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Abstract

We study exclusive vector meson photoproduction, γp → V + p with V = J/ψ or Υ,

at NLO in collinear factorisation, in order to examine what may be learnt about the gluon

distribution at very low x. We examine the factorisation scale dependence of the predictions.

We argue that, using knowledge of the NLO corrections, terms enhanced by a large ln(1/ξ)

can be reabsorbed in the LO part by a choice of the factorisation scale. (In these exclusive

processes ξ takes the role of Bjorken-x.) Then, the scale dependence coming from the remaining

NLO contributions has no ln(1/ξ) enhancements. As a result, we find that predictions for the

amplitude of Υ production are stable to within about ±15%. This will allow data for the

exclusive process pp → pΥp at the LHC, particularly from LHCb, to be included in global

parton analyses to constrain the gluon PDF down to x ∼ 10−5. Moreover, the study of

exclusive J/ψ photoproduction indicates that the gluon density found in the recent global

PDF analyses is too small at low x and low scales.
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1 Introduction

The present global PDF analyses (e.g. NNPDF3.0 [1], MMHT2014 [2], CT14 [3]) find that there is

a large uncertainty in the low x behaviour of the gluon distribution. There is a lack of very low x

data, particularly at low scales. Moreover, the gluon is determined at low x mainly by the DGLAP

evolution of deep inelastic scattering, that is, not from a direct measurement1, but rather from

the derivative dF2/d lnQ2. As a result, at low scales, the uncertainty on the gluon PDF is large

for x <∼ 10−3. On the other hand, the HERA data on diffractive vector meson photoproduction

[4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], γp → V + p and the LHC data on the exclusive processes

pp → p V p [16, 17, 18] where V = J/ψ or Υ, and pPb → p V Pb [19], sample directly the gluon

distribution down to x ∼ 10−5. For a review of exclusive vector-meson production at the LHC see,

for example, Ref. [20].

However, J/ψ and Υ data are not used in the global PDF analyses. One reason is that the

corresponding cross sections are described by non-diagonal (skewed) analogues of the PDFs, namely

generalised parton distributions (GPDs), due to the different masses of the incoming photon and

the outgoing V meson [21]. The GPDs can be related to the PDFs via the Shuvaev transform in

the low ξ region [22].2 In this work, following [23], we make the physically motivated assumption

that the input distribution has no singularities in the right-half Mellin-N plane which implies that

this relation holds at NLO to accuracy O(ξ). Another reason is the dependence of the theoretical

predictions on the choice of the factorisation scale, µF . This problem has two independent parts.

One part has a technical nature and the other is more physical. Let us discuss them in turn. First,

the ‘technical’ problem, which is related to the convergence of the perturbative expansion at low

ξ and low scales. A good illustration is that the NLO amplitude for the exclusive high-energy

γp → J/ψ + p process [24] was shown to yield a cross section which varies by up to an order of

magnitude for a reasonable variation of µF . This problem was emphasised recently by Wagner et

al. [25]. The strong scale dependence arises because in the DGLAP evolution of low ξ GPDs the

probability of emitting a new gluon is strongly enhanced by the large value of ln(1/ξ). Indeed, the

mean number of gluons in the interval ∆ lnµF is [26]

〈n〉 ' αsNC

π
ln(1/ξ) ∆ lnµ2

F , (1)

leading to a value of 〈n〉 up to about 8, for the case ln(1/ξ) ∼ 8 with the usual µF scale variation

interval from µF/2 to 2µF . In contrast, the NLO coefficient function allows for the emission of only

one gluon. Therefore we cannot expect compensation between the contributions coming from the

GPD and the coefficient function as we vary the scale µF . (At large ξ the compensation is much

1In principle, measurements of FL would provide a direct determination, but the data are poor and do not reach

low x. Moreover, the convergence of the perturbative series for FL is relatively poor.
2For GPDs, ξ plays the role of the PDF variable x and is given by ξ = (p+ − p′+)/(p+ + p′+), where p+ and p′+

are the light-cone plus-momenta of the in- and outgoing protons.
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more complete and provides reasonable stability of the predictions to variations of the scale µF .)

In Section 2, we use the NLO contribution to fix a choice of the factorisation scale for the LO part

of the amplitude, which allows the ln(1/ξ) corrections to be resummed.

The second or ‘physical’ reason why there is a strong scale dependence of J/ψ and Υ photopro-

duction is due to ‘defects’ in the presently available PDF sets which are obtained in the DGLAP

global analyses of deep inelastic and related hard scattering data. That is, our studies indicate that

there is a strong scale dependence in vector-meson photoproduction caused by the unexpectedly

small LO contribution in comparison with the NLO correction. This occurs due to the very low

input gluon density in the low x domain obtained in the recent global PDF analyses. We conclude

that at the input scale, the low x gluon density is underestimated in comparison with that for

quarks. The crucial observation is that the number of input gluons (which is parametrised freely in

the global analyses) is found to be much less than the number of such gluons emitted by quarks —

or, to be more precise, gluons associated with the quark (each quark carries a gluon field created

by its colour charge). With the present global partons the NLO sea quark contribution to V meson

photoproduction grows with decreasing x faster than the input gluons. As a result, at sufficiently

high energy, the quark component of the NLO correction to V photoproduction approximately can-

cels the main LO contribution which is due only to the gluon density. Therefore a small variation

of the scale in the NLO component leads to a strong variation of the predicted cross section.

Recently the LHCb Collaboration have presented data for open charm and beauty production

in the forward direction [27, 28]. These data sample approximately the same kinematic domain as

exclusive vector meson production; actually the x values are slightly larger, and the scale for beauty

production is also larger. It was shown in [29, 30] that the data can be reproduced by NLO QCD

using the present global PDFs. Note, however, that again there is a large sensitivity to the choice of

factorization scale. Indeed, to reproduce the data one needs to take a scale approximately a factor

of two larger than the natural choice µF =
√
Q2 +m2

Q. Since the optimal or appropriate scale for

open heavy-quark production is not known at present, these data do not yet reliably determine the

low x gluon at low scales. In the present paper we focus on exclusive vector-meson production.

Moreover, our goal is not to present a new global PDF analysis or an explicit determination of the

low x gluon, but rather to study the possibility to reduce the scale dependence of the prediction,

to study the qualitative structure of the NLO amplitude and to give hints of the consequences for

the behaviour of the low x gluon at low scales.

In Section 2 we consider the NLO contribution originating from the light quark (singlet) GPD.

We show that this part of the NLO amplitude allows us to choose a factorisation scale which sums

the ln(1/ξ) enhanced contributions inside the GPD. The remaining part of the NLO contribution

has no large ln(1/ξ) factors, and, as shown in Section 3.2, the compensation between the scale

dependence of the GPDs and of the coefficient functions for Υ production makes the NLO result

sufficiently stable for the data to be included in global parton analyses (just as for the predictions of

processes at larger x). The study of the J/ψ photoproduction in Section 3.1 suggests that the gluon
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density obtained in the existing PDF analyses is too small at low x and low scale. In Section 4 we

present our conclusions.

2 NLO corrections and the choice of µF

Our aim in this section is to show how knowledge of the NLO contribution for γp→ V +p allows us to

sum the ln(1/ξ) enhanced contributions by a particular choice of µF in the LO part of the amplitude

(and correspondingly in the NLO coefficient function), which, in turn, reduces the factorisation scale

dependence of the predicted cross section. We outline the procedure in Section 2.2, but first we

comment on the NLO formalism.

2.1 NLO formalism for γp→ V + p

The NLO formalism for γp → V p has been presented in [24]. However, before we can apply it to

describe the high energy V photoproduction data, we must note one important correction.

The LO partonic amplitude, A(0)
g (x/ξ), for the subprocess γ + (gg) → V , can be calculated by

considering the fusion of a photon with a pair of on-shell gluons with zero transverse momentum

and physical, transverse, polarisations. If we use dimensional regularisation with D = 4 + 2ε (as

in [24]) to regularize the ultraviolet (UV) and infrared (IR) divergences, then the result is given,

before dividing by the number of physical transverse polarisations of the incoming gluon, by

A(0)
g (x/ξ) = αs2(1 + ε) . (2)

In D dimensions, there are D−2 = 2+2ε possible transverse directions. Since the entire calculation

must be performed in D dimensions, to properly average over the polarisation of the incoming gluon,

we must divide (2) by this factor, and not simply by 2. Therefore for the LO partonic amplitude

we obtain, contrary to [24] (prior to the first erratum),

A(0)
g (x/ξ) = αs . (3)

The difference of a factor of (1+ε) does not alter the finite LO result (as ε is taken to zero) but does

lead to a different NLO result due to the differing counter-terms. Indeed, the extra factor (1 + ε)

presented in [24] generates extra terms ∼ ε/ε in the counter-terms, ∆, giving them a form

∆ = . . .

(
1

ε̂
+ 1 + ln

(
µ2
F

µ2

))
,

where 1/ε̂ = 1/ε + γE − ln(4π) and γE is the Euler-Mascheroni constant. However, with the LO

partonic amplitude (3) we instead obtain counter-terms containing

∆ = . . .

(
1

ε̂
+ ln

(
µ2
F

µ2

))
.
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It is precisely this alteration to the counter-terms which leads us to a different NLO finite result.3

This result agrees with that of [24] with both errata.

The details of our recalculation of the NLO result will be published separately [33]. Here we

simply state the final result for the high-energy limit of the NLO part of the amplitude. In the

high-energy approximation, W 2 �M2
V (where W is the c.m. energy of the incoming γp system and

MV the mass of the vector meson), the imaginary part of the amplitude dominates and the leading

contribution to the NLO correction comes from the region ξ � |x| � 1. The matrix element is

given by

A(1)(ξ, µF ) ≈ −iπ C(0)
g

[
αs(µR)Nc

π
ln

(
m2

µ2
F

) 1∫

ξ

dx

x
Fg(x, ξ, µF )

+
αs(µR)CF

π
ln

(
m2

µ2
F

) 1∫

ξ

dx (FS(x, ξ, µF )− FS(−x, ξ, µF ))

]
. (4)

Here m is the mass of the c (for J/ψ) or b (for Υ) quark and

Fg(x, ξ, µ) =
√

1− ξ2Hg(x, ξ, µ), (5)

FS(x, ξ, µ) =
√

1− ξ2HS(x, ξ, µ), (6)

(for this unpolarised, forward process) with Hg, HS the gluon and quark singlet GPDs, respectively.

The GPDs can be calculated from the diagonal PDFs, q(x, µ), q̄(x, µ) and g(x, µ), via the Shuvaev

transforms:

HS(x, ξ, µ) =
∑

q=u,d,s

Hq(x, ξ, µ)−Hq(−x, ξ, µ), (7)

Hq(x, ξ, µ) =





∫ 1

−1

dx′

[
2

π
Im

∫ 1

0

ds

y(s)
√

1− y(s)x′

]
d

dx′

(
q(x′, µ)

|x′|

)
, x ≥ 0

∫ 1

−1

dx′

[
2

π
Im

∫ 1

0

ds

y(s)
√

1− y(s)x′

]
d

dx′

(
q̄(x′, µ)

|x′|

)
, x < 0

(8)

Hg(x, ξ, µ) =

∫ 1

−1

dx′

[
2

π
Im

∫ 1

0

ds(x+ ξ(1− 2s))

y(s)
√

1− y(s)x′

]
d

dx′

(
g(x′, µ)

|x′|

)
, (9)

where

y(s) =
4s(1− s)

x+ ξ(1− 2s)
, (10)

3This correction was also mentioned in [31, 25] and discussed in more detail in [32].
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with an accuracy O(ξ), see Ref. [23]. Expressions (8) and (9) were used not only for the asymptotic

NLO amplitude, (4), but also for the full expression for the complete NLO amplitude used in the

numerics presented below. The LO coefficient function,

C(0)
g = αs(µR)

4π
√

4παeq(e
∗
V eγ)

Nc ξ

(〈O1〉V
m3

)1/2

, (11)

where ei are polarisation vectors and 〈O1〉V is the NRQCD (non-relativistic QCD) matrix element

of the cc̄ → J/ψ (or bb̄ → Υ) transition. In order to have a small relativistic correction to 〈O1〉V ,

we have to calculate the Feynman diagrams assuming that the charm/bottom-quark line has mass

m = MV /2 where V = J/ψ,Υ [34].

One can see directly from the high energy, leading ln(1/ξ), limit, given in (4), that for the choice

µF = m the asymptotic limit of the quark NLO contribution vanishes. It is this observation that

will allow us (in Section 2.3) to claim that a suitable value for the factorisation scale in leading

logarithm terms is µF = m.

Before we show how the NLO contribution allows us to fix the scale µF in the LO term, it is

informative to first recall its structure and introduce the notation in terms of the LO prediction.

2.2 General procedure

We start with the LO contribution to γp → V + p. It is sketched in Fig. 1(a), and the amplitude

is given by the convolution

A(0)(ξ, µF ) =

∫ 1

−1

dx

x
C(0)
a (x/ξ)Fa(x, ξ, µF ) ≡ C(0)

a ⊗ Fa(µF ) , (12)

where the sum over a = q, g is understood and C
(0)
q = 0 for this process. The coefficient function

C
(0)
g is calculated using the non-relativistic vector meson wave function. In general, the relativistic

corrections are not small for the J/ψ case. These corrections should be considered together with the

three parton (cc̄+g) component of the wave function; that is, accounting for the rôle of gluons which

provide the interaction between charm quarks. For this process, it was shown by Hoodbhoy [34] that

the consistent treatment of relativistic corrections may, to good accuracy, be effectively accounted

for by choosing, in the non-relativistic formula, the charm quark mass mc = MJ/ψ/2.4 After this,

the remaining part of the correction is quite small (a few percent only). So, we may use the

non-relativistic J/ψ wave function with mc = MJ/ψ/2, to obtain a result with good accuracy.

4Strictly speaking, Hoodbhoy considered the electroproduction limit Q2 � M2
J/ψ. This limit simplifies the

calculation, but inspection of the proof indicates that the statement about a small relativistic correction should be

reliable below this limit as well.
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We return to discuss V = J/ψ or Υ. At LO the coefficient function C
(0)
g does not depend

on µF , whereas the low x gluon distribution Fg depends strongly on the scale. In other words,

based on (12), the exclusive V data measure g(x, µF ), but we do not know the value of the scale

at which it has been determined. How does this scale freedom arise? To obtain the LO result

the coefficient function – the upper box in Fig. 1(a) – is calculated with on-mass-shell gluons with

transverse momenta lt = 0. In this collinear approach the factorisation scale µF acts effectively as

the ultraviolet (UV) cutoff of the logarithmic integral
∫
dl2t /l

2
t ∝ lnµ2

F over the gluon transverse

momentum in the gluon loop of Fig. 1(a). Formally, in the LO collinear factorisation approach the

value of µF is not known. In principle, the full result does not depend on µF since the higher-order,

NLO, NNLO, ..., corrections compensate the effect of variations of µF . However, in reality the

perturbative series is truncated and the compensation may not be sufficient to provide the scale

stability of the theoretical prediction.

On the other hand, we can go beyond the collinear logarithmic approximation by computing

the lt integral accounting for the lt dependence5 of the hard γ+ gg → V matrix element,M, shown

in the upper box of Fig. 1(a). In comparison with the coefficient function (calculated with lt = 0)

now the lt and l2 dependence of M is included explicitly, and provides the UV convergence of the

integral over lt. Formally, in collinear factorisation the difference between the pure logarithmic

(lnµ2
F ) evaluation and the precise calculation of the gluon lt integral is treated as part of the

NLO correction. This part of the NLO correction is of kinematic origin and is usually quite large.

Fortunately, it can be moved into the LO component of the amplitude, noticeably reducing the

remaining NLO correction.

Instead of performing an independent calculation which accounts for the lt dependence, we can

remain within the collinear approach and determine the value of the lt integral given that the NLO

coefficient function C
(1)
q of Fig. 1(b) is known. Indeed, Fig. 1(b) is the only diagram for the quark

NLO coefficient function. In this approach the incoming quarks are assumed to be on-mass-shell

and with zero transverse momenta but the loop integral over l, which contains the lt dependence,

is calculated exactly. Since this is the same integral as that which occurs in Fig. 1(a) we can use

the result for C
(1)
q to obtain a precise value, J , of the corresponding integral in the LO amplitude

of Fig. 1(a). After this we choose a scale µF = µ0 which mimics the precise lt integration. That

is, with a scale choice satisfying lnµ2
0 = J we have moved a large contribution from NLO to LO,

and can continue to work in the conventional collinear approach, but now with a smaller NLO

correction.

5A precise integration over lt was, in particular, implemented in [35].
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(x+ ξ)P+ (x− ξ)P+

p p′

Vγ

Fg

CLO
g

(x+ ξ)P+ (x− ξ)P+

l

p p′

Vγ

Fq

CNLO
q

Figure 1: (a) The LO contribution to γp→ V + p, showing the convolution (12). (b) The NLO quark

contribution. For these graphs all permutations of the parton lines and coupling of the gluon lines to the

heavy-quark pair are to be understood. Here P ≡ (p+ p′)/2 and l is the loop momentum.

2.3 Transfer of part of the NLO to the LO contribution

Since the above observation is crucial, let us demonstrate the procedure in more detail. At NLO

level the LO+NLO amplitude at some factorisation scale µf may be expressed in the form6

A(0)(µf ) + A(1)(µf ) = C(0) ⊗ F (µf ) + αsC
(1)(µf )⊗ F (µf ) , (13)

where the F s are the GPDs and where the coefficient function C(0) does not depend on the factori-

sation scale. Note that we are free to evaluate the LO contribution at a different scale µF , since

the resulting effect can be compensated by changes in the NLO coefficient function, which then also

becomes dependent on µF . Then eq. (13) becomes

A(0)(µf ) + A(1)(µf ) = C(0) ⊗ F (µF ) + αsC
(1)
rem(µF )⊗ F (µf ) . (14)

Note that although the first and second terms on the right hand side depend on µF , their sum does

not (to O(α2
s)) and is equal to the full LO+NLO amplitude calculated at the factorisation scale µf .

In (13) the NLO coefficient function C(1) is calculated from Feynman diagrams which are in-

dependent of the factorisation scale. How does the µF dependence of C
(1)
rem in (14) actually arise?

It occurs because we must subtract from C(1) the αs term which was already included in the LO

contribution.7 Since the LO contribution was calculated up to some scale µF the value of C(1) after

6For ease of understanding we omit the parton labels a = g, q on the quantities in (13) and the following equations.

The matrix form of the equations is implied.
7Simultaneously this subtraction also provides the infrared convergence of C(1).
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the subtraction depends on the value µF chosen for the LO component. The change of scale of the

LO contribution from µf to µF also means we have had to change the factorisation scale which

enters the coefficient function C(1) from µf to µF . The effect of this scale change is driven by the

LO DGLAP evolution, which is given by

A(0)(µF ) =

(
C(0) +

αs
2π

ln

(
µ2
F

µ2
f

)
C(0) ⊗ V

)
⊗ F (µf ) , (15)

where V denotes the skewed splitting functions. That is, by choosing to evaluate A(0) at scale µF we

have moved the part of the NLO (i.e. αs) corrections given by the last term of (15) from the NLO

to the LO part of the amplitude. In this way C(1) becomes the remaining µF -dependent coefficient

function C
(1)
rem(µF ) of (14). In spite of the unusual form of (14), with two different scales µf and µF ,

it is an exact equality at NLO and could, in principle, be generalised to higher orders.8

2.4 Large ln(1/ξ) terms resummed in the LO contribution

The idea is to use the above procedure to reduce the scale dependence of the exclusive V pho-

toproduction amplitude. Unfortunately the value of µF is just one number, while C(1)(x/ξ) is a

function of the ratio x/ξ. So we have no chance to nullify C(1) completely. Nevertheless we can

nullify the most important NLO correction which is enhanced by the large value of ln(1/ξ). This

contribution is generated by the integral
∫

(dx/x) in the C
(1)
rem(x/ξ, µF )F (x, ξ, µf ) convolution of

eq. (14) over the kinematic region of 1� x� ξ. That is, we choose a scale µF = µ0 which nullifies

C(1)(x/ξ) in the limit of x� ξ. It can be seen from (4) that the scale µF = µ0 = m ensures that the

ln(1/ξ)-enhanced NLO corrections completely vanish for both the quark and the gluon components.

From the NLO viewpoint the particular choice of µF = m in the LO part is irrelevant. The

corresponding order αs effect is exactly compensated by the remaining C
(1)
rem term. However, the

variation of µF in the LO part affects not only the O(αs) terms but the higher-order αs contributions

as well. Therefore, in this way, we resum the important large ln(1/ξ)-enhanced part of the higher-

order αs corrections inside the parton distribution convoluted with the LO coefficient function and

improve the convergence of the perturbative series.9

Actually our approach is rather close in spirit to the kt-factorisation method. Indeed, there, the

value of the factorisation scale is driven by the structure of the kt = lt (or the virtuality, Q2) integral

8For example, if the NNLO contribution were known, then we will have three scales: µf , µF ≡ µLO, and µNLO,

where the NNLO correction to (14) takes the form α2
sC

(2)
rem(µLO, µNLO) ⊗ F (µf ). The scale µNLO is fixed to nullify

this term in the limit x� ξ, and hence further reduce the sensitivity to variations of the scale µf .
9In particular, the most important factorisation scale dependence, enhanced by large ln(1/ξ), is caused by the

double log terms, [αs ln(µF ) ln(1/x)]n, generated in the axial gauge by ladder-type diagrams. For GPDs this ladder

contribution was studied in [36], where it was shown, in the large ln(1/x) limit, that the skewed splitting functions

9



in the diagrams of Fig. 1. 10 In the kt-factorisation approach this kt integral is written explicitly,

while the parton distribution unintegrated over kt is generated by the last step of the DGLAP

evolution, similar to the prescription proposed in Refs. [37, 38]. Now, using the known NLO result,

we account for the exact kt integration in the last cell adjacent to the LO hard matrix element.

This hard matrix elementM, shown in the upper box of Fig. 1(a), provides the convergence of the

integral at large kt. In this way it puts an effective upper limit of the kt integral, which plays the

role of an appropriate factorisation scale.

The details of the prescription, for the case of the high-energy Drell-Yan process, were discussed

in [39]. Indeed, Drell-Yan production of low-mass lepton pairs at high rapidity is another process

for which the NLO prediction depends sensitively on the choice of the factorisation scale, unless

the ln(1/x) enhancements are first resummed in the incoming parton distributions. It was found in

Ref. [39] that, after the scale µF = µ0 is fixed for the LO contribution, the variation of the scale in

the remaining NLO part does not noticeably change the predicted Drell-Yan cross section. In [39]

it was shown how to calculate µ0 for the Drell-Yan process and, moreover, that the NLO prediction

with µF = µ0 is very close to the NNLO result.

Returning to the earlier discussion in this subsection, it is clear from (4) and (14) that the scale

choice µF = m = MV /2 provides the appropriate resummation of the ln(1/ξ) enhanced terms,

and, as a consequence, suppresses the remaining high-energy NLO corrections. In other words, the

GPDs with µF = m (chosen in the LO part) include all the ln(1/ξ) enhanced contributions, while

the remaining NLO corrections arise only from hard matrix elements corresponding to intermediate

states of relatively small mass of about MV .

We can also explain this pictorially. As noted above, the µF dependence of the NLO correction

is caused by the subtraction of the contribution generated by the evolution equation. In particular,

the correction which (i) depends on µF and (ii) is enhanced by ln(1/ξ), is generated by the ladder-

type diagrams11 shown in Fig. 2. The choice of the factorisation scale µFi determines which part

of the diagram is attributed to the evolution of the PDF and which to the hard matrix element.

By choosing the value of µF = µ0 = MV /2 we include all the ladder cells in the LO part, so that

are proportional to 1/x. So these double log terms come from DGLAP integrals of the form

(∫ µ2
F dk2n
k2n

∫ k2n dk2n−1
k2n−1

. . .

∫ k22 dk21
k21

) (∫ 1

x

dxn
xn

∫ 1

xn

dxn−1
xn−1

. . .

∫ 1

x2

dx1
x1

)
∼ [αs ln(µF ) ln(1/x)]n/(n!)2

where we have strong k2 ≡ k2t and x ordering. Thanks to the strong kt and x ordering in these double log LO

integrals, the correct upper limit, µF , in the first integral automatically provides the exact resummation of all the

terms in the double log series.
10We stress again that, in the high energy (x � ξ) contribution, the form of the integral over the gluon loop

momentum lt is exactly the same in both the quark (Fig. 1(b)) and gluon (Fig. 1(b) but with the quark lines

replaced by gluons) NLO contributions. Therefore the scale µF = µ0 simultaneously nullifies the high energy quark

and gluon contributions. Note that this is only true after the corrections discussed in Section 2.1 are included.
11Ladder diagrams occur in the axial gauge which is conventionally used to calculate the GPDs.
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Fg

Cg γ V

µF1

µF2

µF3

Figure 2: A Feynman diagram which illustrates different possibilities for the division of cells between the

parton evolution and the hard matrix element, dependent on the choice of the factorisation scale, µFi.

the remaining NLO matrix element will not receive any contribution from ladder-type diagrams (at

small ξ). Note that the ladder diagrams would contribute to the NLO matrix element (from µF to

µ0) if we were to choose a scale µF < µ0. For the choice µF > µ0 the NLO matrix element would

contain the ladder diagrams with the negative sign in order to compensate the extra contributions

(from µ0 to µF ) included in the LO part.

Since we consider an exclusive process, the mass of the final state is fixed, but the intermediate

states, corresponding to the discontinuity which gives the imaginary part of the amplitude (depicted

using a dotted line in Fig. 2), depend on the choice of scale. For larger values of µF the mass of

the allowed intermediate states in the matrix element becomes smaller. Of course, it is impossible

to absorb inside the evolution all intermediate states other than the heavy quark pair QQ̄ state

which produces the V ; for example we cannot absorb the effects of the uppermost gluon in Fig. 2

emitted by the upper heavy quark. Nevertheless, when we choose the appropriate scale µF = MV /2,

the mass of the remaining intermediate states becomes of the order of MV . This choice will move

ln(1/ξ) contributions from the matrix element into the GPD. It will therefore provide a much more

stable final result, since the remaining NLO contributions then cannot be enhanced by the large

values of ln(1/ξ).

It should be emphasised that the asymptotics of the NLO amplitude is used only to determine

the effective scale µF . In all our further numerics we use the full expression for the complete NLO

amplitude as given in [24, 32, 33].
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3 Can exclusive vector meson production data be included

in a global PDF fit?

In this section we present our results for the exclusive γp→ J/ψ + p and γp→ Υ + p processes as

functions of the factorisation scale µf , and the renormalisation scale µR. The cross section relies

sensitively on the gluon PDF at small x, in a kinematic regime where it is very poorly known,

as well as depending of the choice of scales. For these quasi-elastic processes we present just the

dominant imaginary part of the amplitude. The real part of the coefficient functions has been

calculated exactly, both via a dispersion relation [24] and by directly computing the real part of the

loop integrals [32, 33], it is non-zero in the time-like region |x| < ξ. Therefore, to compute the real

part of the amplitude directly, we need also the GPDs in this region. Unfortunately, the Shuvaev

transform is not valid in the time-like region [23]. Nevertheless, the real part of the amplitude can

be included via dispersive methods on the level of the amplitude. However, giving a prediction

of the full cross section is not our objective here. Rather our aim is to study the stability of the

perturbative predictions and to investigate whether or not we can determine optimum scales so

that experimental data for these processes, and the related pp → p V p processes, can be included

in global PDF (collinear) analyses to constrain the gluon PDF at low x, in a domain for which, at

present, there are no data. For this goal it is sufficient to work with the more simple imaginary

part of the amplitude.

We recall the main result of Section 2. We start from the key equation, (14), that is

A(0)(µf ) + A(1)(µf ) = C(0) ⊗ F (µF ) + αsC
(1)
rem(µF )⊗ F (µf ) . (16)

To obtain this result we had introduced by hand a new scale µF in the LO term and showed that

the choice µF = m = MV /2 allowed us to resum and transfer all the enhanced large ln(1/ξ) terms

from the NLO contribution to the LO term, leaving a much smaller remaining NLO contribution

αsC
(1)
rem(µF )⊗ F (µf ). There is still a µf scale dependence, but now this should be much weaker.

3.1 The process γp→ J/ψ + p

To obtain predictions for exclusive J/ψ photoproduction we are working at scales close to the input

GPDs used in the calculation. The results for the scale variation of the imaginary part of the

amplitude are shown in the two plots of Fig. 3. In each plot we show separately the LO and NLO

contributions to the amplitude.12 The left plot shows how these contributions change if we vary all

the scales µf = µF = µR ≡ µ simultaneously, taking µ2 = m2/2, m2, 2m2. In the right plot we

12We choose to use CTEQ66 partons [40] since the gluon obtained is positive definite and since they were used

in our earlier works on the subject [41, 35]. Moreover, since we are emphasising the general procedure rather than

making quantitative predictions, the choice of any particular, reasonable PDF set is not important.
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Figure 3: Predictions of ImA/W 2 for γp→ J/ψ+ p as a function of the γp centre-of-mass energy W ,

produced using CTEQ6.6 partons [40] with scales µ ≡ µF = µf = µR (left panel) and µ ≡ µf = µR
with µ2

F = 2.4 GeV2 (right panel). The bottom (top) set of curves corresponds to the Born (1-loop)

contribution with the scale variation µ2 = 1.2, 2.4, 4.8 GeV2. The dot-dashed, solid and dashed lines

correspond to the low, central and high values of the scale µ, respectively. Note that for the left panel,

the bands overlap for energies bigger than about 70 GeV.

fix µF at the optimum scale µF = m and vary µf = µR ≡ µ. The result is dramatic. The transfer

of the ln(1/ξ) terms from the NLO to the LO contribution has significantly reduced the µf scale

dependence.

But there is another, more severe problem. The LO contribution is dominated by the NLO

contribution of opposite sign. Thus the imaginary part of the quasi-elastic γp→ J/ψ+p amplitude

changes sign when the NLO contribution is added. As it stands, this result is in contradiction with

modelling the interaction as an elastic forward scattering where the imaginary part of the amplitude

is positive. What is happening? The explanation is interesting. In general, the global DGLAP

PDF analyses start from input forms which are completely arbitrary and, moreover, neglecting any

constraints, know nothing about the structure of the evolution at low Q2. It is then found that the

gluon PDF tends to be small, or even negative, in the low Q2, low x (10−4 <∼ x <∼ 10−2) domain, see

Fig. 4. Clearly due to the lack of data constraints in this domain the gluon is not reliably known.

Let us study the over-simplified case with an input gluon g(x) = 0 so that at the input scale

we have only quark PDFs. For γp → J/ψ + p the quark contribution only appears at NLO. The

imaginary part of this NLO contribution is negative with respect to the normal (g 6= 0) LO term.

Indeed, when calculating the NLO coefficient function we must subtract the contribution which is

already generated by LO evolution. However, the subtraction is performed purely formally in order

to avoid the infrared divergence and does not account for the actual value of the gluon density used

13
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Figure 4: The gluon distribution at Q2 = 1.21 GeV2 as determined by two recent global analyses [1, 2].

Figure produced using [42, 43].

to calculate the LO term. Therefore, at low scales, where the LO term is suppressed by much too

small ‘unphysical’ gluon PDFs obtained from the global fits, the NLO term generated by the quark

is not just a correction, but is the dominant contribution. As a consequence, the imaginary part

of the quasi-elastic amplitude becomes negative (in comparison with the LO contribution) and the

observed behaviour reveals a lack of stability of the perturbative series at this order. Of course,

at high scales where evolution, and not the input, determine the PDFs, we obtain a sensible NLO

prediction.

This simple consideration demonstrates that if γp → J/ψ + p and pp → p + J/ψ + p data

could be included in a global fit, then they would put a strong constraint on the low x input gluon

distribution. It is not simply that g(x) must be positive, but that actually the input gluons cannot

be smaller than the density of gluons emitted by the quarks before the beginning of the evolution,

when the parton virtuality Q < Q0. If J/ψ data would have been included in the collinear global

parton analyses, this constraint on the low x input gluon would have been automatically satisfied.

Indeed, it is seen from the second plot of Fig. 3 that after the ln(1/ξ) enhanced corrections

are resummed by fixing µF = m, the stability of both the LO and the NLO components of the

amplitude under the scale variations are much better. From this viewpoint the J/ψ data may be

included in a global PDF analysis. The only problem is that the gluon density obtained in the

existing PDF analyses is too small at input scales and low x (10−5 <∼ x <∼ 10−2), so that we get the

wrong sign of the imaginary part of the amplitude. This means that if J/ψ data were included in

14



the global PDF analyses, we must get a larger gluon density at low scales.13 Larger gluons in this

kinematic domain will increase the LO component of the J/ψ photoproduction amplitude and will

provide the correct sign for the whole LO+NLO amplitude.

3.2 The processes γp→ Υ + p and pp→ pΥp

The top two plots of Fig. 5 show the results for the scale sensitivity of γp → Υ + p, analogous to

those of Fig. 3 for γp→ J/ψ+p. Again we see that fixing the scale µF = MΥ/2 reduces the µf scale

uncertainty. The lower two plots show that part of this stability arises because the change caused

by variation of µR is to some extent compensated by an ‘opposite’ change due to the variation of µf .

If we were to choose a non-optimal scale, say for example, µ2
F = 2m2, then the scale variation turns

out to be about twice as large as for the optimal choice µ2
F = m2. Due to the larger Υ mass we are

now working at scales with more perturbative stability. The LO contribution is partly cancelled by

the NLO term, but is not dominated by it. If we take the upper right or lower left plot of Fig. 5 then

the µf scale uncertainty of the amplitude is about ±15% and ±25% respectively. As a result the

data for exclusive Υ production can be used in global PDF analyses to probe the gluon distribution

down to x ∼ 10−5, in the case of LHCb kinematics. The calculation of exclusive pp → pΥp is

described in [35]. It is based on the sum of the two diagrams shown in Fig. 6. For an Υ produced at

large rapidity y, the dominant contribution is from the diagram with the larger γp centre-of-mass

energy W+, which depends on the gluon density at x ' MΥ e−y/
√
s. The small contribution from

the other diagram, with much lower energy W−, may be estimated from the existing HERA data.

If we use the central values of the presently available PDF sets obtained from global analyses,

then we find cross section predictions which are about a factor of four below the HERA exclusive Υ

data [6, 14, 15]. This indicates that future PDF global analyses with Υ data included will, just as

for J/ψ data, require a larger gluon distribution at low values of x. While the exclusive Υ process

samples the PDFs at scales Q2 ∼M2
Υ/4, the larger gluon required at these Q2 will affect the gluon

densities at all values of Q2 via the evolution.

3.3 Note on the alternative kt-factorisation approach

The collinear DGLAP global analyses tend to result in gluon distributions with valence-like x

distributions at low scales, see Fig. 4. On the other hand, the approach used in the JMRT paper [35],

to study exclusive vector meson production, is free from this problem. There, the ‘NLO’ prediction

was not calculated as a correction from NLO Feynman diagrams in collinear factorisation, but

13Most probably the pure DGLAP global analyses should take into account absorptive corrections, which are not

negligible at low x and low Q2. The existing very small gluon densities in this kinematic domain are a way of

mimicking these absorptive effects.
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Figure 5: Predictions of ImA/W 2 for γp → Υ + p as a function of the γp centre-of-mass energy W ,

produced using CTEQ6.6 partons [40]. The scales are µ ≡ µF = µf = µR (top left), µ ≡ µf = µR
with µ2

F = 22.4 GeV2 (top right), µ ≡ µf with µ2
F = µ2

R = 22.4 GeV2 (bottom left), µ ≡ µR
with µ2

f = µ2
F = 22.4 GeV2 (bottom right). The top (bottom) set of curves corresponds to the LO

(LO+NLO) contribution with the scale variation µ2 = 11.9, 22.4, 44.7 GeV2. The dot-dashed, solid and

dashed lines correspond to the low, central and high values of the scale µ, respectively. The large GPD

uncertainties are not shown.
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Figure 6: The two diagrams describing exclusive Υ production at the LHC. Diagram (a), the W+

component, is the dominant contribution for an Υ produced at large rapidity y. Thus data for pp→ pΥp

allow a probe of very low x values, x 'MΥ e−y/
√
s; recall that in the (dominant) imaginary part of the

Born amplitude we have x = ξ.

approximated by taking the full integral over the gluon kt in Fig. 1(a), including an ansatz for the

now kt dependent gluon. The convergence of this explicit kt integral provides effectively the ‘optimal’

value of the factorisation scale and in this way sums all ln(1/ξ) enhanced terms, accounting for a

large part of the NLO corrections. It does, of course, not include corrections from diagrams which

do not have a ladder structure, however, the contribution from the light quarks, Fig. 1(b), is already

included in the unintegrated gluon distribution used in JMRT [35]. Clearly, then the quasi-elastic

amplitude is positive definite. Let us briefly describe how our ‘NLO’ predictions for γp → Υ + p

data were made. First the incoming gluon distribution was fitted, within this approach and using an

ansatz for the gluon based on the important double-logarithmic dependence on ln(1/x) and lnQ2,

to reproduce the J/ψ data from HERA and the LHC. Then we proceeded to Υ production using

our fitted gluon. We verified that, in the relevant kinematic domain, this gluon reproduces the NLO

DGLAP evolution to good accuracy. Therefore it was not surprising that the ‘NLO’ predictions for

the Υ cross section, as a function of W , agreed well with the LHCb data [18] when they became

available.

4 Conclusions

Here we have been concerned about the inclusion of exclusive vector meson production data in

global PDF analyses in order to probe the gluon density at small values of x; that is, in the x <∼ 10−4

domain. Note that in this domain the input gluon PDF is freely parametrized, and is found to have

a tendency to be valence-like with large uncertainties. It was hoped that the situation would be
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changed as data for exclusive vector meson production, V = J/ψ and Υ, which are very sensitive

to the gluon at small x, became available at HERA and the LHC; particularly measurements of

the exclusive process pp → p V p at the LHC with V detected at large rapidity. Why has this not

happened (so far)?

For J/ψ, the main problem is, at first sight, the very poor convergence of the perturbative

expansion in the collinear approach. This can be seen, e.g., from Fig. 3, where the NLO contribution

is comparable to the LO term and opposite in sign. However, we argued that this large NLO

contribution, in comparison with that of the LO, reflects not the poor convergence, but rather that

the global PDF analyses find a gluon density which is too small at low x and low scales. For this

reason we find a LO contribution to exclusive J/ψ photoproduction amplitude which is too small.

We argued that the input gluon in the collinear approach, used in the global PDF analyses, should

not be parametrized freely, but should be subject to some constraints. We noted that working in

the physical, kt-factorisation type scheme would avoid these problems.

For exclusive Υ production the situation is much better. We found that the optimum factori-

sation scale is much higher, the perturbative expansion at NLO in collinear factorisation converges

well, and the remaining mild scale dependence of the predictions (∼ ±15% on amplitude level)

means that data for pp→ pΥp can now be included in the global PDF fits to determine the gluon

in the low x regime for the first time.

It is appropriate to list the theoretical uncertainties of the present calculation. Although the

leading double log terms have been resummed correctly to all orders, there still exist remaining

NNLO and higher contributions, which are unknown at present. When the full NNLO amplitude

is known we showed how the scale uncertainty can be further reduced. Next, we consider the

accuracy of the expressions which relate GPDs to conventional PDFs, (8) and (9). These relations

are based on conformal invariance and the equality of the Gegenbauer moments of GPDs to the

Mellin moments of PDFs. Due to the polynominal property [21] the accuracy of this equality of the

moments is O(ξ2), providing an O(ξ) accuracy for (8) and (9), see [23]. However, recall that the

Shuvaev transform assumes the absence of the singularities in the right-half Mellin-N plane for the

input distribution. This assumption is physically reasonable since in the Regge approach there are

no singularities in the right-half (j > 1) plane in the space-like (|x| > ξ) domain where we actually

work. Nevertheless, whenever possible, this assumption should be checked. One check is that the

predictions for the GPD/PDF ratio obtained in this way are in a good agreement (especially for low

x gluons, which are the most important for exclusive J/ψ or Υ production) with the NLO results

of [44] coming from a fit to deeply virtual Compton scattering (DVCS) HERA data. Finally, the

relativistic correction to the vector meson wave function, which is discussed in Section 2.2, is not

expected to be significant [34].

We noted that an alternative probe of the low x gluon at low scales has been considered in

[29, 30]. There they study the data for charm (and beauty) production obtained in the forward
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direction by the LHCb Collaboration [27, 28]. Again it is found that the predictions strongly

depend on the choice of factorization scale. Their prediction is lower than the data if the natural

scale µ2
F = m2

Q+p2
t is chosen, and it is found that a larger µF is needed to reproduce the data using

the existing global PDFs. Thus our expectation of a larger gluon at low x is not in contradiction

with the LHCb charm (and beauty) forward data.

Acknowledgements

MGR thanks the IPPP at Durham University for hospitality. MGR is supported by the RSCF

grant 14-22-00281. SPJ is supported by the Research Executive Agency (REA) of the European

Union under the Grant Agreement pitn-ga2012316704 (HiggsTools), and TT is supported by STFC

under the consolidated grant ST/L000431/1.

References

[1] R.D. Ball et al. [NNPDF Collaboration], JHEP 1504 (2015) 040.

[2] L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Eur. Phys. J. C75 (2015) 5,

204.

[3] S. Dulat, T.J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin and C. Schmidt et

al., arXiv:1506.07443 [hep-ph].

[4] S. Aid et al. [H1 Collaboration], Nucl. Phys. B468 (1996) 3-36.

[5] S. Aid et al. [H1 Collaboration], Nucl. Phys. B472 (1996) 3-31.

[6] C. Adloff et al. [H1 Collaboration], Phys. Lett. B483 (2000) 23-35.

[7] A. Aktas et al. [H1 Collaboration], Eur. Phys. J. C46 (2006) 585-603.

[8] C. Alexa et al. [H1 Collaboration], Eur. Phys. J. C73 (2013) 2466.

[9] M. Derrick et al. [ZEUS Collaboration], Phys. Lett. B350 (1995) 120-134.

[10] J. Breitweg et al. [ZEUS Collaboration], Z. Phys. C75 (1997) 215-228.

[11] J. Breitweg et al. [ZEUS Collaboration], Eur. Phys. J. C6 (1999) 603-627.

[12] S. Chekanov et al. [ZEUS Collaboration], Eur. Phys. J. C24 (2002) 345-360.

19

http://arxiv.org/abs/pitn-ga/2012316
http://arxiv.org/abs/1506.07443


[13] S. Chekanov et al. [ZEUS Collaboration], Nucl. Phys. B695 (2004) 3-37.

[14] J. Breitweg et al. [ZEUS Collaboration], Phys. Lett. B437 (1998) 432-444.

[15] S. Chekanov et al. [ZEUS Collaboration], Phys. Lett. B680 (2009) 4-12.

[16] R. Aaij et al. [LHCb Collaboration], J. Phys. G40 (2013) 045001.

[17] R. Aaij et al. [LHCb Collaboration], J. Phys. G41 (2014) 055002.

[18] R. Aaij et al. [LHCb Collaboration], arXiv:1505.08139 [hep-ex].

[19] B. Abelev et al. [ALICE Collaboration], Phys. Rev. Lett. 133 (2014) 23, 232504.

[20] A.J. Baltz et al., Phys. Rept. 458 (2008) 1.

[21] X-D. Ji, J. Phys. G24 (1998) 1181.

[22] A.G. Shuvaev, Phys. Rev. D60 (1999) 116005.

[23] A.D. Martin, C. Nockles, M.G. Ryskin, A.G. Shuvaev and T. Teubner, Eur. Phys. J. C63

(2009) 57-67.
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