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FINITE AND INFINITESIMAL FLEXIBILITY OF SEMIDISCRETE
SURFACES

OLEG KARPENKOV

Abstract. In this paper we study infinitesimal and finite flexibility for generic semi-
discrete surfaces. We prove that generic 2-ribbon semidiscrete surfaces have one degree
of infinitesimal and finite flexibility. In particular we write down a system of differential
equations describing isometric deformations in the case of existence. Further we find
a necessary condition of 3-ribbon infinitesimal flexibility. For an arbitrary n ≥ 3 we
prove that every generic n-ribbon surface has at most one degree of finite/infinitesimal
flexibility. Finally, we discuss the relation between general semidiscrete surface flexibility
and 3-ribbon subsurface flexibility. We conclude this paper with one surprising property
of isometric deformations of developable semidiscrete surfaces.
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Introduction

A mapping f : R × Z → R
3, where the dependence on the continuous parameter is

smooth, is called a semidiscrete surface. Let us connect f(t, z) with f(t, z+1) by segments
for all possible pairs (t, z). The resulting surface is a piecewise ruled surface.
In this paper we study infinitesimal and finite flexibility for such semidiscrete surfaces.

By isometric deformations of a semidiscrete surface f we understand deformations that
preserves inner geometry of the corresponding ruled surfaces and in addition that preserve
all line segments connecting f(t, z) with f(t, z+1).

Many questions on discrete polyhedral surfaces have their origins in classical theory of
smooth surfaces. Flexibility is not an exception from this rule. The general theory of
flexibility of surfaces and polyhedra is discussed in the overview [12] by I. Kh. Sabitov.
In 1890 [1] L. Bianchi introduced a necessary and sufficient condition for the existence

of isometric deformations of a surface preserving some conjugate system (i.e., two inde-
pendent smooth fields of directions tangent to the surface), see also in [5]. Such surfaces
can be understood as certain limits of semidiscrete surfaces.
On the other hand, semidiscrete surfaces are themselves the limits of certain polygonal

surfaces (or meshes). For the discrete case of flexible meshes much is now known. We
refer the reader to [2], [10], [8], and [6] for some recent results in this area. For general
relations to the classical case see a recent book [3] by A. I. Bobenko and Yu. B. Suris. It
is interesting to notice that the flexibility conditions in the smooth case and the discrete
case are of a different nature. Currently there is no clear description of relations between
them in terms of limits.
The place of the study of semidiscrete surfaces is between the classical and the discrete

cases. Main concepts of semidiscrete theory are described by J. Wallner in [13], and [14].
Some problems related to isothermic semidiscrete surfaces are studied by C. Müller in [9].
Semidiscrete surfaces from the viewpoint of parallelity, offsets, and curvatures were studied
by J. Wallner and O. Karpenkov in [7].

We investigate necessary condition for existence of isometric deformations of semidis-
crete surfaces. To avoid pathological behavior related to noncompactness of semidiscrete
surfaces we restrict ourselves to compact subsets of the following type. An n-ribbon surface

is a mapping

f : [a, b]× {0, . . . , n} → R
3, (t, i) 7→ fi(t).

We also use the notion

∆fi(t) = fi+1(t)− fi(t).

While working with a rather abstract semidiscrete or n-ribbon surface f we keep in
mind the two-dimensional piecewise-ruled surface associated to it (see Fig. 1).
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f0(t)
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Figure 1. A 3-ribbon surface.

Note that, within this paper we traditionally consider t as an argument of a semidiscrete
surface f . The time parameter for deformations is λ.

In present paper we prove that every generic 2-ribbon surface (as a ruled surface) is
flexible and has one degree of infinitesimal and finite flexibility in the generic case (Theo-
rem 2.3 and Theorem 2.23). This is quite surprising since generic 1-ribbon surfaces have
infinitely many degrees of flexibility, see, for instance, in [11], Theorem 5.3.10. We also
find a system of differential equations for the deformation of 2-ribbon surfaces (Defini-
tion 2.17 and Proposition 2.20). In contrast to that, a generic n-ribbon surface is rigid
for n ≥ 3. For the case n = 3 we prove the following statement (see Theorem 3.7 and
Remark 3.8).

Infinitesimal flexibility condition.
If a 3-ribbon surface is infinitesimally flexible then the following condition holds:

Λ̇ = (H2 −H1)Λ,

where

Λ =

(

ḟ1, f̈1,∆f0
)

(

ḟ2, f̈2,∆f2
)

(

ḟ2,∆f1,∆f2
)2

(

ḟ1,∆f0,∆f1
)2 ,

and

Hi(t) =
(ḟi,∆ḟi−1,∆fi) + (ḟi,∆fi−1,∆ḟi)

(ḟi,∆fi−1,∆fi)
, i = 1, 2.

Remark. Throughout this paper we denote the derivative with respect to variable t by
the dot symbol.

Further in Theorem 4.4 we state that a generic n-ribbon surface (n ≥ 3) has at most
one degree of finite and infinitesimal flexibility. Finally, we show that a generic n-ribbon
surface (n ≥ 4) is infinitesimally or finitely flexible if and only if all its 3-ribbon subsurfaces
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are infinitesimally or finitely flexible (see Theorems 4.10 and 4.11). We say a few words
in the case of developable semidiscrete surfaces whose finite isometric deformations have
additional surprising properties.

Organization of the paper. We start in Section 1 with introduction of necessary
notions and definitions. In Section 2 we discuss flexibility of 2-ribbon surfaces. We study
infinitesimal flexibility questions for 2-ribbon surfaces in Subsections 2.2 and 2.3. In Sub-
section 2.2 we give a system of differential equations for infinitesimal flexions, prove the
existence of nonzero solutions, and show that all the solutions are proportional to each
other. In Subsection 2.3 we define the variational operators of infinitesimal flexion which
is studied further in the context of finite flexibility for 2-ribbon surfaces. In Subsection 2.4
we prove that a generic 2-ribbon surface is finitely flexible and has one degree of flexibil-
ity. In Section 3 we work with 3-ribbon surfaces. After some preliminary statements of
Subsection 3.1 we gives a necessary infinitesimal flexibility condition for 3-ribbon surfaces
in Subsection 3.2. In Section 4 we deal with general n-ribbon surfaces for n ≥ 3. We
prove that a generic n-ribbon surface has at most one degree of finite and infinitesimal
flexibility in Subsection 4.1. Further after several preparatory statements of Section 4.2
we prove that finite or infinitesimal flexibility of generic n-ribbon surfaces is identified by
finite or infinitesimal flexibility of all its 3-ribbon subsurfaces. We conclude the paper
with flexibility of developable semidiscrete surfaces in Section 5. In this case isometric
deformations have a remarkable geometric property.

1. Necessary notions and definitions

In this section we introduce central notions and definition of the article.

1.1. Differentiable generic semidiscrete surfaces. We start with several basic defi-
nitions.

Definition 1.1. Let M = (m0, . . . , mn) be the (n+1)-tuple of non-negative integers.
We say that an n-ribbon surface f is a M-differentiable if for every i ∈ {0, . . . , n} and

j ∈ {1, . . . , mi} there exists a continuous derivative f
(j)
i .

Denote by Cm0,...,mn([a, b],R3) (or CM([a, b],R3), for short) the Banach space of all M-
differentiable n-ribbon surfaces (where t ∈ [a, b]) with the standard norm

ρ(f, g) = max
i={0,...,n}

max
j={1,...,mi}

sup
[a,b]

(f
(j)
i − g

(j)
i ).

Remark 1.2. Note that for two non-negative (n+1)-tuples M = (m0, . . . , mn) and K =
(k0, . . . , kn) satisfying

m0 ≥ k0, . . . , mn ≥ kn

in holds

CM([a, b],R3) ⊂ CK([a, b],R3).
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Definition 1.3. We say that an n-ribbon surface f in the space C1,2,2,...,2,1([a, b],R3) is
weakly generic if for every t ∈ [a, b] and i = 1, . . . , n− 1 we have

(ḟi,∆fi−1,∆fi) 6= 0.

Definition 1.4. We say that an n-ribbon surface f in the space C1,2,2,...,2,1([a, b],R3) is
strongly generic if
— f is weakly generic;
— for every t ∈ [a, b] and i = 1, . . . , n− 1 we have

(

ḟi(t), f̈i(t),∆fi−1(t)
)

6= 0 and
(

ḟi(t), f̈i(t),∆fi(t)
)

6= 0.

1.2. Isometric semidiscrete surfaces. Let us now study basic properties of the defini-
tion of isometric semidiscrete surfaces.

Definition 1.5. Two n-ribbon surfaces f and g in the space C1,1,...,1([a, b],R3) are said
to be isometric if























|ḟi| = |ġi|
|∆fi| = |∆gi|
〈ḟi,∆fi−1〉 = 〈ġi,∆gi−1〉
〈ḟi,∆fi〉 = 〈ġi,∆gi〉
〈ḟi, ḟi+1〉 = 〈ġi, ġi+1〉

(for all admissible i and t).

Before to continue let us show that the conditions of Definition 1.5 are precisely the
isometric conditions for ruled surfaces. Let f1 and f2 be differentiable curves (denote
by ∆1f the curve f2−f1). Let us define a ruled surface S(x, t) = xf1(t) + (1−x)f2(t).
To show that the conditions of Definition 1.5 determine integer geometry we prove the
following proposition.

Proposition 1.6. The first fundamental form of the ruled surface S(x, t) is uniquely

defined by

|ḟ1|, |ḟ2|, |∆f1|, 〈ḟ1,∆f1〉, 〈ḟ2,∆f1〉, 〈ḟ1, ḟ2〉
and vice versa.

Proof. Let us write all the coefficients of the first fundamental form of the surfaces in the
coordinates (x, t):

〈

∂S
∂x
, ∂S
∂x

〉

= 〈f1−f2, f1−f2〉 = |∆f1|2;
〈

∂S
∂x
, ∂S
∂t

〉

=
〈

f1−f2, xḟ1+(1−x)ḟ2
〉

= x〈∆f1, ḟ1〉+ (1−x)〈∆f1, ḟ2〉;
〈

∂S
∂t
, ∂S
∂t

〉

=
〈

xḟ1+(1−x)ḟ2(t), xḟ1+(1−x)ḟ2(t)
〉

= x2|f1|2 + 2x(1−x)〈ḟ1, ḟ2〉+ (1−x)2|f2|2.
As we see, on the one hand the first fundamental form is defined by the above six functions.
On the other hand the values of the first fundamental form at x = 0, 1/2, 1 defines the
values of the above six functions. �
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1.3. Deformations and flexions of semidiscrete surfaces. We start with the follow-
ing general definition.

Definition 1.7. A deformation of a semidiscrete n-ribbon surface f is a family of n-ribbon
surfaces {fλ} with parameter λ in the segment [−Λ,Λ] for some positive Λ such that
f 0 = f . In this paper we consider only deformations that are continuously differentiable
in λ.

Remark 1.8. In this paper λ is the parameter of deformations, while t is the first argument
of semidiscrete surfaces.

Let us give a formal definition of deformations that do not change the inner geometry
of a surface.

Definition 1.9. We say that a deformation {fλ} of a semidiscrete n-ribbon surface f is
isometric if all the surfaces in the deformation are isometric to each other.

Definition 1.10. Consider a family of functions, vector functions, or semidiscrete surfaces
γ = {wλ} with parameter λ ∈ [−ε, ε] for some positive ε, and let w = w0. We say that
the derivative

Dγw =
∂wλ

∂λ

∣

∣

∣

λ=0

is an infinitesimal deformation of w.

The infinitesimal deformation of an n-ribbon surface f in CM([a, b],R3) is an element
of the tangent space TfC

M([a, b],R3), which is naturally isomorphic to CM([a, b],R3).

Definition 1.11. Consider a deformation {fλ} of a semidiscrete n-ribbon surface f in
C(1,2,2,...,2,1)([a, b],R3). We say that the deformation {fλ} is infinitesimally flexible if

Dγ|ḟλ
i | = 0, Dγ |∆fλ

i | = 0, Dγ〈ḟλ
i ,∆fλ

i−1〉,
Dγ〈ḟλ

i ,∆fλ
i 〉 = 0, and Dγ〈ḟλ

i , ḟ
λ
i+1〉 = 0

(for all admissible i and t).

In fact, infinitesimal flexibility is a property of tangent spaces rather than deformations.

Definition 1.12. We say that a tangent vector Df at a semidiscrete surface f is an
infinitesimal flexion if the deformation Dγf where

γ(λ) = f + λDf

is infinitesimally isometric.
We say that an infinitesimal flexion Df is a finite flexion if there exists an isometric
deformation γ with γ(0) = f such that Dγf = Df .

Finally let us determine isometrically nontrivial infinitesimal flexions.

Definition 1.13. An infinitesimal flexion of a weakly generic n-ribbon surface f in
C0,1,0([a, b],R3) is said to be isometrically nontrivial (trivial) at point (t, i) for some
t ∈ [a, b] and n ∈ {1, . . . , n − 1} if the corresponding infinitesimal deformation of the
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angle between the planes spanned by (ḟi(t)∆fi−1(t)) and (ḟi(t)∆fi(t)) is nonzero (or zero,
respectively).
We say that an infinitesimal flexion of f is isometrically nontrivial if it is isometrically
nontrivial at least at one point (t, i). Otherwise an infinitesimal inflexion is said to be
isometrically trivial.
We say that an infinitesimal flexion of f is strongly isometrically nontrivial if it is isomet-
rically nontrivial at every point (t, i).

1.4. Spaces of semidiscrete surfaces with fixed initial position. In order to cal-
culate the degree of flexibility for a semidiscrete surfaces we should eliminate trivial Eu-
clidean deformations of the surfaces. Let us do this as follows.

Definition 1.14. Denote by

CM
0 ([a, b],R3) ⊂ CM([a, b],R3)

the subset of all 2-ribbon surfaces with fixed initial position, namely an n-ribbon surface
f is in CM

0 ([a, b],R3) if and only if
— f1(0) ∈ CM([a, b],R3);
— f1(0) = (0, 0, 0);

— the vector ḟ1(0) is proportional to (1, 0, 0);
— the vector ∆f0(0) has the coordinates (p, q, 0).

Remark 1.15. Let Σ denotes all weakly non-generic semidiscrete surfaces. Notice that
the set CM

0 ([a, b],R3) \ Σ has a natural structure of an 8-fold covering of the quotient
space of CM([a, b],R3) \ Σ by the Euclidean congruence relation. In other words, for
every weakly generic M-differentiable semidiscrete surface f there exists exactly eight
semidiscrete surfaces that are congruent to f . These 8 surfaces are obtained one from
another by 8 symmetries of type

(e1, e2, e3) → (±e1,±e2,±e3).

So, on the one hand one can consider any branch of the 8-fold for studying flexibility
properties of the original n-ribbon curve. On the other hand the set CM

0 ([a, b],R3) has
a structure of a vector space. For these reasons from now on we prefer to consider the
space CM

0 ([a, b],R3), rather than the quotient space of CM([a, b],R3) \ Σ by the group of
all Euclidean transformation.

Since CM
0 ([a, b],R3) is a subspace of CM([a, b],R3) we have the induced metric and

topology (in particular, CM
0 ([a, b],R3) is a Banach space), definitions of deformations,

isometric deformations, infinitesimal and finite flexions, isometrically trivial and nontrivial
infinitesimal flexions in CM

0 ([a, b],R3).

1.5. Rigid surfaces. Degrees of flexibility. We start with the definitions for infini-
tesimal flexibility.

Definition 1.16. The set of infinitesimal flexions in CM
0 ([a, b],R3) is a linear space. We

say that f has n degrees of infinitesimal flexibility if the dimension of the space of infini-
tesimal flexions is n. If n = 0 we say that f is infinitesimally rigid.
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In the finite case we define only finitely rigid surfaces and surfaces that has one degree
of finite flexibility. In order to define finite rigidity we use the following definition.

Definition 1.17. We say that an isometric deformation γ of f in CM
0 ([a, b],R3) is regular

at 0 if Dγf 6= 0.

Definition 1.18. We say that an n-ribbon surface f in CM
0 ([a, b],R3) is finitely rigid if

the set of regular isometric deformations of f is empty.

Let us finally give the definition of the property to have one degree of finite flexibility.
As in infinitesimal case we consider only the space of semidiscrete surfaces with fixed
initial position CM

0 ([a, b],R3). This cancels excess trivial Euclidean rotations of the whole
semidiscrete surface. Of course, every finite isometric deformations of a semidiscrete
surface with fixed initial position still can be reparametrised, as a result one has another
isometric deformation of the surface. So the best thing would be to try to normalize them.
In this paper we consider the following “natural parametrization” of an isometric de-

formation. It is clear that for every isometric deformation {fλ} in CM
0 ([a, b],R3) we have

Dfλ ḟ(a) = 0, Dfλ∆f0(a) = 0, and Dfλ∆f1(a) = α(λ)ḟ(a)×∆f1(a)

for some real valued function α.

Definition 1.19. We say that an isometric deformation {fλ} is normalized if and only if
for every admissible values of parameter λ we have α(λ) = 1, where α is the real-valued
function defined in the last expression.

In our case by Corollary 2.11 below we have: if α(λ0) = 0 then Dfλfλ0 = 0. Hence,
there is no regular isometric deformation that preserves the frame at t = a. So we can
give the following definition.

Definition 1.20. We say that a weakly generic 2-ribbon surface f has one degree of finite
flexibility if
— f has one degree of infinitesimal flexibility.
— for sufficiently small ε > 0 there exists a unique normalized isometric deformation

of f defined on [−ε, ε].

2. Finite and infinitesimal flexibility of 2-ribbon surfaces

In this section we describe flexions of 2-ribbon surfaces. Such surfaces are defined by
three curves f0, f1, and f2. Our main goal here is to prove under some natural genericity
assumptions that every 2-ribbon surface is infinitesimally and finitely flexible and has one
degree of infinitesimal and finite flexibility. Our first point is to describe the system of
differential equations (System A) that determines infinitesimal flexions corresponding to
finite flexions and find solutions to this system (see Subsections 2.2). We use it to derive
finite flexibility in Theorem 2.3 (also in Subsections 2.2). Further via solutions of System A
we define the variational operators of infinitesimal flexion V± (in Subsection 2.3). Finally,
to show finite flexibility of 2-ribbon surfaces we study Lipschitz properties for V± and
prove flexibility Theorem 2.23 (in Subsection 2.4).
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2.1. Basic relations for infinitesimal flexions. In this small subsection we collect
some useful relations.

Proposition 2.1. Let f be a 2-ribbon surface in C1,2,1([a, b],R3). Then for every infini-

tesimal flexion Df the following properties hold:

〈ḟ1,Dḟ1〉 = 0;(1)

〈ḟ1 −∆ḟ0,Dḟ1 −D∆ḟ0〉 = 0;(2)

〈ḟ1 +∆ḟ1,Dḟ1 +D∆ḟ1〉 = 0;(3)

〈∆f0,D∆ḟ0〉+ 〈∆ḟ0,D∆f0〉 = 0;(4)

〈∆f1,D∆ḟ1〉+ 〈∆ḟ1,D∆f1〉 = 0;(5)

〈ḟ1,D∆ḟ0〉+ 〈Dḟ1,∆ḟ0〉 = 0;(6)

〈ḟ1,D∆ḟ1〉+ 〈Dḟ1,∆ḟ1〉 = 0;(7)

〈Df̈1,∆f0〉+ 〈f̈1,D∆f0〉 = 0;(8)

〈Df̈1,∆f1〉+ 〈f̈1,D∆f1〉 = 0.(9)

Remark 2.2. For a semidiscrete or n-ribbon surface f the operations D, ∆, and ∂
∂t

com-
mute, so we do not pay attention to the order of these operations in compositions.

Proof. Equations (1), (2), and (3) follow from the fact that infinitesimal flexions preserve

the norms of ḟ1, ḟ0 = ḟ1 −∆ḟ0, and ḟ2 = ḟ1 +∆ḟ1 respectively.
The invariance of the lengths of ∆f0 and ∆f1 imply Equations (4), and (5) respectively.

They are equivalent to

∂

∂t
D〈∆f0,∆f0〉 = 0 and

∂

∂t
D〈∆f1,∆f1〉 = 0.

Equations (6) and (7) follow from invariance of the angles between the vectors ḟ1 and

∆ḟ0 and the vectors ḟ1 and ∆ḟ0.
Let us prove Equation (8). Since the angles between the vectors ∆f0 and ḟ1 are pre-

served by infinitesimal flexions we have

∂

∂t
D〈ḟ1,∆f0〉 = 0.

Therefore,

〈Df̈1,∆f0〉+ 〈f̈1,D∆f0〉+ 〈Dḟ1,∆ḟ0〉+ 〈ḟ1,D∆ḟ0〉 = 0.

By Equation (6) we have 〈Dḟ1,∆ḟ0〉+ 〈ḟ1,D∆ḟ0〉 = 0 and hence

〈Df̈1,∆f0〉+ 〈f̈1,D∆f0〉 = 0.

We have arrived at Equation (8).
Finally Equations (9) is proved by analogy with Equations (8). �
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2.2. Infinitesimal flexibility of 2-ribbon surfaces. Our main goal for this subsection
is to prove the following general theorem

Theorem 2.3. Let f ∈ C1,2,1
0 ([a, b],R3) be a weakly generic 2-ribbon surface with fixed

initial position. Then f has one degree of infinitesimal flexibility.

First we write down and investigate a supplementary system of differential equations
(System A) which describes infinitesimal flexions of weakly generic 2-ribbon surfaces. We
also show the uniqueness of the solution of System A for a given initial data (Proposi-
tion 2.6). The remaining part of this subsection is dedicated to the proof of Theorem 2.3
mentioned above. In Proposition 2.7 we show that every infinitesimal flexion satisfies
System A. Then in Proposition 2.9 we prove that every solution of System A with certain
initial data is an infinitesimal flexion. After that we prove Theorem 2.3.

2.2.1. System A. Let

(10)
G11 = 〈Dḟ1, ḟ1〉, G12 = 〈Dḟ1,∆f0〉, G13 = 〈Dḟ1,∆f1〉,
G21 = 〈D∆f0, ḟ1〉, G22 = 〈D∆f0,∆f0〉, G23 = 〈D∆f0,∆f1〉,
G31 = 〈D∆f1, ḟ1〉, G32 = 〈D∆f1,∆f0〉, G33 = 〈D∆f1,∆f1〉.

Denote by System A the following system of differential equations






















































































































































Ġ11 = 0,

Ġ12 =
(

(ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
+ (f̈1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)

)

G12 +
(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
G13 − (ḟ1,∆f0,f̈1)

(ḟ1,∆f0,∆f1)
G23,

Ġ13 = (ḟ1,∆ḟ1,∆f1)

(ḟ1,∆f0,∆f1)
G12 +

(

(ḟ1,∆f0,∆ḟ1)

(ḟ1,∆f0,∆f1)
+ (f̈1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)

)

G13 − (ḟ1,f̈1,∆f1)

(ḟ1,∆f0,∆f1)
G32,

Ġ21 = −
(

(ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
+ (f̈1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)

)

G12 − (ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
G13 +

(ḟ1,∆f0,f̈1)

(ḟ1,∆f0,∆f1)
G23,

Ġ22 = 0,

Ġ23 = −
(

(∆f1,∆f0,ḟ1×∆f0)(ḟ1,∆ḟ0,∆f1)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
− (ḟ1,∆f1,ḟ1×∆f0)(∆ḟ0,∆f0,∆f1)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
+

(ḟ1,∆f0×∆ḟ0,∆f1)

|ḟ1×∆f0|2
+ (ḟ1×∆ḟ0,∆f0,∆f1)

|ḟ1×∆f0|2
+ (∆ḟ1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)

)

G12−
(

(∆f1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆ḟ0)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
+ (ḟ1,∆f0,∆f0×∆ḟ0)

|ḟ1×∆f0|2

)

G13−
(

(ḟ1,∆f1,ḟ1×∆f0)(ḟ1,∆f0,∆ḟ0)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
− (ḟ1,∆f0,ḟ1×∆ḟ0)

|ḟ1×∆f0|2
− (ḟ1,∆f0,∆ḟ1)

(ḟ1,∆f0,∆f1)

)

G23,

Ġ31 = − (ḟ1,∆ḟ1,∆f1)

(ḟ1,∆f0,∆f1)
G12 −

(

(ḟ1,∆f0,∆ḟ1)

(ḟ1,∆f0,∆f1)
+ (f̈1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)

)

G13 +
(ḟ1,f̈1,∆f1)

(ḟ1,∆f0,∆f1)
G32,

Ġ32 = −
(

(∆f0,∆f1,ḟ1×∆f1)(ḟ1,∆ḟ1,∆f1)

|ḟ1×∆f1|2(ḟ1,∆f0,∆f1)
+ (ḟ1,∆f1,∆f1×∆ḟ1)

|ḟ1×∆f1|2

)

G12−
(

(∆f0,∆f1,ḟ1×∆f1)(ḟ1,∆f0,∆ḟ1)

|ḟ1×∆f1|2(ḟ1,∆f0,∆f1)
− (ḟ1,∆f0,ḟ1×∆f1)(∆ḟ1,∆f0,∆f1)

|ḟ1×∆f1|2(ḟ1,∆f0,∆f1)
+

(ḟ1,∆f1×∆ḟ1,∆f0)

|ḟ1×∆f1|2
+ (ḟ1×∆ḟ1,∆f1,∆f0)

|ḟ1×∆f1|2
+ (∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)

)

G13−
(

(ḟ1,∆f0,ḟ1×∆f1)(ḟ1,∆ḟ1,∆f1)

|ḟ1×∆f1|2(ḟ1,∆f0,∆f1)
− (ḟ1,∆f1,ḟ1×∆ḟ1)

|ḟ1×∆f1|2
− (ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)

)

G32,

Ġ33 = 0.

Remark 2.4. In Proposition 3.2 below we show an explicit formula for the function
G23+G32, it is Φ in our notation of Section 2.
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Note also that Ġ12 + Ġ21 = 0 and Ġ13 + Ġ31 = 0 in System A.

Example 2.5. Let us consider a simple example of a 2-ribbon curve where ḟ , ∆f0, and
∆f1 are all constants. Let us call these surfaces book-shaped surfaces. Direct calculations
show that

Ġ11 = Ġ12 = . . . = Ġ33 = 0

(this happens, since all the summands in the coefficients of System A contain either f̈1,

or ∆ḟ0, or ∆ḟ1 which are all zeroes in our case). Hence all the scalar products of the

deformation with vectors ḟ1,∆f0,∆f1 do not depend on t. Therefore, every element of
every isometric deformations of a book-shaped surface is a book-shaped surface. Here is
a typical example of isometric deformation in this class:

fλ
1 (t) = (t, 0, 0), ∆fλ

0 (t) = (0, 1, 0), ∆λ
1(t) = (0, sinλ, cosλ).

This deformation can be geometrically seen as an opening a museum book with two rigid
plastic pages.

In the following proposition we prove that for every single 2-ribbon surface f (not for a
deformation) and initial data for Gij at one point f(t0) System A has a unique solution.
Recall that t is an argument of f .

Proposition 2.6. Let f be a weakly generic 2-ribbon surface in C1,2,1([a, b],R3). For

every collection of initial data Gij(a) = cij there exists a unique solution of System A on

[a, b].

Proof. System A is the system of homogeneous linear differential equations with smooth
variable coefficients (since (ḟ1,∆f0,∆f1) never vanishes on [a, b]) and hence for every
collection of initial data it has a unique solution on the segment [a, b]. �

2.2.2. Every infinitesimal flexion satisfies System A. Let us show the following statement.

Proposition 2.7. Let f be a weakly generic 2-ribbon surface in C1,2,1([a, b],R3). Then

for every infinitesimal flexion Df the functions G11, G12, . . . , G33 satisfy system A.

We start the proof with the following general lemma.

Lemma 2.8. For every infinitesimal flexion Df we have the equalities

G11 = G22 = G33 = 0, G12 +G21 = 0, and G13 +G31 = 0.

Proof. The functions |ḟ1|, |∆f0|, and |∆f1| are infinitesimally preserved by infinitesimal
flexions, hence G11, G22, and G33 vanish.
The invariance of angles between ḟ1 and ∆f0, and ḟ1 and ∆f1 yield the equations

G12 +G21 = 0 and G13 +G31 = 0, respectively. �

Proof of Proposition 2.7. From Lemma 2.8 the functions G11, G22, and G33 are zero
functions, thus Ġ11, Ġ22, and Ġ33 are zero functions as well.

Let us prove the expression for Ġ12 and Ġ13. Note that

Ġ12 = 〈Df̈1,∆f0〉+ 〈Dḟ1,∆ḟ0〉.



12 OLEG KARPENKOV

Thus Equations (6) and (8) imply

Ġ12 = 〈Dḟ1,∆ḟ0〉 − 〈f̈1,D∆f0〉.
To obtain the expression for Ġ12 rewrite ∆ḟ0 and f̈1 in the basis consisting of vectors ḟ1,
∆f0, and ∆f1.

Ġ12 = 〈Dḟ1,∆ḟ0〉 − 〈f̈1,D∆f0〉

=

(

(∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
G11 +

(ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
G12 +

(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
G13

)

−
(

(f̈1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
G21 +

(ḟ1, f̈1,∆f1)

(ḟ1,∆f0,∆f1)
G22 +

(ḟ1,∆f0, f̈1)

(ḟ1,∆f0,∆f1)
G23

)

=

(

(ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
+

(f̈1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)

)

G12 +
(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
G13 −

(ḟ1,∆f0, f̈1)

(ḟ1,∆f0,∆f1)
G23.

The last equation holds since G11 = 0, G22 = 0, and G21 = −G12.
The same strategy works for the functions Ġ13.

Now we study expressions for Ġ21 and Ġ31. From Lemma 2.8 we know that G21 = −G12

and G31 = −G13 and hence Ġ21 = −Ġ12 and Ġ31 = −Ġ13. Therefore, the equations for
Ġ21 and Ġ31 are satisfied.

In order to get the expression for Ġ23, we first show that the function (ḟ1,∆f0,∆ḟ0) is
an invariant of infinitesimal flexions. Indeed,

(ḟ1,∆f0,∆ḟ0) = (ḟ1,∆f0, ḟ1−ḟ0) = −(ḟ1,∆f0, ḟ0).

The vectors ḟ0, ḟ1, and ∆f0 form a rigid frame, hence their triple product is an invariant
of infinitesimal flexions. Hence the function (ḟ1,∆f0,∆ḟ0) is an invariant as well.

The infinitesimal flexion invariance of (ḟ1,∆f0,∆ḟ0) implies that D(ḟ1,∆f0,∆ḟ0) = 0.
So we get

(Dḟ1,∆f0,∆ḟ0) + (ḟ1,D∆f0,∆ḟ0) + (ḟ1,∆f0,D∆ḟ0) = 0.

Rewrite

(ḟ1,∆f0,D∆ḟ0) = −(Dḟ1,∆f0,∆ḟ0)− (ḟ1,D∆f0,∆ḟ0)

= −〈Dḟ1,∆f0×∆ḟ0〉+ 〈D∆f0, ḟ1×∆ḟ0〉
= − (∆f0×∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
G11 − (ḟ1,∆f0×∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
G12 − (ḟ1,∆f0,∆f0×∆ḟ0)

(ḟ1,∆f0,∆f1)
G13+

(ḟ1×∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
G21 +

(ḟ1,ḟ1×∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
G22 +

(ḟ1,∆f0,ḟ1×∆ḟ0)

(ḟ1,∆f0,∆f1)
G23.

Second, we have

〈D∆ḟ0,∆f0〉 = −〈D∆f0,∆ḟ0〉 = − (∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
G21 − (ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
G22 − (ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
G23.
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Third, we get

〈D∆ḟ0, ḟ1〉 = −〈Dḟ1,∆ḟ0〉 = − (ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
G12 − (ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
G13.

Fourth,

〈D∆ḟ0,∆f1〉 = (∆f1,∆f0,ḟ1×∆f0)

(ḟ1,∆f0,ḟ1×∆f0)
〈D∆ḟ0, ḟ1〉+ (ḟ1,∆f1,ḟ1×∆f0)

(ḟ1,∆f0,ḟ1×∆f0)
〈D∆ḟ0,∆f0〉+

(ḟ1,∆f0,∆f1)

(ḟ1,∆f0,ḟ1×∆f0)
(ḟ1,∆f0,D∆ḟ0).

After the substitution of the four above expressions and simplifications we have

〈D∆ḟ0,∆f1〉 = −
(

(∆f1,∆f0,ḟ1×∆f0)(ḟ1,∆ḟ0,∆f1)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
− (ḟ1,∆f1,ḟ1×∆f0)(∆ḟ0,∆f0,∆f1)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
+

(ḟ1,∆f0×∆ḟ0,∆f1)

|ḟ1×∆f0|2
+ (ḟ1×∆ḟ0,∆f0,∆f1)

|ḟ1×∆f0|2

)

G12−
(

(∆f1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆ḟ0)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
+ (ḟ1,∆f0,∆f0×∆ḟ0)

|ḟ1×∆f0|2

)

G13−
(

(ḟ1,∆f1,ḟ1×∆f0)(ḟ1,∆f0,∆ḟ0)

|ḟ1×∆f0|2(ḟ1,∆f0,∆f1)
− (ḟ1,∆f0,ḟ1×∆ḟ0)

|ḟ1×∆f0|2

)

G23.

Further, decomposing the vector ∆ḟ1 into basis vectors ḟ1, ∆f0, and ∆f1 we get

〈D∆f0,∆ḟ1〉 = (∆ḟ1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
G21 +

(ḟ1,∆ḟ1,∆f1)

(ḟ1,∆f0,∆f1)
G22 +

(ḟ1,∆f0,∆ḟ1)

(ḟ1,∆f0,∆f1)
G23.

From the last two identities, by substituting G22 = 0 and G21 = −G12 (see Lemma 2.8),
we obtain the expression for

Ġ23 =
∂

∂t
〈D∆f0,∆f1〉 = 〈D∆ḟ0,∆f1〉+ 〈D∆f0,∆ḟ1〉.

The expression for Ġ32 is calculated in a similar way. This concludes the proof. �

2.2.3. Existence of infinitesimal flexions. Let us prove that every solution of System A
with certain initial data determines an infinitesimal flexion.

Proposition 2.9. Let f be a weakly generic 2-ribbon surface in C1,2,1([a, b],R3). Then

(i) For an arbitrary nonzero α there exists a unique tangent vector Df at f satisfying

System A and the boundary conditions

Dḟ1(a) = 0, D∆f0(a) = 0, and D∆f1(a) = αḟ1(a)×∆f1(a).

(ii) This tangent vector is an infinitesimal flexion.

Remark 2.10. Here and below, for a function f defined on [a, b] by ḟ(a) we mean the
one-sided derivative at a.
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Proof. We start with Proposition 2.9(i). Consider three vectors

v1 = 0, v2 = 0, and v3 = αḟ1(a)×∆f1(a).

Denote
c11 = 〈v1, ḟ1〉, c12 = 〈v1,∆f0〉, c13 = 〈v1,∆f1〉,
c21 = 〈v2, ḟ1〉, c22 = 〈v2,∆f0〉, c23 = 〈v2,∆f1〉,
c31 = 〈v3, ḟ1〉, c32 = 〈v3,∆f0〉, c33 = 〈v3,∆f1〉.

By Proposition 2.6 there exists a unique solution (G11, G12, . . . , G33) satisfying the initial

conditions Gij(a) = cij. For every point t ∈ [a, b] the values Dḟ1, D∆f0, and D∆f1 of

the tangent vector Df are uniquely defined in the basis (ḟ1,∆f0,∆f1) by Equations (10):
here we substitute the solution of System A with the initial conditions Gij(a) = cij to the
right hand side of Equations (10). Hence, there exists a unique tangent vector Df of f
satisfying System A and the boundary conditions

Dḟ1(a) = 0, D∆f1(a) = 0, and D∆f0(a) = αḟ1(a)×∆f0(a).

This concludes the proof of the fist item of the proposition.

Proof of Proposition 2.9(ii). By the definition of an infinitesimal flexion it is enough to
check that the following 11 functions are preserved by the infinitesimal deformation:

|ḟi|, |∆fi|, 〈ḟi,∆fi−1〉, 〈ḟi,∆fi〉, and 〈ḟi, ḟi+1〉
(for all possible admissible i).

Invariance of |ḟ1|, |∆f0|, |∆f1|, 〈ḟ1,∆f0〉, and 〈ḟ1,∆f1〉.
From System A we have

Ġ11 = 0, Ġ22 = 0, Ġ33 = 0, Ġ21 + Ġ12 = 0, Ġ31 + Ġ13 = 0,

and hence the functions

D(|ḟ1|2) = 2G11; D(|∆f0|2) = 2G22; D(|∆f1|2) = 2G33;

D〈ḟ1,∆f0〉 = G12 +G21, and D〈ḟ1,∆f1〉 = G31 +G13

are constant functions. So it is enough to show that they vanish at some point: we show
this at point a.

D〈ḟ1(a), ḟ1(a)〉 = 2〈Dḟ1(a), ḟ1(a)〉 = 2〈0, ḟ1(a)〉 = 0;
D〈∆f0(a),∆f0(a)〉 = 2〈D∆f0(a),∆f0(a)〉 = 2(0,∆f0(a)〉 = 0;

D〈∆f1(a),∆f1(a)〉 = 2〈D∆f1(a),∆f1(a)〉 = 2〈αḟ1(a)×∆f1(a),∆f1(a)〉 = 0;

D〈ḟ1(a),∆f0(a)〉 = 〈Dγ ḟ1(a),∆f0(a)〉+ 〈ḟ1(a),D∆f0(a)〉 = 〈0,∆f0(a)〉+
〈ḟ1(a), 0〉 = 0.

D〈ḟ1(a),∆f1(a)〉 = 〈Dḟ1(a),∆f1(a)〉+ 〈ḟ1(a),D∆f1(a)〉 = 〈0,∆f0(a)〉+
〈ḟ1(a), αḟ1(a)×∆f1(a)〉 = 0;

Invariance of 〈ḟ0,∆f0〉 and 〈ḟ2,∆f1〉. Note that

〈ḟ0,∆f0〉 = −1

2

∂

∂t
〈∆f0,∆f0〉+ 〈ḟ1,∆f0〉.
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Hence by the above item we have

D〈ḟ0,∆f0〉 = −1

2

∂

∂t
D〈∆f0,∆f0〉+D〈ḟ1,∆f0〉 = −1

2

∂

∂t
(0) + 0 = 0.

Similar reasoning shows that D〈ḟ2,∆f1〉 = 0.

Invariance of 〈ḟ0, ḟ1〉 and 〈ḟ1, ḟ2〉. Let us prove that D〈ḟ0, ḟ1〉 = 0. First, note that

〈Dḟ0, ḟ1〉 = 〈Dḟ1, ḟ1〉 − 〈D∆ḟ0, ḟ1〉 = −〈D∆ḟ0, ḟ1〉 = 〈D∆f0, f̈1〉 −
∂

∂t
〈D∆f0, ḟ1〉.

Recall that ∂
∂t
〈D∆f0, ḟ1〉 = Ġ21 = −Ġ12. Let us substitute the expression for Ġ12 of

System A and rewrite f̈1 in the basis of vectors ḟ1, ∆f0, and ∆f1. One obtains

〈Dḟ0, ḟ1〉 = 〈D∆f0, f̈1〉+ Ġ12

=
(ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
〈Dḟ1,∆f0〉+

(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
〈Dḟ1,∆f1〉

= 〈Dḟ1,∆ḟ0〉 = −〈Dḟ1, ḟ0〉.

Hence
D〈ḟ0, ḟ1〉 = 〈Dḟ0, ḟ1〉+ 〈Dḟ1, ḟ0〉 = −〈Dḟ1, ḟ0〉+ 〈Dḟ1, ḟ0〉 = 0.

Therefore, 〈ḟ0, ḟ1〉 is invariant under the infinitesimal deformation. The proof of the

invariance of 〈ḟ1, ḟ2〉 is analogous.
Invariance of 〈ḟ0, ḟ0〉 and 〈ḟ2, ḟ2〉. Let us prove that D〈ḟ0, ḟ0〉 = 0.

D〈ḟ0, ḟ0〉 = 2〈Dḟ0, ḟ0〉 = 2〈D∆ḟ0,∆ḟ0〉+ 2D〈ḟ1, ḟ0〉 − 2〈Dḟ1, ḟ1〉.
We have already shown that D〈ḟ1, ḟ0〉 = 0 and 〈Dḟ1, ḟ1〉 = 0. Hence

D〈ḟ0, ḟ0〉 = 2〈D∆ḟ0,∆ḟ0〉.
We rewrite the last ∆ḟ0 in the last expression in the basis ḟ1,∆f0, ḟ1×∆f0 and get

(D∆ḟ0,∆ḟ0〉 = (∆ḟ0,∆f0,ḟ1×∆f0)

(ḟ1,∆f0,ḟ1×∆f0)
〈D∆ḟ0, ḟ1〉+ (ḟ1,∆ḟ0,ḟ1×∆f0)

(ḟ1,∆f0,ḟ1×∆f0)
〈D∆ḟ0,∆f0〉+

(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,ḟ1×∆f0)
(D∆ḟ0, ḟ1,∆f0).

(11)

Let us rewrite 〈D∆ḟ0, ḟ1〉, 〈D∆ḟ0,∆f0〉, and (D∆ḟ0, ḟ1,∆f0) in terms of G11, . . . , G33.
First, we have:

〈D∆ḟ0, ḟ1〉 = 〈Dḟ0, ḟ1〉 = −〈Dḟ1, ḟ0〉 = −〈Dḟ1,∆ḟ0〉.
The second equality holds since we have shown that D〈ḟ0, ḟ1〉 = 0. If we rewrite ∆ḟ0 in

the basis ḟ1,∆f0,∆f1, we get the following:

〈D∆ḟ0, ḟ1〉 = −〈Dḟ1,∆ḟ0〉 = − (ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
G12 − (ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
G13.
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Second, we have

〈D∆ḟ0,∆f0〉 = −〈D∆f0,∆ḟ0〉 = (∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
G12 − (ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
G23.

Third, with

Ġ23 − 〈D∆f0,∆ḟ1〉 =〈D∆ḟ0,∆f1〉 = (∆f1,∆f0,ḟ1×∆f0)

(ḟ1,∆f0,ḟ1×∆f0)
〈D∆ḟ0, ḟ1〉+

(ḟ1,∆f1,ḟ1×∆f0)

(ḟ1,∆f0,ḟ1×∆f0)
〈D∆ḟ0,∆f0〉+ (ḟ1,∆f0,∆f1)

(ḟ1,∆f0,ḟ1×∆f0)
(D∆ḟ0, ḟ1,∆f0).

and the expression for Ġ23 of System A we get:

(D∆ḟ0, ḟ1,∆f0) = −
(

(ḟ1×∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
+ (ḟ1,∆f0×∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)

)

G12 − (ḟ1,∆f0,∆f0×∆ḟ0)

(ḟ1,∆f0,∆f1)
G13+

(ḟ1,∆f0,ḟ1×∆ḟ0)

(ḟ1,∆f0,∆f1)
G23.

Finally, we substitute the obtained last three expressions for

〈D∆ḟ0, ḟ1〉, 〈D∆ḟ0,∆f0〉, and (D∆ḟ0, ḟ1,∆f0)

respectively to Expression (11) and arrive at

〈D∆ḟ0,∆ḟ0〉 =
(

− (∆ḟ0,∆f0,ḟ1×∆f0)(ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)
+ (ḟ1,∆ḟ0,ḟ1×∆f0)(∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)
−

(ḟ1,∆f0,∆ḟ0)(ḟ1×∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)
− (ḟ1,∆f0,∆ḟ0)(ḟ1,∆f0×∆ḟ0,∆f1)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)

)

G12+
(

− (∆ḟ0,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)
− (ḟ1,∆f0,∆ḟ0)(ḟ1,∆f0,∆f0×∆ḟ0)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)

)

G13+
(

− (ḟ1,∆ḟ0,ḟ1×∆f0)(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)
+ (ḟ1,∆f0,∆ḟ0)(ḟ1,∆f0,ḟ1×∆ḟ0)

(ḟ1,∆f0,ḟ1×∆f0)(ḟ1,∆f0,∆f1)

)

G23.

It is clear that the coefficients of G13 and G23 vanish identically. Let us study the
coefficient of G12.
Consider the following mixed product (∆ḟ0,∆ḟ0, ḟ1×∆f0), it is identical to zero. Let

us rewrite ∆ḟ0 in the second position of the mixed product in the basis ḟ0, ∆f0, ∆f1. We
get the relation

(∆ḟ0,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
(∆ḟ0, ḟ1, ḟ1×∆f0) +

(ḟ1,∆ḟ0,∆f1)

(ḟ1,∆f0,∆f1)
(∆ḟ0,∆f0, ḟ1×∆f0)

= − (ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)
(∆ḟ0,∆f1, ḟ1×∆f0).

We apply this identity to the first two summands of the coefficient of G12 and get the
following expression for the coefficient of G12:

(ḟ1,∆f0,∆ḟ0)(∆ḟ0,∆f1,ḟ1×∆f0)

(ḟ1,∆f0,∆f1)|ḟ1×∆f0|2
− (ḟ1,∆f0×∆ḟ0,∆f1)(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)|ḟ1×∆f0|2
− (ḟ1×∆ḟ0,∆f0,∆f1)(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)|ḟ1×∆f0|2
.

We rewrite this as
(ḟ1,∆f0,∆ḟ0)

(ḟ1,∆f0,∆f1)|ḟ1×∆f0|2

(

(∆ḟ0,∆f1, ḟ1×∆f0)−(ḟ1,∆f0×∆ḟ0,∆f1)−(ḟ1×∆ḟ0,∆f0,∆f1)
)

.
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Let us study the expression in the brackets.

(∆ḟ0,∆f1, ḟ1×∆f0)−(ḟ1,∆f0×∆ḟ0,∆f1)−(ḟ1×∆ḟ0,∆f0,∆f1) =

−
(

∆ḟ0×(ḟ1×∆f0) + ḟ1×(∆f0×∆ḟ0) + ∆f0×(∆ḟ0×ḟ1),∆f1
)

= (0,∆f1) = 0.

The second equality holds by the Jacobi identity. Hence the coefficient of G12 is zero.
Therefore,

D〈ḟ0, ḟ0〉 = 2〈D∆ḟ0,∆ḟ0〉 = 0,

and 〈ḟ0, ḟ0〉 is invariant under the infinitesimal deformation.

The proof of the invariance of 〈ḟ2, ḟ2〉 repeats the proof for 〈ḟ0, ḟ0〉.
So we have checked the invariance of all the 11 functions in the definition of an infini-

tesimal flexion. Hence Df is an infinitesimal flexion. �

Now we have all the ingredients to prove the main theorem of this subsection.

2.2.4. Conclusion of the proof of Theorem 2.3. Existence. The existence of an infinitesimal
flexion follows directly from Proposition 2.9(i).

Uniqueness. By Proposition 2.7 every infinitesimal flexion satisfies System A. Since we
consider 2-ribbon surfaces with fixed initial position, for every non-zero infinitesimal flex-
ion Df we have:

Dḟ1(a) = 0, D∆f0(a) = 0, and D∆f1(a) = αḟ1(a)×∆f1(a)

for some non-zero α. Hence by Proposition 2.9 this is one of the flexions of Proposi-
tion 2.9(i). So the set of infinitesimal flexions is one-dimensional. Since the set is a linear
space, it is a line. Hence f has one degree of infinitesimal flexibility. �

Theorem 2.3 together with Proposition 2.9 imply the following.

Corollary 2.11. Let f ∈ C1,2,1
0 ([a, b],R3) be a weakly generic 2-ribbon surface with fixed

initial position, and let Df be its infinitesimal flexion satisfying

Dḟ1(a) = 0, D∆f1(a) = 0, and D∆f0(a) = 0,

Then Df = 0. �

2.3. Variational operators of infinitesimal flexions. Let us fix an orthonormal basis
(e1, e2, e3) in R

3. Denote by Ω1
3×3 the Banach space

(

(C1[a, b])3
)3 ∼= (C1[a, b])9

with the norm

‖(h11, h12, . . . , h33)‖ = max
1≤i,j≤3

(max(sup |hij|, sup |ḣij |)).

Consider the following map

Z : C1,2,1([a, b],R3) → Ω1
3×3,



18 OLEG KARPENKOV

where for a 2-ribbon surface f the image Z(f) in the basis (e1, e2, e3) is defined as

ḟ1(t) =
(

h11(t), h12(t), h13(t)
)

,
∆f0(t) =

(

h21(t), h22(t), h23(t)
)

,
∆f1(t) =

(

h31(t), h32(t), h33(t)
)

.

Note that every 2-ribbon surface f is defined by ḟ1, ∆f0, and ∆f1 up to a translation.
So after fixing, say, f1(a) = (0, 0, 0) one has a bijection.
We say that a point h = (h11, h12, . . . , h33) in Ω1

3×3 is in general position if the determi-
nant

det





h11 h12 h13

h21 h22 h23

h31 h32 h33



 6= 0

for every t ∈ [a, b]. This condition obviously corresponds to the weakly genericity condi-
tion, i.e., to

(ḟ1,∆f0,∆f1) 6= 0.

Denote by ΣΩ the set of all points h that are not in general position.

Definition 2.12. Denote by V± : [0,Λ]× (Ω1
3×3 \ ΣΩ) → Ω1

3×3 two variational operators
of infinitesimal flexion in coordinates (h11, h12, . . . , h33):

V±
l−1,m(λ, h) =

(em,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
Gl−1,1(h) +

(ḟ1, em,∆f1)

(ḟ1,∆f0,∆f1)
Gl−1,2(h)+

(ḟ1,∆f0, em)

(ḟ1,∆f0,∆f1)
Gl−1,3(h).

(12)

for (1 ≤ l, m ≤ 3). Here G11(h), G12(h), . . . , G33(h) is a solution of System A at point f
with the initial conditions corresponding to

Dḟ1(a) = 0, D∆f0(a) = 0, and D∆f1(a) = ±ḟ1(a)×∆f1(a),

i.e.,

(13)
G11(a) = 0, G12(a) = 0, G13(a) = 0,
G21(a) = 0, G22(a) = 0, G23(a) = 0,

G31(a) = 0, G32(a) = ±(ḟ1(a),∆f0(a),∆f1(a)), G33(a) = 0.

(Here we take “+” sign for V+ and “−” for V−.)

Note that both V+ and V− are autonomous operators, they do not depend on time
parameter λ.
It is important that the following statement holds.

Proposition 2.13. Let h be a point of Ω1
3×3 in general position and λ ∈ [0,Λ]. Then we

have

V±(λ, h) ∈ Ω1
3×3.
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Proof. The proof is straightforward, all functions involved in Expression (12) are con-
tinuously differentiable, and hence both V+(λ, h) and V−(λ, h) are continuously differen-
tiable. �

Remark 2.14. Let us show in brief how to find the coordinates of the infinitesimal defor-
mation Df in the basis e1, e2, e3 satisfying

Df1(a) = 0, Dḟ1(a) = 0, D∆f0(a) = 0, and D∆f1(a) = ḟ1(a)×∆f1(a).

First, one should solve System A with the above initial data, then substitute the obtained
solution (G11, G12, . . . , G33) to Equations (12). Now we have the coordinates of Dḟ1,
D∆f0, and D∆f1. Having the additional condition Df1(a) = 0 one can construct Df1,
Df0, and Df2:

Df1(t0) =

t0
∫

a

Dḟ1(t)d(t), Df0 = Df1 −D∆f0, Df2 = Df1 +D∆f1.

Further we will work in the following subspace of Ω1
3×3. Denote

Ω̃1
3×3 =

{

h ∈ Ω1
3×3

∣

∣h12(a) = h13(a) = h23(a) = 0
}

.

It is clear that Ω̃1
3×3 is a Banach space itself.

We have the following important property of Ω̃1
3×3.

Proposition 2.15. For every λ ∈ [0,Λ] and h ∈ Ω̃1
3×3 \ ΣΩ the subspace Ω̃1

3×3 is an

invariant space of the operators V+(λ, h) and V−(λ, h).

Proof. From the conditions

Dḟ1(a) = 0, and D∆f0(a) = 0

we have Gij(a) = 0 for all i = 1, 2, and j = 1, 2, 3. Hence by Expression (12)

V±
11(λ, h)(a) = V±

12(λ, h)(a) = . . . = V±
23(λ, h)(a) = 0

for all λ ∈ [0,Λ] and h ∈ Ω1
3×3. Therefore, for every λ ∈ [0,Λ] and h ∈ Ω̃1

3×3 \ΣΩ we have

V±(λ, h) ∈ Ω̃1
3×3. �

Finally we have the following important statement.

Proposition 2.16. The map Z is a bijection of Ω̃1
3×3 and C1,2,1

0 ([a, b],R3).

Proof. The inverse map Z−1(h) = (f0, f1, f2) is defined as

f1(t0) =

t0
∫

a





h11(t)
h12(t)
h13(t)



 dt, f0(t0) = f1(t0)−





h21(t0)
h22(t0)
h23(t0)



 , f2(t0) =





h31(t0)
h32(t0)
h33(t0)



−f1(t0).

at every t0 ∈ [a, b]. �



20 OLEG KARPENKOV

2.4. Finite flexibility of 2-ribbon surfaces. In Subsection 2.2 we showed that every
2-ribbon surface in general position is infinitesimally flexible and that the space of its
infinitesimal flexions is one-dimensional. The aim of this subsection is to show that a
weakly generic 2-ribbon surface is finitely flexible and has one degree of finite flexibility.

2.4.1. Lipschitz condition. We start with the discussion of the initial value problem for
the following two differential equations on the set of all points Ω̃1

3×3 in general position
(here λ is the time parameter):

(14)
∂h

∂λ
= V+(λ, h) and

∂h

∂λ
= V−(λ, h).

To solve the initial value problem we study local Lipschitz properties for V+ and V−.

Definition 2.17. Consider a Banach space E with a norm | ∗ |E, and a positive real
number Λ. Let U be a subset of [0,Λ]× E. We say that a functional F : U → E locally

satisfies a Lipschitz condition if for every point (λ0, p) in U there exist a neighborhood V
of the point and a constant K such that for every pair of points (λ, p1) and (λ, p2) in V
the inequality

|F(λ, p1)− F(λ, p2)|E ≤ K|p1 − p2|E
holds.

First we verify a Lipschitz condition for the following operator. Define G : [0,Λ] ×
Ω̃1

3×3 → Ω̃1
3×3 by

Gij(λ, h) = Gij(h), 1 ≤ i, j ≤ 3,

where Gij(h) are defined by Equations (10).

Lemma 2.18. For every point h ∈ U in general position, there exists a neighborhood Vh

of h such that the functional G locally satisfies a Lipschitz condition in [0,Λ]× Vh.

Proof. Consider a point h ∈ U . The element (G11, G12, . . . , G33) itself satisfies a system
of linear differential equations (System A). The coefficients of this system depend only on
a point of Ω̃1

3×3. Since the point h is in general position, there exists an integer constant
K such that for a sufficiently small neighborhood Vh of h the dependence is K-Lipschitz,
i.e., for p and q from Vh every coefficient c of System A satisfies the inequality

|c(p)− c(q)| < K‖p− q‖.
Hence the solutions for t ∈ [a, b] satisfy the Lipschitz condition for a fixed initial data
on Vh. (This is clear from the fact that the solution of the system with small coefficients
c(p)− c(q) will be almost constant, the difference in each coordinate will not be greater
than 9(b− a)K‖p− q‖.) Finally the solution for t ∈ [a, b] satisfies the Lipschitz condition
for a fixed parameter and different initial data on Vh (See Proposition 1.10.1 in [4]).
Therefore, for some constants K l we have

sup(|Gij(p)−Gij(q)|) < K ij‖p− q‖, 1 ≤ i, j ≤ 3.
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From System A we know that the Ġi,j linearly depend on G11, G12, . . . , G33, therefore, we

get the Lipschitz condition for the derivatives: for some constants K̃l we have

sup(|Ġij(p)− Ġij(q)|) < K̃ij‖p− q‖, 1 ≤ i, j ≤ 3.

Thus there exists a real number K̂ such that for all points p and q in Vh,

‖G(λ, p)−G(λ, q)‖ = max
1≤i,j≤3

(

max
(

sup |Gij(p)−Gij(q)|, sup |Ġij(p)−Ġij(q)|
))

< K̂‖p−q‖.

Thus G satisfies a Lipschitz condition on Vh. Therefore, G satisfies a Lipschitz condition
on [0,Λ]× Vh (since G is autonomous). �

Lemma 2.18 and Expression (12) directly imply the following statement.

Corollary 2.19. For every point h ∈ U in general position and, there exists a neighbor-

hood Vh of h such that both functionals V+ and V− locally satisfy a Lipschitz condition in

[0,Λ]× Vh. �

2.4.2. Existence and uniqueness of solutions. Let us prove the following general statement.

Proposition 2.20. Let h0 ∈ Ω̃1
3×3 be in general position. Then for sufficiently small

positive ε there exists a unique solution γ of the equation

(15)
∂h

∂λ
= V+(λ, h)

on [−ε, ε], such that γ(0) = h0.

We start with the following general lemma.

Lemma 2.21. Let h0 ∈ Ω̃1
3×3 be in general position. A deformation γ with γ(0) = h0 is

a solutions of Equation (15) if and only if γ satisfies

∂γ

∂λ
=

{

V+(λ, γ(λ)) for all λ ∈ [0,Λ],
−V−(−λ, γ(λ)) for all λ ∈ [−Λ, 0].

Proof. The proof of the Lemma is straightforward. �

Proof of Proposition 2.20. As we showed in Corollary 2.19, the operators V+ and V−

satisfy a Lipschitz condition in some neighborhood of the point Z−1(f). From the gen-
eral theory of differential equations on Banach spaces (see for instance the first section
of the second chapter of [4]) it follows that this condition implies local existence and
uniqueness of a solution of the initial value problem for the differential Equations (14).
Hence by Lemma 2.21 for a sufficiently small positive ε there exists a unique solution γ
of Equation (15) on [−ε, ε] satisfying the condition γ(0) = h0. �
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2.4.3. Finite flexibility. The key point for finite flexibility of 2-ribbon surfaces is the fol-
lowing lemma.

Lemma 2.22. Let {fλ}, λ ∈ [−ε, ε] for some ε > 0, be a normalized isometric deforma-

tion in the space C1,2,1
0 ([a, b],R3) such that all 2-ribbon surfaces of the family are weakly

generic. Let also {Z−1(fλ)} be the corresponding deformation in Ω̃1
3×3. Then {fλ} is an

isometric deformation if and only {Z−1(fλ)} satisfies Equation(15) for all λ ∈ [−ε, ε].

Proof. Let γ = {fλ}, λ ∈ [−ε, ε], be a normalized isometric deformation in C1,2,1
0 ([a, b],R3)

such that all 2-ribbon surfaces of the family are weakly generic. Every normalized defor-
mation satisfies Condition (13) at every point λ ∈ [−ε, ε] with the positive choice of the
sign.
Since γ is an isometric deformation, Dγf

λ is an infinitesimal flexion at every point
λ ∈ [−ε, ε]. Hence the corresponding functions Gλ

ij satisfy system A (by Proposition 2.7).

Let us now write Dγ ḟ
λ
1 , Dγ∆fλ

0 , and Dγ∆fλ
1 in the basis e1, e2, e3 using functions Gλ

ij .
Recall that

Dγ ḟ
λ
1 = (Dγ ḟ

λ
1 , ḟ

λ
1 )ḟ

λ
1 +(Dγḟ

λ
1 ,∆fλ

0 )∆fλ
0 +(Dγ ḟ

λ
1 ,∆fλ

1 )∆fλ
1 = G11ḟ

λ
1 +G12∆fλ

0 +G13∆fλ
1 .

Hence in the basis (e1, e2, e3) we have

(16)

∂ḟλ
1

∂λ
= Dγ ḟ

λ
1

=

3
∑

m=1

(

(em,∆fλ
0 ,∆fλ

1 )

(ḟλ
1 ,∆fλ

0 ,∆fλ
1 )

Gλ
11 +

(ḟλ
1 , em,∆fλ

1 )

(ḟλ
1 ,∆fλ

0 ,∆fλ
1 )

Gλ
12 +

(ḟλ
1 ,∆fλ

0 , em)

(ḟλ
1 ,∆fλ

0 ,∆fλ
1 )

Gλ
13

)

em

=
3
∑

m=1

(

V+
1,m

(

λ, Z−1(fλ)
)

)

em.

Similarly we have:

(17)

∂∆fλ
0

∂λ
=

3
∑

m=1

(

V+
2,m

(

λ, Z−1(fλ)
)

)

em,

∂∆fλ
1

∂λ
=

3
∑

m=1

(

V+
3,m

(

λ, Z−1(fλ)
)

)

em.

Hence by Definition 2.12 the corresponding derivatives in the space Ω̃1
3×3 satisfy:

∂Z−1(fλ)

∂λ
= V+(λ, Z−1(fλ))

for every λ ∈ [−ε, ε].

Conversely, let Z−1(fλ) satisfy

∂Z−1(fλ)

∂λ
= V+(λ, Z−1(fλ))

for every λ ∈ [−ε, ε]. Then the corresponding Dγ ḟ
λ
1 , Dγ∆fλ

0 , and Dγ∆fλ
1 are defined

as in (16) and (17). Hence the correspondent scalar products Gλ
ij satisfy System A for
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λ ∈ [−ε, ε]. Thus Dγf
λ is an infinitesimal flexion for every λ ∈ [−ε, ε]. Hence by {fλ} is

an isometric deformation on [−ε, ε]. From construction it follows that {fλ} is a normalized
deformation. �

Now we prove the following theorem on finite flexibility of weakly generic 2-ribbon
surfaces.

Theorem 2.23. Every 2-ribbon weakly generic semidiscrete surface f in C1,2,1
0 ([a, b],R3)

has one degree of finite flexibility.

Proof. On the one hand, by Lemma 2.22 normalized isometric deformations of f with
a fixed initial position are in one-to-one correspondence with Solution of Equation (15)
satisfying γ(0) = Z−1(f). On the other hand, by Proposition 2.20 for sufficiently small
positive ε there exists a unique solution γ of Equation (15) satisfying γ(0) = Z−1(f).
Hence, there exists a unique normalized isometric deformations of f (with the parameter in
[−ε, ε] for sufficiently small positive ε). Therefore, f has one degree of finite flexibility. �

Remark 2.24. In fact, one can prove the statement of Theorem 2.23 for the spaces of
functions Cm,m+1,m

0 ([a, b],R3) for arbitrary m ≥ 1. We are not going to use this later so
we omit the details here. The proofs mostly repeat the ones for the case m = 1 shown in
details above.

3. Infinitesimal flexibility of 3-ribbon surfaces

In this section we find necessary infinitesimal flexibility condition of 3-ribbon surfaces.
For the case of n-ribbon surfaces each 3-ribbon subsurface gives a condition of infinitesimal
flexibility.

3.1. Preliminary statements on infinitesimal flexion of 3-ribbon surfaces. In this
subsection we prove certain relations that we use further in the proof of the statement on
infinitesimal flexibility condition for 3-ribbon surfaces.
Consider the following function

Φ = 〈∆f0,∆f1〉.
This function plays a central role in our further description of the infinitesimal flexibility
condition of 3-ribbon and n-ribbon surfaces (see Theorem 3.7 and Theorem 4.10). Let DΦ
be the infinitesimal flexion of Φ. Via the function DΦ we describe monodromy conditions
for finite flexibility. Proposition 3.2 and Corollary 3.6 deliver necessary tools to describe
continuous and discrete parts of the monodromy condition on Φ.

Remark 3.1. In the proofs of the statements of this subsection we fix the flexion of the
initial frame at t = a in the following way

Dḟ1 = D∆f1(t0) = 0

(compare to the space CM
0 [a, b],R3 where Dḟ1(a) = D∆f0(a) = 0 instead). This simplifies

calculations for the 3-ribbon surfaces, since the fixed bar with endpoints f1(a) and f2(a)
belongs to the middle strip.
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3.1.1. Continuous shift. Here we study the dependence of the infinitesimal flexion DΦ on
the argument t.

Proposition 3.2. (On continuous shift.) Let f be a weakly generic 2-ribbon surface

in C1,2,1([a, b],R3). Then for every infinitesimal flexion DΦ the following condition holds:

DΦ(t2) = DΦ(t1) · exp





t2
∫

t1

(ḟ1,∆ḟ0,∆f1) + (ḟ1,∆f0,∆ḟ1)

(ḟ1,∆f0,∆f1)
dt



.

This is a direct consequence of the next lemma.
Lemma 3.3. Let f be a weakly generic 2-ribbon surface in C1,2,1([a, b],R3), then

DΦ̇ =
(ḟ1,∆ḟ0,∆f1) + (ḟ1,∆f0,∆ḟ1)

(ḟ1,∆f0,∆f1)
DΦ.

Proof. Note that

DΦ = 〈D∆f0,∆f1〉+ 〈∆f0,D∆f1〉, and

DΦ̇ = 〈D∆ḟ0,∆f1〉+ 〈D∆f0,∆ḟ1〉+ 〈∆ḟ0,D∆f1〉+ 〈∆f0,D∆ḟ1〉.
Let us prove the statement of the lemma for an arbitrary point t0. Without loss of
generality we fix Dḟ1(t0) = 0 and D∆f1(t0) = 0 (this is possible since every flexion is
isometric to a flexion with such properties and isometries of flexions do not change the
functions in the formula of the lemma). Then D∆f0(t0) is proportional to ḟ1(t0)×∆f0(t0),
and hence there exists some real number α with

D∆f0(t0) = αḟ1(t0)×∆f0(t0).

Thus we immediately get

DΦ(t0) =
〈

D∆f0(t),∆f1(t)
〉

= α
(

ḟ1(t0),∆f0(t0),∆f1(t0)
)

.

Let us express the summands for DΦ̇(t0). We start with
〈

D∆ḟ0(t0),∆f1(t0)
〉

. First we
note that

(i) ∆f1 =
(∆f1,∆f0, f1×∆ḟ0)

(ḟ1,∆f0, ḟ1×∆f0)
ḟ1 +

(ḟ1,∆f1, f1×∆ḟ0)

(ḟ1,∆f0, ḟ1×∆f0)
∆f0 +

(ḟ1,∆f0,∆f1)

(ḟ1,∆f0, ḟ1×∆f0)
f1×∆ḟ0.

Equation (6) implies

(ii)
〈

D∆ḟ0(t0), ḟ1(t0)
〉

= −
〈

Dḟ1(t0),∆ḟ0(t0)
〉

= −
〈

0,∆ḟ0(t0)
〉

= 0.

From Equation (4) we have

(iii)
〈

D∆ḟ0(t0),∆f0(t0)
〉

= −
〈

D∆f0(t0),∆ḟ0(t0)
〉

= −α
(

ḟ1(t0),∆f0(t0),∆ḟ0(t0)
)

.

The function (∆ḟ0, ḟ1,∆f0) is invariant of an infinitesimal flexion, therefore:

(D∆ḟ0, ḟ1,∆f0) + (∆ḟ0,Dḟ1,∆f0) + (∆ḟ0, ḟ1,D∆f0) = 0,
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and hence

(iv)

〈

D∆ḟ0(t0), ḟ1(t0)×∆f0(t0)
〉

= −
(

∆ḟ0(t0), ḟ1(t0),D∆f0(t0)
)

= −α
(

∆ḟ0(t0), ḟ1(t0), ḟ1(t0)×∆f0(t0)
)

.

Now we decompose ∆ḟ0(t0) in the last formula in the basis of vectors ḟ1(t0), ∆f0(t0), and
∆f1(t0):

(

∆ḟ0(t0), ḟ1(t0), ḟ1(t0)×∆f0(t0)
)

=

(

ḟ1(t0),∆ḟ0(t0),∆f1(t0)
)

(

ḟ1(t0),∆f0(t0),∆f1(t0)
)

(

∆f0(t0), ḟ1(t0), ḟ1(t0)×∆f0(t0)
)

+

(

ḟ1(t0),∆f0(t0),∆ḟ0(t0)
)

(

ḟ1(t0),∆f0(t0),∆f1(t0)
)

(

∆f1(t0), ḟ1(t0), ḟ1(t0)×∆f0(t0)
)

.

Therefore, after substitution (i) of ∆f2 we apply (ii), (iii), (iv), and the last expression
and get

〈

D∆ḟ0(t0),∆f1(t0)
〉

= −α

(

ḟ1(t0),∆f1(t0),ḟ1(t0)×∆f0(t0)
)

(

ḟ1(t0),∆f0(t0),ḟ1(t0)×∆f0(t0)
)

(

ḟ1(t0),∆f0(t0),∆ḟ0(t0)
)

−

α

(

ḟ1(t0),∆ḟ0(t0),∆f1(t0)
)

(

ḟ1(t0),∆f0(t0),ḟ1(t0)×∆f0(t0)
)

(

∆f0(t0), ḟ1(t0), ḟ1(t0)×∆f0(t0)
)

−

α

(

ḟ1(t0),∆f0(t0),∆ḟ0(t0)
)

(

ḟ1(t0),∆f0(t0),ḟ1(t0)×∆f0(t0)
)

(

∆f1(t0), ḟ1(t0), ḟ1(t0)×∆f0(t0)
)

=− α
(

ḟ1(t0),∆f1(t0),∆ḟ0(t0)
)

.

Similar calculations for the summand
〈

∆f0(t0),D∆ḟ1(t0)
〉

(applying Equations (3), (5),

and (7) and the conditions Dḟ1(t0) = 0 and D∆f1(t0) = 0) show that
〈

∆f0(t0),D∆ḟ1(t0)
〉

= 0.

Further we have
〈

D∆f0(t0),∆ḟ1(t0)
〉

= α
(

ḟ1(t0),∆f0(t0),∆ḟ1(t0)
)

,
〈

∆ḟ0(t0),D∆f1(t0)
〉

= 0.

Therefore,

DΦ̇(t0) = α
((

ḟ1(t0),∆ḟ0(t0),∆f1(t0)
)

+
(

ḟ1(t0),∆f0(t0),∆ḟ1(t0)
))

,

and consequently

DΦ̇(t0) =

(

ḟ1(t0),∆ḟ0(t0),∆f1(t0)
)

+
(

ḟ1(t0),∆f0(t0),∆ḟ1(t0)
)

(

ḟ1(t0),∆f0(t0),∆f1(t0)
) DΦ(t0).

Thus Lemma 3.3 holds for all possible values of t0. �
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3.1.2. Discrete shift. Every 3-ribbon surface contains two 2-ribbon surfaces as a subsur-
faces. Each of them has an infinitesimal flexion DΦi (i = 1, 2), where

Φ1 = 〈∆f0,∆f1〉 and Φ2 = 〈∆f1,∆f2〉.
Let us show the relation between DΦ1 and DΦ2 for the same values of argument t.
First, in Proposition 3.4 we show a relation for D〈f̈1, f̈1〉 and D〈f̈2, f̈2〉. Second, in

Proposition 3.5 we give a link between D〈f̈1, f̈1〉 and DΦ1. This will result in the formula
of Corollary 3.6 on the relation between DΦ1 and DΦ2.

We start with a formula expressing D〈f̈2, f̈2〉 via D〈f̈1, f̈1〉.
Proposition 3.4. Let f be a strongly generic 3-ribbon surface in C1,2,2,1([a, b],R3), and
let Df be its infinitesimal flexion. Then the following equation holds:

D〈f̈2, f̈2〉 =
(ḟ2, f̈2,∆f1)

(ḟ1, f̈1,∆f1)
D〈f̈1, f̈1〉.

Proof. We do calculations at a point t0 again assuming that Dḟ1(t0) = 0 and D∆f1(t0) = 0
(by choosing an appropriate isometric representative of the deformation). Let us show

that Dḟ2(t0) = 0. First, note that

Dḟ2(t0) = Dḟ1(t0) +D∆ḟ1(t0) = D∆ḟ1(t0).

Secondly we show that the inner products of D∆ḟ1(t0) and the vectors ḟ1(t0), ∆f1(t0),

and ḟ1(t0)×∆f1(t0) are all zero (this would imply that D∆ḟ1(t0) = 0).
From Equation (7) we have

〈

D∆ḟ1(t0), ḟ1(t0)
〉

= −
〈

Dḟ1(t0),∆ḟ1(t0)
〉

= −
〈

0,∆ḟ1(t0)
〉

= 0.

Further, from Equations (5), we get
〈

D∆ḟ1(t0),∆f1(t0)
〉

= −
〈

D∆f1(t0),∆ḟ1(t0)
〉

= 0.

Finally, from the equation D(ḟ1,∆f1,∆ḟ1) = 0 we obtain
〈

D∆ḟ1(t0), ḟ1(t0)×∆f1(t0)
〉

=

−
(

∆ḟ1(t0),Dḟ1(t0),∆f1(t0)
)

−
(

∆ḟ1(t0), ḟ1(t0),D∆f1(t0)
)

= 0.

Therefore, D∆ḟ1(t0) = 0, and hence Dḟ2(t0) = 0.

From Equation (1) and Equation (9) we get
〈

Df̈1(t0), ḟ1(t0)
〉

= ∂
∂t

〈

Dḟ1(t0), ḟ1(t0)
〉

−
〈

f̈1(t0),Dḟ1(t0)
〉

= 0−
〈

f̈1(t0), 0
〉

= 0;
〈

Df̈1(t0),∆f1(t0)
〉

= −
〈

f̈1(t0),D∆f1(t0)
〉

= −
〈

f̈1(t0), 0
〉

= 0.

Therefore, for some real number β1 we have

Df̈1(t0) = β1ḟ1(t0)×∆f1(t0).

By a similar reasoning (since we have shown that Dḟ2(t0) = 0) we get

Df̈2(t0) = β2ḟ2(t0)×∆f1(t0).
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Since ∂
∂t

(

D(ḟ1,∆f1, ḟ2)
)

= 0, at point t0 we have
(

Df̈1(t0),∆f1(t0), ḟ2(t0)
)

+
(

ḟ1(t0),∆f1(t0),Df̈2(t0)
)

= 0.

Hence,

β1

(

ḟ1(t0)×∆f1(t0),∆f1(t0), ḟ2(t0)
)

+ β2

(

ḟ1(t0),∆f1(t0), ḟ2(t0)×∆f1(t0)
)

= 0,

and, therefore β1 = β2. This implies

D
〈

f̈1(t0), f̈1(t0)
〉

= 2
〈

Df̈1(t0), f̈(t0)
〉

= 2β1

(

ḟ1(t0),∆f1(t0), f̈1(t0)
)

and

D
〈

f̈2(t0), f̈2(t0)
〉

= 2β1

(

ḟ2(t0),∆f1(t0), f̈2(t0)
)

.

The last two formulas imply the statement of Proposition 3.4. �

Now let us relate D〈f̈1, f̈1〉 and DΦ.

Proposition 3.5. Let f be a weakly generic 2-ribbon surface in C1,2,1([a, b],R3). Then

the following identity holds:

D〈f̈1, f̈1〉 = 2
(ḟ1, f̈1,∆f0)(ḟ1, f̈1,∆f1)

(ḟ1,∆f0,∆f1)2
DΦ.

Proof. We restrict ourselves to the case of a point. Without loss of generality we assume
that Dḟ1(t0) = 0 and D∆f1(t0) = 0. So as we have seen before, there exists α such that

D∆f0(t0) = αḟ1(t0)×∆f0(t0)

and hence

DΦ(t0) = α
(

ḟ1(t0),∆f0(t0),∆f1(t0)
)

.

Let us calculate D〈f̈1, f̈1〉 = 2〈Df̈1, f̈1〉. Decompose

f̈1 =
(f̈1,∆f0,∆f1)

(ḟ1,∆f0,∆f1)
ḟ1 +

(ḟ1, f̈1,∆f1)

(ḟ1,∆f0,∆f1)
∆f0 +

(ḟ1,∆f0, f̈1)

(ḟ1,∆f0,∆f1)
∆f1.

Since
〈

Df̈1(t0), ḟ1(t0)
〉

= 0, and
〈

Df̈1(t0),∆f1(t0)
〉

= 0,

we get

D〈f̈1(t0), f̈1(t0)〉 = 2

(

ḟ1(t0), f̈1(t0),∆f1(t0)
)

(

ḟ1(t0),∆f0(t0),∆f1(t0)
)

〈

Df̈1(t0),∆f0(t0)
〉

.

By Equation (8) we have
〈

Df̈1,∆f0
〉

= −
〈

f̈1,D∆f0
〉

.

Hence after the substitution of D∆f0(t0) in the first summand one gets

〈

Df̈1,∆f0
〉

= α
(

ḟ1(t0), f̈1(t0),∆f0(t0)
)

=

(

ḟ1(t0), f̈1(t0),∆f0(t0)
)

(

ḟ1(t0),∆f0(t0),∆f1(t0)
)DΦ(t0).
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Therefore, we obtain

D〈f̈1(t0), f̈1(t0)〉 = 2

(

ḟ1(t0), f̈1(t0),∆f1(t0)
)(

ḟ1(t0), f̈1(t0),∆f0(t0)
)

(

ḟ1(t0),∆f0(t0),∆f1(t0)
)2 DΦ(t0).

Since the statement does not depend on the choice of the basis and invariant under
isometries, we get the statement for all the points. �

Let us show a formula of a discrete shift.

Corollary 3.6. (On discrete shift.) Let f be a strongly generic 3-ribbon surface in

C1,2,2,1([a, b],R3). Then the following holds:

DΦ2(t) =

(

ḟ1(t), f̈1(t),∆f0(t)
)

(

ḟ2(t), f̈2(t),∆f2(t)
)

(

ḟ2(t),∆f1(t),∆f2(t)
)2

(

ḟ1(t),∆f0(t),∆f1(t)
)2DΦ1(t).

Proof. The statement follows directly from Propositions 3.4 and 3.5. �

3.2. Necessary condition of infinitesimal flexibility. In this subsection we write
down the infinitesimal flexibility monodromy conditions for 3-ribbon surfaces (via contin-
uous shifts of Proposition 3.2 and discrete shifts of Corollary 3.6). Recall that

Λ(t) =

(

ḟ1(t), f̈1(t),∆f0(t)
)

(

ḟ2(t), f̈2(t),∆f2(t)
)

(

ḟ2(t),∆f1(t),∆f2(t)
)2

(

ḟ1(t),∆f0(t),∆f1(t)
)2 ,

and

Hi(t) =
(ḟi(t),∆ḟi−1(t),∆fi(t)) + (ḟi(t),∆fi−1(t),∆ḟi(t))

(ḟi(t),∆fi−1(t),∆fi(t))
, i = 1, 2.

Theorem 3.7. Let f be a strongly generic 3-ribbon surface in C1,2,2,1([a, b],R3). If the

surface f is infinitesimally flexible then for every t1, t2 ∈ [a, b] we have

Λ(t2) · exp
(

t2
∫

t1

H1(t)dt
)

= Λ(t1) · exp
(

t2
∫

t1

H2(t)dt
)

.

Remark 3.8. The condition of the proposition can be written in the “almost” equivalent
infinitesimal form:

Λ̇− (H2 −H1)Λ = 0.

Here the left hand side expression is considered as a function in the interval [a, b]. The

last expression has one disadvantage, Λ̇ involves the third derivatives of f1 and f2, while
the expressions in proposition involve only up to the second derivatives.

Proof. Let f be infinitesimally flexible and Df be its infinitesimal nonzero flexion. On
the one side by Corollary 3.6 we get relations between DΦ1(ti) and DΦ2(ti) for i = 1, 2.
On the other side, Proposition 3.2 relates DΦi(t1) and DΦi(t2) for i = 1, 2. These four
relations define the monodromy condition for Φi that is the condition in the theorem,
Therefore, it holds if a surface is infinitesimally flexible. �
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Remark 3.9. Let us write a more simple expressions for a surface w defined as

w0 = f1 − 1
(ḟ1,∆f0,∆f1)

∆f0;

w1 = f1;
w2 = f2;
w3 = f2 +

1
(ḟ2,∆f1,∆f2)

∆f2.

As one can see, all rulings of w (if non-vanished) are parallel to the corresponding rulings
of f . In addition the middle strip of f coincides with the middle strip of w.
Notice that

(

ẇ1(t),∆w0(t),∆w1(t)
)

= 1 and
(

ẇ2(t),∆w1(t),∆w2(t)
)

= 1

for all arguments t. Hence we have:

Λ =

(

ẇ1,ẅ1,∆w0

)

(

ẇ2,ẅ2,∆w2

) ,

Hi = −(ẅi,∆wi−1,∆wi), i = 1, 2.

Note that this expression holds momentary.

We conclude this subsection with the following open problem.

Problem 1. Find a sufficient condition for infinitesimal/finite flexibility of semidiscrete
and 3-ribbon surfaces.

4. Flexibility of n-ribbon surfaces

In this section we study flexibility questions for general case of n ≥ 2. We show that a
strongly generic n-ribbon surface has at most one degree of finite and infinitesimal flexi-
bility (Subsection 4.1). Further we study flexions of combined n-ribbon surfaces (Subsec-
tion 4.2). This allows us to prove that finite or infinitesimal flexibility of generic n-ribbon
surfaces is identified by finite or infinitesimal flexibility of all its 3-ribbon subsurfaces
(Subsection 4.3).

4.1. At most one degree of flexibility for strongly generic n-ribbon surfaces.
In this subsection we prove that all nontrivial infinitesimal flexions of strongly generic
n-ribbon surfaces are strongly isometrically nontrivial, and that such surfaces has at most
one degree of infinitesimal flexibility.

Let us start with a useful tool to work with isometrically nontrivial flexions.

Lemma 4.1. An infinitesimal flexion of a weakly generic n-ribbon surface f in the space

C0,1,0([a, b],R3) is isometrically nontrivial at a point (t, i) (where i ∈ [1, . . . , n− 1]) if and
only if

D〈∆fi−1(t),∆fi(t)〉 6= 0.
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Proof. Since f is weakly generic, the pairs of vectors (ḟi,∆fi−1) and (ḟi,∆fi) span two
non-coinciding 2-spaces π1 and π2.
Since π1 and π2 do not coincide, the condition D〈∆fi−1,∆fi〉 6= 0 is equivalent to the

fact that the infinitesimal flexion of the angle between π1 and π2 is non-zero. Therefore,
by Definition 1.13 the last is equivalent to f being isometrically nontrivial at a point
(t, i). �

In the next proposition we prove two important preliminary statements.

Proposition 4.2. Consider n ≥ 2. Let f be a strongly generic n-ribbon surface in the

space C1,2,2,...,2,1
0 ([a, b],R3). Then the following two statements hold.

(i) Every isometrically nontrivial infinitesimal flexion of f is strongly isometrically non-

trivial (i.e., f is isometrically nontrivial at every point (t, i)).
(ii) For every regular isometric deformation γ there exists a locally monotone function ξ
such that γ(ξ) is a normalized isometric deformation of f in some neighborhood of 0.

Proof. We prove Theorem 4.2(i) by induction in n.
Base of induction. Case n = 2. Let Df be a nontrivial infinitesimal flexion of a
weakly generic 2-ribbon surface f in C1,2,1

0 ([a, b],R3). Therefore, there exists t0 such that
DΦ(t0) 6= 0. By Proposition 3.2, DΦ(t0) 6= 0 implies that DΦ(t) 6= 0 for every t ∈ [a, b].
Hence, by Lemma 4.1 f is isometrically nontrivial at each point (t, 1). Therefore, f is
strongly isometrically nontrivial.

Case n = 3. Let Df be a nontrivial infinitesimal flexion of a generic 3-ribbon surface f .
Therefore, there exists a point (t0, i) such that DΦi(t0) 6= 0. Without loss of generality
we assume that i = 1 (the case i = 2 is similar).
By the above in case n = 2 we have: DΦ1(t0) 6= 0 implies that DΦ1(t) 6= 0 for

every t ∈ [a, b]. By Corollary 3.6 (and the strongly generic condition for f), for every
t ∈ [a, b] the statement DΦ1(t) 6= 0 implies that DΦ2(t) 6= 0. Hence, by Lemma 4.1 f is
isometrically nontrivial at each point (t, 1) and (t, 2). Therefore, by Definition 1.13 f is
strongly isometrically nontrivial.

Step of induction. Consider a strongly generic n-ribbon surface f with n ≥ 4. Denote

f 1 = (f0, f1, . . . , fn−1), f 2 = (f1, . . . , fn−1, fn) and f 12 = (f1, . . . , fn−1)

Let Df be isometrically nontrivial flexion of f . Without loss of generality we assume
that Df 1 is isometrically nontrivial. Hence by the induction assumption Df 1 is strongly
isometrically nontrivial. Thus, Df 12 is strongly isometrically nontrivial. Since f 12 is a
(n − 2)-ribbon (with n ≥ 4), we have that Df 2 is isometrically nontrivial. Then by the
induction assumption Df 2 is strongly isometrically nontrivial.
Since n ≥ 3 and both f 1 and f 2 are strongly isometrically nontrivial, f is strongly

isometrically nontrivial as well. This concludes the proof of Proposition 4.2(i).

Let us prove Proposition 4.2(ii). Let {fλ} be a regular isometric deformation of f with
parameter λ ∈ [−Λ,Λ]. Since f has a fixed initial position, we have:

Dfλ ḟλ0

1 (a) = 0, Dfλ∆fλ0

0 (a) = 0, and Dfλ∆fλ0

1 (a) = α(λ)ḟλ0

1 (a)×∆fλ0

1 (a)
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for every λ0 ∈ [−Λ,Λ].
Since {fλ} is regular, Dfλf 0 6= 0. Therefore, there exists ε > 0 such that Dfλfλ0 6= 0

for λ0 ∈ [−ε, ε]. From Proposition 4.2(i) it follows that for every λ0 ∈ [−ε, ε] the flexion
Dfλfλ0 is strongly isometrically nontrivial. Hence

α(λ) 6= 0 for λ ∈ [−ε, ε].

Therefore, α(λ) is either a positive function or a negative function on [−ε, ε]. Denote

ϕ(λ) =

λ
∫

0

α(τ)dτ.

The function ϕ is monotonous on [−ε, ε], and hence there exists an inverse function ϕ−1

on that interval. Denote

ξ =

{

ϕ−1, if ϕ is increasing,
−ϕ−1, if ϕ is decreasing.

Choose positive ε̂ such that ξ is defined on [−ε̂, ε̂]. Then

α(ξ(λ)) = 1

for all λ ∈ [−ε̂, ε̂]. Hence γ ◦ ξ is a normalized isometric deformation. �

Now we study degrees of finite and infinitesimal flexibility.

Remark 4.3. To be consistent we mention the case of 2-ribbon surfaces. Let f be a weakly
generic 2-ribbon semidiscrete surface in the space C1,2,1

0 ([a, b],R3). Then the following two
statements hold.
(i) The surface f has one degree of infinitesimal flexibility (Theorem 2.3).
(ii) The surface f has one degree of finite flexibility (Theorem 2.23).

Let us prove a similar statement for the case of n ≥ 3.

Theorem 4.4. Consider n ≥ 3. Let f be a strongly generic n-ribbon surface in the space

C1,2,2,...,2,1
0 ([a, b],R3). Then the following two statements hold.

(i) The surface f has at most one degree of infinitesimal flexibility (i.e., all infinitesimal

isometrically nontrivial flexions are proportional).
(ii) The surface f is either finitely rigid or has one degree of finite flexibility.

Proof. (i) Let us assume the converse. Suppose there are two non-proportional isometrically-
nontrivial flexions D1f and D2f . By Proposition 4.2(i) both flexions are isometrically
nontrivial at (a, 1) Hence there exists α such that the infinitesimal flexion

Df = D1f − αD2f

is isometrically trivial at (a, 1). Since D1f and D2f are non-proportional, there exists a
point (t, i) at which the flexion Df is isometrically nontrivial. Hence by Proposition 4.2(i)
the infinitesimal flexion Df is isometrically nontrivial at (a, 1). We arrive at a contradic-
tion.
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(ii) By Theorem 4.4(i) all infinitesimal flexions are proportional. Hence f has at most
one degree of infinitesimal flexibility. If it is zero, then the f is infinitesimally rigid and
hence it is finitely rigid.
Let f has one degree of infinitesimal flexibility. If f does not have regular isometric

deformations then f is finite rigid. If f has a regular isometric deformation, then f has a
normalized isometric deformation. Let us show that there exists at most one normalized
isometric deformation of f . Let {fλ} be a normalized isometric deformation of f . As
before we denote

Φλ
i = 〈∆fλ

i−1,∆fλ
i 〉.

Notice that for normalized isometric deformations we have:

Dfλ(Φλ
0(a)) = (∆fλ

0 (a), ḟ
λ
1 (a),∆fλ

1 ).

Therefore

Φλ
0(a) =

λ
∫

0

(∆fµ
0 (a), ḟ

µ
1 (a),∆fµ

1 )dµ.

Hence Φλ
0(a) coincides for all normalized isometric deformation of f . Therefore, by Propo-

sition 3.2 and Corollary 3.6 for every (t, i) and every parameter λ the value

Φλ
i (t)

is the same for all normalized isometric deformations. Therefore, by Theorem 2.23 every
restriction of an arbitrary normalized isometric deformation {fλ} to the deformation of
a 2-ribbon subsurface of f does not depend on the choice of the normalized isometric
deformation {fλ}. Hence, all normalized isometric deformations of f coincide. Therefore,
f has one degree of finite flexibility. �

Remark 4.5. The strongly genericity condition of Theorem 4.2 is essential. Let us illustrate
this with a simple example of a 3-ribbon surfaces which is not strongly generic. Consider

f0(t) = (t, 1, 0); f1(t) = (t, 0, 0); f2(t) = (t, 0, 1); f3(t) = (t, 1, 1);

This surface has two distinct isometric deformations:

(i) fα
0 (t) = (t, 1, 0); fα

1 (t) = (t, 0, 0); fα
2 (t) = (t, 0, 1); fα

3 (t) = (t, cosα, 1 + sinα);

(ii) fβ
0 (t) = (t, 1, 0); fβ

1 (t) = (t, 0, 0);

fβ
2 (t) = (t, sin β, cosβ); fβ

3 (t) =
(

t,
√
2 sin(β + π

4
),
√
2 cos(β + π

4
)
)

;

The infinitesimal flexions defined by these isometric deformations are not proportional.

4.2. Flexibility of combined n-ribbon surfaces. In this subsection we study finite
and infinitesimal flexions of combined strongly generic semidiscrete surfaces.
As above, for an arbitrary semidiscrete surface f = (f0, f1, . . . , fn) we denote

(18) f 1 = (f0, f1, . . . , fn−1), f 2 = (f1, . . . , fn−1, fn) and f 12 = (f1, . . . , fn−1).
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4.2.1. Infinitesimal case. We start with the infinitesimal case.

Theorem 4.6. (Infinitesimal flexibility of combined semidiscrete surfaces.) Let

n ≥ 4. Consider a strongly generic n-ribbon semidiscrete surface f in C1,2,2,...,2,1
0 ([a, b],R3).

Let surfaces f 1 and f 2 defined by (18) be infinitesimally flexible. Then f is infinitesimally

flexible and has precisely one degree of infinitesimal flexibility.

Proof. Let D1f 1 and D2f 2 be isometrically nontrivial flexions of f 1 and f 2 respectively.
Since f 1 and f 2 are strongly generic (n−1)-ribbons surfaces for n ≥ 4, Theorem 4.2 can be
applied. By Theorem 4.2(i) the surfaces f 1 and f 2 are strongly isometrically nontrivial.
Hence by Theorem 4.2(i) in case n > 4 or by Theorem 2.3 (see Remark 4.3 above) in case

n = 4 the induced flexions D̃1f 12 and D̃2f 12 are proportional, i.e, there exists α such that

D1f 12 = αD2f 12.

Thus the surface f has the combined infinitesimal flexion Df that induces D1f 1 and
αD2f 2. This flexion is infinitesimally nontrivial, since the induced ones are infinitesimally
nontrivial. Hence f has at least one degree of infinitesimal flexibility.
On the other hand by Theorem 4.2(i) the surface f has at most one degree of infini-

tesimal flexibility. Hence f is infinitesimally flexible and has one degree of infinitesimal
flexibility. �

4.2.2. Finite case. We start with the following general statement on reparametrisation of
deformations.

Proposition 4.7. Let f be a strongly generic n-ribbon surface (n ≥ 2) in the space

C1,2,2,...,2,1([a, b],R3). Consider two regular isometric deformations γ1 and γ2 of f . Then

there exists a monotonous function ξ such that γ1(λ) = γ2(ξ(λ)) in some small neighbor-

hood of 0.

Proof. By Proposition 4.2(ii) there exists monotonous functions ξ1 and ξ2 such that γ1◦ξ1
and γ2 ◦ ξ2 are normalized isometric deformations of f . Hence by Theorem 4.4 in case
n ≥ 3 and Theorem 2.23 (see Remark 4.3 above) in case n = 2 we have

γ1 ◦ ξ1 = γ2 ◦ ξ2
in some neighborhood of 0. Set ξ = ξ2 ◦ ξ−1

1 . The function ξ is the monotonous function
such that γ1(λ) = γ2(ξ(λ)) in some small neighborhood of 0. �

Theorem 4.8. (Finite flexibility of combined semidiscrete surfaces.) Let n ≥ 4.
Consider a strongly generic n-ribbon semidiscrete surface f in C1,2,2,...,2,1

0 ([a, b],R3). Let

surfaces f 1 and f 2 defined by (18) be finitely flexible. Then f is finitely flexible and has

one degree of finite flexibility.

Proof. By Theorem 4.4(ii) the surfaces f 1 and f 2 have one degree of finite flexibility.
Therefore, there exist unique normalized isometric deformations γ1 and γ2 of f 1 and f 2

respectively. They induce two deformations γ̃1 and γ̃2 of the (n−2)-ribbon surface f 12.
By Proposition 4.7, since n−2 ≥ 2, these two deformations locally parameterize the same
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curve in C1,2,2,...,2,1
0 ([a, b],R3), i.e., in the segment [−ε, ε] for some ε > 0 there exists a

locally increasing function ξ such that γ̃1(λ) = γ̃2(ξ(λ)).
Now consider the deformation γ of the surface f inducing both isometric deformations

γ1 for f1 and γ2 ◦ ξ for f2 in the segment [−ε, ε] for some ε > 0. The deformation γ is
isometric, since the induced ones are isometric. In addition, γ is normalized, since its
restriction to f 1 is a normalized isometric deformation. Hence f is finitely flexible (and
not finitely rigid). Therefore, by Theorem 4.2(ii) f has one degree of finite flexibility. �

Remark 4.9. Note that the statements of Theorems 4.6 and 4.8 are no longer true for the
case n = 3. On the one hand every infinitesimally flexible (and, therefore, finitely flexible)
3-ribbon surface should satisfy a condition of Theorem 3.7, and, as it is easy to see, not
every strongly generic 3-ribbon surface satisfies it. Hence there are strongly generic rigid
3-ribbon surfaces. On the other hand every 2-ribbon subsurface is weakly generic and
hence it is finitely (and, therefore, infinitesimally) flexible. These two statements together
contradict to the version of the statement of Theorems 4.6 for the case n = 3.

4.3. An n-ribbon surface and its 3-ribbon subsurfaces. Let us finally describe a
relation between finite/infinitesimal flexibility of n-ribbon surfaces and finite/infinitesimal
flexibility of all 3-ribbon subsurfaces contained in them.

Theorem 4.10. Let n ≥ 4. Consider a strongly generic n-ribbon surface f in the space

C1,2,2,...,2,1
0 ([a, b],R3). Then f is infinitesimally flexible (and has one degree of infinitesimal

flexibility) if and only if every 3-ribbon surface contained in the surface is infinitesimally

flexible.

Proof. Let f be infinitesimally flexible. Therefore, there exists an infinitesimal flexion Df
that is isometrically nontrivial. Therefore, by Proposition 4.2(i) the flexion Df is strongly
isometrically nontrivial. Hence all its 3-ribbon surfaces are isometrically nontrivially flex-
ible.

Suppose now that all 3-ribbon subsurfaces in a strongly generic surface f are in-
finitesimally flexible. We prove that all k-ribbon surfaces are infinitesimally flexible for
k = 3, 4, . . . , n by induction in k.
Base of induction. The case k = 3 is tautological.
Step of induction. The k-th statement follows from the (k − 1)-th by Theorem 4.6.
Hence f is infinitesimally flexible. Therefore, by Theorem 4.4(i) f has one degree of

infinitesimal flexibility. �

For the finite flexibility we have the following.

Theorem 4.11. Let n ≥ 4. Consider a strongly generic n-ribbon surface f in the space

C1,2,2,...,2,1
0 ([a, b],R3). Then this surface is finitely flexible (and has one degree of flexibility)

if and only if every 3-ribbon surface contained in the surface is finitely flexible.

Remark 4.12. We think of this theorem as of a semidiscrete analogue to the statement of
the paper [2] on conjugate nets and all (3 × 3)-meshes that they contain. In this paper
we do not study phenomena related to non-compactness and hence we restrict ourselves
to the case of compact n-ribbons surfaces.



FINITE AND INFINITESIMAL FLEXIBILITY OF SEMIDISCRETE SURFACES 35

Proof. Let f be finitely flexible. Therefore there exists a regular isometric deformation γ
of f . Since γ is regular we have Dγf 6= 0. Since every finite flexion is infinitesimal flexion
we are in position to apply Proposition 4.2(i). We get that the flexion Dγf is strongly
isometrically nontrivial. Hence the induced isometric deformations of all 3-ribbon surfaces
have corresponding nontrivial finite flexions. Therefore, all 3-ribbon surfaces contained in
f are finitely flexible.

Suppose that all 3-ribbon subsurfaces in a strongly generic surface f are finitely flexible.
Let us prove that every k-ribbon surface in f is finitely flexible for k = 3, 4, . . . , n by
induction in k.
Base of induction. The case k = 3 is tautological.
Step of induction. The k-th statement follows from the (k − 1)-th by Theorem 4.8.
Hence f is finitely flexible. Therefore, by Theorem 4.4(ii) f has one degree of finite

flexibility. �

5. Isometric deformation of developable semidiscrete surfaces

Suppose that all ribbons of a semidiscrete surface are developable, i.e., the vectors ḟi,
∆fi, and ḟi+1 are linearly dependent. We call such semidiscrete surfaces developable. In
this section we describe an additional property for flexions of developable semidiscrete
surfaces. We start with 2-ribbon surfaces.
Recall that

H1 =
(ḟ1,∆ḟ0,∆f1) + (ḟ1,∆f0,∆ḟ1)

(ḟ1,∆f0,∆f1)

(as defined on page 28).

Proposition 5.1. Consider a developable weakly generic 2-ribbon semidiscrete surface f
in C1,2,1([a, b],R3). Let

ḟ0(t) = a(t)ḟ1(t) + b(t)∆f0(t) and ḟ2(t) = c(t)ḟ1(t) + d(t)∆f1(t).

Then we have

H1(t) = d(t)− b(t).

Proof. First, we have

(ḟ1,∆ḟ0,∆f1) = (ḟ1, ḟ1 − ḟ0,∆f1) = −(ḟ1, ḟ0,∆f1) = −(ḟ1, aḟ1 + b∆f0,∆f1)

= −b(ḟ1,∆f0,∆f1).

Secondly, in a similar way we get

(ḟ1,∆f0,∆ḟ1) = d(ḟ1,∆f0,∆f1).

Finally we have

H1 =
(ḟ1,∆ḟ0,∆f1) + (ḟ1,∆f0,∆ḟ1)

(ḟ1,∆f0,∆f1)
= d− b.

This concludes the proof. �
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This fact gives a surprising corollary concerning the flexion of a 2-ribbon developable
surface. Denote by α(t) the angle between ∆f0(t) and ∆f1(t).

Corollary 5.2. Let f be a weakly generic 2-ribbon developable surface in C1,2,1([a, b],R3).
Consider its isometric deformation γ. Let us choose the parameter λ of γ such that

cos(α(t0)) linearly depends on λ. Then for every t ∈ [a, b] the value cos(α(t)) linearly

depends on λ.

Proof. First of all, notice that

|∆f0||∆f1| cosα = 〈∆f0,∆f1〉 = Φ,

and hence

cosα =
Φ

|∆f0||∆f1|
.

By Proposition 3.2 and further by Proposition 5.1 we have

DγΦ(t1) = DγΦ(t0) · exp





t1
∫

t0

H1(t)dt



 = DγΦ(t0) · exp





t1
∫

t0

(d(t)− b(t))dt



.

Therefore, the ratio DγΦ(t1)/DγΦ(t0) is a nonzero constant that depends entirely on the
inner geometry of a 2-ribbon surface, but not on its embedding in R

3. Therefore, the ratio

cosα(t1)

cosα(t0)
=

DγΦ(t1)

DγΦ(t0)

|∆f0(t0)||∆f1(t0)|
|∆f0(t1)||∆f1(t1)|

is a nonzero constant that depends entirely on the inner geometry of a 2-ribbon surface
but not on its embedding in R

3 as well. This implies the statement of the corollary. �

In fact, Corollary 5.2 implies a similar statement for an isometric deformation of a
strongly generic n-ribbon developable surface.

Corollary 5.3. Consider a strongly generic finitely flexible n-ribbon developable surface

of f in C1,2,1([a, b],R3). Let γ be a nontrivial isometric deformation of f (i.e., Dγf 6= 0).
Then there exists a choice of the parameter λ of the deformation γ, such that for all

t ∈ [a, b] and i ∈ {1, . . . , n−1} all the cosines of the corresponding angles αi(t) linearly

depend on λ (here αi(t) denotes the angle between ∆fi(t) and ∆fi+1(t)). �
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van, G. M. Ziegler, (eds.), Series: Oberwolfach Seminars, v. 38 (2008), pp. 67–93.

[3] A. I. Bobenko, Yu. B. Suris, Discrete differential geometry. Integrable structure, Graduate Studies
in Mathematics, 98, American Mathematical Society, Providence, RI, 2008.
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