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ABSTRACT The aggregation and fibril deposition of amyloid proteins have been implicated in a range of neurodegenerative
and vascular diseases, and yet the underlyingmolecular mechanisms are poorly understood. Here, we use a combination of cell-
based assays, biophysical analysis, and atomic force microscopy to investigate the potential involvement of oxidative stress in
aortic medial amyloid (AMA) pathogenesis and deposition. We show that medin, the main constituent of AMA, can induce an
environment rich in oxidative species, increasing superoxide and reducing bioavailable nitric oxide in human cells. We investi-
gate the role that this oxidative environment may play in altering the aggregation process of medin and identify potential post-
translational modification sites where site-specific modification and interaction can be unambiguously demonstrated. In an
oxidizing environment, medin is nitrated at tyrosine and tryptophan residues, with resultant effects on morphology that lead
to longer fibrils with increased toxicity. This provides further motivation to investigate the role of oxidative stress in AMA
pathogenicity.
INTRODUCTION
Aortic medial amyloid (AMA) is found in 97% of Caucasian
individuals over the age of 50 and is the most common form
of localized amyloid. It is found in close association with the
internal elastic lamina, an elastin-rich layer that supports the
endothelium and allows for arterial stretch (1,2). The main
constituent of AMA is a 50 amino acid polypeptide called
medin (3). Experimental evidence suggests that prefibrillar
intermediates of medin are toxic to aortic endothelial cells
in vitro (4) and may underlie the pathogenesis of sporadic
thoracic aortic aneurysm in vivo through weakening of the
aortic wall (5). Molecular information about the mecha-
nisms that trigger medin aggregation and the formation of
insoluble fibrils is sparse. Posttranslational modifications
occur in vivo in many proteins and may represent a mecha-
nism for modulating fibril formation.

Oxidative or nitrative stress results when there is a loss of
balance between oxidant formation and antioxidant removal
through a defense mechanism (e.g., superoxide dismutase)
(6). When this physiological balance is weakened, nitroxida-
tive stress emerges and causes damage, including nitration of
tyrosine residues. Superoxide is produced in endothelial
cells, smooth muscle cells, and cardiomyocytes, and nitric
oxide (NO) plays a role in maintaining cellular homeostasis
in the cardiovascular system (7–9). Tyrosine nitration is a
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normal process, with low levels found in standard cells. How-
ever, elevated levels of 3-nitrotyrosine have been reported in
a range of human pathologies and animal models of diseases,
including atherosclerosis (10) and myocardial malfunction
(11), and upon aging (12). Nitration has been shown tomodu-
late the aggregation properties of proteins associated with
neurodegenerative diseases, such as tau (13), b-amyloid
(14), and a-synuclein (15,16), and has been identified in dis-
ease-associated amyloid deposits (17,18). Nitrotyrosine
levels are significantly higher in human atherosclerotic le-
sions associated with coronary heart disease, and decrease
after treatment with statin, an indirect antioxidant (19).

In this work, we assess a possible driving factor in amyloid
formation, specifically, whether nitration of medin alters its
in vitro aggregation and toxicological properties. As medin
is found in an environment rich with oxidative species, we
propose that nitration could play a role inmediating fibril for-
mation of the protein, as has been shown for other amyloid
proteins. We present data that suggest that medin could
induce oxidative conditions in vivo and investigate the role
that these conditions play in AMA pathogenicity.
MATERIALS AND METHODS

Expression of protein

Unlabeled and 13C, 15N isotope-labeled medin was expressed using pO-

PINS-medin in Lemo 21 (DE3) cells (20). Cells were induced at OD600

0.8–1.0 with isopropyl-b-D-thiogalacto-pyranoside (1 mM) for 16 h at

20�C. Cells were harvested by centrifugation (3,000� g, 20 min, 4�C). Pel-
lets were resuspended in 6 M guanidine hydrochloride (GdmCl), 0.5 M
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sodium phosphate, 20 mM NaCl, pH 8.0, and frozen at �20�C. The cells

were homogenized and cell debris was removed by centrifugation

(19,000 � g, 15 min, 4�C). The supernatant was loaded onto a 5 mL

Ni2þ-NTA column and washed with 4 column volumes (CV) of 6 M

GdmCl, pH 8, followed by 4 CV of 6 M GdmCl, pH 6. It was eluted with

3 CVof 6 M GdmCl, pH 2, and stored at �20�C. Fusion protein was buffer
exchanged into 20 mM Tris-Cl, 0.5 M NaCl, pH 7.4, and the His6-SUMO

tag was removed by incubation with SUMO protease I at 4�C for 3 h. The

cleavage mixture was then passed through a 5 mL Ni2þ-NTA column

and the flow-through containing medin was collected and characterized

by matrix-assisted laser desorption and ionization mass spectrometry.

Medin was buffer exchanged for different applications as described below.
NO and superoxide production

Human umbilical vein endothelial cells (HUVECs; Lonza, Walkersville,

MD; passages 4–10) were exposed to medin (0.1–5 mM in 20 mM sodium

phosphate, 20 mM NaCl, pH 7.4) for 20–24 h. NO gas was measured with

the use of a Sievers NO analyzer (GE Analytical Instruments, Boulder, CO)

and normalized to the cell count. In separate experiments, HUVECs were

treated for 60 min with medin (5 mM 5 pegylated superoxide dismutase

(PEGSOD, 300 U/mL)), as well as untreated media control. After

45 min, acetylcholine (10�4 M) was added to the treatment media and incu-

bated for the remaining 15 min. After treatment, the cells were washed with

cold PBS, fixed with 4% paraformaldehyde in PBS and cold 100% meth-

anol, and then washed again and stained in 5 mM dihydroethidium (Molec-

ular Probes, Eugene, OR). Coverslips were attached to slides with

SlowFade gold antifade reagent (Thermo Fisher Scientific, Waltham,

MA) and imaged on an EVOS FL Auto imaging system (Life Technologies,

Eugene, OR) using an RFP light cube (excitation 531/40, emission 593/40).

Images were analyzed using ImageJ Java-based image processing and anal-

ysis software (NIH, Bethesda, MD).
Nitration of medin

Nitration was carried out as previously described using peroxynitrite

(21,22). Medin was exchanged into nitration buffer (100 mM potassium

phosphate, 25 mM sodium bicarbonate, pH 7.4, 0.1 mM diethylenetriami-

nepentaacetic acid). Peroxynitrite (Cayman Chemical, Ann Arbor, MI) was

added to the required final molar ratio (0.5–50 excess for dot-blot, 10 excess

for all other experiments) and vortexed. Nitration was monitored by

measuring an increase in absorbance at 430 nm.
Mass spectrometry

Each sample was infused into the nano-electrospray source of the mass

spectrometer (Q-Tof micro; Waters, Hertfordshire, UK) at a flow rate of

50 mL/h via a gas-tight syringe. The positive ion mass spectrum of the

sample was scanned in the range of 80–2000 m/z using a scan time of

1 s and a data acquisition time of 5 min. MassLynx MaxEnt1 was then

used to convert the summed multiply charged spectrum to a molecular

mass spectrum.
Reverse-phase high-performance liquid
chromatography

Control or nitrated medin was digested for 16 h at 25�C with mass-

spectrometry-grade trypsin in the presence of 2 M urea. The resulting

peptides were made up to 0.5% (v/v) in trifluoroacetic acid (TFA), centri-

fuged at 10,000 � g for 5 min, and applied to an Agilent Eclipse C18

reverse-phase high-performance liquid chromatography (RP-HPLC)

column (100 � 2.1 mm) equilibrated in 0.08% TFA. Peptides were sepa-

rated with a two-part acetonitrile gradient in 0.08% TFA (0–40% over
Biophysical Journal 109(11) 2363–2370
25 min, and then 40–65% over 15 min). Elution was monitored at

214 nm.
NMR

For nitration analysis, spectra were acquired using 13C, 15N medin at 25�C
for 20 mMmedin in nitration buffer, pH 6.8, containing 10% (v/v) 2H2O on

a Bruker AVANCE III 600 MHz equipped with a 5 mm cryoprobe. 1H-15N

heteronuclear single quantum coherence (HSQC) spectra were collected

with 32 transients and a resolution of 20.3 Hz in the indirect dimension,

allowing clearly resolved backbone peaks to be obtained. 1H-13C aromatic

constant-time transverse-relaxation-optimized spectroscopy (CT-TROSY)

spectra were collected for the aromatic HC resonances with 32 transients

and a resolution of 45.27 Hz in the indirect dimension. Spectra were

collected after 1 h of incubation in nitration buffer 5 a 10-fold molar

excess of peroxynitrite. The sample pH was checked before each measure-

ment. Spectra were processed using Topspin 3.1 (Bruker) and assignment

was carried out in CCPN Analysis (23) using chemical-shift values from

Biological Magnetic Resonance Bank entry 26576 (24). The maximum

change in chemical shift was calculated based on a combination of proton

and nitrogen chemical-shift changes:

Dd ¼ �ðDHNÞ2 þ ð0:15DNHÞ2
�1=2

: (1)

Shifts considered noteworthy were identified as >1 SD for total shifts

observed.
Medin aggregation

Medin (control and nitrated) was buffer exchanged using a PD10 column

from nitration buffer into aggregation buffer (20 mM sodium phosphate,

20 mM NaCl, pH 7.4) and incubated at 20–50 mM at 37�C.
Thioflavin T (ThT) fluorescence assays were carried out on a Flexstation

3 microplate reader (Molecular Devices Ltd., Sunnyvale, CA) for 20 mM

medin with 2 mM ThT. Experiments were carried out in 96-well, black-

walled, clear-bottomed microplates. Data were recorded every 5 min using

the bottom read mode, with excitation at 450 nm and emission at 485 nm.

Synchrotron radiation circular dichroism (SRCD) spectra were acquired

for 50 mM medin in a 0.2 mm-pathlength quartz cuvette from 190 nm to

260 nm on beamline B23 of the Diamond Light Source (Oxford, UK)

(25), in 1 nm increments using a 0.5 mm slit width. Spectra were recorded

as the average of four scans and are presented after subtraction of buffer

control spectra.
Atomic force microscopy

After incubation at 50 mM at 37�C for 2 days, samples were incubated in 20

mL absorption buffer (10 mM Tris-HCl pH 7.5, 150 mM KCl, 25 mM

MgCl2) (26) on freshly cleaved mica for 15 min and then rinsed with sterile-

filtered deionized water before drying. Samples were imaged in PeakForce

QNMmode in air on a Bruker Multimode 8 atomic force microscope equip-

ped with a 160 mm scanner (J-scanner) using ScanAsyst-Air probes (k¼ 0.4

N/m). Images were recorded at 512 � 512 pixels and the atomic force mi-

croscopy (AFM) data were analyzed using the Bruker NanoScope analysis

software.
Cell viability

Primary human aortic smooth muscle cells (HAoSMCs; Promocell, Heidel-

berg, Germany) were plated on 96-well plates at 4000 cells/well and grown

for 24 h. Medin samples (control and nitrated, preincubated at 50 mM as

described above) were diluted to 20 mM in buffer and added to the cells.
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After incubation for 48 h, 10 mL of Cell Counting Kit-8 (CCK-8) solution

was added and further incubated for 2 h. Absorbance was then measured at

450 nm. Percentage cell viability was calculated based on the absorbance

measured relative to that of cells exposed to buffer alone.
RESULTS AND DISCUSSION

Addition of 5 mM medin to HUVECs caused a significant
increase in superoxide (O2

�) production (p ¼ 0.037;
Fig. 1 A), which was attenuated by addition of PEGSOD.
Addition of medin to HUVECs caused a concentration-
dependent decrease in NO production, with a significant
reduction for 5 mM medin (p ¼ 0.009; Fig. 1 B). NO can
be converted to various other reactive nitrogen species
(RNS) or reactive oxygen species (ROS) depending on the
microenvironment; therefore, the reduction in NO produc-
tion observed here is indicative of a reduction in bioavail-
able NO. In the presence of O2

�, NO can be converted
into peroxynitrite (ONOO�) (27) a powerful nitrating re-
agent in vivo (7). Taken together, these data show that
addition of 5 mM medin induced an increase in superoxide
(Fig. 1 A) and reduced bioavailable NO (Fig. 1 B) in
HUVECs, consistent with an increase in peroxynitrite
production. These data indicate that medin could induce
production of the components required for peroxynitrite
production in vivo, in turn providing an ROS/RNS-rich
environment that enhances the probability of tyrosine
nitration.

The gold standard assay for superoxide production using
dihydroethidium is HPLC (28,29), which was not used in
this study. Although fluorescence microscopy cannot distin-
guish between signals from 2-hydroxyethidium (produced
from interaction with superoxide anion) and ethidium (a
dihydroethidium product not related to superoxide produc-
tion), the reduction of signal in medin-treated cells cotreated
with PEGSOD (a modified metalloprotein that specifically
catalyzes the superoxide anion) suggests that the difference
in fluorescent signal is due to 2-hydroxyethidium and not
ethidium. This approach was previously used by other inves-
tigators to measure specifically superoxide production in
cells/tissues (30,31).
Medin has a single tyrosine residue at position 16, and
this residue was predicted to be nitrated (0.737, high-
threshold cutoff 0.725) using the GPS-YNO2 prediction
software (32). Further experiments provided experimental
proof that this residue undergoes nitration. Exposure to
peroxynitrite caused nitration to occur in a concentration-
dependent manner (0.5–50 excess), as assessed by an in-
crease in absorbance at 430 nm (33) and 3-nitrotyrosine
antibody reactivity (Fig. S1 in the Supporting Material).
Exposure to peroxynitrite can also cause nitration and
oxidation of tryptophan residues (34,35). An examination
of the peroxynitrite-treated medin sample (10 excess) by
electrospray ionization mass spectrometry suggested the
addition of 3NO2 groups (þ135 Da; Fig. 2) consistent
with nitration of all three susceptible residues (Y16, W11,
and W21). There was an additional peak (þ106 Da) that
could represent a subsequent loss of two oxygen and further
reduction (addition of two hydrogens, �~30 Da) due to
photodecomposition under electrospray ionization condi-
tions (Fig. 2 C, inset) (13,36). Alternatively, the peak
at þ106 could be derived from the addition of 2NO2

groups and a single tryptophan oxidation (37). Additional
peaks were likely due to additional oxidation events in a
small proportion of the sample. Trypsin digestion followed
by RP-HPLC and mass spectrometry of control medin pro-
duced three predominant peptides, with mass-spectrometry-
confirmed masses of 2841, 1145, and 968, corresponding to
residues 5–30, 31–41, and 42–50 (Fig. 2 B, peaks 1–3,
respectively). After nitration, peak 1 was broadened,
whereas the other peaks remained unaltered (Fig. 2 D), con-
firming that all modifications had occurred within the pep-
tide corresponding to residues 5–30, encompassing Y16,
W11, and W21.

To gain residue-specific information and confirm nitra-
tion of tryptophan residues, we obtained 1N-15N HSQC
spectra in nitration buffer before and after exposing the
protein to peroxynitrite (Fig. 3 A). We observed significant
changes in the 1N-15N HSQC spectrum upon exposure of
the protein to peroxynitrite, in particular complete loss of
some residues (notably Y16) and loss of intensity in others.
Chemical-shift perturbation analysis showed large shifts for
FIGURE 1 Effects of medin on NO and superox-

ide production from HUVECs. (A) Superoxide pro-

duced (hydroethidine fluorescence) after exposure

to 5 mM medin (5 PEGSOD) for 1 h relative to

vehicle control; mean 5 SEM is shown for n ¼ 5.

An increase in superoxide was observed upon addi-

tion of medin, attenuated by PEGSOD. (B) NO

produced after exposure to medin (0.1–5 mM) for

20–24 h relative to vehicle control; mean 5 SEM

is shown for n ¼ 4. A concentration-dependent

decrease in NO was observed upon medin addition.

Biophysical Journal 109(11) 2363–2370



FIGURE 2 Confirmation of a change in mass

after nitration. (A) The mass spectrum of control

medin showed a single peak corresponding to the

expected molecular weight of 5431. (B) RP-HPLC

5431 after trypsin digestion of control medin pro-

duced three peptides corresponding to residues 5–

30, 31–41, and 42–50 (labeled 1, 2, and 3, respec-

tively). (C) The mass spectrum of nitrated medin

showed some nonmodified medin remaining, with

additional peaks at 5537 and 5566 corresponding

to the addition of NO2 and O groups as suggested

in the table inset. (D) RP-HPLC of trypsin-digested

nitrated medin showed broadening of the peak cor-

responding to residues 5–30, peak 1. See Fig. S1 for

confirmation of the presence of 3-nitrotyrosine.
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residues surrounding Y16, in particular the neighboring res-
idues S15 and G17 (Fig. 3 B, dark box). Notable changes
(>1 SD away from the mean) were localized to a wider
region surrounding Y16, spanning residues F8–V24 and
incorporating the two tryptophan residues (Fig. 3 B, lighter
box).

Corresponding 1H-13C aromatic CT-TROSY spectra
mirrored the complete loss of Y16d and ε peaks after expo-
sure to peroxynitrite (Fig. 4 A), consistent with 3-nitrotyro-
sine formation (Fig. 4 B). Further changes were observed in
peaks corresponding to tryptophan residues (11,21),
including loss of intensity and minor shifts (Fig. 4 A). In
contrast to tyrosine, tryptophan has several sites for possible
modification (Fig. 4 C, red). Peaks corresponding to z3
showed complete loss of intensity, suggesting that this site
was modified (Fig. 4, A and C). However, peaks were not
observed for ε4 or ε1, and shift changes were noted for z2
and h; therefore, these cannot be ruled out as possible sites
for NO2 addition (Fig. 4 C). Additional signals exclusive to
the aromatic spectrum for nitrated medin were consistent
with predicted shifts for several nitrated species of trypto-
phan (Fig. 4 A, red). In contrast, phenylalanine peaks did
not show a loss of intensity or shift (Fig. 4 A) indicative
of a lack of modification of the bulk population.

To investigate whether nitration affected medin aggrega-
tion, we undertook an SRCD spectra analysis and investi-
gated fibril morphology using AFM. After nitration,
medin was buffer exchanged into aggregation buffer and
incubated at 37�C for up to 48 h. ThT fluorescence pre-
Biophysical Journal 109(11) 2363–2370
sented an increase in lag time and reduced final fluorescence
intensity for fibrillation of nitrated medin compared with
control medin (Fig. 5 A). The SRCD spectra analysis
showed that initially, medin and nitrated medin had similar
secondary structure profiles (Fig. 5 B). However, upon ag-
gregation, the spectra showed some differences, particularly
at the lower wavelength, suggesting some change (albeit mi-
nor) in secondary structure (Fig. 5 B). AFM revealed that
longer fibrils with a different morphology were formed after
nitration (several micrometers in length) compared with
control fibrils (up to 1 mm in length; Fig. 5 C). Control
medin fibrils displayed height periodicity along the length
of the fibrils (Fig. S2), whereas no periodicity was observed
for nitrated samples, confirming a different morphology for
fibrils formed from nitrated protein compared with control
medin. Reduced final ThT fluorescence suggested fibrils
with altered morphology in nitrated samples, consistent
with the AFM analysis (Fig. 5, A and C). It is noted that
the longer fibrils observed by AFM do not fit with the
reduced b-sheet structure observed by SRCD; however, as
SRCD only measures protein structure in solution, we spec-
ulate that the larger fibrils observed by AFM could be under-
represented in the SRCD analysis. Both freshly purified
control and nitrated medin showed toxicity to human aortic
smooth muscle cells, with ~80–85% cell viability (Fig. 5D).
After aggregation, control medin exhibited less toxicity to
cells and ~90% cell viability was observed, consistent
with previous findings (4,5). Aggregated nitrated medin
showed enhanced cell toxicity compared with aggregated



FIGURE 3 NMR spectra showed site-specific changes after nitration of

medin. (A) Assigned 1H-15N HSQC spectra for control medin (green) and

after exposure to peroxynitrite (red). Residues surrounding the site of nitra-

tion (Y16, blue arrow) are shown in bold. Spectra were collected in nitra-

tion buffer at pH 6.8 (100 mM potassium phosphate, 25 mM sodium

bicarbonate, 0.1 mM diethylenetriaminepentaacetic acid). (B) Plot showing

the chemical-shift (d) differences between 1H-15N HSQC spectra for con-

trol and nitrated medin: 1 and 2 SDs from the mean are shown as dotted

and dashed lines, respectively, and the asterisks indicate NH peaks that

cannot be observed in the nitrated form. In the region immediately sur-

rounding the site of nitration (G14-N18), all residues were >2 SDs or dis-

appeared (dark box), and the region F8-V24 encompassing all shifts was>1

SD from the mean (lighter box).

FIGURE 4 Site-specific changes of aromatic residues after nitration of

medin. (A) 1H-13C aromatic CT-TROSY spectra for control medin (green)

and after exposure to peroxynitrite (red). (B) Structure of 3-nitrotyrosine,

with an additional NO2 group shown in red. (C) Structure of tryptophan

with possible sites for addition of NO2 groups indicated by numbers in red.
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control medin (Fig. 5 D). This difference was not signifi-
cant; however, nitrated samples (freshly prepared and aggre-
gated) showed increased variability in cell viability, leading
to increased SEM values compared with control medin.
CONCLUSIONS

To investigate methods of manipulating the aggregation of
medin and other amyloid proteins, it is essential to under-
stand the residues that are involved in early interactions,
since the aggregation intermediates of medin and other
amyloid proteins are implicated in pathogenicity (5,38).
Several approaches have been applied to probe soluble
structures and the role of intermediate conformations for a
range of amyloid proteins (39–43). However, a routine
and robust method for obtaining site-specific structural in-
formation for soluble phases of amyloid-forming proteins
is not readily available. Here, we used NMR to identify tyro-
sine and tryptophan side chains as the site of nitration of
medin after exposure to peroxynitrite. Nitration hinders
the rotation of the tyrosine ring, affecting its hydrogen-
bonding ability and hydrophobicity. Tryptophan nitration
is not as well documented as tyrosine nitration, possibly
because tryptophan residues are more often found buried in-
side proteins (hydrophobicity index of 97 at pH 7), whereas
tyrosine residues are more often surface exposed (hydropho-
bicity index of 63 at pH 7). This means that tyrosine residues
are more readily available for nitration; however, surface-
exposed tryptophan residues have been postulated to partic-
ipate in the interaction of proteins with other molecules,
suggesting that modification of tryptophan may modulate
Biophysical Journal 109(11) 2363–2370



FIGURE 5 Aggregation of medin after exposure

to peroxynitrite. (A) ThT fluorescence after aggre-

gation of control (black) and nitrated (gray) medin

over 48 h at 37�C, n ¼ 6. (B) SRCD spectra for

freshly prepared samples and after incubation for

48 h (aggregated). (C) AFM topographs for control

and nitrated medin after incubation for 48 h at 37�C.
See also Fig. S2 for periodicity measurements. (D)

Cell viability of HAoSMC after exposure to freshly

prepared and aggregated control and nitrated medin,

as determined by CCK-8 assay; mean 5 SEM

is shown for n ¼ 5. To see this figure in color, go

online.
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these interactions. The NMR data presented here suggest
that medin is predominantly unfolded in its soluble form,
and therefore all residues are likely to be accessible for
nitration and oxidation.

The main aggregation-promoting region is thought to
be the C-terminal 18–19 residues of medin (44). However,
residues 9–14 and 20–23, which encompass most of the
region shown here to have altered chemical shifts upon
nitration (Fig. 3 B), have also been predicted to be aggre-
gation-prone regions (45). Taken together, these observa-
tions suggest that interactions within this region may be
the driving factor through which nitration alters the fibril-
lation kinetics and morphology of medin, and provide
further avenues to investigate the aggregation mechanism
of this protein.

Tyrosine nitration has been shown to lead to structural
and functional changes in proteins, which can contribute
to altered cell and tissue homeostasis (46). Previous exper-
iments involving exposure of other amyloid-forming pro-
teins (e.g., a-synuclein and tau) to nitrating agents in vitro
showed altered aggregation pathways, with enhanced oligo-
merization (13,21) and reduced fibrillization (15,16). The
data presented here are consistent with a similar mode
of action of nitration on the aggregation of medin, with
altered fibril morphology (ThT fluorescence and AFM)
and enhanced toxicity to smooth muscle cells. Aneurysms
often occur in the aorta because it gets too stiff and cannot
cope with the stroke volume every time the heart pumps. We
speculate that this enhanced toxicity may contribute to the
pathology, with AMA in elastic lamina stiffening the artery,
causing destruction of smooth muscle cells and thus leading
to weakening of the vessel wall.
Biophysical Journal 109(11) 2363–2370
Various nitrated proteins have been identified in cardio-
vascular vessel walls, such as apolipoprotein B in aortic
lesions (47). Here, we have shown that medin can induce
oxidative stress conditions within HUVECs (Fig. 1), and
that exposure to oxidative conditions alters the rate of medin
aggregation in vitro and globally changes its structure and
morphology, with alterations in toxicity. A similar induction
of oxidative stress markers was previously observed and
proposed as a pathogenic mechanism for amyloidogenic
light-chain proteins (48). NMR is able to detect site-specific
changes associated with posttranslational modifications
(49–51). The NMR approaches described in this work
elegantly demonstrate how this technique can detect sites
of chemical modification and identify which regions of
the protein are responsible for causing protein aggrega-
tion, and hence provide, to our knowledge, a new avenue
for exploring the involvement of ROS and RNS in AMA
deposition.
SUPPORTING MATERIAL

Supporting Materials and Methods and two figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(15)01110-8.
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