
 

Understanding Disposition of 

Efavirenz and Application in Solid 

Drug Nanoparticle Development 

 

 

 

 

Thesis submitted in accordance with requirements of the University 

of Liverpool for the degree of Doctor of Philosophy 

 

 

 

By Paul Curley 

September 2015



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

This thesis is the result of my own work. The material contained within the thesis 

has not been presented, either wholly or in part, for any other degree or 

qualification. 

 

 

Paul Curley 

 

 

 

 

 

 

 

 

 

This research was carried out in the 

Department of Molecular and Clinical Pharmacology 

University of Liverpool, UK



 

Table of Contents 

 

 Acknowledgements i 

 Abbreviations iii 

 List of Publications viii 

 Abstract xiv 

   

Chapter 1 General Introduction 

 

1 

Chapter 2 Single nucleotide polymorphisms in the GABAa receptor 
are not predictors of early treatment discontinuation of 
efavirenz  

 

36 

Chapter 3 The in vivo effects of solid drug nanoparticle and 
conventional efavirenz on anxiogenesis in rodents 

 

63 

Chapter 4 Liquid chromatography tandem mass spectrometry 
method for quantification of efavirenz in plasma, brain 
and cell culture media  

 

86 

Chapter 5 In vitro characterisation of solid drug nanoparticle 
compositions of efavirenz in the hCMEC/D3 cell line 

 

108 

Chapter 6 Efavirenz is predicted to accumulate in brain tissue: an in 
silico, in vitro and in vivo Investigation 

 

136 

Chapter 7 General Discussion 

 

160 

 References 170 

 



 i 

Acknowledgements 

 

Firstly, I would like to thank Professor Andrew Owen for his guidance and 
supervision. Your inspired and often inventive motivational prompts have proved 
effective and entertaining. I would also like to thank you for your continued 
faith, for giving me the opportunity of not only my PhD but also my first post 
doc. I would also like to thank Professor David Back and Professor Saye Khoo. 
Your advice and support have been invaluable to the completion of my PhD. 

 

I would like to thank Dr Marco Siccardi for your help and guidance, particularly 
your help with bio-analytical method development and PBPK modelling. 
Perhaps most significantly I would like to thank you for hosting games nights 
and providing a modern equivalent to the 1980s games of Dr Muschio!  

 

My thanks go to Dr Neill (2 Ts in Liptrott) Liptrott. Your continued friendship 
and support has helped me through not only my scientific life but also my 
personal life. Having someone to talk to about the pressures of a PhD and 
fatherhood has been incredibly important to me. You of course give me hope for 
the future. If you can get to the stage in your career and barely be able to operate 
a mobile phone or PC, I might just be ok. 

 

Where does one begin with Dr James (Sir Bantzalot) Hobson? Your window side 
chats setting the world to writes are sorely missed. My thanks for your 
introduction to such things as juxtaposed learning, evolution of the Hobsonese 
language and of course Apple based products. Many thanks for your friendship 
and being an incredibly good sport when I decided to play the occasional 
practical joke! 

 

Dr Darren (have you heard of raltegravir?) Moss, you have been invaluable both 
for your scientific guidance but also your friendship. Many thanks for hosting 
games nights on your cutting edge high def projector coupled with a ZX 
Spectrum, demonstrating the negative impact of a caffeine overdose and 
generally being the most disruptive force known to man. 

 

 

 



 ii 

My thanks to everyone in H Block and the BAF Lee, Alessandro, Laura D, 
Henry, Sara, Helen, Justin (the life saver), Laura L, Alieu, Deirdre, Sujan, Niyi, 
Chris (Neill v2.0), Rajith (Hershey addict!!!), Christina, Louise, Rohan, Megan, 
Owain, Ana, Sharon, Rana and Josh. Thank you all for your assistance and 
sharing your scientific life with me. 

 

I would like to thank my Mum, Dad and Sister for their love and support not only 
over the course of my PhD but throughout my life. 

 

Finally I would like to thank my amazing fiancée, Adele. To say I would not be 
here without you is an understatement. You have been there when things looked 
bleakest and helped me find the strength to carry on. Thank you seems 
insufficient for everything you have done for me over the past 11 years. Having 
said that, thank you for all your love and support. I only hope one day I can repay 
you. 

 

I would like to dedicate this thesis to my daughter, Hannah. All the work 
presented here will hopefully give you a better start in life. All my love, Dad. 

 



 iii 

Abbreviations 

5-HT2A 5-hydroxytryptamine 2A 

Å Angstrom 

ACN Acetonitrile 

ADR Adverse Drug Reactions  

ATP Adenosine Triphosphate 

AUC Area Under the Curve 

BBB Blood Brain Barrier 

BCRP Breast Cancer Resistance Protein 

BCS Biopharmaceutics Classification System 

CAR Constitutive Androstane Receptor  

CAR Cellular Accumulation Ratio 

CCR5 C-C Chemokine Receptor 5 

Cl Clearence 

CM Cisterna Magna 

Cmax Maximum Plasma Concentration 

Cmin Minimum Plasma Concentration 

CNS Central Nervous System  

COX-2 Cyclo-oxygenase 2  

CSF Cerebrospinal Fluid  

CTL  Cytotoxic T-lymphocytes  

CXCR4 C-X-C Chemokine Receptor 4 

CYP Cytochrome P450 

dH2O Distilled Water 



 iv 

DiD 1,1’-dioctadecyl-3,3,3’,3’-tetramethylindodi- carbocyanine perchlorate  

DNA Deoxyribonucleic Acid 

dNTP Deoxynucleotide triphosphates 

DPM Disintergrations per Minute 

env Envelope Glycoprotein 

EPM Elevated Plus Maze 

ER Endoplasmic Reticulum  

Fa Fraction Absorbed  

FBS Fetal Bovine Serum  

FDA Food and Drug Administration  

fu Fraction Unbound 

FRET Fluorescence Resonance Energy Transfer 

GABA Gamma Aminobutyric Acid  

GI Gastrointestinal  

gp Glycoprotein 

GTP Guanosine-5'-triphosphate  

HAND HIV-Associated Neurocognitive Disorder  

HBSS Hanks Balanced Salt Solution 

HIV Human Immunodeficiency Virus  

HSR Hypersensitivity Reactions  

IC50 Concentration Producing 50% Inhibition 

IN Integrase  

IQR Inter Quartile Range 

IS Internal Standard 

Ka Absorption Constant 



 v 

kg Kilogram 

Ki Inhibition Constant 

Km Michaelis Constant 

LA Long-acting 

LC-MS/MS Liquid Chromatography Tandem Mass Spectrometer 

Log D Oil/water distribution 

LogP Octanol/Water Partition Coefficient at pH 7.4 

LV Left Ventricle 

MeOH Methanol 

mg Milligram 

ml Millilitre 

mRNA Messenger RNA 

MRP Multidrug Resistance Proteins  

NCE New Chemical Entities  

ng Nanogram 

NNRTI Non-Nucleoside Reverse Transcriptase Inhibitors  

NRTI Nucleoside Reverse Transcriptase Inhibitors  

OAT Organic Anion Transporter 

OATP Organic Anion-Transporting Polypeptide 

ºC Degrees Centigrade 

OCT Organic Cation Transporter 

OH efavirenz Hydroxylated Efavirenz 

P-gp P-glycoprotein  

PBPK Physiologically Based Pharmacokinetic  

PBS Phosphate Buffered Saline 



 vi 

PCR Polymerase Chain Reaction 

PI Protease Inhibitor 

popPK Population Pharmacokinetics 

PR Protease 

QC Quality Control 

qPCR Quantitative Polymerase Chain Reaction 

QSAR Quantitative Structure–Activity Relationship 

R Blood to Plasma Ratio 

RED Rapid Equilibrium Dialysis  

RFU Relative Fluorescence Units 

RNA Ribonucleic Acid 

RT Reverse Transcriptase  

SAS Subarachnoid Space 

SC Subcutaneous 

SDN Solid Drug Nanoparticle  

SLCO Solute Carrier Organic Anion Transporter 

SNP Single Nucleotide Polymorphism 

SRM Selected Reaction Monitoring  

t1/2 Plasma Half Life 

TAR Transactivation Responsive Element  

TAT Transactivator of Transcription  

TFV Third and Fourth Ventricle 

Tmax Time to Reach Maximum Plasma Concentration  

TPSA Van der Waals Polar Surface Area 

tRNA Transfer RNA 



 vii 

UNAIDS United Nations Programme on HIV/AIDS  

vasbase Van der Waals Surface Area of the Basic Atoms 

Vmax Maximum Velocity 

vs Versus 

Vss Volume of Distribution 

W/V Weight per Volume 

WHO World Health Organisation  

µCi Microcurie(s) 

µg Microgram(s) 

µl Microlitre(s) 

µM Micromolar 

 



 viii 

Publications 

Peer Reviewed Publications 

Ana Alfirevic, Jill Durocher, Anisa Elati, Wilfrido León, David Dickens, Steffen 

Rädisch, Helen Box, Marco Siccardi, Paul Curley, George Xinarianos, Arjun 

Ardeshana, Andrew Owen, J Eunice Zhang, Munir Pirmohamed, Zarko Alfirevic, 

Andrew Weeks and Beverly Winikoff. Misoprostol-induced fever and genetic 

polymorphisms in drug transporters SLCO1B1 and ABCC4 in women of 

Latin American and European ancestry. Pharmacogenomics, June 30th 2015, 

volume 16, issue 9, pages 919-28. 

 

Moss, D.M, Curley, P, Shone, A, Siccardi, M and Owen, A. A multi-system 

investigation of raltegravir association with intestinal tissue: implications 

for PreP and eradication. Journal of Antimicrobial Chemotherapy, August 11th  

2014, volume 69, issue 12, pages 3275-81. 

 

Moss, D. M, Liptrott, N. J, Curley, P, Siccardi, M, Back, D. J and Owen, A. 

Rilpivirine inhibits drug transporters ABCB1, SLC22A1 and SLC22A2 in 

vitro. Antimicrobial Agents and Chemotherapy, November 2013. Volume 57, 

issue 11, pages 5612-8. 

 

 

 



 ix 

Liptrott, N. J, Curley, P, Moss, D, Back, D. J, Khoo, S. H and Owen, A. 

Interactions between Tenofovir and Nevirapine in CD4+ T cells and 

Monocyte Derived Macrophages restrict their intracellular accumulation. 

Journal of Antimicrobial Chemotherapy, November 2013. Volume 68, issue 11, 

pages 2545-9. 

 

 McDonald, T. O, Giardiello, M, Martin, P, Siccardi, M, Liptrott, N. J, Smith, D, 

Roberts, P, Curley, P, Schipani, A, Khoo, S. H, Long, J, Foster, A. J, Rannard, 

S. P and Owen, A. Antiretroviral Solid Drug Nanoparticles with Enhanced 

Oral Bioavailability: Production, Characterization, and In Vitro– In Vivo 

Correlation. Advanced Healthcare Materials, September 1st 2013, volume 3, 

issue 3, pages 400-11.  

 

 Siccardi, M Rajoli, R. K. R, Curley, P, Olagunju, A, Moss, D and Owen, A. 

Physiologically based pharmacokinetic models for the optimization of 

antiretroviral therapy: recent progress and future perspective. Future 

Virology, September 2013. Volume 8, issue 9, pages 871-890. 

 

 

 

 



 x 

Conference Presentations: 

Highlights of research at the University of Liverpool and activity of the 

British Society for Nanomedicine (7th CLINAM conference and exhibition, 

Basel, Switzerland) Paul Curley, Neill Liptrott, Lee Tatham, Marco Siccardi, 

and Andrew Owen  

 

The in vivo effects of solid drug nanoparticle and conventional efavirenz on 

anxiogenesis in rodents (21st Conference on Retroviruses and Opportunistic 

Infections, Boston, USA) Paul Curley, Marco Giardiello, Neill Liptrott, Phil 

Martin, Tom McDonald, Marco Siccardi, Juliet McAdams, Steve Rannard, Tim 

Kirkham and Andrew Owen  

 

Multi-system investigation of the mechanisms for raltegravir association 

with intestinal tissue after oral administration (21st Conference on 

Retroviruses and Opportunistic Infections, Boston, USA) Darren Moss, Paul 

Curley, Alison Shone, Marco Siccardi and Andrew Owen 

 

Investigation of the potential interactions of efavirenz and the GABAa 

receptor utilising an in silico approach (Manchester Life Sciences PhD 

Conference, Manchester, UK) Paul Curley, Alessandro Schippani, Marco 

Siccardi and Andrew Owen 

 



 xi 

Utilising In Vitro-In Vivo extrapolation to investigate efavirenz penetration 

into the central nervous system (14th International Workshop on Clinical 

Pharmacology of HIV Therapy, Amsterdam, NL) Paul Curley, Philip Martin, 

Neill Liptrott, David Back, Andrew Owen and Marco Siccardi 

 

Prediction of Etravirine Pharmacogenetics using a Physiologically Based 

Pharmacokinetic approach (20th Conference on Retroviruses and 

Opportunistic Infections, Atlanta, USA) Marco Siccardi, Adeniyi Olagunju, Paul 

Curley, James Hobson, Saye Khoo, David Back, Andrew Owen 

 

Enhanced Pharmacological Properties of Efavirenz Formulated as Solid 

Drug Nanoparticles (20th Conference on Retroviruses and Opportunistic 

Infections, Atlanta, USA) Philip Martin, NJ Liptrott, T McDonald, M Giardiello, 

P Roberts, P Curley, D Smith, M Siccardi, S Rannard, and A Owen 

 

Investigation of the potential interactions of efavirenz with the GABAa 

receptor (British Pharmacology Society Winter meeting, London, UK) P A 

Curley, A Schipani, D Egan, M Siccardi, C Wyen, G Fätkenheuer and A Owen 

 

 

 



 xii 

An Investigation of the expression of cytochrome P450 3A7 and cytochrome 

P450 3A4 during stem cell differentiation for use as markers of emerging 

hepatic phenotype (British Pharmacology Society Winter meeting, London, 

UK) Paul Curley, Lorna Kelly, Rowena Shaw, Neil R Kitteringham, Rosalind E 

Jenkins, Jane E Alder, Cliff Rowe, Laura Randle, Chris E P Goldring and B 

Kevin Park 

 

Oral Presentations: 

Utilising In Vitro-In Vivo extrapolation to investigate efavirenz penetration 

into the central nervous system (14th International Workshop on Clinical 

Pharmacology of HIV Therapy, Amsterdam, NL) 

 

Assessment of aqueous and nanoparticle antiretroviral drug transport in the 

blood brain barrier (2nd UK & Ireland Early Career Blood-Brain Barrier 

Symposium, Liverpool, UK) 

 

 

 

 

 



 xiii 

Book Chapters 

Liptrott, N.J., Curley, P., Tatham, L.T. and Owen, A. “Opportunities and 

Challenges in Nanotechnology-enabled antiretroviral Drug Delivery”, 2nd 

Edition, Handbook of Immunological Properties of Engineered Nanomaterials 

 

Andrew Owen And Paul Curley, “Species Similarities and Differences in 

Pharmacokinetics and Distribution of Antiretroviral Drugs”, 1st edition, 

Humanized Mice for HIV Research 



 xiv 

Abstract 

Efavirenz displays many desirable pharmacokinetic properties such as a long 
half-life allowing once daily dosing and potency against HIV. Despite these 
favourable properties efavirenz-containing therapy is associated with the 
development of central nervous system (CNS) toxicities. Current investigations 
indicate that high plasma concentrations of efavirenz play a putative role in the 
development of CNS side effects, but there is a current paucity of data relating to 
the underlying mechanisms of toxicity. Various nanotechnologies have been 
explored in attempts to mitigate some of the limitations with efavirenz. While 
there has been progress in increasing the bioavailability of efavirenz there has 
been no attempt to assess the impact of increased exposure to efavirenz on CNS 
toxicity. The body of work presented in this thesis aimed firstly to investigate the 
underlying mechanism of efavirenz CNS toxicity and secondly to assess uptake 
and CNS toxicity of efavirenz and a novel solid drug nanoformulation (SDN) of 
efavirenz. 

The work presented in this thesis utilised a variety of in vitro, in vivo and in 
silico methodologies. Chapter 2 utilised allelic discrimination polymerase chain 
reaction in order to investigate the association of single nucleotide polymorphism 
(SNPs) in the gamma aminobutyric acid receptor with early treatment 
discontinuation of efavirenz. In order to assess the effects of SDN efavirenz on 
the occurrence of CNS toxicities, an in vivo model of anxiety (elevated plus 
maze) was employed (chapter 3). Chapter 4 detailed the development of a robust 
and sensitive liquid chromatography tandem mass spectrometer assay for the 
detection of efavirenz in multiple matrices. The uptake of efavirenz and SDN 
efavirenz in the CNS was investigated utilising cellular uptake and inhibition 
studies (chapter 5). Physiologically based pharmacokinetic (PBPK) simulations 
were used to investigate the distribution of efavirenz in plasma, cerebrospinal 
fluid (CSF) and brain tissue (chapter 6).  

Despite an initial trend with Rs211014 and Rs6556547 (univariate analysis) of 
the training cohort, these SNPs were not found to be significant in the 
multivariate analysis or in either analysis of the test cohort. Following multiple 
doses rats treated with efavirenz, but not SDN efavirenz, exhibited anxiety-like 
behaviour in the EPM. The profile of changes indicated some clear behavioural 
effects that are likely to be linked to drug-related CNS effects. In particular, a 
tendency of efavirenz to increase time spent on the central platform may be 
indicative of anxiogenesis. Cellular accumulation of efavirenz was reduced 
significantly by montelukast and amantadine, with the reduction in accumulation 
by prazosin bordering on significance (indicating efavirenz may be a substrate 
for OCT1 and an SLCO transporter). Additionally, cellular accumulation of SDN 
efavirenz particles was reduced by dynasore, indicating dynamin-mediated 
uptake. PBPK simulations predicted efavirenz accumulation in brain tissue, with 
a tissue to plasma ratio 15.8. 

The natural occurrence of conditions such as depression involves a complex 
interplay of factors influencing neurotransmission. This makes identifying single 
predictors of efavirenz CNS toxicity more difficult. The data presented in this 
thesis may be built upon to understand the mechanisms governing efavirenz 
disposition in the CNS and factors influencing the occurrence of CNS toxicity.



 1 

 

Chapter 1 

 

General Introduction 

 

 

 

 

 

 

 

 

 

 

 

 

 



 2 

Contents 

 

1.1 Human Immunodeficiency Virus     3 

1.2 Replication Cycle of HIV      3 

1.2.1 Viral Attachment      4 

1.2.2  Fusion        6 

1.2.3 Reverse Transcription      6 

1.2.4 Integration       7 

1.2.5 Transcription       7 

1.2.6 RNA Export       8 

1.2.7 Assembly and Release     8 

1.3 Current Antiretroviral Therapy: Mechanisms of Action  9 

 1.3.1 Nucleoside Reverse Transcriptase Inhibitors   11 

 1.3.2  Non-Nucleoside Reverse Transcriptase Inhibitors  12 

 1.3.3  Protease Inhibitors      12 

1.3.4  Integrase Inhibitors      13 

1.3.5  Entry Inhibitors      14 

1.4  The Central Nervous System in HIV     25 

 1.4.1 Efavirenz Associated Central      20
  Nervous System Side Effects 

1.5  Limitations of Current Antiretroviral Therapeutics    23 

1.5.1 Utilisation of Nanomedicine to Address The    26
 Limitations of Current Antiretroviral Therapeutics 

1.5.2 Nanotechnology-enabled oral drug delivery   27 

1.5.3 Nanotechnology-enabled parenteral drug delivery  30 

1.6  The Application of Physiologically Based     32
 Pharmacokinetic Modeling to HIV Therapy 

1.7 Thesis aims        34 

 



 3 

1.1 Human Immunodeficiency Virus 

The human immunodeficiency virus (HIV) pandemic has been a global issue for 

over 30 years; at the end of 2013, 35 million people were estimated (by the 

World Health Organisation [WHO]) to be HIV positive worldwide with 

approximately 2.1 million new infections and 1.5 million deaths reported (1). 

Although organisations such as the United Nations Programme on HIV/AIDS 

(UNAIDS) show a declining trend in HIV infection (50% decline in the number 

of HIV infections in 26 countries between 2002 and 2012), HIV still represents a 

significant global health burden (2). 

 

1.2 Replication Cycle of HIV 

HIV infection is characterised by infection and subsequent depletion of CD4+ T 

cells (3). The CD4+ T cells play a crucial role in the adaptive immune response to 

exogenous pathogens (4). Antigen presenting cells, such as dendritic cells, 

interact with naïve CD4+ T cells leading to cellular proliferation and 

differentiation into CD4+ subsets (5). The differentiated effector cells are 

involved in multiple aspects of immune response, including elimination of 

extracellular and intracellular pathogens, mediation of humoral immune 

response, recognition of self and foreign antigens (5). The loss of CD4+ T cells 

has a dramatic impact on the host immune system, rendering the host vulnerable 

to opportunistic infections, such as tuberculosis and other bacterial and fungal 

infections (6). The following sections will discuss the progression of viral 

infection including attachment, fusion, reverse transcription, integration, 
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transcription, ribonucleic acid (RNA) export, assembly and finally release of 

mature virions. 

 

1.2.1 Viral Attachment 

Following the introduction of HIV to the host system, the first stage of the viral 

lifecycle is attachment of the virion to the host cell (Figure 1). Most frequently, 

HIV recognises and binds to the CD4 glycoprotein (gp) and co-receptors C-C 

chemokine receptor 5 (CCR5) or C-X-C chemokine receptor 4 (CXCR4) via a 

trimeric envelope glycoprotein (env), with each subunit formed from an exterior 

(gp120) and a transmembrane (gp41) region (7). However, CD4 is not the only 

means of viral attachment. CD4 independent attachment has been demonstrated 

in monocyte-derived dendritic cells via gp120 binding to a number of C-type 

lectin receptors (8).  
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1.2.2 Fusion 

Following attachment, the virus enters the host cell via membrane fusion. 

Binding of gp120 to CD4 and co-receptor (either CCR5 or CXCR4 are engaged, 

dependent on viral tropism) induces a series of conformational changes in the 

env protein leading to the exposure of the core gp41 N-terminal fusion peptide 

(10). The resulting interaction induces fusion between the viral capsid cell 

membrane followed by infection of the host cell (7, 11).  

 

Following viral entry to the host cell the process of uncoating occurs to release 

the contents of the viral capsid into the cellular cytoplasm (12). The core of the 

HIV virion consists of the viral genome and associated proteins, including gag 

(proteolytically cleaved to produce matrix, capsid, nucleocapsid and p6 proteins), 

pol (proteolytically cleaved to produce the reverse transcriptase [RT], integrase 

[IN] and protease [PR]) and env contained within a conical capsid (12, 13).  

 

1.2.3 Reverse transcription 

As a retrovirus, the genome of HIV is RNA and requires transcription to double-

stranded deoxyribonucleic acid (DNA) prior to integration into the host genome. 

DNA is produced via reverse transcription, accomplished by the enzyme RT 

(14). Initiation of reverse transcription is achieved by annealing of host transfer 

RNA (tRNA) to viral RNA. This complex is recognised by RT and reverse 

transcription may commence via elongation of the 3′ end of the tRNA/RNA 

complex. As the DNA is transcribed to form a RNA/DNA hybrid, the RNA is 
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degraded via RNase activity of RT producing newly synthesised DNA (15). The 

production of DNA via RT is highly error prone due to the lack of exonucleolytic 

proofreading, leading to a high error rate of 1/1700 and in certain mutational 

hotspots 1/70 (16). This lack of fidelity can lead to the emergence of HIV strains 

capable of drug resistance and immune escape (17). 

 

1.2.4 Integration 

The next stage in the viral life cycle is integration of the viral DNA with the host 

DNA. The newly synthesised viral DNA forms a stable complex with the IN 

enzyme that is transported to the nucleus. The DNA is then processed for 

integration. Two nucleotides are first removed from 3′ ends of the viral DNA. 

The free 3′ ends are now able to "attack" phosphodiester bonds in the host DNA, 

resulting in covalent linkage between the 3′ end of the viral DNA and the 5′ end 

of the host DNA. The remaining viral 5′ ends are repaired via host enzymes 

resulting in complete integration of the viral DNA (18). 

 

1.2.5 Transcription 

The transcription of new viral RNA is produced by partial subversion of host 

enzymes. Transcription is initiated by host RNA polymerase II but full 

transcription is not possible, resulting in short viral transcripts (19). To 

circumvent this limitation, HIV transcription is facilitated by transactivator of 

transcription (TAT). The binding of TAT to transactivation responsive element 

(TAR) and the recruitment of positive transcription elongation factor b lead to ~ 
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100-fold increase in the production of viral RNA, primarily via enhancement of 

transcription elongation (13, 20, 21). 

 

1.2.6 RNA Export 

Transcription yields both spliced and unspliced messenger RNA (mRNA), 

resulting in more than 40 different splice products. Eukaryotic cells typically 

degrade unspliced and incompletely spliced mRNA in the nucleus (22, 23). 

Completely spliced mRNA (1.8kb mRNA coding for TAT, REV and Nef) is 

transported by endogenous transport mechanisms. Unspliced and incompletely 

spliced mRNA (9kb and 4kb mRNA coding for gag, pol and env) require the 

viral protein REV for transport to the cytoplasm (22). Bound REV is able to 

interact with chromosome region maintenance 1 (also known as exportin 1) in 

the presence of guanosine-5'-triphosphate (GTP), in the form of Ran GTPase (22, 

23). The complex is transported to the cytoplasm, via nuclear pore complexes, 

where hydrolysis of GTP leads to instability of the complex and the release of 

viral mRNA to the cytoplasm where translation can occur. Rev is then 

transported back to the nucleus via importin β (22). 

 

1.2.7 Assembly and Release 

The process of assembly occurs at the plasma membrane (in the majority of 

cells), where key viral components (including the RNA genome, env, RT and 

PR) are packaged into immature virions (24). As with many viral processes, 

packaging relies on both viral proteins and the subversion of host systems. The 
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various processes involved in packaging (including creation of spherical viral 

particles, concentration of env and packaging of RNA) are mediated by Gag-Pro-

Pol. Although Gag-Pro-Pol is able to assemble the virions, release is 

accomplished via host endosomal sorting complexes required for transport (25). 

Viral maturation begins simultaneously with release of the virions, beginning 

with proteolytic cleavage of Gag-Pro-Pol via PR. Maturation continues with the 

products of Gag-Pro-Pol rearranging to form mature viral particles (25). 

 

1.3 Current Antiretroviral Therapy: Mechanisms of Action  

Over the past 30 years there have been remarkable advances in HIV therapy. 

Treatment has evolved from simple monotherapy to a complex regimen 

comprised of multiple drugs from numerous classes. Currently, the US Food and 

Drug Administration (FDA) has approved 27 drugs for the treatment of HIV, 

which include 9 nucleoside/nucleotide reverse transcriptase inhibitors (NRTI), 5 

non-nucleoside reverse transcriptase inhibitors (NNRTI), 9 protease inhibitors 

(PI), 1 fusion inhibitor, 1 chemokine receptor antagonist and 2 IN inhibitors 

(Figure 2) (26). As of 2013, of these 7 are recommended by the WHO for 

treatment of antiretroviral-naïve patients (Table 1) (27). As previously discussed, 

HIV is highly error prone (17), enabling the virus to quickly adapt to 

antiretroviral agents through acquisition and selection of resistance mutations via 

a similar general mechanism to that of cytotoxic T-lymphocytes (CTL) escape 

(17, 28). Resistance to monotherapy arises extremely quickly and so effective 

therapy requires at least three drugs in combination to simultaneous target 

multiple viral targets (29). Through prolonged viral suppression and increased 
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CD4+ T-cell counts, modern antiretroviral therapy has improved patient survival 

and transformed HIV into a manageable but chronic infection.  

 

 

Figure 2. The graph above shows the number of FDA approved antiretrovirals and the year of 
approval. Also highlighted are the first in class antiretrovirals zidovudine (AZT NRTI), 
saquinavir (SQV PI), nevirapine (NNRTI NVP), enfuvirtide (entry inhibitor T-20) maraviroc 
(entry inhibitor MRV) and raltegravir (integrase inhibitor RAL). Data extracted from (26). 
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 NNRTI or boosted PI NRTI Backbone 

First Line Therapy Efavirenz (NNRTI) Tenofovir 

Emtricitabine 

Alternative 
Efavirenz (NNRTI) 

Zidovudine 

Emtricitabine 

 Nevirapine (NNRTI) Zidovudine 

Emtricitabine 

 Nevirapine (NNRTI) Tenofovir 

Emtricitabine 

Second Line Therapy 
Atazanavir (PI) 

Ritonavir (PI) 

Tenofovir 

Emtricitabine 

Alternative Lopinavir (PI) 

Ritonavir (PI) 

Tenofovir 

Emtricitabine 

 

Table 1. The table above shows the World Health Organisations current recommendations for 
antiretroviral therapy. First line therapy consists of a NNRTI supported by a NRTI backbone. 
When this option is unsuitable (due to viral rebound or patient toxicity), second line therapy 
consists of a PI (boosted by ritonavir) supported by a NRTI backbone (27).  

 

1.3.1 Nucleoside Reverse Transcriptase Inhibitors 

The enzyme RT catalyses a key step in the HIV life cycle.  As shown in Figure 1, 

reverse transcriptase translates the viral genome from RNA to DNA. The NRTI 

class of antiretroviral drugs (e.g. zidovudine, tenofovir disoproxil fumarate and 

emtricitabine) are analogues of endogenous nucleosides with one significant 

difference (30). Endogenous nucleosides are incorporated into DNA via 

phosphodiester bonds. NRTIs are incorporated into the viral DNA however; they 

are incapable of binding to other nucleosides. NRTIs lack a hydroxyl group at 

the 3′ position, this is essential for the incorporation of further nucleosides (31). 
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The incorporation of an NRTI prevents further synthesis of the DNA chain, 

leading to non-functional DNA that cannot be incorporated into the host DNA. 

 

1.3.2 Non-Nucleoside Reverse Transcriptase Inhibitors 

NNRTI’s act on the same viral target as NRTI’s but the mechanism of action is 

significantly different. NNRTI’s inhibit reverse transcriptase via allosteric 

modulation, acting via non-competitive inhibition. Binding of NNRTI’s to a 

hydrophobic pocket (approximately 10Å from the active site) induces the side 

chains of tyrosine 181 and 188 in the active site of reverse transcriptase to invert 

orientation. This conformational change leads to a decrease in the binding 

affinity of endogenous nucleosides, disrupting reverse transcription (14). Due to 

the different mechanisms of action, NNRTI’s can be used in conjunction with 

NRTI’s acting synergistically. Currently there are 5 NNRTIs available 

(efavirenz, nevirapine, delavirdine, rilpivirine and etravirine). The work 

presented in this thesis focuses on efavirenz and a novel nanoformulation of 

efavirenz, discussed in section 1.4.1 and 1.5.3, respectively.  

 

1.3.3 Protease Inhibitors 

The viral enzyme PR is responsible for the proteolytic cleavage of the Gag-Pol 

polyprotein to produce functional viral proteins (32). Inhibition of this process 

(via PI's, such as lopinavir, atazanavir and darunavir) leads to incomplete viral 

maturation resulting in the formation of incomplete, non-infectious virions (32, 

33). Viral PR targets phenylalanine-proline and tyrosine-proline bonds found in 
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Gag-Pol. As host protease does not usually target these bonds, PIs are able to 

target the viral PR active site whilst minimising activity against host proteases 

(34). The prescription of PI's supported by an NRTI backbone may be 

recommended as an alternative when NNRTIs are unsuitable (e.g. due to viral 

resistance or patient intolerance).  

 

1.3.4 Integrase Inhibitors 

Following the production of viral DNA, the viral genome is fused into the host 

DNA via the viral enzyme IN. The first stage of this process is the formation of 

an IN-viral DNA complex. Following complex formation the 3′ end of the viral 

DNA is processed, producing reactive hydroxyl groups. The complex is 

transported to the host cell nucleus (35). This complex then targets host DNA, 

where the reactive 3′ hydroxyl groups attack the phosphodiester bond and are 

covalently linked to the host DNA. This is followed by full integration of the 

viral genome as host repair mechanisms integrate the viral DNA (35, 36). 

Inhibitors of IN (such as dolutegravir, elvitegravir and raltegravir) act via 

competitive antagonism of the IN active site, via chelation of the divalent metals 

of the IN active site (35). By preventing the binding of the IN-viral DNA 

complex to the host DNA, IN inhibitors prevent the incorporation of the viral 

genome halting the viral life cycle (36). 

 

 

 



  14 

1.3.5 Entry Inhibitors 

All the previously discussed classes of antiretroviral drugs act by ceasing the 

propagation of the virus within cells that are already infected by HIV. Entry 

inhibitors aim to prevent the virus from penetrating the cell, thus preventing the 

infection of new cells. There are a number of strategies currently at various 

stages of development (e.g. ibalizumab, a monoclonal antibody that targets CD4 

is currently in phase II). However, there are only 2 drugs currently approved by 

the FDA, maraviroc and enfuvirtide (also known as T20) (37-39). 

 

In order for cell entry to take place, the virus must bind to CD4 receptor and a 

coreceptor. A polymorphism in CCR5 (CCR5-Δ32) leads to the production of a 

non-functional protein and has been shown to confer resistance to HIV infection 

and disease progression (40), but carriers are otherwise healthy. This was the 

basis for development of CCR5 inhibitors and the first in class, maraviroc, 

prevents viral entry via inhibition of the coreceptor CCR5 (41). Limitations of 

maraviroc include poor and variable pharmacokinetics and the necessity for viral 

tropism tests prior to initiation of therapy. Only HIV that utilises CCR5 is 

inhibited by maraviroc, which has no effect on HIV that utilises CXCR4 as a co-

receptor (39, 42).  

 

Another approach to preventing viral entry is to inhibit fusion of the viral capsid 

with the cell membrane. Enfuvirtide is a synthetic peptide that binds to gp41 

preventing it from interacting with the cell membrane and halting fusion (39). As 
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enfuvirtide is a peptide, oral administration is problematic. The presence of 

peptidases in the GI rapidly degrades enfuvirtide resulting in very poor 

bioavailability, thus parenteral administration is required to bypass the GI.(43). 

Given the high dosing frequency (twice daily) and the route of administration 

(subcutaneous [SC]), prescription of enfuvirtide is usually reserved for when 

other therapeutics have failed (44). Recent studies have sought to address this 

issue via a polylactic-co-glycolic acid microparticle formulation to provide 

sustained release (sustained in vitro release over 18 days) (44).  

 

1.4 The Central Nervous System in HIV 

The central nervous system (CNS) is a key anatomical region in HIV therapy as 

the CNS is separated from systemic circulation by the blood brain barrier (BBB) 

(45). The BBB is comprised of a complex interplay of multiple cell types that 

produce an effective barrier limiting the entry of both endogenous and exogenous 

molecules (Figure 3). The BBB is characterised by the presence of tight cellular 

junctions, formed by interactions between key proteins (including claudins, 

occludin and junction adhesion molecule) expressed by the endothelial cells of 

the BBB (46, 47). Endothelial cells are supported by a number of other cells, 

providing processes necessary for the formation of the BBB, capillary basement 

membrane, astrocyte foot processes and pericytes (46). 
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In addition to the presence of tight junctions, limiting paracellular diffusion, 

endothelial cells highly express metabolising enzymes, efflux transporters and 

possess a large amount of mitochondria (required for active transport and 

metabolism), all of which limit access of antiretrovirals to the CNS (49, 50). 

Understanding the mechanisms the BBB employs to defend the CNS enables 

identification of physicochemical properties effecting CNS penetration.  

 

Molecular weight has been identified as a key factor determining BBB 

penetration. Low molecular weight chemicals have been shown to more readily 

pass the BBB than those with a higher molecular weight. According to Lipinski’s 

“rule of five” (Table 2) the molecular weight cut off for good permeability is 

≤500 KDa. However, for BBB penetration it has been suggested an even lower 

molecular weight needs to be applied (≤ 400 KDa) (51, 52). The lipophilicity of a 

compound has also been shown to play a significant role in BBB penetration, 

with an oil/water distribution (LogP) of ≤5 indicating good permeability. In 

addition to the physicochemical properties, there are a number of 

pharmacological considerations that may affect BBB permeability. Highly 

protein bound antiretrovirals are unlikely to readily pass the BBB as only the free 

drug is available for permeation. The endothelial cells of the BBB have been 

shown to express many cytochrome P450 (CYP) enzymes (both CYP2B6 and 

CYP3A4 mRNA were expressed in primary brain endothelial cultures) and drug 

transporters (e.g P-glycoprotein [P-gp] and breast cancer resistance protein 

[BCRP]) (47, 53). The expression of metabolic enzymes and drug transporters 

provide an effective barrier to antiretroviral penetration across the BBB. 



 

 18 

Physicochemical 
Property 

Value for good 
permeability 

Value for good 
BBB permeability 

Number of Hydrogen Bond 
Donors 

≤ 5 ≤ 5 

Number of Hydrogen Bond 
Acceptors 

≤ 10 ≤ 5 

Molecular Weight ≤ 500 ≤ 400 

Log P ≤ 5 1.5-2.7 

Number of Rotatable 
Bonds 

≤ 10 ≤ 5 

 

Table 2. Lipinski’s rule of 5 shows the desired physicochemical properties of orally available to 
predict good absorption or permeability across a biological membrane and specifically the BBB. 
These rules only apply to drugs utilising passive permeation. Permeability of transporter proteins 
substrates is dependant of the type of transporter (influx or efflux), affinity and abundance of the 
transporter. Data extracted from (51, 52) 

 

The BBB is highly effective at preventing the penetration of many antiretrovirals 

into the CNS. Using current technology CNS penetration is assessed using 

cerebrospinal fluid (CSF) as a surrogate marker. However, it is currently being 

debated as to how accurate a marker CSF concentrations are for brain 

concentrations when determining drug exposure (54-56). It has been 

demonstrated in guinea pigs that brain tissue concentrations of nevirapine not 

only differ from those in the CSF but also vary between brain regions (54). 

Nevirapine uptake was shown to be 0.32 ml/g in the CSF whereas nevirapine 

uptake was lower in the choroid plexus (0.25 ml/g) and higher in the pituitary 

(1.61 ml/g) when compared to the CSF (54) . These data indicate that predicting 

brain tissue concentrations from CSF is problematic. Indeed, concentrations 

within CSF have been shown to vary depending on where the sample was taken. 

Lamivudine (a nucleoside reverse transcriptase inhibitor) has been shown to be 
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5-fold higher in CSF sampled from the lumbar region compared to ventricular 

CSF in rhesus monkeys (55).  

 

Antiretrovirals display wide variation in CSF penetration (considered by CSF 

sampling). For example CSF concentrations of efavirenz, nevirapine and 

lopinavir were determined to be lower than plasma concentrations, 0.5%, 63% 

and 0.23%, respectively (57-59). Despite lower concentrations in the CSF, 

antiretroviral concentrations maybe sufficient to display antiretroviral activity, 

exceeding the concentration producing 50% inhibition (IC50) (57, 59). However, 

this is not always the case and tenofovir CSF concentrations were shown to be 

5% of plasma concentrations with 77% of patients (cohort of 183 patients) 

having CSF concentrations below the IC50 (60). 

 

A significant limitation of current antiretroviral treatment is that while the BBB 

limits the penetration of many antiretrovirals, HIV is able to infect the CNS and 

replicate (47). HIV crosses the BBB via infected peripheral blood lymphocytes 

and monocytes, which migrate to the brain (61, 62). Although the mechanism of 

HIV passage across the BBB has not been fully elucidated, it has been 

demonstrated that infection of CD14+ and CD16+ monocytes results in an 

increase in migration across to the brain in response to CCL2 (a chemoattractant) 

when compared to uninfected cells (62). It is postulated that continued viral 

replication in the CNS is a contributor to viral rebound. Currently, HIV is 

incurable and upon termination of therapy the virus is able to re-infect biological 
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compartments previously showing suppression of viral growth (63). A further 

concern is the development of resistant strains of HIV.  

 

In addition to the risk of viral rebound, viral replication in the CNS can lead to 

the development of HIV-associated neurocognitive disorder (HAND). Once 

released, HIV is able to infect brain parenchyma triggering a signalling cascade 

resulting in increased concentrations of neurotoxins (61). The increase in 

neurotoxins eventually leads to neuronal damage and cognitive impairment. 

HAND can be subdivided into asymptomatic neurocognitive impairment, mild 

neurocognitive disorder and HIV-associated dementia. Symptoms present in a 

range of psychological disturbances (including sleep disorders, depression and 

mania) (61).  

 

1.4.1 Efavirenz Associated Central Nervous System Side Effects 

Currently the WHO recommends global treatment of HIV should consist of 1 

NNRTI supported by an NRTI backbone (64). The most frequent combination 

administered is efavirenz combined with tenofovir and emtricitabine. This 

combination is co-formulated into a single tablet administered once daily 

(Atripla) (26).  

 

Patients receiving efavirenz-containing therapy frequently report CNS 

disturbances. Symptoms occur with a high frequency and can include depression, 

anxiety, abnormal dreams and hallucinations (65). The majority of patients report 
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development of CNS disorders shortly after commencing efavirenz with 

symptoms dissipating during the initial months of therapy. A minority of patients 

continue to experience symptoms for the duration of receiving efavirenz-

containing therapy (66). More recently however, efavirenz CNS toxicities have 

been shown to have more long-term effects. Leutscher et al demonstrated a 60% 

discontinuation rate of efavirenz versus 3% receiving non-efavirenz-containing 

therapy. It was further shown that half of the patients discontinuing efavirenz did 

so ≥ 12 months (67). 

 

In addition to the negative impact on the quality of the patient’s life, CNS 

toxicities may also lead to a decrease in patient adherence. Poor patient 

adherence to antiretroviral medication is a major concern with regards to HIV 

therapy but in particular efavirenz therapy. Exposure to sub-therapeutic 

concentrations can lead to therapeutic failure and the development of viral 

mutations and resistant strains of HIV (sometimes class-resistant). NNRTI’s are 

considered to have a low genetic barrier to the development of resistance; a 

single mutation (such as K103N) can confer resistance to multiple NNRTI’s (68). 

The impact of CNS side effects on patient adherence is not clearly defined. 

Previous studies imply patients demonstrate tolerance to CNS side effects, 

resulting in little or no impact on patient adherence (69, 70).  

 

Many studies have attempted to elucidate the relationship between CNS adverse 

effects and variability in plasma concentrations of efavirenz. Efavirenz is 

metabolised primarily by CYP2B6 and to a lesser extent CYP2A6, CYP3A4 and 
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uridine 5'-diphospho-glucuronosyltransferase isoform 2B7 (UGT2B7) (71). 

Higher plasma concentrations of efavirenz have been shown to be associated 

with polymorphisms in these enzymes, in particular polymorphisms in CYP2B6, 

such as 516G>T, CYP2B6*6 (constituted by 516G>T and 785A>G 

polymorphisms) and CYP2B6*16 (containing 983T>C and the 785A>G 

polymorphisms) (72, 73). 

 

The relationship between patient polymorphisms and plasma concentrations of 

efavirenz has been clearly demonstrated. However, the association of higher 

pharmacokinetic exposure to efavirenz and CNS toxicities remains unclear. 

Polymorphisms in CYP2B6 have been shown to be associated with increased 

incidence of CNS side effects in some studies. Marzolini et al reported plasma 

concentrations of >4000 µg/l are associated with a 3-fold increase in CNS side 

effects (Figure 4) (74). Conversely; Haas et al described a higher frequency of 

the CYP2B6 516G>T polymorphism in African-Americans than European-

Americans but no significant difference in the occurrence of neuropsychiatric 

adverse effects, while Takahashi et al concluded that there was no correlation 

with efavirenz plasma concentrations and CNS side effects in Japanese patients 

(75, 76). Our current understanding leads to the conclusion that increased plasma 

concentrations of efavirenz play a putative role in the development of CNS side 

effects, but there is a current paucity of data relating to the underlying 

mechanisms of toxicity.  
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Figure 4. The graph above shows the association with probability of either viral suppression 
(solid line) or occurrence of CNS toxicity (broken line) with concentration of efavienz. The 
optimal range highlights efavirenz concentrations of 1000 µg/l and 4000 µg/l where viral 
suppression is maintained with acceptable occurrence of CNS toxicity. Figure source (74). 

 

1.5 Limitations of Current Antiretroviral Therapeutics 

Currently all licensed antiretroviral drugs (except enfuvirtide) are prescribed as 

solid formulations for oral administration. The pharmacokinetics of orally 

administered drugs are subject to the first pass effect, poor absorption and the 

hostile environment of the gastrointestinal (GI) tract (77). Before reaching the 

site of action, antiretroviral drugs have to first enter the GI tract and be absorbed. 

The extreme pH environment and the presence of digestive enzymes degrade 

some drugs prior to absorption. Bioavailability is also influenced by poor 

solubility and the presence of drug transporters in enterocytes of the GI tract 

(78). Following absorption, many of the drugs undergo extensive hepatic 
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metabolism (79). The factors governing absorption have a significant impact on 

bioavailability and pharmacokinetics, with huge inter-individual variability being 

a hallmark for most antiretroviral drugs.  

 

The major aim of HIV therapy is to maintain sufficient concentrations of 

antiretrovirals to enable sustained virological suppression. Sub-therapeutic 

concentrations of antiretroviral drugs can allow continued viral replication and 

facilitate development of resistance (80). Particular classes of antiretroviral drug 

are more susceptible to emergence of resistance than others (81). As discussed 

above, NNRTIs have a low genetic barrier to resistance, and class-wide 

resistance can compromises multiple agents in one event (82). 

 

Poor penetration into certain anatomical sites enables continued viral replication, 

and is a major limitation to antiretroviral therapy. Areas such as the CNS, genital 

tract and the lymphatic system have been shown to have low concentrations 

(termed sanctuary sites), which may be involved in viral rebound and resistance 

(83). Recently, it has been demonstrated that despite viral suppression in the 

blood (the current marker of successful treatment) there is incomplete 

suppression and in some cases higher viral replication in lymphoid tissue of 

patients receiving key antiretroviral drugs (84).  

 

There are currently limited paediatric formulations of antiretrovirals. Significant 

differences are apparent in children due to the changes during development.  For 
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example, neonates (children below 6 months) show increased clearance of 

lopinavir and children below 6 years old show increased renal excretion of 

lamivudine (85). Gastric pH is higher during the first 2 years of life, and plasma 

protein, water content and expression of CYPs vary significantly from adults 

(85). Therefore, difficulties in treating children in resource-limited settings are 

exacerbated by the limited availability of paediatric formulations, cost and issues 

with stability and storage. 

 

The efficacy of combination antiretroviral therapy for HIV patients who take 

their medications appropriately is approximately 90% with the main factors that 

distinguish one regimen from another being simplicity (dose, format, size) and 

toxicity (86). A number of toxicities have been reported clinically across the 

various classes of antiretrovirals and have been extensively reviewed (86-88). 

Currently, efavirenz and nevirapine are the two most frequently prescribed 

NNRTIs. This is because both drugs are highly potent (efavirenz inhibition 

constant of the reverse transcriptase enzyme [Ki] = 2.9 nM, nevirapine Ki = 7.0 

nM) and generally well tolerated (89, 90). However, both drugs are associated 

with distinct toxicity profiles. Efavirenz is associated with a series of 

neuropsychiatric adverse effects such as anxiety, depression, hallucinations, 

paranoia and suicide ideation, as discussed in section 1.4.1 (91).  

 

Some nanotechnologies are being applied to extend the pharmacokinetic 

exposure of drug for long-acting (LA) delivery (see below). Clearly, the presence 

of hypersensitivity reactions (HSRs) means care must be taken in selection of 
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drugs for this approach. Moreover, since the low frequency of HSRs mean they 

are not usually detected until late in development (or routine use) the application 

of these types of approach to new chemical entities (NCE) requires careful 

consideration. 

 

1.5.1 Utilisation of Nanomedicine to Address The Limitations of 

Current Antiretroviral Therapeutics  

Collectively, the major drivers for the application of nanotechnology to improve 

the pharmacology of antiretroviral drugs relate to improved pharmacokinetics 

(lower dose / sustained release / lower inter-patient variability), targeting of 

sanctuary sites and improved safety. Clearly, the disease-specific development of 

nanomedicines needs to consider the pathology of the disease, particularly where 

perturbation of the immune system occurs as a function of the disease. However, 

chronicity is important in the context of nanomedicine development since in the 

absence of eradication, patients require a life-long commitment to therapy. 

Nanotechnology can be applied to NCEs or existing therapeutic agents and for 

the latter, the specific toxicological mechanisms for the drugs being employed 

needs to be considered. Despite the significant advances in antiretroviral therapy, 

it is clear that many aspects of modern antiretroviral therapy may be improved. 

The development of NCE can be prohibitively expensive and drugs are often 

abandoned due to inherent issues in drug exposure, efficacy and/or toxicity. 

Nanotechnology offers the opportunity to examine existing pharmaceutical 

agents and address inherent issues in pharmacokinetics (poor absorption, rapid 

clearance, unfavourable tissue distribution, etc.) whilst maintaining the 
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favourable properties of the drug (92). Nanoformulation has been applied to 

address many of the challenges associated with current antiretroviral therapy, 

including LA formulations, improving dissolution of poorly water soluble drugs, 

reduction of inter-individual pharmacokinetic variability, paediatric formulations 

and targeting to HIV-infected cells. This section will outline how nanomedicine 

has been applied to address some of the challenges associated with existing HIV 

therapeutics. 

 

1.5.3 Nanotechnology-enabled oral drug delivery 

As discussed above, one of the limitations of current antiretroviral therapy is 

poor bioavailability following oral administration (77), often as a result of low 

aqueous solubility. Figure 5 shows currently recommended antiretrovirals by the 

WHO and their aqueous solubility. The Biopharmaceutics Classification System 

(BCS) categorises drugs on solubility and permeability (class 1 high solubility 

with high permeability, class 2 low solubility with high permeability, class 3 high 

solubility with low permeability and class 4 low solubility with low 

permeability) (93). Many of the first line HIV drugs have inherent solubility or 

permeability issues. Efavirenz is the preferred antiretroviral agent prescribed. 

When efavirenz is not tolerated nevirapine is frequently prescribed instead. Both 

drugs are classified as having solubility issues. Additionally, lopinavir and 

ritonavir (a frequently prescribed second line therapy) are also classified as 

having solubility issues (BCS class 2) (93). There are many approaches under 

investigation for the development of nanomedicines for oral administration and 

current progress is summarised below. 
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Figure 5. Antiretrovirals recommended by the WHO and their BCS classification. The following 
combinations are recommended for first line therapy; zidovudine and lamivudine supported by 
either efavirenz or nevirapine or tenofovir and emtricitabine supported by either efavirenz. Also 
shown are the biopharmaceutics classification System (BCS) classifications and log P values 
(oil/water distribution). Classification is based on the antiretrovirals physiochemical properties 
and permeability through biological membranes, such as the gut. Data extracted from (77, 94).  

 

Lopinavir is a substrate for both CYP3A4 and P-gp, which both contribute to 

poor bioavailability of lopinavir when administered alone. Conventional therapy 

minimises this by boosting the pharmacokinetics (pharmacoenhancement) of 

lopinavir via co-administration of ritonavir, which potently inhibits both 

CYP3A4 and P-gp (95, 96). Surfactant-stabilised lopinavir SDN ([solid drug 

nanoparticle] also known as nanosuspension or nanodispersion) prepared by 

combination of antisolvent precipitation and high-pressure homogenisation 

(stabilized by polyvinyl alcohol) followed by a stepwise freeze-drying cycle 
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(using mannitol as the cryoprotectant) have been studied. Oral administration of 

lopinavir nanoparticles (12 mg/kg) demonstrated increased plasma exposure 

when compared to conventional lopinavir (12 mg/kg) co-administered with 

ritonavir (3 mg/kg), Cmax (2207 vs 1160 ng/ml), AUC (99806 vs 32002 ng.h/ml) 

and oral bioavailability was increased 3.1 fold. Additionally, co-administration of 

ritonavir with the nanoformulated lopinavir yielded a 3.3-fold greater oral 

bioavailability when compared to the conventional formulation. These data 

indicate that the nanoformulation provides increased oral bioavailability without 

reliance on ritonavir (which is not well tolerated due to toxicity), raising the 

possibility of dose simplification (95). 

 

SDN formulation of efavirenz has also been demonstrated to improve in vitro 

cellular uptake, in vivo plasma pharmacokinetics and reduce in vitro toxicity 

indicating the approach may provide a suitable oral treatment for HIV. SDNs of 

efavirenz were generated using a novel emulsion template freeze-drying 

technique. The process yielded amorphous SDNs of average size 322 nm (±29), 

poly dispersity index 0.48 (±0.17) and drug loading of 70% (70% EFV, 20% 

poly[vinyl alcohol] and 10% α-tocopherol polyethylene glycol succinate) (97). 

Pharmacological assessment of the efavirenz SDN formulation demonstrated 

improved Caco-2 uptake (between 1.1 and 1.65 fold) and apparent permeability 

(up to five-fold), compared to an unformulated efavirenz preparation. Lower 

cytotoxicity was observed (up to 3.5 fold increase in the IC50) compared to an 

unformulated efavirenz preparation. In vitro in vivo extrapolation predicted that 

the SDN formulation could achieve similar plasma pharmacokinetics to the 

standard formulation with 50% less dose (300mg SDN vs 600mg standard 
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efavirenz). The in vivo pharmacokinetics were also investigated via oral 

administration to rats and higher Cmax (478.1 vs 125.9 ng/l), minimum plasma 

concentration ([Cmin]; 378.9 vs 80.5 ng/l), AUC (1831.0 vs 457.1 ng.l/h) and time 

to reach maximum plasma concentration (Tmax; 0.5 vs 0.8h) were observed when 

compared to a conventional formulation. These data indicate a potentially higher 

absorption of efavirenz following oral administration, which in turn may reduce 

dose and cost of efavirenz-containing therapy (97). 

 

1.5.3 Nanotechnology-enabled parenteral drug delivery 

Two LA nanoformulations for the treatment of HIV are currently in late stage 

development and have already transitioned into human studies. LA formulations 

are of particular interest in the treatment of chronic conditions such as HIV 

where patient adherence presents a significant issue (98). Poor adherence to 

therapy can lead to sub-therapeutic concentrations of antiretrovirals, which in 

turn can lead to viral rebound, and the emergence of viral resistance (81). LA 

formulations aim to reduce the impact of poor adherence by increasing the 

dosing interval while maintaining therapeutic concentrations. 

 

The first example is a SDN suspension of the NNRTI, rilpivirine (TMC278). 

Rilpivirine has been approved for oral administration since 2011. Despite 

displaying potent antiviral activity, rilpivirine has poor water solubility 

(<0.1mg/ml) making it compatible with the continuous wet-bead milling process, 

forming SDN suspended in aqueous vehicle with hydrophilic surfactants. 
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Following a single SC or intramuscular injection of rilpivirine, plasma 

concentrations remained detectable for up to 3 weeks in mice and 3 months in 

dogs (99). Following pre-clinical assessment, phase I trials of rilpivirine LA have 

commenced. A single injection of 300 mg/ml rilpivirine LA administered as 

gluteal intramuscular or abdominal SC injections was assessed in 51 healthy 

volunteers. Rilpivirine concentrations remained >10 ng/ml for up to 26 weeks 

with no grade 3 or 4 adverse events (100).  

 

The second example of an LA formulation is that of cabotegravir 

(S/GSK1265744), also produced by wet-bead milling. Cabotegravir is an 

analogue of the integrase inhibitor dolutegravir under assessment for both oral 

and LA administration (101). The LA formulation consists of crystalline 

cabotegravir, milled to a median particle size of 200 nm, along with surfactant, 

polymer, tonicity agent and water for injection. In a randomized, placebo-

controlled phase I study, 56 HIV healthy volunteers received cabotegravir as an 

intramuscular injection (100, 200, 400 or 800 mg) or a SC injection (100, 200 or 

400 mg) or placebo injection. Plasma concentrations of cabotegravir increased 

rapidly over the first week followed by sustained exposure for >24 weeks 

following administration of >200 mg. Intramuscular and SC injection were well 

tolerated with no grade 2 to 4 injection site reactions reported (102). 
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1.6 The Application of Physiologically Based Pharmacokinetic 

Modeling to HIV Therapy 

There has been much advancement in HIV therapy however as previously 

discussed, in section 1.5; there are still many clinical issues with current 

therapeutics. Development of NCE is frequently difficult and expensive. The 

application of physiologically based pharmacokinetic modeling (PBPK) offers 

the opportunity to examine clinical issues in silico, testing the properties of NCE 

or novel formulations aiding in the identification of desired properties (103). 

 

PBPK modelling is a bottom up approach to simulate clinical scenarios using 

virtual patients. The approach mathematically describes physiological processes 

by exploiting the relationship between anthropometric measures (such as height, 

weight and gender) and physiological parameters (such as organ volumes and 

blood flow) (104). For example whole organ weight may be predicted by 

allometric scaling to height, age and body surface area (104). In addition to 

physiological variables, drug specific physicochemical properties (such as logP, 

Caco-2 apparent permeability and affinity for transporters and metabolic 

enzymes) are used as input to predict the pharmacokinetics (105).  

 

PBPK modeling has been applied previously to investigate clinical issues 

applicable to HIV and development of novel nanotherapeutics. As previously 

discussed in section 1.4.1, the CNS toxicities associated with efavirenz have an 

element of dose dependency. Siccardi et al demonstrated that PBPK modeling 
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could be applied to investigate the effect of dose reduction on the 

pharmacokinetics of efavirenz when stratified for CYP2B6 genotype. The 

simulations showed that patients homozygous for CYP2B6 516TT (slow 

metabolisers of efavirenz) were at an increased risk of developing CNS toxicity 

following a standard 600mg once daily oral dose of efavirenz (25% vs. 36% in 

patients with CYP2B6 516GG wild type). Following dose adjustment the 

simulations predicted a lower risk of CNS toxicity without compromising viral 

efficacy. A once daily dose of 200mg achieved 20% probability of CNS toxicity 

with 72% probability of viral suppression (105). 

 

More recently PBPK, has been applied to the development of LA injectable 

nanoformulated antiretrovirals (106). As discussed in section 1.5, administration 

of current antiretrovrals is predominantly via the oral route. The inherent 

disadvantages of oral administration (reduced pharmacokinetics and poor patient 

adherence) may be overcome by the development of LA nano formulated 

antiretrovirals, as discussed in section 1.5.3.  
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1.7 Thesis aims 

Efavirenz has been available for the past 17 years and is still one of the most 

frequently prescribed antiretroviral therapeutics. This can be attributed to its 

beneficial pharmacological properties (antiviral efficacy, long plasma half-life 

[t1/2] and comparatively favourable toxicity profile versus other antiretrovirals) 

(66). Despite these favourable attributes efavirenz has several limitations, which 

may negatively impact therapy, most notably the occurrence of CNS 

disturbances. Although contributing factors have been identified, the underlying 

mechanism of efavirenz associated CNS toxicity remains elusive. In addition to 

CNS toxicity, the poor water solubility of efavirenz potentially reduces 

bioavailability and limits administration to paediatrics. 

 

Various nanotechnologies have been explored in attempts to mitigate some of the 

limitations with efavirenz. While there has been progress in increasing the 

bioavailability of efavirenz there has been no attempt to assess the impact of 

increased exposure to efavirenz on CNS toxicity.  
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The body of work presented in this thesis aimed firstly to investigate the 

underlying mechanism of efavirenz CNS toxicity and secondly to assess uptake 

and CNS toxicity of efavirenz and a novel SDN formulation of efavirenz.  

• Chapter 2 genotyping of patients with early discontinuation of efavirenz 

containing therapy. This chapter investigated the association of single 

nucleotide polymorphisms (SNP’s) in the gamma aminobutyric acid 

receptor (GABA) with early treatment discontinuation of efavirenz was 

investigated.  

• Chapter 3 examined the effect of efavirenz and the SDN formulation in a 

rodent model of anxiogenesis. The EPM has been used previously to 

demonstrate anxiety (a symptom of efavirenz CNS toxicity).  

• Chapter 4 details the development of a liquid chromatography mass 

spectrometry assay for the detection of efavirenz in plasma, brain tissue 

homogenate, PBS and cell culture media.  

• Chapter 5 the uptake of efavirenz and the SDN formulation was 

investigated in hCMEC/D3 cell line, immortalised endothelial cells from 

the BBB. This chapter investigated the effects of inhibitors of transport 

proteins and multiple mechanisms of endocytosis. 

• Chapter 6 discusses the generation of a PBPK model to predict efavirenz 

penetration in plasma, CSF and brain tissue. Currently CSF 

concentrations are used as a surrogate for brain penetration of drugs. This 

chapter investigated if brain concentrations were represented by CSF 

concentrations in an in silico simulation. 
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Chapter 2 

 

Single nucleotide polymorphisms in the GABAa receptor are not 

predictors of early treatment discontinuation of efavirenz  
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2.1 Introduction 

As discussed in chapter 1, efavirenz is one of the key therapeutics currently used 

in the treatment of HIV. Efavirenz, supported by an NRTI backbone, is currently 

recommended as first-line therapy by multiple health organisations (26, 64). 

There is an abundance of reports from clinical trials detailing CNS disturbances 

such as depression, anxiety, abnormal dreams, suicidal thoughts and 

hallucinations. CNS adverse effects have been shown to have a high rate of 

occurrence. Reports of >50% of patients experiencing CNS toxicities are not 

uncommon. CNS disturbances have been reported to occur transiently in the 

majority of patients. Symptoms have been reported to develop shortly after 

taking efavirenz, subsiding within 2 to 4 weeks. Although CNS adverse effects 

dissipate in the majority of patients, there is a minority (up to 10%) of patients 

who continue to experience neuropsychiatric adverse effects while receiving 

efavirenz. The CNS toxicities associated with efavirenz are well documented but 

the underlying mechanisms have remained elusive.  

	

Although there have been numerous studies to identify predictors of efavirenz 

CNS toxicity, until recently the majority of studies have investigated 

polymorphisms in genes determining efavirenz disposition. Given the majority of 

efavirenz toxicities are mood and sleep disorders (Table 1) there is evidence to 

indicate an interaction with neurotransmitters. Treatment of naturally occurring 

depression and anxiety focuses on pharmacological modulation of 

neurotransmission. There are numerous classes of antidepressants that act to via 

distinct mechanisms. Serotonin is released at the synaptic cleft to interact with 
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serotonin receptors. Cessation of signalling is achieved by reuptake of serotonin. 

Selective serotonin reuptake inhibitors (such as fluoxetine) act via inhibiting 

reuptake and increasing the duration of serotonin signaling (107). Monoamine 

oxidase inhibitors (such as moclobemide) also act to increase the duration of not 

only serotonin signaling but also dopamine by inhibiting the metabolism of 

monoamine neurotransmitters (107). Anxiety is frequently treated by the 

administration of benzodiazepines (such as diazepam). Benzodiazepines act via 

allosteric modulation, binding to the benzodiazepine binding site leads to 

potentiation of GABAergic signaling. Additionally, benzodiazepines are 

indicated in the treatment of insomnia (108). There are numerous 

neurotransmitters implicated in the etiology of abnormal dreams or nightmares. 

Clinical trials and case reports have demonstrated drugs effecting acetycholine 

(e.g. donepezil, an acetycholinesterase inhibitor), norepinephrine (e.g atenolol, a 

β1 receptor antagonist), serotonin (e.g paroxetine, a selective serotonin reuptake 

inhibitors) and GABA (e.g nitrazepam, acts via increasing binding affinity of 

GABA to GABA receptors) (109). 

 

The GABA receptor is the principle mediator of inhibitory neurotransmission in 

the CNS (110). The receptor is a hetero pentameric ligand gated ion channel, 

assembled from a combination of 5 subunits leading to the formation of a 

chloride ion channel (111). Currently there have been 16 different subunits 

identified (α1-6, β1-3 γ1-3, δ, ε, π and ϴ), with the most common receptor type 

consisting of 2 α1 subunits, 2 β2 subunits and 1 γ2 subunit (Figure 1) (111, 112). 

The GABAa receptor has been of significant pharmacological interest, as 
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dysfunctions of GABAergic signalling have been implicated in neurological 

disorders including anxiety, insomnia and depression (110, 113, 114). The 

GABAa receptor has a variety of binding sites; one of the most 

pharmacologically interesting is the benzodiazepine-binding site. The 

benzodiazepine binding site is situated at the interface between the α1 and γ2 

subunits (18). Binding of ligands to this allosteric binding site increases the 

affinity of the receptor for GABA, thus potentiating GABAergic signalling (115).  

 

 

Figure 1 shows the configuration of the extracellular domain of the GABAa receptor. Labelled 
are the subunit type (α1, β2, and γ2), the 2 GABA binding sites and the benzodiazepine-binding 
site. 

 

Examination of the adverse effects of drugs acting at the benzodiazepine receptor 

reveals a similar profile of adverse effects as displayed by efavirenz (see Table 

1). Additionally, efavirenz is a 1,4-dihydro-2H-3,1-benzoxazin-2-one, which 

shares a number of structural motifs with the benzodiazepines (116). Previous in 

silico studies (conducted as part of a previous Master by Research degree) 

performed using homology-modelling techniques have identified that efavirenz 

and ligands of the benzodiazepine binding site share a common docking location 
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(Figure 2). The docking results demonstrated that efavirenz and its metabolites 

did not share any common docking locations with ligands of the GABA binding 

site. However, models indicated that efavirenz may dock in a similar location to 

benzodiazepine ligands, showing the potential of efavirenz to interact with key 

amino acids involved in binding of ligands at this site (117). 

 

 

Figure 2 shows the docking results performed using the benzodiazepine-binding site. Each grid 
shows the most energetically favourable docking position of the following molecules: A – 
efavirenz (green), B - efavirenz (green), diazepam (blue) and zolpidem (orange), C –7-OHEFV 
(green), 8-OHEFV (blue), 8,14-OHEFV (orange), D – nevirapine (green), delavirdine (blue), 
rilpivirine (orange). Also shown in each grid are the amino acid residues shown to be important 
in benzodiazepine binding His 101, Tyr 161, Thr 160 (α1 purple) Phe77 and Met 130 (γ2 yellow). 
Data from this figure was generated during a previous Master by Research degree (unpublished 
data). 
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Drug Side Effects 

Efavirenz 

Abnormal dreams, anxiety, depression, insomnia, aggression, 

confusional state, euphoric mood, hallucination, mania, suicide 

ideation, disturbance in attention, dizziness, headache, somnolence, 

agitation, amnesia, ataxia, abnormal coordination, convulsions and 

abnormal thinking. 

Zolpidem 
Hallucination, agitation, nightmare, somnolence, headache, 

dizziness, exacerbated insomnia and anterograde amnesia. 

Zalepon 

Amnesia, paraesthesia, somnolence, ataxia, confusion, decreased 

concentration, apathy, depersonalisation, depression, dizziness and 

hallucinations. 

Flurazepam 
Numbed emotions, reduced alertness, confusion, fatigue, headache, 

dizziness, muscle weakness, ataxia, and double vision. 

Lorazepam Confusion, depression, Sedation, drowsiness, ataxia and dizziness. 

Diazepam 
Sedation, drowsiness, unsteadiness, ataxia, headache, vertigo and 

visual disturbances. 

 

Table 1 shows the chemical structure and side effects associated with efavirenz and 
drugs acting on the GABA receptor (in particular acting on α1 GABAa receptor). 

 

When considering the associated side effects and structural similarities to 

GABAergic drugs, it is reasonable to postulate that the mechanism of efavirenz 

mediated CNS side effects is via modulation of GABAergic signalling. The aim 

of this chapter was to investigate the association of single nucleotide 

polymorphisms (SNP’s) in the subunits of the GABA receptor (α1+2, β2 and γ2) 

with early treatment discontinuation of efavirenz containing therapy (Table 2). 

This genetic association study was performed using patient samples of the 

German Competence Network for HIV/AIDS (KompNet Cohort). Allele 

frequencies were compared between patients recorded as early treatment 

discontinuation (efavirenz treatment for < 3 months) and patients maintaining 
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efavirenz-containing therapy (≥ 3 months).  In this study early treatment 

discontinuation was employed as a surrogate marker for CNS disturbances. 

 

SNP code GABA 

Subunit 

Alleles Population Frequency Disease 

Association 

References 

Rs279858 α2 A/G (A) E = A (0.527), G (0.473) 

SSA = A (0.823), G (0.177) 

Alcoholism  (118) 

Rs279845 α2 A/T (T) E = A (0.492), T (0.508) 

SSA = A (0.149), T (0.851) 

Alcoholism (119) 

Rs279836 α2 A/T (T) E = A (0.492), T (0.508) 

SSA = A (0.149), T (0.851) 

Alcoholism (120) 

Rs2229944 β2 C/T (T) E = C (0.951), T (0.049) 

SSA = C (0.810), T (0.190) 

Schizophrenia (121) 

Rs6556547 β2 A/C (C) E = A (0.059), C (0.941) 

SSA = A (0.126), C (0.874) 

Schizophrenia (121) 

Rs211037 γ2 C/T (T) E = C (0.768), T (0.232) 

SSA = C (0.455), T (0.545) 

Epilepsy (122) 

Rs211014 γ2 A/C (C) E = A (0.195), C (0.805) 

SSA = A (0.467), C (0.533) 

Heroin 

Addiction 

(123) 

 

Table 2 shows the SNPs examined in the GABAa receptor. Also 
shown are the subunit affected by the SNP, alleles (bracket indicates 
common allele) and disease association. Population frequencies were 
gathered from International Hapmap Project. E = European and SSA 
= Sub-Saharan African. 
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2.2 Methods 

 

2.2.1 Materials 

QIAamp DNA mini kit genomic DNA isolation kit was purchased from Qiagen 

(Manchester, UK). Pre validated primers and probes were purchased from Life 

Technologies (Paisley, UK). Quantitative polymerase chain reaction (QPCR) 

master mix was purchased from ABgene (Loughborough, UK). All other 

consumables were purchased from Sigma Aldrich (Dorset, UK). 

 

2.2.2 Patient Information 

Blood samples were taken from 439 patients receiving an efavirenz-containing 

regimen. The 439 patient samples were then assigned to either a training cohort 

(samples analysed by LGC Genomics [formerly KBioscience], 288 patients) or 

test cohort (samples analysed in house, 151 patients). Each cohort was 

subdivided based on duration of efavirenz therapy, the control group and the 

early discontinuation group. In addition to blood samples the details on the 

following demographic factors were collected from each patient; gender, 

ethnicity, age, smoking status and duration of efavirenz therapy. Blood samples 

were collected from patients of the cohort of the German Competence Network 

for HIV/AIDS (KompNet). The ethics committee of the Ruhr-Universita ̈t 

Bochum (Germany) granted ethical approval and patient consent was sought 

prior to collection of patient samples. 
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2.2.3 Extraction of Genomic DNA  

Genomic DNA was extracted from whole blood using the QIAamp mini kit. 

Extraction was performed following manufacturer’s instructions (spin-column 

protocol). Patient samples (200µl) were mixed with 20µl of QIAGEN protease 

and 200µl of buffer AL in microcentrifuge tubes. Samples were thoroughly 

mixed to ensure sample lysis followed by incubation at 56°C for 10 minutes. 

Following incubation, 200µl of ethanol was added to each sample and transferred 

to fresh spin-columns and centrifuged at 6000g for 1 minute at room 

temperature. 500µl of buffer AW1 was added and samples were then centrifuged 

at 6000g for 1 minute at room temperature. 500µl of buffer AW2 was added and 

samples were the centrifuged at 20,000g for 3 minutes at room temperature. 50µl 

of distilled water was added to each sample and incubated at room temperature. 

DNA was eluted by centrifugation at 6000g for 1 minute at room temperature. 

DNA was quantified using PicoGreen dsDNA quantitation reagent and 

normalised to 20ng/µl. The samples were stored at -40°C until analysis by real-

time polymerase chain reaction (PCR) allelic discrimination or until shipping to 

LGC Genomics for analysis.  
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2.2.4 Genotyping of GABA Receptor Polymorphisms by qPCR-

based allelic discrimination  

Genotyping for Rs279858, Rs279845, Rs279836, Rs2229944, Rs6556547, 

Rs211037 and Rs211014 in the test cohort was conducted LGC genomics. 

Genotyping was conducted using LGC Genomics proprietary KASP genotyping 

technology. Primers and Probes were designed using LGC Genomics proprietary 

software, Kraken™ (124). 

 

The PCR reaction mixture consisted of 10µl master mix, 1µl primer and probe, 

1µl of genomic DNA and 8µl of ultra-pure DNase free water for a total reaction 

volume of 20µl. Primers and probe assays were purchased from Life 

Technologies Rs211014 (pre-validated assay, ID C_3169569_1_) and 

Rs6556547 (custom assay, primer and probe sequences are below). Thermal 

cycling was conducted using a DNA Engine Opticon 2 system (MJ Research 

Inc., USA) programmed for standard cycling conditions (95˚C for 15 min, 

followed by 40 cycles of 95˚C for 15 s and 60˚C for 1 min). 

 

Rs6556547 forward sequence  5′TCTGAAACTAGTAATAAATTGCTCACATAAAGACA3′ 

Rs6556547 reverse sequence 5′GCAAATATCCCATTTTTCCAAAGTTGAAAC3′ 

Rs6556547 probe sequence 5′TTGTTCCTGTAATCGATAC3′ 
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2.2.5 Statistical analysis  

All data are expressed as median (± interquartile range [IQR]). Univariate and 

multivariate analyses were performed by the χ2 test and backward logistic 

regression respectively. Statistical significance was established as P < 0.05 with a 

statistical trend established as < 0.1. All statistical tests were performed using 

SPSS statistics (v22). All genotypes were assessed for Hardy-Weinberg 

equilibrium by the χ2 test using the Hardy-Weinberg equilibrium online 

calculator (125). 
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2.3 Results 

 

2.3.1 Cohort Demographics 

Patients for this study were recruited between the 1st of January 2006 and the 1st 

of October 2009. The baseline patient demographics for the training cohort and 

the test cohort are shown in Table 3 and Table 4 respectively. There were 237 

and 100 patients receiving efavirenz containing therapy for over 3 months, 

constituting the control groups, in the training cohort and the test cohort 

respectively. There were 51 and 48 patients recorded as discontinuing efavirenz-

containing therapy early (less than 3 months) in the training cohort and the test 

cohort, respectively. 

 

 Sustained therapy  

(> 3 months) 

Early Treatment 

Discontinuation (< 3 

months) 

Total 

Number of Patients 237 (82.3%) 51 (17.7%) 288 (100%) 

Gender (male) 152 (64.1%) 38 (74.5%) 190 (66%) 

Ethnicity (White) 155 (65.4%) 42 (82.4%) 197 (68%) 

Age 45 (40-53) 43 (39-51)  

Smoking Status (non 

smoker) 

56 (23.6%) 19 (37.3) 75 (26%) 

 

Table 3 shows the demographics collected for the training cohort including gender, 
ethnicity, age, smoking status and duration of efairenz containing therapy. Data 
represents frequency with percentage shown in brackets (gender, ethnicity, smoking 
status) or median with interquartile range shown in brackets (age). 
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 Sustained therapy  

(> 3 months) 

Early Treatment 

Discontinuation 

(< 3 months) 

Total 

Number of Patients 100 (67.6%) 48 (32.4%) 151 (100%) 

Gender (male) 81 (81%) 45 (93.8%) 126 (83%) 

Ethnicity (White) 72 (72%) 46 (95.8%) 118 (78%) 

Age 46 (41-53) 45.5 (42-50.8)  

Smoking Status 

(non-smoker)  

20 (20%) 12 (25%) 32 (21%) 

 

Table 4 shows the demographics collected for the test cohort including gender, ethnicity, age, 
smoking status and duration of efairenz containing therapy. Data represents frequency with 
percentage shown in brackets (gender, ethnicity, smoking status) or median with interquartile 
range shown in brackets (age). 

 

2.3.2 Association of Demographic Factors with Early Treatment 

Discontinuation, Univariate Analysis 

Patient demographics (gender, ethnicity, smoking status and age) were tested for 

a univariate association with early treatment discontinuation of efavirenz 

containing therapy. The training cohort (Figure 3) revealed no association with 

early treatment discontinuation and age or gender, P = 0.78 and 0.17, 

respectively. Both ethnicity and smoking status were associated with early 

treatment discontinuation. Patients of white ethnicity showed a greater degree of 

early discontinuation (21.3% of patients with white ethnicity discontinued 

efavirenz vs 10.0% of patients with black ethnicity P = 0.02). There was a higher 

degree of discontinuation in non-smokers vs smokers (25.3% of patients that 

were non-smokers discontinued efavirenz vs 21.1% of patients that smoked, P = 

0.02). 



 

 50 

 

Figure 3 shows the univariate analysis of the training cohort for gender, ethnicity, smoking status 
and age. Also shown are the P values generated via the χ2 test. 
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Figure 4 shows the univariate analysis of the test cohort for gender, ethnicity, smoking status and 
age. Also shown are the P values generated via the χ2 test. 

 

The test cohort revealed no association with early treatment discontinuation and 

age or smoking status, P = 0.61 and 0.59, respectively (Figure 4). Both ethnicity 

and gender were associated with early treatment discontinuation. Patients of 

white ethnicity showed a greater degree of early discontinuation (39.0% of 

patients with white ethnicity discontinued efavirenz vs 6.7% of patients with 

black ethnicity P = 0.02). There was a higher degree of discontinuation in males 

(35.7% of male patients discontinued efavirenz vs 13.6% of female patients P = 

0.02). 
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2.3.3 Association of GABA SNPs With Early Treatment 

Discontinuation, Univariate Analysis  

Hardy-Weinberg equilibrium was assessed for all genotypes in both the training 

and test cohorts. Rs211037 was found not to be in Hardy-Weinberg equilibrium 

(P > 0.01), all other genotypes were in Hardy-Weinberg equilibrium (P < 0.05). 

 

Patient blood samples were genotyped for SNPs in GABA subunits and tested for 

a univariate association with early treatment discontinuation of efavirenz 

containing therapy. The training cohort (Figures 5) revealed no association with 

early treatment discontinuation.  
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Figure 5 shows the univariate analysis of the training cohort for SNPs in the GABA receptor 
subunits (Rs279858, Rs211014, Rs2229944, Rs6556547, Rs211037, Rs279845 and Rs279836). 
Black bars indicate homozygous common allele, light grey indicate heterozygous and dark grey 
indicate homozygous variant alleles. Also shown are the P values generated via the χ2 test. 
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The data was further examined by performing carrier/non-carrier analysis (Table 

5). Although no significant associations were determined, 2 SNPs were found to 

be trending towards significance when analysed for carrier/non-carrier 

relationship. There was a lower degree of discontinuation in patients with the 

homozygous variant allele in Rs211014 (2% of patients homozygous for the 

variant allele vs 8.4% of patients homozygous common allele and heterozygous 

variant allele, P = 0.1). The converse was observed with Rs6556547. A higher 

rate of discontinuation was observed in patients with the homozygous 

polymorphism (3.9% of patients homozygous for the variant allele vs 0.8% of 

patients homozygous Common allele and heterozygous variant allele, P = 0.09). 

As a trend towards significance was identified with Rs211014 and Rs6556547, 

these two SNPs were further investigated in the test cohort. 
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Figure 6 shows the univariate analysis of the test cohort for SNPs in the GABA receptor subunits 
(Rs211014 and Rs6556547). Black bars indicate homozygous common allele, light grey indicate 
heterozygous and dark grey indicate homozygous variant alleles. Also shown are the P values 
generated via the χ2 test. 

 

Analysis of Rs211014 and Rs6556547 in the test cohort did not show an 

association with early treatment discontinuation, P = 0.74 and 0.54, respectively 

(Figure 6). As with the training cohort, the genotypes a carrier/non-carrier 

analysis was performed. Rs211014 showed no significant difference in the rate 

of discontinuation when the heterozygotes were grouped with the common allele 

(40.0% of patients homozygous for the variant allele vs 32.2% of patients 

homozygous common allele and heterozygous variant allele, P = 0.71) or the 

variant allele (36.6% of patients homozygous for the variant allele and 

heterozygous variant allele vs 30.0% of patients homozygous common allele, P = 

0.59. There were no homozygous variant alleles for Rs6556547 in the test cohort, 

precluding further univariate analysis. 
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2.3.4 Association of GABA SNPs With Early Treatment 

Discontinuation, Multivariate Analysis 

As ethnicity and smoking status were revealed to have a significant association 

and both Rs211014 and Rs6556547 (when common allele and heterozygotes 

were compared against homozygous variant alleles) were found to trend towards 

significance, these 4 variables were considered in the multivariate analysis of the 

training cohort. The multivariate analysis (Table 6) showed neither Rs211014 

and Rs6556547 were associated with early treatment discontinuation. Both 

Ethnicity and smoking status showed a strong association, P = 0.001 and P < 

0.001 respectively.  

 

Covariate Odds Ratio P value 

Ethnicity 0.25 (0.11-0.54) 0.001 

Smoking Status 0.37 (0.23-0.59) <0.001 

Rs211014 NS 0.28 

Rs6556547 NS 0.11 

 

Table 6 shows the results of the multivariate analysis of the training cohort for ethnicity, 
smoking status, Rs211014 and Rs6556547 (when widtype and heterozygotes were compared 
against homozygous variant alleles). Also shown are the odds ratio (confidence interval) and P 
value. NS = not significant. 
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In the test cohort Rs211014 and Rs6556547 were not shown to be significant in 

the univariate analysis. Only ethnicity and gender were shown to be significant 

and included in the multivariate analysis (Table 7). Only ethnicity was 

determined to be significantly associated with early treatment discontinuation. 

 

Covariate Odds Ratio P value 

Ethnicity 0.13 (0.29-0.62) 0.01 

Gender NS 0.38 

 

Table 7 shows the results of the multivariate analysis of the training cohort for ethnicity and 
gender. Also shown are the odds ratio (confidence interval) and P value. NS = not significant. 
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2.4 Discussion 

There have been multiple previous studies examining genetic associations with 

efavirenz-associated CNS toxicity. Polymorphisms in genes such as CYP2B6, 

constitutive androstane receptor (CAR), ABCG2 (BCRP) and ABCC1 (MRP1) 

have shown an association with of efavirenz associated CNS toxicity (65, 72, 

126). Many of these associations are linked to efavirenz plasma concentrations. 

However, factors influencing plasma concentrations do not fully explain the 

development of CNS toxicity. This is demonstrated by examining ethnicity. 

Despite black patients being at risk of having higher plasma concentrations of 

efavirenz, studies have demonstrated (including the data presented here) that 

black patients show decreased rates of CNS toxicity and treatment 

discontinuation (75). This indicates that confounding factors may be involved in 

the aetiology of efavirenz CNS toxicity. 

 

This study aimed to investigate the association of SNPs in the GABA receptor 

and early discontinuation. Despite an initial trend with Rs211014 and Rs6556547 

in the univariate analysis of the training cohort, these SNPs were not found to be 

significant in the multivariate analysis or in either analysis of the test cohort. 

Although the polymorphisms in the GABAa receptor investigated here did not 

show an association with efavirenz early discontinuation, there is functional 

evidence to support the role of the GABA receptor in efavirenz associated CNS 

toxicity. Gatch et al demonstrated that efavirenz was unable to activate the 

GABA receptor alone. However, efavirenz potentiated signalling in the presence 

of GABA, indicating a mechanism of action analogous to benzodiazepines (127).  
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The selected SNPs examined in this study are in the genes coding for the α2, β2 

and γ2 subunits. Although the α1+2, β2 and γ2 subunits form the most common 

GABA receptor, there are 15 different subunits that can organise in different 

ways to form multiple GABA receptors (111). Figure 7 shows the receptors 

formed from the subunits found in rat brain. Given the wide array of possible 

receptors it is indeed possible that efavirenz may interact with one or more 

GABA receptor subtypes. Therefore, future studies may identify genetic 

associations that implicate GABA receptor subtypes in the development of 

efavirenz-associated CNS side effects. 

 

Figure 7 shows the frequency of GABA receptors and the subunits they are 
composed of. Source (111) 
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Another reason the SNPs examined here showed no association with early 

treatment discontinuation is perhaps the GABA receptor does not play a role in 

CNS toxicity. As previously discussed there are other neurotransmitters 

implicated in the natural occurrence of symptoms associated with efavirenz CNS 

toxicity. Indeed, there is data generated from in vitro and genetic association 

studies supporting the role of neurotransmitters. Recent studies have provided 

evidence to implicate the serotonin receptor 5 hydroxy tryptamine 2A (5-HT2A). 

Efavirenz has been shown to act as a weak partial agonist in cell based assays 

and induces behavior consistent with activation of the 5-HT2A receptor in rodent 

behavioral models (127). The in vitro evidence is supported by data generated in 

humans. Following 7 days of exposure to efavirenz, it was found patients 

suffered several sleep disturbances including reduced time to sleep onset, an 

increase in non-rapid eye movement sleep and reduced performance on an 

attention switching task. Treatment with a 5-HT2A antagonist induced some of 

the effects observed in efavirenz treatment, indicating an interaction with 

efavirenz and the 5-HT2A receptor (128). Additionally it has been shown that the 

SNP 5-HT2A 102C>T has a relationship with reports of sadness in patients 

receiving efavirenz (P=≤0.01, although this was not reported as significant due to 

Bonferroni correction) (65). These data suggest further study into the interactions 

of efavirenz and the serotonin receptors may be warranted. It is worth 

considering that efavirenz CNS toxicities may not be based on interactions with a 

single receptor. The wide array of symptoms of CNS toxicity indicates multiple 

receptors and receptor subtypes may be involved. This may make identifying 

SNPs difficult as susceptibility to efavirenz CNS toxicity may be due to a 

combined effect of polymorphisms in multiple genes coding for CNS receptors. 
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A limitation of this study is treatment discontinuation was used to indicate 

efavirenz CNS toxicity in place of a detailed patient history of CNS disturbances. 

In addition to CNS toxicity, patients may discontinue for virological failure, poor 

adherence. Early treatment discontinuation is assumed to be in response to the 

development of CNS toxicity. However, this surrogate marker for CNS 

disturbance may be insufficient to gauge the true frequency of CNS toxicity 

within the population.  

 

The natural occurrence of conditions such as depression involves a complex 

interplay of factors influencing neurotransmission. This makes identifying single 

predictors of efavirenz CNS toxicity more difficult. The GABA receptor may be 

involved in the aetiology of efavirenz-associated CNS side effect and future 

studies are required to elucidate this potential interaction. 
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Chapter 3 

 

The in vivo effects of solid drug nanoparticle and conventional 

efavirenz on anxiogenesis in rodents 
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3.1 Introduction 

Over the past 30 years there have been remarkable advancements in the therapy 

of HIV. The approach to treatment has evolved from simple monotherapy to a 

complex dosing regimen comprised of multiple drugs from numerous classes 

(129). Despite the significant advances in using this treatment approach, there are 

many aspects of modern antiretroviral therapy that may be improved. For 

example, the development of new pharmaceutical agents can be prohibitively 

expensive and are often abandoned due to inherent issues in drug exposure, 

efficacy and/or safety. Nano-formulation technologies offer the opportunity to 

examine existing pharmaceutical agents and address inherent issues in drug 

pharmacokinetics (poor absorption, rapid clearance, unfavourable tissue 

distribution, etc) whilst maintaining the favourable properties of the drug (92). 

 

The NNRTI efavirenz has been used in first-line therapy of HIV for over 15 

years (130). Efavirenz displays potent activity against wild type HIV-1, IC50 

(against viral replication) 0.51 ng/mL, Ki (inhibition of the RT enzyme) 2.93 

nmol/L and a long t1/2 of 40-76 hours, enabling once daily dosing (57, 89).  

Despite these favourable properties, there are known issues with the 

pharmacokinetics of efavirenz that have the potential to influence therapy. 

Specifically, efavirenz has very poor water solubility (<10µg/ml) that may 

impact negatively on bioavailability by impeding intestinal dissolution and oral 

drug absorption (97). Additionally, pharmacokinetic exposure to efavirenz shows 

a high degree of inter-individual variability in patients (97). Our group have 

previously reported an efavirenz SDN formulation, which attempted to alleviate 
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the issue of poor drug solubility. Utilising an emulsion-templated freeze-drying 

process, SDNs were produced that achieved 70% drug loading. In vitro studies 

showed increased cellular accumulation and reduced cytotoxicity of efavirenz in 

Caco-2 cells while in vivo pharmacokinetic studies performed in rats 

demonstrated an increase in plasma efavirenz concentrations of approximately 4-

fold following a single oral dose (97). 

 

Efavirenz is associated with neurocognitive adverse events, which can negatively 

impact patient treatment (89). Efavirenz CNS toxicity and the negative impact on 

patient adherence are discussed in section 1.4.1. Although the clinical efficacy of 

efavirenz is well characterised, there is a paucity of information regarding the 

underlying mechanisms of efavirenz-associated CNS toxicity, making testing of 

novel efavirenz formulations problematic.  

 

Behavioural pharmacology has been used previously to assess the CNS toxicity 

of efavirenz in both rats and mice (131, 132). Romāo et al demonstrated 

efavirenz significantly altered rodent behaviour in multiple behavioural and 

cognitive performance tests including the elevated plus maze (EPM) (131). 

Efavirenz significantly reduced exploration in the open arm of the EPM, 

indicating an anxiogenic effect of efavirenz. The findings of this study 

demonstrated that efavirenz produced anxiety-like behaviour whereas another 

NNRTI, nevirapine, did not. This supports clinical data, as it has been observed 

in humans that CNS side effects are associated with efavirenz treatment 

discontinuation and not with nevirapine-containing therapy (133). 
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Here we investigated neurocognitive disturbances in rats using the EPM after 

administration of a conventional pre-clinical formulation of efavirenz or SDN 

formulation of efavirenz. In this model, the degree of anxiety was demonstrated 

by the relative proportions of time spent in the open arms versus the closed arms 

and central platform, with greater anxiety linked to less time on the open arms 

(134). In addition to the traditional measures, there are a number of ethological 

measures that may increase the sensitivity of the EPM test. These measures can 

be characterised into two groups, risk-assessing behaviour and behaviour-

indicating sedation. Risk-assessing behaviour includes head dips, stretch attend 

posture, rears and closed arm returns. Sedation is described by periods of 

grooming and other non-exploratory behaviour (135). Recording behaviour 

associated with risk assessment and sedation allows analysis of behaviour whilst 

on the EPM that would otherwise be unaccounted. 

 

Since the mechanisms of efavirenz-associated CNS toxicity are currently 

unknown, there are no in vitro tests that can be applied to assess the impact of 

nanoformulation on the development of efavirenz-associated CNS toxicity. This 

presents a problem with regards to assessing the safety and impact of novel 

formulations of efavirenz. Behavioural pharmacology allows for the pre-clinical 

screening of novel formulations of efavirenz. In this study, the anxiety-like 

behaviour in rats was assessed using the EPM after administration of a 

conventional pre-clinical formulation of efavirenz efavirenz, SDN efavirenz 

formulation or vehicle control. Previously published studies with the SDN 

formulation have demonstrated the potential to increase the exposure of 

efavirenz. As efavirenz exposure has been associated with an increased in 
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occurrence of CNS toxicity (as discussed in section 1.4.1) it was considered 

prudent to assess the incidence of anxiety (one of the symptoms of efavirenz 

associated CNS toxicity) in response to conventional pre-clinical formulation of 

efavirenz and the SDN formulation of efavirenz. 
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3.2 Methods and Materials 

 

3.2.1 Materials 

Male Wistar rats were purchased from Charles River (Oxford, UK) 

Methylcellulose was purchased from Sigma Aldrich (Dorset, UK). Efavirenz 

powder (>98% pure) was purchased from LGM Pharma inc (Boca Raton, USA). 

All other consumables were purchased from Sigma Aldrich (Dorset, UK). 

 

3.2.2 Animals and treatment 

Male Wistar rats (Charles River, UK) weighing 180 – 220g on arrival were used 

in EPM experiments. Animals were singly-housed in the absence of 

environmental enrichment on a normal light cycle. All experimental testing was 

conducted during the light phase of the cycle. Food and water were provided ad 

libitum. All experiments were conducted under appropriate personal and project 

licenses (granted by the Home Office, UK). 
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3.2.3 Emulsion-Templated Freeze-Drying to Form Efavirenz 

Nanoparticles  

Efavirenz SDNs were prepared as described previously (97). In Brief, a mixture 

of efavirenz (dissolved in chloroform) and stabilisers (poly[vinyl alcohol] and α-

tocopherol polyethylene glycol succinate, dissolved in H2O) was prepared in the 

ratio of 70% efavirenz, 20% poly(vinyl alcohol) and 10% α-tocopherol 

polyethylene glycol succinate. The mixture was emulsified using a Covaris S2x 

acoustic homogenisation system (Covaris, MA, USA). Samples were 

immediately freeze-dried leading to the formation of an emulsion template 

porous monolith. SDNs were dispersed in dH2O for use in in vivo experiments. 

 

3.2.4 Drug Treatment 

Wistar rats were assigned to 3 groups (10 rats per group) and dosed with either 

conventional efavirenz (10 mg/kg, 2ml/kg 0.5% methylcellulose in dH2O), SDN 

formulated efavirenz (10mg/kg, 2ml/kg in dH2O) or vehicle control (2ml/kg 

0.5% methylcellulose in dH2O). Dosage was based on individual weight taken 

prior to dosing. Dosing was administered once daily via oral gavage over 5 

weeks.  
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3.2.5 Equipment 

The EPM was a wooden plus shaped maze with a black Plexiglas floor. The 

maze consisted of 2 open arms (10x50 cm), 2 closed arms enclosed with clear 

Plexiglas (10x50x50 cm) and a central platform (10x10 cm). The maze was fixed 

to a black metal base (50cm) to elevate the maze above ground level. The edges 

of the maze were raised (0.5cm) to facilitate retention of the rats. 

 

 

Figure 1 depicts the EPM 

 

3.2.5 Elevated Plus Maze Procedure 

Following weighing and oral dosing the rats were taken back to their home cage 

for 2 hours. The rats were transported individually from the housing room to the 

testing room. Rats were placed on the central square facing an open arm. The test 

was administered for 5 minutes. During testing, the experimenter remained in the 

testing room seated silently in the same position for all tests. At the conclusion of 

the test the rat was returned to its home cage and the maze was thoroughly 

cleaned using ethanol (70% ethanol) wipes and allowed to dry. Testing 
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commenced 7 days after daily dosing was initiated. The EPM was repeated once 

every 7 days for 5 weeks. All tests were recorded for later analysis using a digital 

camera (Samsung DV300F) at an angle of approximately 45°. Digital recordings 

of the EPM were analysed using the Ethowatcher software package 

(http://ethowatcher.ufsc.br). Data was analysed for spatial distribution and 

ethological behaviour (Table 1). 
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Behavioral Measure Description 

Open arm entrance An entrance to open arm is counted as 
4 paws placed on the open arm 

Closed arm entrances An entrance to open arm is counted as 
4 paws placed on the closed arm 

Time in open arm The time (expresses as a percentage of 
total time on the maze) spent on the 
open arm 

Time in closed arm The time (expresses as a percentage of 
total time on the maze) spent on the 
closed arm 

Time on central platform The time (expresses as a percentage of 
total time on the maze) spent on the 
central platform 

Central platform latency Time taken to initially move from 
central square 

Risk assessment The number of occurrences of 
behaviour indicating assessment of the 
environment for potential risk factors 
(stretch attend postures, head dips and 
rearing) 

Sedation The total time spent stationary 
(grooming and non-exploratory 
behaviour) 

 

Table 1 summary of the spatial and ethological measures recorded during exposure to the EPM 

 

3.2.6 Statistics 

All data were assessed for normality using the Shapiro Wilk test. Statistical 

analysis was performed by Mann-Whitney U test and significance was defined as 

P <0.05. All data are given as median with interquartile range [IQR]. 
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3.3 Results 

 

3.3.1 Spatial distribution 

Data for the spatial distribution during the EPM test was collected for the number 

of open and closed arm entrances, the duration of time (expressed as % of total 

time on the maze) in the open arms, closed arms and central platform and the 

central platform latency. The median for each group was plotted against duration 

of treatment (Figure 2). The AUC was calculated for individual rats in order to 

examine the effect of each condition over the period of dosing. The median AUC 

of each group was plotted (Figure 3) and compared for statistically significant 

differences. 
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Figure 2 show the behavioral measures plotted against time from the EPM for control (Con), 
conventional efavirenz (EFV) and solid drug nanoparticle efavirenz (SDN). The graphs display 
time plotted against spatial measurements open arm entrances (A), closed arm entrances (B), time 
in open arm (C), time in closed arm (D), time on central platform (E) and central platform latency 
(F). Data points represent median with interquartile range. N = 10. 
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Figure 3 shows the AUC (for each of the measurements displayed in Figure 2) for vehicle 
control, conventional pre-clincial formulation of efavirenz (EFV) and nano dispersion. The 
graphs display the AUC of open arm entrances (A), closed arm entrances (B), time in open arm 
(C), time in closed arm (D), time on central platform (E) and central platform latency (F). Data 
points represent mean with interquartile range. Also displayed are the results of the Mann-
Whitney U test and significance was defined as P <0.05. N= 10. 
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The number of entrances to the open arm made by the vehicle control group (9.8 

events/5mins/week [IQR 7.8-19.8]) was not significantly different from either 

the pre-clinical formulation of efavirenz (15.0 events/5mins/week [IQR 8.6-

18.1], P = 0.44) or SDN (9.3 events/5mins/week [IQR 4.5-11.0], P = 0.32) 

(Figure 3A). The conventional pre-clinical formulation of efavirenz group made 

significantly more open arm entrances than the SDN group (P = 0.04). The 

number of entrances to the closed arm made by the vehicle control group (28.8 

events/5mins/week [IQR 18.8-31.4]) was not significantly different from either 

the conventional pre-clinical formulation of efavirenz (26.0 events/5mins/week, 

[IQR 19.9-31.8], P = 0.44) or SDN (23.5 events/5mins/week [IQR 11.5-27.4], P 

= 0.22) (Figure 3B). There was no significant difference in the closed arm 

entrances between efavirenz and the SDN groups (P = 0.32). 

 

The duration of time spent on the open arm made by the vehicle control group 

(39.2 % time/5mins/week [IQR 24.8-73.5]) (Figure 3C) showed no significant 

difference in comparison with either the conventional pre-clinical formulation of 

efavirenz group (51.8 % time/5mins/week [IQR 34.2-83.6], P = 0.44) or the SDN 

group (29.2 % time/5mins/week [IQR 19.7-66.5], P = 0.44). The efavirenz group 

showed no significant difference from the SDN group (P = 0.06). There was no 

significant change in the time spent on the closed arm (Figure 3D) when 

comparing the SDN group (197.4 % time/5mins/week [IQR 153.9-276.3]) with 

the vehicle control group (184.2 % time/5mins/week [IQR 130.3-272.8], P = 

0.80. The conventional pre-clinical formulation of efavirenz group spent 

significantly less time (107.9 % time/5mins/week [IQR 87.7-152.1], on the 

closed arm than either the vehicle control (P = 0.029) or SDN (P = 0.011) 
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groups. There was no significant change in the time spent on the central platform 

(Figure 3E) when comparing the SDN group (111.8 % time/5mins/week [IQR 

112.0-201.1]) with the vehicle control group (171.7 % time/5mins/week [IQR 

91.9-190.7], P = 0.91. The conventional pre-clinical formulation of efavirenz 

group showed the inverse of the closed arm, spending increased time (212.9 % 

time/5mins/week [IQR 188.3-253.3]) on the central platform, when compared to 

the control group or the SDN group, P = 0.009 and P = 0.011, respectively. The 

central platform latency (Figure 3F) of the control group (15.0 

seconds/5mins/week [IQR 7.5-49.4]) showed no significant difference compared 

to the efavirenz (38.2 seconds/5mins/week [IQR 21.05-64.6], P=0.17) group or 

the SDN group (40.6 seconds/5mins/week [IQR 26.7-75.4], P=0.08). The 

efavirenz group showed no significant difference from the SDN group (P = 

1.00). 

 

3.3.2 Ethological measures 

In addition to collecting data on the spatial distribution of the rats, a number of 

ethological measures were recorded.  The ethological measures were divided into 

2 categories: risk-assessing behaviour (stretch attend postures, head dips and 

rearing) and behaviour-indicating sedation (instances of grooming and non-

exploratory behaviour). From these multiple behaviours 2 composite measures 

were created: risk assessment (the total number of occurrences of behaviour 

indicating assessment of the environment for potential risk factors) and sedation 

(the total duration of time spent stationary). As with the spatial measures the 

median for each group was plotted against duration of treatment (Figure 4). The 
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median AUC of each group was plotted (Figure 5) and compared for statistically 

significant differences. 

 

 

 

Figure 4 shows the ethological measures plotted against time from the EPM for vehicle control, 
conventional pre-clincial formulation of efavirenz (EFV) and nano dispersion. The graphs display 
risk assessment (A) and sedation (B). Data points represent median with interquartile range. N = 
10. 

 

The SDN group showed significantly less instances of risk-assessing behaviour 

(Figure 5A) (66.3 events/5mins/week [IQR 47.3-88.3]) when compared to the 

vehicle control (99.3 events/5mins/week [IQR 84.0-108.1]), P = 0.02. There was 

no significant difference in risk assessing behaviour when comparing the 

conventional pre-clinical formulation of efavirenz group to either the vehicle 

control or SDN groups, P = 0.35 and P = 0.09, respectively. There was no 

significant difference in sedation (Figure 5B) in the conventional pre-clinical 

formulation of efavirenz (111.2 events/5mins/week [IQR 40.3-161.3]), or SDN 

(309.7 events/5mins/week [IQR 119.5-549.3]), compared to the control (179.6 

events/5mins/week [IQR 74.5-443.9]), P = 0.14 and P = 0.44 for conventional 

pre-clinical formulation of efavirenz and SDN, respectively. There was a 
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significant increase in the SDN group compared to the conventional pre-clinical 

formulation of efavirenz group, P = 0.03. 

 

 

Figure 5 shows the AUC (for each of the measurements displayed in Figure 4) for vehicle 
control, conventional pre-clinical formulation of efavirenz (EFV) and nanodispersion. The graphs 
display the AUC of risk assessment (A) and sedation (B). Data points represent mean with 
interquartile range. Also displayed are the results of the Mann-Whitney U test and significance 
was defined as P <0.05. N= 10. 
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3.4 Discussion 

The data presented in this chapter show that following multiple doses rats treated 

with efavirenz, but not SDN efavirenz, exhibited anxiety-like behaviour in the 

EPM. Our experiment failed to fully replicate the anxiogenic effects of efavirenz 

that were previously reported in mice using the EPM (131). However, the profile 

of changes indicated some clear behavioural effects that are likely to be linked to 

drug-related CNS effects. In particular, a tendency of efavirenz to increase time 

spent on the central platform may be indicative of anxiogenesis. By contrast, the 

efavirenz SDN did not consistently affect behaviour in a manner that would 

indicate anxiogenic activity.  

 

The EPM has been used for over 20 years to investigate anxiety in rodents (136). 

Typically the EPM has been used to focus on the spatial distribution of the 

rodent over time, measuring the ratio of time spent on the open and closed arms. 

These measures assess the rodent’s natural tendency towards enclosed spaces 

and aversion towards open spaces and heights against their natural instinct to 

investigate novel environments (134). Using traditional measures anxiolytics 

(such as benzodiazepines) and anxiogenics (such as N-methyl-B-carboline-3-

carboxamine, FG 7142) will increase and decrease time spent in the open and 

closed arms respectively (137). However, over the years of usage a number of 

groups have identified additional measures of anxiety, which can be used for the 

EPM system. Time spent on the central platform is a factor that is not frequently 

reported, although there have been previous publications that associated 

increased time spent here with anxiety-like behaviour (138, 139). Additionally, 
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benzodiazepines such as nitrazepam have been shown to decrease time spent on 

the central square (137).  

 

The data presented here show no significant differences in exploration of the 

open arm in either the efavirenz or SDN groups when compared to the control 

group. Using only traditional measures these data would indicate no anxiogenesis 

in response to either treatment. However, by employing additional measures, 

subtle differences in behaviour were observed. The time spent in the closed arm 

and central platform was significantly different when comparing efavirenz to the 

control or SDN groups for the majority of the testing period. In week 2, the 

percentage of time spent on the central platform was increased in the efavirenz 

group, with an associated decrease in time spent on the closed arm, compared to 

either the SDN or control. The pattern of increased time on the central square in 

response to conventional efavirenz was also observed in weeks 3 and 4. There 

was no difference in the distribution of time spent in open arm, closed arm or 

central square in weeks 1 and 5, possibly due to efavirenz having not 

accumulated enough in the rodents to induce anxiety at week 1, and in week 5 

the rodents may have fully habituated to the EPM.  

 

A previous study used the EPM to investigate the anxiety-related behaviour and 

cognitive performance in mice following dosing with efavirenz or nevirapine. 

This study showed a clear distribution of open arm vs closed arm exploration 

(131). The behaviour was recorded following 28 days of treatment with a single 

administration of the EPM. One potential explanation why our study did not 
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show the same open:closed arm distribution may be repeat exposure to the EPM 

in our study. The data presented here were collected from 5 weekly tests. 

Efavirenz may not have accumulated enough in the rodents to induce anxiety at 

week 1 and the behaviour in each of the 4 remaining tests was likely to have 

been affected by habituation. There is evidence demonstrating that initial 

exposure to the EPM will affect the behaviour in subsequent testing. File et al 

demonstrated that benzodiazepines reduced anxiety in initial exposure to the 

EPM but on a subsequent test the same anxiolytic effect was no longer observed 

(140). The anxiety observed in our study may be more pronounced if only a 

single EPM test was applied. However, this initial study aimed to investigate the 

progression of anxiety after multiple doses.  

 

Currently, it is unknown how long the SDN efavirenz remains in vivo as 

nanoparticles or even whether intact nanoparticles enter the systemic circulation. 

However, utilising fluorescence resonance energy transfer (FRET), intact 

nanoparticles were shown to pass through Caco-2 cell monolayers in 

transcellular permeation experiments (141). These in vitro data indicate that 

paracellular transport may be possible and that intact nanoparticles may traverse 

the gut barrier in vivo. The SDNs used in this study have an average diameter of 

200nm (141). If SDNs do indeed enter the circulation, they may be too large to 

interact with the body in the same manner as solubilised efavirenz.  

 

Although the mechanisms of efavirenz CNS side effects are currently unknown, 

there is evidence implicating the hydroxylated metabolites of efavirenz (OH 
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efavirenz). In a previous study, isolated rodent hippocampal neurons were 

exposed to efavirenz, 7OH efavirenz and 8OH efavirenz. Although all 3 

produced neuronal damage, 8OH efavirenz was shown to be more toxic (142). 

8OH efavirenz has also been shown to stimulate glycolytic flux resulting in 

altered glucose metabolism, which may contribute to the CNS side effects (143). 

Efavirenz contained within the nanoparticles may be protected from metabolism 

and subsequently lead to a decrease in the formation of 8OH efavirenz in 

comparison to conventional formulation. Indeed, this hypothesis would may also 

explain the higher pharmacokinetic exposure observed previously when dosed 

orally to rats (97) 

 

Other potential mechanisms of CNS toxicity involve interactions of efavirenz 

with neurotransmitters and the associated receptors (discussed in sections 2.1 and 

2.4). Behavioural analysis of rats treated with efavirenz revealed behaviour 

associated with modulation of the 5-HT2A (127). If intact SDNs are present 

within the circulation and pass the BBB, the size of the SDNs may preclude 

interaction with the receptor where free efavirenz may be able to interact and 

modulate neuronal signalling via 5-HT2A receptor. 

 

We interpret these results as indicating that the nanoformulation of efavirenz 

may have reduced potential to induce neurocognitive disturbance, either acutely 

or following chronic administration. 
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Enhanced single dose pharmacokinetics of this formulation has previously been 

shown, but the limitation of the current project was that steady state 

pharmacokinetics was not assessed during the behavioural analysis. Previous 

studies have demonstrated an association with increased plasma exposure in 

humans and the occurrence of CNS toxicity (74). Pharmacokinetics data in 

plasma and brain tissue paired with the behavioural data presented here will 

provide a better indication of the effects of nanoformulation on the efavirenz 

associated CNS toxicities. 
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Chapter 4 

 

Liquid Chromatography Tandem Mass Spectrometry Method 

for Quantification of Efavirenz in Plasma, Brain and Cell 

Culture Medium  
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4.1 Introduction 

The work presented in the remainder of this thesis required the development of a 

liquid chromatography tandem mass spectrometer (LC-MS/MS) bio-analytical 

method. This chapter discusses the optimisation of the detection and 

quantification of efavirenz using lopinavir as internal standard (IS). The assay 

presented here was developed and validated in accordance with FDA guidelines 

(144). Criteria such as linearity, accuracy (the degree of variation from known 

value, assessed by controls [QCs]), precision (the degree of variation within 

repeated measurements), selectivity (ensuring detection of the analyte and not an 

endogenous compound within the sample matrix) and recovery (determining the 

percentage of recovery and more importantly the reproducibility of the extraction 

process) were all assessed.  

 

Efavirenz was first licensed for the treatment of HIV in 1998, since then multiple 

methods for detection in plasma have been developed for LC-MS/MS. Many of 

the methods developed have been utilised to assess association with efavirenz 

plasma concentrations and CNS toxicity or polymorphisms in key proteins 

influencing efavirenz disposition (72, 74). Some recently published methods 

show linearity with lower limit of quantification ranging from 20ng/ml to 

300pg/ml (145, 146). 

 

Despite the major focus being on the concentrations of efavirenz in plasma, other 

matrices have also been investigated such as recent work on breast milk. 
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Currently, the WHO recommends “on demand” breast-feeding for new born 

(147). This presents a unique difficulty as mothers receiving antiretroviral 

therapy are at risk of introducing antiretroviral agents to their children via breast 

milk. To assess this Olagunju et al have recently developed a novel LC-MS/MS 

method for detection of efavirenz in dried breast milk spots (147). The assay was 

linear from 50ng/ml to 7500ng/ml. Accuracy and precision ranged between 

95.2% and 102.5%, 1.05% and 9.53%, respectively. Extraction from dried breast 

milk spots showed excellent recovery, methanol extraction yielded an average 

recovery of 106.4%. 

 

As discussed previously in section 1.4.1, efavirenz CNS toxicity has been 

associated with high plasma concentrations. One of the limitations with such 

analyses is plasma concentrations of efavirenz do not necessarily correlate with 

concentrations in CSF and brain tissue. To investigate CNS concentrations of 

efavirenz, multiple LC-MS/MS methods have been developed to analyse 

efavirenz concentrations in CSF (50, 57, 148). An example of these methods 

achieved linearity over the range of 1.1ng/ml to 51ng/ml (50). Accuracy and 

precision were reported to exhibit <10% variability with >80% recovery. 

Although assessing CSF is a step towards understanding efavirenz concentrations 

in the CNS, CSF and brain tissue concentrations of drugs may vary wildly and 

may not represent the disposition of efavirenz in the CNS per se (as discussed in 

section 1.4). 
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Recently, an LC-MS/MS method was developed to analyse efavirenz 

concentrations in homogenised tissue from macaques, following orally 

administered efavirenz. The assay demonstrated linearity over the range of 

200pg/ml to 20ng/ml. The authors assessed efavirenz concentrations in HIV 

sanctuary sites (discussed in section 1.5), in particular the brain, lymph nodes 

and GI tract. The data presented showed efavirenz accumulated in tissue when 

compared to plasma (~3 fold higher than plasma in the GI tract and ~2 fold 

higher than plasma in lymph nodes) or CSF (>6 fold greater than CSF) (149). 

 

The work presented in this thesis required the detection of efavirenz in multiple 

matrices. Therefore, an assay was optimised for efavirenz from plasma and then 

the performance of the assay was assessed in cell culture medium, phosphate 

buffered saline (PBS), and brain tissue homogenate. A major concern was the 

interference from endogenous analytes within the non-plasma matrices that may 

have been present at a lower concentration or absent from plasma. The aim of 

this chapter was the development of a rapid, sensitive and replicable assay for the 

detection of efavirenz in multiple matrices. 
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4.2 Methods and Materials 

 

4.2.1 Materials 

Efavirenz powder (>98% pure) was purchased from LGM Pharma inc (Boca 

Raton, USA). Lopinavir powder (>98% pure) was purchased from LGC Pharma 

(London, UK). All other consumables were purchased from Sigma Aldrich 

(Dorset, UK). 

 

4.2.2 Tuning for Efavirenz and Internal Standard 

Detection of efavirenz and lopinavir was conducted using a TSQ endura LC-

MS/MS (Thermo scientific). Tuning was performed using direct infusion 

(20µl/min) of a 500ng/ml stock of efavirenz with 50% mobile phase A (100% 

H2O [LC-MS/MS grade] 5mm ammonium formate), 50% mobile phase B (100% 

acetonitrile [ACN] 5mm ammonium formate) at a flow rate of 300µl/min. 

Ionisation was achieved via heated electron spray ionization in negative mode. 

The following parameters were optimised to achieve the highest signal intensity 

for efavirenz spray voltage, sheath gas and auxiliary gas. The IS was then 

directly injected (500ng/ml) to ensure detection using the optimised efavirenz 

settings. Following optimization for the parent mass of efavirenz (315) and IS 

(628), selected reaction monitoring (SRM) scan was utilised for detection of the 

break down products. 
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4.2.3 Chromatographic Separation 

The chromatographic separation was achieved using a multi-step gradient with a 

Hypersil gold C-18 column (Thermo scientific; Table 1). The assay was 

conducted over 8 minutes at a flow rate of 300µl/min. 

 

Time (mins) Mobile Phase A (%) Mobile Phase B (%) 

0.0 90 10 

0.1 90 10 

0.5 14 86 

5.0 8 92 

5.1 3 97 

6.0 3 97 

6.0 90 10 

8.0 90  10 

 

Table 1 shows the chromatographic conditions for the detection of efavirenz and IS. 
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4.2.4 Extraction from Plasma and Cell Culture Medium and PBS 

One hundred µl of sample (20% ACN was added to both cell culture medium and 

PBS to aid efavirenz dissolution in these matrices) were diluted with ACN 

(sample: ACN ratio 1:4) and thoroughly vortexed. Samples were then 

centrifuged at 4000g for 10 minutes at 4°C. The supernatant fraction was 

transferred to a fresh glass vial and evaporated, samples were placed in a rotary 

vacuum centrifuge at 30°C and then reconstituted in 140µl of H2O:ACN (60:40). 

100µl of the sample was then transferred into 200µl chromatography vials. 5µl of 

each sample was injected for analysis.  

 

4.2.5 Extraction from Brain Tissue 

Male Wistar rats (Charles River, UK) weighing 180 – 220g on arrival were 

sacrificed using an appropriate schedule 1 method. Following termination brain 

was extracted and stored at -80˚C. (150). Rat brain tissue was then homogenised 

in 3 volumes (W:V) of plasma. Extraction was performed using protein 

precipitation detailed in the previous section. 

 

4.2.6 Assay Validation 

The assay was validated according to the most recent FDA guidelines (144). The 

following criteria were assessed: linearity, recovery, specificity, accuracy, 

precision, inter-assay and intra-assay variability. 
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Linearity 

A calibration curve of efavirenz was prepared in plasma via serial dilution, 

ranging from 1.9ng/ml to 500ng/ml. Extraction was performed using protein 

precipitation. Linearity was assessed by 3 independent preparations of the 

standard curve. Maximum allowed deviation of standards was set at 15% of the 

stated value, excluding the lower limit of quantification where deviation was set 

at no more than 20%. 

 

Recovery 

Recovery experiments were performed by comparing the results for extracted 

samples of efavirenz at three concentrations (20ng/ml, 100ng/ml and 400ng/ml) 

with non-extracted standards that were taken to represent 100% recovery.  

 

Specificity 

The degree of interference from the matrix (due to potential interfering 

substances including endogenous matrix components, metabolites and 

decomposition products) was assessed via comparison of extracted blank 

samples with the lowest point of the standard curve (lower limit of 

quantification). The lower limit of quantification was a minimum of 5 times 

greater than the background signal. 
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Accuracy and Precision 

The accuracy of an analytical method describes the closeness of mean test results 

obtained by the method to the actual value (concentration) of the analyte. 

Accuracy was assessed by preparation of three concentrations (in the range of the 

standard curve 20ng/ml, 100ng/ml and 400ng/ml) with each preparation in 

triplicate. The mean value of each concentration should be within 15% of the 

stated concentration (except the lower concentration, where deviation should be 

less than 20%). Accuracy was calculated using the following formula: 

% 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑒𝑟𝑟𝑜𝑟

𝑠𝑡𝑎𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒  𝑥 100 

The precision of an analytical method describes the closeness of individual 

measures of an analyte when the procedure is applied repeatedly to multiple 

aliquots of a single volume of biological matrix. Precision of the assay was 

determined by preparation of three concentrations (in the range of the standard 

curve 20ng/ml, 100ng/ml and 400ng/ml) with each preparation in triplicate. The 

mean value of each concentration should be within 15% of the stated 

concentration (except the lower concentration, where deviation should be less 

than 20%). Precision was calculated using the following formula: 

% 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
𝑚𝑒𝑎𝑛 𝑎𝑠𝑠𝑎𝑦 𝑣𝑎𝑙𝑢𝑒  𝑥 100 

Accuracy and precision were assessed for intra and inter assay variability. The 

standard curve and QCs were prepared in triplicate and analysed 3 times. 

Variance in accuracy and precision should not vary within 15% of the stated 
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concentration (except the lower concentration, where deviation should be less 

than 20%) within a single assay or between repetitions of the assay (144). 

 

4.2.7 Statistics 

Data were assessed for normality using the Shapiro Wilk test. Statistical analysis 

was performed by unpaired T test and significance was defined as P <0.05. All 

data are given as mean with standard deviation. 
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4.3 Results 

 

4.3.1 Tuning Settings 

The aim of optimising the tuning settings was firstly to maximise the detection of 

efavirenz and secondly to ensure detection of the IS. Table 2 shows the finalised 

settings.  

 

Parameter Optimised Setting 

Negative Ion (V) 2700 

Sheath Gas 35 

Aux Gas 15 

Sweep Gas 0 

 

Table 2 shows the optimised tuning settings for the detection of the parent 
compounds of efavirenz and IS. 

 

In addition to detecting the parent molecule, the detection of the product ions of 

each compound was also optimised. By searching for both the parent and product 

ions, sensitivity and specificity are increased. This is particularly advantageous 

when analytes are contained in complex matrices such as plasma (151). Table 3 

shows the product ions produced during the selected reaction monitoring scan for 

efavirenz and IS. 
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Compound Precursor  (m/z) Product (m/z) Collision Energy (V) 

  242.1 16.5 

Efavirenz 315 244.0 17.0 

  250.0 17.0 

  121.2 33.5 

Lopinavir 627 178.1 26.5 

  198.1 22.5 

 

Table 3 shows the parent mass, product ion and the collision energy for efavirenz and IS. 

 

4.3.2 Extraction Efficiency from Plasma, Brain Tissue and Cell 

Culture Medium 

The recovery was measured at three QC concentrations (Figure 1). The mean 

recovery (across all 3 QCs) from plasma, brain tissue, EBM-2 medium and PBS 

were 95% (standard deviation 8.9), 91% (standard deviation 7.8), 59% (standard 

deviation 6.1) and 84% (standard deviation 11.6), respectively. When compared 

to plasma, there were no statistically significant differences in recovery from 

brain tissue, or PBS at the low and medium QCs. The high QC was significantly 

lower for both brain tissue (90.72%, P = 0.01) and PBS (77.84%, P = 0.001) 

Recovery from the EBM-2 medium was significantly lower at all the QCs (low 

QC 60.06% P = 0.001, medium QC 53.24% P = 0.004 and high QC 64.98% P = 

0.002). 
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Figure 1 shows the percentage recovery for the low (a), medium (b) and high (c) QCs in 
extracted plasma, extracted brain tissue, EBM-2 medium (complete media is described in section 
5.2.2) and PBS. Data is show percentage of unextracted standards. 

 

4.3.3 Assay Validation 

 

Linearity 

Standards extracted from plasma showed good linearity (R2 = 0.992). The peak 

area ratio (analyte to IS; variation of IS was less than 15% in each run) was 

proportional to the stated concentrations over the range of 500ng/ml to 1.9ng/ml. 

Figure 2 shows a representative calibration curve. Calibration curve was 

generated using a quadratic equation with a weighting of 1/X. 
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Figure 2 shows the standard curve generated from extracted plasma 
standards of efavirenz over the range of 500ng/ml to 1.9ng/ml. 

 

Specificity 

The matrix effect of plasma was examined by comparing extracted blank plasma 

to extracted plasma spiked with 1.9ng/ml of efavirenz. Figure 3a shows the 

chromatogram produced by the extracted blank. There is a visible peak (area of 

134) at the retention time of efavirenz (3.7 minutes). FDA guidelines require the 

lower limit of quantification produce a peak area of at least five-fold greater than 

that observed in the blank matrix. Figure 3b shows the peak produced from the 

lower limit of quantification (1.9ng/ml). The peak area is 1491, which complies 

with FDA guidelines. Figure 3c shows the peak produced by the upper limit of 

quantification (500ng/ml). 
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Accuracy and Precision 

 

The accuracy and precision for each individual run at 3 QC levels (low 

(20ng/ml), medium (100ng/ml) and high (400ng/ml) is shown in table 4. The 

percentage error of accuracy fell below 15% for each of the 3 repeats (1 varied 

between -0.25% and -11.45%, 2 varied between 0.01% and -6.32%, 3 varied 

between 0.78% and -4.66%). The percentage error of precision also fell below 

15% for each of the 3 repeats (1 varied between -5.52% and 11.05%, 2 varied 

between 2.93% and 5.66%, 3 varied between 1.25% and 3.78%).  

 

Inter-assay Variability 

The variability between assays was calculated to demonstrate that the assay 

maintained accuracy and precision across repetitions of the assay. Table 5 shows 

the variance of accuracy and precision calculated from the mean values of the 3 

repetitions of the assay. The percentage error in accuracy fell below 15% across 

all 3 repeats (range between -0.52% and -6.34). Percentage variance of precision 

also fell below 15% across all 3 repeats (range between 1.48% and 5.61%). 
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 Average 
(ng/ml) 

Standard 
Deviation 

Variance of 
Accuracy 
(%) 

Variance of 
Precision 
(%) 

Low  

(20ng/ml) 

19.90 0.29 -0.52 1.48 

Medium 
(100ng/ml) 

94.91 5.33 -5.09 5.61 

High  

(400ng/ml) 

374.63 20.38 -6.34 5.44 

 

Table 5 shows the accuracy and precision of 3 repetitions of the assay. Accuracy and 
precision were assessed in triplicate of 3 QCs (low [20ng/ml], medium [100ng/ml] and high 
[400ng/ml]). 
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4.4 Discussion 

The assay presented here represents a simple, robust and sensitive LC-MS/MS 

assay. In addition to accurate and precise quantification in plasma this assay has 

been shown to be versatile allowing quantification in brain tissue homogenate, 

EBM-2 culture medium and PBS. The assay was fully validated in plasma. As 

the change in matrix represents a minor change to the assay only partial 

validation for the change of matrices was required, in accordance with FDA 

guidelines (144).  

 

Primary validation was conducted in plasma satisfying FDA bioanalytical 

method development guidelines, demonstrating good accuracy, precision and 

linearity. Although full validation for different matrices is not required, matrix 

effects must be assessed for each matrix. The change in matrix may potentially 

affect the behaviour of the assay significantly. Brain tissue homogenate and cell 

culture medium both contain different quantities of protein compared to plasma. 

As efavirenz is highly protein bound (99% in plasma) and poorly water soluble 

(<10µg/ml), the change in matrix has the potential to alter efavirenz recovery 

(97, 105). As the change in matrix is considered a minor change, partial 

validation was acceptable. Partial validation required the determination of intra 

assay variability in accuracy and precision (152). These data demonstrate the 

versatility and reliability of the assay presented here. 
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The sensitivity of the assay developed here is of a comparable standard to recent 

publications. Some of the newer assays surpass the sensitivity here, 200pg/ml in 

brain tissue and 300pg/ml in plasma (145, 149). The greatest advantage of the 

assay developed in this chapter is the ability to assess efavirenz in multiple 

matrices. It should also be noted that the assay was developed to assess a range 

of concentrations not predicted to be lower than 10ng/ml. Given the low signal 

produced by blanks, the lower limit of detection had not been established. The 

true limit of the assay is potentially much lower than the range validated here. 

 

One significant improvement would be to include the major metabolites of 

efavirenz, 8OH efavirenz and 7OH efavirenz. Recent publications have 

demonstrated, in vitro, a higher cytotoxicity of 8OH efavirenz compared to the 

parent compound (as discussed in section 3.4). LC-MS/MS methods have been 

developed to examine efavirenz and its metabolites in CSF (153). The authors 

investigated dose reduction of efavirenz (600mg once daily to 400mg once daily) 

and demonstrated 8OH efavirenz concentrations in CSF did not appear to be 

dependant on plasma concentrations of efavirenz. The assay presented in this 

chapter could potentially be modified to include 8OH efavirenz and 7OH 

efavirenz and also optimised for use in CSF. The added advantage would be to 

analyse concentrations in brain tissue allowing a more complete description of 

the distribution of efavirenz and its metabolites in the CNS. However, these 

additional features were not a prerequisite for progression of the research in this 

thesis so further optimisation was unnecessary. 
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This chapter details the optimization of a robust, simple and sensitive LC-

MS/MS assay. The final assay conformed to FDA bioanalytical development 

guidelines and was capable of assessing efavirenz in multiple matrices. Although 

the assay satisfied the requirements for its application in subsequent chapters, the 

assay could be modified to suit additional requirements as discussed.  
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Chapter 5 

 

In vitro Characterisation of solid drug nanoparticle compositions 

of efavirenz in the hCMEC/D3 cell line 
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5.1 Introduction 

The data generated in chapter 3 indicated reduction in anxiety in response to the 

SDN formulation, in comparison to a conventional pre-clinical formulation of 

efavirenz. Currently, it is unknown if and how long intact particles survive in the 

circulation. However, some published in vitro data indicate the possibility of 

SDNs entering the circulation. Using SDNs composed of FRET dyes, co-

localisation of both dyes demonstrated that intact particles were able to traverse a 

Caco-2 monolayer in a transwell system (141). If intact particles enter the 

systemic circulation, differential passage across the BBB may contribute to the 

observations in chapter 3. 

 

The BBB is highly effective at preventing the entry of antiretrovirals to the brain, 

as discussed in section 1.4. One of the major obstacles presented by the BBB, is 

the presence of multiple transport proteins covering a wide array of substrates. 

Many xenobiotics are substrates for one or more drug transporters, limiting or 

even completely preventing entry to the brain.  

 

The interactions of efavirenz with transporters are not thoroughly characterised. 

One of the most clinically important transporters is P-gp (154). P-gp has been 

demonstrated to significantly impact the pharmacokinetics of numerous drugs 

(154). P-gp performs adenosine triphosphate (ATP)-dependent efflux from cells 

and it is expressed in many excretory and barrier tissues (155). In humans, P-gp 

is encoded by ABCB1 and is expressed in liver, kidney, adrenal gland, intestine, 
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BBB, placenta, blood–testis and blood–ovarian barriers (155). Although there 

have been genetic associations with efavirenz concentrations, in vitro evidence 

demonstrates efavirenz is not a substrate for P-gp (156, 157). However, there is 

some evidence that efavirenz may be a substrate for BCRP (ABCG2). Inhibition 

of BCRP in an ex vivo model showed increased mucosal to serosal permeation of 

efavirenz in everted gut sacs (158). Efavirenz may also be a substrate for one or 

more of solute carrier organic anion transporters (SLCO) transporters. The 

cellular accumulation of efavirenz was reduced by montelukast and estrone-3-

sulphate, suggesting inhibition of a SLCO transporter (157). The effects of 

montelukast may be via inhibition of other transporters, as efavirenz has 

previously been shown not to be a substrate of the major SLCO transporters 

(SLCO1A2, SLCO1B1 or SLCO1B3) (159, 160). The interactions of efavirenz 

and drug transporters have not been fully described, as determination of the 

substrate kinetics have not been conducted.  

  

One of the potential benefits of nanoformulation is that due to their size, 

nanoparticles are unlikely to interact with drug transporters. This has been 

demonstrated in vitro with doxorubicin nanoparticles and BCRP (161). Although 

the size of a nanoparticle may preclude interactions with transport proteins, other 

methods of cellular uptake may begin to affect the disposition of nanoscale 

formulations. Endocytosis is an umbrella term to describe the multiple 

mechanisms (including clatharin-mediated endocytosis, calveolae-mediated 

endocytosis and macropinocytosis) mammalian cells have developed for the 

uptake of molecules from the extracellular environment (162). Nanoparticle 

characteristics have been demonstrated to influence the mechanisms of 
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endocytotic uptake (such as surface chemistry, shape and size). For example, size 

has been demonstrated to play an important role in which mechanism is 

activated. Macropinocytosis is typically used in larger particle sizes (<2µM), 

whereas clatharin-mediated (<300nm) and caveolae-mediated (<80nm) 

endocytosis are activated by smaller particles (163). Therefore, the mechanism of 

uptake may play an influential role in determining the intracellular fate of 

nanoparticles (164).  

 

Differential uptake of efavirenz and SDN formulated efavirenz may affect the in 

vivo CNS distribution and toxicity. In order to investigate the in vitro 

mechanisms of uptake, the hCMEC/D3 cell line was used in uptake and 

inhibition studies. The hCMEC/D3 is an immortalised cell line derived from 

human microvascular brain endothelial cells. The aim of this chapter was to 

investigate the mechanisms of uptake of conventional pre-clinical and SDN 

formulations of efavirenz in vitro utilising the hCMEC/D3 cell line. As reduced 

anxiety was observed in chapter 3 and increased in vivo pharmacokinetics have 

been previously reported, we aimed to determine if different mechanisms of 

uptake may contribute to the observations (97). 
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5.2 Methods 

 

5.2.1 Materials 

EBM-2 medium was purchased from Lonza (Slough, UK), Penicillin-

Streptomycin, Chemically Defined Lipid Concentrate and HEPES were 

purchased from Invitrogen (Paisley, UK). Fetal Bovine Serum (FBS) gold were 

purchased from PAA, the Cell Culture Company (Cambridge, UK). The 

hCMEC/D3 cell line was a kind gift from Pierre-Olivier Couraud, (INSERM, 

Paris, France). All other consumables were purchased from Sigma Aldrich 

(Dorset, UK). 

 

5.2.2 hCMEC/D3 culture 

hCMEC/D3 were cultured in EBM-2 medium supplemented with FBS gold 5%, 

penicillin-streptomycin 1%, hydrocortisone 1.4µM, ascorbic acid 5µg/ml, 

Chemically Defined Lipid Concentrate 1/100, HEPES 10mM and bFGF 1ng/mL. 

All culture flasks and plates were coated with rat collagen type 1 for 1 hour prior 

to use. Cells were cultured at 37°C in 5% CO2. Cells ere passaged every 3-4 days 

when confluent. 
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5.2.3 MTT Assay 

Cells were seeded on a pre-collagenated 96-well plate at 100µl of 1x105 cells/ml. 

The plates were then incubated for 24 hours at 37°C in 5% CO2 to allow cell 

adherence. Following incubation, the medium was replaced with 100 µl of fresh 

medium containing the drug at desired concentrations. Positive and negative 

controls were represented by no cells (representing 100% cell death) and by cells 

cultured in the presence of a vehicle control (representing 100% cell viability), 

respectively. Following 1 hour incubation with the drug, the medium was 

removed and replaced by 20 µl of MTT reagent (5 mg/ml solution 3-(4,5-

Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide in Hanks balanced salt 

solution [HBSS]). The cells were incubated for 2 hours in the MTT reagent. 

Following incubation, 100 uL of lysis buffer (50% N-N-dimethylformamide in 

water containing 20% sodium dodecyl sulfate, 2.5% glacial acetic acid and 2.5% 

HCl, pH 4.7) was added to each well. Cells were then incubated overnight at 

37°C in 5% CO2 to allow complete cell lysis. Following incubation, the 

absorbance of each well was monitored using a TECAN GENios plate reader, 

with filters set to 560 nm.  

 

5.2.4 The Effects of Inhibitors of Drug Transporters on 

Efavirenz Accumulation 

Cells were seeded on pre-collagenated 6 well plates at a density of 2x106/ml and 

allowed to adhere overnight. Medium was aspirated and replaced with 1ml fresh 

medium containing 10µM (0.014µCi) of conventional pre-clinical formulation of 
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efavirenz or efavirenz SDNs (in the presence or absence of transporter inhibitors, 

Table 1). Cells were incubated at 37°C in 5% CO2 in the presence of the drugs 

for 1 hour. Following incubation, 100µl of medium was aspirated and added to 

scint vials with 4ml goldstar scintillation fluid (extra cellular drug content). Cells 

were then washed 3 times with ice-cold HBSS. Following washes, 1ml of trypsin 

was added to the cells and then incubated at 37°C in 5% CO2 for 15 minutes. The 

trypsin was then aspirated and added to scint vials with 4ml goldstar scintillation 

fluid (intracellular content).  

 

Cellular accumulation ratios were calculated using the following formula (where 

DPM = disintegrations per minute): 

𝐶𝐴𝑅 =
(𝑖𝑛𝑡𝑟𝑎𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝐷𝑃𝑀/𝑡𝑜𝑡𝑎𝑙 𝑐𝑒𝑙𝑙 𝑐𝑜𝑙𝑢𝑚𝑒)

(𝑒𝑥𝑡𝑟𝑎𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝐷𝑃𝑀/𝑒𝑥𝑡𝑟𝑎𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑣𝑜𝑙𝑢𝑚𝑒) 

Cellular volumes were determined using the ScepterTM cell counter 2.0 (Merck 

Millipore, Billerica USA). Cell volumes were taken from a mean of 3 replicates, 

hCMEC/D3 volume 2.27pl. 
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Inhibitor Known to inhibit Concentration 
used (µM) 

Reference 

Verapamil ABCB1, organic cation transporter 
(OCT) 1 

50 (165) 

Probenecid ABCC1, BCRP, multidrug 
resistance proteins (MRPs), organic 
anion transporter (OATs) 

50 (166) 

Prazosin OCT1 and OCT3 50 (165, 
167) 

Montelukast ABCC2, organic anion-
transporting polypeptide (OATP) 
1B3 OATP2B1 

50 (157) 

Amantadine OCT1 and OCT2 100 (165) 

Cyclosporine 
A 

SLCO1B1, BCRP 10 (168) 

Naringin OATP1A2 50 (169) 

Corticosterone OCT3, SLCO1B1 10 (165) 

 

Table 1 shows transport protein inhibitors used. Also shown are the transporters known to be 
inhibited and references. 

 

5.2.5 The Effects of Inhibitors of Endocytosis on Efavirenz 

Accumulation 

Cells were seeded on pre-collagenated 6 well plates at a density of 2x106/ml and 

allowed to adhere overnight. Medium was aspirated and replaced with 1ml fresh 

medium containing dynasore (100µM), indomethacin (100µM) or cytochalasin B 

(5µM) and incubated for 30 minutes at 37°C, 5% CO2. The mechanisms of 

action of these inhibitors are detailed in table 2. Following incubation, the 

medium was aspirated and replaced with fresh medium containing 10µM of 

conventional pre-clinical formulation or efavirenz SDNs. Cells were incubated at 
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37°C in 5% CO2 in the presence of the drugs for 1 hour. Following 1 hour 

incubation, 1ml of medium was aspirated and added to 1.5ml Eppendorf tubes 

(extra cellular content). Cells were then washed 3 times with ice-cold HBSS. 

Following washes, 1ml of trypsin was added to the cells then incubated at 37°C 

in 5% CO2 for 15 minutes. The trypsin was then aspirated and added to 1.5ml 

Eppendorf tubes (intracellular content). Samples were stored at -80°C until 

analysis via LC-MS/MS (detailed in chapter 4). 

Cellular accumulation ratios were calculated using the following formula: 

𝐶𝐴𝑅 =
(𝑖𝑛𝑡𝑟𝑎𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛)
(𝑒𝑥𝑡𝑟𝑎𝑐𝑒𝑙𝑙𝑢𝑙𝑎𝑟 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛) 

Cellular volumes were determined using the ScepterTM cell counter 2.0 (Merck 

Millipore, Billerica USA). Cell volumes were taken from a mean of 3 replicates, 

hCMEC/D3 volume 2.27pl. 
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Inhibitor Known to inhibit Concentration 

used (µM) 

Reference 

Dynasore Clatharin-dependent endocytosis 100 (170) 

Indomethacin Calveoli-dependent endocytosis 100 (171) 

Cytochalasin 

B 

Actin-dependent mechanisms 

(including macropinocytosis and 

phagocytosis) 

5 (172, 173) 

 

Table 2 shows endocytosis inhibitors used. Also shown are the mechanisms known to be 
inhibited and references. 

 

5.2.6 The Effects of Inhibitors of Endocytosis on Nanoparticle 

Uptake 

In addition to investigating the effect of endocytosis inhibitors on intra-cellular 

efavirenz concentrations, we also aimed to investigate the uptake of SDN 

particles. Recently, Liptrott et al developed a flow cytometric method to 

investigate the protein binding characteristics of SDNs. In order facilitate 

detection, 1,1’-dioctadecyl-3,3,3’,3’-tetramethylindodi-carbocyanine perchlorate 

(DiD) was incorporated into the SDNs. This method was adapted to investigate 

the uptake of DiD labeled SDNs. 

 

Cells were seeded on pre-collagenated 6 well plates at a density of 2x106/ml and 

allowed to adhere overnight. Medium was aspirated and replaced with 1ml fresh 



 

119 

medium containing dynasore (100µM), indomethacin (100µM) or cytochalasin B 

(5µM) and incubated for 30 minutes. Following incubation, medium was 

aspirated and replaced with fresh medium containing 10µM of SDN formulated 

efavirenz containing 1% DiD or dissolved SDN DiD particles (dissolved in 50% 

H2O and 50% MeOH). The DiD labeled SDNs were made as described in section 

3.2.3 with the exception of 69% efavirenz and 1% DiD replacing 70% efavirenz 

(174). Cells were incubated at 37°C in 5% CO2 in the presence of the drugs for 1 

hour. Following 1 hour incubation, medium was aspirated and cells were then 

washed 3 times with ice-cold HBSS. Following washes, 1ml of trypsin was 

added to the cells, then incubated at 37°C in 5% CO2 for 15 minutes. The cells 

were then aspirated and transferred to 1.5ml Eppendorf tubes. Samples were then 

centrifuged at 2000rpm for 5 minutes at 10°C. The trypsin was aspirated and the 

cell pellet was re-suspended in 500µl of Macs buffer for analysis by flow 

cytometer. 

 

5.2.7 Statistics 

All data were assessed for normality using the Shapiro-Wilk test. Statistical 

analysis was performed by unpaired t test or Mann-Whitney U test and 

significance was defined as P <0.05 (calculated in SPSS v21). All data are given 

as mean with standard deviation. IC50 values were calculated in Prism v6.0. 
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5.3 Results 

 

5.3.1 MTT 

Prior to accumulation studies, it was necessary to determine the concentrations of 

efavirenz, SDN efavirenz and the various inhibitors that did not affect cell 

viability. To assess the cellular toxicity of the compounds used in accumulation 

studies, a concentration range of each drug was assessed using the MTT assay. 

The MTT assay is a colorimetric assay measuring the conversion of tetrazolium 

dye (3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) to formazan 

(measured by increased absorbance at a wavelength of 560nm). The assay is 

frequently used as a marker of cellular toxicity, as the more cells present, the 

more metabolic activity is observed (97, 175). 

 

Figure 1 shows the MTT results for the conventional pre-clinical formulation 

(1A) (1B) and the SDN formulation of efavirenz over the range of 0.19µM to 

100µM. The IC50 values were 66.8µM (SD 21.3µM) and 57.6µM (SD 6.0µM) 

for the conventional pre-clinical formulation and SDN formulation of efavirenz, 

respectively. There was no statistically significant difference observed in IC50, P 

= 0.49. 
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Figure 1 shows the toxicity data produced by MTT for efavirenz (A) and SDN efavirenz (B). 
Data points represent mean (± SD), N = 4. Also shown is the sigmoidal dose response curve 
fitted to calculate IC50. 

 

Figure 2 shows the MTT data for the inhibitors of transport proteins (amantadine 

[A], probenecid [B], verapamil [C], naringin [D], corticosterone [E], montelukast 

[F], prazosin [G] and cyclosporine A [H]) over the range of 0.98µM to 500µM. 

The IC50 could not be fitted for amantadine, probenecid, verapamil, naringin, 

corticosterone, montelukast and cyclosporine A as toxicity was not observed at 

this time point. The IC50 of prazosin was shown to be 142.5µM (SD 7.1µM). 
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Figure 2 shows the toxicity data produced by MTT for amantadine (A), probenecid (B), 
verapamil (C), naringin (D), corticosterone (E), montelukast (F), prazosin (G) and cyclosporine A 
(H). Data points represent mean (± SD), N = 4. Also shown is the sigmoidal dose response curve 
fitted to calculate IC50. 
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Figure 3 shows the MTT data for the inhibitors of endocytosis (dynasore [A], 

indomethacin [B] and cytochalasin B [C]) over the range of 0.39µM to 200µM. 

The IC50 could not be fitted for dynasore and indomethacin, as toxicity was not 

observed at this time point. The IC50 of cytochalasin B was shown to be 12.1µM 

(SD 5.1µM). 

 

 

Figure 3 shows the toxicity data produced by MTT for dynasore (A), indomethacin (B) and 
cytochalasin B (C). Data points represent mean (± SD), N = 4. Also shown is the sigmoidal dose 
response curve fitted to calculate IC50. 
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5.3.2 The Effects of Inhibitors of Drug Transporters on 

Efavirenz Accumulation 

Cellular accumulation studies were performed in the hCMEC/D3 cell line, in 

order to probe the interactions of conventional pre-clinical and SDN formulated 

efavirenz at the BBB. A panel of transporter inhibitors (Table 1) was employed 

to probe potential interactions of conventional pre-clinical or SDN formulated 

efavirenz (Figure 4).  
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Figure 4 shows the cellular accumulation ratios generated for efavirenz (A and C) and SDN 
efavirenz (B and D). Also shown are the cellular accumulation ratios in the presence of 
verapamil, probenecid, prazosin, montelukast (A and B), amantadine, cyclosporine A, naringin 
and corticosterone (C and D). Data points indicate mean (± SD), N = 4. 
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The screen of transporter inhibitors demonstrated no effect on the accumulation 

ratio of the conventional pre-clinical formulation of efavirenz (Table 3) when in 

the presence of verapamil (CAR 51.08 ±8.1, P = 0.062), probenecid (CAR 59.68 

±6.26, P = 0.485), cyclosporine A (CAR 70.25 ±27.7, P = 0.512) naringin (CAR 

89.63 ±8.13, P = 0.179) and corticosterone (CAR 80.84 ±12.54, P = 0.957). The 

accumulation ratio was significantly reduced in the presence of montelukast 

(CAR 42.91 ±2.70, P = 0.001) and amantadine (CAR 64.69 ±5.95, P = 0.027). 

The accumulation ratio of efavirenz was also reduced in the presence of prazosin, 

trending towards statistical significance (CAR 53.09 ±5.06, P = 0.054). 

 

The accumulation ratio of the SDN formulation of efavirenz was not affected by 

the presence of amantadine (CAR 91.89 ±22.70, P = 0.396), cyclosporine A 

(CAR 73.10 ±17.2, P = 0.404), naringin (CAR 89.05 ±15.74, P = 0.384) or 

corticosterone (CAR 77.23 ±12.16, P = 0.574). The accumulation ratio (Table 4) 

was significantly increased in the presence of verapamil (CAR 50.65 ±5.89, P = 

0.009), probenecid (CAR 61.22 ±12.62, P = 0.011), prazosin (CAR 54.29 ±8.08, 

P = 0.009) and montelukast (CAR 45.89 ±5.95, P = 0.050). 
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Condition Efavirenz SDN Efavirenz 

Vehicle Control 63.1 (6.61) 37.4 (3.71) 

Verapamil 51.1 (8.10) 50.7 (5.91) 

Probenecid 59.7 (6.31) 61.2 (12.62) 

Prazosin 53.1 (5.12) 54.3 (8.10) 

Montelukast 42.9 (2.31) 45.9 (6.10) 

 

Table 3 shows the cellular accumulation ratios generated for efavirenz and SDN efavirenz. Also 
shown are the cellular accumulation ratios in the presence of verapamil, probenecid, prazosin, 
montelukast. Data points indicate mean (± SD), N = 4. 

 

Condition Efavirenz CAR SDN Efavirenz CAR 

Vehicle Control 80.4 (9.02) 81.2 (6.10) 

Amantadine 64.69 (6.10) 91.9 (22.70) 

Cyclosporine A 70.3 (27.70) 73.1 (17.20) 

Naringin 89.6 (8.13) 89.1 (15.74) 

Corticosterone 80.8 (12.54) 77.2 (12.16) 

 

Table 4 shows the cellular accumulation ratios generated for efavirenz and SDN efavirenz. Also 
shown are the cellular accumulation ratios in the presence of amantadine, cyclosporine A, 
naringin and corticosterone. Data points indicate mean (± SD), N = 4. 
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5.3.3 The Effects of Inhibitors of Endocytosis on Efavirenz 

Accumulation 

In addition to transport proteins, endocytosis is a potential mechanism for 

cellular uptake. In order to probe the impact of endocytosis on the uptake of 

conventional pre-clinical and SDN formulations of efavirenz, a panel of 

endocytosis inhibitors was screened (Table 2). 

 

 

Figure 5 shows the cellular accumulation ratios generated for efavirenz (A) and SDN efavirenz 
(B). Also shown are the cellular accumulation ratio in the presence of dynasore, indomethacin 
and cytochalasin B. Data points indicate mean (± SD). 

 

The screen of endocytosis inhibitors demonstrated no effect on the accumulation 

ratio of either the pre-clinical formulation (CAR 92.65 ±47.41) or SDN 

formulation (CAR 118.7 ±40.98) of efavirenz when in the presence of dynasore 

(efavirenz CAR 96.74 ±13.14, P = 0.874, SDN CAR 121.8 ±17.99, P = 0.895), 

indomethacin (efavirenz CAR 137.6 ±60.04, P = 0.285, SDN CAR 119.4 ±16.5, 
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P = 0.975) or cytochalasin B (efavirenz CAR 96.53 ±47.18, P = 0.911, SDN 

CAR 141.4 ±35.44, P = 0.434).  

 

5.3.4 The Effects of Inhibitors of Endocytosis on Nanoparticle 

Uptake 

The addition of the DiD fluorescent dye was used as a marker for SDN uptake in 

order to determine the effects of endocytosis inhibitors on not only efavirenz 

uptake but also SDN uptake. The uptake of DiD labeled SDN efavirenz particles 

(4.02 ±0.86 relative fluorescence units [RFU]) were significantly reduced (Figure 

6) by dynasore (0.918 ±0.45 RFU, P = 0.001). Indomethacin had no effect on 

uptake of DiD labeled SDN efavirenz particles (3.44 ±0.58 RFU, P = 0.307), 

whereas cytochalasin B significantly increased uptake (5.40 ±0.70 RFU, P = 

0.048) (Figure 7).  

 

The uptake of dissolved DiD labeled SDN efavirenz particles (8.75 ±1.14 RFU) 

was significantly reduced by dynasore (0.43 ±0.13 RFU, P = <0.0001) and 

indomethacin (4.45 ±0.54 RFU, P = <0.000). Cytochalasin B significantly 

increased the uptake of dissolved DiD labeled SDN efavirenz particles (12.12 

±0.20 RFU, P = <0.001) (Figure 7). 
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Figure 6 shows a scatter plot of the fluorescence detected at 655-730 nm. The green plot 
represents untreated cells (A-D). The red plot represents cells treated with SDN DiD (A-D). The 
blue plot represents the fluorescence in the presence of dynasore (B), indomethacin (C) and 
cytochalasin B (D). 
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Figure 7 shows the fluorescence produced by cells treated with SDN DiD efavirenz (A) and 
dissolved SDN DiD efavirenz (B) in the presence of dynasore, indomethacin and cytochalasin B. 
Data points indicate mean (± SD). 
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5.4 Discussion 

The data presented here demonstrated cellular accumulation of efavirenz was 

reduced significantly by montelukast and amantadine, with the reduction in 

accumulation by prazosin bordering on significance. Montelukast and prazosin 

have been previously shown to inhibit efavirenz accumulation in vitro; indicating 

one of the SLCO transporters may also be involved in the accumulation of 

efavirenz (157, 176). However, previous data demonstrated no interaction 

between efavirenz and SLCO1A2, SLCO1B1 or SLCO1B3 indicating a role of 

other transporters inhibited by montelukast (159, 160). The data also indicated 

the SDN formulation may interact with verapamil, probenecid, prazosin and 

montelukast. However, these data may be compromised due to low accumulation 

of the control in this experiment. The SDN formulation procedure generates 

particles in the size range of 322 ± 29nm. As described in section 5.1, particles of 

this size activate endocytosis and nanoformulation has been used previously to 

reduce the impact of the transporter, BCRP on drug uptake (161, 163). Further 

studies are required to fully elucidate the interactions of both the conventional 

pre-clinical and SDN formulations of efavirenz. 

 

The experiments utilising the endocytosis inhibitors provided some conflicting 

data. When the drug accumulation ratio was examined, the endocytosis inhibitors 

had no effect on either the pre-clinical conventional formulation or the SDN 

formulation of efavirenz. Interestingly, uptake of the DiD labelled SDNs was 

reduced by dynasore, indicating a role for dynamin-mediated uptake. However, 

the uptake of the dissolved DiD labelled SDNs was also reduced by both 
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dynasore and indomethacin. This may indicate the incomplete dissolution of the 

SDN particles, or that the dissolution process altered the structure of the SDN 

particles, enabling uptake via calveoli-dependent endocytosis. The data also 

demonstrated higher uptake for the dissolved DiD SDN particles. This is not 

entirely unexpected, as DiD is a lypophilic dye and would be expected to readily 

pass through the lipid cell wall. This limitation could be resolved by use of a cell 

impermeable dye, such as propidium iodide (fluorescence only observed when 

associated with intracellular nucleic acids). Propidium iodide has previously 

been incorporated into rhodamine B isothiocyanate–labeled silica nanoparticles 

to indicate cellular uptake (177). These data indicate the importance of 

measuring both nanoparticle uptake and drug uptake. Although the drug 

concentrations may be equal in both formulations, the mechanism of cell entry 

and consequently intracellular fate may be significantly different.  

 

The hCMEC/D3 cell line has been demonstrated to express many of the proteins 

found in the enterocytes of the BBB, making this cell line a suitable model for 

probing interactions at the BBB (178). One of the limitations of the hCMEC/D3 

cell line, is the incomplete formation of tight junctions (179). The BBB is 

characterised by the presence of tight junctions, limiting paracellular transport. In 

order to fully replicate the presence of tight junctions, the hCMEC/D3 cell line 

require technically demanding and prohibitively expensive culture conditions. It 

has been demonstrated to reproduce the tight junctions observed in vivo, sheer 

stress induced by a pulsatile flow was required (180). Therefore, although 

accumulation experiments are useful for identifying potential mechanisms of 

uptake at the BBB, they do not demonstrate permeability across the BBB.  
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One of the limitations of investigating transporter interactions in cell lines, is the 

lack of specificity in pharmacological transport inhibitors. For example Ko143 

was thought to be a specific inhibitor for BCRP. However, recently it has been 

demonstrated that Ko143 also inhibits ABCB1 and ABCC1 (181). Lack of 

specificity is also a consideration when examining inhibitors of endocytosis 

(182). In addition to other mechanisms of endocytosis, endocytosis inhibitors 

have also been shown to influence transport proteins, such as inhibition of 

ABCC1 by indomethacin (166). Furthermore, cytochalasin B was shown to 

disrupt actin filaments and increase the intracellular accumulation of doxorubicin 

via this mechanism. The authors concluded that organisation of actin filaments 

may play a role in the function of P-gp (183). The conclusions that are drawn 

here are based on the known interactions of the inhibitors used. It is possible that 

the transport inhibitors may inhibit other as yet unidentified transporters. Further 

studies utilising more specific methods (such as knock-down models, small 

interfering RNA and oocyte uptake experiments) may be utilised in future studies 

to further elucidate the interactions of efavirenz and transporters.  

 

Another limitation of the experimental design was that all experiments were 

conducted at 1 hour. This snapshot may not fully represent the mechanisms of 

uptake. Liptrott et al demonstrated that the cellular accumulation ratio of SDN 

efavirenz varied over 24 hours in THP-1 cells, with highest accumulation 

achieved within the first hour (184). Repetition of the experiments conducted in 

this chapter over multiple time points may provide further insight into the 
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mechanisms of uptake of the conventional pre-clinical and SDN formulations of 

efavirenz. 

The data presented in this chapter indicate that SDN formulated efavirenz may 

not traverse the BBB via the same mechanisms as the conventional formulation. 

Amantadine significantly reduced efavirenz uptake, while there was no effect 

observed with the SDN formulation. Additionally, dynasore reduced the uptake 

of SDN DiD labelled particles indicating a role of dynamin-mediated 

endocytosis. Differential mechanisms of uptake by the BBB may impact on the 

occurrence of CNS toxicity associated with efavirenz. 
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Chapter 6 

 

Efavirenz is predicted to accumulate in brain tissue: an in silico, 

in vitro and in vivo investigation 
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6.1 Introduction 

 

Despite its widespread use, patients receiving efavirenz-containing therapy 

frequently report CNS disturbances. Symptoms of efavirenz-associated adverse 

drug reactions (ADRs) occur with a high frequency and can include depression, 

anxiety, abnormal dreams and hallucinations (65). The majority of patients report 

development of CNS disorders shortly after commencing efavirenz therapy with 

symptoms dissipating during the initial months of therapy. A minority of patients 

continue to experience symptoms for the duration of efavirenz use (66). More 

recently, efavirenz CNS ADRs have been shown to have more long-term effects 

(67). 

 

In addition to the negative impact on the quality of the patient’s life, CNS ADRs 

may also lead to a decrease in patient adherence. Poor patient adherence to 

antiretroviral medication is a major concern with regards to HIV therapy, in 

particular drugs displaying a low genetic barrier to resistance such as efavirenz 

(185). The impact of CNS side effects on patient adherence is not clearly 

defined. Some previous studies indicate that patients demonstrate tolerance to 

CNS side effects with minimal impact on patient adherence (69, 70). However, a 

recent study demonstrated 60% of patients reported CNS side effects as the 

primary reason for discontinuation vs. 3% of patients receiving alternative 

antiretroviral therapies (67). 
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There is a paucity of information regarding penetration of efavirenz into brain 

tissue. Due to impracticalities in obtaining brain tissue from patients, some 

groups have used concentrations in cerebrospinal fluid CSF as a surrogate for 

brain concentrations. The majority of pharmacokinetic studies have focused on 

describing efavirenz plasma concentrations and elucidating genetic factors that 

contribute to the variability in efavirenz pharmacokinetics or genetic associations 

to predict patients at risk of developing CNS toxicity (65, 72, 74). However there 

are a few small studies that investigated efavirenz pharmacokinetics in both 

plasma and CSF. CSF concentrations have been shown to be much lower (around 

0.5%) than plasma. However, even at 0.5% of the plasma concentration efavirenz 

concentrations in the CSF exceed the IC50 of efavirenz for wild type HIV (57).  

 

The appropriateness of CSF concentrations as a surrogate for brain 

concentrations is currently the subject of debate (54-56). It has been 

demonstrated in guinea pigs that brain tissue concentrations of nevirapine not 

only differ from those in the CSF but also vary between brain regions (54). 

nevirapine uptake was shown to be 0.32 ml/g in the CSF whereas nevirapine 

uptake was lower in the choroid plexus (0.25 ml/g) and higher in the pituitary 

(1.61 ml/g) when compared to the CSF (54). Indeed, concentrations within CSF 

have been shown to vary depending on where the sample was taken for other 

antiretroviral drugs. Lamivudine has been shown to be 5-fold higher in CSF 

sampled from the lumbar region compared to ventricular CSF in rhesus monkeys 

(55). Although there are no comparable data for efavirenz in the literature, these 

data exemplify the challenges associated with predicting brain tissue 

concentrations in CSF. 
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PBPK modelling is a bottom up approach to simulate drug distribution in virtual 

patients. The approach mathematically describes physiological and molecular 

processes defining pharmacokinetics, integrating drug-specific properties (such 

as logP, Caco-2 apparent permeability and affinity for transporters and metabolic 

enzymes) and patient-specific factors (such as height, weight, gender, organ 

volumes and blood flow) (104). The model presented here is based on a full body 

PBPK model, supplemented with a 6-compartment model of the CNS and CSF 

as previously described (186). 

 

The aim of this investigation was to evaluate efavirenz penetration into the CSF 

and brain using PBPK modelling. Simulated efavirenz pharmacokinetic data 

were then compared to available experimental data from rodents and clinical data 

from humans. 

 

  



 

141 

6.2 Materials & Methods 

 

6.2.1 Materials 

Male Wistar rats were purchased from Charles River (Oxford, UK). Efavirenz 

powder (>98% pure) was purchased from LGM Pharma Inc (Boca Raton, USA). 

All other consumables were purchased from Sigma Aldrich (Dorset, UK). 

 

6.2.2 Animals and treatment 

Male Wistar rats (Charles River UK) weighing 180 – 220 g on arrival were used 

for pharmacokinetic analysis of efavirenz. Food and water were provided ad 

libitum. All animal work was conducted in accordance with the Animals 

(Scientific Procedures) Act 1986 (ASPA), implemented by the United Kingdom 

Home Office.  

  

6.2.3 Drug Treatment 

Eight male Wistar rats were dosed with efavirenz (10 mg/kg, 2 ml/kg 0.5% 

methylcellulose in dH2O) based on individual weight taken prior to dosing. 

Dosing was administered once daily via oral gavage over 5 weeks. The animals 

were terminated 2 hours after the final dose and blood was collected via cardiac 

puncture. Blood samples were centrifuged at 2000g for 10 minutes at 4°C to 

separate plasma. Plasma was immediately frozen at -80°C and stored for later 
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analysis. Brain tissue was also collected and immediately stored at -30°C for 

analysis. 

 

6.2.4 Rapid Equilibrium Dialysis 

The protein binding of efavirenz in brain tissue was performed using rapid 

equilibrium dialysis (RED) as described by Liu et al. (150). Rat brain tissue was 

homogenised in 2 volumes (W:V) of 1% saline solution. Since efavirenz is 

highly protein bound, a dilution of brain tissue (10% and 20% brain tissue were 

prepared with 1% PBS) was used. 200 µl of brain homogenate was spiked with 

5000 ng/ml efavirenz and added to the donor chamber. The receiver chamber 

contained 350 µl of Sorensons buffer. The RED plate (Thermo, UK) was then 

placed in a shaking incubator for 4 hours at 37°C at 100 rpm. 250 µl were 

removed from the receiver chamber and frozen at -80°C for analysis. The 

fraction of drug unbound (fu) in brain tissue was then calculated from the diluted 

brain tissue using the following formula (187): 

 

𝑈𝑛𝑑𝑖𝑙𝑢𝑡𝑒𝑑 𝑓𝑢 =
1
𝐷

1
𝑓𝑢 𝑎𝑝𝑝𝑎𝑟𝑒𝑛𝑡 − 1 + 1

𝐷
 

 

Where fu = fraction unbound and D = dilution factor. 
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6.2.5 Sample preparation for bioanalysis 

Efavirenz was extracted by protein precipitation. 20µl of IS (lopinavir 

1000ng/ml) was added to 100µl of sample, standard or QC which was then 

treated with 400µl of ACN. Samples were then centrifuged at 4000g for 10 

minutes at 4°C. The supernatant fraction was transferred to a fresh glass vial and 

evaporated, samples were placed in a rotary vacuum centrifuge at 30°C and then 

reconstituted in 140 µl of H2O:ACN (60:40). 100µl of the sample was then 

transferred into 200µl chromatography vials. 5µl of each sample was injected for 

analysis by LC-MS/MS.  

 

Rat brain tissue was homogenised in 3 volumes (W:V) of plasma for 1 minute at 

maximum power using a Minilys® homogeniser (Bertin technologies, FR). 

Extraction was performed using protein precipitation detailed in the previous 

section. Recovery was tested at 3 levels (400 ng/ml 100 ng/ml and 20 ng/ml). 

Mean recovery was 95% (SD 8.9) and 91% (SD 7.8) for plasma and brain, 

respectively. Samples generated from the RED experiment were pre-treated with 

20% ACN (PBS and Sorensons buffer were spiked with 20% ACN in order to 

aid efavirenz solubility in these matrices) and mean recovery was 84% (SD 

11.6). 
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6.2.6 Quantification of Efavirenz 

Quantification of efavirenz was achieved utilising the validated LC-MS/MS 

method described in chapter 4.  

 

6.2.7 PBPK Parameters 

The full body PBPK model used here has been previously published using 

equations from the physB model (Figure 1) (104, 106). The model generates 

virtual patients based on a statistical description of human anatomy. The model 

simulates flow rates, organ volumes and other tissue volumes based on 

anthropometric measures and allometric scaling.  
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Figure 1 shows a diagram of the full body PBPK model generated from the physB equations.  

 

Briefly, the equations required to simulate factors such as volume of distribution 

were previously published. Volume of distribution was simulated using the 

Poulin and Theil equation (188). This method describes the tissue to plasma ratio 

based on the individual organ volumes generated from the physB equations. 

Clearance was calculated using allometric scaling of metabolism of efavirenz in 

microsomes and accounting for activity and abundance of CYP2B6, CYP2A6, 

CYP1A2, CYP3A4 and CYP3A5, and UGT2B7. Physicochemical properties of 

efavirenz data (including log P, molecular weight, pKa) and in vitro data 

(permeation across Caco-2 cells and protein binding) were gathered from the 

literature and incorporated into the full body model (105). 
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The CNS portion of the model was based on validated parameters describing 

CNS and CSF physiology and anatomy (186). A schematic of this model is 

shown in Figure 2. Physiological and physicochemical properties used are 

displayed in Table 1.  

 

 

Figure 2 shows a diagram of the CNS component of the PBPK model to describe efavirenz 
movement within the CNS.  
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Model Parameter Value Reference 

 

Molecular Weight 

LogP 

pKa 

Caco-2 permiability  

(10-6 cm/s) 

 

Fraction unbound 

Plasma 

CSF 

Brain tissue 

 

Qcsf (ml/min) 

Qecf (ml/min) 

 

315.7 

4.6 

10.2 

2.5  

 

 

 

0.01 

0.238 

0.00197 

 

0.175  

0.4 

 

Siccardi et al, (105) 

Siccardi et al, (105) 

Siccardi et al, (105) 

Siccardi et al, (105) 

 

 

 

Almond et al, (189) 

Avery et al, (190) 

 

 

Westerhout et al, (186) 

Westerhout et al, (186) 

Brain ICS (ml) 

Brain ECF (ml) 

CSF LV (ml) 

960  

240 

22.5 

Westerhout et al, (186) 

Westerhout et al, (186) 

Westerhout et al, (186) 

CSF TFV (ml) 22.5 Westerhout et al, (186) 

CSF CM (ml) 7.5 Westerhout et al, (186) 

CSF SAS (ml) 90 Westerhout et al, (186) 

 

Table 1 shows the physiological and physicochemical variables used to generate the PBPK 
model. 
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The equations used in the model presented here are as follows: 

 

1. 𝑙𝑜𝑔𝑃𝑆 =  −2.19 + 0.262 𝑙𝑜𝑔𝐷 + 0.0583 𝑣𝑎𝑠!"#$ − 0.00897 𝑇𝑃𝑆𝐴	

 

Equation 1 shows a 3-descriptor QSAR (quantitative structure–activity 

relationship) model of permeability surface area product (log PS) of the 

developed by Liu et al. (191). The three descriptors are log D (octanol/water 

partition coefficient at pH 7.4), vasbase (van der Waals surface area of the basic 

atoms) and TPSA (van der Waals polar surface area). Permeability surface area 

product of the blood CSF barrier (pse) was calculated by dividing the 

permeability surface area product of the BBB (psb) by 1000, to reflect the 

smaller surface area of the blood CSF barrier (192). 

 

2. ∆!"#!"
∆!

= 𝑝𝑠𝑏 ∗ !"#!"∗!"
!

− 𝐸𝐹𝑉!" ∗ 𝑓𝑢!" − 𝑄!"# ∗ 𝐸𝐹𝑉!" ∗ 𝑓𝑢!" 	

 

Equation 2 describes the movement of efavirenz from arterial plasma to the brain 

where concentration of arterial efavirenz (efavirenzAr), fraction unbound in 

plasma (fu), blood to plasma ratio (R), concentration of efavirenz in the brain 

(efavirenzBr), flow of brain extracellular fluid (Qecf), and fraction unbound in 

brain and (fuBr). 
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3. ∆!"#!"# !"
∆!

= 𝑝𝑠𝑒 ∗ !"#!"∗!"
!

− 𝑝𝑠𝑒 ∗ 𝐸𝐹𝑉!" ∗ 𝑓𝑢!"# − 𝑄!"# ∗ 𝐸𝐹𝑉!" ∗

𝑓𝑢!! − 𝑄!"# ∗ 𝐸𝐹𝑉!" 	

	

4. ∆!"#!"# !"#
∆!

= 𝑝𝑠𝑒 ∗ !"#!"∗!"
!

− 𝑝𝑠𝑒 ∗ 𝐸𝐹𝑉!"# ∗ 𝑓𝑢!"# − 𝑄!"# ∗ 𝐸𝐹𝑉!" −

𝑄!"# ∗ 𝐸𝐹𝑉!"# 	

	

5. ∆!"#!"# !"
∆!

= 𝑝𝑠𝑒 ∗ !"#!"∗!"
!

− 𝑝𝑠𝑒 ∗ 𝐸𝐹𝑉!" ∗ 𝑓𝑢!"# − 𝑄!"# ∗ 𝐸𝐹𝑉!"# −

𝑄!"# ∗ 𝐸𝐹𝑉!" 	

 

6. ∆!"#!"# !"!
∆!

= 𝑄!"# ∗ 𝐸𝐹𝑉!" − 𝑄!"# ∗ 𝐸𝐹𝑉!"!	

 

Equations 3 to 6 describe the movement of efavirenz from the brain to CSF, 

including movement across the blood CSF barrier. The CSF is subdivided into 4 

compartments left ventricle (LV), third and fourth ventricle (TFV), cisterna 

magna (CM) and the subarachnoid space (SAS) where concentration of efavirenz 

in veins (efavirenzVe), fraction unbound in plasma (fu), blood to plasma ratio (R), 

concentration of efavirenz in the brain (efavirenzBr), concentration of efavirenz in 

the CSF compartments (efavirenzCSF), flow of brain extracellular fluid (Qecf), 

flow of CSF (Qcsf) fraction unbound in CSF (fuCSF) and fraction unbound in brain 

and (fuBr). 
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6.2.8 Simulation Design 

A virtual cohort of 100 patients of ages 18 to 60 were generated and a once-daily 

dose of efavirenz (600 mg) was simulated over 5 weeks. Physiological 

parameters (such as weight, height and body mass index) were described be 

Bosgra et al (104). The physiological values were the used to generate organ 

volumes via allometric scaling. Simulations were conducted using SimBiology 

v4.3.1 (a module of Matlab v8.2). The pharmacokinetics in plasma, CSF and 

brain tissue were recorded during the final 24 hours at steady state. Plasma and 

CSF pharmacokinetic simulations were compared with previous data generated 

from clinical trials. Brain tissue to plasma ratios were also calculated and 

compared to data generated in rodents. 
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6.3 Results 

The protein binding of efavirenz in brain tissue was determined using rapid 

equilibrium dialysis. The mean (± SD) concentration of efavirenz detected in the 

receiver chamber was 209.7 ± 33.4 ng/ml, and 165 ± 22.0 ng/ml 10% and 20% 

brain homogenate respectively. The fraction unbound in brain tissue (fuBr) was 

calculated to be 0.00181 and 0.00212 in 10% and 20% brain homogenate, 

respectively. The average fuBr was 0.00197. 

 

Following 5 weeks of oral dosing of efavirenz (10 mg/kg), the median plasma 

concentration of efavirenz in rats was 69.7 ng/ml (IQR 44.9 – 130.6). Median 

efavirenz concentrations in brain tissue were 702.9 ng/ml (IQR 475.5 – 1018.0). 

The median tissue to plasma ratio was 9.5 (IQR 7.0 – 10.9). 

 

6.3.1 Simulation 

A standard dosing schedule of efavirenz (600 mg once daily) was simulated in 

100 patients for the duration of 5 weeks. The results for efavirenz concentrations 

in plasma (Figure 3A), CSF (Figure 3B) and brain tissue (Figure 3C) were all 

taken from the final 24 hours of the simulation. 
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The maximum concentration (Cmax), minimum concentration (Cmin) and area 

under the curve (AUC24) of efavirenz in plasma were 3184 ng/ml (IQR 2219-

4851), 2537 ng/ml (IQR 1942-3779) and 76,991 ng.h/ml (IQR 62,170-107,560). 

The CSF was predicted to have lower concentrations of efavirenz Cmax 51.0 

ng/ml (IQR 38.3-70.0), Cmin 47.8 ng/ml (IQR 36.1-66.7) and AUC24 1193 

ng.h/ml (IQR 898-1649). At 24 hours efavirenz in the CSF was 1.6% of plasma 

concentrations. The simulation predicted efavirenz concentrations in the brain to 

exceed CSF and plasma, Cmax 50,343 ng/ml (IQR 38351-65799) Cmin 49,566 

ng/ml (IQR 38044-64374) and AUC24 1,207,542 ng.h/ml (IQR 926,900-

1,567,974).  The brain tissue to plasma partition ratio at 24 hours was 15.8.  

 

The absorption constant (Ka) was predicted to be 0.19 h-1 (IQR, 0.18-0.21). 

Volume of distribution (VSS) and clearance (Cl) were predicted to be 2.15 l/kg 

(IQR 2.06-2.31) 4.56 l/h (IQR 3.52-5.33) respectively. The fraction absorbed (fa) 

of efavirenz was predicted to be median 0.46 (IQR, 0.44-0.49) and was used to 

calculate apparent VSS and apparent Cl, 323.31 l (IQR 308.31-346.28) and 9.79 

l/h (7.54-11.41) respectively. 

 

6.3.2 Comparison with clinical data 

The simulated pharmacokinetic parameters in plasma produced by the model 

were in agreement with data published from human trials and population 

pharmacokinetic studies (popPK). Table 2 shows the results from the simulation 

and a number of clinical studies and popPK studies. The mean/median observed 

plasma concentrations of efavirenz ranged from 1973 ng/ml to 3180 ng/ml (57, 
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148, 193-195).  Simulated Cl, VSS and Ka were 1.04 fold, 1.28 fold and 0.6 fold 

different compared to observed data (195). The average simulated CSF 

concentrations were 49.9 ng/ml (IQR 36.6-69.7) compared to a range of 11.1 

ng/ml to 16.3 ng/ml observed in previously published clinical studies (57, 193). It 

is worth considering that the CSF concentrations were gathered from relatively 

small cohorts (Best N=80, Yilmaz N=1 and Tashima N=10) and may not fully 

represent CSF concentrations larger populations. Currently there are no clinical 

data describing the concentrations of efavirenz in human brain tissue.
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6.4 Discussion  

The data presented here show that the PBPK model predicts efavirenz to 

accumulate in the brain. This is to a higher degree than concentrations in the 

CSF, indeed concentrations of efavirenz in the brain were predicted to exceed 

even plasma concentrations, with a brain to plasma ratio of 15.8. The rodent data 

presented here supports the model prediction of a higher concentration of 

efavirenz in brain tissue, with a median tissue to plasma ratio of 9.5. Recently, 

efavirenz has been demonstrated to accumulate in the brain tissue of macaques. 

Following 8 days of orally administered efavirenz (60 mg/kg) the concentrations 

in plasma and CSF were 541 and 3.30 ng/ml respectively. Concentrations of 

efavirenz in the cerebellum and basal ganglion were 6.86 µg/g (tissue to plasma 

ratio 12.7) and 2.01 µg/g (tissue to plasma ratio 3.7), respectively (149).  

 

Accumulation of efavirenz in brain tissue may be driven by physicochemical 

properties of efavirenz, in particular lipophilicity. Since efavirenz is a highly 

lipophilic compound (logP 4.6) and has high accumulation in multiple cell types, 

it shows high cellular permeation (105). The brain has been shown to have a high 

fat content, with approximately 60% of the brain consisting of fat, providing a 

lipophilic environment for efavirenz (196). An additional factor that favours 

penetration is the high degree of protein binding of efavirenz. In plasma, 

efavirenz is highly protein bound (fu 0.01) (189). Protein binding in the CSF is 

much lower leading to more free efavirenz, fu 0.238 (190).  The data presented 

here from rapid equilibrium dialysis shows efavirenz fu in rodent brain tissue to 

be 0.00197. Further experimentation is required to define the factors determining 
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efavirenz accumulation in the CNS however, further in silico experiments may 

also identify important factors. By performing sensitivity analyses on each of the 

model parameters (e.g. fuBr, blood brain barrier permeability and blood CSF 

barrier permeability), simulations can be designed to identify the impact of each 

factors identifying which variables have the greatest influence on efavirenz CNS 

accumulation. Taken collectively, it is tempting to speculate that a combination 

of low fu and affinity for the lipophilic environment of the brain result in 

accumulation of efavirenz in the CNS. Lypophilicity has been shown to be a 

significant factor in uptake of drugs into the brain (51) as has been demonstrated 

with benzodiazepines. Lypophilicity, but not plasma protein binding, was shown 

to correlate with uptake of benzodiazepines into the brain. However, this study 

did not consider fu in the brain and plasma fu may not be a good indicator of 

brain fu. Kalvass et al examined the fu in plasma and brain tissue of 34 drugs 

covering multiple drug classes. The data presented showed that plasma fu both 

under and overestimated brain fu depending on the drug (197). 

 

Although this is the first study to employ PBPK modelling to investigate 

efavirenz penetration into the CNS, PBPK has been used previously to 

investigate efavirenz dose optimisation, drug-drug interactions and 

pharmacokinetics in special populations (105, 198). 

 

Limitations of this work include that the presented model does not take into 

account genetic variability (i.e. CYP2B6 variants), the brain fu values were 

generated in rodent brain rather than human brain, the current model is not able 
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to estimate local concentrations in individual brain regions, and permeability of 

efavirenz was calculated using a QSAR model of passive permeability which 

often rely on extrapolated data from animals with important differences to 

humans (191, 199). However, these aspects could be expanded in future 

modelling strategies as the necessary input data emerges.  

 

The BBB is highly effective at preventing xenobiotics penetrating the CNS. 

Tight cellular junctions prevent paracellular transport of drugs and the 

metabolising enzymes and transport proteins remove drugs from the CNS. As 

such, another potential limitation of the model that warrants further elaboration is 

that penetration of efavirenz across the BBB may not be governed purely by 

passive permeability. The potential influence of influx and efflux transporters 

was not considered because efavirenz is not classified as substrate of any 

transporters and effects of transporters on efavirenz pharmacokinetics have not 

been described. The model presented here potentially may be improved upon in 

the future if efavirenz is demonstrated to be a substrate for such transporters.  

 

There are numerous studies demonstrating that efavirenz plasma concentrations 

are associated with the development of CNS toxicity. Additionally, there are a 

number of studies showing efavirenz readily passes the BBB and is present in 

CSF. However, both plasma and CSF concentrations indicate that efavirenz is 

present in brain tissue, the site of CNS ADRs. The simulations presented here 

indicate both plasma and CSF may underestimate efavirenz exposure within the 

brain. Limitations associated with obtaining tissue biopsies and paired plasma 
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and CSF samples from patients make PBPK modelling an attractive tool for 

estimating such drug distribution. 
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Chapter 7 

 

General Discussion 
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Currently, the WHO recommends global treatment of HIV should consist of 1 

NNRTI supported by an NRTI backbone (64). The most frequent combination 

administered is efavirenz, co-administered with tenofovir and emtricitabine. This 

combination is co-formulated into a single tablet (Atripla), which is administered 

once daily (26).  

 

Patients receiving efavirenz-containing therapy frequently report CNS 

disturbances. Symptoms occur with a high frequency and can include depression, 

anxiety, abnormal dreams and hallucinations (65). The majority of patients report 

development of CNS disorders shortly after commencing efavirenz, with 

symptoms dissipating during the initial months of therapy. A minority of patients 

continue to experience symptoms for the duration of efavirenz-containing 

therapy (66). More recently however, efavirenz CNS toxicities have been shown 

to have more long-term (as discussed in section 1.4.1) (67). The mechanisms of 

efavirenz-associated CNS toxicity are complex and multifactorial. The 

difficulties in determining the underlying mechanisms of CNS toxicity are 

further compounded by the paucity of information detailing the distribution of 

efavirenz in the CNS. 

 

The aims of this thesis were firstly to investigate the underlying mechanism of 

efavirenz CNS toxicity, and secondly to assess uptake and CNS toxicity of 

efavirenz and a novel SDN formulation of efavirenz. To investigate the 

mechanisms of efavirenz-associated CNS toxicity, a cohort of patients were 

assessed for the association of efavirenz discontinuation and polymorphisms in 
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the GABAa receptor (chapter 2). Currently, it is not understood how efavirenz 

enters or is restricted from the CNS. To investigate the mechanisms, a panel of 

transport inhibitors were screened using the hCMEC/D3 cell line (chapter 5). 

While plasma and CSF concentrations are published, there is no data on human 

brain tissue concentrations. Given the importance of the CNS in efavirenz 

therapy (both as a site of continued HIV replication and CNS side effects), its 

penetration into the CNS has not been fully characterised. Given the obvious 

difficulties of obtaining brain tissue samples, PBPK modelling coupled with in 

vitro and in vivo techniques were utilised to simulate efavirenz distribution in the 

CNS (chapter 6). 

 

The interactions of a novel SDN formulation with the CNS were also 

investigated. As the underlying mechanisms of efavirenz-associated CNS 

toxicity are currently unknown, the effect of SDN formulation on the occurrence 

of neurocognitive disturbances was assessed in a rodent model of anxiogenesis 

(chapter 3). As with efavirenz, the mechanisms of uptake of SDNs into the CNS 

are currently unknown. To investigate the mechanisms of uptake, a panel of 

transport and endocytosis inhibitors were screened using the hCMEC/D3 cell 

line (chapter 5). In order to quantify efavirenz in multiple matrices examined in 

this thesis, a robust bioanalytical method was required (chapter 4).  

 

Despite being available for prescription for almost 20 years, the underlying 

mechanisms of CNS toxicities associated with efavirenz are still poorly 

characterised (26). One of the aims of this thesis was to investigate the role of the 
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GABAa receptor in the occurrence of efavirenz CNS toxicity. Despite in silico 

evidence (produced during a previous masters course) and in vitro data 

(published by Gatch et al), the genotyping of patients failed to support a role of 

the GABAa receptor (127). As discussed in chapter 2, this may be due to 

limitations of the study design, or indeed the GABAa receptor playing no part in 

the aetiology of efavirenz-associated CNS toxicities. The approach used in 

chapter 2 may not have been optimal in identifying genetic associations with the 

complex phenotype of efavirenz CNS toxicity. The symptoms observed in 

efavirenz associated CNS disturbances are potentially due to interactions with 

multiple receptors. SNPs in a single receptor would need to be very strongly 

associated with the occurrence of CNS toxicity to be detected by the selection of 

SNPs. An alternate approach that may be employed in future studies is haplotype 

tagged SNPs. This approach allows detection of variation in not only candidate 

genes but also entire gene regions. This allows the examination of larger regions, 

increasing the potential to identify genetic associations (200). The data presented 

in this thesis could be built upon with further in vitro mechanistic and genetic 

studies examining the many isoforms of the GABAa receptor but this was 

beyond the scope of the current analysis (111). 

 

Another source of inter-patient variability may be due to the mechanisms of 

efavirenz entry into the CNS. The data presented in chapter 5 indicates efavirenz 

may be a substrate for OCT1 and possibly one of the SLCO transporters. If these 

interactions are confirmed via further in vitro experimentation, genotyping for 

polymorphisms may contribute to explaining the variation in occurrence of 

efavirenz CNS toxicity. Additionally, if these interactions are confirmed and 
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fully characterised (determination of maximum velocity [Vmax] and Michaelis 

constant [Km]), they could be used to improve the PBPK model in chapter 6. 

The current model is forced to assume passive permeation, due to incomplete 

characterisation of efavirenz interactions with transporters. PBPK modeling 

would offer the opportunity to assess the clinical relevance of any transporter 

interaction.  

 

Current human studies indicate that efavirenz shows moderate penetration into 

the CNS, determined by concentrations in CSF. Plasma concentrations of 

efavirenz have been shown to vary between 154- and 228-fold greater than those 

found in CSF (50, 57, 148). The data presented in this thesis demonstrates that 

CSF concentrations may underestimate the concentrations present in brain tissue, 

estimated to have a brain to plasma ratio of 15.8. The simulated data was 

supported by in vivo data indicating higher accumulation of efavirenz in the brain 

tissue (149). These data demonstrate the importance of considering the 

concentrations of efavirenz in brain tissue, particularly in the scope of CNS 

toxicity.  

 

The second aim of this thesis was to assess uptake and CNS toxicity of a novel 

SDN formulation of efavirenz. The data presented indicate the SDN formulation 

may induce anxiety to a lesser extent than the conventional pre-clinical 

formulation, whilst displaying superior in vivo pharmacokinetics (97). A 

significant disadvantage of this study was comparing pharmacokinetic data 

determined following a single dose to behavioural data generated at steady state. 
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In order to fully interpret these data, the pharmacokinetics must be assessed at 

steady state. These data, in conjunction with the data presented in chapter 5, 

indicate the SDN formulation of efavirenz may interact with the CNS via 

different mechanisms to the conventional pre-clinical formulation of efavirenz.  

 

Chapter 5 investigated the mechanisms of uptake of SDN formulated efavirenz in 

the hCMEC/D3 cell line. The screen of transport inhibitors indicated the cellular 

accumulation of the SDN formulation was reduced by verapamil, probenecid, 

prazosin and montelukast. These data indicate a potential interaction with 

multiple transporters. However, (as discussed in section 5.4) these data require 

repetition before any definitive conclusions may be drawn. The transport 

inhibitors also demonstrated no significant reduction in the CAR of SDN 

efavirenz in the presence of amantadine, which significantly reduced the CAR of 

the conventional pre-clinical formulation of efavirenz. These data indicate 

efavirenz may be a substrate of OCT 1 or 2 and SDN efavirenz may reduce the 

influence of this interaction. The screen of endocytosis inhibitors indicated that 

dynamin-mediated uptake may be important for particle uptake but the effect on 

intracellular drug concentrations is uncertain. Although the data indicated no 

significant difference in efavirenz intracellular concentrations, the mechanism of 

uptake may influence the intracellular fate of efavirenz. Further investigations 

could be planned to investigate the mechanisms of efavirenz uptake and 

determine the potential impact on systemic distribution and intracellular 

concentrations. 
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Although presented in isolation, the work conducted in this thesis forms part of 

an iterative process that connects drugs available for clinical usage and the 

generation on novel nanoformulations with bespoke behaviours (Figure 1). Once 

a need has been identified (in this case to overcome poor water solubility of 

efavirenz), a screen of potential nanoformulations can be generated to address 

this issue. The initial formulation process, described by McDonald et al, included 

a screen of 49 polymers and surfactants and characterisation of the properties of 

the resulting SDN formulations (97).  

 

Following generation of candidates, initial pharmacological assessment 

(including Caco-2 accumulation, cytotoxicity, transwell permeability, in vivo 

pharmacokinetics and PBPK simulation) lead to the generation of the SDN 

formulation used in this thesis (97). The work presented in this thesis examined 

the SDN efavirenz formulation in detail, examining potential interactions with 

the CNS (chapter 3 and 5). However, all the techniques in this thesis may be 

applied to the investigation of SDNs of other xenobiotics, or indeed other 

formulation techniques.  

 

Although the in vivo data generated in chapter 3 was specific for examining the 

CNS toxicity of efavirenz, other appropriate animal models may be used. For 

example, if nevirapine were to be formulated to produce SDNs, an animal model 

of hypersensitivity or hepatotoxicity may be more appropriate (201). The 

screening process detailed in chapter 5 could be adapted to focus on known 

transporter interactions (e.g. the interactions of lopinavir and transporters such as 
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P-gp and OATP1B1 are well characterised), or to examine other key anatomical 

areas of interest (e.g. testis, gut-associated lymphoid tissue and lymph nodes) 

(83, 202). The PBPK model presented in chapter 6 may be further refined to 

examine the distribution of SDN formulated efavirenz or indeed other novel 

formulations, offering the opportunity to predict the impact of various 

formulation strategies. The data generated at each of these steps may be used to 

further inform each of the other steps to lead to the further refinement and 

eventual clinical application of nanoformulated drugs. 
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To summarise, the data presented in this thesis failed to identify an association 

with efavirenz treatment discontinuation and polymorphism in the GABAa 

receptor. However, the evidence presented here is not strong enough to discount 

interactions with the GABAa receptor completely. Further investigation is 

required to identify potential interactions. This could be accomplished via in 

vitro assessment of activation or inhibition of the GABAa receptor by efavirenz 

(using expression of various isoforms of the GABAa receptor in cell lines or 

xenopus laevis oocytes followed by receptor electrophysiology experimentation). 

Chapter 3 demonstrated the potential of SDN formulation to reduce the impact of 

anxiogenesis in a rodent model. The key limitation that must be addressed in 

future studies is that the steady state pharmacokinetics were not assessed. 

Chapter 5 demonstrated efavirenz might be a substrate for OCT1 and one of the 

SLCO transporters. Further experimentation is required to confirm and 

characterise these potential interactions. Additionally, genetic studies may be 

employed to assess the clinical relevance of the interactions of efavirenz with 

transporters. Finally, chapter 6 demonstrated in vivo and in silico accumulation 

of efavirenz in brain tissue. The model presented in chapter 6 could be further 

modified (following the relevant in vitro, ex vivo and in vivo experimentation) to 

investigate the penetration of other drugs, not only into CSF, but also brain 

tissue. The data presented in this thesis may be built upon to understand the 

mechanisms governing efavirenz disposition in the CNS and factors influencing 

the occurrence of CNS toxicity. 
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