̃〉 1
2 l

2
sM

2 Number of States State Type

0, 0 |p+, ~pT 〉 -2 1 Scalar

1, 1 αI †1 αJ †1 |p+, ~pT 〉 0 (D − 2)2 = 576 Two-tensor

Note the ground state consists of a tachyon (a negative mass squared scalar), just as

for the open bosonic string.
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2 The Supersymmetric String

2.1 The Locally Supersymmetric (Supergravity) String Action

In this section the ‘locally supersymmetric string action’ (also called the ‘supergravity

string action’) will be introduced. It is a generalisation of the Polyakov action that

includes supersymmetry (and, therefore, fermionic degrees of freedom) whilst also

incorporating gravity.

In general the worldsheet is curved (non-Euclidean). In order to consider a

supersymmetric gauge theory on a curved worldsheet, supersymmetry is required to

be a local symmetry of the action [15]. This is because the supersymmetry algebra

generates a translation and translations are only defined locally on a curved manifold

[15, 16]. In order for local supersymmetry to be achieved a spin 3/2 Rarita-Schwinger

gravitino is introduced. The Rarita-Schwinger gravitino χαA and the zweibein eaα

occupy the same supergravity multiplet [15, 17]. The gravitino is a ‘vector-spinor’

[15]. It transforms as a worldsheet vector in the α index and as a worldsheet

Majorana spinor in the A index.

The curved worldsheet has the group GL(2,R) associated with it [17, 18]. Since this

does not provide finite dimensional spinor representations it is necessary to consider

the tangent space which has an SO(1, 1) symmetry. In general, an n-dimensional

curved manifold gives the group GL(n,R), whilst the tangent space to that manifold

gives the group SO(n− 1, 1) [17].

At each point on the curved 2d worldsheet, it is possible to define a flat 2d Minkowski

space running tangentially to the worldsheet [15, 17, 18]. The zweibein eaα relates the

worldsheet metric hαβ (α, β = 0, 1) to the tangent Minkowski space metric ηab

(a, b = 0, 1):

hαβ = eaαe
b
βηab (2.1)

where:

η = diag(−1, 1) (2.2)

An n-dimensional manifold has an associated n-bein which has n2 components [17].

For the 2d case it is called a zweibein.

The locally supersymmetric (LS) action can be written:

42



SLS =− 1

4πα′

∫
d2σ
√
h

(
hαβ∂αX

µ∂βXµ + ψ̄µρα∇αψµ

−2χ̄αρ
βραψµ∂βXµ −

1

2
ψ̄µψµχ̄αρ

βραχβ

) (2.3)

The Dirac conjugates are given by [11, 19]:

ψ̄ = iψ†ρ0 (2.4)

The spinors are Majorana and are given by ψµ = ψµA, A = −,+ [11]:

ψµA =

 ψµ−

ψµ+

 (2.5)

where [11]:

ψ∗+ = ψ+, ψ∗− = ψ− (2.6)

That is, the components are real. Since the hermitian conjugate (denoted by † is the

combined action of transposition and complex conjugation, and since ψ is real, it

follows that:

ψ† = ψT ⇒ ψ̄ = ψT iρ0 (2.7)

ρα are the 2d curved space (curved worldsheet) Dirac matrices given by the zwiebeins

times the flat space 2d Dirac matrices [15]:

ρα = eαaρ
a (2.8)

where ρa (a = 0, 1) are the flatspace 2d Dirac matrices. As before, Greek indices

represent objects in curved spactime, whilst Latin indices represent those in flat

spacetime. The flat space 2d Dirac matrices are:

ρ0 =

 0 −1

1 0

 and ρ1 =

 0 1

1 0

 (2.9)

∇α is the covariant spinor derivative given by [15, 19, 20, 21, 22]:
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∇αψµ = ∂αψµ −
1

4
ωabα γabψµ (2.10)

ωabα is the spin connection. When one considers spinors as sections of a spinor bundle,

the spin connection defines parallel transport on the fibre bundle. The spin

connection is given by [20, 21, 22]:

ωabα = eaβ∂αe
βb + eaβe

γbΓβγα (2.11)

where Γβγα is the ‘affine connection’.

The covariant spinor derivative in the case of 2d Majorana spinors is given by

ρα∇αψ ≡ ρα∂αψ. The action can then be written [15]:

SLS =− 1

2π

∫
d2σ
√
h

(
hαβ∂αX

µ∂βXµ + ψ̄µρα∂αψµ

−2eχ̄αρ
βραψµ∂βXµ −

1

2
eψ̄µψ

µX̄αρ
βραχβ

) (2.12)

2.2 The RNS Superstring Action

2.2.1 The RNS String Action from the Locally Supersymmetric World-

sheet Action

Just as the Polyakov action could be put into conformal gauge, the locally

supersymmetric action can be put into ‘superconformal gauge’ to obtain the RNS

(Ramond-Neveu-Schwarz) superstring action [15].

Superconformal Gauge

The procedure is as follows:

1) The worldsheet metrics is made flat. This is achieved in the same way as for the

Nambu-Goto and Polyakov actions [15]. First reparameterisation invariance means

that the metric can be written in conformally flat form. Reparameterisation

invariance allows the worldsheet invariant interval to be written as [7, 17]:

ds2 = hαβσ
ασβ → e−2Λ(σ)(−(dσ0)2 + (dσ1)2) = e−2Λ(σ)ηαβσ

ασβ (2.13)

Therefore reparameterisation gives:
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hαβ → e−2Λ(σ)ηαβ (2.14)

In this form the metric is said to be ‘conformally flat’. This can be used in

conjunction with the Weyl transformation hαβ(σ)→ e2Λ(σ)hαβ(σ) to give:

hαβ → ηαβ (2.15)

For the Polyakov action this is sufficient to bring it to conformal gauge. To bring the

locally supersymmetric action to superconformal gauge there are two more steps [15].

2) The zweibein can be brought to the form [15]:

eaα = δaα (2.16)

This is achieved using the bosonic symmetries of the worldsheet, corresponding to two

coordinate transformations, one local Lorentz transformation, and one Weyl

tranformation. These four symmetries are used to constrain the four components of

the zweibein. This form of the zweibein means that [15]:

ρα = δαa ρ
a (2.17)

Therefore the curved space Dirac matrices ρα can be written:

ρ0 =

 0 −1

1 0

 and ρ1 =

 0 1

1 0

 (2.18)

3) Since there are also four fermionic symmetries, corresponding to two

supersymmetry transformations with parameter εA, and two superconformal

transformations with parameter η, all four components of χ can be set to zero [15].

When all these steps are taken, the locally supersymmetric sting action is put into

superconformal gauge, and the RNS superstring action is obtained [15, 19]:

SRNS =− 1

4πα′

∫
d2σηab

(
∂aX

µ∂bXµ + ψ̄µρa∂bψµ
)

(2.19)

Alternatively, step (1) from above can be skipped, leading to the alternative form of

the RNS action that appears in the literature:

SRNS =− 1

4πα′

∫
d2σ
√
hhαβ

(
∂αX

µ∂βXµ + ψ̄µρα∂βψµ
)

(2.20)
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2.2.2 The RNS Action as the Supersymmetric Generalisation of the Polyakov

Action

The RNS action can be seen as the Polyakov action with the inclusion of worldsheet

supersymmetry. Consider the Polyakov action:

SP = − 1

4πα′

∫
d2σ
√
hhαβ∂αX

µ∂βX
νηµν (2.21)

In conformal gauge hαβ = ηαβ, giving [7]:

SP = − 1

4πα′

∫
d2σηαβ∂αX

µ∂βX
νηµν

= − 1

4πα′

∫
d2σ∂αX

µ∂αXνηµν

= − 1

4πα′

∫
d2σ∂αXµ∂

αXµ

(2.22)

In order to include fermions into the action a term corresponding to the Dirac action

of D free massless two-dimensional Majorana fermions are added [11, 19]. The form of

the Dirac action is simply:

ψ̄µ/∂ψµ = ψ̄µρα∂αψµ (2.23)

where α = 0, 1, µ = 0, ..., D and ψ̄ = ψ†iρ0 [11]. The RNS superstring action can be

seen as either the locally supersymmetric action in superconformal gauge, or as the

Polyakov action (in conformal gauge) with the Dirac term added:

SRNS = − 1

4πα′

∫
d2σ

(
∂αXµ∂

αXµ + ψ̄µρα∂αψµ
)

(2.24)

2.2.3 The RNS Action in Lightcone Coordinates

Calculations are often simplified by using lightcone coordinates. The RNS action in

lightcone coordinates is given by:

SRNS =
1

2πα′

∫
d2σ (2∂+Xµ∂−X

µ + iψ−∂+ψ− + iψ+∂−ψ+) (2.25)

The Dirac equations are then written [11]:

∂+ψ− = ∂−ψ+ = 0 (2.26)
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2.2.4 Superymmetry of the RNS Action

It is important to understand what sort of supersymmetry exists on the worldsheet of

the superstring. The type of supersymmetry (e.g. N = 1, N = 2 etc..), the number of

supercharges and the real dimension of the minimal spinor representation are related

by:

Number of supercharges =Real dimension of minimal spinor

×Number of supersymmetries (N)
(2.27)

In (1,1)d (on the worldsheet) the minimal spinor representation is the one real

dimensional Majorana-Weyl spinor representation of the Lorentz group Spin(1, 1)

[11, 23], the number of supercharges is two (given by QA with spinor indices A = 1, 2)

[11], and this all corresponds an N = 2 worldsheet supersymmetry [24, 25].

The RNS action is invariant under the supersymmetry transformations:

δXµ (σα) = ε̄ψµ (σα)

δψµ (σα) = ρα (∂αX
µ (σα)) ε

(2.28)

These can be written in lightcone coordinates as [11]:

δXµ = ε̄ψµ

= i
(
ε+ψ

µ
− − ε−ψ

µ
+

)

δψµ = ρα∂αX
µε

⇒ δψµ− = −2∂−X
µε+

⇒ δψµ+ = 2∂+X
µε−

(2.29)

2.3 The Energy-Momentum Tensor of the RNS string

The energy-momentum tenor is the conserved current associated with the

translational symmetry of the RNS action [11]. It is given by:

Tαβ =∂αX
µ∂βXµ −

1

2
ηαβ∂γX

µ∂γXµ

+
1

4
ψ̄µρα∂βψµ +

1

4
ψ̄µρβ∂αψµ −

1

4
ηαβψ̄

µργ∂γψµ

(2.30)
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In lightcone coordinates this is written [11]:

T++ = ∂+Xµ∂+X
µ +

i

2
ψµ+∂+ψ+µ

T−− = ∂−Xµ∂−X
µ +

i

2
ψµ−∂−ψ−µ

T+− = T−+ = 0

(2.31)

In lightcone coordinates the energy-momentum tensor obeys the conservation law

[11, 10]:

∂−T++ = ∂−T−− = 0 (2.32)

This is proven using the equations of motion:

∂+∂−X
µ = 0, ∂+ψ

µ
− = ∂−ψ

µ
+ = 0 (2.33)

2.4 The Supercurrent of the RNS String

The supercurrent is the conserved current associated with the global supersymmetry

of the RNS action [11]. It is given by:

Jα = −1

2
ρβραψµ∂βX

µ (2.34)

The supercurrent satisfies:

(ρα)AB J
α
B = 0 (2.35)

It also satisfies the conservation equation:

∂αJ
α
A = 0 (2.36)

The supercurrent has two independent components. In lightcone coordinates these are

given by [11]:
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J+ = ψµ+∂+Xµ

J− = ψµ−∂−Xµ

(2.37)

These then satisfy the conservation equations:

∂−J+ = ∂+J− = 0 (2.38)

The variation of the RNS action with respect to the metric gives the vanishing of the

energy-momentum tensor, whilst the variation of the locally supersymmetric action

with respect to the Rarita-Schwinger field (then choosing superconformal gauge) gives

the vanishing of the supercurrent [11]. Alternatively the locally supersymmetric

action can be varied with respect to the zweibein, then superconformal gauge can be

chosen, leading to the vanishing of the energy-momentum tensor [15]. Together these

give the super-Virasoro constraints:

T++ = T−− = J+ = J− = 0 (2.39)

This is only a restriction of the on-shell theory.

2.5 Solutions to the Wave Equation

It is now possible to discuss the classical solutions of the wave equation. These

solutions will be built upon to eventually lead to the quantum results and a particle

spectrum.

2.5.1 Open String

Here the open string solutions to the wave equation are stated.

The Bosonic Fields

In the bosonic string theory section 1.5.1 it was shown that the open bosonic string

gives the following conditions:

Open String with Neumann Boundary Conditions at Both Ends

Xµ(τ, σ) = xµ + 2l2sp
µτ + i

√
2ls
∑
m6=0

αµm
m
e−imτcos(mσ) (2.40)

Open String with Dirichlet Boundary Conditions at Both Ends
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Xµ(τ, σ) = xµ + 2l2sp
µσ − i

√
2ls
∑
m 6=0

αµm
m
e−imτ sin(mσ) (2.41)

The Fermionic Fields

It is easier to work in lightcone coordinates. The fermionic part of the RNS action is

given by [10, 11]:

Sf =
i

2πα′

∫
d2σ (ψ−∂+ψ− + ψ+∂−ψ+) (2.42)

By varying the action with respect to the fermionic fields, the folowing condtion is

obtained [10, 11]:

[ψ+δψ+ − ψ−δψ−]σ=0 = [ψ+δψ+ − ψ−δψ−]σ=π = 0 (2.43)

This is satisfied if [10, 11]:

ψµ+(τ, 0) = ψµ−(τ, 0) or ψµ+(τ, 0) = −ψµ−(τ, 0) (2.44)

and if:

ψµ+(τ, π) = ψµ−(τ, π) or ψµ+(τ, π) = −ψµ−(τ, π) (2.45)

The relative sign of ψµ+ and ψµ− is not physically important in and of itself. What is of

physical importance is if the relative sign between ψµ+ and ψµ− at σ = 0 is the same as

the relative sign between ψµ+ and ψµ− at σ = π [10, 11]. Therefore, following common

convention, the condition [10, 11]:

ψµ+(τ, 0) = ψµ−(τ, 0) (2.46)

is chosen. Subsequently the choice of relative sign of ψµ+ and ψµ− at σ = π corresponds

to two different physical outcomes:

Ramond Boundary Condition

In this case the σ = π end of the string has [10, 11]:

ψ
µ (R)
+ (τ, π) = ψ

µ (R)
− (τ, π) (2.47)
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This choice gives the so-called Ramond sector, or ‘R sector’, indicated by the

superscript ‘(R)’. Writing the fermions as vectors in an infinite dimensional Hilbert

space gives the mode expansions [10, 11]:

ψ
µ (R)
+ (τ, σ) =

1√
2

∑
n

dµne
−in(τ+σ)

ψ
µ (R)
− (τ, σ) =

1√
2

∑
n

dµne
−in(τ−σ)

(2.48)

where n = 0,±1,±2, .... It will be shown later that the R sector gives rise to

spacetime fermions [10, 11].

Neveau-Schwarz Boundary Condition

In this case the σ = π end of the string has [10, 11]:

ψ
µ (NS)
+ (τ, π) = −ψµ (NS)

− (τ, π) (2.49)

This choice gives the so-called Neveau-Schwarz sector, or ‘NS sector’, indicated by the

superscript ‘(NS)’.

Writing the fermions as vectors in an infinite dimensional Hilbert space gives the

mode expansions [10, 11]:

ψ
µ (NS)
+ (τ, σ) =

1√
2

∑
r

bµr e
−ir(τ+σ)

ψ
µ (NS)
− (τ, σ) =

1√
2

∑
r

bµr e
−ir(τ−σ)

(2.50)

where r = ±1/2,±3/2,±5/2, .... It will be shown later that the NS sector gives rise to

spacetime bosons [10, 11].

2.5.2 Closed String

Here the closed string solutions to the wave equation are stated.

The Bosonic Fields

In the Bosonic String Theory section 1.5.2 it was shown that, for the closed string:
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Xµ
R =

xµ0
2

+ l2sp
µ(τ − σ) +

i√
2
ls
∑
n6=0

αµn
n
e−in(τ−σ) (2.51)

Xµ
L =

xµ0
2

+ l2sp
µ(τ + σ) +

i√
2
ls
∑
n 6=0

α̃µn
n
e−in(τ+σ) (2.52)

Xµ(τ, σ) = Xµ
R +Xµ

L

= xµ0 + 2l2sp
µτ +

i√
2
ls
∑
n6=0

e−2inτ

n

(
αµne

2inσ + α̃µne
−2inσ

) (2.53)

The Fermionic Fields

Closed strings possess either periodic or anti-periodic boundary conditions. For a

string of length π, the periodic boundary condition on the left movers is [10, 11]:

ψ
(R)
+ (τ, σ) = ψ

(R)
+ (τ, σ + π) (2.54)

and the periodic boundary condition on right movers is:

ψ
(R)
− (τ, σ) = ψ

(R)
− (τ, σ + π) (2.55)

Similarly, the anti-periodic boundary condition on the left movers is:

ψ
(NS)
+ (τ, σ) = −ψ(NS)

+ (τ, σ + π) (2.56)

and anti-periodic boundary condition on right movers is:

ψ
(NS)
− (τ, σ) = −ψ(NS)

− (τ, σ + π) (2.57)

The periodic boundary conditions correspond to the R sector, whilst anti-periodic

boundary conditions correspond to the NS sector [11]. However, these can be chosen

independently for right and for left movers. Therefore, the closed string has four

sectors: R-R, NS-NS, R-NS, and, NS-R. States in R-R or NS-NS will give rise to

spacetime bosons, whilst states in R-NS and NS-R will give rise to spacetime fermions.

2.6 Canonical Quantisation

So far the classical theory of the superstring has been considered. The next step will

be to quantise. However, in order to do this, the super-Virasoro operators need to be

ascertained.
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2.6.1 The Super-Virasoro Generators of the Open String

The Super-Virasoro generators are given by L
(R)
m , L

(NS)
m , Fm and Gr [10, 11, 26].

These are explained below.

L
(R)
m Generators of the Open String

The generators L
(R)
m are the modes of the energy momentum tensor Tαβ in the

R-sector, given by [11]:

L(R)
m =

1

π

∫ π

−π
dσeimσT++ = Lbm + Lf(R)

m (2.58)

where Lbm are the contributions of bosonic modes and L
f(R)
m are the contributions of

fermionic modes belonging to the R sector [11, 10]. The bosonic contributions are

given by [11]:

Lbm =
1

2

∑
n

: α−n · αm+n : (2.59)

with m,n ∈ Z.

The R sector fermionic mode contribution is given by [11]:

Lf(R)
m =

1

2

∑
n

(
n+

m

2

)
: d−n · dm+n : (2.60)

with m,n ∈ Z.

L
(NS)
m Generators of the Open String

The generators L
(NS)
m are the modes of the energy momentum tensor Tαβ in the NS

sector, given by [11]:

L(NS)
m =

1

π

∫ π

−π
dσeimσT++ = Lbm + Lf(NS)

m (2.61)

As before, the bosonic contribution is given by [11]:

Lbm =
1

2

∑
n

: α−n · αm+n : (2.62)

with m,n ∈ Z.

The NS sector fermionic mode contribution is given by [11]:
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Lf(NS)
m =

1

2

∑
r

(
r +

m

2

)
: b−r · bm+r : (2.63)

with m ∈ Z and r ∈ Z + 1/2.

Fm Generators of the Open String

The generators Fm are the modes of the supercurrent Jα in the R sector, given by [11]:

Fm =

√
2

π

∫ π

−π
dσeimσJ+ =

∑
n

α−n · dm+n (2.64)

with m,n ∈ Z.

Gr Generators of the Open String

The generators Gr are the modes of the supercurrent Jα in the NS sector, given by

[11]:

Gr =

√
2

π

∫ π

−π
dσeirσJ+ =

∑
n

α−n · br+n (2.65)

with m ∈ Z and r ∈ Z + 1/2.

2.6.2 The Super-Virasoro Algebras of the Open String

Using the expressions for L
(R)
m , L

(NS)
m , Fm and Gr, the algebras in the Ramond sector

are written [10, 11, 26]:

[L(R)
m , L(R)

n ] = (m− n)L
(R)
m+n +

D

8
m3δm+n,0 (2.66)

[L(R)
m , Fn] =

(m
2
− n

)
Fm+n (2.67)

[Fm, Fn] = 2L
(R)
m+n +

D

2
m2δm+n,0 (2.68)

In the above three equations m,n ∈ Z. Similarly, the algebras in the Neveu-Schwarz

sector are written [10, 11, 26]:

[L(NS)
m , L(NS)

n ] = (m− n)L
(NS)
m+n +

D

8
m(m2 − 1)δm+n,0 (2.69)

[L(NS)
m , Gr] =

(m
2
− r
)
Gm+r (2.70)
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[Gr, Gs] = 2L
(NS)
r+s +

D

2

(
r2 − 1

4

)
δr+s,0 (2.71)

In the above three equations r, s ∈ Z + 1/2.

2.7 The Quantum Mass-Shell Conditions

2.7.1 The Quantum Open String Mass-Shell Condition

Following the procedures of canonical quantisation, positive modes annihilate the

ground states |ψ〉 [11, 20].

R-Sector

aµm |ψ〉 = 0 (m > 0) (2.72)

dµn |ψ〉 = 0 (n > 0) (2.73)

This implies that [10, 11]:

Lm |ψ〉 = 0 (m > 0) (2.74)

Fn |ψ〉 = 0 (n > 0) (2.75)

(L0 − aR) |ψ〉 = 0 (2.76)

Using M2 = −p2, and writing the momentum in terms of the Virasoro generators, the

R-sector mass-shell condition is given by [10, 11]:

α′M2 =
∞∑
n=1

αI−nα
I
n +

∞∑
n=1

ndI−nd
I
n − aR (2.77)

NS-Sector

aµm |ψ〉 = 0 (m > 0) (2.78)

bµr |ψ〉 = 0 (r > 0) (2.79)

This implies that [10, 11]:
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Lm |ψ〉 = 0 (m > 0) (2.80)

Gr |ψ〉 = 0 (r > 0) (2.81)

(L0 − aNS) |ψ〉 = 0 (2.82)

Using M2 = −p2, and writing the momentum in terms of the Virasoro generators, the

NS-sector mass-shell condition is given by [10, 11]:

α′M2 =

∞∑
n=1

αI−nα
I
n +

∞∑
r=1/2

rbI−rb
I
r − aNS (2.83)

2.7.2 The Quantum Closed String Mass-Shell Condition

As was the case with the bosonic string, the Virasoro constraints are identical for the

open string and the closed string. The only difference is that, for the closed string,

there are two (left and right moving) versions of each Virasoro operator.

Following the methods employed for the bosonic string, the mass-shell condition is

taken as the average of the left and right moving mass-shell conditions, where each

left and right moving condition is as written for the open string. However, there are

two mass-shell conditions for the opens string, one for the R-sector and one for the

NS-sector. Combinations of these gives four mass-shell conditions, one for each sector

of the closed string [27]:

R-R Sector

a′M2 =
1

2

( ∞∑
n=1

α̃I−nα̃
I
n +

∞∑
n=1

nd̃I−nd̃
I
n +

∞∑
n=1

αI−nα
I
n +

∞∑
n=1

ndI−nd
I
n − 2aR

)
(2.84)

R-NS Sector

a′M2 =
1

2

 ∞∑
n=1

α̃I−nα̃
I
n +

∞∑
n=1

nd̃I−nd̃
I
n − aR +

∞∑
n=1

αI−nα
I
n +

∞∑
r=1/2

rbI−rb
I
r − aNS


(2.85)

NS-R Sector
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a′M2 =
1

2

 ∞∑
n=1

α̃I−nα̃
I
n +

∞∑
r=1/2

rb̃I−r b̃
I
r − aNS +

∞∑
n=1

αI−nα
I
n +

∞∑
n=1

ndI−nd
I
n − aR


(2.86)

NS-NS Sector

a′M2 =
1

2

 ∞∑
n=1

α̃I−nα̃
I
n +

∞∑
r=1/2

rb̃I−r b̃
I
r +

∞∑
n=1

αI−nα
I
n +

∞∑
r=1/2

rbI−rb
I
r − 2aNS

 (2.87)

2.8 The Open String Spectrum

It is now possible to determine the open superstring spectrum of states. These states

belong to either the NS or R-sector.

The Neveu-Schwarz Sector

The mass-shell condition is [10, 11]:

α′M2 =
∞∑
n=1

αI−nα
I
n +

∞∑
r=1/2

rbI−rb
I
r − aNS (2.88)

where I = 2, ..., 10 are the transverse coordinates. The ground state |0; k〉NS is

defined as the state which gives zero when acted on by annihilation operators [10, 11]:

αIn |0; k〉NS = bIr |0; k〉NS = 0 n, r > 0 (2.89)

αµ0 |0; k〉NS =
√

2α′kµ |0; k〉NS (2.90)

As a result the groundstate |0; k〉NS gives:

α′M2 |0; k〉NS =

∞∑
n=1

αI−nα
I
n |0; k〉NS +

∞∑
r=1/2

rbI−rb
I
r |0; k〉NS − aNS |0; k〉NS

=− aNS |0; k〉NS

(2.91)

The first excited state is given by:

bI−1/2 |0; k〉NS (2.92)
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Since the state transforms under SO(8) (it has 8 = D − 2 components) it must be

massless. This provides a means with which to verify that aNS = 1/2. Acting on the

vector state with α′M2 gives [10, 11]:

α′M2bI−1/2 |0; k〉NS =
1

2
− aNS (2.93)

which is zero iff aNS = 1/2. Using this result in equation 2.91 gives α′M2 = −1/2 for

the groundstate. Therefore, as was the case for the bosonic string, the groundstate is

a tachyon. GSO projection removes this state by removing all states with negative

‘G-parity’, where G-parity is given by [10, 11]:

G = (−1)F+1 = (−1)
∑∞

r=1/2 b
I
−rb

I
r+1 (2.94)

The Ramond Sector

The mass-shell condition is [10, 11]:

α′M2 =
∞∑
n=1

αI−nα
I
n +

∞∑
n=1

ndI−nd
I
n + aR (2.95)

where:

aR = 0 (2.96)

The groundstates satisfy [10, 11]:

αIn |0; k〉R = din |0; k〉R = 0 n > 0 (2.97)

The groundstate is an irreducible Majorana-Weyl spinor of Spin(8) (corresponding to

the irreducible spinor of eight dimensional Euclidean space), with eight degrees of

freedom 4 [11, 28, 29, 30]. Acting on the groundstate by α′M2 gives:

α′M2 =

∞∑
n=1

αI−nα
I
n |0; k〉R +

∞∑
n=1

ndI−nd
I
n |0; k〉R + aR |0; k〉R

=0 |0; k〉R + 0 |0; k〉R + 0 |0; k〉R

(2.98)

So the groundstate spinor is massless.

The first excited state is a spacetime spinor obtained by acting on the groundstate

spinor |0; k〉R with either the vector creation operator αI−n or dI−n [11].
4In the 10d spacetime, the irreducible spinor is Majorana-Weyl, giving it ((2D/2)/2)/2 = 8 indepen-

dent fermionic components [11]. The two divisions by two are from consecutive Majorana and Weyl
conditions.

58



2.9 The Closed String Spectrum

As with the open string there are Neveu-Schwarz and Ramond sectors, however in

this case the left moving and right moving degrees of freedom of the string are

independent giving rise to four combinations, NS-NS, NS-R, R-NS and R-R [10, 11].

In contrast with the open string, which projected out the negative G-parity states,

positive G-parity states are projected out of the NS-sector in order to remove the

closed string tachyon [10, 11]. However, like the open string, there is a choice as to

whether positive or negative G-parity states of the R-sector are projected out. Two

types of theory result; ones in which the left and right moving R-sectors have the

same G-parity states projected out, and ones in which left and right moving R-sectors

have opposite G-parity states projected out. IIA theories have opposite chirality for

the surviving left and right moving R-sector states, and opposite G-parity for left and

right moving R-sector states. IIB theories have the same chirality for the surviving

left and right moving R-sector states, and the same G-parity for left and right moving

R-sector states. The R-sector ground states will be denoted |0; k〉+R and |0; k〉−R for

positive chirality and negative chirality respectively.

IIA Closed String Spectrum

In the IIA theory the left and right moving R-sectors have opposite chirality. Using

[11]: After GSO projection, the IIB R-R, NS-NS, NS-R and R-NS sectors contain the

following massless groundstates (respectively):

|0; k〉−R ⊗ |0; k〉+R (2.99)

b̃I−1/2 |0; k〉NS ⊗ b
J
−1/2 |0; k〉NS (2.100)

b̃I−1/2 |0; k〉NS ⊗ |0; k〉+R (2.101)

|0; k〉−R ⊗ b
J
−1/2 |0; k〉NS (2.102)

Since the IIA and IIB theories each contain two Majorana-Weyl gravitinos the

theories are 10d N = 2 supergravities.

The different sectors have the following field content:

The R-R Sector) The tensor product (‘outer product’) of two Majorana-Weyl

spinors gives rise to bosonic states [10, 11]. In the IIA case these spinors have

opposite chirality, giving rise to an eight component vector field, and a three-form
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gauge field. k-forms in n-dimensions have their number of independent components

given by the binomial coefficient:

n
k

 = Number of independent components of a k-form in n-dimensions (2.103)

In this case k = 3 and n = 8 giving 56 independent components for the three-form

gauge field.

The NS-NS Sector) Here there is a tensor product of two eight component vectors.

This gives a 64 component rank-2 tensor (an 8× 8 matrix) [10, 11]. Such a matrix

decomposes into a symmetric matrix and an antisymmetric matrix. The symmetric

matrix then further decomposes in to a symmetric traceless matrix and a scalar

(corresponding to the trace). The scalar is a dilaton and counts as one component.

The antisymmetric 8× 8 matrix is a 2-form gauge field with (64− 8)/2 = 28

independent components. Finally, the symmetric traceless 8× 8 matrix gives a

rank-two tensor graviton. Because it is symmetric the 64 components are reduced to

(64− 8)/2 + 8 = 36. Then the traceless condition removes one more independent

component leaving 35 independent components.

The NS-R Sector) The eight component vector and the Majorana-Weyl fermion

tensor to give a spin 3/2 gravitino with 56 independent components and a spin half

dilatino with eight independent components [10, 11].

The R-NS Sector) This sector has the same field content as the NS-R sector. Since

the theory is IIA the gravitino of this sector has the opposite chirality to the gravitino

in the NS-R sector [10, 11].

IIB Closed String Spectrum

The convention for the IIB string theory is to choose the left and right moving

R-sectors to have positive chirality. Using [11]: After GSO projection, the IIB R-R,

NS-NS, NS-R and R-NS sectors contain the following massless groundstates

(respectively):

|0; k〉+R ⊗ |0; k〉+R (2.104)

b̃I−1/2 |0; k〉NS ⊗ b
J
−1/2 |0; k〉NS (2.105)
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b̃I−1/2 |0; k〉NS ⊗ |0; k〉+R (2.106)

|0; k〉+R ⊗ b
J
−1/2 |0; k〉+NS (2.107)

The different sectors have the following field content:

The R-R Sector) The tensor product of two Majorana-Weyl spinors gives rise to

bosonic states [10, 11]. In the IIB case these spinors have the same chirality, giving

rise to a scalar field that contributes one component, an antisymmetric two-form

gauge field that has 28 independent components, and, finally, a four-form gauge field

with self dual field strength that contributes 35 independent components. Referring

to equation 2.103, in this case k = 4 and n = 8 giving 70 independent components for

the four-form gauge field. Self duality then halves this number to 35 [31].

The NS-NS Sector) This sector is the same as the NS-NS sector of type IIA theory.

The NS-R Sector) The eight component vector and the Majorana-Weyl fermion

tensor to give a spin 3/2 gravitino with 56 independent components and a spin half

dilatino with eight independent components [10, 11].

The R-NS Sector) This sector has the same field content as the NS-R sector. Since

the theory is IIB the gravitino of this sector has the same chirality as the gravitino in

the NS-R sector [10, 11].
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3 Branes in Type IIA and Type IIB String Theories

The gauge fields, charges and field strengths of (1 + 3)d Maxwell theory are briefly

reviewed. This is followed by a discussion of the gauge fields, charges and field

strengths of branes.

3.1 (1 + 3)d Maxwell Theory

In (1 + 3)d spacetime, Maxwell theory with electric and magnetic point sources gives

[11]:

dF = ?Jm (3.1)

d ? F = ?Je (3.2)

Where:

Jm = Jmµdx
µ Je = Je µdx

µ (3.3)

Jmµ and Je µ are both functions of current and charge density. Both are one-forms. F

is a two-form, which is related to the one-form gauge field A by [11]:

F = dA (3.4)

?F is the ‘Hodge dual’ of F . An n-form field strength F on a D-dimensional manifold

has a (D-n)-form hodge dual [11]. Therefore, in four spacetime dimensions both F

and ?F are two-forms. When considering spacetimes of different dimensions the field

strength and its Hodge dual will not always have the same rank.

The electric charge e and the magnetic charge m are related to the field strength by

[11]:

e =

∫
S2

?F g =

∫
S2

F (3.5)

Important Points to Note:

The electric and magnetic charges are point like (zero-dimensional).
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In three spatial dimensions a 2d Gaussian surface (usually taken to be a sphere) is

required to surround the point-like electric and magnetic charges. As a result, the

surfaces that are integrated over are 2d in both the electric and magnetic cases.

Correspondingly, the field strength F is a two-form, as is ?F .

For an n-form field strength, the corresponding gauge field is an (n-1)-form. In this

case the gauge field A is a one-form.

3.2 Gauge Fields and Charges of Branes

In a D-dimensional spacetime, an object with p spatial dimensions (e.g. a p-brane)

requires an SD−p−2 sphere to surround it [11]. Consider a point on a

two-spatial-dimensional surface. This corresponds to a point in a D = 3 spacetime. In

this case the sphere required to surround the point is S1, which is simply a circle on

the two-spatial-dimensional surface. Alternatively, consider a point in 4d spacetime

(on a three-spatial-dimensional surface), this would require an S2 to surround it.

Since a p-brane in D spacetime dimensions is enclosed by a sphere given by SD−p−2,

the electric charge of the p-brane is given by [11]:

ep =

∫
SD−p−2

?F (3.6)

Where ?F is a (D − p− 2)-form. For an n-form field strength F on a D-dimensional

manifold, the hodge dual is a (D − n)-form. This means that for a (D − p− 2)-form

hodge dual (?F ):

D − n = D − p− 2

⇒ n = p+ 2
(3.7)

The original field strength F is therefore a p+ 2-form. It follows that the gauge field

is a p+ 1-form.

An electrically charged p-brane has a (p+ 1)-form gauge field associated with it.

Since F is a (p+ 2)-form, the integral for the magnetic charge will be over a sphere

Sp+2 [11].

gp =

∫
Sp+2

F (3.8)

Since a (D − p− 2)-sphere surrounds a p-brane,
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D − p− 2→ p+ 2 (3.9)

corresponds to

p→ D − p− 4 (3.10)

So the magnetic dual of the p-brane is a (D − p− 4)-brane.

A magnetically charged (D − p− 4)-brane has a (p+ 1)-form gauge field

associated with it, and is the magnetic dual of the p-brane.

In superstring theory the critical spactime dimension is D = 10. In this case the

electrically charged p-brane has a magnetically charged ‘dual’ (6− p)-brane [11].

3.3 The IIA Theory

The fields in the spectrum of the closed superstrings can have a Dp-brane5 associated

with them. The dimension of a ‘Dp-brane’ is the same as for a ‘p-brane’. In this

section the types of electrically charged and magnetically charged Dp-branes

associated with each field in the IIA closed string spectrum are reviewed.

3.3.1 The R-R Sector of the IIA Theory

Consider the R-R sector of the type IIA closed string theory. The spectrum gave rise

to a one-form and a three-form gauge field [11].

Electrically Charged Dp-branes

An electrically charged Dp-brane has a (p+ 1)-gauge field associated with it [11].

Therefore, the one-form gauge field must be associated with an electrically charged

D0-brane. Similarly, the three-form gauge field must be associated with an electrically

charged D2-brane.

The one-form gauge field is associated with a two-form field strength. The hodge dual

of this is an eight-form field strength, associated with a seven-form gauge field. Since

an electrically charged Dp-brane has a (p+ 1)-form gauge field associated with it, the

seven-form is associated with an electrically charge D6-brane [24]. Similarly, the

three-form gauge field is associated with a four-form field strength, which is hodge

dual to a six-form field strength associated with a five-form gauge field. This five-form

gauge field is associated with an electrically charged D4-brane [24].
5‘D’ just stands for ‘Dirichlet’, as opposed to some constant value like the number of spacetime

dimensions.
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Magnetically Charged D(D − p− 4)-branes

Above it was explained that the magnetically charged D(D− p− 4)-brane (in (1 + 9)d

this is a D(6− p)-brane) has a (p+ 1)-gauge field associated with it, and that such a

brane is the magnetic dual of the p-brane. Therefore, the one-form gauge field must

be associated with a magnetically charged D6-brane [11]. This D6-brane is the

magnetic dual of the electrically charged D0-brane. Similarly, a three-form gauge field

must be associated with a magnetically charged D4-brane. This D4-brane is the

magnetic dual of the electrically charged D2-brane.

The one-form gauge field is associated with a two-form field strength. The hodge dual

of this is an eight-form field strength, associated with a seven-form gauge field. Since

a magnetically charged D(D − p− 4)-brane has a (p+ 1)-form gauge field associated

with it, the seven-form is associated with a magnetically charge D0-brane [24].

Similarly, the three-form gauge field is associated with a four-form field strength,

which is hodge dual to a six-form field strength associated with a five-form gauge field.

This five-form gauge field is associated with a magnetically charged D2-brane [24].

The D8-brane

Given that IIA theory seems to only include branes of even spatial dimensions, a

D8-brane can also be considered [11]. Electrically, such a brane would be associated

with a nine-form gauge field and a ten-form field strength, which is not dynamical,

and so does not arise in the physical spectrum. However, such a brane is considered

in some special cases.

Summary of the R-R sector of the IIA Theory:

Associated with the one-form gauge field in the R-R sector of the IIA string

theory is an electrically charged D0-brane, and its dual magnetically charged

D6-brane.

Associated with the three-form gauge field in the R-R sector of the IIA string

theory is an electrically charged D2-brane, and its dual magnetically charged

D4-brane.

Associated with the five-form gauge field in the R-R sector of the IIA string

theory is an electrically charged D4-brane, and its dual magnetically charged

D2-brane.

Associated with the seven-form gauge field in the R-R sector of the IIA string

theory is an electrically charged D6-brane, and its dual magnetically charged

D0-brane.
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There is also a D8-brane, which electrically couples to a nine-form gauge field.

3.3.2 The NS-NS Sector of the IIA Theory

Consider the NS-NS sector of the type IIA closed string theory [24]. This contains a

rank three field strength associated with a a two-form field. This two-form field is

associated with an electrically charged 1-brane and a magnetically charged 5-brane.

The hodge dual of the rank three field strength is a rank seven field strength

associated with a six-form field. This six-form field is associated with an electrically

charged 5-brane and a magnetically charged 1-brane. The 1-brane is identified as an

‘F1-brane’ (the ‘fundamental string’) and the 5-brane is identified as an ‘NS5-brane’

(Sometimes called a ‘solitonic 5-brane’. The F1-brane is indistinguishable from the

very strings that the spectrum arose from. It should be distinguished from the

D1-brane. Both the F1-brane and the NS5-brane behave like semi-classical solitons,

and are comparable to ’t Hooft-Polyakov magnetic monopoles [32].

Summary of the NS-NS sector of the IIA Theory:

Associated with the two-form gauge field in the NS-NS sector of the IIA string

theory is an electrically charged F1-brane, and its dual magnetically charged

NS5-brane.

Associated with the six-form gauge field in the NS-NS sector of the IIA string

theory is an electrically charged NS5-brane, and its dual magnetically charged

F1-brane.

3.4 The IIB Theory

In this section the types of electrically charged and magnetically charged Dp-branes

associated with each field in the IIB closed string spectrum are reviewed.

3.4.1 The R-R Sector of the IIB Theory

Consider the R-R sector of the type IIB closed string theory. The spectrum gave rise

to a zero-form, a two-form and a four-form gauge field [11].

Electrically Charged Dp-branes

Since an electrically charged Dp-brane has a (p+ 1)-gauge field associated with it, the

zero-form gauge field must be associated with an electrically charged D(−1)-brane. A

Dp-brane has p spatial dimensions. When embedded in a spacetime, these branes also

have a time dimension. Including this time dimension means the brane is described

by a (1 + p) dimensional worldvolume. Therefore, p = −1 corresponds to a brane with
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zero spacetime dimensions. It has a zero dimensional worldvolume, and corresponds to

a single point (a single instant) in spacetime - it is an instanton [11, 29]. The two-form

gauge field must be associated with an electrically charged D1-brane (D-string). The

four-form gauge field must be associated with an electrically charged D3-brane.

The zero-form gauge field is associated with a one-form field strength. The hodge dual

of this is a nine-form field strength, associated with an eight-form gauge field. Since

an electrically charged Dp-brane has a (p+ 1)-form gauge field associated with it, the

eight-form is associated with an electrically charge D7-brane [24]. Similarly, the

two-form gauge field is associated with a three-form field strength, which is hodge dual

to a seven-form field strength associated with a six-form gauge field. This six-form

gauge field is associated with an electrically charged D5-brane. Lastly, the four-form

gauge field is associated with a five-form field strength, which is self-dual [24].

Magnetically Charged D(D − p− 4)-branes

The magnetically charged D(D − p− 4)-brane (in 10d this is a D(6− p)-brane) has a

(p+ 1)-gauge field associated with it. Such a brane is the magnetic dual of the

p-brane. Therefore, a zero-form gauge field must be associated with a magnetically

charged D7-brane [11]. This D7-brane is the magnetic dual of the electrically charged

D(−1)-brane. A two-form gauge field must be associated with a magnetically charged

D5-brane. This D5-brane is the magnetic dual of the electrically charged D1-brane. A

four-form gauge field must be associated with a magnetically charged D3-brane. This

D3-brane is the magnetic dual of itself.

The zero-form gauge field is associated with a one-form field strength. The hodge

dual of this is a nine-form field strength, associated with a eight-form gauge field.

Since a magnetically charged D(D − p− 4)-brane has a (p+ 1)-form gauge field

associated with it, the eight-form is associated with a magnetically charge

D(−1)-brane [24]. Similarly, the two-form gauge field is associated with a three-form

field strength, which is hodge dual to a seven-form field strength associated with a

six-form gauge field. This six-form gauge field is associated with a magnetically

charged D1-brane [24]. Lastly, the four-form gauge field is associated with a five-form

field strength, which is self dual. This gives rise to a four-form gauge field strength,

associated with a magnetically charged D3-brane. [24].

The D9-brane

Given that IIB theory seems to only include branes of odd spatial dimension, a

D9-brane might be considered. Electrically, such a brane would be associated with a

ten-form gauge field and a 11-form field strength [11]. Such branes can be used in

special circumstances.
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Summary of the R-R sector of the IIB Theory:

Associated with the zero-form gauge field in the R-R sector of the IIA string

theory is an electrically charged D(−1)-brane (instanton), and its dual

magnetically charged D7-brane.

Associated with the two-form gauge field in the R-R sector of the IIA string

theory is an electrically charged D1-brane, and its dual magnetically charged

D5-brane.

Associated with the four-form gauge field in the R-R sector of the IIA string

theory is an electrically and magnetically charged, self-dual, D3-brane.

Associated with the six-form gauge field in the R-R sector of the IIA string theory

is a electrically charged D5-brane, and its dual magnetically charged D1-brane.

Associated with the eight-form gauge field in the R-R sector of the IIA string

theory is a electrically charged D7-brane, and its dual magnetically charged

D(−1)-brane.

There is also a D9-brane, which electrically couples to a 10-form gauge field.

3.4.2 The NS-NS Sector of the IIB Theory

Consider the NS-NS sector of the type IIB closed string theory [24]. This contains a

rank three field strength associated with a a two-form field. Taking the hodge dual of

the field strength gives a rank seven field strength associated with a six-form gauge

field. Subsequently, the branes, and the fields that they are coupled to, are exactly as

in section 3.3.2.

Summary of the NS-NS sector of the IIB Theory:

Associated with the two-form gauge field in the NS-NS sector of the IIB string

theory is an electrically charged F1-brane, and its dual magnetically charged

NS5-brane.

Associated with the six-form gauge field in the NS-NS sector of the IIB string

theory is an electrically charged NS5-brane, and its dual magnetically charged

F1-brane.
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4 3d Effective Field Theory

4.1 From 3d N = 4 (Eight Supercharge) Field Theory to 3d N = 2

(Four Supercharge) Field Theory

It will be useful, to discuss the relevant 3d field theory. Then, when the brane

configurations are discussed in section 6, this section will provide some context for the

field theory results that arise. Superfields are used in this section; see Appendix B for

the conventions that are adopted.

Consider a 3d N = 4 theory. The 3d N = 4 on-shell vector multiplet consists of a 3d

vector field, three real scalars and four majorana fermions. The 3d N = 4 on-shell

hypermultiplet consists of four real scalars and four Majorana fermions. A 3d N = 4

vector multiplet contains a 3d N = 2 vector multiplet V and a 3d N = 2 (adjoint)

chiral multiplet Φ. The N = 4 hypermultiplet, can also be written as an N = 2 chiral

and anti-chiral superfield Q and Q̃, respectively. The on-shell 3d N = 2 vector

multiplet V contains a vector field aµ, a real scalar field and a Dirac fermion. The

on-shell 3d N = 2 chiral multiplet Q contains two real scalar fields and two Majorana

fermions. There is also another type of N = 4 supermultiplet called a linear multiplet,

which contains the 3d N = 2 linear multiplet Σ [4, 33]:

Σ =
i

4
D̄αDαV (4.1)

The superfields expressions that were used are written explicitly in Appendix B. The

3d N = 4 action can be written in terms of the 3d N = 2 superfields. The N = 4

Lagrangian contains kinetic terms [4, 33, 34]:

Lkin =

∫
d2θd2θ̄

(
Q†eqV+2imθθ̄Q+ Q̃†e−qV+2im̄θθ̄Q̃

)
+

[∫
d2θ
√

2ΦQQ̃+ c.c.

]
+

[∫
d2θmcQQ̃+ c.c.

] (4.2)

Here m is the real mass arising from the background vector multiplet [35]. The

superpotential is turned off in this case, but this would usually contribute a complex

mass term corresponding to the scalar of the background chiral multiplet.

There is a linear multiplet Lagrangian term:

− 1

2e2

∫
d2θd2θ̄Σ2 (4.3)

Fayet-Iliopoulos terms are contained in Lagrangian terms [4, 33]:
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− ζ

4π

∫
d2θd2θ̄V − ζΦ

4π

∫
d2θΦ (4.4)

The abelian Chern-Simons terms are contained in [4, 33]:

− k

4π

∫
d2θd2θ̄ΣV (4.5)

Whereas the non-abelian CS-terms are contained in [33]:

i
k

8π

∫
d2θd2θ̄

1∫
0

dtTr{V D̄α
(
etVDαe

−tV )} (4.6)

A mass term can be introducd for the 3d N = 2 adjoint chiral multiplet Φ of the form:

∫
d2θµΦ2 (4.7)

A mass µ 6= 0 breaks SUSY from N = 4 to N = 2. This because the 3d N = 4 vector

multiplet is formed of V and Φ and, in order for N = 4 SUSY to apply, V and Φ must

both have the same mass. The low energy theory is typically considered. In this limit

the Φ fields are integrated out, and the remaining action does not contain Φ terms.

4.2 3d N = 2 U(1) Theory with One Flavour of Matter and Without

Antimatter

In the results section, a variety of (1 + 2)d low energy field theories are obtained. As a

result it is important to know exactly how to write the most relevant terms that

appear in the action. This section, and the following few sections, will explain what

sort of terms appear in the actions of both abelian and non-abelian (1 + 2)d field

theories, with one or more flavour. Consider, first, a 3d N = 2 U(1) matter theory,

with a single massive matter flavour. For simplicity, consider only matter and neglect

antimatter for now. Such a theory contains the following Lagrangian terms [33, 34]:

∫
d2θd2θ̄ Q†eqV+2imθθ̄Q

− 1

e2

∫
d2θd2θ̄Σ2

− ζ

2π

∫
d2θd2θ̄V

− k

4π

∫
d2θd2θ̄ΣV

(4.8)
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Much can be ascertained by analysing the scalars in the field theory. The superfields

of the above terms can be expanded out into their constituent fields. The resulting

terms which contain scalar fields and which do not contain derivatives form the

classical scalar potential. These are given by [34]:

Vc = − 1

2e2
D2 + (m+ qσ)2 |φ|2 + qD|φ|2 − |F |2 − ζ

4π
D − k

4π
σD (4.9)

The first the term comes from the second term in 4.8, the second, third and fourth

terms come from the first term in 4.8, the fifth term comes from the third term in 4.8

and the sixth term comes from the fourth term in 4.8. σ and D are scalars belonging

to the 3d N = 2 vector multiplet V , φ comes from the 3d N = 2 chiral multiplet Q

and φ̄ comes from Q†, giving φ2 = φφ̄. F is contained in Q and F̄ is contained in Q†,

giving F 2 = FF̄ .

The F-term equation of motion is:

F = 0 (4.10)

The D-term equation of motion is:

D =
e2

4π

(
4πq|φ|2 − ζ − kσ

)
(4.11)

This can be seen by taking the derivative of 4.9 with respect to F and D respectively,

then setting the result to zero. Plugging these equations for F and D back into 4.9

gives [34]:

Vc =− 1

2e2

e4

16π2

(
4πq|φ|2 − ζ − kσ

)2
+D

(
q|φ|2 − ζ

4π
− k

4π
σ

)
+ (m+ qσ)2 |φ|2

=− e2

32π2

(
4πq|φ|2 − ζ − kσ

)2
+
e2

4π

(
4πq|φ|2 − ζ − kσ

)(
q|φ|2 − ζ

4π
− k

4π
σ

)
+ (m+ qσ)2 |φ|2

=− e2

32π2

(
4πq|φ|2 − ζ − kσ

)2
+

e2

16π2

(
4πq|φ|2 − ζ − kσ

) (
4πq|φ|2 − ζ − kσ

)
+ (m+ qσ)2 |φ|2

=− e2

32π2

(
4πq|φ|2 − ζ − kσ

)2
+

e2

16π2

(
4πq|φ|2 − ζ − kσ

)2
+ (m+ qσ)2 |φ|2

=
e2

32π2

(
4πq|φ|2 − ζ − kσ

)2
+ (m+ qσ)2 |φ|2

(4.12)
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An effective action can be obtained my integrating out the massive fields from the

theory. For a massive matter superfield Q, all of its constituent fields would be

integrated out to obtain the effective action. These include a complex scalar φ, a

(1 + 2)d two complex component Dirac spinor, and a complex auxiliary scalar F (see

Appendix B). As discussed in section 5, integrating out the massive fermions ψ gives

contributions to the low energy values of k and ζ. Relabelling the adjusted k and ζ as

keff and ζeff gives the effective semiclassical potential [34]:

Vsc =
e2

32π2

(
4πq|φ|2 − ζeff − keffσ

)2
+ (m+ qσ)2 |φ|2 (4.13)

Here φ is the renormalised field, containing a renormalisation factor [34]. The

effective mass of φ is now given by (m+ qσ) ≡ m(σ). ζeff and keff are the effective

Chern-Simons and Fayet-Iliopoulos terms, obtained from integrating out the massive

matter φ.

The effective Chern-Simons term is given by:

keff = k +
1

2
q2 sign(m(σ)) (4.14)

Whilst the effective Fayet-Iliopoulos term is given by:

ζeff = ζ +
1

2
qm sign(m(σ)) (4.15)

The effective Chern-Simons term is of central importance to this text, and is

discussed in section 5.

Minimising the potential gives the equations:

4πq|φ|2 = ζeff + keffσ (4.16)

m(σ)φ = (m+ qσ)φ = 0 (4.17)

4.3 3d N = 2 U(1) Theory with One Flavour of Matter and Antimatter

Consider adding the antimatter term to the action:

∫
d2θd2θ̄ Q̃†e−qV+2im̃θθ̃Q̃ (4.18)

Expanding the superfields contributes the additional terms:
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(m̃− qσ)2 |φ̃|2 − qD|φ̃|2 − |F̃ |2 (4.19)

The classical scalar potential then becomes:

Vc =− 1

2e2
D2 + (m+ qσ)2 |φ|2 + (m̃− qσ)2 |φ̃|2 + qD|φ|2 − qD|φ̃|2 − |F |2 − |F̃ |2

− ζV
4π
D − k

4π
σD

(4.20)

The F-term and D-term equations of motion become [34]:

F = F̃ = 0 (4.21)

D = e2

(
q|φ|2 − q|φ̃|2 − ζ

4π
− k

4π
σ

)
(4.22)

Plugging these back into equation 4.20 gives:

Vc =− 1

2e2
e4

(
q|φ|2 − q|φ̃|2 − ζ

4π
− k

4π
σ

)2

+ (m+ qσ)2 |φ|2 + (m̃− qσ)2 |φ̃|2

+D

(
q|φ|2 − q|φ̃|2 − ζ

4π
− k

4π
σ

)
=− 1

2e2
e4

(
q|φ|2 − q|φ̃|2 − ζ

4π
− k

4π
σ

)2

+ (m+ qσ)2 |φ|2 + (m̃− qσ)2 |φ̃|2

+ e2

(
q|φ|2 − q|φ̃|2 − ζ

4π
− k

4π
σ

)(
q|φ|2 − q|φ̃|2 − ζ

4π
− k

4π
σ

)
=− 1

2e2

e4

16π2

(
4πq|φ|2 − 4πq|φ̃|2 − ζ − kσ

)2
+ (m+ qσ)2 |φ|2 + (m̃− qσ)2 |φ̃|2

+
e2

16π2

(
4πq|φ|2 − 4πq|φ̃|2 − ζ − kσ

)(
4πq|φ|2 − 4πq|φ̃|2 − ζ − kσ

)
=− e2

32π2

(
4πq|φ|2 − 4πq|φ̃|2 − ζ − kσ

)2
+ (m+ qσ)2 |φ|2 + (m̃− qσ)2 |φ̃|2

+
e2

16π2

(
4πq|φ|2 − 4πq|φ̃|2 − ζ − kσ

)2

=
e2

32π2

(
4πq|φ|2 − 4πq|φ̃|2 − ζ − kσ

)2
+ (m+ qσ)2 |φ|2 + (m̃− qσ)2 |φ̃|2

(4.23)

The effective semiclassical action then becomes:
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Vsc =
e2

32π2

(
4πq|φ|2 − 4πq|φ̃|2 − ζeff − keff σ

)2
+(m+ qσ)2 |φ|2+(m̃− qσ)2 |φ̃|2 (4.24)

where φ and φ̄ contain renormalisation factors. The equations that minimise this

potential are:

4πq|φ|2 − 4πq|φ̃|2 − ζeff − keff σ = 0 (4.25)

(m+ qσ)φ = 0 (4.26)

(m̃− qσ) φ̃ = 0 (4.27)

4.4 3d N = 2 U(1) Theory with Nf Flavours of Matter and Antimatter

It is easy to introduce more than one flavour of matter. Consider Nf flavours labelled

i = 1, ..., Nf . This corresponds to Nf chiral multiplets Qi and Qi. The Lagrangian

density matter and antimatter terms are written [34]:

∫
d2θd2θ̄

Nf∑
i=1

(
Q†ie

qiV+2imiθθ̄Qi

)
+

∫
d2θd2θ̄

Nf∑
i=1

(
Q̃†ie

−qiV+2im̃iθθ̄Q̃i

)
(4.28)

The classical scalar potential is the straightforward generalisation [34]:

Vc =− 1

2e2
D2 +

Nf∑
i=1

(mi + qiσ)2 |φi|2 +

Nf∑
i=1

(m̃i − qiσ)2 |φ̃i|2

+

Nf∑
i=1

qiD|φi|2 −
Nf∑
i=1

qiD|φ̃i|2 − |Fi|2 − |F̃i|2 −
ζV
4π
D − k

4π
σD

(4.29)

This gives the F-term and D-term equations of motion [34]:

Fi = F̃i = 0 (4.30)

D = e2

 Nf∑
i=1

qi|φi|2 −
Nf∑
i=1

qi|φ̃i|2 −
ζ

4π
− k

4π
σ

 (4.31)

Plugging these into equation 4.29 gives:
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Vc =− 1

2e2
e4

 Nf∑
i=1

qi|φi|2 −
Nf∑
i=1

qi|φ̃i|2 −
ζ

4π
− k

4π
σ

2

+

Nf∑
i=1

(mi + qiσ)2 |φi|2

+

Nf∑
i=1

(m̃i − qiσ)2 |φ̃i|2 +

Nf∑
i=1

qiD|φi|2 −
Nf∑
i=1

qiD|φ̃i|2 −
ζV
4π
D − k

4π
σD

=− 1

2e2
e4

 Nf∑
i=1

qi|φi|2 −
Nf∑
i=1

qi|φ̃i|2 −
ζ

4π
− k

4π
σ

2

+

Nf∑
i=1

(mi + qiσ)2 |φi|2

+

Nf∑
i=1

(m̃i − qiσ)2 |φ̃i|2 +D

 Nf∑
i=1

qi|φi|2 −
Nf∑
i=1

qi|φ̃i|2 −
ζV
4π
− k

4π
σ


=− e2

2

 Nf∑
i=1

qi|φi|2 −
Nf∑
i=1

qi|φ̃i|2 −
ζ

4π
− k

4π
σ

2

+

Nf∑
i=1

(mi + qiσ)2 |φi|2

+

Nf∑
i=1

(m̃i − qiσ)2 |φ̃i|2 + e2

 Nf∑
i=1

qi|φi|2 −
Nf∑
i=1

qi|φ̃i|2 −
ζV
4π
− k

4π
σ

2

=
e2

2

 Nf∑
i=1

qi|φi|2 −
Nf∑
i=1

qi|φ̃i|2 −
ζ

4π
− k

4π
σ

2

+

Nf∑
i=1

(mi + qiσ)2 |φi|2

+

Nf∑
i=1

(m̃i − qiσ)2 |φ̃i|2

=
e2

32π2

4π

Nf∑
i=1

qi|φi|2 − 4π

Nf∑
i=1

qi|φ̃i|2 − ζ − kσ

2

+

Nf∑
i=1

(mi + qiσ)2 |φi|2

+

Nf∑
i=1

(m̃i − qiσ)2 |φ̃i|2

(4.32)

The effective semiclassical potential is then:

Vsc =
e2

32π2

4π

Nf∑
i=1

qi|φi|2 − 4π

Nf∑
i=1

qi|φ̃i|2 − ζeff − keff σ

2

+

Nf∑
i=1

(mi + qiσ)2 |φi|2

+

Nf∑
i=1

(m̃i − qiσ)2 |φ̃i|2

(4.33)

Where φ and φ̄ contain renormalisation factors. The equations that minimise the

potential are:
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4π

Nf∑
i=1

qi|φi|2 − 4π

Nf∑
i=1

qi|φ̃i|2 − ζeff − keff σ = 0 (4.34)

(mi + qiσ)φi = 0 (4.35)

(m̃i − qiσ) φ̃i = 0 (4.36)

4.5 3d N = 2 U(Nc) Theory with Nf Flavours of Matter and Antimat-

ter

In order to introduce a non-abelian gauge symmetry the superfield Lagrangian

density term:

− k

4π

∫
d2θd2θ̄ΣV (4.37)

is replaced with [33]:

+ i
k

8π

∫
d2θd2θ̄

1∫
0

dtTr
{
V D̄α

(
etVDαe

−tV )} (4.38)

Where the vector multiplet is given by V j
j′ = V a (Ta)

j
j′ (a = 1, ..., N2

c ). The trace is

always over the colour indices (j, j′, j′′ = 1, ..., Nc). This term contributes a factor of

[33]:

− k

4π
Tr (σD) (4.39)

where σj
′

j′′ := σa (Ta)
j′

j′′ and D j
j′ := Da (Ta)

j
j′ . Also included are the terms [34, 36, 37]:

∫
d2θd2θ̄

Nf∑
i=1

Q†i,j′
(
eqiV+2imiθθ̄

)j′
j
Qji

+

∫
d2θd2θ̄

Nf∑
i=1

Q̃†i,j′
(
e−qiV+2im̃iθθ̄

)j′
j
Q̃ji

(4.40)

where:
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(
eqiV+2imiθθ̄

)j′
j

:= 1 +
(
qiV

j′

j + δj
′

j 2imiθθ̄
)

+
1

2

(
qiV

j′

j′′ + δj
′

j′′2imiθθ̄
)(

qiV
j′′

j + δj
′′

j 2imiθθ̄
) (4.41)

and:

(
e−qiV+2imiθθ̄

)j′
j

:= 1 +
(
−qiV j′

j + δj
′

j 2im̃iθθ̄
)

+
1

2

(
−qiV j′

j′′ + δj
′

j′′2im̃iθθ̄
)(
−qiV j′′

j + δj
′′

j 2im̃iθθ̄
) (4.42)

and where the trace is taken for the colour indices j, j′, j′′ = 1, ...Nc. The exponential

expansion takes a similar form to B.11. Additionally, there are the terms [34]:

∫
d2θmc

Nf∑
i=1

Qi,jQ̃
i,j + c.c.

− 1

2e2

∫
d2θd2θ̄Tr

(
Σ2
)

−ξV
4π

∫
d2θd2θ̄Tr (V )

(4.43)

The classical scalar potential potential is given as:

Vc =− 1

2e2
Tr
(
D2
)

+

Nf∑
i=1

φ̄i (mi + qiσ)2 φi +

Nf∑
i=1

¯̃
φi (m̃i − qiσ)2 φ̃i

+

Nf∑
i=1

qiφ̄iDφi −
Nf∑
i=1

qi
¯̃
φiDφ̃i − |Fi|2 − |F̃i|2 −

ζV
4π

Tr (D)− k

4π
Tr (σD)

(4.44)

Indicating the colour indices (j, j′, j′′ = 1, ..., Nc) explicitly, using summation

convention for the flavour indices (i, i′, i′′ = 1, ..., Nf ), and using the convention

qi = +1 for all i, this is written:

Vc =− 1

2e2
Tr
(
D2
)

+ φ̄i′′,j′′
(
δj
′′

j′m
i′′
i′ + σj

′′

j′ δ
i′′
i′

)(
δj
′

jm
i′
i + σj

′

j δ
i′
i

)
φi,j

+
¯̃
φi′′,j′′

(
δj
′′

j′ m̃
i′′
i′ − σ

j′′

j′ δ
i′′
i′

)(
δj
′

j m̃
i′
i − σ

j′

j δ
i′
i

)
φ̃i,j + φ̄i,j′D

j′

j φ
i,j

− ¯̃
φi,j′D

j′

j φ̃
i,j − |F̄i,jF i,j | − | ¯̃Fi,jF̃ i,j | −

ζV
4π

Tr (D)− k

4π
Tr (σD)

(4.45)
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where mi′
i and m̃i′

i are diagonal matrices (only non-zero for i = i′) and σj
′

j is diagonal

via gauge rotation (only non-zero for j = j′) [34]. Note that all indices contract. The

F-term and D-term equations of motion are:

F i,j = F̃ i,j = 0 (4.46)

D j
j′ = e2

(
φ̄i,j′φ

i,j − ¯̃
φi,j′ φ̃

i,j − ζV
4π
δ jj′ −

k

4π
σ jj′

)
(4.47)

Which give:

Vc =
e2

32π2

(
4πφ̄i,jφ

i,j′ − 4π
¯̃
φi,jφ̃

i,j′ − ζV δ j
′

j − kσ
j′

j

)
×
(

4πφ̄i,j′φ
i,j − 4π

¯̃
φi,j′ φ̃

i,j − ζV δ jj′ − kσ
j
j′

)
+ φ̄i′′,j′′

(
δj
′′

j′m
i′′
i′ + σj

′′

j′ δ
i′′
i′

)(
δj
′

jm
i′
i + σj

′

j δ
i′
i

)
φi,j

+
¯̃
φi′′,j′′

(
δj
′′

j′ m̃
i′′
i′ − σ

j′′

j′ δ
i′′
i′

)(
δj
′

j m̃
i′
i − σ

j′

j δ
i′
i

)
φ̃i,j

(4.48)

after a relabelling of the colour indices. The effective semiclassical action then

becomes:

Vsc =
e2

32π2

(
4πφ̄i,jφ

i,j′ − 4π
¯̃
φi,jφ̃

i,j′ − ζeffδ
j′

j − keffσ
j′

j

)
×
(

4πφ̄i,j′φ
i,j − 4π

¯̃
φi,j′ φ̃

i,j − ζeffδ
j
j′ − keffσ

j
j′

)
+ φ̄i′′,j′′

(
δj
′′

j′m
i′′
i′ + σj

′′

j′ δ
i′′
i′

)(
δj
′

jm
i′
i + σj

′

j δ
i′
i

)
φi,j

+
¯̃
φi′′,j′′

(
δj
′′

j′ m̃
i′′
i′ − σ

j′′

j′ δ
i′′
i′

)(
δj
′

j m̃
i′
i − σ

j′

j δ
i′
i

)
φ̃i,j

(4.49)

where φ and φ̄ contain renormalisation factors. With the results of [34] in mind, qi are

set to equal one for all i. Also, the scalars σjj′ are gauge rotated to be diagonal.

The equations that minimise this potential are [34]:

D j
j′ ∝

(
4πφ̄i,j′φ

i,j − 4π
¯̃
φi,j′ φ̃

i,j − ζeffδ
j
j′ − keffσ

j
j′

)
= 0 (4.50)

and:

(
δj
′

jm
i′
i + σj

′

j δ
i′
i

)
φi,j = 0 (4.51)

(
δj
′

j m̃
i′
i − σ

j′

j δ
i′
i

)
φ̃i,j = 0 (4.52)
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4.6 Axial and Vector Masses

Above it was shown that the effective mass term of a single flavour of 3d U(1) matter

is given by [34]:

(m+ σ)2 |φ|2 (4.53)

where q is taken to equal one, and the effective mass is given by meff = m+ σ.

Similarly, the effective mass term of the single flavour of antimatter is given by [34]:

(m̃− σ)2 |φ̃|2 (4.54)

Define the ‘axial’ and ‘vector’ masses as [37]:

mA =
1

2
(m+ m̃) and mV =

1

2
(m− m̃) (4.55)

respectively. m and m̃ generally take different values. There is freedom to shift the

scalar σ by an arbitrary value, allowing m and m̄ to be set to the same value. The

result of this is that m = m̃ = mA and mV = 0. To see this, consider an example of m

and m̄ with different values:

m = 2 m̃ = 4 (4.56)

The corresponding mass terms are:

(2 + σ(x))2 |φ|2 (4.57)

(4− σ(x))2 |φ̃|2 (4.58)

Since σ is added to m and taken away from m̃, a shift can always be introduced such

that the overall number added to σ is the same in both of the terms above. In this

case the shift is σ(x)→ σ(x) + 1, giving:

(2 + σ(x) + 1)2 |φ|2 = (3 + σ(x))2 |φ|2 (4.59)

(4− σ(x)− 1)2 |φ̃|2 = (3− σ(x))2 |φ̃|2 (4.60)
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So setting m = 2, m̃ = 4 and including a shift σ(x)→ σ(x) + 1 is equivalent to simply

using m = m̃ = 3. The upshot is that the freedom to shift σ(x) can be used to set

m = m̃ = (1/2)(m+ m̃) = mA, and mV = 0. In this case the mass terms become:

(mA + σ(x))2 |φ|2 (4.61)

(mA − σ(x))2 |φ̃|2 (4.62)

4.7 3d N = 2 with Ajoint Matter

It is possible to reduce supersymmetry from 3d N = 4 to 3d N = 2 without giving

mass to the adjoint chiral superfield Φ. Instead it is possible to make the transition

by giving Φ a superpotential [4, 38, 39, 40, 41]:

∫
d2θW (x) =

∫
d2θ

n∑
i=0

ci
n+ 1− i

Φn+1−i (4.63)

Taking the derivative with respect to Φ gives [41, 42]:

W ′(x) =
n∑
i=0

ciΦ
n−i = c0

n∏
j=1

(Φ− aj) (4.64)

For some constant aj .

The second equality of equation 4.64 can be seen by choosing a value for n and

writing the terms explicitly. Consider n = 3 as an example; the first equality

becomes:

W ′(x) =
n∑
j=0

cjx
n−j

=c0x
3−0 + c1x

3−1 + c2x
3−2 + c3x

3−3

=c0x
3 + c1x

2 + c2x+ c3

(4.65)

For the second equality, n = 3 gives:
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W ′(x) =c0

n∏
i=1

(x− ai)

=c0 (x− a1) (x− a2) (x− a3)

= (c0x− c0a1) (x− a2) (x− a3)

=
(
c0x

2 − c0xa2 − c0a1x+ c0a1a2

)
(x− a3)

=c0x
3 − c0x

2a2 − c0a1x
2 + c0a1a2x

− c0x
2a3 + c0xa2a3 + c0a1xa3 − c0a1a2a3

(4.66)

Now, a1, a2 and a3 are just constants that can be chosen to match accordingly

with c0, c1, c2 and c3. Taking c1 = −c0a2 − c0a1 − c0a3,

c2 = c0a1a2 + c0a2a3 + a1a3 and c3 = −c0a1a2a3 gives:

W ′(x) = c0x
3 + c1x

2 + c2x+ c3 (4.67)

as required.

The benefit of writing the superpotential as in the second equality of equation 4.64 is

that it shows that the superpotential equals zero (has minima) at the values x = aj .

The superpotential has up to n distinct minima corresponding to x = aj = a1, ..., an.

Each vacua is labelled by an integer ri and the result of the superpotential is that the

gauge group is Higgsed:

U(Nc)→ U(r1)× U(r2)× ...× U(rn) (4.68)

This corresponds to n different gauge groups of the 3d N = 2 theory.

Aharony and Giveon-Kutasov dualities are discussed in sections 7.4.1 and 7.5.1. In

these sections generalisations of these dualities with the inclusion of adjoint matter are

mentioned. In section 9, the results for flows between these dualities are explained.
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5 Induced Chern-Simons Level from Integrating Out Mas-

sive Matter

An important feature of (1 + 2)d field theory is that massive matter can be integrated

out, resulting in a contribution to the Chern-Simons level of the low energy effective

field theory. This important mechanism is used repeatedly in the results section

(section III) to adjust the Chern-Simons level of a variety of low energy theories.

Since the type of strong-weak duality exhibited in the low energy theory is dependent

on the Chern-Simons level, this in turn allows a ‘flow’ between dualities to be

displayed. This section provides an explanation of why Chern-Simons levels are

induced by integrating out massive matter.

5.1 Inducing Abelian Chern-Simons Terms

Both abelian and non-abelian Chern-Simons terms can be induced in a low energy

effective field theory by integrating out matter or antimatter. A derivation of the

induced abelian Chern-Simons term is discussed here.

Integrating Out Matter in an Abelian Gauge Theory

Contained in the Lagrangian density is the matter superfield term Q†eqVQ. This is

actually contained within Q†eqV+imθθ̄Q, but expanding out the latter shows that it

contains all the terms of the former. Q†eqVQ contains the term:

L 3ψ̄(x)
(
i/∂ + q /A(x)− iqσ(x)

)
ψ(x)

=iψ̄(x)
(
/∂ − iq /A(x)− qσ(x)

)
ψ(x)

(5.1)

Using q = 1, the covariant derivative is written [33]:

Dµ = ∂µ − iAµ
= ∂µ − iqAµ

(5.2)

This gives:

L 3iψ̄(x)
(
/D − qσ(x)

)
ψ(x)

=− iψ̄(x)
(
− /D + qσ(x)

)
ψ(x)

=− ψ∗(x)
(
iγ0
) (
− /D + qσ(x)

)
ψ(x)

(5.3)

The effective action obtained by integrating out massive matter is defined [43]:
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e−Seff =

∫
dψ̄dψe−

∫
ψ∗(x)(iγ0)(− /D+qσ(x))ψ(x)d3x (5.4)

The right hand side can be rewritten [44]:

e−Seff =Det
(
(iγ0)

(
− /D + qσ(x)

))
=Det

(
(−γ0)(−i)

(
− /D + qσ(x)

))
=Det

(
−γ0

)
Det

(
i /D − iqσ(x)

)
=Det

 0 −1

1 0

Det
(
i /D − iqσ(x)

)
=Det

(
i /D − iqσ(x)

)
(5.5)

This gives:

lne−Seff =ln Det
(
i /D − iqσ(x)

)
→ −Seff =ln Det

(
i /D − iqσ(x)

)
→ Seff =− ln Det

(
i /D − iqσ(x)

)
=− ln Det

(
i/∂ + q /A− iqσ(x)

)
(5.6)

This can be rewritten [44]:

Seff =− ln Det

[(
i/∂ − iqσ(x)

)(
1− i(

i/∂ − iqσ(x)
) (+iq /A))]

=− ln

[
Det

(
i/∂ − iqσ(x)

)
Det

(
1− i(

i/∂ − iqσ(x)
) (+iq /A))] (5.7)

Using [44] 6:

Det

(
1− i(

i/∂ − iqσ(x)
) (+iq /A))

= exp

( ∞∑
n=1

− 1

n
Tr

[(
i(

i/∂ − iqσ(x)
) (+iq /A))n]) (5.8)

6Here the relation Det(1 + y) = exp(Tr(ln(1 + y))) is used, then ln(1 + y) is expanded out. Thank
you to Dr Sanjaye Ramgoolam and Dr Ian Jack for pointing this out.
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this becomes:

Seff =− ln Det

[(
i/∂ − iqσ(x)

)(
1− i(

i/∂ − iqσ(x)
) (+iq /A))]

=− ln

[
Det

(
i/∂ − iqσ(x)

)
exp

( ∞∑
n=1

− 1

n
Tr

[(
i(

i/∂ − iqσ(x)
) (+iq /A))n])] (5.9)

Using ln(αA) = ln(α)I + ln(A) for α ∈ R and I = identity 7:

Seff =− ln
[
Det

(
i/∂ − iqσ(x)

)]
+

∞∑
n=1

1

n
Tr

[(
i(

i/∂ − iqσ(x)
) (+iq /A))n]

=− ln
[
Det

(
i/∂ − iqσ(x)

)]
+ Tr

(
i(

i/∂ − iqσ(x)
) (+iq /A))

+
1

2
Tr

( i(
i/∂ − iqσ(x)

) (+iq /A))2
+ ...

(5.10)

Since the aim is to prove that the abelian Chern-Simons term is induced, and since

the Abelian Chern-Simons term is quadratic in the gauge field A, only the third term

on the right hand side needs to be considered [45]. Denoting the part of Seff that is

quadratic in A as Seff (A) to emphasise that it contains the Abelian gauge term:

Seff (A) = +
1

2
Tr

( i(
i/∂ − iqσ(x)

) (+iq /A))2
 (5.11)

Write −iqσ(x) := m for convenience [45]:

Seff (A) = +
1

2
Tr

( i(
i/∂ +m

) (+iq /A))2


= +
1

2
Tr

[
i(

i/∂ +m
) (+iq /A) i(

i/∂ +m
) (+iq /A)]

(5.12)

The terms in the square bracketes correspond to the Feynman rules in position space.

Switching to momentum space gives:

7Thanks to Panos Athanasopoulos.
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(5.13)

Contained within the above expression is:

γµ
i
(
/p+ /k −m

)
(p+ k)2 +m2

γν
i (/k −m)

k2 +m2

=

(
iγµγapa + iγµγbkb − iγµm

)
(iγνγckc − iγνm)(

(p+ k)2 +m2
)

(k2 +m2)

=
−γµγapaγνγckc − γµγbkbγνγckc + γµmγνγckc(

(p+ k)2 +m2
)

(k2 +m2)

+
γµγapaγ

νm+ γµγbkbγ
νm− γµγνm2(

(p+ k)2 +m2
)

(k2 +m2)

(5.14)

The abelian Chern-Simons term contains εµνρ which is related to the gamma matrices

by:

Tr (γµγνγρ) = −2εµνρ (5.15)

Therefore, in order to find the induced Chern-Simons terms, only those terms in

equation 5.14 with three γs need to be considered [45]:
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γµγapaγ
νm+ γµγbkbγ

νm+ γµmγνγckc(
(p+ k)2 +m2

)
(k2 +m2)

=
γµγaγνpam+ γµγbγνkbm+ γµγνγckcm(

(p+ k)2 +m2
)

(k2 +m2)

=
γµγργνpρm+ γµγργνkρm+ γµγνγρkρm(

(p+ k)2 +m2
)

(k2 +m2)

=
γµγργνpρm−(((((

(γµγνγρkρm +((((
((γµγνγρkρm(

(p+ k)2 +m2
)

(k2 +m2)

=
γµγργνpρm(

(p+ k)2 +m2
)

(k2 +m2)

=− γµγνγρpρm(
(p+ k)2 +m2

)
(k2 +m2)

(5.16)

As a result:

Seff (A) 3 Seff (A)(CS)

=
1

2

∫
d3p

(2π)3

∫
d3k

(2π)3
Tr

(iqAµ(−p))

 −γµγνγρpρm(
(p+ k)2 +m2

)
(k2 +m2)

 (iqAν(p))


=

(iq)2

2

∫
d3p

(2π)3

∫
d3k

(2π)3
Tr

(Aµ(−p))

 −γµγνγρpρm(
(p+ k)2 +m2

)
(k2 +m2)

 (Aν(p))


(5.17)

Using the identity 5.15 this becomes [45]:
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Seff (A)(CS)

=
(iq)2

2

∫
d3p

(2π)3

∫
d3k

(2π)3

(Aµ(−p))

 2εµνρpρm(
(p+ k)2 +m2

)
(k2 +m2)

 (Aν(p))


= −q

2

2

∫
d3p

(2π)3

(Aµ(−p))

∫ d3k

(2π)3

 2εµνρpρm(
(p+ k)2 +m2

)
(k2 +m2)

 (Aν(p))


= −q

2

2

∫
d3p

(2π)3

 (Aµ(−p))

 2mεµνρpρ

∫
d3k

(2π)3 1(
(p+ k)2 +m2

)
(k2 +m2)

  (Aν(p))


(5.18)

It is possible to show that [45]:

∫ ∞
−∞

d3k

(2π)3

1(
(p+ k)2 +m2

)
(k2 +m2)

=
1

4πi

1

|p|
arcsin

(
|p|√

p2 + 4m2

) (5.19)

The proof is lengthy, and is written in appendix C.1. Using equation 5.19, equation

5.18 becomes:

Seff (A)(CS)

= −q
2

2

∫
d3p

(2π)3

 (Aµ(−p))

 2mεµνρpρ
1

4πi

1

|p|
arcsin

(
|p|√

p2 + 4m2

)  (Aν(p))


= −q

2

2

∫
d3p

(2π)3

 (Aµ(−p))

 εµνρpρ
1

2πi

m

|p|
arcsin

(
|p|√

p2 + 4m2

)  (Aν(p))


(5.20)

The Taylor expansion of the arcsin term is taken:

arcsin(x) =

x∫
0

dx√
1− a2

= a+
a3

6
+

3a5

40
+

5a7

112
+ ... (5.21)
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giving:

εµνρpρ
1

2πi

m

|p|
arcsin

(
|p|√

p2 + 4m2

)

= εµνρpρ
1

2πi

m

|p|

 |p|√
p2 + 4m2

+
1

6

(
|p|√

p2 + 4m2

)3

+ ...


= εµνρpρ

1

2πi

m√
p2 + 4m2

+ εµνρpρ
1

2πi

m

|p|
1

6

(
|p|√

p2 + 4m2

)3

+ ...

(5.22)

Taking the long wavelength (p→ 0) and large mass (m→∞) limit gives [45]:

εµνρpρ
1

2πi

m

|p|
arcsin

(
|p|√

p2 + 4m2

)∣∣∣∣
p→0,m→∞

= εµνρpρ
1

2πi

m√
4m2

+ εµνρpρ
1

2πi

m

|p|
1

6

(
|p|√
4m2

)3

+ ...

= εµνρpρ
1

2πi

m

2|m|
+ εµνρpρ

1

2πi

1

6

m|p|2(√
4m2

)3 + ...

= εµνρpρ
1

4πi

m

|m|
+ εµνρpρ

1

2πi

1

6

m|p|2

23m3
+ ...

= εµνρpρ
1

4πi

m

|m|
+ εµνρpρ

1

96πi

m|p|2

m2
+ ...

= εµνρpρ
1

4πi

m

|m|
+O

(
|p|2

m2

)
...

(5.23)

The second term is vanishingly small, and so only the first term needs to be plugged

back into equation 5.20:

Seff (A)(CS) =− q2

2

∫
d3p

(2π)3

[
(Aµ(−p)) εµνρpρ

1

4πi

m

|m|
(Aν(p))

]
=− q2

2

1

4πi

m

|m|

∫
d3p

(2π)3
[(Aµ(−p)) εµνρpρ (Aν(p))]

(5.24)

Switching back to coordinate space ( Aµ(p)→ Aν(x), pρ → −i∂ρ) gives:

Seff (A)(CS) =− q2

2

1

4πi

m

|m|
(−i)

∫
d3x εµνρAµ(x)∂ρAν(x)

=
q2

2

1

4π

m

|m|

∫
d3x εµνρAµ(x)∂ρAν(x)

(5.25)
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Using εµνρ = −εµρν :

Seff (A)(CS) =− q2

2

1

4π

m

|m|

∫
d3x εµρνAµ(x)∂ρAν(x) (5.26)

Relabelling the dummy indices for aesthetics [45]:

Seff (A)(CS) =− q2

2

1

4π

m

|m|

∫
d3x εµνρAµ(x)∂νAρ(x) (5.27)

Interpreting the result: Pauli-Villars regularisation gives the regularised action as [45]:

SReg
eff (A)(CS) [A,m = 0] = Seff (A)(CS) [A,m = 0]− lim

m→∞
Seff (A)(CS) [A,M ] (5.28)

The second term on the right hand side corresponds to equation 5.27. It is what is

taken away from the low energy action to give the regularised low energy action. The

result is that the low energy action has the following term added to it:

Induced CS-term = − lim
m→∞

Seff (A)(CS) =
q2

2

1

4π

m

|m|

∫
d3x εµνρAµ(x)∂νAρ(x) (5.29)

Integrating Out Antimatter in an Abelian Gauge Theory

The procedure for antimatter is very similar to that of matter. Where the matter

contributed a Lagrangian density term:

Q†eqVQ (5.30)

antimatter contributes:

Q̄†e−qV Q̄ = Qe−qVQ† (5.31)

The only difference when figuring out the Chern-Simons contribution is that now the

q has a minus in front. The Chern-Simons contribution is:

Induced CS-term = − lim
m→∞

Seff (A)(CS) =
(−q)2

2

1

4π

m

|m|

∫
d3x εµνρAµ(x)∂νAρ(x)

(5.32)
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Since q = 1 is used in both the matter and antimatter cases, and since −q is squared

in the above expression, the upshot is that the Chern-Simons term contribution is the

same if matter is integrated out or if anti-matter is integrated out, provided the mass

terms m of the matter and antimatter have the same sign.

5.2 Inducing Non-abelian Chern-Simons Terms

Integrating out matter or antimatter can induce non-abelian Chern-Simons terms in

the low energy effective action.

Integrating out Matter in a Non-abelian Gauge Theory

In the non-abelian theory the matter term includes:

Tr
(
Q†eqVQ

)
(5.33)

With the trace over the gauge indices:

Q†j′
(
eqV
)j′
j
Qj (5.34)

where:

(
eqV
)j′
j

:= 1 +
(
qV j′

j

)
+

1

2

(
qV j′

j′′

)(
qV j′′

j

)
(5.35)

Here V j′

j := V a (Ta)
j′

j , with a = 1, ..., Nc. Amongst the terms in the superfield

expansion is:

L 3 − ψ̄j′(x)
(
i/∂δj

′

j + q /A
j′

j (x)− iqσj
′

j (x)
)
ψj(x) (5.36)

Following the same methods as in section 5.1 gives the induced Chern-Simons term:

q2

2

1

4π

m

|m|

∫
d3x εµνρTr (Aµ(x)∂νAρ(x)) (5.37)

where A j′

j = Aa (Ta)
j′

j . However this is not the whole story. Recall that, for the

abelian case, only terms that were quadratic in the gauge field were considered. The

cubic gauge field terms could have been considered also, and would have given rise to

the induced term:
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q2

2

1

4π

m

|m|

∫
d3x εµνρTr

(
2

3
Aµ(x)Aν(x)Aρ(x)

)
(5.38)

However this term is ignored in the abelian case [45]. This is because the Aµ, Aν and

Aρ commute with each other, and εµνρ is antisymmetric, so the term disappears. In

the non-abelian case (where A j′

j = Aa (Ta)
j′

j ) the gauge fields do not commute, and so

both 5.37 and 5.38 are kept. This gives the induced term:

q2

2

1

4π

m

|m|

∫
d3x εµνρTr

(
Aµ(x)∂νAρ(x) +

2

3
Aµ(x)Aν(x)Aρ(x)

)
(5.39)

which is the non-abelian Chern-Simons term.

Integrating out Antimatter in a Non-abelian Gauge Theory

As for the abelian case, the only difference between integrating out matter and

antimatter is that q acquires a negative sign in front for antimatter. Again, this is

only written symbolically since (−q)2 = (−1)2(q)2 = q2:

(−q)2

2

1

4π

m

|m|

∫
d3x εµνρTr

(
Aµ(x)∂νAρ(x) +

2

3
Aµ(x)Aν(x)Aρ(x)

)
(5.40)

Integrating out Matter and Antimatter in a Non-abelian Gauge Theory

with Nf Flavours

The generalisation to multiple flavours is very straightforward. The terms are simply

summed over the Nf different flavours. For example, for Nf flavours in a non-abelian

gauge theory, there are Nf matter terms:

Q†1,j′
(
eq1V

)j′
j
Q1,j +Q†2,j′

(
eq2V

)j′
j
Q2,j + ...+Q†Nf ,j′

(
e
qNf V

)j′
j
QNf ,j (5.41)

where:

(
eqiV

)j′
j

:= 1 +
(
qiV

j′

j

)
+

1

2

(
qiV

j′

j′′

)(
qiV

j′′

j

)
(5.42)

For each of these flavours of matter that are massive, there is a term 5.39. So in total

there could be NF such terms contributed. The generalisation is the same for

antimatter; for each massive flavour, a corresponding induced Chern-Simons term

5.40 is added to the effective regularised Lagrangian density.
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5.3 Fractional Chern-Simons Level

As will be seen in part III, depending on the particular brane configuration used,

sometimes the induced level of a gauge group is fractional. It should be noted that a

fractional Chern-Simons level is acceptable for abelian theories, however, for

non-abelian theories, it is inconsistent with ‘level quantisation’ [41]. Level

quantisation is explained further in appendix C.2. Note, there are some special cases

where fractional Chern-Simons level is permitted in the non-abelian theory, but these

cases are not important to this text.
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6 3d Effective Field Theories from Branes

Having discussed the types of branes that exist in IIA and IIB string theories (section

3), as well as some of the relevant field theory (sections 4 and 5), it is important to

determine how strings ending on the branes give rise to particular field theories. This

section will explain the relationship between branes and field theory, eventually

building up to brane configurations that give rise to low energy (1 + 2)-dimensional

field theories exhibiting Aharony or Giveon-Kutasov duality. Such brane

configurations are then used throughout the results section.

6.1 Strings on Dp-branes

An open bosonic string with both ends on a single Dp-brane contributes a negative

squared mass (imaginary mass) groundstate tachyon [10, 11, 38]. It also contributes

((p+ 1)− 2) massless states corresponding to the independent transverse components

of a photon. The gauge field of the string on the Dp-brane gives rise to a

(p+ 1)-dimensional U(1) gauge theory on that brane [38]. Finally, there are D− 1− p
massless scalars [10, 11, 38]. All these fields exist in a (p+ 1)-dimensional spacetime.

That is, they ‘live’ on the Dp-brane. Supersymmetry can be added to the this

(p+ 1)-dimensional field theory to find the corresponding fermionic degrees of

freedom. GSO projection is then used to remove the tachyons and ensure

supersymmetry. When considering the low energy effective theories that arise on

branes, only the massless degrees of freedom will be kept. In this case, the string

begins and ends on the same brane, allowing the string to shrink to zero length.

Consequently, all degrees of freedom are massless.

Multiple Dp-branes and Chan-Paton Factors

When considering theories with multiple branes it will be useful to introduce the

concept of Chan-Paton factors. One endpoint of the string is labelled i, and the other

is labelled j. Allow these labels to run over i, j = 1, ..., Nc. An open string state can

then be written [10]:

|p; a〉 =

N∑
i,j=1

|p; ij〉λaij (6.1)

The matrices λaij are called ‘Chan-Paton factors’ [10]. When amplitudes are

calculated with these Chan-Paton factors included in the states, the resulting

amplitudes are invariant under U(Nc) transformations. This offers a clue as to how to

interpret the Chan-Paton indices i and j. If there exist Nc coincident Dp-branes, that

is, branes that extend along the same spacetime directions and which exist at the
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same transverse coordinates 8, then one string endpoint can end on one of Nc different

Dp-branes, as can the other string endpoint. Then i and j can be interpreted as a

label for which brane the string endpoints end on. For example i = 1 and j = 2 would

mean that one end of the string ends on the first Dp-brane, whilst the other end of

the string ends on the second. To see this, recall that a U(Nc) gauge symmetry

corresponds to N2
c gauge bosons. Now imagine there is only one Dp-brane,

corresponding to Nc = 1; then the only combination of i and j is i = j = 1,

corresponding to both ends of string on that Dp-brane. This corresponds to only one

kind of open string state, and, as mentioned above, this string state comes with a

single massless vector boson. Therefore it gives rise to a U(1) gauge theory.

Figure 2: A single Dp-brane gives Nc = 1 and corresponds to a U(1) gauge theory.
The arrow on the string represents its intrinsic orientiation.

Alternatively, consider a stack of two Dp-branes; then i, j = 1, 2. This results in four

combinations of strings between the Dp-branes. i, j = 1 corresponds to a string with

both ends on the first Dp-brane, i, j = 2 corresponds to a string with both ends on

the second Dp-brane, i = 1, j = 2 corresponds to a string beginning on the first

Dp-brane and ending on the second, and, finally, i = 2, j = 1 corresponds to a string

beginning on the second Dp-brane and ending on the first. Note that the strings have

an intrinsic orientation in this description, so a string from the first to the second is

distinguishable from a string from the second to the first. Consequently, there are

four different vector bosons from the four different string configurations between the

branes, corresponding to a U(2) gauge theory.

8Such branes are said to exist in a ‘stack’.
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Figure 3: Two Dp-brane give Nc = 2 and correspond to a U(2) gauge theory. The
arrow on the strings represent their intrinsic orientiation. The branes are drawn as
separated in the transverse directions, this was just to show that they are distinct, and
to clearly show the strings between them. In actuality, the left and right branes are
coincident, with zero separation in the transverse directions.

By a similar analysis of the permutations of i and j values, it is clear that Nc = 3

corresponds to three Dp-branes, which give rise to nine different string configurations

and nine gauge bosons. That is, a U(3) gauge theory. In conclusion, a stack of Nc

Dp-branes results in a U(Nc) theory with N2
c vector bosons.

Note that two Dp-branes with a relative separation will have massive gauge bosons

from the strings between them (such strings have non-zero tension, and give rise to

massive vector bosons) [10]. This would correspond to two massive gauge bosons and

two massless gauge bosons. Since, for phenomenological purposes, only low energy

states are considered, massive states from separated branes are often ignored. As a

result, a stack of Nc,1 Dp-branes and a stack of Nc,2 Dp-branes which are separated in

the transverse directions correspond to a U(Nc,1)× U(Nc,2) gauge theory at low

energies.

The Chan-Paton factors of strings were originally used in describing quarks and

anti-quarks that were joined by a flux tube. They were later applied to the strings in

string theory. Remember that a quark transforms as a 3 under SU(3), and an

anti-quark transforms as a 3̄ under SU(3) [46]. Similarly, for a string beginning and

ending on a stack of Nc D3-branes (for example), one end of the string transforms as

an Nc under U(Nc), and the other end transforms as an N̄c under U(Nc). Also, just

as the quark and the anti-quark can take one of three different color, the ends of the

string are attributed with one of Nc different charges. The different charges are
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labelled by the Chan-Paton indices i, j = 1, ..., Nc. As a matter of convention, for a

string oriented from end point i to endpoint j, it is the i end that transforms as a an

Nc, and it is the j end that transforms as an N̄c.

This text is primarily interested in (1 + 2)-dimensional effective field theories. One

way to obtain an effective (1 + 2)d U(Nc) gauge theory would be to consider a stack

of Nc D2-branes. However the method that will be employed is to consider stacks of

Nc D3-branes, giving rise to U(Nc) in (1 + 3)d. Then the D3s will be taken to be

finite and small along one direction, thereby freezing out that dimension at low

energies and giving rise to an effective (1 + 2)d U(Nc) gauge theory.

Summary:

Nc Dp-branes in a stack correspond to Chan-Paton indices i, j = 1, ..., Nc and a

U(Nc) gauge theory with N2
c vector (gauge) bosons existing on their

worldvolumes. These gauge bosons transform under the adjoint action of U(Nc).

A stack of Nc,1 Dp-branes and a stack of Nc,2 Dp-branes which are separated in

the transverse directions correspond to a U(Nc,1)× U(Nc,2) gauge theory at low

energy.

A string with both ends on a stack of Nc Dp-branes has one end transform as an

Nc under U(Nc), and the other end transforms as a N̄c under U(Nc).

A stack of Nc D3-branes that are small along one direction gvie rise to a 3d

U(Nc) effective theory living on the worldvolume of the D3s.

6.2 Flavour Branes

It is important to understand how to add matter fields to the theory. Consider adding

a stack of Nf D5-branes that intersect the stack of Nc D3-branes. Since the D3 and

D5-branes meet, it is possible to have strings between them of zero length (zero

tension). The D3-D3 strings (strings that begin on a D3-brane and end on a

D3-brane) give rise to a U(Nc) gauge theory, as discussed in the previous section.

There are also D5-D5 strings which give rise to N2
f gauge bosons transforming under

the adjoint action of U(Nf ) [47]. The coupling of a D5-D5-string has dimensions

(length)p−3 and is proportional to energy Ep−3 (where, in this case, p = 5). This

means that, at low energies, the coupling is vanishingly small. As a result, in the low

energy theory, the D5-D5-string interactions can be ignored.

The D3-D5 (or D5-D3) string states transform in the fundamental (antifundamental)

of U(Nc) and in the antifundamental (fundamental) of U(Nf ) [47]. That is they

transform in the bifundamental of:
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U(Nc)× U(Nf ) (6.2)

The D3-D5-string transforms as (Nc, N̄f ), and the D5-D3-string transforms as

(N̄c,Nf ). To see why the D3-D5 (D5-D3) strings transform like this, consider the

charges at either end of the string. The end of the D3-D5 at the D3-brane (labelled i)

transforms as an Nc and the end at the D5-brane (labelled j) transforms as an N̄f .

The Chan-Paton indices are i = 1, ..., Nc and j = 1, ..., Nf . This is completely

analogous to the strings beginning and ending on the same Dp-brane stack mentioned

above. Conversely, the D5-D3 has its end at the D5-brane (labelled i) transform as a

Nf and the end at the D3-brane (labelled j) transforms as a N̄c. The Chan-Paton

indices are i = 1, ..., Nf and j = 1, ..., Nc.

However, this description is only accurate at high energies. At low energies the D5-D5

string coupling vanishes and this changes the gauge dynamics. Since the D3-D5

(D5-D3) strings interact with the D5-D5-strings with a strength given by the

D5-D5-brane coupling, at low energies, the interactions stop [47]. In this limit the

U(Nf ) gauge symmetry becomes as global symmetry. The D3-D5-string spectra gives

rise to spin 1/2 fermions transforming in the fundamental of U(Nc) and with a global

U(Nf ) symmetry. Recall from field theory that spin 1/2 fermions with the same mass

are expected to have a global flavor symmetry. The U(Nf ) group is interpreted as the

flavour symmetry group of the string fermions. The D3-D5-string fermions are said to

have Nf different flavours. Similarly, the D5-D3-string spectra gives rise to spin 1/2

fermions transforming in the antifundamental of U(Nc) and with a global U(Nf )

symmetry. It is no surprise then, that the D5-branes are referred to as a ‘flavour

branes’.

Masses are introduced for these quarks by separating the stack of D5-branes from the

stack of D3-branes. The strings between the two stacks are then forced to have

non-zero length. They acquire a non-zero tension, and the quarks become massive.

Summary

In the high energy theory, a stack of Nf D5-branes intersecting a stack of Nc

D3-branes gives a bifundmantal quark transforming in the fundamental of U(Nc)

and the antifundamental of U(Nf ), and an anti-bifundmantal quark transforming

in the antifundamental of U(Nc) and the fundamental of U(Nf ).

In the low energy theory, a stack of Nf D5-branes intersecting a stack of Nc

D3-branes gives Nf massless quarks that transform in the fundamental rep of the

U(Nc) gauge group, and which have a U(Nf ) global flavour symmetry, as well as

Nf massless anti-quarks that transform in the antifundamental rep of the U(Nc)

gauge group, and which also have a U(Nf ) global flavour symmetry.
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To give the quarks non-zero mass, introduce a separation between the D3 and

D5-branes, such that the D3-D5 (D5-D3) strings acquire non-zero tension.

6.3 A 3d Effective Field Theory from String Theory

The brane configurations of primary interest will be slight variations on the famous

Hanany-Witten brane configurations introduced in [48]. It will prove instructive to

build these brane configurations gradually, whilst explaining the physics at each stage.

6.3.1 An Infinite D3-brane

Consider a D3-brane extending to infinity in the (x0, x1, x2, x6)-directions [48]. The

theory on its worldvolume is a (1 + 3)d gauge theory. It can be shown that bosonic

strings ending on the brane give rise to a groundstate tachyon,

(p+ 1)− 2 = 3 + 1− 2 = 2 massless states corresponding to the independent

transverse components of a vector boson, and p+ 1, ..., D − 1 scalars. When

supersymmetry is added to this theory D = 10 becomes the critical dimension and

there are six such scalar states. These scalars correspond to the fluctuations of the

D3-brane in its transverse spatial directions (x3, x4, x5, x7, x8, x9). The tachyon state

is GSO projected out.

This bosonic spectrum is consistent with the bosons that appear in the on-shell vector

multiplet of (1 + 3)d N = 4 supersymmetry [49]. The vector multiplet contains a 4d

gauge boson, three complex scalars, and four Majorana fermions [49]. The six real

scalars of the string correspond to the three complex scalars of the multiplet. A single

Dp-brane breaks supersymmetry from 32 supercharges to 16 supercharges by reducing

the number of independent components of the supercharges. 16 supercharges

correspond to N = 4 in 4d, so it is not surprising that the bosonic degrees of freedom

match those of the 4d N = 4 vector multiplet. The fermionic superpartners of these

bosons give the four Majorana fermions.

Summary:

An infinite D3-brane along (x1, x2, x6) gives an on-shell 4d N = 4 (16

supercharge) on-shell vector multiplet, containing a 4d vector boson, three

complex (six real) scalars, and four Majorana fermions.

6.3.2 A D3-brane Between two NS5-branes

Two NS5-branes are taken to extend in (x1, x2, x3, x4, x5) and are separated by a

finite distance along x6. The D3-brane is taken to extend infinitely along (x1, x2) and

finitely along x6. The D3 brane extents from one NS5-brane to the other, along the

finite x6-seperation.
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Figure 4: A D3-brane between two NS5-branes. The spatial directions x3, x4 and x5,
that the D3 and NS5-branes have in common, could not be drawn, but they exist. As
will be the case with later diagrams, only those dimensions that clearly indicate the
relative orientations of the branes are drawn.

The x6 part of the D3-brane can be taken to be small, such that there exists a (1 + 2)d

low energy field theory rather than a (1 + 3)d one on the worldvolume. This can be

treated as a dimensional reduction. The (1 + 3)d vector boson becomes a scalar b,

and a (1 + 2)d vector boson aµ, where µ = 0, 1, 2 [48]. The scalar ‘b’ satisfies[48]:

∂µb = Fµ6 (6.3)

The boundary conditions at the D3-D5 boundary affect the spectrum of states [48].

For a D3-brane ending on an NS5-brane, the end of the D3-brane creates a boundary

in (x0, x1, x2), the dimensions that the D3 and NS5-branes have in common. The

x6-direction of the D3-brane is normal to this boundary.

Figure 5: Only the relevant spatial dimensions are represented. The arrows represent
those directions in which the branes extend to infinity. The D3-brane is finite in x3 with
both ends ending on NS5-branes. In the diagram above only one of these NS5-branes
is drawn for clarity. The D3-D5 boundary is represented by the thick black line (which
is actually infinite in (x1, x2).
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The D3-brane is restricted by Dirichlet boundary conditions in the directions

(x6, x7, x8, x9) [48]. These are the directions, along which, the NS5-brane stops the

D3-brane from fluctuating. Six scalars on the D3-brane correspond to fluctuations of

the D3-brane in its transverse spatial directions (x3, x4, x5, x7, x8, x9). The D3-brane

ending on the NS5 results in three of these scalars, corresponding to (x7, x8, x9), being

restricted by Dirichlet boundary conditions and disappearing. On the other hand, the

scalars corresponding to (x3, x4, x5) are subject to Neumann boundary conditions and

survive.

How about the vector boson? Consider the 4d vector boson Aξ (here ξ = 0, 1, 2, 6, is

used in place of µ = 0, 1, 2) [48]. The corresponding field strength is given by Fξρ.

The NS5-branes impose a Neumann boundary condition on Fξρ. The effect of this is

that those components of Fξρ, where one index corresponds to one of the boundary

directions, become zero. The boundary runs along (x0, x1, x2), so, the result is that

Fµ,6 = 0, µ = 0, 1, 2. Using equation 6.3 this means that Neumann boundary

conditions give b = 0.

So, for the D3-brane between NS5-branes, the field b and the (x7, x8, x9) scalars

disappear.

Supercharge analysis shows that the D3-brane between two NS5-branes preserves

eight supercharges, corresponding to N = 2 in (1 + 3)d, and to N = 4 in (1 + 2)d. So,

to start with, a 16 supercharge (1 + 3)d theory was considered on the infinite

D3-brane worldvolume. Then, by having the D3-brane shortened in the x6 and ending

on NS5-branes, this supersymmetry was broken to eight supercharges and

dimensional reduction occured ((1 + 3)d → (1 + 2)d). Now consider the (1 + 3)d

on-shell N = 4 (16 supercharge) vector multiplet which contains a (1 + 3)d gauge

boson, three complex scalars, and four Majorana fermions, which corresponded to the

infinite D3-brane worldvolume theory ((1 + 3)d). Dimensional reduction to an N = 8

3d (also 16 supercharge) theory would give an on-shell vector multiplet containing a

3d vector boson, seven real scalars and eight Majorana fermions. This corresponds to

the spectrum of the finite D3-brane before the boundary conditions at the D3-NS5

intersections were considered; there was a gauge boson aµ and a scalar b, as well as

six scalars corresponding to fluctuations in (x3, x4, x5, x7, x8, x9) (see above). Now

this N = 8 on-shell vector multiplet decomposes into a vector multiplet and a

hypermultiplet under the N = 4 subalgebra [48]. The N = 4 on-shell vector multiplet

consists of a (1 + 2)d vector field, three real scalars and four Majorana fermions. The

hypermultiplet consists of four real scalars and four Majorana fermions. The (1 + 2)d

N = 8 theory can be broken to the (1 + 2)d N = 4 theory by imposing that either the

N = 4 vector multiplet or the N = 4 hypermultiplet disappears (it would be

impossible to form the N = 8 multiplet with either missing). aµ and the (x3, x4, x5)

scalars are assigned to the bosonic part of the (1 + 2)d on-shell N = 4 vector multiplet,

100



whilst b and the (x7, x8, x9) scalars are assigned to the bosonic part of the (1 + 2)d

on-shell N = 4 hypermultiplet. Above it was explained that b and the (x7, x8, x9)

scalars disappear when the D3-brane is made to end on NS5-branes. Therefore the

hypermultiplet disappears, leaving a (1 + 2)d on-shell N = 4 vector multiplet.

Gauge Coupling

The coupling of the ‘electric’9 U(Nc) gauge group associated with Nc D3s between the

two NS5s is given by [48, 50]:

g2
e =

gs
|t1 − t2|

(6.4)

where gs is the string coupling and t1 and t2 are the positions of the NS5s along x6.

Summary:

A finite D3-brane along (x1, x2, x6) between two NS5-branes (each along

(x1, x2, x3, x4, x5)) gives, in the low energy limit, an on-shell 3d N = 4 (eight

supercharge) vector multiplet containing a vector aµ, three real scalars

corresponding to the fluctuations of the brane along (x3, x4, x5) and four

Majorana fermions.

The coupling of the gauge group associated with the D3s is:

g2
e =

gs
|t1 − t2|

(6.5)

where t1 and t2 are the positions of the NS5s in x6.

6.3.3 A D3-brane Between two D5-branes

Now consider two D5-branes extending in (x1, x2, x7, x8, x9) and separated by some

finite distance in the x6-direction. Take a D3-brane to extend infinitely in (x1, x2) and

finitely in x6, with each end on the separated D5s.

Figure 6: A D3-brane between two NS5-branes.

9Associated with this ‘electric’ theory is a ‘magnetic’ theory which is mentioned in the next section.
The electric and magnetic theories are duals of each other, as discussed in [48].
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As with the NS5-D3-brane configuration of the previous section, the x6 part of the

D3-brane can be taken to be small, such that there exists a (1 + 2)d low energy

theory. The (1 + 3)d vector boson becomes a scalar b, and a 3d vector boson aµ,

where µ = 0, 1, 2 [48]. The scalar ‘b’ satisfies equation 6.3.

As before, the boundary conditions affect the spectrum of states [48]. For a D3-brane

ending on an D5-brane, the end of the D3-brane creates a boundary in (x0, x1, x2),

the dimensions that the D3 and D5-branes have in common. The x6-direction of the

D3-brane is normal to this boundary.

Figure 7: Only the relevant spatial dimensions are represented. The arrows represent
those directions in which the branes extend to infinity. The D3-brane is finite in x3 with
both ends ending on NS5-branes. In the diagram above only one of these NS5-branes
is drawn for clarity. The D3-D5 boundary is represented by the thick black line (which
is actually infinite in (x1, x2).

This time the D5-brane stops the D3-brane from fluctuating in the

(x3, x4, x5)-directions, so, of the six scalars of the infinite D3-brane associated with

(x3, x4, x5, x7, x8, x9), those associated with fluctuations along (x3, x4, x5) have

Dirichlet boundary conditions and vanish. Those associated with fluctuations along

(x7, x8, x9) have Neumann boundary conditions and survive.

The D5-branes impose a Dirichlet boundary condition on the (1 + 3)d gauge boson,

where the components of Fξρ with both indices taking values in ξ, ρ = 0, 1, 2 become

zero (e.g F02 = 0) [48]. The result is that:

Fµν = 0 (6.6)

where µ, ν = 0, 1, 2. This field strength is associated with the 3d gauge boson aµ

mentioned above, so the result is that aµ disappears.

Ending the D3-brane on two D5-branes causes the 3d gauge boson aµ and the scalars

associated with fluctuations along (x3, x4, x5) to disappear [48]. These are the bosonic
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degrees of freedom associated with the aforementioned (1 + 2)d on-shell N = 4 (8

supercharge) vector multiplet. The surviving degrees of freedom are b and the scalars

associated with fluctuations along (x7, x8, x9). These are the bosonic degrees of

freedom of the aforementioned (1 + 2)d on-shell N = 4 (8 supercharge) hypermultiplet.

Gauge Coupling

The coupling of the ‘magnetic’ U(Nc) gauge group associated with Nc D3s between

the two D5s is given by [48]:

g2
m =

gs
|z1 − z2|

(6.7)

where gs is the string coupling and z1 and z2 are the positions of the NS5s along x6.

Summary:

A finite D3-brane along (x1, x2, x6) between two D5-branes (each along

(x1, x2, x7, x8, x9)) gives, in the low energy limit, a 3d on-shell N = 4 (eight

supercharge) hypermultiplet containing a scalar b, three scalars corresponding to

the fluctuations of the brane along (x7, x8, x9) and four Majorana fermions.

The coupling of the gauge group associated with the D3s is:

g2
m =

gs
|z1 − z2|

(6.8)

where z1 and z2 are the positions of the D5s in x6.

D3-branes ending on D5-branes are not considered in the remainder of this text, and

were mentioned for completeness.

6.3.4 A D3-brane between an NS5-brane and a D5-brane

Consider a D5-brane extending in (x1, x2, x7, x8, x9) and an NS5-brane extending in

(x1, x2, x3, x4, x5), separated by some finite distance in the x6-direction. Take a

D3-brane to extend infinitely in (x1, x2) and finitely in x6, with each end on the

separated five-branes.
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Figure 8: A D3-brane between an NS5-brane and a D5-brane.

By combining the conditions for D3-branes between NS5-branes and the conditions

for D3-branes between D5-branes, it is clear that all the scalars corresponding to the

fluctuations of the D3-brane in the (x3, x4, x5, x7, x8, x9)-directions disappear [48].

The fields aµ and b also vanish, so the low energy theory has no massless states.

The main purpose of mentioning this brane configuration is to make it clear that it

does not give an interesting spectrum of states.

6.3.5 A D3-brane between two NS5-branes and Intersected by a D5-Brane

Now consider two NS5-branes extending in (x1, x2, x3, x4, x5) and separated by some

finite distance in the x6-direction. A D3-brane is taken to extend infinitely in (x1, x2)

and finitely in x6, with each end on each NS5-brane, respectively. In addition, consider

a D5-brane extending along (x1, x2, x7, x8, x9) intersecting the D3-brane at some point

along x6 between the two NS5-branes. Note that this is not a configuration where a

D3-brane ends on the D5-brane; the D3-D5 boundary conditions are not employed.

Figure 9: A D3-brane between two NS5-branes, with a D5-brane intersecting the
D3-brane.

In section 6.3.2 it was shown, using boundary conditions, that the D3-brane between

the two NS5-branes give rise to a (1 + 2)d N = 4 vector multiplet containing a

(1 + 2)d vector aµ (µ = 0, 1, 2), three scalars corresponding to fluctuations of the

brane along (x3, x4, x5) and four Majorana fermions.

The inclusion of D5-branes does not break supersymmetry any further. D5-branes

along (x1, x2, x7, x8, x9) and NS5-branes along (x1, x2, x3, x4, x5) give an eight
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supercharge theory. The supercharge analysis shows that D3-branes extending in

(x1, x2, x6) can be added with no further supersymmetry breaking. That is, the

supercharge relation for such a D3-brane arises automatically from a combination of

the D5 and NS5 supercharge relations. This could be seen another way: the

NS5-brane and D3-brane Killing spinor relations imply the D5-brane Killing spinor

relation. Therefore the current configuration of a D3-brane between NS5-branes with

a D5-brane intersecting the D3-brane preserves the same supersymmetry as the case

of the D3-brane between two NS5-branes considered in section 6.3.2. Eight

supercharges corresponds to N = 4 in (1 + 2)d.

In section 6.2 analysis of the Chan-Paton factors revealed that massless quark

flavours arise from D5-branes intersecting D3-branes. Therefore, with supersymmetry

included, the D3-D5 intersection should give rise to hypermultiplets. Note that, in the

cases above, brane boundary conditions were considered because D3-branes were

considered that were ending on either NS5-branes or D5-branes. However, in this

case, the D3-brane is intersecting the D5-brane, so there are no Dirichlet conditions

imposed on the D3 from the D5. Since the brane configuration preserves 8

supercharges corresponding to N = 4 in 3d, the on-shell hypermultiplet arising from

the D3-D5 string is the 3d on-shell N = 4 hypermultiplet consisting of four real

scalars and four Majorana spinors.

As well as this, due to the D3-brane ending on two NS5-branes, the D3-D3 strings

give rise to the vector multiplet of section 6.3.2.

Summary:

The configuration contains two NS5-branes extending in (x1, x2, x3, x4, x5) and

separated by some finite distance in the x6-direction. A D3-brane is taken to

extend infinitely in (x1, x2) and finitely in x6, with each end on each NS5-brane,

respectively. In addition, a D5-brane extending along (x1, x2, x7, x8, x9) intersects

the D3-brane at some point along x6 between the two NS5-branes.

The D3-D3 strings give rise to a low energy (1 + 2)d on-shell N = 4 (eight

supercharge) vector multiplet containing a vector aµ (µ = 0, 1, 2), three scalars

corresponding to fluctuations of the D3-brane along (x3, x4, x5), and four

Majorana fermions.

The D3-D5 strings give rise to a low energy (1 + 2)d on-shell N = 4 (eight

supercharge) hypermultiplet containing four real scalars, and four Majorana

fermions.
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6.3.6 Rotating the Left Hand NS5-brane

Consider starting from the brane configuration of the previous section. Then rotate

one of the NS5-branes (say the left hand one) from its original orientation along

(x1, x2, x3, x4, x5) to (x1, x2, x3, x8, x9). The rotated brane is writen with a dash

(NS5′-brane) to distinquish it from the non-rotated NS5-brane. Supercharge analysis

shows that this breaks SUSY from eight supercharges to four.

Figure 10: A D3-brane between an NS5-brane and an NS5′-brane, with a D5-brane
intersecting the D3-brane.

Before the NS5-brane was rotated, the configuration was shown to contain a (1 + 2)d

on-shell N = 4 (eight supercharge) vector multiplet (see the previous section). Under

(1 + 2)d N = 2 (four supercharges) supersymmetry this vector multiplet decomposes

into a vector multiplet and an adjoint chiral multiplet. The on-shell (1 + 2)d N = 2

vector multiplet contains a vector field aµ, a real scalar field and a Dirac fermion. The

on-shell (1 + 2)d N = 2 chiral multiplet contains two real scalar fields and two

Majorana fermions. The off-shell (1 + 2)d N = 2 supermultiplets can also be

considered. The off-shell vector multiplet contains a (1 + 2)d vector, a real scalar, a

Dirac fermion (two complex components), and an auxiliary real scalar D-field

[51, 52, 53]. The off-shell chiral multiplet contains a complex scalar, a Dirac fermion

(two complex components), and an auxiliary complex scalar F-field [51, 52, 53].

When SUSY is broken, by rotating the left hand NS5-brane, one of these 3d N = 2

supermultiplets disappears from the low energy theory. Specifically the adjoint chiral

multiplet becomes massive. The (1 + 2)d N = 2 vector and adjoint multiplets that

make up the (1 + 2)d N = 4 vector multiplet are required to have the same mass in

order for N = 4 SUSY to be preserved. By making the N = 2 adjoint chiral multiplet

massive, and leaving the N = 2 vector multiplet massless, the N = 4 SUSY is broken

to N = 2.

Define the complex planes [38, 54]:

v = x4 + ix5 (6.9)
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w = x8 + ix9 (6.10)

Using this description the NS5-brane extends along v and exists at w = 0, whilst the

NS5′-brane extends along w and exists at v = 0. A rotation of the left NS5-brane,

from its original (x1, x2, x3, x4, x5) position, corresponds to [38, 54]:

(v, w)→ (vθ, wθ) (6.11)

where:

vθ = vcos(θ) + wsin(θ)

wθ = −vsin(θ) + wcos(θ)
(6.12)

The angle θ determines whether SUSY is broken or not. θ equal to multiples of 2π

radians (including 0 radians) corresponds to unbroken SUSY (8 supercharges), whilst

other angles correspond to broken SUSY (to 4 supercharges).

The pre-rotation NS5-brane is chosen to be located at w = 0. The NS5-brane rotated

through an angle θ, exists at wθ = 0. Using equation 6.12, the rotated NS5-brane

gives [38, 54]:

−vsin(θ) + wcos(θ) = 0

⇒ w = tan(θ)v
(6.13)

The rotation of the brane is continuous, so it should not be surprising that the brane

angle corresponds to the some sort of continuous physical parameter [38, 54]. Since

the pre-rotated NS5-brane preserves the scalars of the (1 + 2)d N = 2 (4 supercharge)

adjoint chiral multiplet, and since the NS5′-brane eliminates these scalars, it is fitting

to write the adjoint chiral multiplet mass as:

µ = tan(θ) (6.14)

When θ = 0 the NS5-brane extends along (x1, x2, x3, x4, x5) and the adjoint chiral

multiplet, and its scalars, are massless. This preserves the 3d N = 4 (8 supercharge)

theory. On the other hand, θ = π/2 corresponds to the NS5′-brane running along

(x1, x2, x3, x8, x9). The adjoint chiral multiplet, and its scalars, have infinite mass,

and SUSY is broken to (1 + 2)d N = 2 (4 supercharges) [38, 54]. The adjoint chiral

multiplets are integrated out when considering the low energy (1 + 2)d theory.
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With SUSY now reduced to (1 + 2)d N = 2 the D3-D5 strings give rise to a low

energy (1 + 2)d on-shell N = 2 chiral multiplet containing two real scalars, and two

Majorana fermions.

The configuration consisting of NS5-branes along (x1, x2, x3, x4, x5) and

D3-branes along (x1, x2, x6) gives a (1 + 2)d N = 4 (eight supercharges) vector

multiplet.

Rotating one of the NS5-branes by an angle θ in the (x4, x5)− (x8, x9) plane gives

a mass of µ = tan(θ) to the (1 + 2)d N = 2 adjoint chiral multiplet, thereby

reducing SUSY to (1 + 2)d N = 2 (four supercharges).

The D3-D5 strings give rise to a low energy (1 + 2)d on-shell N = 2 chiral

containing two real scalars, and two Majorana fermions.

6.3.7 Introducing Massive matter by Introducing a D3-brane D5-brane

Separation - The Naive Approach

The configuration considered in the last section was that of a D3-brane between an

NS5-brane and an NS5′-brane, with a D5-brane intersecting the D3-brane. Consider

the same configuration with Nc D3-branes and Nf D5-branes:

Figure 11: The brane configuration that gives rise to a (1+2)d four supercharge U(Nc)
effective field theory containing Nf massless flavours. In the table the i’s correspond to
those directions in which a brane extends infinitely. The f in the table indicates that
the D3-branes extend finitely in the x6-direction.

In order to introduce massive matter, a gap needs to be introduced between D3 and

D5-branes, such that they no longer intersect. The result of this is that the D3-D5

(D5-D3) strings become stretched and acquire non-zero tension, thereby giving mass

to the groundstates in their spectrum. The most obvious way to introduce a D3-brane

D5-brane gap would be to simply move the D5-branes away from the D3-branes in
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either the x3, x4 or x5-directions [55]. The displacement in the x3-direction

corresponds to a real mass for the quarks, whilst a displacement in the x4 and

x5-directions corresponds to a complex mass for the quarks. The real mass is given by

the ‘vector mass’ mV mentioned in section 4.6 [37]. The complex mass corresponds to

Lagrangian density term:

∫
d2θmcQQ̃ (6.15)

mentioned in equation 4.2.

How about the axial mass mA that was mentioned in section 4.6? This can be

understood by considering the D5-branes moving to the left along x6 until they

intersect the NS5′-brane [37]. They can then split into two halves, with one half

displaced upwards in the x3-direction, and the other displaced the same distance in

the opposite direction. Consider the (naive) picture below:

Figure 12: A naive method for splitting the D5-brane in two on the NS5′-brane.

Recall that, for general Nc and general Nf , the semiclassical scalar potential is

minimised by imposing:

(
δj
′

jm
i′
i + σj

′

j δ
i′
i

)
φi,j = 0 (6.16)

(
δj
′

j m̃
i′
i − σ

j′

j δ
i′
i

)
φ̃i,j = 0 (6.17)

The Nc D3-brane positions determine the Nc values of the diagonal of σj
′

j . The above

diagram gives σ1
1 = σ2

2 = ... = σNc
Nc

= 0. The positions of the D5+-branes correspond

to the values of the diagonal matrix mi′
i . In this case those values are

m1
1 = m2

2 = ... = m
Nf

Nf
= ma. The positions of the D5−-branes correspond to the

values of the diagonal matrix m̃i′
i . In this case those values are
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m̃1
1 = m̃2

2 = ... = m̃
Nf

Nf
= ma. The result is Nf flavours of quark with mass m and Nf

flavours of anti-quark with mass ma. Note that, in order for the above equations to

be satisfied, all components of φ and φ̃ must be zero.

6.3.8 Brane Deformations and the (p, q)-web

Unfortunately, the brane configuration in figure 12 considered above is not correct.

The reason for this is that, when one fivebrane ends on another fivebrane, the branes

are deformed; they do not meet at convenient right angles [56].

The D5-brane ending on the NS5-brane

The D5-brane extends in the (x1, x2, x7, x8, x9)-directions, and the NS5′-brane that it

ends on extends in the (x1, x2, x3, x8, x9)-directions [55]. The D5 and NS5′-branes can

be imagined as deforming one another at the point of intersection. Before including

this deformation the picture looks like:

Figure 13: The NS5′-brane and D5-brane intersection before deformations are ac-
counted for.

The NS5′-brane has four transverse directions (x4, x5, x6, x7). The x7-direction is the

only transverse direction of the NS5′-brane that the D5-brane extends along.

Similarly the D5-brane has the transverse directions (x3, x4, x5, x6), out of which the

NS5-brane extends along x3. As a result, it is expected that the x3 position of the

NS5′-brane depends on the x7 position of the D5-brane. x7 can be written as a

function of x3, where the function is required to minimize the worldvolume of the

NS5′-brane. For large x3 the two positions of the branes are related by the

one-dimensional Laplace equation [55]:
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∇2x7 = δ(x3) (6.18)

The solution to this equation is [55]:

x7 =
1

2
|x3|+ cx3 + d (6.19)

where c and d are constants. At large and negative x3 the solution is expected to

correspond to a the NS5′-brane located at x7 = 0. With this in mind the constants

are chosen to take the values c = 1/2 and d = 0. This gives:

x7 =
1

2
|x3|+

1

2
x3 (6.20)

Therefore, for a D5-brane ending on an NS5′-brane at x3 = x7 = 0, the configuration

is drawn [55]:

Figure 14: The NS5′-brane and D5-brane intersection results in a (1, 1)-brane bound-
state.

The diagonal brane is interpreted as a (1, 1)-brane. A (1, 1)-brane is a (p, q)-brane

with p = q = 1, and a (p, q)-brane is a bound state of p NS5-branes and q D5-branes

[55]. The (1,1)-brane is required to extend at 90◦ in the (x3, x7) plane in order for

supersymmetry not to be broken. It also extends along (x1, x2, x8, x9). In general a

(p, q)-brane must be oriented at an angle θ where [55]:

tan(θ) = p/q (6.21)
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in order to preserve supersymmetry.

It is clear that the brane configuration in figure 12 is not drawn accurately. The

D5-branes should actually split along the NS5-brane as in the diagram below [37]:

Figure 15: The correct splitting of D5-branes on the NS5′-brane.

The (p, q)-brane extends at an angle θ = tan−1(1/Nf ) in the (x3, x7) plane, and also

extends along (x1, x2, x8, x9).

Note that not all of the D5-branes need be split as above. An aribitrary number of

the Nf D5-branes can be formed in to the NS5′-D5-(p, q) ‘web’, whilst the remaining

can be left in their original position intersecting the D3-branes.

The Bare FI-term from NS5-brane Separations in (x7,x8,x9)

The Fayet-Iliopoulos D-term coefficient ζ is given by the separation of the NS5-branes

in the (x7, x8, x9)-directions [48]:

~ζ = ~w1 − ~w2 (6.22)

Here w1 and w2 are the (x7, x8, x9) positions of the two NS5-branes. The FI-term is

associated with the center of the U(1) ∈ U(Nc) of the gauge group U(Nc) that arises

from D3-D3 strings. In this case the (p, q)-web introduces a displacement of the two

halves of the NS5′-branes in the x7-direction. The top NS5′-brane moves to positve x7

whilst the bottom one moves to negative x7. The result is that the bare value of ζ

associated with the U(Nc) group is given by the difference in x7 positions of the two

NS5′-branes. This is the same ζ that appears in equation 4.4, and in subsequent

equations in section 4. The value of this coupling in the effective theory is then

adjusted by integrating out massive matter, according to equation 4.15.
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This FI-term ζ is actually mirror dual to the mass term that corresponds to the

D5-brane position in x3. The mirror dual of an NS5-brane extending along

(x1, x2, x3, x4, x5) and at position (x7, x8, x9) = (a, b, c) is a D5-brane extending along

(x1, x2, x7, x8, x9) and at position (x3, x4, x5) = (a, b, c). As well as exchanging

NS5-branes with D5-branes, the duality exchanges the (x3, x4, x5) positions with

(x7, x8, x9). The D5-brane position in (x3, x4, x5) corresponds to mass terms for the

fundamental hypermultiplet associated with NS5-D3 strings. Therefore mirror

symmetry also corresponds to ~m↔ ~ζ [34, 57]. The (p, q)-web gives rise to D5s

displaced in x3. This displacement corresponds to the real mass m found in the

background vector multiplet (see equation 4.2). The mirror dual is an NS5-brane

displaced in x7, corresponding to a real FI parameter ζ [35].

D3-branes ending on Fivebranes

When considering brane deformations, the situation is different for a D3-brane ending

on a fivebrane [56]. Consider the D3-brane ending on the NS5′-brane: The D3-brane

extends along (x1, x2, x6) whilst the NS5′-brane extends along (x1, x2, x3, x8, x9). The

NS5′-brane has one transverse direction x6 that the D3-brane extends in, whilst the

D3-brane has three transverse directions (x3, x8, x9) which the NS5′-brane extends in.

As a result the x6 position of the NS5′-brane is dependendent on (x3, x8, x9), and the

resulting Laplacian is 3d. Such a solution to the Laplacian gives a constant as

x3, x8, x9 →∞. This constant just corresponds to the NS5′-brane position and the

brane is not drawn any differently. The same reasoning applies to the NS5-brane. The

NS5-brane extends along the (x1, x2, x3, x4, x5). This has a transverse direction x6

that the D3-brane extends along, whilst the D3-brane has the transverse directions

(x3, x4, x5) that the NS5-bane extends along. Again, this results in a 3d Laplacian

and the position of the NS5-brane is just a constant at large (x3, x4, x5). Finally, the

D5-brane extends along (x1, x2, x7, x8, x9). This has a transverse direction x6 that the

D3-brane extends along, whilst the D3-brane has the transverse directions (x7, x8, x9)

that the D5-bane extends along. So, again, the D5-brane position is just a constant at

large (x7, x8, x9) and the brane is not drawn any differently.

6.3.9 A D3-brane between the (p, q)-brane and the NS5-brane

Consider D3-branes with one end at any point along the (p, q)-brane and one end on

the NS5-brane, as in figure 15.

Mass Term for the Vector Multiplet from (p, q)-brane Angle

In section 6.3.6 it was explained that rotating the NS5-brane to give the NS5′-brane

means suppressing the x4 and x5 fluctuations of the D3-brane. This corresponds to

making the (1 + 2)d N = 2 adjoint chiral multiplet infinitely massive (the two real

scalars in this multiplet correspond to the x4 and x5 positions of the D3-brane). A
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similar process occurs when the (p, q)-brane is introduced. Before the creation of the

(p, q)-brane, the D3-brane was free to fluctuate in the x3-direction. The (p, q)-brane

restricts fluctuation in this direction, in the same way that an NS5-brane at an angle

in the (x4x5, x8x9) plane restricts restricts fluctuation in the x4 and x5-directions [41].

x3 fluctuations correspond to the real scalar of the 3d N = 2 vector multiplet, and so

the D3-branes between the (p, q)-brane and the NS5-brane results in this scalar

becoming massive. However, the configuration preserves SUSY, and so all the fields in

the 3d N = 2 vector multiplet must acquire the same mass [41]. Take the angle of the

(p, q)-brane to be that between the (p, q)-brane and the x3 axis:

Figure 16: The angle of the (1, Nf )-brane in the x3, x7 plane.

The vector multiplet mass µV is proportional to the angle, φ3,7 of a (p, q)-brane as:

µV = tan(φ3,7) (6.23)

Above it was mentioned that, in order to preserve SUSY, the angle of the (p, q)-brane

in the (x3, x7) plane is related to the number of NS5-branes, p, and the number of

D5-branes, q, by [55]:

tan(φ3,7) =
p

q
(6.24)

Hence:

µV =
p

q
(6.25)

Making the vector multiplet massive would usually result in a breaking of the gauge

symmetry in the effective theory. However in (1 + 2)d the gauge symmetry can be

preserved by using Chern-Simons terms in the Lagrangian [41, 58].

The Bare Chern-Simons Level from (p, q)-brane Angle
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The angle φ3,7 of the (p, q)-brane also determines the bare Chern-Simons level k

associated with the gauge group of D3s ending on it [37, 41, 58, 59]:

k =
p

q
= tan(φ3,7) (6.26)

The second equality is required to preserve supersymmetry. Comparing with

equations 6.24 and 6.25 shows that k is equal to the mass of the (1 + 2)d N = 2

vector multiplet associated with gauge groups of D3s between the (p, q)-brane and the

NS5-brane. As stated in equation 4.14 and explained in section 5, the bare CS-level is

subject to adjustment from further factors that are obtained by integrating out

massive matter.

Displaced D3-branes

It is not only the D5-branes that can be displaced, the D3-branes can be moved up or

down along the (p, q)-brane. However, since the ends of the (p, q)-branes are displaced

in the x7-direction, the D3-branes cannot end further up or further down the

(p, q)-brane and end on the NS5-brane without existing at an angle in the (x6, x7)

plane. This is shown in the configuration on the left in the figure below:

Figure 17: On the left is the configuration for a displaced D3-brane ending on the NS5′,
D5+, (1, Nf ) intersection, and on the NS5-brane. This D3 is at an angle in the (x6, x7)
plane and breaks supersymmetry. Note that the hexahedron drawn with thin lines
which extend in the (x3, x6, x7)-directions does not represent a configuration of branes,
but is simply there to make the orientation of the D3-brane in the (x6, x7) plane easier to
see. On the right hand side is the configuration which preserves supersymmetry. A new
NS5-brane is introduced so that the displaced D3-brane extends along the x6-direction,
as required.

The D3-brane is required to extend along the (x1, x2, x6)-directions in order for

(1 + 2)d N = 2 supersymmetry to be preserved; an orientation along any other

direction breaks supersymmetry. As a result, in order to preserve SUSY, the

D3-brane still needs to extend along (x1, x2, x6) even in its displaced position. To
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solve this a second NS5-brane (extending along (x1, x2, x3, x4, x5)) is introduced,

which is displaced in x7 as far as the left-most end of the D3-brane, and which allows

the D3-brane to extend along (x1, x2, x6), as on the right hand diagram in the above

figure.
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7 Strong-Weak Dualities in 4d and 3d Field Theories

Strong-weak duality (or ‘S-duality’) initially arose in the form of the electromagnetic

duality of classical electrodynamics together with quantum considerations (the Dirac

quantisation condition). It was then shown that S-duality could be generalised to a

variety of non-abelian and/or supersymmetric theories. Two generalisations which are

of central importance to this text are the Aharony and Giveon-Kutasov dualities of

(1 + 2)d N = 2 field theory. In this section a (very) brief overview of the different

dualities will be presented, along with a description of the Aharony and

Giveon-Kutasov dualities.

7.1 Electromagnetic Duality

7.1.1 Classical EM Duality

For a region with no electric or magnetic charges, Maxwell’s equations are given by

[60]:

~∂ · ~E = 0 (7.1)

~∂ × ~E = −∂
~B

∂t
(7.2)

~∂ · ~B = 0 (7.3)

~∂ × ~B =
∂ ~E

∂t
(7.4)

where natural units are used. It is clear that these equations are invariant under the

electromagnetic duality transformations [60]:

~E → − ~B ~B → ~E (7.5)

The above Maxwell’s equations can be written in manifestly Lorentz invariant form as

[60]:

∂ν F
µν = 0 (7.6)

∂ν ? F
µν = 0 (7.7)

Here ?Fµν denotes the Hodge dual of Fµν . In this case the electromagnetic duality

transformation is given by:
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Fµν → ?Fµν ? Fµν → −Fµν (7.8)

In order for electromagnetic duality to exist for the case with sources, both electric

and magnetic charges are required [60]:

∂ν F
µν = jµ (7.9)

∂ν ? F
µν = kµ (7.10)

Now the electromagnetic duality transformations are given by [60]:

Fµν → ?Fµν ? Fµν → −Fµν (7.11)

jµ → kµ kµ → −jµ (7.12)

The magnetic monopole is said to be the electromagnetic dual of the electric

monopole.

7.1.2 The Quantum Electromagnetic Duality as a Strong-Weak Duality

Note that, so far, electromagnetic duality is not a strong-weak duality (S-duality).

Such dualities refer to the equivalence of the strongly coupled limit of one theory to

the weakly coupled limit of another. However, it is possible to show that

electromagnetic duality, supplemented with the Dirac quantisation condition gives

rise to a strong-weak duality [61]. The Dirac quantisation condition relates the

electric charge q with the magnetic charge g by [23, 24, 60, 61]:

g =
4π~n
q

n ∈ Z (7.13)

In natural units ~ = 1. Under electromagnetic duality the electric and magnetic

charges are exchanged; what ever value q was becomes the new value of g and visa

versa [62]:

q → g g → −q (7.14)

The Dirac quantisation condition means that a theory with large q has small g.

Under the duality transformation this gives a theory with large g and small q. This is

interesting as the large q in the former theory cannot be studied perturbatively.
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However, information about the former electric theory can be garnered by performing

the duality transformation, and then investigating the dual electric theory (with small

q) perturbatively.

As will be discussed, strong-weak dualities can be strange. Sometimes individual

electric quanta (which are fundamental) are dual to composite (non-fundamental)

magnetic charges [61].

7.1.3 Dirac Monopole (Dirac String)

Now there is a problem. The introduction of a magnetic charge means that the

magnetic field has a non-zero divergence. This would mean that a magnetic field can

no longer be described as the curl of A (as B = ∇×A). Undesirable results occur

when this relation is abandoned.

To preserve the curl of magnetic field, Dirac proposed the ‘Dirac monopole’, also

called the ‘Dirac String’. Classically, the Dirac monopole is indistinguishable from a

semi-infinite and infinitesimally thin solenoid, hence the latter name [60, 63]. The end

of the solenoid resembles the source of the magnetic field. Quantum mechanically

such a solenoid generally exhibits an interference pattern, which would distinguish it

from the magnetic monopole. The special case in which the interference pattern

disappears corresponds to the Dirac quantisation condition (equation 7.13) being

satisfied [60, 63]. Everywhere in space, except at points along the Dirac string,

B = ∇×A is satisfied. Since this is not the case along the solenoid (at the points

corresponding to the solenoid, the potential A blows up [64]) the position of the Dirac

string is subtracted from the spacetime manifold. This is sometimes called a ‘defect’.

7.2 Montonen-Olive Duality

Remarkably, electromagnetic duality can be generalised to Yang-Mills theories. An

early attempt at generalising the electromagnetic duality to non-abelian gauge

theories was made by Montenon and Olive, when they tried to argue that S-duality

was a feature of the non-supersymmetric Georgi-Glashow model [60]. Whilst there

were many promising features of this theory that suggested a duality, it eventually

became clear that duality did not apply after all. To remedy the issues that were

faced, the N = 2 supersymmetric Yang-Mills theory was considered next.

Unfortunately, the supermultiplet of the magnetic monopole did not contain a spin-1

state necessary for Montonen-Olive duality. Thus N = 2 supersymmetric Yang-Mills

theory was also deemed unsuitable. Next Montonen-Olive duality was considered in

the framework of N = 4 super-Yang-Mills. This theory successfully fulfills the criteria

for Montonen-Olive duality. These models are described briefly below.
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7.2.1 The Georgi-Glashow Theory

This duality was conjectured by Montonen and Olive in their paper [65]. The

semiclassical Georgi-Glashow theory, saturating the BPS bound 10, contains the

following spectrum [60, 66] (table copied from [60]):

Table 3: Particle Properties in the Georgi-Glashow Model

Particle Mass Electric Charge Magnetic Charge Spin

Photon 0 0 0 ±1

Higgs boson 0 0 0 0

W± boson aq ±q 0 1

M± monopole ag 0 ±g 0

q is an electric charge, g is a magnetic charge and a is a complex parameter. The

theory can also contain dyons - particles with both electric and magnetic charge. All

particles in the spectrum have mass a
√
q2 + g2. It is clear that the theory is left

invariant by the duality transformation [66]:

q → g g → −q (7.15)

provided that the W-boson is exchanged with the magnetic monopole. In the above

‘electric theory’ the W boson is a single elementary point particle, whilst the

magnetic monopole is a topological soliton, made out of a collection of excitations

[60, 66, 67, 68]. In the dual ‘magnetic’ theory, the W-boson becomes a soliton made of

numerous excitations, whilst the magnetic monopole becomes a single elementary

point particle. The single point particles have ‘Noetherian charge’ whilst the solitons

have ‘topological charge’ [68]. Since the states saturate the BPS bound, the magnetic

monopole is sometimes called a BPS monopole [69]. In fact the magnetic monopole is

an example of a ’t Hooft-Polyakov magnetic monopole [60]. Since the Dirac

quantisation condition still applies, the duality relates a theory with strong coupling

to one with weak coupling (it is an S-duality).

Evidence for Duality:

1) The duality exchanges magnetic monopoles with W-bosons, so it is expected that

the dual theories have similar interactions [66]. This is indeed the case: The monopole

is not self-interacting, but a monopole and an anti-monopole do interact. Similarly,

10All particles in the spectrum have mass equal to the modulus of the central charge.
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equal charge W-bosons don’t interact whilst those with different charges do. The

interactions have been shown to be identical [60].

2) The mass formula for all the particles (including the dyons) is given by [66]:

M = a
√
q2 + g2 (7.16)

This is clearly invariant under the duality transformation (equation 7.15).

3) The electromagnetic duality of the spectrum comes as no surprise since the BPS

bound is left invariant under the duality, and since the above spectrum saturates this

bound [60].

Unfortunately, there are features of the duality that bring into question its validity.

Evidence Against Duality

1) Generally BPS bounds and the mass formula change under renormalisation due to

loop corrections [60, 66]. This can result in the BPS equation and the mass formula

no longer being invariant under the duality transformation. Therefore, the spectrum,

which saturates the bound, will no longer be left invariant under duality.

2) In the dual (magnetic) theory the magnetic monopoles play the role of gauge

particles [60, 66]. They would then be expected to have spin 1, as opposed to spin 0.

They need spin 1 in order to be dual to the W-bosons.

A better understanding of strongly coupled physics is required to investigate the loop

corrections and determine the validity of the duality. In order to avoid the problems

mentioned above, the duality can be reformulated in a supersymmetric theory [60].

The bosonic and fermionic renormalisation contributions cancel, avoiding

renormalisation of the mass formula [66]. Also, the correct supersymmetric theory

provides a spin-1 ’t Hooft Polyakov monopole that could potentially play the role of a

gauge particle in the magnetic theory.

7.2.2 The N = 2 super-Yang-Mills Theory

An attempt to realise a consistent strong-weak duality in a non-abelian gauge theory

was made in [70]. The authors proposed a generalisation of the Montonen-Olive

duality to (1 + 3)d N = 2 super-Yang-Mills theory. Unfortunately the attempt was

not successful.

The N = 2 super-Yang-Mills action is given by [66]:
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L =
1

e2

∫
d2θd2θ̄ Φ̄e2V Φ− Re

[
i

16π

∫
d2θ τWαWα + h.c.

]
(7.17)

This can be rewritten [66, 70]:

L =
1

8π
Im

[
τ

(
2

∫
d2θd2θ̄ Φ̄e2V Φ +

∫
d2θWαWα

)]
(7.18)

where [66, 70]:

τ =
θ

2π
+ i

4π

e2
(7.19)

Wα is the superfield strength related to the N = 2 vector superfield V by [66, 71]:

Wα = −1

4
D̄2DαV (7.20)

Φ is the N = 2 adjoint chiral superfield [66].

The on-shell N = 2 vector superfield has the combined field content of the on-shell

(1 + 3)d N = 1 vector multiplet and the on-shell (1 + 3)d N = 1 adjoint chiral

multiplet [49, 71]. The former contains a gauge boson and a Majorana fermion, the

latter contains a complex scalar and a Majorana fermion. The on-shell N = 2 adjoint

chiral superfield contains the combined field content of a (1 + 3)d N = 1 adjoint chiral

multiplet (a complex scalar and a Majorana fermion) and a (1 + 3)d N = 1 adjoint

chiral multiplet in the conjugate representation (a complex scalar and a Majorana

fermion, both in the conjugate representiation) [49, 71].

The theory contains solitons that are dyons as well as ’t Hooft-Polyakov magnetic

monopoles, just like in the Georgi-Glashow model.

Semiclassical Results

The complex scalar φ of the adjoint chiral superfield Φ can be written in terms of real

scalars A4 and A5 as [66]:

φ = 1√
2

(A5 + iA4) (7.21)

Take a4 and a5 to be the asymptotic values of A4 and A5 respectively [66]. Then

define a to be the asymptotic value of φ:

a = 1√
2

(a5 + ia4) (7.22)
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The BPS bound is given by [66]:

M ≥ a′

e

√
q2 + g2 =

√
2
|a|
e
|q + ig| (7.23)

where a′ is simply related to a by [66]:

a′ =
√

2|a| = |a5 + ia4| (7.24)

Here, the relation |q + ig|2 = (q + ig)(q − ig) = q2 + g2 → |q + ig| =
√
q2 + g2 is used.

Therefore BPS states saturating the bound have mass [66]:

M =
a′

e

√
q2 + g2 =

√
2
|a|
e
|q + ig| (7.25)

The first equality shows that the mass is left invariant under the duality

transformation of the charges. The electric charge is given by [66]:

q = nee (7.26)

and the magnetic charge is given by:

g =
4π

e
nm (7.27)

where ne and nm are integers [66]. Introducing a θ angle via τ (see equation 7.19), the

mass is then written:

M =
√

2|a||ne + τnm| (7.28)

The BPS condition (the mass formula) of this theory can be derived as a result of the

supersymmetry algebra [66]. Since the supersymmetry algebra is valid in both

classical and quantum regimes, states that saturate the bound do not experience

quantum correction to their mass. Naively, this would suggest that the mass formula

is not subject to any change. Actually the parameter a, corresponding to the moduli

space, is only accurate in the weakly coupled regime. In the strongly coupled regime

the mass formula must be modified. Consequently, N = 2 SYM theory fails to keep a

consistent mass formula in the strong regime and the strong-weak duality cannot

apply.
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In addition, the ’t Hooft-Polyakov monopole is part of an N = 2 ‘BPS multiplet’

containing two spin-0 states and two spin-1
2 states [66]. The (1 + 3)d N = 2 chiral

multiplet contains four spin-0 states and four spin-1
2 states, and so it is made of two

BPS multiplets. At most the monopole can have spin-1
2 , where as spin-1 is required

for duality with the gauge boson.

In summary, whilst the mass formula is free of quantum corrections, the a parameter

found in the mass formula changes upon transition from the weak to the strong

coupling regime. Furthermore, whilst the magnetic monopole has non-zero spin, the

spin-1
2 it does have is insufficient to make it a magnetic dual of the gauge particle.

The N = 4 super-Yang-Mills theory of the next section succeeds where the N = 2

theory fails.

7.2.3 The N = 4 super-Yang-Mills Theory

It was shown in the previous section that N = 2 SYM contains a mass formula that

changes in transition between weak and strong coupling regimes. It was also shown

that the magnetic monopoles didn’t have the same spin as the gauge fields. This

prompted Osborn (see [72]) to consider (1 + 3)d N = 4 super-Yang-Mills theory [66].

It was hoped that the greater amount of supersymmetry would give rise to spin-1

monopoles and that changes in the mass formula would not occur.

The N = 4 super-Yang-Mills Lagrangian density is given by [66]:

L =
1

e2

∫
d2θd2θ̄

3∑
i=1

Φ̄ie
2V Φi +

1

8π
Im

(∫
d2θτWαWα

)
−
(∫

d2θ
√

2Φ1Φ2Φ3 + h.c.

) (7.29)

The above Lagrangian density is written in terms of the (1 + 3)d N = 2 vector

multiplet V and the (1 + 3)d N = 2 chiral multiplet Φ. See the previous section for

their field content.

As in the N = 2 SYM theory, for BPS saturated states, the SUSY algebra of the

N = 4 SYM theory gives rise to the mass formula [66]:

M =
a′

e

√
q2 + g2

=
√

2
|a|
e
|q + ig|

=
√

2|a||ne + τnm|

(7.30)
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As in the N = 2 SYM theory, this mass formula is not subject to renormalisation

from loop contributions as the supersymmetry algebra holds true in both the classical

and the quantum theories [66]. The parameter a is not subject to adjustment.

Furthermore, the W-bosons and the magnetic monopoles belong to supermultiplets

with the same field content, and can therefore have the same spin [66]. The N = 4

supermultiplet containing the monopole consists of one spin-1 state, four spin-1
2 and

five spin-0 states [66, 72]. The vector boson belongs in a short supermultiplet with

the same fields. The supermultiplet of the monopole and the short supermultiplet of

the gauge boson are isomorphic [60].

The evidence suggests the existence of an S-duality in (1 + 3)d N = 4 SYM theory.

7.3 Seiberg Duality

In 1994 Seiberg proposed ([73]) a new type of S-duality in which the non-abelian

S-duality is applied to N = 1 theories. The idea is that, at high energies, the electric

and magnetic theories do not exhibit a duality. Instead the two theories flow to a

common infra-red fixed point, exhibiting S-duality at low energies.

Consider a supersymmetric QCD theory, called SQCD. SQCD extends the concept of

QCD with an SU(3) gauge group, to include supersymmetry and a more general

SU(Nc) gauge group. The name ‘quark’ will refer to a field transforming in the

fundamental of SU(Nc) [73, 74].

7.3.1 S-Duality in the Conformal Window

The bound 3
2Nc < Nf < 3Nc is known as the ‘conformal window’ [74]. Call the SQCD

with gauge group SU(Nc) and flavour group U(Nf ) in the conformal window the

electric theory. The conjectured magnetic dual of this theory is SU(nc) gauge theory

with Nf flavours satisfying nc = Nf −Nc. This duality was originally proposed by

Seiberg in 1994 [73].

For the electric SQCD, denote the quarks as Q, the anti-quarks as Q̄, and the meson

(QQ̄ boundstate) as M [74]. Denote the quarks of the magnetic SQCD q, and denote

the anti-quarks q̄. The electric SQCD does not have a superpotential, whilst the

magnetic SQCD has a superpotential [74]:

Wm ∼Mqq̄ (7.31)

Here the subscript ‘m’ simply stands for ‘magnetic’. Note that the magnetic theory

superpotential is written in terms of magnetic SQCD quarks and an electric SQCD

meson. The electric and magnetic theories are only dual to each other at low energies,
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where they flow to a common ‘Banks-Zaks fixed point’ [74]. Importantly the electric

SQCD is asymptotically free, whilst the magnetic SQCD is IR free. The gauge groups

of two dual theories need not match, but the global symmetries of one theory in the

UV should match the global symmetry of the other theory in the IR. The global

symemetries of the electric theory in the UV are (table copied from [74]):

Table 4: Global Symmetries of the Electric SQCD in the UV

Particle SU(Nc) SU(Nf ) SU(Nf ) U(1)B U(1)R

Q � � 1 1
Nf−Nc

Nf

Q̄ � 1 � −1
Nf−Nc

Nf

The global symemetries of the magnetic theory in the IR are (table copied from [74]):

Table 5: Global Symmetries of the Magnetic SQCD in the IR

Particle SU(Nc) SU(Nf ) SU(Nf ) U(1)B U(1)R

q � � 1 Nc
Nf−Nc

Nc
Nf

q̄ � 1 � −Nc
Nf−Nc

Nc
Nf

M 1 � � 0 2
Nf−Nc

Nf

The meson M is identified with the QQ̄ bound state, but only in the IR where the

duality holds [74]. This can be seen from the canonical dimensions of the fields. In

the UV the canonical dimension of the meson is 1 whilst that of the QQ̄ boundstate is

2. However, when a RG flow is made to the Bank-Zaks fixed point, these particles

pick up anomolous dimensions which adjust both their canonical dimensions to

(3Nf − 3Nc)/Nf . The UV meson Mm and the IR meson M are related by [74]:

M = QQ̄ = µMm (7.32)

The superpotential of the magnetic SQCD can be rewritten [74]:

Wm =
1

µ
Mqq̄ (7.33)

Just as in the N = 2 SYM theory, the holomorphic gauge coupling can be written [74]:
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τ =
θ

2π
+ i

4π

e2
(7.34)

where e is the electric coupling. This allows the ‘holomorphic dynamical scale’ to be

defined as [74]:

Λ = µei2πb/τ (7.35)

The holomorphic scale of the electric theory is denoted Λ whilst that of the magnetic

theory is denoted Λ̃. UV consideration of the electric theory and IR consideration of

the magnetic theory relates these scales as [74]:

Λ3Nc−Nf Λ̃3Nc−2Nf = (−1)Nf−NcµNf (7.36)

The RHS of the above equation is a constant. Subsequently, as one holomorphic scale

increases the other decreases. Then, as one theory becomes strongly coupled the other

becomes weakly coupled [74].

Quantum Anomalies

An anomaly is a symmetry of a classical theory (for example a gauge symmetry) that

does not extend to the corresponding quantum theory [75]. Mathematically,

symmetries of the classical theory are those symmetries that leave the action

invariant. Subsequently, the classical equations of motion are unchanged by the

symmetry transformation. To say that the quantum theory is not invariant under the

symmetry transformation is to say that the path integral is changed by the

transformation. Since the action is left invariant under the transformation, the

exponential of the action is also left invariant. This means that, in order for a

quantum anomaly to exist, the only part of the path integral that can be left

unchanged by the transformation is the integration measure. Therefore, the

integration measure is the source of the quantum anomaly.

There are different types of quantum anomaly depending on the symmetry in

question. Anomalies can occur for both global or local symmetries (e.g. gauge

symmetries) of the theory. Anomalies can often be cancelled, such that the symmetry

in question applies to both the classical and the quantum theory [76]. This is achieved

by imposing extra constraints on the quantum theory. The exact constraints are

theory and symmetry dependent, and need to be considered on a case by case basis.

’t Hooft Anomaly Matching
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The ’t Hooft anomaly matching condition claims that the anomaly of a given theory

should be independent of energy scale. Subsequently, for theories with couplings that

change with energy scale, the anomaly should be the same for all couplings. The idea

was originally proposed by ’t Hooft in 1980 (see [77]).

’t Hoofts original reasoning went as follows [77, 78, 79]: Consider an SQCD with

gauge group SU(Nc) and with a large global symmetry group GF . This global

symmetry can be gauged (made to be a local symmetry) and, just like for global

symmetries, there can be an associated anomaly. The anomaly is cancelled by adding

matter fields (quarks), called ‘spectators’, that are not coupled to the SU(Nc) boson

(not charged under SU(Nc)) and which are arbitrarily weakly coupled to the vector

boson associated with the now local GF . Since the spectators do not transform under

the SU(Nc) group, they are unaffected by RG flows of the SU(Nc) coupling

associated with changes in scale (changes in energy). The spectators can also be

taken to be weakly coupled to the GF group at all energies. As such the spectators

are unaffected by RG flow, and cancel the anomaly in the same way at all energies

and at all couplings of the SU(Nc) group. The conclusion drawn is that the anomaly

is unchanged also; if it did change the behaviour of the spectators would need to

change in order to compensate, but the spectators are known to have the same

interactions at all scales.

’t Hooft anomaly matching has become a useful criterion for assessing whether a

given theory is a candidate for the low energy limit (high energy limit) of another

high energy (low energy) theory [79]. If the anomalies of the two theories do not

match then such a theory is not a candidate. This criterion, as evidence for such

theories being different energy limits of the same overall theory, carries different

weight depending on the theory. In many cases there are numerous candidates, all

with the same anomalies and in this case ’t Hooft anomaly matching does not single

out one above the other. For the case of the SQCD with SU(Nc) gauge group, ‘t

Hooft anomaly matching is a particularly strong indicator of a link between the high

and low energy limits [79].

Global Anomalies of the Electric and Magnetic Theories

Evidence for S-duality is given by the fact that the global anomalies of the electric

and the magnetic theories are the same [74]. The global anomalies are gauged (made

to be local symmetries) before the anomalies are calculated.

The anomalies are characterised by their ‘anomaly coefficient’ [80]. For a symmetry

with generator Ta the coefficient is defined as:

Aabc = Tr (Ta{Tb, Tc}) (7.37)

128



where {Tb, Tc} is an anticommutator. The trace is over all colours and all flavours

[80]. The current associated with the symmetry is related to Aabc by [80]:

∂λJ
λ
a =

Aabc
64π2

εµναβgF bµνgF
c
αβ (7.38)

For a symmetry of the theory, the current is conserved and the right hand side equals

zero. Subsequently, Aabc 6= 0 corresponds to a breaking of the symmetry [80]. Each of

the three generators Ta, Tb and Tc can correspond to a different global symmetry. So,

for example Ta can correspond to one of the SU(Nf ) symmetries, whilst Tb and Tc

both correspond to U(1)B. In this case one could say that Aabc is labelled by

SU(Nf )× U(1)2
B. Note that there is only one U(1)B symmetry (see tables 4 and 5),

but the associated generator emerges twice in this particular Aabc. A different

anomaly coefficient Aabc can be written for all combinations of the symmetries.

The global anomalies of the electric and the magnetic theory are (table copied from

[81]):
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Table 6: Global Anomalies of the Electric and Magnetic N = 1 U(Nc) SQCDs

Global Symmetry Electric Anomaly Magnetic Anomaly

SU(Nf )3 −(Nf −Nc) +Nf Nc

U(1)B × SU(Nf )2 Nc

Nf −Nc
(Nf −Nc)

1

2

Nc

2

U(1)R × SU(Nf )2 Nc −Nf

Nf
(Nf −Nc)

1

2

+
Nf − 2Nc

Nf
Nf

1

2

− N2
c

2Nf

U(1)3
B 0 0

U(1)B 0 0

U(1)B × U(1)2
R 0 0

U(1)R
Nc −Nf

Nf
2(Nf −Nc)Nf

+
Nf − 2Nc

Nf
N2
f

+(Nf −Nc)
2 − 1

−N2
c − 1

U(1)3
R

(
Nc −Nf

Nf

)3

2(Nf −Nc)Nf

+

(
Nf − 2Nc

Nf

)3

N2
f

+(Nf −Nc)
2 − 1

−2
N4
c

N2
f

+N2
c − 1

U(1)2 × U(1)R

(
Nc

Nf −Nc

)2 Nc −Nf

Nf

× 2Nf (Nf −Nc)

−2N2
c

In the table above, a quick simplification of the expressions in the ‘Electric Anomaly’

column will show that each ‘Electric Anomaly’ entry matches the corresponding

‘Magnetic Anomaly’ entry along the same row. Therefore the anomalies associated

with global symmetries of the electric and magnetic theories match.

Matching of the Moduli Spaces

Further evidence for duality is provided by the matching of the moduli spaces of the

electric and magnetic theories [74]. This can be seen by examining the baryons and

mesons of the electric theory as well as those of the magnetic theory.

Square of the Duality Transformation
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Another check for the duality is to see if the duality transformations applied twice

returns the original theory [74]. For example, beginning with the electric theory, the

duality transformation gives the magnetic theory, then a further application of the

duality transformation should return the original electric theory. It can be shown that

taking the dual of the dual of the electric theory returns the original scaling of the

electric theory as well as the original particle content. For example taking the dual

gives the superpotential that appears in the magnetic theory, then taking the dual

again allows this superpotential to be set to zero.

7.4 Aharony Duality

Seiberg duality can be generalised to (1 + 2)-dimensional field theories. The type of

duality that is obtained depends on whether Chern-Simons terms are included or not.

For theories without such terms, the duality obtained is called ‘Aharony duality’ (see

[2] for the original paper).

The electric theory is a (1 + 2)d N = 2 U(Nc) gauge theory with Nf chiral multiplets

Qi in the Nc representation and Nf anti-chiral multiplets Qī in the Nc representation,

where i, ī = 1, ..., Nf [2]. The Higgs branch is parameterised by mesons:

M ī
i = QiQ

ī
(7.39)

which are gauge singlets (gauge invariant) under U(Nc) [34, 2, 82]. The Coulomb

branch is parameterised by the chiral superfield monopole operators [2, 82, 83]:

V+ ∼ eΣ/g2
(7.40)

V− ∼ e−Σ/g2
(7.41)

where Σ = σ + iγ. σ is the real scalar belonging to the (1 + 2)d N = 2 vector

multiplet, γ is the scalar dual of the gauge boson that exists in the (1 + 2)d N = 2

vector multiplet [82]. Such a duality between the scalar and the vector field is unique

to (1 + 2)-dimensions, and is not part of the S-duality currently being explained.

Finally, g is the coupling of the gauge group [82].

The global symmetries, after quantum corrections, are given by (table copied from

[2]):
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Table 7: Global Symmetries of Electric SQCD

Particle U(1)J SU(Nf ) SU(Nf ) U(1)A U(1)R

Q 0 Nf 1 1 0

Q 0 1 Nf 1 0

M 0 Nf Nf 2 0

V+ +1 1 1 −Nf Nf −Nc + 1

V− −1 1 1 −Nf Nf −Nc + 1

The magnetic dual theory is (1 + 2)-dimensional N = 2 U(Nf −Nc) with Nf flavours

of quark qi in the Nf −Nc representation of U(Nf −Nc) and Nf flavours of

anti-quark qī in the Nf −Nc representation. Note that the magnetic gauge group is

U(Nf −Nc), the same as in the (1 + 3)d Seiberg duality described in the previous

section.

The global symmetries after quantum corrections are given by (table copied from [2]):

Table 8: Global Symmetries of Magnetic SQCD

Particle U(1)J SU(Nf ) SU(Nf ) U(1)A U(1)R

q 0 Nf 1 −1 1

q 0 1 Nf −1 1

M 0 Nf Nf 2 0

Ṽ+ +1 1 1 Nf Nf −Nc + 1

Ṽ− −1 1 1 Nf Nf −Nc + 1

Here Ṽ+ and Ṽ− are the Coulomb branch parameters of the dual theory ( the

monopole operators of the magnetic theory) [2, 83]. The M , V+ and V− field of the

electric theory are gauge singlets under the U(Nf −Nc) group of the magnetic theory

[2]. In the magnetic theory M is interpreted as a fundamental field, whilst, in the

electric theory, it is a composite of Q and Q. A magnetic theory meson (qq) can be

considered as well, however it does not appear in the electric theory.

As was the case for S-duality in (1 + 3)-dimensions, the magnetic theory contains a

superpotential. In this case it is given by [2]:

W = M ī
i q
iq̄ī + V+Ṽ− + V−Ṽ+ (7.42)
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The presence of the monopole operators in the superpotential (and so, in the

Lagrangian) is a weird feature of the magnetic dual theory.

Tests of Aharony Duality:

The dual of the dual gives the original theory [2].

The moduli spaces of the electric and magnetic theories match [2].

Matching of the global symmetries [2].

Matching of the partition functions of electric and magnetic theories with non-zero

real masses and non-zero FI-terms [83, 84].

Matching of the superconformal index [83, 85].

7.4.1 Aharony Duality with Adjoint Matter

Aharony duality was also formulated for the case of (1 + 2)d N = 2 field theory

containing adjoint matter [86].

As before, the electric theory is a (1 + 2)d N = 2 U(Nc) gauge theory with Nf chiral

multiplets Qi in the Nc representation and Nf anti-chiral multiplets Qī in the Nc

representation, where i, ī = 1, ..., Nf [86]. There are also the monopole operators V+

and V−, and M is composite field (meson). In addition there is the adjoint chiral

multiplet Φ.

The electric theory contains the superpotential [86]:

We =
n∑
i=0

ci
n+ 1− i

Tr
(
Φn+1−i) (7.43)

With the inclusion of adjoint matter, the magnetic dual theory is a (1 + 2)d N = 2

theory with a U(nNf −Nc) gauge group [86]. The magnetic theory contains chiral

multiplets qi in the nNf −Nc representation and anti-chiral multiplets qi in the

nNf −Nc representation. There are also the monopole operators V̄+ and V̄−, and M

is a fundamental field. In addition, there is an adjoint multiplet Φ̄. The magnetic

theory includes a superpotential [86]:

Wm = TrΦ̄n+1 +

n−1∑
j=0

Mj q̄Φ̄
n−1−jq +

n−1∑
i=0

(
V+,iV̄−,n+1−i + V−,iV̄+,n−1−i

)
(7.44)

As before, this is an IR duality for zero Chern-Simons level (k = 0).
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7.5 Giveon-Kutasov Duality

For theories with non-zero Chern-Simons level the S-duality is called a

‘Giveon-Kutasov duality (see [3] for the original paper). The electric theory is a

(1 + 2)d N = 2 U(Nc)k gauge theory with Nf chiral multiplets Qi in the Nc

representation and Nf anti-chiral multiplets Qī in the Nc representation, where

i, ī = 1, ..., Nf . Here the subscript k denotes the Chern-Simons level.

The global symmetries are SU(Nf )× SU(Nf )× U(1)A × U(1)R × U(1)J [3]. As was

the case in the discussion of Aharony duality, the Higgs branch of the Giveon-Kutasov

duality is parameterised by the meson:

M ī
i = QiQ

ī
(7.45)

and the Coulomb branch is parameterised by the chiral superfield monopole operators

[83]:

V+ ∼ eΣ/g2
(7.46)

V− ∼ e−Σ/g2
(7.47)

where, again, Σ = σ + iγ.

The fields of the electric theory transform under the same global symmetries as the

electric theory of Aharony duality (table copied from [87]):

Table 9: Global Symmetries of Electric SQCD

Particle U(1)J SU(Nf ) SU(Nf ) U(1)A U(1)R

Q 0 Nf 1 1 0

Q 0 1 Nf 1 0

M 0 Nf Nf 2 0

V+ +1 1 1 −Nf Nf −Nc + 1

V− −1 1 1 −Nf Nf −Nc + 1

The magnetic dual theory is (1 + 2)-dimensional N = 2 U(Nf + |k| −Nc)−k with Nf

flavours of quark qi in the Nf + k−Nc representation of U(Nf + |k| −Nc) and Nf

flavours of anti-quark qī in the Nf + |k| −Nc representation [3]. The Coulomb
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branch is parameterised by Ṽ+ and Ṽ−,which are singlets under U(Nf + |k| −Nc)−k.

In the magnetic theory M is interpreted as a fundamental field, whilst in the electric

theory it is a composite of Q and Q.

The fields of the magnetic theory transform under the same global symmetries as the

magnetic theory of Aharony duality (table copied from [87] and using [2]):

Table 10: Global Symmetries of Magnetic SQCD

Particle U(1)J SU(Nf ) SU(Nf ) U(1)A U(1)R

q 0 Nf 1 −1 1

q 0 1 Nf −1 1

M 0 Nf Nf 2 0

Ṽ+ +1 1 1 Nf Nf −Nc + 1

Ṽ− −1 1 1 Nf Nf −Nc + 1

Unlike Aharony duality, Giveon-Kutasov duality does not contain monopole operators

in the superpotential of the magnetic theory:

W = Mqq̄ (7.48)

Tests of Giveon-Kutasov Duality:

The dual of the dual gives the original theory.

The moduli spaces of the electric and magnetic theories match [3].

Matching of the global symmetries.

Matching of the partition functions of electric and magnetic theories with non-zero

real masses and non-zero FI-terms [84].

7.5.1 Giveon-Kutasov Duality with Adjoint Matter

Aharony duality was also formulated for the case of (1 + 2)d N = 2 field theory

containing adjoint matter [41, 42].

As before, the electric theory is a (1 + 2)d N = 2 U(Nc) gauge theory with Nf chiral

multiplets Qi in the Nc representation and Nf anti-chiral multiplets Qī in the Nc

representation, where i, ī = 1, ..., Nf . There are also the monopole operators V+ and

V−, and M is composite field (meson). In addition there is the adjoint chiral multiplet

Φ [41, 42].
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The electric theory contains the superpotential [41, 42]:

We =

n∑
i=0

ci
n+ 1− i

Φn+1−i (7.49)

With the inclusion of adjoint matter, the magnetic dual theory is a (1 + 2)d N = 2

theory with a U(nNf + n|k| −Nc) gauge group [41, 42]. Here n is the integer that

appeared in section 4.7. The magnetic theory contains chiral multiplets qi in the

nNf + n|k| −Nc representation and anti-chiral multiplets qi in the nNf + n|k| −Nc

representation. There are also the monopole operators V̄+ and V̄−, and M is a

fundamental field. In addition, there is an adjoint multiplet Φ̄.

The magnetic theory contains a superpotential which is absent of monopole operators

[41, 42]:

Wm = −
n∑
i=0

c̄i
n+ 1− i

TrΦ̄n+1−i +

n∑
i=1

¯̄ciMiq̄Φ̄
n−iq (7.50)

c̄i and ¯̄ci are functions of ci. Alternatively this can be written [41, 42]:

Wm = − c0

n+ 1
TrΦ̄n+1 +

n∑
i=1

Miq̄Φ̄
n−iq (7.51)

As before, this is an IR duality for k 6= 0.
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Part III

Results
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8 Theories with Massive Fundamental and Antifundamen-

tal Matter

In [4], configurations of the form of the right hand diagram in 17 are considered, with

various numbers of D5-branes and D3-branes displaced along the x3-direction. When

a D5-brane is displaced, it becomes part of a (p, q)-NS5-D5-web; one half of the brane

is displaced in the positive x3-direction and labelled as D5+, whilst the other half is

displaced in the negative x3-direction and lablled as D5−. When a D3-brane is

displaced, the whole brane is moved either in the positive x3-direction or in the

negative x3-direction. In this section a variety of such configurations are considered.

The massive and massless states that arise from these configurations are found. The

induced Chern-Simons terms that arise in the low energy theory are determined, and

the resulting flows between Aharony and Giveon-Kutasov dualities are stated.

Notation: Throughout this section all i indices (including those with dashes) are

flavour indices. All j, k, l, m, n, p, q indices (including those with dashes) are colour

indices.

8.1 One Displaced Flavour Brane

Consider the simplest non-trivial case first: Out of the Nf D5-branes, take the N th
f

D5-brane to be displaced along the x3-direction. The D5-brane splits into two parts,

with a D5+ at x3 = m and a D5− at x3 = −m. These positions correspond to

m
Nf

Nf
= m and m̃

Nf

Nf
= m respectively. It is then possible to look at a number of cases,

corresponding to different numbers of D3-branes displaced along the x3 in either the

positive or negative direction.

8.1.1 No Displaced D3-branes

For the case of one displaced D5-brane, the simplest possibility for the D3-branes is to

have none displaced in the x3-direction. This case will be explained in detail, then, for

brevity, future sections will only display the results: The D5-branes labelled by the

flavour indices 1, ..., Nf − 1 are at x3 = 0, corresponding to

m1
1,m

2
2, ...,m

Nf−1
Nf−1 = m̃1

1, m̃
2
2, ..., m̃

Nf−1
Nf−1 = 0. The N th

f D5-brane is displaced and

split into a D5+ at x3 = m and a D5− at x3 = −m, corresponding to

m
Nf

Nf
= m̃

Nf

Nf
= m. The D3-branes labelled by the colour indices 1, ..., Nc are at

x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc
Nc

= 0. The configuration is given by:
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Recall that the following equations (4.51 and 4.52) need to be satisfied:

(
δj
′

jm
i′
i + σj

′

j δ
i′
i

)
φi,j = 0 (8.1)

(
δj
′

j m̃
i′
i − σ

j′

j δ
i′
i

)
φ̃i,j = 0 (8.2)

where qi are chosen to equal one for all i = 1, ..., Nf , where m, m̃ and σ are diagonal

matrices (they are only non-zero when their lower and upper indices match), and

where j, j′ = 1, ..., Nc. The scalars of the chiral and anti-chiral multiplet are set to

zero (φi,j = φ̃i,j = 0). Subsequently, σj
′

j , mi′
i and m̃i′

i can take any value, and the

positions of the D3-branes and D5-branes are unrestricted. In this case all σj
′

j equal

zero, mi
i and m̃i

i equal zero for i = 1, ..., Nf − 1, and mi
i and m̃i

i equal m for i = Nf .

The mass terms of the chiral (matter) multiplets are given by:

Vsc 3
Nf∑
i=1

φ̄i (mi + σδi)
2 φi +

Nf∑
i=1

¯̃
φi (m̃i − σδi)2 φ̃i

=φ̄i′′,j′′
(
δj
′′

j′m
i′′
i′ + σj

′′

j′ δ
i′′
i′

)(
δj
′

jm
i′
i + σj

′

j δ
i′
i

)
φi,j

+
¯̃
φi′′,j′′

(
δj
′′

j′ m̃
i′′
i′ − σ

j′′

j′ δ
i′′
i′

)(
δj
′

j m̃
i′
i − σ

j′

j δ
i′
i

)
φ̃i,j

(8.3)

where i, i′, i′′ = 1, ..., Nf and where j, j′, j′′ = 1, ..., Nc. Consider, first, the Nf − 1

D5-branes. It is expected that the zero length strings between them and the D3-brane

stack will give rise to Nf − 1 flavours of massless matter. Indeed, m = m̃ = 0 and

σ = 0 for the flavours 1, ..., Nf − 1. Subsequently, there are Nf − 1 flavours of

massless matter and antimatter transforming in the fundamental and antifundamental

of U(Nc).

139



The N th
f flavour corresponds to the D5+ and the D5− branes in the above diagram.

The D5+ position corresponds to m
Nf

Nf
= m and the D5− position corresponds to

m̃
Nf

Nf
= m. These give the mass terms:

Vsc 3 φ̄Nf ,j′′

(
δj
′′

j′m+ (0)δj
′′

j′

)(
δj
′

jm+ (0)δj
′

j

)
φNf ,j (8.4)

Vsc 3 ¯̃
φNf ,j′′

(
δj
′′

j′m− (0)δj
′′

j′

)(
δj
′

jm− (0)δj
′

j

)
φ̃Nf ,j (8.5)

This corresponds to a flavour of matter and antimatter with mass m each.

All the matter (antimatter) transforms under the fundamental (antifundamental) of

the U(Nc) gauge group, due to the stack of N D3-branes.

Matter Content:

Nf − 1 flavours of massless matter transforming in the fundamental of U(Nc).

Nf − 1 flavours of massless antimatter transforming in the antifundamental of

U(Nc).

One flavour of massive matter, with mass m, transforming in the fundamental of

U(Nc).

One flavour of massive antimatter, with mass m, transforming in the

antifundamental of U(Nc).

Aharony and Giveon-Kutasov Duality:

In the above brane configuration, the number of NS5′-branes in the web is left

unspecified as p. This is because the Chern-Simons level is determined by:

k =
p

q
(8.6)

where q is the number of D5-branes in the (p, q)-web. Since the brane configuration

above corresponds to q = 1, in order for k to to be left as general and unfixed, any

number of NS5′-branes is permitted.
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As was explained in section 5.2, integrating out the massive matter field gives rise to

the term:

q2

2

1

4π

m

|m|

∫
d3x εµνρTr

(
Aµ(x)∂νAρ(x) +

2

3
Aµ(x)Aν(x)Aρ(x)

)
(8.7)

in the low energy effective action. m/|m| corresponds to the sign of the mass

(m/|m| = sign(m)), which in this case is +1. Also, q = +1. Subsequently, the above

expression corresponds to half of a non-abelian Chern-Simons term, which is just a

contribution k → k + 1
2 . There is also a massive antimatter field which, when

integrated out, contributes:

(−q)2

2

1

4π

m

|m|

∫
d3x εµνρTr

(
Aµ(x)∂νAρ(x) +

2

3
Aµ(x)Aν(x)Aρ(x)

)
(8.8)

Again m/|m| = +1 and q = +1, so the contribution is another half Chern-Simons

term.

In total k → k + 1. Integrating out the massive matter means the transition from a

high energy U(Nc)k theory, with Nf − 1 massless flavours and one massive flavour, to

a low energy U(Nc)k+1 theory, with Nf − 1 massless flavours.

Consider the high energy theory with k = 0. Without the inclusion of massive

flavours, this would give rise to a low energy k = 0 theory which would exhibit

Aharony duality. With the inclusion of one flavour of massive matter, this transitions

from a high energy U(Nc)0 theory to a low energy U(Nc)1 theory. The electric

U(Nc)1 theory is Giveon-Kutasov dual to a U((Nf − 1) + 1−Nc)−1 = U(Nf −Nc)−1

magnetic theory. In this case the theory is said to flow from an Aharony to a

Giveon-Kutasov duality. For a high energy theory with U(Nc)−1, the low energy

theory becomes U(Nc)0 which is Aharony dual to U(Nf − 1−Nc)0. In this case the

flow is from a Giveon-Kutasov duality to an Aharony Duality. For U(Nc)k with

k 6= 0,−1 the low energy theory has Chern-Simons level that is neither 1 or 0 and

there is no flow between dualities, although the low energy theories do exhibit

Giveon-Kutasov duality.

High energy theory is U(Nc)k with Nf − 1 massless flavours of matter and

antimatter and one massive flavour of matter and antimatter. Low energy theory

is U(Nc)k+1 with Nf − 1 flavours of massless matter and antimatter.

k = 0 results in a flow from Aharony duality to Giveon-Kutasov duality, where

the electric theory is U(Nc)1 and the magnetic theory is U(Nf −Nc)−1.

k = −1 results in a flow from Giveon-Kutasov duality to Aharony duality, where
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the electric theory is U(Nc)0 and the magnetic theory is U(Nf − 1−Nc)0.

k 6= 0,−1 results in no flows between dualities. The low energy theory exhibits

Giveon-Kutason duality, where the electric theory is U(Nc)k+1 and the magnetic

theory is U(Nf − 1 + |k + 1| −Nc)−k−1.

8.1.2 One D3-brane Displaced Upwards

Now consider a slightly more complicated case. As well as the single displaced (N th
f )

NS5-brane, out of the Nc D3-branes, take the N th
c D3-brane to be displaced in the

positive x3-direction: The D5-branes labelled by the flavour indices 1, ..., Nf − 1 are

at x3 = 0, corresponding to m1
1,m

2
2, ...,m

Nf−1
Nf−1 = m̃1

1, m̃
2
2, ..., m̃

Nf−1
Nf−1 = 0. The N th

f

D5-brane is displaced and split into a D5+ at x3 = m and a D5− at x3 = −m,

corresponding to m
Nf

Nf
= m̃

Nf

Nf
= m. The D3-branes labelled by the colour indices

1, ..., Nc − 1 are at x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−1
Nc−1 = 0. Lastly, the N th

c

D3-brane is at x3 = m, corresponding to σNc
Nc

= −m. The configuration is given by:

Matter Content:

Nf − 1 flavours of massless matter transforming in the fundamental of U(Nc − 1).

Nf − 1 flavours of massless antimatter transforming in the antifundamental of

U(Nc − 1).

One flavour of massive matter, with mass m, transforming in the fundamental of

U(Nc − 1).

One flavour of massive antimatter, with mass m, transforming in the antifundamental

of U(Nc − 1).
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Nf − 1 flavours of massive matter, with mass −m, transforming in the fundamental of

U(1).

Nf − 1 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(1).

One flavour of massless matter transforming in the fundamental of U(1).

One flavour of massive antimatter, with mass 2m transforming in the

antifundamental of U(1).

Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc − 1)k × U(1)k (8.9)

with the matter content as listed in the box above. The low energy theory is:

U(Nc − 1)k+1 × U(1)k+1/2 (8.10)

with only the massless content of the box above.

Dualities:

k = −1) The high energy theory is U(Nc − 1)−1 × U(1)−1, the low energy theory is

U(Nc − 1)0 × U(1)−1/2. The U(Nc − 1) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony Duality. The U(1) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = −1/2) The high energy theory is U(Nc − 1)−1/2 × U(1)−1/2, the low energy

theory is U(Nc − 1)1/2 × U(1)0. The U(Nc − 1) gauge theory exhibits no flow in

dualities, and is Giveon-Kutasov dual at low energies. The U(1) gauge theory exhibits

a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(Nc − 1)0 × U(1)0. The low energy theory is

U(Nc − 1)1 × U(1)1/2. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k 6= −1,−1/2, 0) In this case there is no flow between dualities, and both gauge

groups exhibit Giveon-Kutasov duality at low energies.
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8.1.3 One D3-brane Displaced Downwards

In the previous section, one D3-brane was displaced in the positive x3-direction.

Alternatively, it is possible to displace a single D3-brane in the negative x3-direction:

The D5-branes labelled by the flavour indices 1, ..., Nf − 1 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−1
Nf−1 = m̃1

1, m̃
2
2, ..., m̃

Nf−1
Nf−1 = 0. The N th

f D5-brane is

displaced and split into a D5+ at x3 = m and a D5− at at x3 = −m, corresponding to

m
Nf

Nf
= m̃

Nf

Nf
= m. The D3-branes labelled by the colour indices 1, ..., Nc − 1 are at

x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−1
Nc−1 = 0. Lastly, the N th

c D3-brane is at

x3 = −m, corresponding to σNc
Nc

= m. The configuration is given by:

Matter Content:

Nf − 1 flavours of massless matter transforming in the fundamental of U(Nc − 1).

Nf − 1 flavours of massless antimatter transforming in the antifundamental of

U(Nc − 1).

One flavour of massive matter, with mass m, transforming in the fundamental of

U(Nc − 1).

One flavour of massive antimatter, with mass m, transforming in the antifundamental

of U(Nc − 1).

Nf − 1 flavours of massive matter, with mass m, transforming in the fundamental of

U(1).

Nf − 1 flavours of massive antimatter, with mass −m, transforming in the

antifundamental of U(1).
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One flavour of massive matter, with mass 2m, transforming in the fundamental of

U(1).

One flavour of massless antimatter transforming in the antifundamental of U(1).

Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc − 1)k × U(1)k (8.11)

with the matter content as listed in the box above. The low energy theory is:

U(Nc − 1)k+1 × U(1)k+1/2 (8.12)

with only the massless content of the box above.

Dualities:

k = −1) The high energy theory is U(Nc − 1)−1 × U(1)−1, the low energy theory is

U(Nc − 1)0 × U(1)−1/2. The U(Nc − 1) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony Duality. The U(1) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = −1/2) The high energy theory is U(Nc − 1)−1/2 × U(1)−1/2, the low energy

theory is U(Nc − 1)1/2 × U(1)0. The U(Nc − 1) gauge theory exhibits no flow in

dualities, and is Giveon-Kutasov dual at low energies. The U(1) gauge theory exhibits

a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(Nc − 1)0 × U(1)0. The low energy theory is

U(Nc − 1)1 × U(1)1/2. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k 6= −1,−1/2, 0) In this case there is no flow between dualities, and both gauge

groups exhibit Giveon-Kutasov duality at low energies.

145



8.1.4 Two D3-branes Displaced Upwards

As a further generalisation, consider displacing two D3-branes in the positive

x3-direction: The D5-branes labelled by the flavour indices 1, ..., Nf − 1 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−1
Nf−1 = m̃1

1, m̃
2
2, ..., m̃

Nf−1
Nf−1 = 0. The N th

f D5-brane is

displaced and split into a D5+ at x3 = m and a D5− at at x3 = −m, corresponding to

m
Nf

Nf
= m̃

Nf

Nf
= m. The D3-branes labelled by the colour indices 1, ..., Nc − 2 are at

x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−2
Nc−2 = 0. Lastly, the (Nc − 1)th and N th

c

D3-branes are at x3 = m, corresponding to σNc−1
Nc−1 = σNc

Nc
= −m. The configuration is

given by:

Matter Content:

Nf − 1 flavours of massless matter transforming in the fundamental of U(Nc − 2).

Nf − 1 flavours of massless antimatter transforming in the antifundamental of

U(Nc − 2).

One flavour of massive matter, with mass m, transforming in the fundamental of

U(Nc − 2).

One flavour of massive antimatter, with mass m, transforming in the antifundamental

of U(Nc − 2).

Nf − 1 flavours of massive matter, with mass −m, transforming in the fundamental of

U(2).

Nf − 1 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(2).

One flavour of massless matter transforming in the fundamental of U(2).
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One flavour of massive antimatter, with mass 2m transforming in the

antifundamental of U(2).

Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc − 2)k × U(2)k (8.13)

with the matter content as listed in the box above. The low energy theory is:

U(Nc − 2)k+1 × U(2)k+1/2 (8.14)

with only the massless content of the box above.

Dualities:

k = −1) The high energy theory is U(Nc − 2)−1 × U(2)−1, the low energy theory is

U(Nc − 2)0 × U(2)−1/2. The U(Nc − 2) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony Duality. The U(2) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = −1/2) The high energy theory is U(Nc − 2)−1/2 × U(2)−1/2, the low energy

theory is U(Nc − 2)1/2 × U(2)0. The U(Nc − 2) gauge theory exhibits no flow in

dualities, and is Giveon-Kutasov dual at low energies. The U(2) gauge theory exhibits

a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(Nc − 2)0 × U(2)0. The low energy theory is

U(Nc − 2)1 × U(2)1/2. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k 6= −1,−1/2, 0) In this case there is no flow between dualities, and both gauge

groups exhibit Giveon-Kutasov duality at low energies.

8.1.5 Two D3-branes Displaced Downwards

Consider displacing two D3-branes in the negative x3-direction: The D5-branes

labelled by the flavour indices 1, ..., Nf − 1 are at x3 = 0, corresponding to

m1
1,m

2
2, ...,m

Nf−1
Nf−1 = m̃1

1, m̃
2
2, ..., m̃

Nf−1
Nf−1 = 0. The N th

f D5-brane is displaced and split

into a D5+ at x3 = m and a D5− at at x3 = −m, corresponding to m
Nf

Nf
= m̃

Nf

Nf
= m.

The D3-branes labelled by the colour indices 1, ..., Nc − 2 are at x3 = 0, corresponding

to σ1
1, σ

2
2, ..., σ

Nc−2
Nc−2 = 0. Lastly, the (Nc − 1)th and N th

c D3-branes are at x3 = −m,

corresponding to σNc−1
Nc−1 = σNc

Nc
= m. The configuration is given by:

147



Matter Content:

Nf − 1 flavours of massless matter transforming in the fundamental of U(Nc − 2).

Nf − 1 flavours of massless antimatter transforming in the antifundamental of

U(Nc − 2).

One flavour of massive matter, with mass m, transforming in the fundamental of

U(Nc − 2).

One flavour of massive antimatter, with mass m, transforming in the antifundamental

of U(Nc − 2).

Nf − 1 flavours of massive matter, with mass m, transforming in the fundamental of

U(2).

Nf − 1 flavours of massive antimatter, with mass −m, transforming in the

antifundamental of U(2).

One flavour of massive matter, with mass 2m, transforming in the fundamental of

U(2).

One flavour of massless antimatter transforming in the antifundamental of U(2).

Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc − 2)k × U(2)k (8.15)

with the matter content as listed in the box above. The low energy theory is:
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U(Nc − 2)k+1 × U(2)k+1/2 (8.16)

with only the massless content of the box above.

Dualities:

k = −1) The high energy theory is U(Nc − 2)−1 × U(2)−1, the low energy theory is

U(Nc − 2)0 × U(2)−1/2. The U(Nc − 2) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony Duality. The U(2) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = −1/2) The high energy theory is U(Nc − 2)−1/2 × U(2)−1/2, the low energy

theory is U(Nc − 2)1/2 × U(2)0. The U(Nc − 2) gauge theory exhibits no flow in

dualities, and is Giveon-Kutasov dual at low energies. The U(2) gauge theory exhibits

a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(Nc − 2)0 × U(2)0. The low energy theory is

U(Nc − 2)1 × U(2)1/2. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k 6= −1,−1/2, 0) In this case there is no flow between dualities, and both gauge

groups exhibit Giveon-Kutasov duality at low energies.

8.1.6 One D3-brane Displaced Upwards and One D3-brane Displaced Down-

wards

Consider displacing one D3-brane in the positive x3-direction and one D3-brane in the

negative x3-direction: The D5-branes labelled by the flavour indices 1, ..., Nf − 1 are

at x3 = 0, corresponding to m1
1,m

2
2, ...,m

Nf−1
Nf−1 = m̃1

1, m̃
2
2, ..., m̃

Nf−1
Nf−1 = 0. The N th

f

D5-brane is displaced and split into a D5+ at x3 = m and a D5− at at x3 = −m,

corresponding to m
Nf

Nf
= m̃

Nf

Nf
= m. The D3-branes labelled by the colour indices

1, ..., Nc − 2 are at x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−2
Nc−2 = 0. Lastly, the

(Nc − 1)th D3-brane is at x3 = −m corresponding to σNc−1
Nc−1 = m and the N th

c

D3-brane is at x3 = m corresponding to σNc
Nc

= −m. The configuration is given by:
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Matter Content:

Nf − 1 flavours of massless matter transforming in the fundamental of U(Nc − 2).

Nf − 1 flavours of massless antimatter transforming in the antifundamental of

U(Nc − 2).

One flavour of massive matter, with mass m, transforming in the fundamental of

U(Nc − 2).

One flavour of massive antimatter, with mass m, transforming in the antifundamental

of U(Nc − 2).

Nf − 1 flavours of massive matter, with mass m, transforming in the fundamental of

U(1).

Nf − 1 flavours of massive antimatter, with mass −m, transforming in the

antifundamental of U(1).

One flavour of massive matter, with mass 2m, transforming in the fundamental of

U(1).

One flavour of massless antimatter transforming in the antifundamental of U(1).

Nf − 1 flavours of massive matter, with mass −m, transforming in the fundamental of

U(1).

Nf − 1 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(1).

One flavour of massless matter transforming in the fundamental of U(1).
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One flavour of massive antimatter, with mass 2m transforming in the

antifundamental of U(1).

Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc − 2)k × U(1)k × U(1)k (8.17)

with the matter content as listed in the box above. The low energy theory is:

U(Nc − 2)k+1 × U(1)k+1/2 × U(1)k+1/2 (8.18)

with only the massless content of the box above.

Dualities:

k = −1) The high energy theory is U(Nc − 2)−1 × U(1)−1 × U(1)−1, the low energy

theory is U(Nc − 2)0 × U(1)−1/2 × U(1)−1/2. The U(Nc − 2) gauge theory exhibits a

flow from Giveon-Kutasov to Aharony Duality. The U(1) gauge theories exhibit no

flows between dualities, and is Giveon-Kutasov dual at low energies.

k = −1/2) The high energy theory is U(Nc − 2)−1/2 × U(1)−1/2 × U(1)−1/2, the low

energy theory is U(Nc − 2)1/2 × U(1)0 × U(1)0. The U(Nc − 2) gauge theory exhibits

no flow in dualities, and is Giveon-Kutasov dual at low energies. The U(1) gauge

theories exhibit a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(Nc − 2)0 × U(1)0 × U(1)0. The low energy theory

is U(Nc − 2)1 × U(1)1/2 × U(1)1/2. All gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k 6= −1,−1/2, 0) In this case there is no flow between dualities, and both gauge

groups exhibit Giveon-Kutasov duality at low energies.
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8.2 Two Displaced Flavour Branes

Consider a further generalisation, where, of the Nf D5-branes, the (Nf − 1)th and the

N th
f both split to form a web consisting of a (p, 2)-brane with p NS5′-branes and two

D5+-branes on one end, and p NS5′-branes and two D5−-branes on the other end.

The D5+ branes are placed at x3 = m whilst the D5− branes are placed at x3 = −m.

As in the previous section, it is possible to look at a number of cases, corresponding

to different numbers of D3-branes displaced along the x3 in either the positive or

negative direction.

8.2.1 No Displaced D3-branes

For the case of two displaced D5-branes, the simplest possibility for the D3-branes is

to have none displaced in the x3-direction. This case will be explained in detail, then,

for brevity, future sections will only display the results: The D5-branes labelled by

the flavour indices 1, ..., Nf − 2 are at x3 = 0, corresponding to

m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th and N th

f D5-branes are

displaced and split into two D5+s at x3 = m and two D5−s at x3 = −m,

corresponding to m
Nf−1
Nf−1 = m

Nf

Nf
= m̃

Nf−1
Nf−1 = m̃

Nf

Nf
= m. The D3-branes labelled by

the colour indices 1, ..., Nc are at x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc
Nc

= 0. The

configuration is given by:

Recall that the following equations (4.51 and 4.52) need to be satisfied:

(
δj
′

jm
i′
i + σj

′

j δ
i′
i

)
φi,j = 0 (8.19)

(
δj
′

j m̃
i′
i − σ

j′

j δ
i′
i

)
φ̃i,j = 0 (8.20)
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Note that, since the scalars of the chiral multiplet are set to zero (φi,j = φ̃i,j = 0), σj
′

j ,

mi′
i and m̃i′

i can take any value. As a result the positions of the D3-branes and

D5-branes are unrestricted. In this case all σj
′

j equal zero.

The mass terms of the chiral (matter) multiplets are given by:

Vsc 3
Nf∑
i=1

φ̄i′′,j′′
(
δj
′′

j′m
i′′
i′ + σj

′′

j′ δ
i′′
i′

)(
δj
′

jm
i′
i + σj

′

j δ
i′
i

)
φi,j

+

Nf∑
i=1

¯̃
φi′′,j′′

(
δj
′′

j′ m̄
i′′
i′ − σ

j′′

j′ δ
i′′
i′

)(
δj
′

j m̄
i′
i − σ

j′

j δ
i′
i

)
φ̃i,j

(8.21)

Consider, first, the Nf − 2 D5-branes. It is expected that the zero length strings

between them and the D3-brane stack will give rise to Nf − 2 flavours of massless

matter. This is evident from the mass terms

Vsc 3 φ̄1,j′′

(
δj
′′

j′ (0) + (0)δj
′′

j′

)(
δj
′

j (0) + (0)δj
′

j

)
φ1,j

+ φ̄2,j′′

(
δj
′′

j′ (0) + (0)δj
′′

j′

)(
δj
′

j (0) + (0)δj
′

j

)
φ2,j

+ ...+ φ̄Nf−2,j′′

(
δj
′′

j′ (0) + (0)δj
′′

j′

)(
δj
′

j (0) + (0)δj
′

j

)
φNf−2,j

(8.22)

All the Nc values of the diagonal matrix σj
′

j are zero since all the D3-branes are

placed a x3 = 0. On the other hand only those diagonal entries of mi′
i corresponding

to i, i′ = 1, ..., Nf − 2 take the value zero, due to Nf − 2 of the D5-branes being placed

at x3 = 0. This corresponds to Nf − 2 massless flavours of matter. Similarly:

Vsc 3 ¯̃
φ1,j′′

(
δj
′′

j′ (0)− (0)δj
′′

j′

)(
δj
′

j (0)− (0)δj
′

j

)
φ̃1,j

+
¯̃
φ2,j′′

(
δj
′′

j′ (0)− (0)δj
′′

j′

)(
δj
′

j (0)− (0)δj
′

j

)
φ̃2,j

+ ...+
¯̃
φNf−2,j′′

(
δj
′′

j′ (0)− (0)δj
′′

j′

)(
δj
′

j (0)− (0)δj
′

j

)
φ̃Nf−2,j

(8.23)

This gives rise to Nf − 2 massless flavours of antimatter.

The two D5+-branes and two D5−-branes are expected to contribute two flavours of

massive matter and antimatter to the theory. The matter has mass terms:

Vsc 3 φ̄Nf−1,j′′

(
δj
′′

j′m+ (0)δj
′′

j′

)(
δj
′

jm+ (0)δj
′

j

)
φNf−1,j

+ φ̄Nf ,j′′

(
δj
′′

j′m+ (0)δj
′′

j′

)(
δj
′

jm+ (0)δj
′

j

)
φNf ,j

(8.24)
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where m
Nf−1
Nf−1 = m

Nf

Nf
= m due to the two D5+-branes displaced upwards in the

x3-direction. This corresponds to two flavours of matter with mass m. Similarly:

Vsc 3 ¯̃
φNf−1,j′′

(
δj
′′

j′m− (0)δj
′′

j′

)(
δj
′

jm− (0)δj
′

j

)
φ̃Nf−1,j

+
¯̃
φNf ,j′′

(
δj
′′

j′m− (0)δj
′′

j′

)(
δj
′

jm− (0)δj
′

j

)
φ̃Nf ,j

(8.25)

where m̃
Nf−1
Nf−1 = m̃

Nf

Nf
= m due to the two D5−-branes displaced downwards in the

x3-direction. This corresponds to two flavours of antimatter with mass m.

All the matter (antimatter) transforms under the fundamental (antifundamental) of

the U(Nc) gauge group, due to the stack of Nc D3-branes.

Matter Content:

Nf − 2 flavours of massless matter transforming in the fundamental of U(Nc).

Nf − 2 flavours of massless antimatter transforming in the antifundamental of

U(Nc).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(Nc).

Two flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(Nc).

Aharony and Giveon-Kutasov Duality:

A U(Nc)k theory with Nf massless flavours of matter corresponds to an NS5′-brane in

place of the web of branes, and all Nf D5-branes at x3 = 0. Mass is introduced to two

flavours by changing to the brane configuration above. Integrating out the two

massive matter fields gives rise to:

2× q2

2

1

4π

m

|m|

∫
d3x εµνρTr

(
Aµ(x)∂νAρ(x) +

2

3
Aµ(x)Aν(x)Aρ(x)

)
(8.26)

m/|m| corresponds to the sign of the mass (m/|m| = sign(m)), which in this case is

+1. Also, q = +1. Therefore the above corresponds to two times a half of a

non-abelian Chern-Simons term, which is just a contribution of an extra

Chern-Simons term k → k + 1. There are also two massive antimatter fields which,

when integrated out, contribute:
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2× (−q)2

2

1

4π

m

|m|

∫
d3x εµνρTr

(
Aµ(x)∂νAρ(x) +

2

3
Aµ(x)Aν(x)Aρ(x)

)
(8.27)

Again m/|m| = +1 and q = +1, so the contribution is another Chern-Simons term.

In total k → k + 2. Integrating out the massive matter means the transition from a

high energy U(Nc)k theory, with Nf − 2 massless flavours and 2 massive flavours, to a

low energy U(Nc)k+2 theory, with Nf − 2 massless flavours.

Consider the high energy theory with k = 0. Without the inclusion of massive

flavours, this would give rise to a low energy k = 0 theory which would exhibit

Aharony duality. With the inclusion of two flavours of massive matter this transition

is from a high energy U(Nc)0 theory to a low energy U(Nc)2 theory. The electric

U(Nc)2 theory is Giveon-Kutasov dual to a U((Nf − 2) + 2−Nc)−2 = U(Nf −Nc)−2

magnetic theory. In this case the theory is said to flow from an Aharony to a

Giveon-Kutasov duality. For a high energy theory with U(Nc)−2 the high energy

theory becomes U(Nc)0 which is Aharony dual to U(Nf − 2−Nc)0. In this case the

flow is from a Giveon-Kutasov duality to an Aharony Duality. For U(Nc)k with

k 6= 0,−2 the low energy theory has Chern-Simons level that is neither 2 nor 0 and

there is no flow between dualities, although the low energy theories do exhibit

Giveon-Kutasov duality.

High energy theory is U(Nc)k with Nf − 2 massless flavours of matter and

antimatter and 2 massive flavours of matter and antimatter. Low energy theory

is U(Nc)k+2 with Nf − 2 flavours of massless matter and antimatter.

k = 0 results in a flow from Aharony duality to Giveon-Kutasov duality, where

the electric theory is U(Nc)2 and the magnetic theory is U(Nf −Nc)−2.

k = −2 results in a flow from Giveon-Kutasov duality to Aharony duality, where

the electric theory is U(Nc)0 and the magnetic theory is U(Nf − 2−Nc)0.

k 6= 0,−2 results in no flows between dualities. The low energy theory exhibits

Giveon-Kutason duality, where the electric theory is U(Nc)k+2 and the magnetic

theory is U(Nf − 2 + |k + 2| −Nc)k+2.

8.2.2 One D3-brane Displaced Upwards

As well as the displaced (Nf − 1)th and N th
f NS5-branes, out of the Nc D3-branes,

take the N th
c D3-brane to be displaced in the positive x3-direction: The D5-branes

labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0, corresponding to
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m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th and N th

f D5-branes are

displaced and split into two D5+s at x3 = m and two D5−s at x3 = −m,

corresponding to m
Nf−1
Nf−1 = m

Nf

Nf
= m̃

Nf−1
Nf−1 = m̃

Nf

Nf
= m. The D3-branes labelled by

the colour indices 1, ..., Nc − 1 are at x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−1
Nc−1 = 0.

Lastly, the N th
c D3-brane is at x3 = m, corresponding to σNc

Nc
= −m. The

configuration is given by:

Matter Content:

Nf − 2 flavours of massless matter transforming in the fundamental of U(Nc − 1).

Nf − 2 flavours of massless antimatter transforming in the antifundamental of

U(Nc − 1).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(Nc − 1).

Two flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(Nc − 1).

Nf − 2 flavours of massive matter, with mass −m, transforming in the fundamental of

U(1).

Nf − 2 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(1).

Two flavours of massless matter transforming in the fundamental of U(1).

Two flavours of massive antimatter, with mass 2m transforming in the

antifundamental of U(1).
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Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc − 1)k × U(1)k (8.28)

with the matter content as listed in the box above. The low energy theory is:

U(Nc − 1)k+2 × U(1)k+1 (8.29)

with only the massless content of the box above.

Dualities:

k = −2) The high energy theory is U(Nc − 1)−2 × U(1)−2, the low energy theory is

U(Nc − 1)0 × U(1)−1. The U(Nc − 1) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony Duality. The U(1) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = −1) The high energy theory is U(Nc − 1)−1 × U(1)−1, the low energy theory is

U(Nc − 1)1 × U(1)0. The U(Nc − 1) gauge theory exhibits no flow in dualities, and is

Giveon-Kutasov dual at low energies. The U(1) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(Nc − 1)0 × U(1)0. The low energy theory is

U(Nc − 1)2 × U(1)1. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k 6= −2,−1, 0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.

8.2.3 One D3-brane Displaced Downwards

Take the N th
c D3-brane to be displaced in the negative x3-direction: The D5-branes

labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0, corresponding to

m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th and N th

f D5-branes are

displaced and split into two D5+s at x3 = m and two D5−s at x3 = −m,

corresponding to m
Nf−1
Nf−1 = m

Nf

Nf
= m̃

Nf−1
Nf−1 = m̃

Nf

Nf
= m. The D3-branes labelled by

the colour indices 1, ..., Nc − 1 are at x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−1
Nc−1 = 0.

Lastly, the N th
c D3-brane is at x3 = −m, corresponding to σNc

Nc
= m. The

configuration is given by:
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Matter Content:

Nf − 2 flavours of massless matter transforming in the fundamental of U(Nc − 1).

Nf − 2 flavours of massless antimatter transforming in the antifundamental of

U(Nc − 1).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(Nc − 1).

Two flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(Nc − 1).

Nf − 2 flavours of massive matter, with mass m, transforming in the fundamental of

U(1).

Nf − 2 flavours of massive antimatter, with mass −m, transforming in the

antifundamental of U(1).

Two flavours of massive matter, with mass 2m, transforming in the fundamental of

U(1).

Two flavours of massless antimatter transforming in the antifundamental of U(1).

Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc − 1)k × U(1)k (8.30)

with the matter content as listed in the box above. The low energy theory is:
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U(Nc − 1)k+2 × U(1)k+1 (8.31)

with only the massless content of the box above.

Dualities:

k = −2) The high energy theory is U(Nc − 1)−2 × U(1)−2, the low energy theory is

U(Nc − 1)0 × U(1)−1. The U(Nc − 1) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony Duality. The U(1) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = −1) The high energy theory is U(Nc − 1)−1 × U(1)−1, the low energy theory is

U(Nc − 1)1 × U(1)0. The U(Nc − 1) gauge theory exhibits no flow in dualities, and is

Giveon-Kutasov dual at low energies. The U(1) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(Nc − 1)0 × U(1)0. The low energy theory is

U(Nc − 1)2 × U(1)1. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k 6= −2,−1, 0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.

8.2.4 Two D3-branes Displaced Upwards

Take the (Nc − 1)th and N th
c D3-branes to be displaced in the positive x3-direction:

The D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th and

N th
f D5-branes are displaced and split into two D5+s at x3 = m and two D5−s at

x3 = −m, corresponding to m
Nf−1
Nf−1 = m

Nf

Nf
= m̃

Nf−1
Nf−1 = m̃

Nf

Nf
= m. The D3-branes

labelled by the colour indices 1, ..., Nc − 2 are at x3 = 0, corresponding to

σ1
1, σ

2
2, ..., σ

Nc−2
Nc−2 = 0. Lastly, the (Nc − 1)th and N th

c D3-branes are at x3 = m,

corresponding to σNc−1
Nc−1 = σNc

Nc
= −m. The configuration is given by:
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Nf − 2 flavours of massless matter transforming in the fundamental of U(Nc − 2).

Nf − 2 flavours of massless antimatter transforming in the antifundamental of

U(Nc − 2).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(Nc − 2).

Two flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(Nc − 2).

Nf − 2 flavours of massive matter, with mass −m, transforming in the fundamental of

U(2).

Nf − 2 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(2).

Two flavours of massless matter transforming in the fundamental of U(2).

Two flavours of massive antimatter, with mass 2m transforming in the

antifundamental of U(2).

Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc − 2)k × U(2)k (8.32)

with the matter content as listed in the box above. The low energy theory is:

U(Nc − 2)k+2 × U(2)k+1 (8.33)
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with only the massless content of the box above.

Dualities:

k = −2) The high energy theory is U(Nc − 2)−2 × U(2)−2, the low energy theory is

U(Nc − 2)0 × U(2)−1. The U(Nc − 2) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony Duality. The U(2) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = −1) The high energy theory is U(Nc − 2)−1 × U(2)−1, the low energy theory is

U(Nc − 2)1 × U(2)0. The U(Nc − 2) gauge theory exhibits no flow in dualities, and is

Giveon-Kutasov dual at low energies. The U(2) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(Nc − 2)0 × U(2)0. The low energy theory is

U(Nc − 2)2 × U(2)1. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k 6= −2,−1, 0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.

8.2.5 Two D3-branes Displaced Downwards

Take the (Nc − 1)th and N th
c D3-branes to be displaced in the negative x3-direction:

The D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th and

N th
f D5-branes are displaced and split into two D5+s at x3 = m and two D5−s at

x3 = −m, corresponding to m
Nf−1
Nf−1 = m

Nf

Nf
= m̃

Nf−1
Nf−1 = m̃

Nf

Nf
= m. The D3-branes

labelled by the colour indices 1, ..., Nc − 2 are at x3 = 0, corresponding to

σ1
1, σ

2
2, ..., σ

Nc−2
Nc−2 = 0. Lastly, the (Nc − 1)th and N th

c D3-branes are at x3 = −m,

corresponding to σNc−1
Nc−1 = σNc

Nc
= m. The configuration is given by:
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Matter Content:

Nf − 2 flavours of massless matter transforming in the fundamental of U(Nc − 2).

Nf − 2 flavours of massless antimatter transforming in the antifundamental of

U(Nc − 2).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(Nc − 2).

Two flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(Nc − 2).

Nf − 2 flavours of massive matter, with mass m, transforming in the fundamental of

U(2).

Nf − 2 flavours of massive antimatter, with mass −m, transforming in the

antifundamental of U(2).

Two flavours of massive matter, with mass 2m, transforming in the fundamental of

U(2).

Two flavours of massless antimatter transforming in the antifundamental of U(2).

Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc − 2)k × U(2)k (8.34)

with the matter content as listed in the box above. The low energy theory is:

U(Nc − 2)k+2 × U(2)k+1 (8.35)

with only the massless content of the box above.

Dualities:

k = −2) The high energy theory is U(Nc − 2)−2 × U(2)−2, the low energy theory is

U(Nc − 2)0 × U(2)−1. The U(Nc − 2) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony Duality. The U(2) gauge theory exhibits no flows

between dualities, and is Giveon-Kutasov dual at low energies.
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k = −1) The high energy theory is U(Nc − 2)−1 × U(2)−1, the low energy theory is

U(Nc − 2)1 × U(2)0. The U(Nc − 2) gauge theory exhibits no flow in dualities, and is

Giveon-Kutasov dual at low energies. The U(2) gauge theory exhibits a flow from

Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(Nc − 2)0 × U(2)0. The low energy theory is

U(Nc − 2)2 × U(2)1. Both gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k 6= −2,−1, 0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.

8.2.6 One D3-brane Displaced Upwards and One D3-brane Displaced Down-

wards

Take the (Nc − 1)th brane to be displaced in the negative x3-direction and the N th
c

D3-brane to be displaced in the positive x3-direction: The D5-branes labelled by the

flavour indices 1, ..., Nf − 2 are at x3 = 0, corresponding to

m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th and N th

f D5-branes are

displaced and split into two D5+s at x3 = m and two D5−s at x3 = −m,

corresponding to m
Nf−1
Nf−1 = m

Nf

Nf
= m̃

Nf−1
Nf−1 = m̃

Nf

Nf
= m. The D3-branes labelled by

the colour indices 1, ..., Nc − 2 are at x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−2
Nc−2 = 0.

Lastly, the (Nc − 1)th D3-brane is at x3 = −m corresponding to σNc−1
Nc−1 = m and the

N th
c D3-brane is at x3 = m corresponding to σNc

Nc
= −m. The configuration is given

by:

Matter Content:

Nf − 2 flavours of massless matter transforming in the fundamental of U(Nc − 2).
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Nf − 2 flavours of massless antimatter transforming in the antifundamental of

U(Nc − 2).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(Nc − 2).

Two flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(Nc − 2).

Nf − 2 flavours of massive matter, with mass m, transforming in the fundamental of

U(1).

Nf − 2 flavours of massive antimatter, with mass −m, transforming in the

antifundamental of U(1).

Two flavours of massive matter, with mass 2m, transforming in the fundamental of

U(1).

Two flavours of massless antimatter transforming in the antifundamental of U(1).

Nf − 2 flavours of massive matter, with mass −m, transforming in the fundamental of

U(1).

Nf − 2 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(1).

Two flavours of massless matter transforming in the fundamental of U(1).

Two flavours of massive antimatter, with mass 2m transforming in the

antifundamental of U(1).

Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc − 2)k × U(1)k × U(1)k (8.36)

with the matter content as listed in the box above. The low energy theory is:

U(Nc − 2)k+2 × U(1)k+1 × U(1)k+1 (8.37)

with only the massless content of the box above.

Dualities:
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k = −2) The high energy theory is U(Nc − 2)−2 × U(1)−2 × U(1)−2, the low energy

theory is U(Nc − 2)0 × U(1)−1 × U(1)−1. The U(Nc − 2) gauge theory exhibits a flow

from Giveon-Kutasov to Aharony Duality. The U(1) gauge theories exhibit no flows

between dualities, and is Giveon-Kutasov dual at low energies.

k = −1) The high energy theory is U(Nc − 2)−1 × U(1)−1 × U(1)−1, the low energy

theory is U(Nc− 2)1×U(1)0×U(1)0. The U(Nc− 2) gauge theory exhibits no flow in

dualities, and is Giveon-Kutasov dual at low energies. The U(1) gauge theories

exhibit a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(Nc − 2)0 × U(1)0 × U(1)0. The low energy theory

is U(Nc − 2)2 × U(1)1 × U(1)1. All gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k 6= −2,−1, 0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.

8.2.7 Two D3-branes Displaced Upwards and One D3-brane Displaced

Downwards

Take the (Nc − 2)th brane to be displaced in the negative x3-direction and the

(Nc − 1)th and the N th
c D3-branes to be displaced in the positive x3-direction: The

D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0, corresponding to

m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th and N th

f D5-branes are

displaced and split into two D5+s at x3 = m and two D5−s at x3 = −m,

corresponding to m
Nf−1
Nf−1 = m

Nf

Nf
= m̃

Nf−1
Nf−1 = m̃

Nf

Nf
= m. The D3-branes labelled by

the colour indices 1, ..., Nc − 3 are at x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−3
Nc−3 = 0.

The (Nc − 2)th D3-brane is at x3 = −m corresponding to σNc−2
Nc−2 = m. Lastly, the

(Nc − 1)th and the N th
c D3-branes are at x3 = m corresponding to

σNc−1
Nc−1 = σNc

Nc
= −m. The configuration is given by:
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Matter Content:

Nf − 2 flavours of massless matter transforming in the fundamental of U(Nc − 3).

Nf − 2 flavours of massless antimatter transforming in the antifundamental of

U(Nc − 3).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(Nc − 3).

Two flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(Nc − 3).

Nf − 2 flavours of massive matter, with mass m, transforming in the fundamental of

U(1).

Nf − 2 flavours of massive antimatter, with mass −m, transforming in the

antifundamental of U(1).

Two flavours of massive matter, with mass 2m, transforming in the fundamental of

U(1).

Two flavours of massless antimatter transforming in the antifundamental of U(1).

Nf − 2 flavours of massive matter, with mass −m, transforming in the fundamental of

U(2).

Nf − 2 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(2).

Two flavours of massless matter transforming in the fundamental of U(2).

Two flavours of massive antimatter, with mass 2m transforming in the

antifundamental of U(2).

Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc − 3)k × U(1)k × U(2)k (8.38)

with the matter content as listed in the box above. The low energy theory is:

U(Nc − 3)k+2 × U(1)k+1 × U(2)k+1 (8.39)
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with only the massless content of the box above.

Dualities:

k = −2) The high energy theory is U(Nc − 3)−2 × U(1)−2 × U(2)−2, the low energy

theory is U(Nc − 3)0 × U(1)−1 × U(2)−1. The U(Nc − 3) gauge theory exhibits a flow

from Giveon-Kutasov to Aharony Duality. The U(1) and U(2) gauge theories exhibit

no flows between dualities, and are Giveon-Kutasov dual at low energies.

k = −1) The high energy theory is U(Nc − 3)−1 × U(1)−1 × U(2)−1, the low energy

theory is U(Nc− 3)1×U(1)0×U(2)0. The U(Nc− 3) gauge theory exhibits no flow in

dualities, and is Giveon-Kutasov dual at low energies. The U(1) and U(2) gauge

theories exhibit a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(Nc − 3)0 × U(1)0 × U(2)0. The low energy theory

is U(Nc − 3)2 × U(1)1 × U(2)1. All gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k 6= −2,−1, 0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.

8.2.8 Two D3-branes Displaced Downwards and One D3-brane Displaced

Upwards

Take the (Nc − 2)th brane to be displaced in the positive x3-direction and the

(Nc − 1)th and the N th
c D3-branes to be displaced in the negative x3-direction: The

D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0, corresponding to

m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th and N th

f D5-branes are

displaced and split into two D5+s at x3 = m and two D5−s at x3 = −m,

corresponding to m
Nf−1
Nf−1 = m

Nf

Nf
= m̃

Nf−1
Nf−1 = m̃

Nf

Nf
= m. The D3-branes labelled by

the colour indices 1, ..., Nc − 3 are at x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−3
Nc−3 = 0.

The (Nc − 2)th D3-brane is at x3 = m corresponding to σNc−2
Nc−2 = −m. Lastly, the

(Nc − 1)th and the N th
c D3-branes are at x3 = −m corresponding to

σNc−1
Nc−1 = σNc

Nc
= m. The configuration is given by:
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Matter Content:

Nf − 2 flavours of massless matter transforming in the fundamental of U(Nc − 3).

Nf − 2 flavours of massless antimatter transforming in the antifundamental of

U(Nc − 3).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(Nc − 3).

Two flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(Nc − 3).

Nf − 2 flavours of massive matter, with mass m, transforming in the fundamental of

U(2).

Nf − 2 flavours of massive antimatter, with mass −m, transforming in the

antifundamental of U(2).

Two flavours of massive matter, with mass 2m, transforming in the fundamental of

U(2).

Two flavours of massless antimatter transforming in the antifundamental of U(2).

Nf − 2 flavours of massive matter, with mass −m, transforming in the fundamental of

U(1).

Nf − 2 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(1).

Two flavours of massless matter transforming in the fundamental of U(1).
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Two flavours of massive antimatter, with mass 2m transforming in the

antifundamental of U(1).

Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc − 3)k × U(2)k × U(1)k (8.40)

with the matter content as listed in the box above. The low energy theory is:

U(Nc − 3)k+2 × U(2)k+1 × U(1)k+1 (8.41)

with only the massless content of the box above.

Dualities:

k = −2) The high energy theory is U(Nc − 3)−2 × U(2)−2 × U(1)−2, the low energy

theory is U(Nc − 3)0 × U(2)−1 × U(1)−1. The U(Nc − 3) gauge theory exhibits a flow

from Giveon-Kutasov to Aharony Duality. The U(1) and U(2) gauge theories exhibit

no flows between dualities, and are Giveon-Kutasov dual at low energies.

k = −1) The high energy theory is U(Nc − 3)−1 × U(2)−1 × U(1)−1, the low energy

theory is U(Nc− 3)1×U(2)0×U(1)0. The U(Nc− 3) gauge theory exhibits no flow in

dualities, and is Giveon-Kutasov dual at low energies. The U(1) and U(2) gauge

theories exhibit a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(Nc − 3)0 × U(2)0 × U(1)0. The low energy theory

is U(Nc − 3)2 × U(2)1 × U(1)1. All gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k 6= −2,−1, 0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.

8.2.9 Two D3-branes Displaced Upwards and Two D3-branes Displaced

Downwards

Take the (Nc − 3)th D3-brane and the (Nc − 2)th D3-brane to be displaced in the

positive x3-direction, and take the (Nc − 1)th D3-brane and the N th
c D3-brane to be

displaced in the negative x3-direction: The D5-branes labelled by the flavour indices

1, ..., Nf − 2 are at x3 = 0, corresponding to

m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th and N th

f D5-branes are
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displaced and split into two D5+s at x3 = m and two D5−s at x3 = −m,

corresponding to m
Nf−1
Nf−1 = m

Nf

Nf
= m̃

Nf−1
Nf−1 = m̃

Nf

Nf
= m. The D3-branes labelled by

the colour indices 1, ..., Nc − 4 are at x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−4
Nc−4 = 0.

The (Nc − 3)th and the (Nc − 2)th D3-branes are at x3 = m corresponding to

σNc−3
Nc−3 = σNc−2

Nc−2 = −m. Lastly, the (Nc − 1)th and the N th
c D3-branes are at x3 = −m

corresponding to σNc−1
Nc−1 = σNc

Nc
= m. The configuration is given by:

Matter Content:

Nf − 2 flavours of massless matter transforming in the fundamental of U(Nc − 4).

Nf − 2 flavours of massless antimatter transforming in the antifundamental of

U(Nc − 4).

Two flavours of massive matter, with mass m, transforming in the fundamental of

U(Nc − 4).

Two flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(Nc − 4).

Nf − 2 flavours of massive matter, with mass m, transforming in the fundamental of

U(2).

Nf − 2 flavours of massive antimatter, with mass −m, transforming in the

antifundamental of U(2).

Two flavours of massive matter, with mass 2m, transforming in the fundamental of

U(2).

Two flavours of massless antimatter transforming in the antifundamental of U(2).
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Nf − 2 flavours of massive matter, with mass −m, transforming in the fundamental of

U(2).

Nf − 2 flavours of massive antimatter, with mass m, transforming in the

antifundamental of U(2).

Two flavours of massless matter transforming in the fundamental of U(2).

Two flavours of massive antimatter, with mass 2m transforming in the

antifundamental of U(2).

Aharony and Giveon-Kutasov Duality:

The high energy theory is:

U(Nc − 4)k × U(2)k × U(2)k (8.42)

with the matter content as listed in the box above. The low energy theory is:

U(Nc − 4)k+2 × U(2)k+1 × U(2)k+1 (8.43)

with only the massless content of the box above.

Dualities:

k = −2) The high energy theory is U(Nc − 4)−2 × U(2)−2 × U(2)−2, the low energy

theory is U(N − 4)0 × U(2)−1 × U(2)−1. The U(Nc − 3) gauge theory exhibits a flow

from Giveon-Kutasov to Aharony Duality. The U(2) gauge theories exhibit no flows

between dualities, and are Giveon-Kutasov dual at low energies.

k = −1) The high energy theory is U(Nc − 4)−1 × U(2)−1 × U(2)−1, the low energy

theory is U(N − 4)1 × U(2)0 × U(2)0. The U(Nc − 4) gauge theory exhibits no flow in

dualities, and is Giveon-Kutasov dual at low energies. The U(2) gauge theories

exhibit a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is U(Nc − 4)0 × U(2)0 × U(2)0. The low energy theory

is U(Nc − 4)2 × U(2)1 × U(2)1. All gauge groups exhibit a flow from Aharony to

Giveon-Kutasov Duality.

k 6= −2,−1, 0) In this case there is no flow between dualities, and both gauge groups

exhibit Giveon-Kutasov duality at low energies.
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8.3 Two Displaced Flavour Branes, Displaced by Different Amounts

As a generalisation of the previous section, the two displaced D5-branes can be

displaced by different amounts in the x3-direction. This is achieved by using an

extended web of branes. One D5+ is displaced in the positive x3-direction by m2, and

the second D5+ brane is displaced in the positive x3-direction by m1, where m1 > m2.

Similarly, one D5− is displaced in the negative x3-direction by m2, and the second

D5− brane is displaced in the negative x3-direction by m1. In this context, the

subscripts 1 and 2 are not flavour or colour indices, they are simply there to show that

the displacements are of different size. For brevity, only the results will be stated.

8.3.1 No Displaced D3-branes

The D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th

D5-brane is displaced and split into a D5+ at x3 = m2 and a D5− at x3 = −m2,

corresponding to m
Nf−1
Nf−1 = m̃

Nf−1
Nf−1 = m2. The N th

f D5-brane is displaced and split

into a D5+ at x3 = m1 and a D5− at x3 = −m1, corresponding to m
Nf

Nf
= m̃

Nf

Nf
= m1,

where m1 > m2. The D3-branes labelled by the colour indices 1, ..., Nc are at x3 = 0,

corresponding to σ1
1, σ

2
2, ..., σ

Nc
Nc

= 0. The configuration is given by:

Matter Content:

One flavour of massive matter, with mass m1, in the fundamental of U(Nc).

One flavour of massive matter, with mass m2, in the fundamental of U(Nc).
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Nf − 2 flavours of massless matter in the fundamental of U(Nc).

Nf − 2 flavours of massless antimatter in the antifundamental of U(Nc).

One flavour of massive antimatter, with mass m2, in the antifundamental of U(Nc).

One flavour of massive antimatter, with mass m1, in the antifundamental of U(Nc).

Aharony and Giveon-Kutasov Duality:

The high energy theory contains the massive and massless matter and antimatter

listed above, transforming in the gauge group:

U(Nc)k (8.44)

The low energy theory contains the masslesss matter and antimatter listed above,

transforming in the gauge group:

U(Nc)k+2 (8.45)

k = −2) The U(Nc) group exhibits a flow from Giveon-Kutasov to Aharony duality.

k = 0) The U(Nc) group exhibits a flow from Aharony duality to Giveon-Kutasov.

k 6= −2, 0) The U(Nc) group exhibits no flow between dualities, and Giveon-Kutasov

duality at low energies.

8.3.2 One D3-brane Dislaced Upwards to x3 = m1

The D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th

D5-brane is displaced and split into a D5+ at x3 = m2 and a D5− at x3 = −m2,

corresponding to m
Nf−1
Nf−1 = m̃

Nf−1
Nf−1 = m2. The N th

f D5-brane is displaced and split

into a D5+ at x3 = m1 and a D5− at x3 = −m1, corresponding to m
Nf

Nf
= m̃

Nf

Nf
= m1,

where m1 > m2. The D3-branes labelled by the colour indices 1, ..., Nc − 1 are at

x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−1
Nc−1 = 0. Lastly, the N th

c D3-brane is at

x3 = m1, corresponding to σNc
Nc

= −m1. The configuration is given by:
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Matter Content:

One flavour of massless matter in the fundamental of U(1)Nc .

One flavour of massive matter, with mass m2−m1 < 0, in the fundamental of U(1)Nc .

Nf − 2 flavours of massive matter, with mass −m1, in the fundamental of U(1)Nc .

Nf − 2 flavours of massive antimatter, with mass m1, in the antifundamental of

U(1)Nc .

One flavour of massive antimatter, with mass m1 +m2, in the antifundamental of

U(1)Nc .

One flavour of massive antimatter, with mass 2m1, in the antifundamental of U(1)Nc .

One flavour of massive matter, with mass m1, in the fundamental of U(Nc − 1).

One flavour of massive matter, with mass m2, in the fundamental of U(Nc − 1).

Nf − 2 flavours of massless matter in the fundamental of U(Nc − 1).

Nf − 2 flavours of massless antimatter in the antifundamental of U(Nc − 1).

One flavour of massive antimatter, with mass m2, in the antifundamental of

U(Nc − 1).

One flavour of massive antimatter, with mass m1 in the antifundamental of U(Nc− 1).

Aharony and Giveon-Kutasov Duality:
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The high energy theory contains the massive and massless matter and antimatter

listed above, transforming in the gauge group:

U(Nc − 1)k × U(1)Nc,k (8.46)

The low energy theory contains the masslesss matter and antimatter listed above,

transforming in the gauge group:

U(Nc − 1)k+2 × U(1)
Nc,k+

1
2

(8.47)

k = −2) The U(Nc − 1) group exhibits a flow from Giveon-Kutasov to Aharony

duality. The U(1)Nc group exhibits no flow between dualities, and Giveon-Kutasov

duality at low energies.

k = −1
2) The U(Nc − 1) group exhibits no flow between dualities, and

Giveon-Kutasov duality at low energies. The U(1)Nc group exhibits a flow from

Giveon-Kutasov to Aharony duality.

k = 0) The U(Nc) group and the U(1)Nc group exhibit a flow from Aharony duality

to Giveon-Kutasov.

k 6= −2,−1
2 , 0) The U(Nc − 1) group and U(1)Nc groups exhibit no flow between

dualities, and Giveon-Kutasov duality at low energies.

8.3.3 One D3-brane Displaced Upwards to x3 = m2

The D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th

D5-brane is displaced and split into a D5+ at x3 = m2 and a D5− at x3 = −m2,

corresponding to m
Nf−1
Nf−1 = m̃

Nf−1
Nf−1 = m2. The N th

f D5-brane is displaced and split

into a D5+ at x3 = m1 and a D5− at x3 = −m1, corresponding to m
Nf

Nf
= m̃

Nf

Nf
= m1,

where m1 > m2. The D3-branes labelled by the colour indices 1, ..., Nc − 1 are at

x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−1
Nc−1 = 0. Lastly, the N th

c D3-brane is at

x3 = m2, corresponding to σNc
Nc

= −m2. The configuration is given by:
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Matter Content:

One flavour of massless matter in the fundamental of U(1)Nc .

One flavour of massive matter, with mass m1−m2 > 0, in the fundamental of U(1)Nc .

Nf − 2 flavours of massive matter, with mass −m2, in the fundamental of U(1)Nc .

Nf − 2 flavours of massive antimatter, with mass m2, in the antifundamental of

U(1)Nc .

One flavour of massive antimatter, with mass m1 +m2, in the antifundamental of

U(1)Nc .

One flavour of massive antimatter, with mass 2m2, in the antifundamental of U(1)Nc .

One flavour of massive matter, with mass m1, in the fundamental of U(Nc − 1).

One flavour of massive matter, with mass m2, in the fundamental of U(Nc − 1).

Nf − 2 flavours of massless matter in the fundamental of U(Nc − 1).

Nf − 2 flavours of massless antimatter in the antifundamental of U(Nc − 1).

One flavour of massive antimatter, with mass m2, in the antifundamental of

U(Nc − 1).

One flavour of massive antimatter, with mass m1 in the antifundamental of U(Nc− 1).

Aharony and Giveon-Kutasov Duality:
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The high energy theory contains the massive and massless matter and antimatter

listed above, transforming in the gauge group:

U(Nc − 1)k × U(1)Nc,k (8.48)

The low energy theory contains the masslesss matter and antimatter listed above,

transforming in the gauge group:

U(Nc − 1)k+2 × U(1)
Nc,k+

3
2

(8.49)

k = −2) The U(Nc − 1) group exhibits a flow from Giveon-Kutasov to Aharony

duality. The U(1)Nc group exhibits no flow between dualities, and Giveon-Kutasov

duality at low energies.

k = −3
2) The U(Nc − 1) group exhibits no flow between dualities, and

Giveon-Kutasov duality at low energies. The U(1)Nc group exhibits a flow from

Giveon-Kutasov to Aharony duality.

k = 0) The U(Nc) group and the U(1)Nc group exhibit a flow from Aharony duality

to Giveon-Kutasov.

k 6= −2,−3
2 , 0) The U(Nc − 1) group and U(1)Nc groups exhibit no flow between

dualities, and Giveon-Kutasov duality at low energies.

8.3.4 One D3-brane Displaced Downwards to x3 = −m2

The D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th

D5-brane is displaced and split into a D5+ at x3 = m2 and a D5− at x3 = −m2,

corresponding to m
Nf−1
Nf−1 = m̃

Nf−1
Nf−1 = m2. The N th

f D5-brane is displaced and split

into a D5+ at x3 = m1 and a D5− at x3 = −m1, corresponding to m
Nf

Nf
= m̃

Nf

Nf
= m1,

where m1 > m2. The D3-branes labelled by the colour indices 1, ..., Nc − 1 are at

x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−1
Nc−1 = 0. Lastly, the N th

c D3-brane is at

x3 = −m2, corresponding to σNc
Nc

= m2. The configuration is given by:
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Matter Content:

One flavour of massive matter, with mass m1 +m2, in the fundamental of U(1)Nc .

One flavour of massive matter, with mass 2m2, in the fundamental of U(1)Nc .

Nf − 2 flavours of massive matter, with mass m2, in the fundamental of U(1)Nc .

Nf − 2 flavours of massive antimatter, with mass −m2, in the antifundamental of

U(1)Nc .

One flavour of massless antimatter in the antifundamental of U(1)Nc .

One flavour of massive antimatter, with mass m1 −m2 > 0, in the antifundamental of

U(1)Nc .

One flavour of massive matter, with mass m1, in the fundamental of U(Nc − 1).

One flavour of massive matter, with mass m2 in the fundamental of U(Nc − 1).

Nf − 2 flavours of massless matter in the fundamental of U(Nc − 1).

Nf − 2 flavours of massless antimatter in the antifundamental of U(Nc − 1).

One flavour of massive antimatter, with mass m2, in the antifundamental of

U(Nc − 1).

One flavour of massive antimatter, with mass m1, in the antifundamental of

U(Nc − 1).
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Aharony and Giveon-Kutasov Duality:

The high energy theory contains the massive and massless matter and antimatter

listed above, transforming in the gauge group:

U(Nc − 1)k × U(1)Nc,k (8.50)

The low energy theory contains the masslesss matter and antimatter listed above,

transforming in the gauge group:

U(Nc − 1)k+2 × U(1)
Nc,k+

3
2

(8.51)

k = −2) The U(Nc − 1) group exhibits a flow from Giveon-Kutasov to Aharony

duality. The U(1)Nc group exhibits no flow between dualities, and Giveon-Kutasov

duality at low energies.

k = −3
2) The U(Nc − 1) group exhibits no flow between dualities, and

Giveon-Kutasov duality at low energies. The U(1)Nc group exhibits a flow from

Giveon-Kutasov to Aharony duality.

k = 0) The U(Nc) group and the U(1)Nc group exhibit a flow from Aharony duality

to Giveon-Kutasov.

k 6= −2,−3
2 , 0) The U(Nc − 1) group and U(1)Nc groups exhibit no flow between

dualities, and Giveon-Kutasov duality at low energies.

8.3.5 One D3-brane Displaced Downwards to x3 = −m1

The D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th

D5-brane is displaced and split into a D5+ at x3 = m2 and a D5− at x3 = −m2,

corresponding to m
Nf−1
Nf−1 = m̃

Nf−1
Nf−1 = m2. The N th

f D5-brane is displaced and split

into a D5+ at x3 = m1 and a D5− at x3 = −m1, corresponding to m
Nf

Nf
= m̃

Nf

Nf
= m1,

where m1 > m2. The D3-branes labelled by the colour indices 1, ..., Nc − 1 are at

x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−1
Nc−1 = 0. Lastly, the N th

c D3-brane is at

x3 = −m1, corresponding to σNc
Nc

= m1. The configuration is given by:
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Matter Content:

One flavour of massive matter, with mass m1 +m2, in the fundamental of U(1)Nc .

One flavour of massive matter, with mass 2m1, in the fundamental of U(1)Nc .

Nf − 2 flavours of massive matter, with mass m1, in the fundamental of U(1)Nc .

Nf − 2 flavours of massive antimatter, with mass −m1, in the antifundamental of

U(1)Nc .

One flavour of massless antimatter in the antifundamental of U(1)Nc .

One flavour of massive antimatter, with mass m2 −m1 < 0, in the ati-fundamental of

U(1)Nc .

One flavour of massive matter, with mass m1, in the fundamental of U(Nc − 1).

One flavour of massive matter, with mass m2 in the fundamental of U(Nc − 1).

Nf − 2 flavours of massless matter in the fundamental of U(Nc − 1).

Nf − 2 flavours of massless antimatter in the antifundamental of U(Nc − 1).

One flavour of massive antimatter, with mass m2, in the antifundamental of

U(Nc − 1).

One flavour of massive antimatter, with mass m1, in the antifundamental of

U(Nc − 1).
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Aharony and Giveon-Kutasov Duality:

The high energy theory contains the massive and massless matter and antimatter

listed above, transforming in the gauge group:

U(Nc − 1)k × U(1)Nc,k (8.52)

The low energy theory contains the masslesss matter and antimatter listed above,

transforming in the gauge group:

U(Nc − 1)k+2 × U(1)
Nc,k+

1
2

(8.53)

k = −2) The U(Nc − 1) group exhibits a flow from Giveon-Kutasov to Aharony

duality. The U(1)Nc group exhibits no flow between dualities, and Giveon-Kutasov

duality at low energies.

k = −1
2) The U(Nc − 1) group exhibits no flow between dualities, and

Giveon-Kutasov duality at low energies. The U(1)Nc group exhibits a flow from

Giveon-Kutasov to Aharony duality.

k = 0) The U(Nc) group and the U(1)Nc group exhibit a flow from Aharony duality

to Giveon-Kutasov.

k 6= −2,−1
2 , 0) The U(Nc − 1) group and U(1)Nc groups exhibit no flow between

dualities, and Giveon-Kutasov duality at low energies.

8.3.6 One D3-brane Displaced Upwards to x3 = m1 and One D3-brane

Displaced Upwards to x3 = m2

The D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th

D5-brane is displaced and split into a D5+ at x3 = m2 and a D5− at x3 = −m2,

corresponding to m
Nf−1
Nf−1 = m̃

Nf−1
Nf−1 = m2. The N th

f D5-brane is displaced and split

into a D5+ at x3 = m1 and a D5− at x3 = −m1, corresponding to m
Nf

Nf
= m̃

Nf

Nf
= m1,

where m1 > m2. The D3-branes labelled by the colour indices 1, ..., Nc − 2 are at

x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−2
Nc−2 = 0. The (Nc − 1)th D3-brane is at

x3 = m2, corresponding to σNc−1
Nc−1 = −m2. Lastly, the N th

c D3-brane is at x3 = m1,

corresponding to σNc
Nc

= −m1. The configuration is given by:
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Matter Content:

One flavour of massless matter in the fundamental of U(1)Nc .

One flavour of massive matter, with mass m2−m1 < 0, in the fundamental of U(1)Nc .

Nf − 2 flavours of massive matter, with mass −m1, in the fundamental of U(1)Nc .

Nf − 2 flavours of massive antimatter, with mass m1, in the antifundamental of

U(1)Nc .

One flavour of massive antimatter, with mass m1 +m2, in the antifundamental of

U(1)Nc .

One flavour of massive antimatter, with mass 2m1, in the antifundamental of U(1)Nc .

One flavour of massive matter, with mass m1 −m2 > 0, in the fundamental of

U(1)Nc−1.

One flavour of massless matter in fundamental of U(1)Nc−1.

Nf − 2 flavours of massive matter, with mass −m2, in the fundamental of U(1)Nc−1.

Nf − 2 flavours of massive antimatter, with mass m2, in the antifundamental of

U(1)Nc−1.

One flavour of massive antimatter, with mass 2m2, in the antifundamental of

U(1)Nc−1.
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One flavour of massive antimatter, with mass m1 +m2, in the antifundamental of

U(1)Nc−1.

One flavour of massive matter, with mass m1, in the fundamental of U(Nc − 2).

One flavour of massive matter, with mass m2, in the fundamental of U(Nc − 2).

Nf − 2 flavours of massless matter in the fundamental of U(Nc − 2).

Nf − 2 flavours of massless antimatter in the antifundamental of U(Nc − 2).

One flavour of massive antimatter, with mass m2, in the antifundamental of

U(Nc − 2).

One flavour of massive antimatter, with mass m1, in the antifundamental of

U(Nc − 2).

Aharony and Giveon-Kutasov Duality:

The high energy theory contains the massive and massless matter and antimatter

listed above, transforming in the gauge group:

U(Nc − 2)k × U(1)Nc−1,k × U(1)Nc,k (8.54)

The low energy theory contains the masslesss matter and antimatter listed above,

transforming in the gauge group:

U(Nc − 2)k+2 × U(1)Nc−1,k+ 3
2
× U(1)Nc,k+ 1

2
(8.55)

k = −2) The U(Nc − 2) group exhibits a flow from Giveon-Kutasov to Aharony

duality. The two U(1) groups exhibit no flow between dualities, and Giveon-Kutasov

duality at low energies.

k = −3
2) The U(1)Nc−1 gauge group exhibits a flow from Giveon-Kutasov to Aharony

duality. The other gauge groups exhibit no flow between dualities, and

Giveon-Kutasov duality at low energies.

k = −1
2) The U(1)Nc gauge group exhibits a flow from Giveon-Kutasov to Aharony

duality. The other gauge groups exhibit no flow between dualities, and

Giveon-Kutasov duality at low energies.

k = 0) All gauge groups exhibit a flow from Aharony duality to Giveon-Kutasov.

k 6= −2,−3
2 ,−

1
2 , 0) All gauge groups exhibit no flow between dualities, and

Giveon-Kutasov duality at low energies.
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8.3.7 One D3-brane Displaced Downwards to x3 = −m1 and One D3-brane

Displaced Downwards to x3 = −m2

The D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th

D5-brane is displaced and split into a D5+ at x3 = m2 and a D5− at x3 = −m2,

corresponding to m
Nf−1
Nf−1 = m̃

Nf−1
Nf−1 = m2. The N th

f D5-brane is displaced and split

into a D5+ at x3 = m1 and a D5− at x3 = −m1, corresponding to m
Nf

Nf
= m̃

Nf

Nf
= m1,

where m1 > m2. The D3-branes labelled by the colour indices 1, ..., Nc − 2 are at

x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−2
Nc−2 = 0. The (Nc − 1)th D3-brane is at

x3 = −m2, corresponding to σNc−1
Nc−1 = m2. Lastly, the N th

c D3-brane is at x3 = −m1,

corresponding to σNc
Nc

= m1. The configuration is given by:

Matter Content:

One flavour of massive matter, with mass m1 +m2, in fundamental of U(1)Nc .

One flavour of massive matter, with mass 2m1, in fundamental of U(1)Nc .

Nf − 2 flavours of massive matter, with mass m1, in fundamental of U(1)Nc .

Nf − 2 flavours of massive antimatter, with mass −m1, in antifundamental of U(1)Nc .

One flavour of massive antimatter, with mass m2 −m1 < 0, in antifundamental of

U(1)Nc .

One flavour of massless antimatter in antifundamental of U(1)Nc .
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One flavour of massive matter, with mass 2m2, in fundamental of U(1)Nc−1.

One flavour of massive matter, with mass m1 +m2, in fundamental of U(1)Nc−1.

Nf − 2 flavours of massive matter, with mass m2, in fundamental of U(1)Nc−1.

Nf − 2 flavours of massive antimatter, with mass −m2, in antifundamental of

U(1)Nc−1.

One flavour of massive antimatter, with mass m1 −m2 > 0, in antifundamental of

U(1)Nc−1.

One flavour of massless antimatter in antifundamental of U(1)Nc−1.

One flavour of massive matter, with mass m1, in the fundamental of U(Nc − 2).

One flavour of massive matter, with mass m2, in the fundamental of U(Nc − 2).

Nf − 2 flavours of massless matter in the fundamental of U(Nc − 2).

Nf − 2 flavours of massless antimatter in the antifundamental of U(Nc − 2).

One flavour of massive antimatter, with mass m2, in the antifundamental of

U(Nc − 2).

One flavour of massive antimatter, with mass m1, in the antifundamental of

U(Nc − 2).

Aharony and Giveon-Kutasov Duality:

The high energy theory contains the massive and massless matter and antimatter

listed above, transforming in the gauge group:

U(Nc − 2)k × U(1)Nc−1,k × U(1)Nc,k (8.56)

The low energy theory contains the masslesss matter and antimatter listed above,

transforming in the gauge group:

U(Nc − 2)k+2 × U(1)Nc−1,k+ 3
2
× U(1)Nc,k+ 1

2
(8.57)

k = −2) The U(Nc − 2) group exhibits a flow from Giveon-Kutasov to Aharony

duality. The two U(1) groups exhibit no flow between dualities, and Giveon-Kutasov

duality at low energies.

185



k = −3
2) The U(1)Nc−1 gauge group exhibits a flow from Giveon-Kutasov to Aharony

duality. The other gauge groups exhibit no flow between dualities, and

Giveon-Kutasov duality at low energies.

k = −1
2) The U(1)Nc gauge group exhibits a flow from Giveon-Kutasov to Aharony

duality. The other gauge groups exhibit no flow between dualities, and

Giveon-Kutasov duality at low energies.

k = 0) All gauge groups exhibit a flow from Aharony duality to Giveon-Kutasov.

k 6= −2,−3
2 ,−

1
2 , 0) All gauge groups exhibit no flow between dualities, and

Giveon-Kutasov duality at low energies.

8.3.8 One D3-brane Displaced Upwards to x3 = m2 and One D3-brane

Displaced Downwards to x3 = −m2

The D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th

D5-brane is displaced and split into a D5+ at x3 = m2 and a D5− at x3 = −m2,

corresponding to m
Nf−1
Nf−1 = m̃

Nf−1
Nf−1 = m2. The N th

f D5-brane is displaced and split

into a D5+ at x3 = m1 and a D5− at x3 = −m1, corresponding to m
Nf

Nf
= m̃

Nf

Nf
= m1,

where m1 > m2. The D3-branes labelled by the colour indices 1, ..., Nc − 2 are at

x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−2
Nc−2 = 0. The (Nc − 1)th D3-brane is at

x3 = −m2, corresponding to σNc−1
Nc−1 = m2. Lastly, the N th

c D3-brane is at x3 = m2,

corresponding to σNc
Nc

= −m2. The configuration is given by:

Matter Content:
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One flavour of massive matter, with mass m1 −m2 > 0, in fundamental of U(1)Nc .

One flavour of massless matter in fundamental of U(1)Nc .

Nf − 2 flavours of massive matter, with mass −m2, in fundamental of U(1)Nc .

Nf − 2 flavours of massive antimatter, with mass m2, in antifundamental of U(1)Nc .

One flavour of massive antimatter, with mass 2m2, in antifundamental of U(1)Nc .

One flavour of massive antimatter, with mass m1 +m2, in antifundamental of U(1)Nc .

One flavour of massive matter, with mass m1 +m2, in fundamental of U(1)Nc−1.

One flavour of massive matter, with mass 2m2, in fundamental of U(1)Nc−1.

Nf − 2 flavours of massive matter, with mass m2, in fundamental of U(1)Nc−1.

Nf − 2 flavours of massive antimatter, with mass −m2, in antifundamental of

U(1)Nc−1.

One flavour of massive antimatter, with mass m1 −m2 > 0, in antifundamental of

U(1)Nc−1.

One flavour of massless antimatter in antifundamental of U(1)Nc−1.

One flavour of massive matter, with mass m1, in the fundamental of U(Nc − 2).

One flavour of massive matter, with mass m2, in the fundamental of U(Nc − 2).

Nf − 2 flavours of massless matter in the fundamental of U(Nc − 2).

Nf − 2 flavours of massless antimatter in the antifundamental of U(Nc − 2).

One flavour of massive antimatter, with mass m2, in the antifundamental of

U(Nc − 2).

One flavour of massive antimatter, with mass m1, in the antifundamental of

U(Nc − 2).

Aharony and Giveon-Kutasov Duality:

The high energy theory contains the massive and massless matter and antimatter

listed above, transforming in the gauge group:

U(Nc − 2)k × U(1)Nc−1,k × U(1)Nc,k (8.58)
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The low energy theory contains the masslesss matter and antimatter listed above,

transforming in the gauge group:

U(Nc − 2)k+2 × U(1)Nc−1,k+ 3
2
× U(1)Nc,k+ 3

2
(8.59)

k = −2) The U(Nc − 2) group exhibits a flow from Giveon-Kutasov to Aharony

duality. The two U(1) groups exhibit no flow between dualities, and Giveon-Kutasov

duality at low energies.

k = −3
2) The U(1)Nc−1 and U(1)Nc gauge groups exhibit a flow from Giveon-Kutasov

to Aharony duality. The U(Nc − 2) gauge group exhibits no flow between dualities,

and Giveon-Kutasov duality at low energies.

k = 0) All gauge groups exhibit a flow from Aharony duality to Giveon-Kutasov.

k 6= −2,−3
2 , 0) All gauge groups exhibit no flow between dualities, and

Giveon-Kutasov duality at low energies.

8.3.9 One D3-brane Displaced Upwards to x3 = m1 and one D3-brane Dis-

placed Downwards to x3 = −m1

The D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th

D5-brane is displaced and split into a D5+ at x3 = m2 and a D5− at x3 = −m2,

corresponding to m
Nf−1
Nf−1 = m̃

Nf−1
Nf−1 = m2. The N th

f D5-brane is displaced and split

into a D5+ at x3 = m1 and a D5− at x3 = −m1, corresponding to m
Nf

Nf
= m̃

Nf

Nf
= m1,

where m1 > m2. The D3-branes labelled by the colour indices 1, ..., Nc − 2 are at

x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−2
Nc−2 = 0. The (Nc − 1)th D3-brane is at

x3 = −m1, corresponding to σNc−1
Nc−1 = m1. Lastly, the N th

c D3-brane is at x3 = m1,

corresponding to σNc
Nc

= −m1. The configuration is given by:
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Matter Content:

One flavour of massive matter, with mass m2 −m1 < 0, in fundamental of U(1)Nc .

One flavour of massless matter in fundamental of U(1)Nc .

Nf − 2 flavours of massive matter, with mass −m1, in fundamental of U(1)Nc .

Nf − 2 flavours of massive antimatter, with mass m1, in antifundamental of U(1)Nc .

One flavour of massive antimatter, with mass 2m1, in antifundamental of U(1)Nc .

One flavour of massive antimatter, with mass m1 +m2, in antifundamental of U(1)Nc .

One flavour of massive matter, with mass m1 +m2, in fundamental of U(1)Nc−1.

One flavour of massive matter, with mass 2m1, in fundamental of U(1)Nc−1.

Nf − 2 flavours of massive matter, with mass m1, in fundamental of U(1)Nc−1.

Nf − 2 flavours of massive antimatter, with mass −m1, in antifundamental of

U(1)Nc−1.

One flavour of massive antimatter, with mass m2 −m1 > 0, in antifundamental of

U(1)Nc−1.

One flavour of massless antimatter in antifundamental of U(1)Nc−1.

One flavour of massive matter, with mass m1, in the fundamental of U(Nc − 2).
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One flavour of massive matter, with mass m2, in the fundamental of U(Nc − 2).

Nf − 2 flavours of massless matter in the fundamental of U(Nc − 2).

Nf − 2 flavours of massless antimatter in the antifundamental of U(Nc − 2).

One flavour of massive antimatter, with mass m2, in the antifundamental of

U(Nc − 2).

One flavour of massive antimatter, with mass m1, in the antifundamental of

U(Nc − 2).

Aharony and Giveon-Kutasov Duality:

The high energy theory contains the massive and massless matter and antimatter

listed above, transforming in the gauge group:

U(Nc − 2)k × U(1)Nc−1,k × U(1)Nc,k (8.60)

The low energy theory contains the masslesss matter and antimatter listed above,

transforming in the gauge group:

U(Nc − 2)k+2 × U(1)Nc−1,k+ 1
2
× U(1)Nc,k+ 1

2
(8.61)

k = −2) The U(Nc − 2) group exhibits a flow from Giveon-Kutasov to Aharony

duality. The two U(1) groups exhibit no flow between dualities, and Giveon-Kutasov

duality at low energies.

k = −1
2) The U(1)Nc−1 and U(1)Nc gauge groups exhibit a flow from Giveon-Kutasov

to Aharony duality. The U(Nc − 2) gauge group exhibits no flow between dualities,

and Giveon-Kutasov duality at low energies.

k = 0) All gauge groups exhibit a flow from Aharony duality to Giveon-Kutasov.

k 6= −2,−1
2 , 0) All gauge groups exhibit no flow between dualities, and

Giveon-Kutasov duality at low energies.
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8.3.10 One D3-brane Displaced Upwards to x3 = m1 and One D3-brane

Displaced Downwards to x3 = −m2

The D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th

D5-brane is displaced and split into a D5+ at x3 = m2 and a D5− at x3 = −m2,

corresponding to m
Nf−1
Nf−1 = m̃

Nf−1
Nf−1 = m2. The N th

f D5-brane is displaced and split

into a D5+ at x3 = m1 and a D5− at x3 = −m1, corresponding to m
Nf

Nf
= m̃

Nf

Nf
= m1,

where m1 > m2. The D3-branes labelled by the colour indices 1, ..., Nc − 2 are at

x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−2
Nc−2 = 0. The (Nc − 1)th D3-brane is at

x3 = −m2, corresponding to σNc−1
Nc−1 = m2. Lastly, the N th

c D3-brane is at x3 = m1,

corresponding to σNc
Nc

= −m1. The configuration is given by:

Matter Content:

One flavour of massive matter, with mass m2 −m1 < 0, in fundamental of U(1)Nc .

One flavour of massless matter in fundamental of U(1)Nc .

Nf − 2 flavours of massive matter, with mass −m1, in fundamental of U(1)Nc .

Nf − 2 flavours of massive antimatter, with mass m1, in antifundamental of U(1)Nc .

One flavour of massive antimatter, with mass 2m1, in antifundamental of U(1)Nc .

One flavour of massive antimatter, with mass m1 +m2, in antifundamental of U(1)Nc .

One flavour of massive matter, with mass m1 +m2, in fundamental of U(1)Nc−1.
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One flavour of massive matter, with mass 2m2, in fundamental of U(1)Nc−1.

Nf − 2 flavours of massive matter, with mass m2, in fundamental of U(1)Nc−1.

Nf − 2 flavours of massive antimatter, with mass −m2, in antifundamental of

U(1)Nc−1.

One flavour of massive antimatter, with mass m1 −m2 > 0, in antifundamental of

U(1)Nc−1.

One flavour of massless antimatter in antifundamental of U(1)Nc−1.

One flavour of massive matter, with mass m1, in the fundamental of U(Nc − 2).

One flavour of massive matter, with mass m2, in the fundamental of U(Nc − 2).

Nf − 2 flavours of massless matter in the fundamental of U(Nc − 2).

Nf − 2 flavours of massless antimatter in the antifundamental of U(Nc − 2).

One flavour of massive antimatter, with mass m2, in the antifundamental of

U(Nc − 2).

One flavour of massive antimatter, with mass m1, in the antifundamental of

U(Nc − 2).

Aharony and Giveon-Kutasov Duality:

The high energy theory contains the massive and massless matter and antimatter

listed above, transforming in the gauge group:

U(Nc − 2)k × U(1)Nc−1,k × U(1)Nc,k (8.62)

The low energy theory contains the masslesss matter and antimatter listed above,

transforming in the gauge group:

U(Nc − 2)k+2 × U(1)Nc−1,k+ 3
2
× U(1)Nc,k+ 1

2
(8.63)

k = −2) The U(Nc − 2) group exhibits a flow from Giveon-Kutasov to Aharony

duality. The two U(1) groups exhibit no flow between dualities, and Giveon-Kutasov

duality at low energies.

k = −1
2) The U(1)Nc gauge group exhibits a flow from Giveon-Kutasov to Aharony

duality. The other gauge groups exhibit no flow between dualities, and

Giveon-Kutasov duality at low energies.
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k = −3
2) The U(1)Nc−1 gauge group exhibits a flow from Giveon-Kutasov to Aharony

duality. The other gauge groups exhibit no flow between dualities, and

Giveon-Kutasov duality at low energies.

k = 0) All gauge groups exhibit a flow from Aharony duality to Giveon-Kutasov.

k 6= −2,−3
2 ,−

1
2 , 0) All gauge groups exhibit no flow between dualities, and

Giveon-Kutasov duality at low energies.

8.3.11 One D3-brane Displaced Upwards to x3 = m2 and One D3-brane

Displaced Downwards to x3 = −m1

The D5-branes labelled by the flavour indices 1, ..., Nf − 2 are at x3 = 0,

corresponding to m1
1,m

2
2, ...,m

Nf−2
Nf−2 = m̃1

1, m̃
2
2, ..., m̃

Nf−2
Nf−2 = 0. The (Nf − 1)th

D5-brane is displaced and split into a D5+ at x3 = m2 and a D5− at x3 = −m2,

corresponding to m
Nf−1
Nf−1 = m̃

Nf−1
Nf−1 = m2. The N th

f D5-brane is displaced and split

into a D5+ at x3 = m1 and a D5− at x3 = −m1, corresponding to m
Nf

Nf
= m̃

Nf

Nf
= m1,

where m1 > m2. The D3-branes labelled by the colour indices 1, ..., Nc − 2 are at

x3 = 0, corresponding to σ1
1, σ

2
2, ..., σ

Nc−2
Nc−2 = 0. The (Nc − 1)th D3-brane is at

x3 = −m1, corresponding to σNc−1
Nc−1 = m1. Lastly, the N th

c D3-brane is at x3 = m2,

corresponding to σNc
Nc

= −m2. The configuration is given by:

Matter Content:

One flavour of massive matter, with mass m1 −m2 > 0, in fundamental of U(1)Nc .
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One flavour of massless matter in fundamental of U(1)Nc .

Nf − 2 flavours of massive matter, with mass −m2, in fundamental of U(1)Nc .

Nf − 2 flavours of massive antimatter, with mass m2, in antifundamental of U(1)Nc .

One flavour of massive antimatter, with mass 2m2, in antifundamental of U(1)Nc .

One flavour of massive antimatter, with mass m1 +m2, in antifundamental of U(1)Nc .

One flavour of massive matter, with mass m1 +m2, in fundamental of U(1)Nc−1.

One flavour of massive matter, with mass 2m1, in fundamental of U(1)Nc−1.

Nf − 2 flavours of massive matter, with mass m1, in fundamental of U(1)Nc−1.

Nf − 2 flavours of massive antimatter, with mass −m1, in antifundamental of

U(1)Nc−1.

One flavour of massive antimatter, with mass m2 −m1 < 0, in antifundamental of

U(1)Nc−1.

One flavour of massless antimatter in antifundamental of U(1)Nc−1.

One flavour of massive matter, with mass m1, in the fundamental of U(Nc − 2).

One flavour of massive matter, with mass m2, in the fundamental of U(Nc − 2).

Nf − 2 flavours of massless matter in the fundamental of U(Nc − 2).

Nf − 2 flavours of massless antimatter in the antifundamental of U(Nc − 2).

One flavour of massive antimatter, with mass m2, in the antifundamental of

U(Nc − 2).

One flavour of massive antimatter, with mass m1, in the antifundamental of

U(Nc − 2).

Aharony and Giveon-Kutasov Duality:

The high energy theory contains the massive and massless matter and antimatter

listed above, transforming in the gauge group:

U(Nc − 2)k × U(1)Nc−1,k × U(1)Nc,k (8.64)

The low energy theory contains the masslesss matter and antimatter listed above,

transforming in the gauge group:
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U(Nc − 2)k+2 × U(1)Nc−1,k+ 1
2
× U(1)Nc,k+ 3

2
(8.65)

k = −2) The U(Nc − 2) group exhibits a flow from Giveon-Kutasov to Aharony

duality. The two U(1) groups exhibit no flow between dualities, and Giveon-Kutasov

duality at low energies.

k = −1
2) The U(1)Nc−1 gauge group exhibits a flow from Giveon-Kutasov to Aharony

duality. The other gauge groups exhibit no flow between dualities, and

Giveon-Kutasov duality at low energies.

k = −3
2) The U(1)Nc gauge group exhibits a flow from Giveon-Kutasov to Aharony

duality. The other gauge groups exhibit no flow between dualities, and

Giveon-Kutasov duality at low energies.

k = 0) All gauge groups exhibit a flow from Aharony duality to Giveon-Kutasov.

k 6= −2,−3
2 ,−

1
2 , 0) All gauge groups exhibit no flow between dualities, and

Giveon-Kutasov duality at low energies.
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9 Theories with Adjoint Matter

In section 4.7 it was mentioned that adjoint matter can be included in the 3d N = 2

theory. In sections 7.4.1 and 7.5.1 the Aharony and Giveon-Kutasov dualities

(respectively) of 3d N = 2 theories was discussed. In this section, the consequences of

including adjoint matter as well as making some of the fundamental and

antifundamental matter massive is discussed, with a focus on the resulting IR

dualities.

Notation: Throughout this section all i indices (including those with dashes) are

flavour indices. All j indices (including those with dashes) are colour indices. All jt,

kt, lt, mt and nt indices (including those with dashes) are colour indices associated

with gauge groups U(rt).

An ‘electric’ U(Nc)k theory 11 with Nf flavours, has a semiclassical potential given by

equation 4.49:

Vsc =
e2

32π2
Tr
((

4πφ̄i,j′′φ
i,j′ − 4π

¯̃
φi,j′′ φ̃

i,j′ − ζeffδ
j′

j′′ − keffσ
j′

j′′

)
×
(

4πφ̄i,j′φ
i,j − 4π

¯̃
φi,j′ φ̃

i,j − ζeffδ
j
j′ − keffσ

j
j′

))
+ φ̄i′′,j′′

(
δj
′′

j′m
i′′
i′ + σj

′′

j′ δ
i′′
i′

)(
δj
′

jm
i′
i + σj

′

j δ
i′
i

)
φi,j

+
¯̃
φi′′,j′′

(
δj
′′

j′ m̃
i′′
i′ − σ

j′′

j′ δ
i′′
i′

)(
δj
′

j m̃
i′
i − σ

j′

j δ
i′
i

)
φ̃i,j

(9.1)

where i, i′, i′′ = 1, .., Nf are flavour indices, whilst j, j′, j′′ = 1, ..., Nc are colour

indices. Note that the charges qi are set to one. The results that will be obtained will

minimise this potential.

Theories with adjoint matter have a superpotential which, when minimized, breaks

the U(Nc) gauge group into n subgroups:

U(Nc)→ U(r1)× U(r2)× ...× U(rn) (9.2)

where:

n∑
t=1

rt = Nc (9.3)

and where n ≤ Nc.

11Recall that the subscript k of the gauge group is the Chern-Simons level associated with it.
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The result of this is that there is a separate semiclassical potential of the form of

equation 9.1 for each of the n gauge groups. In general the potentials are given by:

Vsc,t =
e2

32π2
Tr
((

4πφ̄i,j′′t φ
i,j′t − 4π

¯̃
φi,j′′t φ̃

i,j′t − ζeffδ
j′t
j′′t
− keffσ

j′t
j′′t

)
×
(

4πφ̄i,j′tφ
i,jt − 4π

¯̃
φi,j′t φ̃

i,jt − ζeffδ
jt
j′t
− keffσ

jt
j′t

))
+ φ̄i′′,j′′t

(
δ
j′′t
j′t
mi′′
i′ + σ

j′′t
j′t
δi
′′
i′

)(
δ
j′t
jt
mi′
i + σ

j′t
jt
δi
′
i

)
φi,jt

+
¯̃
φi′′,j′′t

(
δ
j′′t
j′t
m̃i′′
i′ − σ

j′′t
j′t
δi
′′
i′

)(
δ
j′t
jt
m̃i′
i − σ

j′t
jt
δi
′
i

)
φ̃i,jt

(9.4)

This requires the use of the index t to clarify which gauge group the potential refers

to. So, for example, Vsc,2 would refer to the semiclassical potential of the group U(r2).

Note that the colour indices j, j′, j′′ are now labelled by t. This is because the range

of the numbers that the jt, j
′
t, j
′′
t indices run over depends on the gauge group U(rt)

that the particular potential is associated with. In general jt, j
′
t, j
′′
t = 1, ..., rt.

Once the gauge group is broken with the inclusion of adjoint matter, the flows

between dualities caused by the inclusion of massive fundamental and

antifundamental matter are investigated.

9.1 One Massive Flavour

Consider the case where the N th
f flavour of matter φNf ,j and the N th

f flavour of

antimatter φ̃Nf ,j have the same mass ma. The subscript a is simply to identify this as

a particular value of the mass, and to avoid confusion with the mass parameters mi′
i

or m̃i′
i . This means that:

φ̄Nf ,j
′′
t

(
δ
j′′t
j′t
m
Nf

Nf
+ σ

j′′t
j′t
δ
Nf

Nf

)(
δ
j′t
jt
m
Nf

Nf
+ σ

j′t
jt
δ
Nf

Nf

)
φNf ,jt

= φ̄Nf ,j
′′
t

(
δ
j′′t
j′t
ma

)(
δ
j′t
jt
ma

)
φNf ,jt

(9.5)

for the matter, and:

¯̃
φNf ,j

′′
t

(
δ
j′′t
j′t
m̃
Nf

Nf
− σj

′′
t

j′t
δ
Nf

Nf

)(
δ
j′t
jt
m̃
Nf

Nf
− σj

′
t
jt
δ
Nf

Nf

)
φ̃Nf ,jt

=
¯̃
φNf ,j

′′
t

(
δ
j′′t
j′t
ma

)(
δ
j′t
jt
ma

)
φ̃Nf ,jt

(9.6)

for the antimatter.
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9.1.1 All σ Equal Zero

The N th
f flavour of matter is massive, and the indices ī, ī′, ī′′ = 1, ..., Nf − 1 are used

to denote the massless flavours. The semiclassical scalar potentials, labelled by

t = 1, ..., n, contain the mass terms:

Vsc,t 3+ φ̄Nf ,j
′′
t

(
δ
j′′t
j′t
m
Nf

Nf
+ σ

j′′t
j′t
δ
Nf

Nf

)(
δ
j′t
jt
m
Nf

Nf
+ σ

j′t
jt
δ
Nf

Nf

)
φNf ,jt

+
¯̃
φNf ,j

′′
t

(
δ
j′′t
j′t
m̃
Nf

Nf
− σj

′′
t

j′t
δ
Nf

Nf

)(
δ
j′t
jt
m̃
Nf

Nf
− σj

′
t
jt
δ
Nf

Nf

)
φ̃Nf ,jt

+ φ̄ī′′,j′′t

(
δ
j′′t
j′t
mī′′

ī′ + σ
j′′t
j′t
δī
′′

ī′

)(
δ
j′t
jt
mī′

ī + σ
j′t
jt
δī
′

ī

)
φī,jt

+
¯̃
φī′′,j′′t

(
δ
j′′t
j′t
m̃ī′′

ī′ − σ
j′′t
j′t
δī
′′

ī′

)(
δ
j′t
jt
m̃ī′

ī − σ
j′t
jt
δī
′

ī

)
φ̃ī,jt

(9.7)

where jt, j
′
t, j
′′
t = 1, ..., rt. In order for the N th

f flavours of matter and antimatter to

have a mass, m
Nf

Nf
+ σ

j′t
jt

and m̃
Nf

Nf
+ σ

j′t
jt

must be non-zero. It follows that the only

way that the potentials can be set to zero, and have the N th
f flavour as massive, is if

φNf ,jt = φ̃Nf ,jt = 0 for all t. This section considers the case where σ
j′′t
j′t

= σ
j′t
jt

= 0 for

all values of t. For the massive flavour, with mass ma, this sets m
Nf

Nf
= m̃

Nf

Nf
= ma for

all t. For the massless flavours, σ
j′′t
j′t

= σ
j′t
jt

= 0 means mī′′

ī′
= mī′

ī
= m̃ī′′

ī′
= m̃ī′

ī
= 0, for

all t.

Consider the derivative of the superpotential with respect to Φ in equation 4.64:

W ′(x) =
n∑
s=0

csΦ
n−s = c0

n∏
t=1

(Φ− at) (9.8)

To avoid confusion with the flavour index and the colour index, the indices in the

above equation has been changed from i to s and from j to t. For cs (s = 0, ..., n) all

non-zero, the gauge group of the high energy theory is given by a product of n gauge

groups:

U(r1)k × U(r2)k × ...× U(rn)k (9.9)

Since the N th
f flavour of matter and antimatter both have mass ma, integrating them

out leads to two contributions to CS-level of +1/2. The low energy theory becomes:

U(r1)k+1 × U(r2)k+1 × ...× U(rn)k+1 (9.10)

with Nf − 1 flavours of massless matter. As a side note, consider the case when all cs

with the exception of c0 equal zero. Then the superpotential in equation 4.63 becomes:
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W (x) =
c0

n+ 1
Φn+1 (9.11)

⇒W ′(x) = c0Φn (9.12)

In this case the low energy theory is:

U(Nc)k+1 (9.13)

with Nf − 1 massless flavours.

Aharony and Giveon-Kutasov Duality:

k = −1) The high energy theory is:

U(r1)−1 × U(r2)−1 × ...× U(rn)−1 (9.14)

with Nf − 1 flavours of massless matter and one flavour of massive matter. The

low energy theory is

U(r1)0 × U(r2)0 × ...× U(rn)0 (9.15)

with Nf − 1 flavours of massless matter. There is a flow from Giveon-Kutasov to

Aharony duality.

k = 0) The high energy theory is:

U(r1)0 × U(r2)0 × ...× U(rn)0 (9.16)

with Nf − 1 flavours of massless matter and one flavour of massive matter. The

low energy theory is

U(r1)1 × U(r2)1 × ...× U(rn)1 (9.17)

with Nf − 1 flavours of massless matter. There is a flow from Aharony to

Giveon-Kutasov duality.
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k 6= −1, 0) There is no flow between dualities. The low energy theory exhibits

Giveon-Kutasov duality.

9.1.2 Some σ Components are Positive

The N th
f flavour of matter is massive, and the indices ī, ī′, ī′′ = 1, ..., Nf − 1 are used

to denote the massless flavours. Consider the case where σ
k′′t
kt′

= σ
k′t
kt

= 0 for

kt, k
′
t, k
′′
t = 1, ..., rt −A (corresponding to a U(rt −A) gauge group), and where

σ
l′′t
l′t

= σ
l′t
lt

= ma for lt, l
′
t, l
′′
t = rt −A+ 1, ..., rt (corresponding to a U(A) gauge group).

The potentials contain the mass terms:

Vsc,t 3+ φ̄Nf ,k
′′
t

(
δ
k′′t
k′t
m
Nf

Nf
+ σ

k′′t
k′t
δ
Nf

Nf

)(
δ
k′t
kt
m
Nf

Nf
+ σ

k′t
kt
δ
Nf

Nf

)
φNf ,kt

+
¯̃
φNf ,k

′′
t

(
δ
k′′t
k′t
m̃
Nf

Nf
− σk

′′
t

k′t
δ
Nf

Nf

)(
δ
k′t
kt
m̃
Nf

Nf
− σk

′
t
kt
δ
Nf

Nf

)
φ̃Nf ,kt

+ φ̄Nf ,l
′′
t

(
δ
l′′t
l′t
m
Nf

Nf
+ σ

l′′t
l′t
δ
Nf

Nf

)(
δ
l′t
lt
m
Nf

Nf
+ σ

l′t
lt
δ
Nf

Nf

)
φNf ,lt

+
¯̃
φNf ,l

′′
t

(
δ
l′′t
l′t
m̃
Nf

Nf
− σl

′′
t

l′t
δ
Nf

Nf

)(
δ
l′t
lt
m̃
Nf

Nf
− σl

′
t
lt
δ
Nf

Nf

)
φ̃Nf ,lt

+ φ̄ī′′,k′′t

(
δ
k′′t
k′t
mī′′

ī′ + σ
k′′t
k′t
δī
′′

ī′

)(
δ
k′t
kt
mī′

ī + σ
k′t
kt
δī
′

ī

)
φī,kt

+
¯̃
φī′′,k′′t

(
δ
k′′t
k′t
m̃ī′′

ī′ − σ
k′′t
k′t
δī
′′

ī′

)(
δ
k′t
kt
m̃ī′

ī − σ
k′t
kt
δī
′

ī

)
φ̃ī,kt

+ φ̄ī′′,l′′t

(
δ
l′′t
l′t
mī′′

ī′ + σ
l′′t
l′t
δī
′′

ī′

)(
δ
l′t
lt
mī′

ī + σ
l′t
lt
δī
′

ī

)
φī,lt

+
¯̃
φī′′,l′′t

(
δ
l′′t
l′t
m̃ī′′

ī′ − σ
l′′t
l′t
δī
′′

ī′

)(
δ
l′t
lt
m̃ī′

ī − σ
l′t
lt
δī
′

ī

)
φ̃ī,lt

(9.18)

Since the N th
f flavour is massive, the brackets of the first four terms are nonzero. In

order for the potentials to be minimised, this leads to the constraint φNf ,kt ,

φ̃Nf ,kt , φNf ,lt , φ̃Nf ,lt = 0. In the first two terms, σ
k′′t
k′t

= σ
k′t
kt

= 0. Subsequently, the

fields φNf ,kt , φ̄Nf ,kt are made to have the same mass ma by imposing

m
Nf

Nf
= m̃

Nf

Nf
= ma. This corresponds to one flavour of matter and antimatter, with

mass ma, transforming in the fundamental and antifundamental of U(rt −A)

respectively. Since m
Nf

Nf
= m̃

Nf

Nf
= ma and σ

l′′t
l′t

= σ
l′t
lt

= ma, the third and fourth terms

give rise to one flavour of massive matter with mass 2ma and antimatter with mass 0

in the fundamental and antifundamental of U(A) respectively. Since

mī′′

ī′
= mī′

ī
= m̃ī′′

ī′
= m̃ī′

ī
= 0 and σ

k′′t
k′t

= σ
k′t
kt

= 0, the fifth and sixth terms give rise to

Nf − 1 flavours of massless matter and antimatter in the fundamental and

antifundamental of U(rt −A) respectively. Since mī′′

ī′
= mī′

ī
= m̃ī′′

ī′
= m̃ī′

ī
= 0 and

σ
l′′t
l′t

= σ
l′t
lt

= ma, the seventh and eighth terms give rise to Nf − 1 flavours matter with

mass ma and antimatter with mass −ma in the fundamental and antifundamental of

U(A) respectively.

With the inclusion of adjoint matter, the higher energy theory contains the gauge

groups:
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U(r1 −A)k × U(r2 −A)k × ...× U(rn −A)k × U(A)nk (9.19)

where, for the U(A) the superscript n is a power. The U(rt −A) groups have one

flavour of massive matter and antimatter with mass ma and Nf − 1 flavours of

massless matter and antimatter. The U(A)n groups have one flavour of matter with

mass 2ma and one flavour of antimatter with mass 0. The U(A)n groups also have

Nf − 1 flavours of matter with mass ma and Nf − 1 flavours of antimatter with mass

−ma. Integrating out the massive matter and antimatter gives a low energy theory

with gauge groups:

U(r1 −A)k+1 × U(r2 −A)k+1 × ...× U(rn −A)k+1 × U(A)n
k+

1
2

(9.20)

Only the massless matter and antimatter remains in the resulting theory.

Aharony and Giveon-Kutasov Duality:

k = −1) The high energy theory is:

U(r1 −A)−1 × U(r2 −A)−1 × ...× U(rn −A)−1 × U(A)n−1 (9.21)

The low energy theory is:

U(r1 −A)0 × U(r2 −A)0 × ...× U(rn −A)0 × U(A)n
−1

2

(9.22)

The U(rt −A) groups experience a flow from Giveon-Kutasov to Aharony duality.

The U(A)n groups experience no such flow and exhibit Giveon-Kutasov duality

at low energies.

k = −1
2) The high energy theory is:

U(r1 −A)
−1

2
× U(r2 −A)

−1
2
× ...× U(rn −A)

−1
2
× U(A)n

−1
2

(9.23)

The low energy theory is:

U(r1 −A)1
2
× U(r2 −A)1

2
× ...× U(rn −A)1

2
× U(A)n0 (9.24)
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The U(rt −A) groups experience no flow between dualties and exhibit

Giveon-Kutasov duality at low energies. The U(A)n groups experience a flow

from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is:

U(r1 −A)0 × U(r2 −A)0 × ...× U(rn −A)0 × U(A)n0 (9.25)

The low energy theory is:

U(r1 −A)1 × U(r2 −A)1 × ...× U(rn −A)1 × U(A)n1
2

(9.26)

The U(rt −A) and the U(A)n groups experience a flow from Aharony to

Giveon-Kutasov duality.

k 6= −1,−1
2 , 0) There is no flow between dualities. The low energy theory exhibits

Giveon-Kutasov duality.

9.1.3 Some σ Components are Negative

The N th
f flavour of matter is massive, and the indices ī, ī′, ī′′ = 1, ..., Nf − 1 are used

to denote the massless flavours. Consider the case where σ
k′′t
kt′

= σ
k′t
kt

= 0 for

kt, k
′
t, k
′′
t = 1, ..., rt −A (corresponding to a U(rt −A) gauge group), and where

σ
l′′t
l′t

= σ
l′t
lt

= −ma for lt, l
′
t, l
′′
t = rt −A+ 1, ..., rt (corresponding to a U(A) gauge

group). The potentials contain the mass terms:

Vsc,t = + φ̄Nf ,k
′′
t

(
δ
k′′t
k′t
m
Nf

Nf
+ σ

k′′t
k′t
δ
Nf

Nf

)(
δ
k′t
kt
m
Nf

Nf
+ σ

k′t
kt
δ
Nf

Nf

)
φNf ,kt

+
¯̃
φNf ,k

′′
t

(
δ
k′′t
k′t
m̃
Nf

Nf
− σk

′′
t

k′t
δ
Nf

Nf

)(
δ
k′t
kt
m̃
Nf

Nf
− σk

′
t
kt
δ
Nf

Nf

)
φ̃Nf ,kt

+ φ̄Nf ,l
′′
t

(
δ
l′′t
l′t
m
Nf

Nf
+ σ

l′′t
l′t
δ
Nf

Nf

)(
δ
l′t
lt
m
Nf

Nf
+ σ

l′t
lt
δ
Nf

Nf

)
φNf ,lt

+
¯̃
φNf ,l

′′
t

(
δ
l′′t
l′t
m̃
Nf

Nf
− σl

′′
t

l′t
δ
Nf

Nf

)(
δ
l′t
lt
m̃
Nf

Nf
− σl

′
t
lt
δ
Nf

Nf

)
φ̃Nf ,lt

+ φ̄ī′′,k′′t

(
δ
k′′t
k′t
mī′′

ī′ + σ
k′′t
k′t
δī
′′

ī′

)(
δ
k′t
kt
mī′

ī + σ
k′t
kt
δī
′

ī

)
φī,kt

+
¯̃
φī′′,k′′t

(
δ
k′′t
k′t
m̃ī′′

ī′ − σ
k′′t
k′t
δī
′′

ī′

)(
δ
k′t
kt
m̃ī′

ī − σ
k′t
kt
δī
′

ī

)
φ̃ī,kt

+ φ̄ī′′,l′′t

(
δ
l′′t
l′t
mī′′

ī′ + σ
l′′t
l′t
δī
′′

ī′

)(
δ
l′t
lt
mī′

ī + σ
l′t
lt
δī
′

ī

)
φī,lt

+
¯̃
φī′′,l′′t

(
δ
l′′t
l′t
m̃ī′′

ī′ − σ
l′′t
l′t
δī
′′

ī′

)(
δ
l′t
lt
m̃ī′

ī − σ
l′t
lt
δī
′

ī

)
φ̃ī,lt

(9.27)

Since the N th
f flavour is massive, the brackets of the first four terms are non-zero. In

order for the potentials to be minimised, this leads to the constraint φNf ,kt ,
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φ̃Nf ,kt , φNf ,lt , φ̃Nf ,lt = 0. In the first two terms, σ
k′′t
k′t

= σ
k′t
kt

= 0. Subsequently, the

fields φNf ,kt , φ̄Nf ,kt are made to have the same mass ma by imposing

m
Nf

Nf
= m̃

Nf

Nf
= ma. This corresponds to one flavour of matter and antimatter, with

mass ma, transforming in the fundamental and antifundamental of U(rt −A)

respectively. Since m
Nf

Nf
= m̃

Nf

Nf
= ma and σ

l′′t
l′t

= σ
l′t
lt

= −ma, the third and fourth

terms give rise to one flavour of matter with mass 0 and antimatter with mass 2ma in

the fundamental and antifundamental of U(A) respectively. Since

mī′′

ī′
= mī′

ī
= m̃ī′′

ī′
= m̃ī′

ī
= 0 and σ

k′′t
k′t

= σ
k′t
kt

= 0, the fifth and sixth terms give rise to

Nf − 1 flavours of massless matter and antimatter in the fundamental and

antifundamental of U(rt −A) respectively. Since mī′′

ī′
= mī′

ī
= m̃ī′′

ī′
= m̃ī′

ī
= 0 and

σ
l′′t
l′t

= σ
l′t
lt

= −ma, the seventh and eighth terms give rise to Nf − 1 flavours matter

with mass −ma and antimatter with mass ma in the fundamental and

antifundamental of U(A) respectively.

With the inclusion of adjoint matter, the higher energy theory contains the gauge

groups:

U(r1 −A)k × U(r2 −A)k × ...× U(rn −A)k × U(A)nk (9.28)

where, for the U(A) the superscript n is a power. The U(rt −A) groups have one

flavour of massive matter and antimatter with mass ma and Nf − 1 flavours of

massless matter and antimatter. The U(A)n groups have one flavour of matter with

mass 0 and one flavour of antimatter with mass 2ma. The U(A)n groups also have

Nf − 1 flavours of matter with mass −ma and Nf − 1 flavours of antimatter with

mass ma. Integrating out the massive matter and antimatter gives a low energy

theory with gauge groups:

U(r1 −A)k+1 × U(r2 −A)k+1 × ...× U(rn −A)k+1 × U(A)n
k+

1
2

(9.29)

Only the massless matter remains in the resulting theory.

Aharony and Giveon-Kutasov Duality:

The flow between dualities are the same as in the previous section.

k = −1) The high energy theory is:

U(r1 −A)−1 × U(r2 −A)−1 × ...× U(rn −A)−1 × U(A)n−1 (9.30)

The low energy theory is:
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U(r1 −A)0 × U(r2 −A)0 × ...× U(rn −A)0 × U(A)n
−1

2

(9.31)

The U(rt −A) groups experience a flow from Giveon-Kutasov to Aharony duality.

The U(A)n groups experience no such flow and exhibit Giveon-Kutasov duality

at low energies.

k = −1
2) The high energy theory is:

U(r1 −A)
−1

2
× U(r2 −A)

−1
2
× ...× U(rn −A)

−1
2
× U(A)n

−1
2

(9.32)

The low energy theory is:

U(r1 −A)1
2
× U(r2 −A)1

2
× ...× U(rn −A)1

2
× U(A)n0 (9.33)

The U(rt −A) groups experience no flow between dualties and exhibit

Giveon-Kutasov duality at low energies. The U(A)n groups experience a flow

from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is:

U(r1 −A)0 × U(r2 −A)0 × ...× U(rn −A)0 × U(A)n0 (9.34)

The low energy theory is:

U(r1 −A)1 × U(r2 −A)1 × ...× U(rn −A)1 × U(A)n1
2

(9.35)

The U(rt −A) and the U(A)n groups experience a flow from Aharony to

Giveon-Kutasov duality.

k 6= −1,−1
2 , 0) There is no flow between dualities. The low energy theory exhibits

Giveon-Kutasov duality for all gauge groups.

9.1.4 Some σjk Components are Positive and Some σjk Components are Neg-

ative

The N th
f flavour of matter is massive, and the indices ī, ī′, ī′′ = 1, ..., Nf − 1 are used

to denote the massless flavours. Consider the case where σ
k′′t
kt′

= σ
k′t
kt

= 0 for

kt, k
′
t, k
′′
t = 1, ..., rt −A (corresponding to a U(rt −A) gauge group), where
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σ
m′′t
m′t

= σ
m′t
mt = ma for mt,m

′
t,m

′′
t = rt −A+ 1, ..., rt −B (A > B)(corresponding to a

U(A−B) gauge group), and where σ
n′′t
n′t

= σ
n′t
nt = ma for nt, n

′
t, n
′′
t = rt −B + 1, ..., rt

(corresponding to a U(B) gauge group). The potentials contain the mass terms:

Vsc,t 3+ φ̄Nf ,k
′′
t

(
δ
k′′t
k′t
m
Nf

Nf
+ σ

k′′t
k′t
δ
Nf

Nf

)(
δ
k′t
kt
m
Nf

Nf
+ σ

k′t
kt
δ
Nf

Nf

)
φNf ,kt

+
¯̃
φNf ,k

′′
t

(
δ
k′′t
k′t
m̃
Nf

Nf
− σk

′′
t

k′t
δ
Nf

Nf

)(
δ
k′t
kt
m̃
Nf

Nf
− σk

′
t
kt
δ
Nf

Nf

)
φ̃Nf ,kt

+ φ̄Nf ,m
′′
t

(
δ
m′′t
m′t
m
Nf

Nf
+ σ

m′′t
m′t
δ
Nf

Nf

)(
δ
m′t
mtm

Nf

Nf
+ σ

m′t
mtδ

Nf

Nf

)
φNf ,mt

+
¯̃
φNf ,m

′′
t

(
δ
m′′t
m′t
m̃
Nf

Nf
− σm

′′
t

m′t
δ
Nf

Nf

)(
δ
m′t
mtm̃

Nf

Nf
− σm

′
t

mtδ
Nf

Nf

)
φ̃Nf ,mt

+ φ̄Nf ,n
′′
t

(
δ
n′′t
n′t
m
Nf

Nf
+ σ

n′′t
n′t
δ
Nf

Nf

)(
δ
n′t
ntm

Nf

Nf
+ σ

n′t
ntδ

Nf

Nf

)
φNf ,nt

+
¯̃
φNf ,n

′′
t

(
δ
n′′t
n′t
m̃
Nf

Nf
− σn

′′
t

n′t
δ
Nf

Nf

)(
δ
n′t
ntm̃

Nf

Nf
− σn

′
t
ntδ

Nf

Nf

)
φ̃Nf ,nt

+ φ̄ī′′,k′′t

(
δ
k′′t
k′t
mī′′

ī′ + σ
k′′t
k′t
δī
′′

ī′

)(
δ
k′t
kt
mī′

ī + σ
k′t
kt
δī
′

ī

)
φī,kt

+
¯̃
φī′′,k′′t

(
δ
k′′t
k′t
m̃ī′′

ī′ − σ
k′′t
k′t
δī
′′

ī′

)(
δ
k′t
kt
m̃ī′

ī − σ
k′t
kt
δī
′

ī

)
φ̃ī,kt

+ φ̄ī′′,m′′t

(
δ
m′′t
m′t
mī′′

ī′ + σ
m′′t
m′t
δī
′′

ī′

)(
δ
m′t
mtm

ī′

ī + σ
m′t
mtδ

ī′

ī

)
φī,mt

+
¯̃
φī′′,m′′t

(
δ
m′′t
m′t
m̃ī′′

ī′ − σ
m′′t
m′t
δī
′′

ī′

)(
δ
m′t
mtm̃

ī′

ī − σ
m′t
mtδ

ī′

ī

)
φ̃ī,mt

+ φ̄ī′′,n′′t

(
δ
n′′t
n′t
mī′′

ī′ + σ
n′′t
n′t
δī
′′

ī′

)(
δ
n′t
ntm

ī′

ī + σ
n′t
ntδ

ī′

ī

)
φī,nt

+
¯̃
φī′′,n′′t

(
δ
n′′t
n′t
m̃ī′′

ī′ − σ
n′′t
n′t
δī
′′

ī′

)(
δ
n′t
ntm̃

ī′

ī − σ
n′t
ntδ

ī′

ī

)
φ̃ī,nt

(9.36)

The N th
f flavour is massive, which means that the brackets of the first six terms are

non-zero. In order for the potentials to be minimised, this leads to the constraint

φNf ,kt , φ̃Nf ,kt , φNf ,mt , φ̃Nf ,mt , φNf ,nt , φ̃Nf ,nt = 0. In the first two terms, σ
k′′t
k′t

= σ
k′t
kt

= 0.

Subsequently, the fields φNf ,kt , φ̄Nf ,kt are made to have the same mass ma by

imposing m
Nf

Nf
= m̃

Nf

Nf
= ma. This corresponds to one flavour of matter and

antimatter, with mass ma, transforming in the fundamental and antifundamental of

U(rt −A) respectively. Since m
Nf

Nf
= m̃

Nf

Nf
= ma and σ

m′′t
m′t

= σ
m′t
mt = ma, the third and

fourth terms give rise to one flavour of matter with mass 2ma and antimatter with

mass 0 in the fundamental and antifundamental of U(A−B) respectively. Since

m
Nf

Nf
= m̃

Nf

Nf
= ma and σ

n′′t
n′t

= σ
n′t
nt = −ma, the fifth and sixth terms give rise to one

flavour of matter with mass 0 and antimatter with mass 2ma in the fundamental and

antifundamental of U(B) respectively. The seventh and eighth terms out of the trace

give rise to Nf − 1 flavours of massless matter and antimatter in the fundamental and

antifundamental of U(rt −A) respectively. The ninth and tenth terms out of the trace

give rise to Nf − 1 flavours matter with mass ma and antimatter with mass −ma in

the fundamental and antifundamental of U(A−B) respectively. The eleventh and

twelfth terms out of the trace give rise to Nf − 1 flavours matter with mass −ma and
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antimatter with mass ma in the fundamental and antifundamental of U(B)

respectively.

With the inclusion of adjoint matter, the high energy theory contains the gauge

groups:

U(r1 −A)k × U(r2 −A)k × ...× U(rn −A)k × U(A−B)nk × U(B)nk (9.37)

where the superscript n is a power. The U(rt −A) groups have one flavour of massive

matter and antimatter with mass ma and Nf − 1 flavours of massless matter and

antimatter. The U(A−B)n groups have one flavour of matter with mass 2ma and

one flavour of antimatter with mass 0. The U(A−B)n groups also have Nf − 1

flavours of matter with mass ma and Nf − 1 flavours of antimatter with mass −ma.

The U(B)n groups have one flavour of matter with mass 0 and one flavour of

antimatter with mass 2ma. The U(B)n groups also have Nf − 1 flavours of matter

with mass −ma and Nf − 1 flavours of antimatter with mass ma. Integrating out the

massive matter and antimatter gives a low energy theory with gauge groups:

U(r1−A)k+1×U(r2−A)k+1× ...×U(rn−A)k+1×U(A−B)n
k+

1
2

×U(B)n
k+

1
2

(9.38)

Only the massless matter remains in the resulting theory.

Aharony and Giveon-Kutasov Duality:

The flow between dualities are the same as in the previous section.

k = −1) The high energy theory is:

U(r1 −A)−1 × U(r2 −A)−1 × ...× U(rn −A)−1 × U(A−B)n−1 × U(B)n−1 (9.39)

The low energy theory is:

U(r1 −A)0 × U(r2 −A)0 × ...× U(rn −A)0 × U(A−B)n
−1

2

× U(B)n
−1

2

(9.40)

The U(rt −A) groups experience a flow from Giveon-Kutasov to Aharony duality.
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The U(A−B)n and U(B)n groups experience no such flow and exhibit

Giveon-Kutasov duality at low energies.

k = −1
2) The high energy theory is:

U(r1−A)
−1

2
×U(r2−A)

−1
2
× ...×U(rn−A)

−1
2
×U(A−B)n

−1
2

×U(B)n
−1

2

(9.41)

The low energy theory is:

U(r1 −A)1
2
× U(r2 −A)1

2
× ...× U(rn −A)1

2
× U(A−B)n0 × U(B)n0 (9.42)

The U(rt −A) groups experience no flow between dualties and exhibit

Giveon-Kutasov duality at low energies. The U(A−B)n and U(B)n groups

experience a flow from Giveon-Kutasov to Aharony duality.

k = 0) The high energy theory is:

U(r1 −A)0 × U(r2 −A)0 × ...× U(rn −A)0 × U(A)n0 × U(B)n0 (9.43)

The low energy theory is:

U(r1 −A)1 × U(r2 −A)1 × ...× U(rn −A)1 × U(A−B)n1
2

× U(B)n1
2

(9.44)

The U(rt −A), U(A−B)n, U(B)n groups experience a flow from Aharony to

Giveon-Kutasov duality.

k 6= −1,−1
2 , 0) There is no flow between dualities. The low energy theory exhibits

Giveon-Kutasov duality for all gauge groups.
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9.2 Generalisations

It is clear that such theories can be made arbitrarily complicated. For example, a

different number of massive flavours could be considered for different values of t.

Alternatively, the values of mi′
i components need not match the corresponding values

of m̃i′
i . In general this would lead to matter and antimatter with different absolute

values of their masses. Another generalisation would be the addition of more massive

flavours. This would be accompanied by an exponential increase in the possible

combinations of parameter values. The previous section is only intended to provide a

taste of the possible scenarios, and the flows between dualities that result.
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Part IV

Discussion
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Numerous examples of brane configurations have been considered, and the low energy

theories analysed. The dualities present in the low energy theories have also been

discussed. It is clear that there is considerable freedom to change the outcome of the

low energy theories through choices made in the brane configurations. The brane

configurations can be made arbitrarily complicated through the displacement of more

D5-branes, the displacement of more D3-branes, and increasingly large webs of branes

(to mention just a few methods). The results presented above provide some insight

into the complicated theories that can arise.

One practical issue occurred when displacing the D3-branes. Their orientations had

to remain along the (x1, x2, x6) spatial directions in order to preserve supersymmetry.

Furthermore, they were required to have finite length in the x6, so that their x6

extent could be taken to be small and dimensional reduction from (1 + 3)d to (1 + 2)d

could occur. The only way to achieve this was to have them end on entirely new

branes, leading to the introduction of extra NS5-branes (see figure 17). These branes

are introduced very artificially, but are nonetheless necessary.

For many of the gauge groups, integrating out massive matter led to fractional

Chern-Simons levels. Whilst there are some special cases that permit the occurrence

of fractional level, such theories are not discussed here. Therefore, the requirement for

integer level imposes further restrictions on the brane configurations. Specifically, in

section 8.1, only the case of no displaced D3-branes is permitted. This is because the

other cases introduce fractional Chern-Simons level in the effective field theories. On

the other hand, all cases discussed in section 8.2 are permitted, as Chern-Simons

levels are only shifted by integer values for all gauge groups. For the results of section

8.3, again, it is only the case where no D3-branes are displaced that is permitted.

Additionally, flows between dualities for theories with adjoint matter were discussed

in section 9, giving an idea of how theories with different dualities can be obtained.

There are many new direction in which the research can be taken. For example, Dr

Radu Tatar and I are currently investigating flows between dualities for theories with

bifundamental matter. Such theories are obtained from string theory by considering

two stacks of D3-branes ending on either side of NS5-branes. It would also be

interesting to draw the Aharony or the Giveon-Kutasov dual configurations of the

brane configurations mentioned in the results section. Additionally, the brane

configurations corresponding to the the theories with adjoint matter could be

investigated, together with their dual configurations.
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A Lightcone Gauge

Quantising the theory using lightcone gauge provides new and useful insights to the

string theory. First lightcone gauge must be explained:

In string theory there exists a class of gauge choices obtained by imposing [1]:

n ·X(σ0, σ1) =
1

πT
(n · p)σ0

(n · p)σ1 = π

∫ σ

0
dσ1 n · P0(σ0, σ1)

(A.1)

for open strings, and:

n ·X(σ0, σ1) =
1

2πT
(n · p)σ0

(n · p)σ1 = 2π

∫ σ

0
dσ1 n · P0(σ0, σ1)

(A.2)

for closed strings.

Lightcone gauge is then obtained by imposing the above gauge choices and choosing

[1]:

nµ =
(

1√
2
, 1√

2
, 0, ..., 0

)
(A.3)

This choice gives [1]:

n ·X = 1√
2

(
X0 +X1

)
= X+ (A.4)

n · p = 1√
2

(
p0 + p1

)
= p+ (A.5)

Also:

X− = 1√
2

(
X0 −X1

)
(A.6)

p− = 1√
2

(
p0 − p1

)
(A.7)

The string coordinates in the bulk are then given by:
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(
X+, X−, XI

)
(A.8)

where

XI =
(
X2, ..., XD

)
(A.9)

are called the ‘transverse coordinates’.

In these coordinates the X expansions are given by [1]:

X+
(
σ0, σ1

)
= 2α′p+σ0 =

√
2α′α+

0 σ
0 (A.10)

X−
(
σ0, σ1

)
= x−0 +

√
2α′α−0 σ

0 + i
√

2α′
∑
n6=0

1

n
α−n e

−inσ0
cos
(
nσ1

)
(A.11)

XI
(
σ0, σ1

)
= xI0 +

√
2α′αI0σ

0 + i
√

2α′
∑
n6=0

1

n
αIne

−inσ0
cos
(
nσ1

)
(A.12)

In lightcone gauge the transverse Virasoro operators are given by [1]:

L⊥n =
1

2

∞∑
p=−∞

αIn−pα
I
p (n, p ∈ Z) (A.13)

L⊥0 is given in normal ordered form as [1]:

L⊥0 =
1

2
αI0α

I
0 +

∞∑
p=1

αI−pα
I
p +

1

2
(D − 2)

∞∑
p=1

p (A.14)

As in the canonical case, it is then redefined without the normal ordering constant:

L⊥0 ≡
1

2
αI0α

I
0 +

∞∑
p=1

αI−pα
I
p (p ∈ Z) (A.15)

B Three Dimensional N = 2 Superfield Conventions

The superfield conventions used are those that appear in the 2008 paper of Benna,

Klebanov, Klose and Smedbäck ([33]). The chiral and anti-chiral multiplets are given

by:
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Q = φ(xL) +
√

2θψ(xL) + θ2F (xL) (B.1)

and

Q̄ = φ†(xR)−
√

2θ̄ψ̄(xR)− θ̄2F †(xR) (B.2)

respectively. In the above, xµL = xµ + iθγµθ̄ and xµR = xµ − iθγµθ̄. In equation B.2,

the bar above Q is a symbol that simply means that the the hermitian conjugate of

the components of equation B.1 have been taken [33]. φ(xL) and φ†(xR) are complex

scalars, each having one complex component, or equivalently, two real components. θ,

θ̄, ψ(xL) and ψ̄(xR) are (1 + 2)d Dirac spinors, each having two complex components,

or equivalently, four real components. F and F † are complex auxiliary scalars, each

have one complex component, or equivalently, two real components. In equation B.2:

ψ̄ = ψ†γ0 and θ̄ = θ†γ0 (B.3)

are Dirac conjugates of ψ and θ respectively. The dagger denotes the hermitian

conjugate. In equations B.1 and B.2:

θψ = θαψα, θ̄ψ̄ = θ̄αψ̄α, θ2 = θαθα, θ̄2 = θ̄αθ̄α (B.4)

where α = 1, 2 is a spinor index. Using:

(θψ)† = −θ̄ψ̄, (θθ)† = −θ̄θ̄ (B.5)

it is clear that Q̄ = Q†.

Performing a Taylor expansion of equation B.1 gives [36]:

Q(xL) =φ(x) + i
(
θγµθ̄

)
∂µφ(x)− 1

4
θ2θ̄2�φ(x)

+
√

2 (θψ(x))− i√
2
θ2
(
(∂µψ(x)) γµθ̄

)
+ θ2F (x)

(B.6)

Performing a Taylor expansion of equation B.2 gives [36]:

Q(xL) =φ†(x)− i
(
θγµθ̄

)
∂µφ

†(x)− 1

4
θ2θ̄2�φ†(x)

−
√

2
(
θ̄ψ̄(x)

)
− i√

2
θ̄2
(
θγµ

(
∂µψ̄(x)

))
− θ̄2F̄ (x)

(B.7)
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In Wess-Zumino gauge, the vector multiplet is given by [33]:

V = 2i
(
θθ̄
)
σ(x) + 2

(
θγµθ̄

)
Aµ(x) +

√
2iθ2

(
θ̄χ̄(x)

)
−
√

2iθ̄2 (θχ(x)) + θ2θ̄2D(x) (B.8)

In the above σ is a real scalar, Aµ is a vector gauge field, χ and χ̄ are both two

complex component (or equivalently, four real component) Dirac spinors, and D is a

real auxiliary scalar. The linear multiplet Σ is defined in terms of V as:

Σ =
i

4
D̄αDαV (B.9)

The vector multiplet also appears in an exponential ( in terms of the form Q†eqVQ)

so it is important to know how to write the exponential expansion. It is possible to

show that:

1

2
V 2 = θ2θ̄2

(
σ2(x) +Aµ(x)Aµ(x)

)
(B.10)

which is needed to prove that:

eqV = 1 + qV +
q2

2
V 2

= 1 + q
(

2i
(
θθ̄
)
σ(x) + 2

(
θγµθ̄

)
Aµ(x) +

√
2iθ2

(
θ̄χ̄(x)

)
−
√

2iθ̄2 (θχ(x)) + θ2θ̄2D(x)
)

+ q2θ2θ̄2
(
σ2(x) +Aµ(x)Aµ(x)

)
(B.11)

The superfield multiplications (e.g. Q†eqVQ) become extremely involved and will not

be derived here. The results of the relevant superfield multiplications are simply

stated in section 4.
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C Chern-Simons Field Theory

C.1 Integrating Over Momentum for the Induced Abelian Chern-

Simons Term

The integral to solve is:

[Int] =

∫ ∞
−∞

d3k

(2π)3

1(
(p+ k)2 +m2

)
(k2 +m2)

(C.1)

Using Feynman parameters [44]:

1(
(p+ k)2 +m2

)
(k2 +m2)

=

∫ 1

0
dxdy δ(x+ y − 1)

1[
x
(

(p+ k)2 +m2
)

+ y (k2 +m2)
]2

(C.2)

where:

D ≡ x
(

(p+ k)2 +m2
)

+ y
(
k2 +m2

)
(C.3)

Setting x+ y = 1 gives:

D =xp2 + xk2 + 2xpk + xm2 + yk2 + ym2

=k2 + xp2 + 2xpk +m2
(C.4)

Defining l ≡ k + xp gives:

k = l − xp (C.5)

⇒ k2 = l2 + x2p2 − 2xpl (C.6)

Inserting equation C.6 into equation C.4 gives:

D =l2 + x2p2 −���2xpl + xp2 +��
�2xpl − 2x2p2 +m2

=l2 − x2p2 + xp2 +m2
(C.7)

216



Now define ∆ ≡ x2p2 − xp2 −m2. Using this equation C.7 can be written:

D = l2 −∆ (C.8)

Plugging equation C.8 into equation C.2 gives:

[Int] =

∫ ∞
−∞

d3l

(2π)3

∫ 1

0
dxdy δ(x+ y − 1)

1

(l2 −∆)2 (C.9)

Next the Wick rotation l0 → il0,E , l1 → l1,E , l2 → l2,E is performed. The integral

becomes:

[Int] =
i

(2π)3

∫ ∞
−∞

d3lE

∫ 1

0
dxdy δ(x+ y − 1)

1(
l2E −∆

)2 (C.10)

Treating lE like the radius of a sphere gives [44]:

∫ ∞
−∞

d3lE =

∫
dV =

∫ ∞
0

l2EdlE

∫ π

0
dθ

∫ 2π

0
dφ sinθ

=

∫ ∞
0

l2EdlE

∫ 2π

0
dφ [−cosθ]π0

=

∫ ∞
0

l2EdlE

∫ 2π

0
dφ 2

=

∫ ∞
0

l2EdlE [2φ]2π0

=

∫ ∞
0

l2EdlE4π

(C.11)

Using equation C.11 in gives:

[Int] =
i

(2π)3
4π

∫ ∞
0

l2EdlE

∫ 1

0
dxdy δ(x+ y − 1)

1(
l2E −∆

)2
=

2i

(2π)2

∫ ∞
0

l2EdlE

∫ 1

0
dxdy δ(x+ y − 1)

1(
l2E −∆

)2 (C.12)

Now, it is possible to prove that:

∫ ∞
0

l2E(
l2E −∆

)2 =
π

i4
√

∆
(C.13)
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Plugging equation C.13 into equation C.12 gives:

[Int] =
1

8π

∫ 1

0
dxdy δ(x+ y − 1)

1√
∆

(C.14)

Using ∆ ≡ x2p2 − xp2 −m2, this becomes:

[Int] =
1

8π

∫ 1

0
dxdy δ(x+ y − 1)

1√
x2p2 − xp2 −m2

(C.15)

Evaluating this integral gives [45]:

[Int] =
1

4πi

1

|p|
arcsin

(
|p|√

p2 + 4m2

)
(C.16)

C.2 Level Quantisation in Non-abelian Chern-Simons Gauge Theories

Non-abelian Chern-Simons theories are required to have integer level [88]. This arises

as a requirement for gauge invariance of the non-abelian CS term in the action, and

due to the fact that the winding number of the gauge transformations are integer

valued.

An abelian transformations of a gauge field is given by:

Aµ → Aµ − iU †∂µU (C.17)

where U = U(x) ∈ U(1). U takes the general form:

U(x) = exp(iλ(x)T ) (C.18)

where T ∈ u(1).

The non-abelian U(n) transformation is given by [88]:

Aµ → U †AµU − iU †∂µU (Aµ(x) = Aaµ(x)T a) (C.19)

where U = U(x) ∈ U(n). U takes the general form:

U(x) = exp(iλa(x)T a) (C.20)

where T a ∈ u(n).
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The non-abelian Chern-Simons term is given as:

k

4π

∫
d3xεµνρ Tr

(
Aµ∂νAρ + i

2

3
AµAνAρ

)
(C.21)

The non-abelian gauge transformations act on the non-abelian Chern-Simons term as

[88]:

SCS →S′CS

=SCS + i
k

4π

∫
d3x εµνρ∂µTr

(
∂νUU

†Aρ

)
+

k

12π

∫
d3x εµνρ Tr

(
U †∂µUU

†∂νUU
†∂ρU

) (C.22)

The second term disappears as a it is a total derivative. It is clear that the third term

is exclusive to the non-abelian Chern-Simons term; such a term would would not

appear in the gauge transformation of the abelian Chern-Simons term. This term is

proportional to the ‘winding number’, ω, of the gauge transformation U(x) [88]:

ω =
1

24π2

∫
d3x εµνρ Tr

(
U †∂µUU

†∂νUU
†∂ρU

)
(C.23)

This quantity is an integer. Using C.23, C.22 becomes [88]:

SCS →S′CS
=SCS + k2πω

(C.24)

In order for path integrals to be left invariant by this gauge transformation the second

term must be a multiple of 2π, which restricts k to integer values.
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D Angle of the (p,q)-brane and Preservation of Super-

symmetry

The preservation of supersymmetry by the (p, q)-brane is reliant on a BPS condition

being satisfied [89].

The condition is satisfied only if the charges of the branes are conserved at the

NS5-D5-(p, q) junction and if the tensions of the branes are balanced at the junction

[89].

This was originally considered for the junction of three (p, q)-strings, but was

generalised to a junction of three 5-branes [89].

A Junction of Three (p, q)-strings

Take the charge at the end point of a D1-brane (‘D-string’) to be given by 1; then q

coincident D-strings have charge q at one end. Similarly, take the charge at the end of

a fundamental string (‘F-string’) to be 1; then p F-strings have charge p. In general a

string has charge (p, q). When an F-string ends on a D-string, analysis of the charges

associated with the ends of D-strings and F-strings show that one side of the D-string

remains a D-string but the other side must become a boundstate of the F and

D-string [90]. The ‘sides’ are those lengths of the D-string seperated by the junction

point with the F-string. Denoting the charges of the F-string as (1, 0) and the

D-string as (0, 1), the third boundstate string at the junction has charge (1, 1).

Figure 18: The Deformation at the Junction of an F-string and D-string

Imagine the D and F-strings as ‘incoming’ and the (1, 1)-string as ‘outgoing’.

Therefore it makes sense that the (1, 1)-string has charge equal to the sum of the

charges of the other two strings. Assigning a sign of +1 to incoming charges and −1

for outgoing charges allows the conservation of charge to be written [90]:

3∑
i

pi =
3∑
i

qi = 0 (D.1)
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where i = 1, 2, 3 labels each of the three different strings. Such junctions (with

conserved charges) saturate the BPS bound provided that the strings are oriented at

specific angles [90, 91]. These angles ensure that the tensions of the strings are

balanced [89, 90]. Assigning each string a tension Ti and a direction ~ni, the tensions

must satisfy:

3∑
i

Ti~ni = 0 (D.2)

Figure 19: The Deformation at the Junction of (p, q)-branes.
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