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The investigation of gust response problems is a crucial and, if high accuracy is desired,
time consuming task. Since linear frequency domain methods have previously shown sig-
nificant reduction in computational cost for motion-induced aerodynamics, an extension
towards gust excitation is proposed. Time-domain signals are reconstructed by a super-
position of responses at several discrete frequencies. Once frequency domain solutions are
available, a reduced order model is constructed projecting the linearised Reynolds-averaged
Navier-Stokes equations on a combined modal basis. While eigenmodes are accurate in
predicting structural vibration, additional modes from proper orthogonal decomposition
capture aerodynamic effects due to gust excitation. For all methods a two-dimensional
NACA0012 aerofoil is investigated at sub- and transonic conditions. Limitations of the
linearised approach are first outlined by increasing the gust amplitude at both operating
points. Subsequently, a worst case gust length search is performed and it is shown that the
computational cost is reduced case dependent by several orders of magnitude compared to
the original system.

I. Introduction

Gust responses describe critical load cases during the aircraft design process. Highly accurate results at
low cost and early stage are desired to investigate a broad range of parameters. Industrial practice is based
on linear aerodynamics in frequency domain. While the theories of Theodorsen1 and Sears2 are sufficient
for simple aerofoil cases, a three-dimensional extension also considering compressibility effects is the doublet
lattice method.3 Examples for this are widespread from isolated wings4 to full aircraft configurations.5

Introducing correction factors obtained either from experiments or computational fluid dynamics (CFD) is a
well known approach to overcome the lack of accuracy at nonlinear conditions, e.g. high angles of attack or
transonic flight speeds.6 In the past years also CFD aerodynamics alone have been used to investigate gust
encounter. While loads are predicted with increased accuracy also at nonlinear conditions, computational cost
of time-accurate simulations is overwhelming. However, examples from simple aerofoils to civil aircraft are
available.7–9 Reduced order modelling is considered a reasonable approach to overcome high computational
cost when CFD aerodynamics are concerned, while giving accurate results.10 Several approaches are possible
to achieve a reduced order model (ROM) for gust interaction problems including autoregressive methods8

and eigenvalue realisation.11

Another widely spread model reduction technique is based on proper orthogonal decomposition (POD)12 ,
which was, with respect to fluid dynamics, first introduced to model coherent structures in turbulent flow-
fields.13 A series of snapshots is generated from either experimental or numerical investigations of the full
system at several instances in time, while modes are obtained by solving a small eigenvalue problem cor-
related to these snapshots. The idea of POD using frequency domain sample data was first introduced for
the investigation of a rather simple twelve-degrees-of-freedom mass-spring-damper system combined with
an incompressible three-dimensional vortex lattice method.14 An extension towards linearised CFD aerody-
namics for a pitch-plunge aerofoil was discussed as well.15 Snapshots are generated by exciting the system
in either pitch or plunge mode at discrete frequencies. An aeroelastic ROM is then formed by projecting
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the aerodynamic subspace only, while the structural system is retained. An extension to three-dimensional
cases, generating snapshots for all structural modes of interest, has also been presented.16

The application of system eigenmodes for model reduction is widely spread in combination with linear
aerodynamics.17 These ideas have then been applied to linearised CFD aerodynamics using the Schur com-
plement method to track structural eigenmodes while they are affected by the fluid.18 Critical eigenmodes
can be used in a centre manifold reduction to investigate transonic aeroelastic limit cycle oscillations and
perform parameter sensitivity analysis.19 A model extension for multiple modes is available.20 While excel-
lent agreement between results from the full nonlinear system and ROM is observed for free response, results
are not as satisfying during gust excitation.21

In the following, we extend linearised CFD aerodynamics towards gust excitation considering sinusoidal
as well as 1-cos gust shapes. Based on this, an aerodynamic ROM is introduced using POD techniques
with snapshots generated by exciting sinusoidal gusts at several nonuniformly distributed frequencies. The
aerodynamic ROM is then enriched by adding eigenmodes of the coupled fluid-structure Jacobian matrix to
discuss aeroelastic problems. A biorthonormal basis is achieved by applying the two-sided Gram-Schmidt al-
gorithm. All techniques are demonstrated using a two-dimensional NACA0012 aerofoil in sub- and transonic
regime. Limitations of the linearised approach are outlined by increasing the gust amplitude. The relative
information content retained inside the system is discussed as well as the first POD mode. Furthermore, a
worst case gust length analysis is performed at both conditions. Finally, computational cost is compared to
an equivalent analysis using nonlinear time-marching simulations.

II. Theoretical Formulation

A. Introducing Linearised Aerodynamics

The full order nonlinear system is first presented. The state-space vector w of size n can be written as

w =
[
wT

f ,w
T
s

]T
(1)

where wf and ws denote fluid and structural degrees-of-freedom, respectively. While the size of ws is rarely
larger than one hundred using a modal structural model, the fluid degrees-of-freedom can be many millions.
The governing equation in semi-discrete form is

ẇ = R(w,vg) (2)

where R is the nonlinear residual corresponding to the unknowns and vg denotes external disturbances due
to gusts. The difference between an equilibrium solution w0 and the state-space vector w is introduced as

∆w = w−w0 (3)

and accordingly for external disturbances. The residual in Eq. (2) is expressed around the equilibrium point
assuming small motions using a first order Taylor expansion

∆ẇ = R(w0,vg0) +
∂R

∂w
∆w +

∂R

∂vg
∆vg (4)

where R(w0,vg0) = 0 and ∂R
∂w denotes the Jacobian matrix A.

The system is transferred into linear frequency domain by assuming harmonic motions for the disturbance
vector ∆w and external excitation vector ∆vg. After rearranging, Eq. (4) becomes

(A− iωI) ŵ = −Ξ(ω)
∂R

∂vg
v̂g (5)

with ŵ and v̂g denoting complex-valued vectors of amplitudes. In Sec. III results are also presented consid-
ering the aerodynamic subsystem only. The corresponding equation is

(Aff − iωI) ŵf = −Ξ(ω)
∂Rf

∂vg
v̂g (6)

For an arbitrary time-domain signal, a superposition of results obtained at several discrete frequencies is
necessary. The weighting function Ξ(ω) is introduced to account for varying influence of responses at these
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frequencies on the whole solution. Normalised amplitudes from a Fourier analysis of the time-domain signal
(e.g. 1-cos gust) are used as weighting factors.

After obtaining frequency domain results, time-domain solutions are calculated from

w(t) = w0 +

J∑
j=1

<
(
ŵje

iωjt
)

(7)

The whole flowfield is reconstructed and can be used to either investigate loads or flow behaviour. Depending
on the number of considered frequencies J and the length of the time-domain signal, this becomes a rather
cost expensive task. Instead, it is also possible to calculate loads directly in frequency domain avoiding the
huge cost of flowfield reconstruction in the time-domain.

The right-hand side is modified so that all residual evaluations, necessary to calculate the gust influence,
can be done upfront. This decreases actual simulation time but increases initial cost. By applying the chain
rule the right-hand sides in Eqs. (5) and (6) neglecting the weighting factor become

∂R

∂vg
v̂g =

∂R

∂ẋ

∂ẋ

∂vg
v̂g (8)

where ẋ denotes artificial mesh velocities applied to model the gust during the CFD calculation using the
field velocity approach. Since the relation between gust disturbance vg and artificial mesh velocity ẋ is
simply

ẋ = −vg (9)

Eq. (8) becomes
∂R

∂vg
v̂g = −∂R

∂ẋ
v̂g (10)

The matrix ∂R
∂ẋ containing changes in residual due to mesh velocities is precomputed using a finite difference

scheme and stored explicitly. Computational cost of this task can be reduced further by evaluating the
residual only inside the stencil corresponding to the point where the mesh velocity is applied. A second
option to solve Eq. (8) is using a finite difference evaluation, applied around the equilibrium point, with a
known gust shape vector v̂g to avoid forming and storing the matrix ∂R

∂ẋ explicitly. Thus Eq. (10) becomes

∂R

∂vg
v̂g =

R(+εvg)−R(−εvg)

2ε
(11)

with ε denoting the finite difference step size. Furthermore, an analytical description for the gust vector is
introduced as

v̂g(x, ω) = vgze
iϕ(x,ω) (12)

where vgz and ϕ(x, ω) denote the constant gust amplitude in z-direction and the phase shift at every point,
respectively. This phase shift can either be obtained from a Fourier analysis of the time-domain signal or
more elegantly using the analytical expression

ϕ(x, ω) =
π

2
−
(
x + x0 +

Lg

2

)
ω (13)

where Lg and x0 denote the gust length and gust off-set, respectively. When a 1-cos gust is considered, a
constant factor of π needs to be subtracted from Eq. (13) for frequencies between 2i/Lg and (2i + 1)/Lg,
(i ∈ N) to match Fourier results. Similar expressions can be derived for horizontal gusts by considering the
corresponding amplitude and modifying the phase shift accordingly.

B. Basis from Biorthonormal Eigenmodes

Right and left eigenvectors φi and ψi of the system Jacobian matrix A are calculated by solving the eigenvalue
problems

Aφi = λiφi and ATψi = λiψi for i = 1, . . . ,m (14)
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where the dimension m is far smaller than the initial system size n. Collecting the eigenvectors, the right
and left modal matrices are formed as

ΦEMD = [φ1, . . . ,φm] and ΨEMD = [ψ1, . . . ,ψm] (15)

where subscript EMD denotes eigenmode decomposition. Furthermore, it is necessary to normalise the
eigenvectors to fulfil the biorthonormality condition

ΨH
EMDΦEMD = I (16)

The Schur complement method is used to calculate eigenmodes using CFD aerodynamics, where in accor-
dance with linear aerodynamics only structural normal modes are tracked while they are affected by the
fluid. The coupled direct eigenvalue problem can be written as

Aφi =

[
Aff Afs

Asf Ass

]
φi = λφi (17)

where the eigenvector φi is partitioned just as the state-space vector in fluid and structural contributions.
Assuming that the eigenvalue λ is not an eigenvalue of matrix block Aff , the small nonlinear eigenvalue
problem

S(λ)φs = λφs (18)

is solved instead, where the matrix S(λ) is called the Schur complement of A

S(λ) = Ass −Asf(Aff − λI)−1Afs (19)

Newton’s method is applied to solve Eq. (18) using structural frequencies as an initial guess to the eigen-
value.18 The adjoint eigenvalue problem for ψi can be rearranged in Schur complement form just as well.

C. Basis from Proper Orthogonal Decomposition

Linearised CFD aerodynamics following Eq. (6) is used to generate K snapshots at discrete frequencies with
sinusoidal excitation. Since full order operations are required, the computational cost is high. Solutions ŵf

are stored as columns in the snapshot matrix S as

S =
[
ŵ1

f , ŵ
2
f , . . . , ŵ

K
f

]
(20)

The POD basis ΦPOD is obtained as a linear combination of snapshots

ΦPOD = Sνk (21)

where the vector νk is scaled so that vectors in ΦPOD are unit length. The eigenvalue problem of dimension K

SHSνk = λkνk (22)

is solved to ensure the best possible approximation in Eq. (21). Eigenvalues λk are real and positive since
SHS is positive definite and symmetric. The relative information content a certain mode λk contributes to
the system, also often referred to as energy, is given by

rk = λk

(
K∑
i=0

λi

)−1

(23)

and can be used to decrease the number of modes further by only considering those with a high relative
information content.
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D. Combined Model Basis and Model Reduction

An aeroelastic ROM is introduced to investigate the influence of gusts on structural modes by combining
the two bases just introduced as

Φ =
[
ΦEMD , ΦEMD , ΦPOD

]
and Ψ =

[
ΨEMD , ΨEMD , ΨPOD

]
(24)

where ΨPOD = ΦPOD. Since only the aerodynamic subsystem is considered to identify ΦPOD, all POD
modes are padded with zero entries in the structural part. Conjugates of the eigenmodes can be added at
no additional cost and are necessary to form a sufficient basis. A biorthonormal set is achieved by applying
the two-sided Gram-Schmidt algorithm. It should be noted that the biorthonormalisation can break down
and thus a more advanced, and expensive, version of the algorithm can be applied to account for this.22

However, for all cases investigated in this paper, the basic algorithm is sufficiently robust.
Describing the state-space vector ŵ by

ŵ = Φẑ (25)

and introducing in Eq. (5), gives after projection with the left modal basis

ΨH (A− iωI) Φẑ = −Ξ(ω)ΨH ∂R

∂vg
v̂g (26)

The corresponding ROM for aerodynamics is obtained by using POD modes only and expressing the
state-space vector ŵf as

ŵf = ΦPODẑf (27)

Thus, Eq. (6) becomes after projecting

ΨH
POD (Aff − iωI) ΦPODẑf = −Ξ(ω)ΨH

POD

∂Rf

∂vg
v̂g (28)

Solving Eqs. (26) or (28) at a range of frequencies, and reconstructing full order solutions afterwards, is an
efficient way to investigate gust encounter for coupled and aerodynamic systems, respectively.

III. Results

Results considering a pitch-plunge aerofoil encountering either a sinusoidal or 1-cos gust are presented.
First, several responses are shown to outline that the linearised approach is accurate for gust interaction.
Limitations are demonstrated by increasing the gust amplitude causing nonlinearities in the corresponding
time-marching solution. Secondly, POD is introduced considering aerodynamics only. Several parameters are
varied to ensure a sufficient modal basis is created. Afterwards, the ROM is extended by adding eigenmodes
from the system Jacobian matrix to discuss coupled fluid-structure cases. Based on this, a worst case gust
length analysis is performed to identify critical conditions and a cost analysis is provided as well. For all
cases the Reynolds-averaged Navier-Stokes (RANS) equations are solved.

Operations on the nonlinear system for the aerofoil test case are performed using a meshless scheme
solving the RANS equations.23,24 Turbulence is modelled using the Spalart-Allmaras turbulence model.25

Gusts are introduced by the field velocity approach which adds an artificial mesh velocity to include gust
excitations.26 The artificial mesh velocity is prescribed according to the investigated gust. While this
preserves the gust shape during the calculation, since it is unaffected by numerical dissipation, also the
influence of structural movements on the gust is neglected. However, due to a lack of affordable alternatives
this is still the most common way to model gusts during a CFD calculation. All linearised systems are solved
using an improved version of the generalised minimal residual solver.27

The considered test case is a NACA0012 aerofoil free to move in pitch and plunge. Structural parameters
are given in Tab. 1 and correspond to previous investigations.20,28 The mesh used for all RANS calculations
consists of 31,567 grid points and the distribution around the aerofoil leading edge is shown in Fig. 1a.
Freestream Mach numbers of 0.3 and 0.8, covering sub- and transonic aerodynamics, are investigated for
zero degrees angle of attack and a Reynolds number of ten million. Surface pressure distributions for both
conditions are shown in Fig. 1b with a strong shock for the higher Mach number. This nonlinearity is
considered in the following linearised model and the corresponding ROM, since Eq. (4) is formed around the
nonlinear steady-state solution.
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Parameter ωr rα µ xα xea U

Value 0.343 0.539 100.0 -0.2 0.4 2.0

Table 1. Structural parameters of pitch-plunge aerofoil
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(b) Steady surface pressure distribution

Figure 1. Point distribution and steady-state surface pressure for NACA0012 aerofoil

A. Linear Frequency Domain Aerodynamics for Gust Encounter

For a sinusoidal gust only the frequency 1/Lg related to the gust length is required to capture the sys-
tem behaviour. Furthermore, the weighting function becomes one. Real and imaginary surface pressure
distributions obtained from both the Fourier analysis of the time-domain signal and the linear frequency
domain (LFD) simulation are shown in Fig. 2a and b with a normalised gust amplitude of vgz = 0.01. Since
a symmetric case is investigated only the upper surface is displayed. While at subsonic conditions minor
differences occur around the stagnation point, for the transonic test case discrepancies arise around the
shock location on both sides of the aerofoil. When the gust amplitude is decreased the nonlinear reference
solution converges towards the linearised one in both cases. When time-domain results are reconstructed
using Eq. (7) and compared to the nonlinear reference solution, a short initial transient period occurs for the
time-accurate simulation, and thus small differences can be found in the time history of the lift coefficient
during the first two periods as shown in Fig. 3a. In terms of cost the frequency domain solve is between
one and two orders of magnitude faster than the corresponding nonlinear time-marching solution slightly
depending on the investigated frequency.

The normalised amplitude of lift coefficient over gust amplitude is shown in Fig. 3b. The gust amplitude
is normalised using the free-stream velocity. A constant line is obtained from the linear approach while non-
linear solutions start to differ with increasing gust amplitude. These differences are a measure of nonlinearity
induced by the unsteady gust excitation. For both Mach numbers results are matching for small amplitudes.
This shows that the linearised approach is capable of representing motion around nonlinear steady-state
solutions. In subsonic conditions the response starts to decrease before it diverges while at transonic con-
ditions no significant drop is observed since the shock dominates the flow field thus inhibiting a decrease
in lift. Once the amplitudes are high enough to cause either significant shock movement or separation the
unsteady lift increases extensively for both Mach-numbers. Furthermore, it is no longer possible to achieve
converged solutions for gust amplitudes above 25% of the free-stream velocity in transonic flow since the
excitation generates massive separation.

For 1-cos gusts several LFD results need to be combined. Applying the analytical phase description
and weighting function as outlined in Sec. II, Eq. (6) is solved for multiple frequencies. The number of
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Figure 2. Complex surface pressure coefficients for a sinusoidal gust with gust length Lg = 10
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Figure 3. Gust response for a sinusoidal gust with gust length Lg = 10

equally spaced frequencies J needs to be adjusted based on the gust length. While for longer gusts only
a few frequencies are necessary, for shorter gusts this number is increasing. For instance, 15 frequencies
for Lg = 20 and 45 frequencies for Lg = 5 are required to achieve an error below 1% for the maximum
lift coefficient. The main shape of the 1-cos gust is covered by lower frequencies, while higher frequencies
are suppressing unwanted oscillations. Including even more frequencies has no influence on integrated loads
while still slightly affecting the overall flowfield. Also an exponential distribution function has been tested
but no advantages were observed. Afterwards, time-domain results are reconstructed using Eq. (7) adjusting
J accordingly. In Fig. 4 results are shown comparing LFD to nonlinear time-domain results for several gust
lengths. Good agreement is observed in both sub- and transonic cases with minor discrepancies before the
gust interacts with the aerofoil and during the lift decay. Again the shock at transonic conditions stabilises
the flowfield and suppresses oscillation that occur during the lift decay for Lg = 5 in subsonic conditions.
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Figure 4. Lift coefficient over non-dimensional time for 1-cos gusts with gust lengths of Lg = 5, 10 and 20

B. Aerodynamic Reduced Order Model using POD

The aerodynamic ROM based on proper orthogonal decomposition is discussed next. Several parameters are
varied to ensure a sufficient modal basis for a broad range of gust encounters. All POD modes are calculated
assuming a fixed aerofoil and considering positive frequencies only. However, the complex conjugate of each
snapshot can be added at no extra cost which doubles the number of entries in the snapshot matrix and thus
possible modes.15

Snapshots are calculated using the exponential distribution function

fj = f0 +
1

ej∆f
(29)

to represent the frequency range of interest for various gusts. Other distribution functions such as linear and
gradual increase with varying spacings have been tested. In order to achieve results with the same accuracy
the exponential distribution offers, more than double the number of snapshots were required. It should
be noted that the snapshot sampling is not related to the sampling of frequencies to investigate a discrete
time-domain signal. While for snapshots an exponential distribution offers advantages to gather information
for different gusts, for a 1-cos gust no clear differences could be observed between different distribution
functions.

The ROM is created with 40 snapshots based on Eq. (29) using f0 = 0.0 and ∆f = 0.125 to ensure a
broad range of gust lengths can be captured without recalculating the POD basis. As outlined before, the
complex conjugate of each snapshot can be added at no additional cost, doubling the number of possible
POD modes. The relative information content a certain mode contributes to the system is shown in Fig. 5a
after sorting in descending order. For the transonic case over 98% of the information content is covered by
the first mode and still 85% at subsonic conditions. From the second mode on, both cases share a gradual
decrease until roughly 50 modes, followed by an even steeper decrease until values become numerically zero.

The influence of energy retained inside the ROM is investigated using a 1-cos gust with Lg = 10 and
x0 = 10. In contrast to linear solves of the full system the spacing and number of considered frequencies
for solving Eq. (28) is of minor interest since the system is very small. Time histories for lift coefficient are
shown in Fig. 5b. If 99.99% of the relative information content is included the time-domain signal is rebuild
accurately. When the amount of information is decreased the peak value increases and oscillations during the
lift decay occur while the global shape is preserved. For 98% the overall tendency is still correct but besides
the peak value also the lift decrease is no longer represented. For all following results rk = 99.99% is retained
to identify occurring loads precisely, resulting in 28 modes in subsonic and 18 in transonic since nearly all
information is already contained in the first mode. Thus, a huge reduction is achieved compared to the
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Figure 5. Investigation of modes retained in POD ROM

(a) M = 0.3 (b) M = 0.8

Figure 6. Magnitude of pressure for the first POD mode

157,835 degrees-of-freedom of the full system. Subsequently, this basis can be applied to several 1-cos gusts
with good agreement for various gust lengths and off-sets. It should be noted, that using a criterion based
on rk rather than retaining a fixed number of modes offers the ROM the capability to adjust to different
flow conditions.

The magnitude of pressure for the first POD mode is shown in Fig. 6. Since a symmetric case is
investigated the behaviour on upper and lower side of the aerofoil are the same. This mode highlights the
area where the flowfield is affected strongest. In transonic conditions the shock region is clearly visible,
while in subsonic conditions the suction around the leading edge can be seen. Small values in both plots
are caused by the scaling of POD modes, necessary to achieve orthonormality. The slightly uneven flowfield
results from the post-processing interpolation of the point centred data.
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Figure 7. Pitch over time for 1-cos gust with Lg = 10 obtained from ROM and nonlinear reference solution

Task Cost(sec)

Time-domain simulation 36,000

Reduced order model build-up (total cost) 8100

a) Calculating EMD basis 1200

b) Calculating snapshots and POD basis 6800

c) Calculating gust influence matrix 10

d) Combining bases and biorthonormalisation 90

Coupled ROM LFD for 1-cos gust 10

Post-processing

a) Rebuilding whole solution 186

b) Rebuilding only structural d.o.f. 1

Table 2. Comparison of computational cost

C. Aeroelastic Reduced Order Model using a Combined Basis

The ROM presented in the following section consists of POD modes to cover gust influences and eigenmodes
to account for structural motion. The modal basis is obtained as outlined before, where number and spacing
of snapshots are chosen based on the results presented in Sec. III B. The resulting subsonic model consists
of 32 modes where four modes are related to eigenmodes and their corresponding complex conjugate and 28
to POD. In transonic conditions the total number of modes is 22 of which 18 are POD modes.

Since the frequency spacing and number of considered frequencies is of minor influence on the computa-
tional cost, it should, however, be ensured that low frequencies are included as well as several frequencies
around the structural eigenfrequencies to resolve gust excitation and structural motion accurately. Recon-
structed time-domain signals for pitch are shown in Fig. 7 together with nonlinear reference solutions. The
displayed gust shape is related to the leading edge. For both Mach numbers good agreement is observed
besides minor differences for the peak values due to nonlinearities. Similar results are obtained for different
gust lengths and off-sets.

A comparison of computational cost necessary to obtain nonlinear reference solutions and ROM results
including cost to generate the model are shown in Tab. 2. For nonlinear simulations a non-dimensional time
step size of 0.02 and 5000 time steps were used. While the build-up cost of the ROM is high, it occurs only
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Figure 8. Worst case gust length for pitch

once for a given set of flight parameters (e.g. Mach number or angle of attack) and is independent from the
investigated gust shape including gust length and off-set. The time-domain simulation on the other hand
needs to be redone for any parameter change. Since decreasing gust lengths increase the required frequency
range, the time necessary for shorter gust lengths is increased. Therefore, time shown for an LFD analysis
of the ROM is an average value obtained for several gust lengths. Furthermore, the reduced model needs
post-processing where the frequency response is transferred into time-domain which can be a cost expensive
task. This cost can be significantly decreased by reconstructing only time-domain histories for structural
degrees-of-freedom. Overall, a ROM solve is faster by three orders of magnitude.

The ROM is now applied for gust lengths between Lg = 2 and 32 using an increment of ∆Lg = 0.1 and a
constant gust amplitude of vgz = 0.01 at both Mach numbers to identify the worst case gust length. Results
for pitch are shown in Fig. 8 together with several reference solutions. For both Mach numbers the ROM
correctly predicts the system behaviour. In subsonic flow the worst case gust length is predicted at Lg ≈ 6.0
which correlates to the angular frequency of the pitch mode affected by the fluid at ωα = 1.06. The plunge
mode instead corresponds to a gust length of Lg ≈ 17.9. In transonic, the worst case gust length is shifted
to Lg ≈ 14.4. In addition, results starts to differ from the reference solution since nonlinearities are arising
which are not covered by the reduced model. The time necessary to perform the worst gust length search is
roughly 30 minutes using the ROM while the full order equivalent would have taken several days.

IV. Conclusions

This paper outlines a method to compute the aerodynamic and structural response to gust encounter.
The governing equations are linearised to obtain responses to sinusoidal gusts, a method previously only
used for motion-induced aerodynamics. Arbitrary time-domain signals such as 1-cos gusts can be simulated
using a weighted superposition of responses at discrete frequencies. Computational cost is reduced further
by introducing proper orthogonal decomposition. Snapshots are calculated based on the former outlined
linearised approach at nonuniformly distributed frequencies. Fluid-structure cases are analysed by enriching
the modal basis with eigenmodes of the coupled Jacobian matrix.

The test case presented is a simple NACA0012 aerofoil in sub- and transonic conditions. Complex surface
pressure distributions are shown with good agreement for both flight conditions. For the POD model,
snapshots are calculated based on the linearised approach at exponentially distributed frequencies. The
relative information content retained inside the system is investigated and the first POD mode is discussed.
After enriching the reduced modal basis by eigenmodes of the coupled Jacobian matrix, structural responses
are shown and a worst case gust length search is performed with satisfying results. In terms of computational
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cost the ROM offers an improvement of three orders of magnitude for a single response and several orders
of magnitude for a worst case gust length search.

An extension towards a three-dimensional industrial relevant test case for both the linearised approach
and the reduced order model is currently in progress. Also, it is desirable to conciser nonlinear effects to
increase the accuracy of predicted loads further in transonic conditions where nearly all aircraft operate
nowadays. Furthermore, transferring the ROM into time-domain is currently investigated to simplify the
inclusion of a control system and speed up post-processing by avoiding the inverse Fourier transform.
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