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Abstract 

Investigation of faecal volatile organic compounds as biomarkers for the diagnosis of 
necrotising enterocolitis 

Thesis submitted to the University of Liverpool for the degree of Master of Philosophy in 
the Institute of Translational Medicine by Arnaud Mayor. 

September 2015 

Necrotising enterocolitis (NEC) is the most prevalent and harmful illness in the neonatal 
intensive care unit. It primarily affects premature babies, with higher incidence in low birth-
weight patients. NEC usually occurs in the early days of life and may develop rapidly. Its 
diagnosis is based on medical observation because no early diagnostic tool is currently 
available. 

Over the last two decades, developments in analytical chemistry have allowed scientists to 
perform untargeted investigation of biological samples. Biomarkers are being sought, for a 
range of disorders, by investigating volatile organic compounds (VOCs) in bio-fluids. For the 
analysis of gas samples, solid phase micro-extraction (SPME) is a suitable technique to pre-
concentrate volatile compounds prior to analysis using devices such as gas chromatography 
– mass spectrometry (GC–MS). Recently, much attention has been directed towards the 
development of sensors and electronic noses to be used as diagnostic tools in hospitals, as 
they are generally more compact than a GC-MS and do not require specialised personnel. 

The work presented here is based on the hypothesis that faeces from patients suffering 
from necrotising enterocolitis show a specific pattern of volatile organic compounds in the 
days prior to diagnosis when compared with faeces from healthy patients. The objectives of 
this work were to develop two methods for the analysis of premature faeces using 
headspace–SPME–GC–MS and headspace – gas chromatography – sensor (HS–GC–Sensor), 
to analyse samples from healthy premature infants and premature infants affected by NEC 
using both instruments and to analyse the data collected. 

Methods were developed individually for each analytical technique. Two pipelines were 
applied for mass spectrometric data analysis while classification models were exclusively 
built using sensor data. 

Results obtained from HS–SPME–GC–MS data showed that the age at sampling had an 
influence on the number of compounds identified and on their intensities or relative 
abundance. Heptanal, 2-E-pentenal, hexanal and 2-methylbutanoic acid were identified as 
relevant compounds. Classifiers were built at days 1 to 6 prior to diagnosis. Accuracy, 
sensitivity and specificity of up to 74%, 62% and 79%, respectively, were obtained one day 
prior to diagnosis based on mass spectrometric data, while accuracy, sensitivity and 
specificity of 100% were obtained based on sensor data at two days prior to diagnosis. 
Therefore, classification of samples based on headspace analysis of faeces might have 
potential for the early diagnosis of necrotising enterocolitis. 
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This thesis assesses the differences between faecal volatile organic compounds from 

preterm human babies with and without necrotising enterocolitis. For this, two analytical 

platforms have been used: headspace–solid phase micro extraction–gas chromatography–

mass spectrometry (HS–SPME–GC–MS) and headspace–gas chromatography–sensor (HS–

GC–Sensor). 

1.1 Necrotising enterocolitis 

Necrotising enterocolitis (NEC) is a gastrointestinal disorder characterized by the necrosis 

of the gut barrier. Prior to necrosis, bloody stools and abdominal distension is often 

observed and babies usually have difficulty feeding and may vomit. NEC may occur 

throughout the whole gastrointestinal tract and complications may affect distant organs 

such as the brain, causing delay in infant development.[1]–[3] 

NEC is a common illness in neonatal intensive care units (NICU) worldwide.[3] It may be the 

final stage of several disorders rather than a define illness. It mostly affects premature 

neonates, although 5% to 25% of infants diagnosed with NEC are not premature. In most 

cases the illness is linked to other health conditions, such as congenital heart disease, 

perinatal asphyxia or maternal drug abuse.[2]–[6] The first recorded observation dates to 

1820-30 in Paris[2]; however, the name of the disease first appeared only in the 1950s.[4] 

NEC cases remained rare until the late 1960s because of the high mortality rate in NICUs 

worldwide,[2] mainly due to respiratory issues. Further, clinical presentation in 2015 is very 

different than it was in the past. 

Necrotising enterocolitis has an incidence that is inversely proportional to birth weight.[3] 

It affects about 1 neonate per 1000 live births in US[7] and 0.3 neonate per 1000 live births 

in the UK and Ireland[5]. A Swedish study covering 22 years (1987-2009) of data collection 

from new born infants showed an overall incidence rate of 0.34 per 1000 live births.[5] 

When this dataset was divided into the four time periods of 1987-1992, 1993-1998, 1999-

2004 and 2005-2009, the incidence rates were 0.26, 0.22, 0.35 and 0.57 per 1000 live 

births, respectively. This increase in the incidence of NEC in more recent years may be a 

result of the higher survival rate in preterm infants associated with improvements in NICU 

facilities.[5] 
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When analysing preterm infants with a period of gestation of less than 33 weeks, a 

Canadian study revealed that, on average, 5.1% of the babies contracted NEC with variable 

incidence between NICUs ranging from 1.3% to 12.9%.[8] Ahle et alia (et al.) have found 

that when the gestation period was less than 28 weeks NEC occurred in 4.6% of the infants 

in Sweden. They reported no geographical variation across Sweden, except in Stockholm, 

where the incidence rate was higher than elsewhere[5]. 

Globally, the death rate from NEC ranges from 20% to 50%[3], [4]. In the US, in 2000, this 

percentage was slightly lower at 14%.[7] Meanwhile, in Canada, between 2003 and 2008, 

the mortality rate was 25%.[8] 

1.1.1 Pathogenesis 

The biological mechanisms, which result in the development of NEC, are incompletely 

understood. It has been postulated that multiple factors, such as intestinal immaturity and 

the microbial colonization of the gut[2]–[4], [6], intestinal ischaemia, genetic predisposition 

or formula feeding[2], [9], may be involved. However, their interactions and time lines 

remain unknown.[2]–[4] It has also been suggested that NEC might be the final outcome of 

multiple diseases and not a single specific disease.[2] This observation may impact the 

volatile organic compounds present in faeces. 

A chain reaction leading to necrosis of the gut barrier has been postulated. The immune 

system associated with the gut mucosa is immature in premature babies, and it cannot 

accommodate the colonization by every species of bacteria. Some bacteria may damage 

the intestinal epithelium causing mucosal inflammation and consequent overproduction of 

inflammatory factors. These inflammatory factors may then damage the epithelial 

barrier.[6] This hypothesis is supported by two facts, firstly, NEC mainly appears after 8 to 

10 days of life[3], a period that coincides with the gut colonization by external bacteria[6], 

and secondly animal models in a germ free environment do not develop NEC.[3] 

Several bacteria have been observed in the preterm gut, however, none is found 

consistently.[3] Escherichia, Staphylococcus, Enterococcus, Clostridium and Streptococcus 

have been described as the most common bacteria associated with NEC.[4], [6] Studies 

have, however, shown discordant results as the same species have been observed in both 

unhealthy and healthy patients. Grishin et al. suggested that specific strains of bacteria, 

rather than genera or species, might be the origin of the inflammation.[6]  
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The first bacteria to reach the gut, or first colonizers, may differ between individuals. 

Animal models demonstrated that diverse microbiota were observed despite being in a 

controlled environment.[6] The early microbiota generally shows low complexity (rarely 

more than 10 species) and low fluidity. The number and variety of bacterial species in the 

gut consistently increases until 1 year of age, when it finally stabilizes.[6] 

1.1.2 Diagnosis 

Currently, no early diagnostic methods for NEC exist. The diagnosis is clinical and is based 

on several symptoms such as feed intolerance, abdominal distention and/or bloody stools. 

However, healthy infants with very low weight may also present some of these 

symptoms.[3] Other symptoms, including apnoea, lethargy, respiratory failure and 

circulatory instability, have also been associated with NEC patients.[4]  

Radiography of the bowel region shows pneumatosis intestinalis in 70 to 80% of the 

infected infants.[4] Pneumatosis intestinalis is the formation of hydrogen cysts, which are a 

cluster of cells forming a sac in the bowel wall.[10] The hydrogen is thought to have a 

bacterial origin.[4] A second radiographic sign of NEC disease is the accumulation of gas in 

the portal vein.[3], [11], [12] Observation of radiographic signs are considered to be final 

diagnostic signs according to Bell’s staging criteria.[4] The Bell’s staging criteria define NEC 

severity based on systemic, intestinal and radiological signs. It is rated as follows: I 

(suspected), II (definite) and III (advanced), and two sub-classes at each stage, A and B, 

where B is more advanced than A, but not sufficiently to induce a change of stage. Blood is 

observed in the stool from stage I.A; from stage II.A, pneumatosis intestinalis and 

abdominal tenderness are observed; from stage III.A, definite peritoneal cavity fluid, 

distension of abdomen, respiratory and medical acidosis are observed.[13] 

1.1.3 Treatment 

Medical interventions performed in NEC cases are essentially abdominal decompression, 

bowel rest, use of a broad spectrum intravenous antibiotics and parenteral, or intravenous, 

nutrition[3], [4]. The use of antibiotics is common practice for the treatment of NEC. 

Antibiotics administered may vary between NICUs. Enteral antibiotics demonstrated a 

positive effect on patients to prevent NEC, however their use must be controlled in order 

to prevent bacterial resistance development[4]. In addition, prolonged use of antibiotics 

may intensify the disease[3].  
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It is recognized that a complete restriction of enteral feeding may lead to the development 

of more severe NEC. Small amounts of breast milk given enterally may reduce the incidence 

of NEC[3], [9]. Formula feeding is an important risk factor because of the lack of immune-

protective factors[2], [6], [9]. The current recommendation is to feed premature infants 

with small amounts of breast milk, which may prevent NEC and show other beneficial 

effects[3], [9]. 

Between 27 and 63% of affected infants need a surgical procedure[4]. Placement of a 

peritoneal drain without laparotomy has been used, although the literature suggests that 

mortality rate increases with this practice in comparison to laparotomy. Neu and Walker 

showed that several cases required laparotomy after a peritoneal drainage[3]. Exploratory 

laparotomy with resection of diseased bowel can be performed[3]. 

1.1.4 Prevention 

Several techniques have been explored to prevent NEC cases, many of them being related 

to food intake. Breast milk supplemented with L-arginine and egg phospholipid has been 

suggested. However, the amount of data currently available is insufficient for an accurate 

assessment of the practice[4], [9]. Trophic feeds do not seem to increase the incidence of 

NEC, however, as with L-arginine supplementation, more work needs to be performed for a 

final conclusion. The use of probiotics has been shown to reduce significantly the mortality 

and incidence of severe NEC. Although this conclusion was drawn in a meta-analysis 

research comparing several studies including more than 2700 preterm infants, additional 

studies are still required before probiotics can become part of the standard procedure for 

NEC cases[14]. 

Fluid restriction, antenatal steroids and enteral administration of antibiotics have been 

suggested as potential prevention strategies[4], [9]. The latter is not recommended as it 

may increase the number of resistant bacteria. Antenatal steroids are recommended for 

lung disease as they improve lung mechanics and gas exchange by increasing surfactant 

production and enhancing response to surfactant treatment in neonates. Thus, the 

incidence of respiratory distress syndrome is reduced. Antenatal steroids also upregulate 

the gene expression for the epithelial Na+ (sodium) channel present in the colon, therefore 

improving the salt homeostasis.[15]  
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1.2 Volatile organic compounds 

Volatile organic compounds (VOCs) are a group of organic molecules characterized by their 

low vapour pressure. They are mainly, but not exclusively, carbon based and all functional 

groups are represented. These compounds can have natural or synthetic origin.[16] They 

are intermediates of metabolic pathways, thus, their abundances in bio-fluids reflect the 

current state of the body.[17] This concept is not recent. Hippocrates, in Ancient Greece, 

suggested smelling a patients’ breath in order to diagnose potential disorders.[18] 

Furthermore, the smell is a known diagnostic tool in traditional Chinese medicine[19] and, 

more recently, nurses reported differences in the odour of faeces and urine samples from 

patients with urological and gastrointestinal disorders.[20], [21] 

1.2.1 Canine detection 

The dog’s sensitive olfactory apparatus is able to detect compounds down to a few parts 

per trillion (ppt). Dogs have been used for avalanche victim rescue for decades[22] and are 

now emerging in medical diagnosis. Several studies have shown that canines are able to 

differentiate between patients with different diseases. Dogs have successfully identified 

samples from human patients with prostate cancer and healthy patients (sensitivity and 

specificity of 91%).[23] However, the use of dogs in medical diagnosis has been criticized. 

Elliker and co-workers [24] have shown that the failure rate can be high, 70% in their study. 

In addition, no dog was able to recognize prostate cancer samples during further double-

blind testing.[24] In several studies dogs are trained to differentiate cancer patients from 

healthy patients, instead of identifying samples’ from different diseases.[25] Nevertheless, 

if dogs are able to discriminate between samples based on their scents, it indicates that 

analytical devices may, potentially, detect the compounds associated with different 

diseases and be used as diagnostic tools. 
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1.2.2 Applications 

Several studies have applied various analytical approaches to search for disease-specific 

biomarkers from bio-fluids or human tissue. Although many have found significant 

differences in VOC abundances between disease and control groups [26]–[32], few studies 

have resulted an application using VOC biomarkers. Examples of application of VOC 

detection used in clinical practice are the Gastro+ Gastrolyzer® and GastroCH4ECK 

Gastrolyzer® from Bedfont® Scientific Ltd.[33] Gastro+ detects H2 while GastroCH4ECK 

detects H2, CH4 and O2 abundances in patients’ breath. Both use H2 detection to diagnose 

carbohydrate malabsorption, lactose intolerance and other gastrointestinal conditions. 

However, GastroCH4ECK makes use of methane in addition to H2, which ensures that 

patients not producing hydrogen can also be diagnosed.[34], [35] 

The lack of application of VOC biomarkers is partially due to insufficient method validation 

and standardisation, high sample variability and compound prevalence across 

biofluids.[36], [37] For example, results of small cohort studies must agree with larger scale 

studies and results must be reproducible across laboratories. For this reason, It has been 

postulated that experts in medical VOC analysis could develop guidelines for standardizing 

methods and practices.[37] The variation between individuals and the fact that a single 

compound can be involved in several metabolic pathways makes it difficult to identify 

disease specific biomarkers. Therefore, it has been suggested that chromatogram patterns 

may be used for diagnosis instead of single identified compounds.[37] 

1.2.3 Bio-fluids analysis 

Biomarkers may be found in many bio-fluids; breath, urine, blood and faeces being, 

perhaps, the most commonly analysed. Breath is mainly composed of oxygen, nitrogen and 

carbon dioxide; however, several VOCs reach the breath from blood via the lungs. VOCs can 

be found in breath in concentrations of parts per million (ppm) to parts per trillion.[36]  
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Breath samples are easily available in almost all patients’ conditions and matrix effects are 

minimal. Figure 1 defines the matrix. Breath analysis can be non-invasive, does not need 

any preparative steps before analysis by techniques such as GC–MS and GC–Sensors, and 

can be monitored on-line. For these reasons, breath analysis has potential as a diagnostic 

tool. An example of successful breath analysis is the study performed by Phillips et al., 

where a model using 30 VOCs allowed classification of patients with lung cancer and 

healthy patients with a sensitivity and specificity of 84.5% and 81%, respectively.[38] 

 

Figure 1: Illustration of the matrix in a sample. Considering that the black rectangle is a sample and 

the blue circles are the molecules of interest, or analytes, the matrix is represented by the grey zone 

which represents all molecules which are not targeted by the experiment. 

Analyses of urine samples have suggested that 2-methyl-3-phenyl-2-propenal, p-cymene, 

anisole, 4-methylphenol and 1,2-dihydro-1,1,6-trimethylnaphtalene could be used as 

potential biomarker for leukaemia, colorectal cancer and lymphoma.[39] Urine samples are 

non-invasive, making them easy and comfortable for patients to collect and they can be 

analysed without additional sample preparation steps. Major disadvantages of urine 

analysis are its matrix complexity[40] and the non-availability of the samples in some 

medical conditions.  

Blood and serum have been widely used for diagnosis. Blood connects every organ and 

therefore carries molecules around the body. Wang et al.[41] have shown that phenyl 

methylcarbamate, ethylhexanol and 6-t-butyl-2,2,9,9-tetramethyl-3,5-decadien-7-yne 

could be used as biomarkers for colorectal cancer. This study involved 16 patients with 

colorectal cancer and 20 healthy patients. Wilcock et al.[42] have analysed samples from 

12 preterm neonates, of which 5 developed NEC, and from 8 term neonates using a GC–

MS. Differences were identified between samples from preterm and term neonates as well 

as between samples from patients suffering from NEC and healthy preterm patients. 

Nevertheless, the discriminating power of the study was not sufficient to consider the 

proposed compounds as potential biomarkers. A drawback of blood analysis is the invasive 

nature of the procedure to collect samples, making it less desirable for diagnosis methods, 

especially for babies and children. 
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There is an increasing interest in VOCs from faeces because these VOCs are linked to the 

gut microbiota and faeces collection is non-invasive. VOCs in faeces are, therefore, 

potential candidates for diagnosing several gastrointestinal disorders.[43] Their analysis for 

this purpose is recent and few articles have been published. Table 1 presents a summary of 

the literature review on the topic. Garner et al. published two pilot studies[26], [44], in 

which they aimed to differentiate faecal samples from healthy patients and patients with 

NEC and with cholera. Su Yin Ng et al. analysed samples from 16 patients, 8 were diagnosed 

to be Cryptosporidium positive and 8 negative.[28] Ponnusamy et al. studied samples from 

11 patients with irritable bowel syndrome and 8 healthy patients.[29] Jenner et al. 

characterised human faecal water from 5 healthy patients.[30] De Lacy Costello et al. 

studied samples from 10 adults and 7 neonates aiming to determine differences between 

these two groups.[27] Di Cagno et al. compared three groups of 7 patients aged between 6 

and 12 years old to study the effect of a gluten-free diet on the gut microbiota.[31] Rafter 

et al. studied differences in VOCs in faecal water from 20 patients divided into two groups 

placed on a high-fat, low-calcium and low-fibre diet versus low-fat, high-calcium and high-

fibre diet for 4 days.[32] Most articles reported relevant results, however, there is a clear 

need for larger scale studies in order to achieve a reliable conclusion. The size of the study 

needs to be appropriate when considering the sex and age ranges of the subjects studied 

and variables specific to the research performed. Below further publications with higher 

sample sizes are presented. 

De Meij et al. analysed faecal samples from 13 patients suffering from NEC, 31 suffering 

from sepsis and 14 controls using an e-nose (see 1.4 for sensor description). Preterm 

neonates with gestational age of less than 30 weeks were recruited from 3 institutions over 

7 months. A total of 123 samples were divided in 3 time windows: (1) the day of diagnosis 

and 1 day before diagnosis; (2) 2 and 3 days before diagnosis; and (3) 4 and 5 days before 

diagnosis. Sensitivity and specificity when samples from NEC patients were compared to 

samples from matched control were of 88.9% and 88.9%, respectively, for the time window 

(1) and of 83.3% and 75.0%, respectively, for the time window (2). When comparing 

samples from NEC patients and patients suffering from sepsis, sensitivity and specificity 

were of 88.9% and 56.5%, respectively, for the time window (1) and of 83.3% and 75.0%, 

respectively, for the time window (2).[45] 
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Walton et al. analysed samples from 87 patients divided into 4 groups: healthy volunteers, 

Crohn’s disease, ulcerative colitis and irritable bowel syndrome patients with 19 (11/8), 26 

(4/22), 20 (12/8) and 22 (8/14) patients (males/females), respectively.[46]  

Diagnosis was made by standard diagnostic criteria. Results showed that butanoic acid, 1-

propanol, propanoic acid ethyl ester, butanoic acid methyl ester, butanoic acid ethyl ester, 

indole, 1-butanol, butanoic acid 3-methyl and phenol compounds were significantly 

different (p<0.05) between the four groups with a Kruskal-Wallis test. A post-hoc test 

showed that the difference was always, and only, between Crohn’s disease patients and 

the healthy volunteer. 

Garner et al. analysed samples from 31 patients with Campylobacter jejuni infection, 22 

with Clostridium difficile infection and 18 with ulcerative colitis, recruited from two 

hospitals, and 30 asymptomatic donors recruited elsewhere.[47] VOCs origins have been 

hypothesized, based on further analysis with carbon13 labelling and 10 asymptomatic 

donors gave 5 samples over 2 weeks to assess dietary effects on VOCs. The analysis 

performed using SPME–GC–MS on fresh and frozen samples showed no difference. Results 

with [1-13C] butanoic acid addition showed an increase of 13C butanol and some esters 

derived from butanoic acid. These results suggest that, during the incubation time, 

reduction or oxidation reactions may occur. On 297 VOCs identified in total (median of 101 

VOCs per sample), 44 compounds were found in 80% of the asymptomatic donors. The 

similarity in the number of carbon groups across acids, aldehydes and alcohol suggests that 

they may be oxidized or reduced from one another. The study was a longitudinal study, 

using several donors and the abundance of most compounds remained stable, suggesting 

little day-to-day variation. Finally, using discriminant analysis, the 4 groups of patients have 

been separated with 100% predictive accuracy and 96% predictive accuracy with a cross-

classification and leave-one-out validation method. 

De Meij et al. recruited 157 patients undergoing endoscopic investigation for colorectal 

disease, from two institutions in the same city.[48] Patients were divided into three groups: 

colorectal cancer, advanced adenomas and healthy individuals, with 40, 60 and 57 patients 

respectively and a median age of 38, 66 and 69 years, respectively.  
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Samples were analysed using Thermal Desorption–GC–MS (TD–GC–MS). The sensitivity and 

specificity of the results obtained with an e-noise while comparing colorectal cancer and 

healthy patients were 85% and 87%, respectively and while comparing advanced adenomas 

and healthy individuals, they were 62% and 86%, respectively. Results obtained with 

immunochemical tests were not shown as they differed too much, possibly because of the 

duration of sample storage. 

Table 1: Summary of the literature review. 

Reference 
Method / 
Instruments 

Number of 
patients 

Topic Outcome 

Garner et al. 
[44] 

SPME-GC-MS 13 NEC 
Differences in 
patterns 

Garner et al. 
[26] 

SPME-GC-MS 9 Cholera 
2 compounds 
identified for 
discrimination 

Su Yin Ng et al. 
[28] 

Derivatization 
followed by GC-
MS 

16 Cryptosporidium 
Differences in 
patterns 

Ponnusamy et 
al. [29] 

Derivatization 
followed by GC-
MS 

19 
Irritable bowel 
syndrome 

Differences in 
patterns 

Jenner et al. 
[30] 

Derivatization 
followed by GC-
MS 

5 
Human faecal 
water 

Characterisation 
of aromatic 
compounds 

De Lacy Costello 
et al. [27] 

SPME-GC-MS 17 

Adults 
compared to 
neonates 
samples 

Fewer 
compounds in 
neonates 
samples 

Di Cagno et al. 
[31] 

SPME-GC-MS 21 
Gluten free diet 
on celiac 
patients 

Differences in 
patterns 

Rafter et al. [32] GC-MS 20 
Diet influence 
on compounds 
present in faeces 

No differences 
in fatty acid 
concentration 

De Meij et al. 
[45] 

E-nose 58 NEC and sepsis 
Differences 
using classifier 
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Walton et al. 
[46] 

TD-GC-MS 87 

Crohn’s disease, 
ulcerative colitis 
and irritable 
bowel syndrome 

Few compounds 
identified 
showed 
differences 

Garner et al. 
[47] 

SPME-GC-MS 101 

Campylobacter 
jejuni, 
Clostridium 
difficile and 
ulcerative colitis 

Differences 
using classifier 

De Meij et al. 
[48] 

E-nose 157 

Colorectal 
cancer and 
advanced 
adenomas 

Differences 
using classifier 

Table presenting a summary of the literature investigating VOCs in faecal samples. 

1.2.4 Derivatization 

Derivatization of samples prior to analysis is performed in some studies involving VOCs. It 

improves chromatographic separation by reducing the polarity of the compounds and/or 

enhancing their volatility, which allows the analysis of non-volatile compounds.[49], [50] 

Therefore, if the compounds of interest cannot be analysed using a gas chromatography 

they may be derivatized to allow their analysis. However, derivatization is time-consuming, 

introduces additional variability due to manual procedures and may result in contamination 

and side products added to the samples.[51] In addition, the complex steps involved in 

derivatization limit its use by nurses and compromise its application for on-site diagnostic 

tools. 

1.2.5 Contaminants 

Avoiding contamination in gas analysis is a constant challenge because of the difficulty, 

often impossibility, of isolating the samples from environmental air. This is a particular 

issue in breath analysis, where patients breathe constantly and incorporate compounds 

present in the environment. Usually, these compounds are present in higher 

concentrations in the air than in the patients’ breath.[21] Environmental contaminations 

are less common when analysing other bio-fluids, but it may nevertheless occur. Therefore, 

a regular analysis of the environmental air can be applied to detect any potential 

contaminants introduced in the analysis. Procedures and treatments given to patients may 

also be source of contamination which could be misinterpreted as disease indicators. 
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 Containers made of plastic can be a source of contamination by carbon based polymers 

and compounds originating from these polymers .[21], [27], [52], [53] Plastic containers, 

tubing and other plastic pieces of equipment should be avoided. Solvents, including 

washing products, used in preparation, or in the environment where the samples are 

processed, are another source of contamination.[54] The Appendix A summarizes 

compounds which have been suggested to be contaminants or emanating from the 

environment. It has been observed that some proposed disease biomarkers were likely to 

be contaminants.[21] 

1.2.6 Volatile organic compounds analysis 

VOC analysis includes three main steps: extraction, separation and detection. The 

extraction, with possible pre-concentration of the sample, can be left out with some 

analytical methods as the matrix effect is not predominant and the instrument has a high 

sensitivity. In this case, direct headspace analysis is used. It consists of taking a defined 

volume of air from the sample’s headspace and injecting it into the GC–MS, for example. 

The extraction can be done by solvent-free techniques as dynamic headspace[55], solid 

phase extraction (SPE)[56], solid phase micro-extraction (SPME)[57], thermal desorption 

tube (TD)[18] or by stir bar sorptive extraction (SBSE)[58]. Using SPE, SPME, TD and SBSE, 

compounds are bound to a sorbent material and desorbed afterwards. Compound 

extraction may also be performed using a solvent, however it results in additional steps and 

time-spent on sample preparation. Techniques using sorbent, however, may not be 

representative of VOCs present in the analysed samples, as a result of the competition 

between molecules for the sorbent.[59] The main advantages of sorbent techniques 

remain in their chemical neutrality and in the possibility to acquire the samples on-site and 

to analyse them subsequently. 

When applying sorbent techniques, compounds are desorbed and separated; this is usually 

performed by chromatography, ion mobility techniques or a combination of these. VOCs 

detection may be achieved using different methods, however we have used GC Mass 

Spectrometry (MS).[60] 
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1.3 Headspace – solid phase micro-extraction – gas 

chromatography – mass spectrometry 

SPME–GC–MS is well-suited for the analysis of VOCs from biological samples. The complex 

matrix is avoided while the compounds of interest are extracted from the headspace. GC is 

a well-known and established method for the analysis of volatile compounds. When 

coupled to MS instruments, it allows direct identification of analytes. The direct analysis of 

volatile compounds using SPME–GC–MS reduces potential variability introduced during 

sample manipulation. However, the affinity of compounds to the phase is not consistent 

and some compounds may be preferentially selected, which can influence the results.[59] 

1.3.1 Solid phase micro-extraction 

Prior to the chromatographic separation, extraction of compounds may be required, solid 

phase micro-extraction (SPME) being used most often. It consists of a needle coated with a 

specific material or phase to which the molecules bind and can be thermally released. 

Coatings are selective. Water and other major constituents of the matrix are not expected 

to bind extensively.[61] Analysing each sample with different SPME fibres will give a more 

complete analysis of the VOCs in the sample. Dixon et al. have shown that 100% of the 

VOCs coverage can only be reached when analysing the sample with all 8 different SPME 

fibres tested.[62] It is also important to acknowledge that no other techniques have been 

used to detect VOCs and, therefore, some compounds may have been missed.[61] 

SPME can be used to extract compounds from the headspace or the liquid phase of the 

sample. Headspace is most commonly used because of the advantage of reducing the 

matrix effect on the coating but, in recent in vivo investigation, SPME has been carried by 

immersion of the fibre in the blood stream or the muscle of fish or mice.[61] Newly created 

technologies such as stir bar sorptive extraction (SBSE) are based on the same principle as 

SPME but with a larger surface, which increases its detection limit and accuracy.[63] 
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1.3.2 Gas chromatography 

Gas chromatography (GC) is a well-established method in analytical chemistry and has been 

used for more than 60 years.[64] A GC instrument is composed of an injector, a column 

placed inside an oven and a detector. Several types of injector are available. GC-ovens can 

be heated to accelerate the transit of molecules through the column, the carrier gas and its 

flow rate can be changed and the amount injected can be modified enabling method 

optimisation. The GC column is the heart of GC instruments, as this is where molecules are 

separated. Characteristics such as stationary phases, their thickness, column length and 

diameter can be adjusted specific to the separation to be achieved. The end of the column 

is connected to a detector, which generates a signal proportional to the number of 

molecules leaving the column at a given time. Several detectors have been designed, some 

specific to molecule families and others more universal.[49] 

Chromatography is a technique during which molecules are separated while being carried 

by a mobile phase through a stationary phase. In GC, molecules are separated based on 

their polarities, shapes and masses resulting in a competitive equilibrium between the 

mobile and stationary phases. The separation is achieved by the difference in the ratio 

[molecule in the stationary phase / molecule in the mobile phase] between molecules. 

Molecules of similar ratio cannot be separated. To achieve that separation parameters, e.g. 

the mobile and/or stationary phase, can be altered.[65] 

The GC instruments provide the retention time (RT) of each compound, which is the time 

taken by molecules to pass through the entire column. The RT is consistently reproducible. 

A specific analyte is expected to show the same RT when analysed by GC using the same 

test conditions.[49] Detectors can add more information about the molecule identity, such 

as infrared or mass spectra for example. The retention time and the mass spectroscopic 

information can be combined for a molecule can be directly identified, by matching the 

obtained spectra to one of several databases.[49], [66] 

  



16 
 

1.3.3 Mass spectrometry 

Mass spectrometry started with experiments carried in the late 19th and early 20th 

centuries by Goldstein, Thompson and Wien. Modern quadrupole MS instruments were 

first described in 1953 by Paul and Steinwedel.[67] MS has evolved and become very 

diversified, being applied in several fields and with an increasing quality of data 

delivered.[67] The analysis of molecule by MS is performed by the creation of gas-phase 

ions generated from compounds. Molecules are ionized and fragmented during this 

process, which can be chemically or physically achieved. Ions are then selected and 

detected. Different types of mass analyser and detector are currently available on the 

market.[67] Only techniques applied in this study will be described further for brevity. 

Electron ionization (EI) source is widely used for analysis of low mass compounds. 

Molecules enter the ionization chamber in a gaseous form and are collided with electrons 

emitted by a heated filament. “Electrons are associated to a define wave of wavelength […]. 

When this wavelength is close to the bond lengths, the wave is disturbed and becomes 

complex. If one of the frequencies has an energy corresponding to a transition in the 

molecule, an energy transfer that leads to various electronic excitations can occur. When 

there is enough energy, an electron can be expelled.”[68] On average 1 molecule out of 

1000 is ionized. The ions are then extracted from the chamber, focused and accelerated 

toward the mass analyser.[67] The quadrupole selects ions based on their mass/charge 

ratio (m/z). It consists of four rods perfectly parallel. The polarity of the rods changes from 

positive to negative at a designated interval. Ions are alternatively attracted and repulsed 

from the rods and if no collisions with a rod happen, they will, eventually, reach the 

detector; when a collision occurs they discharge themselves and stop their trajectories. 

Selection of ion masses is performed by varying the current of the rods.[67] Ions are 

focused in the middle of the quadrupole and reach the detector. An electron multiplier 

(EM) is commonly used as a detector. Ions are accelerated at a high velocity and reach a 

dynode, which will convert the ions into electrons. These electrons are then amplified by a 

cascade effect producing a usable current.[67] 
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1.3.4 Data analysis 

Several computational tools are currently available for the analysis of metabolomics data. 

Some tools were developed for LC–MS or GC–MS specifically while others can process data 

from both systems. Perhaps the most common software used for GC/MS data processing is 

AMDIS (Automated Mass spectral Deconvolution and Identification System).[69], [70] 

AMDIS can be used in conjunction with NIST (National Institute of Standard and 

Technology) (http://www.nist.gov/srd/upload/NIST1a11Ver2-0Man.pdf, 04/12/15), a mass 

spectral database for compound identification. Results obtained from AMDIS have a high 

false positive rate[71] and the reliability of the identification based on its library matching 

approach has been critized.[72] Therefore, results from AMDIS must be further processed 

using external packages. Aggio et al.[69] developed the R package ‘Metab’, which verifies if 

compounds identified by AMDIS are within their expected retention time window and 

returns the intensity of the most abundant ions for each compound. Behrends et al.[71] 

developed a Matlab package to visually verify compounds identified by AMDIS and to 

provide the intensity or abundance, according to users’ choice, for every compound in each 

chromatogram creating spreadsheet without missing data. Other software has been 

created to analyse GC/MS data with identification, such as ‘MetaBox’[73], 

‘TargetSearch’[74], ‘MetaboliteDetector’[75] or ‘OpenChrom’[76], [77]. The R package and 

online platform ‘XCMS’ performs an analysis of mass spectrometry data, for gas or liquid 

chromatography.[78], [79] It is based on individual ions intensities at specific retention 

times, thus, by-passing compound identification. 

Figure 2 illustrates a HS– SPME–GC–MS instrumentation. 

 

Figure 2: Illustration of the HS–SPME–GC–MS instrumentation. 
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1.4 Headspace – gas chromatography – sensor 

Oxide semiconductor gas sensors were first reported in early 1960s. Since then, they have 

been used in many applications. The technology has been investigated to increase its 

sensitivity and specificity to meet modern criteria in sub-ppm detection.[80] The principle 

behind the two types of semiconductor as well as main aspects investigated for their 

improvement will be presented in the next paragraphs.  

The semiconductor oxide can be of 2 types, n or p. The difference between them being that 

the n-types will be covered with a layer of negative charges whereas the p-type oxides have 

holes of positive charges on their surface. N-type Semiconductors, eg tin dioxide, indium 

oxide, tungsten trioxide or zinc oxide, have been used in preference to p-type oxide, eg 

nickel oxide, because their mobility of conduction electrons is higher, which enhances their 

sensitivity to detect target gas. For the same reason, n-type oxides with low mobility of 

conduction electrons have not been used extensively.[81] This technology principle is 

based on the interaction between the gas analysed and the solid phase of the sensor, 

which will induce an electronic variation of the surface and the transduction of this 

interaction into an electrical resistance. The reaction between the target gas and the 

semiconductor oxide is done through an oxygen adsorbate layer present on the sensor. The 

oxygen adsorbate can be O2
-, O- and O2-, with O- being the most reactive of the three at a 

temperature between 300-500°C. Tin dioxide has a high stability, both chemically and 

thermally, therefore it is frequently used to develop sensors.[81] 

The surface of the sensor has a key role in its reactivity. Two main aspects have been 

investigated, the grain size effect and the addition of a noble metal (eg: palladium, silver, 

platinum). The grain size, expressed as the mean diameter, is increasing along with the 

temperature of calcination used lastly during the synthesis of the oxide. Metal oxide 

addition, such as lanthanum, barium or phosphorus oxide, can also control the grain 

growth. The mean diameter of the oxide has a major influence on the resistance measured 

with the sensor. It is inversely proportional to the grain size until it reaches a plateau with a 

grain size of 15nm. Therefore, commercial tin dioxide sensors usually have larger grain size 

than 15nm to avoid this.[81] The second aspect, the addition of a noble metal, will increase 

the response given by the sensor at low temperature. The oxidation rate of the target gas is 

increased as a result of one of two types of interactions which take place.  
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In the first interaction, the target gas is activated by the noble metal and reacts afterwards 

with the adsorbed oxygen of the surface. In the second interaction type, the noble metal 

accepts electrons given by the semiconductor oxide and when the noble metal becomes 

reduced on contact with the target gas, it then gives the electron back to the 

semiconductor oxide.[81], [82] 

Other additives, metal or oxide, can be used to enhance the ability of a sensor to identify 

specific compounds. Similarly acidic or basic treatment can improve the response to basic 

or acidic target compounds, respectively.[81] The physical characteristics, such as the 

thickness of the metal oxide semiconductor film, play an important role in sensor 

sensitivity. 

In comparison with other sensors, metal oxide semiconductor sensor advantages are their 

cheapness, short response time, wide range of target compounds coverage and long 

lifetime, but, their sensitivity and selectivity are low, the environment has an influence on 

the response and the energy demand is high. Sensor instruments do not deliver mass 

spectra and therefore, compounds detected cannot be identified.[83] 

Figure 3 illustrates the HS–GC–Sensor instrumentation. 

 

Figure 3: Illustration of the HS–GC–Sensor instrumentation. 
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1.5 Hypothesis, aim and objectives 

The Diagnostic testing Of Volatile organic compounds (VOCs) in necrotising Enterocolitis 

(the DOVE Study) project will investigate the hypothesis that faeces from patients suffering 

from necrotising enterocolitis have a specific pattern of VOCs in the days prior to diagnosis 

which differs from faeces from healthy patients and that this pattern can be characterized 

using HS–SPME–GC–MS and HS–GC–Sensor. 

The aim of the project is to find reliable indicator(s) or a pattern in the signal response to 

allow the development of early diagnosis tools for NEC in preterm infants. 

The objectives are: 

1. to develop methods for the analysis of faeces from premature babies using a GC 

coupled to both a MS and a sensor. 

2. to analyse faecal samples from healthy premature infants and from the premature 

infants with NEC. 

3. to perform statistical analysis of the data to determine diagnostic patterns.  
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Content of this chapter is part of: Reade, S., Mayor, A., Aggio, R., Khalid, T., Pritchard, D., 

Ewer, A., & Probert, C. (2014). Optimisation of Sample Preparation for Direct SPME-GC-MS 

Analysis of Murine and Human Faecal Volatile Organic Compounds for Metabolomic 

Studies. Journal of Analytical & Bioanalytical Techniques, 5(2). doi:10.4172/2155-

9872.1000184. (Appendix B) 

Author contribution to the published work: Arno Mayor designed and implemented the 

experiments, analysed the data and participated in writing the introduction and the section 

involving human faecal samples.  
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This chapter contains a review of the technologies applied in this thesis for detecting, 

identifying and quantifying volatile organic compounds (VOCs) in biological samples; a 

description of the statistical methods used for shortlisting potential biomarkers; and a 

description of sample processing. 

2.1 Mass spectrometry 

In this thesis, headspace–solid phase micro-extraction–gas chromatography–mass 

spectrometry (HS-SPME–GC–MS) was applied to detect, identify and quantify metabolites 

present in faeces from premature babies with and without necrotizing enterocolitis (NEC). 

Many aspects of the HS–SPME–GC–MS analysis of biological samples have been previously 

optimized by the laboratory team[44], [47], [84], while other aspects were specifically 

optimized for this study. These optimizations are described below. 

2.1.1 Gas chromatography – mass spectrometry 

configuration 

A PerkinElmer Clarus 500 GC/MS quadrupole benchtop system (Beaconsfield, UK) was used 

in combination with a Combi PAL auto-sampler (CTC Analytics, Switzerland) for the analysis 

of all samples involved with this thesis. The GC column used was a Zebron ZB-624 with 

inner diameter 0.25 mm, length 60 m, film thickness 1.4 µm (Phenomenex, Macclesfield, 

UK). The carrier gas used was helium of 99.996% purity (BOC, Sheffield, UK). Vials with 

magnetic caps of 2 ml (Crawford Scientific, Lanarkshire, UK) and 10 ml (Sigma-Aldrich, 

Dorset, UK) volume were investigated. Samples were pre-incubated for 30 minutes at 60C 

prior to fibre exposure. The SPME fibres used were Carboxen®/Polydimethylsiloxane 

(CAR/PDMS) 85 µm and Divinylbenzene/Carboxen®/ Polydimethylsiloxane 

(DVB/CAR/PDMS) 50/30 µm (1cm) (Sigma-Aldrich, Dorset, UK). Both fibres were pre-

conditioned before use, in accordance with manufacturer’s manual. The fibre was exposed 

for 20 minutes at 60C. The fibre was desorbed for 5 minutes at 220C. The initial 

temperature of the GC oven was set at 40C and held for 1 minute before increasing to 

220C at a rate of 5C/min and held for 4 min with a total run time of 41 min.  
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A solvent delay was set for the first 6 min and the MS was operated in electron impact 

ionization EI+ mode, scanning from ion mass fragments 10 to 300 m/z with an inter-scan 

delay of 0.1 sec and a resolution of 1000 at Full Width at Half Maximum (FWHM). The 

helium gas flow rate was set at 1 ml/min. The sensitivity of the instrument was determined 

using 2-pentanone. The limit of detection of 3 times the signal/noise ratio of the 2-

pentanone with DVB/CAR/PDMS fibre was 16 ppm and with CAR/PDMS fibre was 40 

ppm.[57] 

Except for the temperature ramp, all parameters were identical for the method 

development and for the Dove Project. The ramp for the Dove Project was the following: 

the initial temperature of the GC oven was set to 40C and held for 1 minute before 

increasing to 220C at a rate of 5C/min and held for 13 min with a total run time of 50 

min. 

2.1.2 Sample mass 

Samples of different masses may generate different metabolite profiles when analysed by 

HS-SPME-GC–MS. This section aims to investigate how homogenised faecal samples of 

different masses may affect the VOCs identified and to define the optimum sample mass 

for analysing faecal samples from preterm babies with and without NEC. The initial work 

(part I) was performed to optimise the mass of human faecal samples. Preterm babies 

often pass less than 100 mg of faeces. Therefore, mindful of this, the minimum sample 

mass that would produce the highest number of VOCs with the highest abundances was 

investigated (part II). 

2.1.2.1 Mass optimisation: part I 

The number of VOCs identified and their abundances were evaluated according to sample 

masses ranging from 100 to 700 mg. A single faecal sample was divided into 3 aliquots of 

100 mg (100.3 ± 0.6 mg), 3 aliquots of 450 mg (455.1 ± 1.1 mg) and 3 aliquots of 700 mg 

(700.6 ± 2.8 mg) (mean ± standard deviation or SD) (Figure 4). Only VOCs identified in every 

aliquot were used for comparing VOC abundances. 
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Kruskal-Wallis showed no significant differences in the number of identified VOCs between 

the three masses investigated (Figure 5). Eight compounds were identified in every sample 

(2,3-butanedione, tetrahydrofurane, ethyl ester propanoic acid, n-propyl acetate, 2-

pentenal (E), propyl ester propanoic acid, 2-methylpropanal, 1-propanol) and their 

intensities were significantly higher in samples of 450 and 700 mg than in samples of 100 

mg.  

These results indicated that an increase in sample mass did not generate an increase in the 

number of VOCs detected, however it increased VOC abundance. The lack of difference 

between samples of 450 and 700 mg suggested that the SPME fibre sorption had reached a 

plateau. Therefore, 450 mg seemed to be the optimum sample mass. 

 

Figure 4: Design of the part I of the mass optimisation for GC–MS investigation. Illustration of the 

aliquots distribution and their respective masses for the part I of the mass optimisation. 
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Figure 5: Part I of the mass optimisation for GC–MS investigation (A) Bar plot showing the mean of 

the number of VOCs identified (± standard error of the mean (SEM)) for the three masses tested 

(n=3/group). (Kruskal-Wallis test; no significant differences) (B) Mean of the intensities of the 8 

identified VOCs present in all nine measurements (n=3/group). (*p<0.05, **p<0.01, ***p<0.001; 

ANOVA with Tukey HSD test, followed by Bonferroni correction)  

2.1.2.2 Mass optimisation: part II 

Aliquots of 50 and 100 mg were compared in order to find the lowest possible sample mass 

to be used for studying preterm babies. The optimized sample mass must be able to 

produce a reasonable number of VOCs and reproducible abundances. 

Four additional samples were then divided into a set of six aliquots: triplicates of 50 and 

100 mg (Figure 6). The number of compounds identified and their abundances were then 

compared between samples of 50 and 100 mg for each set of aliquots. The majority of the 

compounds showed less than 5% difference in log-transformed abundances between 50 

and 100 mg samples for every set of aliquots (Figure 7). Regarding the number of VOCs 

identified, there was no difference between samples of 50 and 100 mg (Figure 8). 
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Figure 6: Design of the part II of the mass optimisation for GC–MS investigation. Illustration of the 

aliquots distribution and their respective masses for the part II of the mass optimisation. Four 

samples were divided this way. 

 

 

Figure 7: Abundances of VOCs in replicates of 50 and 100 mg. Scatterplots comparing the average 

log values of VOCs abundances from samples of 50 and 100 mg (n=3). The diagonal black segment 

represents the function x = y, where compounds detected at similar abundances between 50 and 

100 mg are located inside of the 5% tolerance region represented by the grey area. 
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Figure 8: Number of VOCs identified in replicates of 50 and 100 mg. Bar plot illustrating the number 

of VOCs identified (± SEM) for both masses in each samples (A-D). (n=3; no significant differences, 

Mann-Whitney test) 

2.1.3 Vial volume 

The volume of the vial used to analyse biological samples may determine the metabolite 

profiles produced by HS–SPME–GC–MS analysis. This section investigates how different vial 

volumes may affect the VOCs identified and define the optimum vial volume for analysing 

faecal samples from preterm babies with and without NEC.  

Vials of 2 and 10 ml were used to investigate the number of VOCs identified and their 

abundances. For each vial volume, aliquots of 100 mg were obtained from three different 

faecal samples (A: n=4; B: n=4; C: n=3) and analysed using the CAR/PDMS fibre. The great 

majority of the identified compounds showed less than 5% difference in their log 

transformed abundances between 2 and 10 ml vials (Figure 9). Mann-Whitney tests 

showed no difference in the numbers of VOCs identified between the vial volumes tested 

(Figure 10). Although no significant differences were observed, a slightly higher number of 

VOCs has been identified with vials of 10 ml for samples A and B. Therefore, vials of 10 ml 

were defined as optimum for the HS–SPME–GC–MS analysis of preterm faecal samples. 
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Figure 9: Abundances of VOCs in replicate in 2 and 10 ml vials. Scatterplot comparing the average 

log values of VOCs abundances from samples in 2 and 10 ml vials (A: n=4; B: n=4; C: n=3). The 

diagonal black segment represents the function x = y, where compounds detected at similar 

abundances between 2 and 10 ml are located inside of the 5% tolerance region represented by the 

grey area. 

 

Figure 10: Number of VOCs identified in replicates in 2 and 10 ml vials. Bar plot illustrating the 

mean number of VOCs identified (± SEM) in each sample in 2 and 10 ml vials. (A, B: n=4; C: n=3; no 

significant differences, Mann-Whitney test) 
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2.1.4 Addition of salt, acid and base 

Salt can be added to samples prior to headspace analysis with GC instruments. This step is 

performed to unify the ionic strength within the sample and it also diminishes the retention 

of the VOCs in the liquid phase, thereby increasing their concentration in the 

headspace.[49] Acid or base can also be added to improve the metabolite profile of 

samples analysed by HS–SPME–GC–MS. It produces changes in the pH of samples. Thus, 

the salt form of acids or bases will diminish with the result that their non-ionic form will 

enter the headspace. This section aims to investigate how the addition of salt, acid and 

base solutions may affect the metabolite profile generated by HS–SPME–GC–MS and 

determine the optimum sample preparation method for the analysis of preterm faecal 

samples from babies with and without NEC. 

To investigate the effect of adding base to faecal samples, one sample was divided into 9 

aliquots of 100 mg and stored in 10 ml vials. Three aliquots were analysed with 1 ml of 

sodium hydroxide 5% in water, three with the addition of 1 ml of sodium hydroxide 10% in 

water and three aliquots were analysed with no addition of base. To investigate the effect 

of adding acid to faecal samples, one sample was divided into 9 aliquots of 100 mg and 

stored in 10 ml vials. Three aliquots were analysed with 1 ml of phosphoric acid 0.85% in 

water, three with the addition of 1 ml of phosphoric acid 1.7% in water and three with no 

addition of acid. To investigate the effect of adding salt to faecal samples and because of 

low sample mass, three samples were divided into 3 aliquots of 100 mg and stored in 10 ml 

vials. One aliquot from each sample was analysed with either 1 ml, 0.5 ml or no addition of 

saturated chloride sodium solution. Saturated chloride sodium solution is defined by a 

concentration higher than 360g/l. All samples were analysed using a CAR/PDMS fibre and 

the number of VOCs identified were compared using Kruskal-Wallis test. Ms Daisy Noble, a 

BSc student in the Institute of Translational Medicine, University of Liverpool, under my 

supervision, conducted these experiments. 

Although the addition of salt and base solutions seemed to lower the number of 

compounds, none of the solutions added led to a significant change in the number of VOCs 

identified (Kruskal-Wallis test) (Figure 11). 
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Figure 11: Number of VOCs identified in replicate after addition of base, acid and salt. Bar plot 

illustrating the influence of the addition of 0.5 ml of sodium hydroxide 5% (low) and 10% (high), 0.5 

ml of phosphoric acid 0.85% (low) and 1.7% (high), 0.5 (low) and 1 ml (high) of saturated sodium 

chloride solution on the mean of VOCs (± SEM). The control being samples on their own (n=3/group; 

no significant differences; Kruskal-Wallis test) 

Abundances of compounds identified in each replicate were tested for significant changes 

when various concentrations of solution were added. Considering the addition of base 

solution, 5 compounds were common to each replicate whose 4 were significantly 

different. Further, 3 of these 4 compounds had higher abundance in control samples. 

Adding acid solution, 8 compounds were identified in each replicate, 5 being significantly 

different. For 4 out of 5 compounds, the intensities were higher in the control samples. 

None of the 15 compounds identified in each replicate after addition of salt were 

significantly different (ANOVA followed by Tukey’s HSD test and Bonferroni; based on log of 

the intensities; p-value>0.05). 

Table 2 presents the number of VOCs identified exclusively after addition of a solution at 

given concentration. For base and salt additions, the highest number of unique VOCs was 

found when samples were analysed without addition. The addition of 1 ml of phosphoric 

acid at 1.7% led to the detection of 5 more compounds than no, or lower concentration, 

addition. 
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Table 2: Number of VOCs identified specific to a given concentration after addition of base, acid 

and salt. 

Solution added Concentration 
Number of unique compound per 

concentration 

Base (NaOH) 

No addition 18 

1 ml of 5% solution 4 

1 ml of 10% solution 1 

Acid (H3PO4) 

No addition 2 

1 ml of 0.85% solution 2 

1 ml of 1.7% solution 7 

Salt (NaCl) 

No addition 15 

0.5 ml of saturated solution 3 

1 ml of saturated solution 2 

Table summarizing the number of compounds found in at least 2 out of 3 replicates for a specific 

concentration after addition of a given solution while the compound was present in no more than 1 

replicates for both other concentrations. For example, when evaluating the addition of base 

solution, 18 compounds were identified only in the control samples, while 4 compounds were only 

identified in samples that received 1 ml of 5% base solution. 
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2.1.5 Solid phase micro-extraction fibre optimisation 

SPME fibres made with different coatings are commercially available. The coating may 

influence the metabolite profile generated by HS–SPME–GC–MS analysis. The aim of this 

section is to evaluate how different fibre coatings may affect the VOCs identified and to 

define the optimal SPME coating. 

Two SPME coatings were evaluated: CAR/PDMS and DVB/CAR/PDMS. For this, three 

samples were divided into 8 aliquots of 100 mg and disposed into 2 ml vials. Four aliquots 

of each sample were analysed by CAR/PDMS coating and the other 4 aliquots were 

analysed by DVD/CAR/PDMS coating. In addition 1 sample was divided into 10 aliquots of 

100 mg and disposed into 10 ml vials, 5 aliquots were analysed using CAR/PDMS coating 

and 5 aliquots were analysed with DVB/CAR/PDMS coating. 

Figure 12 compares VOCs’ abundances using both fibre coatings. When samples were 

stored in 2 ml vials (samples 1, 2 and 3), intensities were slightly higher using 

DVB/CAR/PDMS fibre. However, VOCs intensities were similar between fibres with samples 

stored in 10 ml vials (sample 4). A Mann-Whitney test comparing the number of VOCs 

identified by each fibre showed no significant differences for all sets of aliquots (Figure 13). 
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Figure 12: Abundances in aliquots using CAR/PDMS and DVB/CAR/PDMS SPME fibres. Scatterplots 

comparing the average log values of VOC abundances from samples analysed using both type of 

SPME coatings. The diagonal black segment represents the function x = y, where compounds 

detected at similar abundances between both types of coatings are located inside of the 5% 

tolerance region represented by the grey area. 

 

Figure 13: Number of VOCs identified in replicates using CAR/PDMS and DVB/CAR/PDMS SPME 

fibres. Bar plot illustrating the number of compounds (± SEM) found using two types of SPME 

coating. The samples 1, 2 and 3 had 4 replicates in each condition, measured in 2 ml vials. Sample 4 

had 5 replicates in each condition, measured in 10 ml vials. (no significant differences; Mann-

Whitney test) 
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Table 3 presents the number of compounds exclusively identified by each fibre coating. 

CAR/PDMS coating showed slightly better results with 1 more compound found in two 

samples. However, samples 3 and 4 did not show any differences. 

Table 3: Summary of the specific compounds identified with each fibre coating. 

 Number of compounds found only with 

 

CAR/PDMS fibre DVB/CAR/PDMS fibre 

Sample 1 3 2 

Sample 2 5 4 

Sample 3 4 4 

Sample 4 5 5 

Table presenting the number of compounds identified specifically with both fibre coatings for each 

sample. Only compounds present in at least half the sample with one coating and completely absent 

with the other were considered as specific. 

In conclusion, the number of compounds identified did not vary significantly between fibres 

tested and there was no marked trend. The intensities were slightly higher when samples 

were analysed in 2 ml vials using DVB/CAR/PDMS coating and showed no trend when 

samples were analysed in 10 ml vials. The numbers of compounds identified with a specific 

fibre coating were similar between both fibre coatings. 

2.1.6 Keeping samples at 1°C overnight 

The use of an auto-sampler does not allow overnight storage of samples at -20°C, but at 

1°C. It might affect the metabolic profiles determined by HS–SPME–GC–MS analysis. This 

section investigates the influence of storing faecal samples at 1°C for 14 hours on 

metabolite profiles. 

The abundances of identified VOCs were evaluated according to waiting time periods of 0 

and 14 hrs at 1°C prior to SPME–GC–MS analysis. One sample was divided into six aliquots 

and stored in 10 ml glass vials at -20°C. Three aliquots were analysed immediately after 

being taken from -20°C freezer (0 hrs) and three aliquots were analysed after being left at 

1°C on the auto-sampler tray overnight (14 hrs). Each sample was extracted using a 

CAR/PDMS SPME fibre. 
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There were no significant differences in the number of VOCs identified (t-test; p-value > 

0.05), although there were three compounds detected at slightly lower abundances at 

14hrs. These results indicated that faecal samples can be analysed overnight without 

significant changes on the VOC profiles or abundances (Figure 14). 

 

Figure 14: VOC abundances in samples left for 14 hours at 1°C. Scatterplot comparing the average 

log values of VOC abundances from faecal samples analysed straight after leaving the -20°C freezer 

and after 14 hrs at 1°C (n=3). The diagonal black segment represents the function x=y, where 

compounds detected at similar abundances between time 0 and time 14 are located inside the 5% 

tolerance region represented by the grey area. 
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2.1.7 Repeatability and multiple analyses of the same 

sample 

According to the results presented in the previous sections, the following parameters for 

HS–SPME–GC–MS investigation were defined: faecal samples of masses between 50 to 100 

mg, stored in 10 ml vials, without addition of any solution and analysed by CAR/PDMS fibre. 

The repeatability of the method and the influence of multiple analyses of the same samples 

were determined to assess the accuracy and limits of the method. 

In order to assess the repeatability of the developed method, the VOC profiles of ten 

samples were used to calculate the variation within samples. Each individual sample was 

divided in triplicate, stored in 10 ml vials and pre-incubated at 60°C for 30 min before VOC 

extraction using a CAR/PDMS SPME fibre for 20 min at 60°C prior to desorption into the GC 

oven. The abundances of the VOCs identified within each sample (n=3 per sample) were 

used to calculate their coefficient of variation (CV). Three of these samples were reanalysed 

3 times in order to determine the effect of multiple analyses of a single sample. 

A principal component analysis (PCA) on the VOC profiles of 10 faecal samples, each 

divided in triplicate, illustrates their repeatability (Figure 15). In addition, the mean, 

standard deviation and CV were calculated across triplicates for each sample (Table 4). The 

PCA showed technical replicates present at the same quadrant of the graph, forming 

clusters, which indicates a high repeatability across samples. On average, 31.3 ± 10.5 VOCs 

were identified per sample (mean ± SD). The standard deviation for each sample was 2.9 ± 

1.3 compounds and 90% of the VOC abundances showed a coefficient of variation smaller 

than 30%, which is considered adequate for diagnostic sensitivity[85]. The effect of 

analysing a single sample multiple times was assessed.  
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The number of VOCs identified and their abundances were compared across 4 GC–MS runs 

(Figure 16, Table 5). There was a significant decrease in the number of VOCs identified for 

two sets of aliquots out of 3 considered (Figure 16; Kruskal-Wallis; p-value<0.05). At least 

40% of these VOCs were detected at significantly lower or higher abundances after 4 GC–

MS runs (ANOVA; p-value < 0.05). These results confirm the hypothesis that the sample’s 

headspace is modified after each HS–SPME–GC–MS analysis. As expected, heating the 

faecal samples released the majority of VOCs into the headspace air. These VOCs were 

extracted and removed during the first HS–SPME–GC–MS analysis. During the second, third 

and fourth analysis, the diversity and abundances of specific VOCs were decreased (Figure 

16) suggesting that each sample should, ideally, be analysed only once. The inter-individual 

variation between samples should also be taken into consideration, explaining the lower 

number of identified VOCs in sample 3 compared to sample 1 and 2 (Figure 16). 

 

Figure 15: Principal component analysis (PCA) for method repeatability. Results of a PCA applied to 

the VOCs profile of 10 biological replicates, each divided in triplicates and analysed by HS–SPME–

GC–MS. 

  



38 
 

Table 4: Repeatability of the method for the number of compounds identified and their 

abundances. 

 

Average number of 
VOCs ± S.D. 

(in every triplicate) 

VOCs with 

CV < 30% 

[%] 

Sample 1 24±3 (19) 100 

Sample 2 23±1 (18) 100 

Sample 3 20±2 (12) 92 

Sample 4 48±5 (36) 89 

Sample 5 37±4 (26) 81 

Sample 6 50±4 (39) 95 

Sample 7 32±2 (21) 90 

Sample 8 26±4 (18) 67 

Sample 9 26±2 (19) 95 

Sample 10 27±2 (18) 94 

Ten biological replicates of faecal samples were divided in triplicates and analysed by solid phase 

micro-extraction coupled to gas chromatography-mass spectrometry (SPME–GC–MS). The average 

number of volatile organic compounds (VOCs) and the standard deviation associated with each 

biological replicate is presented together with the number of VOCs in every technical replicate and 

the percentage of compound abundances showing a coefficient of variation (CV) smaller than 30%. 
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Figure 16: Effect of multiple analyses of samples on the number of VOCs identified. Three faecal 

samples were divided in triplicate and analysed 4 consecutive times by solid phase micro-extraction 

coupled to gas chromatography-mass spectrometry (SPME–GC–MS). The number of VOCs identified 

in each analysis is presented for the three samples individually (n=3) and combined (n=9). (mean ± 

SEM; *p<0.05, **p<0.01 and ***p<0.001; Kruskal-Wallis test) 

 

Table 5: Effect of multiple analyses of samples on the abundances of compounds. 

 VOCs present in triplicate Percentage of VOCs 
showing significantly 
different abundances 

[%] 

Sample 1 16 56 

Sample 2 14 64 

Sample 3 10 40 

Three faecal samples were divided in triplicate and analysed 4 consecutive times by solid phase 

micro-extraction coupled to gas chromatography-mass spectrometry (SPME–GC–MS). The number 

of volatile organic compounds (VOCs) present in at least 2 consecutive analyses is presented 

together with the percentage of compounds for which the intensities differed significantly after 4 

analyses. 
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2.1.8 Data analysis 

The optimisation of the parameters for data analysis using the Automated Mass Spectral 

Deconvolution System (AMDIS) and Metab[69] is presented in this section, in addition to 

statistical analyses applied for both the method development and the Dove Project. 

2.1.8.1 Parameters study for AMDIS and Metab 

AMDIS and Metab have been applied to the analysis of metabolomics data. This section 

evaluates AMDIS and Metab by comparing their performances against manually curated 

data. AMDIS and Metab were assessed using 11 chromatograms chosen randomly. Each 

chromatogram was analysed 3 times and identified compounds were listed. Compounds 

identified in the first or the second analysis, but not in the third, were added with a special 

mention. 

Files generated by the PerkinElmer GC–MS acquisition software (TurboMass, Perkin Elmer, 

2008, version 5.4.2.1617) were in ‘.raw’ format. This type of file needed to be converted to 

‘.CDF’ format in order to be analysed in a high-throughput manner using AMDIS, through 

the batch report option instead of the single file report option. Raw files were converted to 

CDF files using Databridge (part of TurboMass Suite, version 5.4.2.1617). Results obtained 

when analysing raw and CDF were compared. Metab results were generated with a time 

window ranging between 0.1 and 2 minutes in 0.1 minute steps. 

Results were reported in terms of sensitivity (sum true positive / sum compounds found 

manually) and precision (sum true positive / sum compounds found by the package) (see 

Figure 17 for further explanation). The library used contained 172 compounds. We built it 

based on preterm faecal samples (Appendix C Table 41). Analysing samples manually using 

AMDIS software allowed us to save compounds identified in a library. This library could 

then be used to process data in a high-throughput manner. 
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Figure 17: Illustration of the statistical measure. Figure illustrating the meaning of the main terms 

used to describe the results. 

Table 6 presents the results obtained with Metab for reports generated with ‘.raw’ and 

‘.CDF’ files. When using single file report, generated using ‘.raw’ data, the time window 

should be equal to, or greater than, 0.5 minutes to obtain an optimal sensitivity of 97.3%. 

The higher precision, 94.7%, was obtained with a time window between 0.2 and 0.4 

minute. The 1% drop in precision for a time window of 0.5 minute and the 2.7% drop of 

sensitivity for a time window of 0.4 minute indicates that a time window of 0.5 minute or 

greater may generate more accurate results. Results based on AMDIS’ reports generated in 

batch mode showed a maximal sensitivity of 90.9% for a time window of 0.6 minute and an 

optimal precision of 84.2% with a time window of 0.2 minute. Optimal results were 

obtained with a time window of 0.3 or 0.4 minute with the precision and the sensitivity 

dropping by 0.3% and 0.9%, respectively, compared to the maximum obtained using 0.6 

and 0.2 minutes, respectively. 
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Table 6: Sensitivity and precision obtained with AMDIS in conjunction with Metab at different 

time window and with two file formats. 

 Time window 

[min] 

Sensitivity 

% 

Precision 

% 
Si

n
gl

e 
fi

le
 r

e
p

o
rt

 

w
it

h
 ‘.

ra
w

’ f
ile

s 
0.1 89.2 ± 8.3 94.6 ± 3.6 

0.2 94.6 ± 7 94.7 ± 2.9 

0.3-0.4 94.6 ± 5.3 94.7 ± 2.7 

0.5 97.3 ± 4.6 93.7 ± 1.7 

0.6-0.9 97.3 ± 4.3 93.8 ± 2.4 

1 97.3 ± 5.6 93.8 ± 3 

1.1-1.5 97.3 ± 4.3 93.8 ± 2.7 

1.6 97.3 ± 4.3 93.8 ± 3.2 

1.7-1.9 97.3 ± 4.3 93.8 ± 4 

2 96.2 ± 3.7 94.3 ± 3 

B
at

ch
 r

ep
o

rt
 

w
it

h
 ‘.

C
D

F’
 f

ile
s 

0.1 84.9 ± 5 83.6 ± 5.4 

0.2 88.7 ± 5.1 84.2 ± 5.3 

0.3-0.4 90.6 ± 4.2 83.3 ± 3.1 

0.5 90.6 ± 4.2 81.8 ± 3.6 

0.6 90.9 ± 4.5 81.8 ± 3.6 

0.7 90.9 ± 3.5 81.8 ± 3.7 

0.8-0.9 90.9 ± 3.5 81.8 ± 3 

1 90.9 ± 4.3 81.8 ± 3.8 

1.1 90.9 ± 3.5 81.8 ± 3 

1.2-1.4 90.9 ± 3.5 81.8 ± 3.8 

1.5-1.6 90.9 ± 3.5 81.8 ± 3.7 

1.7-1.9 90.9 ± 3.5 81.8 ± 3 

2 90.6 ± 4.5 81.8 ± 4.8 
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Summary of the statistics based on results obtained with AMDIS followed by Metab with time 

windows ranking from 0.1 to 2 minutes. Eleven chromatograms in two formats were considered and 

the library was composed of 172 compounds. Sensitivity was defined as: sum true positive 

compounds / sum compounds found manually; precision was defined as: sum true positive 

compounds / sum compounds found by Metab. (median ± interquartile range or IQR) 

Table 7 presents compounds reported by Metab and considered to be false negatives when 

a time window of 0.5 minute was used. Five compounds were not identified using AMDIS 

and, therefore, they could not be identified using Metab. Four compounds had uncertain 

identification.  

Sensitivity and precision were improved if ‘.raw’ files were analysed suggesting that the 

software used to convert ‘.raw’ files to ‘.CDF’ files altered the quality of the chromatogram. 

The batch mode in AMDIS was available only using ‘.CDF’ files and reports using ‘.raw’ files 

were more tedious to produce as they needed to be generated file-by-file. In addition, 

Metab fail to identify nineteen compounds and nine could not be identified with certainty. 
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Table 7: False negative metabolites from Metab single file analysis using a time window of 0.5 

minute. 

RT [min] Name Comment File 

29.54 Nonanal NF 1 

25.19 1-hepten-3-one – 2 

26.70 2, 4-E,E-heptadienal UI 3 

25.41 3-octanone – 

4 27.02 3, 3, 4-trimethyldecane UI 

26.70 2, 4-E,E-heptadienal – 

26.42 Hexanoic acid – 

5 

16.53 Toluene NF 

22.31 Heptanal NF 

26.06 Octanal NF 

25.41 3-octanone – 

10.59 Ethylacetate – 

6 
21.48 3-methybutanoicacid – 

26.55 2, 6, 11-trimethyldodecane UI 

31.92 Ethyl ester dodecanoic acid – 

10.55 2-butanone NF 

7 
17.41 1-pentanol – 

25.41 3-octanone – 

26.56 2, 2, 3, 3-tetramethylpentane UI 

Retention times, names, comments and files analysed for each false negative metabolite. When the 

comment states ‘NF’, the compound has not been identified using AMDIS; ‘UI’ means that the 

identification of the compounds based on NIST library matching was not reliable. 

Table 8 presents Metab results obtained with three sets of deconvolution parameters in 

AMDIS. The results were best with the ‘resolution’ and ‘shape requirements’ set as medium 

and the sensitivity as ‘high’. The difference might be explained by the fact that the library 

was built using this set of parameters.  
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Table 8: Sensitivity and precision obtained with AMDIS in conjunction with Metab while varying 

AMDIS and Metab parameters. 
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Time 
window 

[min] 

Sensitivity 

[%] 

Precision 
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0.1 89.2 ± 8.3 94.6 ± 3.6 

0.2 94.6 ± 7 94.7 ± 2.9 

0.3-0.4 94.6 ± 5.3 94.7 ± 2.7 

0.5 97.3 ± 4.6 93.7 ± 1.7 

0.6-0.9 97.3 ± 4.3 93.8 ± 2.4 

1 97.3 ± 5.6 93.8 ± 3 

m
ed

iu
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m
ed

iu
m
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0.1 72.4 ± 16.2 90.9 ± 1.7 

0.2 79.3 ± 7.1 91.5 ± 1.1 

0.3-0.5 81.1 ± 5 91.7 ± 0.9 

0.6-0.9 81.1 ± 5.8 91.7 ± 0.9 

1 81.1 ± 6.8 91.7 ± 1.8 

h
ig

h
 

h
ig

h
 

lo
w

 

0.1 86.2 ± 4.5 84.4 ± 7.5 

0.2 89.7 ± 4.1 84.4 ± 6.5 

0.3 90.9 ± 3.6 84.6 ± 6.8 

0.4 90.9 ± 3.3 84.6 ± 6.6 

0.5 90.9 ± 3.3 83.3 ± 5.6 

0.6-0.9 90.9 ± 3.6 83.6 ± 5.1 

1 90.9 ± 4 83.6 ± 6.7 

Table presenting results from AMDIS followed by Metab with three set of deconvolution parameters 

in AMDIS. The resolution, sensitivity and shape requirement parameters were varied between low, 

medium and high. Time window parameter in Metab was ranked between 0.1 and 1 minute (median 

± IQR). 
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To summarize, both sensitivity and precision were higher when analysing ‘.raw’ files. The 

evaluation of Metab using different time windows showed that 0.5 to 0.9 minutes 

delivered slightly different results. The time windows of 0.5, 0.6 and 0.9 minutes showed 

the same sensitivity, 97.3%. However, a time window between 0.6 and 0.9 minute showed 

a slightly higher precision than 0.5, 93.8% and 93.7%, respectively. The interquartile range 

was slightly wider with a time window of 0.5 minute for the sensitivity and narrower for the 

specificity, therefore, a time window of 0.5 minute should be preferentially applied. If the 

‘.CDF’ file were analysed using the batch mode available in AMDIS, a time window of 0.3 or 

0.4 minutes was optimal with a sensitivity of 90.6 ± 4.2% and a precision of 83.3 ± 3.1%. 

The sensitivity and specificity were optimal when the resolution, sensitivity and shape 

requirement parameters in AMDIS were set to medium, high and medium, respectively. 

2.1.8.2 Statistical analysis – method development 

All HS–SPME–GC–MS data were processed using AMDIS (version 2.71, 2012) in conjunction 

with the NIST mass spectral library (version 2.0, 2011) and the R package Metab. VOCs 

were identified using an in-house library of 172 compounds built with AMDIS in 

combination with the NIST library (Appendix C Table 41). AMDIS was applied using 

resolution, sensitivity and shape requirements set to medium. Metab was used with time 

window of 0.1 minute. Compounds present in fewer than 50% of the samples of at least 

one experimental condition were removed. 

All the statistical analysis were performed using R version 3.1.1 & 3.1.2[86], [87] and 

Microsoft Excel (Microsoft Office Professional Plus 2010). 

Shapiro test was applied to test the normality of the distribution. A t-test or a one-way 

analysis of variance (ANOVA) followed by Tukey’s HSD test were applied to test differences 

between data classes for normally distributed data and Mann-Whitney or Kruskal-Wallis 

test were applied in case of non-normally distributed data. A principal component analysis 

(PCA) was used to show similarities within data classes. If required, final p-values were 

adjusted for multiple comparisons using Bonferroni correction. P-values lower than 0.05 

were considered significant. 
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2.1.8.3 Statistical analysis – Dove project 

All HS–SPME–GC–MS data were processed using the Automated Mass Spectral 

Deconvolution System (AMDIS-version 2.71, 2012) in conjunction with the NIST mass 

spectral library (version 2.0, 2011) and the R package Metab[69]. VOCs were identified 

using an in-house library of 229 compounds built with AMDIS in combination with the NIST 

library (Appendix C Table 42). AMDIS was applied using resolution, sensitivity and shape 

requirements set to medium, high and medium, respectively. Metab was used with a time 

window of 0.4 minute. In addition, the R package XCMS[78], [88] was used to identify ion 

mass fragments present at different abundances across conditions. 

Differences between the use of AMDIS in conjunction with NIST and Metab and the XCMS 

package were numerous. Metab identified and quantified compounds based on the library 

built using AMDIS and NIST, and the report from AMDIS. XCMS package selected features, 

or m/z ratios at specific retention times, and reported their abundances. The absence of 

compound identification when using XCMS reduced errors, such as false identification (see 

2.1.8.1), and saved time as the library building can be tedious and time consuming, 

requiring the manual analysis of several chromatograms; especially when performing 

untargeted metabolomics studies. The absence of identification meant that the XCMS 

package did not allow interpretation of the biological meaning of the results. In order, to 

compare results with other studies, compounds’ names were often needed, therefore, 

both approaches were applied in order to increase probabilities of finding relevant 

patterns. 

Statistics were performed using R version 3.1.1 & 3.1.2[86], [87], Stata version 9.2 (20 Jul 

2007) and Microsoft Excel (Microsoft Office Professional Plus 2010). 

For this study, compounds in Metab and features in XCMS were considered for further 

analysis if they were present in at least 50% of the samples in one or more data class, 

except for the analysis regarding the number of compounds. Missing values were then 

replaced using two techniques; (I) imputation by half the lowest intensity of that 

compound across categories, (II) imputation using k-Nearest Neighbours algorithm. These 

methods were selected after consideration of the literature[89], [90] and discussion with 

Mrs Rosemary Greenwood, University Hospital Bristol NHS Foundation Trust. For XCMS, 

intensities equal to 0 were considered as missing data. Table 9 presents the occurrence of 

missing values in final results. 
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Table 9: Occurrence of missing data in final results. 

  
Missing data 

[%] 

Number of features (XCMS) 

or compounds (Metab) 

XCMS Both statuses 2.07% 356 

Metab 
Control only 24.52% 46 

Both statuses 27.43% 50 

Table presenting the percentage of missing data in the final spreadsheets obtained with XCMS and 

Metab. The total number of ions, respectively identified compounds, is also presented. 

Using the XCMS package, only 2.1% of the data were equal to 0, where 27.4% of the data 

were ‘missing’ using Metab package (Table 9), therefore, missing values substitution had 

more impact on results from Metab package. Of the two different techniques applied to 

implement missing data, the substitution of missing data with half the lowest value of each 

compound changed the mean and median. In contrast, k-NN applied an algorithm which 

gave a value based on the sample’s neighbours in a mathematical space, thus reducing 

disparity between substituted and measured values.[89] 

Shapiro test was applied to test the normality of the distribution. T-test or one-way analysis 

of variance (ANOVA) followed by Tukey’s HSD test were applied to test differences 

between data classes for normally distributed data and Mann-Whitney or Kruskal-Wallis 

were applied in case of non-normally distributed data. If required, final p-values were 

adjusted for multiple comparisons using Bonferroni correction. Principal component 

analysis (PCA) was used to show similarities within data classes and differences between 

data classes. Parametric two-way ANOVA was applied for comparing number of 

compounds across different experimental conditions. It was performed by fitting an 

analysis of variance model through the R function lm. 

In order to build a statistical model that allows the classification of unknown samples, 

features that best described the differences between data classes were selected. Three 

different algorithms for feature selection were applied: a step-wise linear discriminant 

analysis and two different random forest classification algorithms, rfe and Boruta89. These 

algorithms were implemented in R package caret [91]. As 3 feature selection algorithms 

were applied, a single feature may be selected more than once. Then, the number of 

occasions on which each feature was selected on each day, was summed.  
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Features selected more than once were used for modelling at each day prior to diagnosis 

for Metab and XCMS results with missing values replaced using both k-NN algorithm and 

half the lowest compound intensity. Thus, four datasets were considered, 2 sets of data for 

Metab (1 set of data for each data imputation strategy) and 2 sets of data for XCMS (1 set 

of data for each data imputation strategy). 

For each of the four data sets, random forest and k-Nearest Neighbour algorithms were 

applied for sample classification. Accuracy and kappa statistics reported by each statistical 

model technique were calculated for each day using only features selected more than once 

for each specific day. These results were validated using repeated 10-fold cross validation. 

Based on these results, one missing data imputation algorithm was selected for Metab 

results and one for XCMS results, which resulted in two sets of data to be further analysed.  

For these two sets of data, random forest (RF), linear discriminant analysis (LDA), k-Nearest 

Neighbour (k-NN), partial least square (PLS), support vector machine (SVM) radial, linear 

and polynomial algorithm were applied for classification at each day prior to diagnosis. 

Features selected more than twice across six days prior to diagnosis were considered, 

therefore the same features were used for each time point. These results were validated 

using repeated double cross-validation (inner loop of 3-fold cross-validation repeated 5 

times; and outer loop of 3-fold repeated 30 times). Accuracy, sensitivity and specificity 

obtained by each statistical modelling techniques and each validation scheme were 

reported. Accuracy was defined as the sum of correctly classified samples divided by the 

total number of samples; sensitivity was defined as correctly positively classified samples 

divided by the sum of positive samples; specificity was defined as correctly negatively 

classified samples divided by the sum of negative samples. 

Functions from the following R packages have been used for the data analysis and data 

mining: Metab[69], MASS[92], impute[93], xcms[78], [88], [94], FactoMineR[95], 

beeswarm[96], gplots[97], metabolomics[98], multtest[99], random[100], baseline[101], 

caret[91], pROC[102], reshape2[103], Boruta[104], e1071[105], klaR[106], ipred[107], 

kknn[108], pls[109] and kernlab[110]. 
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2.1.9 Optimised method 

Several parameters were investigated and optimised for the analysis of faecal samples from 

preterm babies. Samples of 50 to 100 mg, vials of 10 ml, CAR/PDMS fibre, VOCs extraction 

within 14 hours and samples analysed once were the resultant optimised settings. 

Optimal sensitivity and specificity were obtained with the resolution, sensitivity and shape 

requirement in AMDIS set as medium, high and medium, respectively. In addition, the use 

of a time window of 0.4 minute in Metab was optimal with a sensitivity of 90.6 ± 4.2% and 

a precision of 83.3 ± 3.1%. 
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2.2 Sensor technology 

In this thesis, headspace–gas chromatography–sensor (HS–GC–Sensor) was applied to 

detect patterns of VOCs present in faeces from premature babies with and without 

necrotizing enterocolitis (NEC). Many aspects of the HS–SPME–GC–MS analysis of biological 

samples have been previously optimized[111] and other aspects were optimized for this 

study as described below. 

2.2.1 HS–GC–Sensor configuration 

The HS–GC–Sensor is an in-house developed instrument[112]. It is composed of a gas 

chromatography column coupled to a metal oxide gas sensor and an electronic circuit 

monitored by a computer software. The gas chromatography column separates VOCs in a 

mixture while the metal oxide gas sensor detects VOCs, which result in changes in the 

resistance level of the electronic circuit. The computer software then registers, at every 0.5 

seconds, these changes in resistance level during the analysis of a given biological sample. 

Specific metabolic states are expected to produce changes in the metabolites present in 

biological samples such as urine or faeces. The HS–GC–Sensor was developed to detect 

these changes and, coupled to computer algorithms, classify or diagnose unknown 

samples. 

The GC column used in this thesis was a SPB-1 sulphur, length 30 m, internal diameter 0.32 

mm, film thickness 4 µm (Supelco, Sigma Aldrich). The carrier gas used was synthetic air 

composed of oxygen at 21.21% and nitrogen at 78.79% (BOC, Guildford, UK). Vials with 

phenolic cap and PTFE/silicone septum of 10 ml (Sigma-Aldrich, Dorset, UK) volume were 

used. Samples were pre-incubated for 10 minutes at 50C prior to sampling of 2 cm3 of 

headspace. The injector temperature was set at 180°C. The initial temperature of the GC 

oven was set at 40°C and held for 3.4 min before increasing to 100°C at a rate of 2, 2.5 and 

5°C/min and held for 10 min, for a total run time of 43.4 min, 37.4 min and 25.4 min, 

respectively. The carrier gas pressure at the entrance of the column was set at 32 psi and 

the synthetic air flow rate on the sensor was set at 100 ml. 
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2.2.2 Sample mass 

The mass of a sample analysed by HS–GC–Sensor may affect the resistance levels. This 

section describes the sample mass optimisation applied to HS–GC–Sensor. One faecal 

sample was divided into aliquots of 100, 300 and 500 mg in triplicate (104.4 ± 1.7 mg, 308.6 

± 1.1 mg and 506.5 ± 1.7 mg) and analysed by HS–GC–Sensor using a ramp of 5°C/min. 

Figure 18 presents the mean resistance profiles of each tested sample mass. ANOVA was 

performed on each data point when no intensities were equal to 0. No significant 

difference was observed, between each stool mass, at any data point (ANOVA followed by 

Bonferroni correction for multiple measurements). These results indicated that, up to the 

data point 1400, the mean resistance level was proportional to the sample mass used. A 

larger mass also resulted in improved resolution; however, this was not marked for the first 

1100 data points. From data point 1200 onwards, sample mass of 100 mg seemed to have a 

higher resistance variation than larger masses. A sample mass of 500 mg would appear to 

be optimal, but as no significant differences were detected across samples masses, 100 mg 

could also be used. 

 

Figure 18: Mass optimisation GC–sensor investigation. One human sample was divided in triplicate 

aliquots of 100, 300 and 500 mg and analysed by headspace gas chromatography sensor (HS–GC–

Sensor). Mean profiles of all three masses investigated (continuous line) and their standard 

deviation (light shade) were illustrated. 
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2.2.3 Ramp optimisation 

Different configurations of temperature ramping were tested in order to determine its 

effect on the resolution of the separation. This section investigates 3 configurations of 

temperature ramp and determines the optimal one for analysing preterm faecal samples 

from babies with and without NEC. 

Figure 19 presents the mean of the profiles for the ramp optimisation. One faecal sample 

was divided into 9 aliquots of 100 mg and analysed in triplicate using ramps of temperature 

of 2, 2.5 and 5°C/min (97.6 ± 2.8 mg, 99.0 ± 7.1 mg and 97.0 ± 4.7 mg, respectively). The 

resolution was slightly improved with a ramp of 2 or 2.5°C/min compared to a 5°C/min 

ramp. As the compounds affinity with the stationary phase was increased, compounds co-

elution might be reduced. However, peak intensities at the end of the run might be 

reduced as the width of the peaks was increased. 

 

 

Figure 19: Ramp comparison GC–sensor investigation. One sample was divided in triplicates 

aliquots of 100 mg and analysed by headspace gas chromatography sensor (HS–GC–Sensor). Mean 

profiles of all three ramps investigated (continuous line) and their standard deviation (light shade) 

are illustrated. 
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2.2.4 Repeatability 

The repeatability of the method was assessed by using VOC profiles of three aliquots of 100 

mg to calculate the variation within samples. Three aliquots of 99.0 ± 7.1 mg (mean ± SD) 

from one sample were analysed over two consecutive days using a 2.5°C/min ramp. More 

than 75% of the data point showed a variation of less than 30% and a median coefficient of 

variation of 15.1%, which indicated acceptable repeatability. Data points equal to 0 were 

discarded. 

2.2.5 Reference gas 

A reference gas was analysed every day in order to assess the repeatability of the response 

between days of measurements. This section disscusses how the reference gas was used 

and the results obtained with that practice. 

A reference gas composed of 50 ppm ethanol and 50 ppm methanol in 20.9% oxygen and 

79.09% nitrogen (Air Products PLC, Crewe, UK) was injected 2 to 3 times at the beginning 

and, ideally, the end of each day of measurement. The injection of 2 ml of the reference 

gas was performed manually and the column remained at 40°C. Peak intensities were 

visually checked to assess values correctness prior to statistical analysis. 

All samples were run over 94 days. For eleven days a single set of reference gas injections 

was applied therefore, within days variability could not be tested for those days. On the 83 

days left with multiple set of measurements, differences within each day were tested using 

t-test or ANOVA. Methanol was statistically different for 4 days and ethanol for 6 other 

days, at a level of significance of 5% and with Bonferroni correction applied. Three days 

showed statistically different abundances of methanol and ethanol. 
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2.2.6 Data analysis 

In this section, the statistical analyses applied are presented for both the method 

development and the Dove Project. 

2.2.6.1 Statistical analysis – method development 

Chromatograms were aligned using an in-house developed algorithm developed by Aggio 

et al.[113]. Samples were aligned in relation to a single reference chromatogram. To 

determine the reference chromatogram, each chromatogram was compared to every other 

chromatogram when shifting by 31 measurement points (15 points to the left and 15 to the 

right). Pearson’s correlation was computed at each shift and the chromatogram with the 

highest mean correlation coefficient was selected as reference chromatogram. 

Statistics were performed using R version 3.1.1 & 3.1.2[86], [87]. 

One-way analysis of variance (ANOVA) was applied to test differences between sensor 

signals. P-values were adjusted for multiple comparisons using Bonferroni correction. P-

values < 0.05 were considered to be significant. 

2.2.6.2 Statistical analysis – Dove study 

The analysis of the dataset generated by the GC-Sensor was performed by Dr Aggio. 

The analysis was similar to that described by Aggio et al. [113], except for the validation 

process and the length of the chromatograms. There was a small number of samples 

available at each day prior to diagnosis and so leave-one-out cross validation was applied 

and only the first 900 sampling points (or 450 seconds) were considered. 

The seven stages of the pipeline applied to the data could be briefly described as follows. 

Sensor data were loaded into R software; the baseline of each chromatogram was 

corrected; chromatograms were normalized and aligned; data were transformed using 

wavelet coefficients; features were selected using two algorithms based on random forest; 

classifiers were built using LDA, PLS, RF, k-NN, SVM radial, linear and polynomial; validation 

was applied on classifiers. Principal component analysis (PCA) was used to show similarities 

between statuses. 
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2.2.7 Optimised method 

A sample mass of 100 mg was chosen for practical reasons. A temperature ramp of 

2.5°C/min was applied for the investigation, as it may reduce the co-elution of compounds. 

The repeatability of the measurement was found to be acceptable with more than 75% of 

the data points varying less than 30%. 

2.3 Dove study 

The Dove project has been funded to analyse volatile organic compounds emitted from the 

faeces of preterm infants as a predictor of preclinical necrotising enterocolitis. The ethics 

committee approval is 11/WM/0078 (Appendix D), with parents giving consent following 

project presentation (Appendix E). 

The Dove project was performed in parallel with the Dovetail project, which aimed to 

sequence faecal samples and characterize bacteria species present in the gut of preterm 

infants. A total of 1,326 patients were recruited over more than 2 years: from these NEC 

and controls were defined according to their clinical status: NEC was defined according to 

clinical features and the Bell’s stage; controls were neonates without NEC. The controls 

were babies with a range on non-NEC disorders associated with prematurity: in this thesis 

they have been designed healthy controls. Table 10 shows the distribution of patients. The 

recruitment criterion was a gestation period shorter than 34 weeks. Patients were excluded 

if they were unlikely to survive or had significant gastrointestinal anomalies. Eight hospitals 

took part in the study: Birmingham Heartlands Hospital (BHH), Birmingham Women’s 

Hospital (BWH), Liverpool Women’s Hospital (LWH), Royal Shrewsbury Hospital (RSH), 

Royal Wolverhampton Hospital (RWH), Sheffield Teaching Hospitals (STH), University 

Hospitals of Coventry and Warwickshire (UHCW) and University Hospitals of Leicester 

(UHL). 

Table 10: Table presenting the number of patients per status included in the study. 

Status Number of patients 

Confirmed NEC 64 

Suspected 192 

Healthy Control 1047 

Other disorders 23 

‘Other disorders’ refers to patients without NEC but disorders which presented similar symptoms. 
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Faecal samples were collected daily, if possible, according to a clear protocol (see Appendix 

F), for the entire hospitalisation of the patients. Samples were stored in glass pots with 

plastic cap and kept at -20°C. Samples were shipped to the laboratory based in Liverpool on 

dry-ice. In Liverpool, samples were kept at -20°C and organised in a MySQL database. 

Patient details were collected by the nurses on-site. These details were stored in a 

database constructed by Ph.D. student Nicholas Ellaby, Institute of Integrative Biology, 

University of Liverpool. 

2.3.1 Healthy control assignment to confirmed NEC 

Two heathy control patients were assigned to each confirmed NEC patient according to a 

number of factors: date of birth; date of discharge or death; the mode of delivery; the birth 

weight; the gestation duration; the gender; the type of pregnancy; the enteral feeding; 

intravenous antibiotics administrated; and the status. For confirmed NEC patients, the first 

date of diagnosis was also considered. These factors were selected based on discussions 

with statisticians and clinicians involved in the study. The final assignment was performed 

automatically by a computer script developed in Visual Basic and implemented in an excel 

folder. 

Match factors for each control were calculated based on the criteria presented in Table 11. 

The global match factor was calculated summing match factors of each criterion and had a 

maximum of 47. The lowest global match factor reported was -27.9, the 1st quartile 22.7, 

the median 27.7, the 2nd quartile 30.0 and the highest global match factor was 36.1. Further 

statistical values regarding the assignment are presented in Table 12. 
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Table 11: Calculation details regarding the assignment of healthy controls to confirmed NEC 

patients. 

Criteria Calculation 
Criterion match factors 
calculation 

Gestation duration 
Absolute value of confirmed NEC 
gestation duration minus healthy 
control gestation duration 

10 – i * 10/6 with a 
minimal factor equal to 0 

Delivery Classified as vaginal or caesarean 10 if identical and 0 if not 

Enteral feeding type 

Classified as mother expressed 
breast milk only, formula milk 
only, mix of both or no feed 
given 

6 if identical and 0 if not 

Hospital 
BHH, BWH, LWH, RSH, RWH, 
STH, UHCW and UHL 

6 if identical and 0 if not 

Birth Weight 
Absolute value of confirmed NEC 
birth weight minus healthy 
control birth weight 

5 if 0 ≤ i ≤ 20 

3 if 21 ≤ i ≤ 50 

1 if 51 ≤ i ≤ 75 

0 if i > 75 

Intravenous antibiotics 
(iAB) 

Shared iAB divided by the sum of 
healthy control’s iAB plus sum of 
confirmed NEC’s iAB minus the 
sum of shared iAB 

i * 5 

Gender Classified as female or male 5 if identical and 0 if not 

Table presenting the criteria taken into consideration for patients assignment. The calculation 

column described either the classification applied for categorical data or the formula applied on 

numerical data. A ‘i’ in the third column symbolised the numerical answer calculated when data are 

numerical. E.g. if the confirmed patient had a gestation duration of 200 days and the healthy control 

had a gestation duration of 197 days, the absolute value of the difference was 3 days and the 

criterion match factor was 5 (10 – 3 * 6 / 10). 
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Table 12: Percentage of matched healthy controls according to various factors. 

Criteria 
Number of 

controls 

Percentage 
of control 

[%] 

Same unit 41 59.4 

Same feeding group 51 73.9 

Same delivery 35 50.7 

Same sex 44 63.8 

Difference in length 
of gestation [day] 

0 3 4.3 

1 6 8.7 

2 8 11.6 

3 6 8.7 

4 2 2.9 

5 1 1.5 

6 3 4.3 

> 6 40 58.0 

iAB match factor > 0.75 3 4.4 

0.75 >= iAB match factor > 0.5 11 15.9 

0.5 >= iAB match factor > 0.25 44 63.8 

0.25 > iAB match factor > 0 11 15.9 

Birth weight 
difference 

of 0 to 20 g 8 11.6 

of 21 to 50 g 6 8.7 

of 51 to 75 g 3 4.3 

higher than 75 g 52 75.4 

Table presenting the number of healthy controls and their respective relative percentages in 

accordance with the criteria. (iAB = intravenous antibiotics) E.g.: 41 healthy controls (59.4%) were 

from the same unit as their matched confirmed NEC. A total of 69 healthy controls were matched to 

confirmed NEC cases. 
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2.3.2 Samples analysed 

A total of 251 samples were analysed in the study, 166 samples were from 70 healthy 

control patients and 85 samples from 34 confirmed NEC patients. Table 13 presents the 

sample daily distribution and the number of patients included in the GC–MS investigation 

and Table 14 presents the sample daily distribution and the number of patients included in 

the GC–Sensor investigation. Only six days prior to diagnosis were considered as NEC 

usually develops quickly.[114] 

The sample distribution for both statuses using both instruments and for each 

characteristic’s level is presented in detail in Table 15. To apply classifiers on GC–MS data, 

only one sample per patients per day was considered to avoid bias, therefore, 4 samples 

were removed at random from the data. Table 16 presents this sample distribution. Table 

17 presents the various levels of each characteristic used to classify samples during data 

analysis. 

Table 13: Samples distribution along time line for GC–MS analysis. 

Status N of Patient Day-1 Day-2 Day-3 Day-4 Day-5 Day-6 
Total 

sample 

Healthy 
control 

70 34 22 42 18 31 19 166 

Confirmed 
NEC 

34 17 9 20 15 16 8 85 

Table presenting the number of samples per day prior to diagnosis and the number of patients 

enrolled in the study, with respect to the GC–MS data. 

Table 14: Samples distribution along time line for GC–Sensor analysis. 

Status N of Patient Day-1 Day-2 Day-3 Day-4 Day-5 Day-6 
Total 

sample 

Healthy 
control 

63 33 18 37 15 25 16 144 

Confirmed 
NEC 

27 10 9 15 8 14 6 62 

Table presenting the number of samples analysed per day prior to diagnosis and the number of 

patients enrolled in the study, with respect to the GC–Sensor data. 
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Table 15: Sample distribution and patients characteristics. 

  HS–SPME–GC–MS HS–GC–Sensor 

Characteristics Levels / Values 
Confirmed 

NEC 
Healthy 
Control 

Confirmed 
NEC 

Healthy 
Control 

Delivery 
Vaginal delivery 17 28 15 25 

Caesarean delivery 17 42 12 38 

Gestation duration 

[days] 

Minimum 165 163 166 164 

Median 184.5 199 184 201 

Maximum 229 231 229 231 

Birth weight 

[g] 

Minimum 500 485 500 485 

Median 795 1045 835 1070 

Maximum 2116 2098 2116 2098 

Sex 
Male 20 27 12 38 

Female 14 43 15 25 

Food 

Mix 25 53 20 46 

Formula only 1 5 1 5 

MEBM only 8 12 6 12 

Bell's grading 
Stage II A or B 2 N/A 2 N/A 

Stage III A or B 32 N/A 25 N/A 

Unit 

UHL 6 14 4 14 

UHCW 3 13 3 12 

STH 7 10 6 9 

BHH 4 5 2 5 

BWH 13 19 11 16 

RSH 1 6 1 5 

RWH 0 3 N/A 2 

Table presenting the sample distribution for the GC–MS and GC–Sensor investigation according to 

patients’ characteristics for both statuses. One confirmed NEC case had donor breast milk only 

added to mother expressed breast milk and was therefore classified as mix. (N/A: not applicable) 
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Table 16: Samples distribution along time line for modelling data of GC–MS investigation. 

status 
N of 

Patient 
Day-1 Day-2 Day-3 Day-4 Day-5 Day-6 

Total 
sample 

Confirmed 
NEC 

34 17 9 19 15 16 8 84 

Healthy 
control 

70 34 21 41 17 31 19 163 

Table presenting the number of samples per day prior to diagnosis used for classification. Four 

samples were removed to avoid bias. The number of patients and the total number of samples is 

also presented. 
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Table 17: List of demographic and environmental factors tested, their classes and their definition. 

Factor Classes Comment 

Age at sampling 
grouped by 10 
days 

1-160 
Grouped by 10 days, labels being the mean of 
each range slice 

Age at sampling 
grouped by 5 days 

1-160 
Grouped by 5 days, labels being the mean of 
each range slice 

Birth weight 400-2200 
Grouped by 100 grams, labels being the mean of 
the range slice 

Delivery type 
CS 

VD 

Caesarean 

Vaginal delivery 

Feeding type 

Formula only 

MEBM only 

Mix 

Feed only with formula milk 

Feed only with mother expressed breast milk 
(MEBM) 

Feed with a mix of formula and MEBM 

Gender 
F 

M 

Female 

Male 

Gestation duration 24-34 Rounded down weekly 

Hospital 

BHH 

BWH 

LWH 

RSH 

RWH 

STH 

UHCW 

UHL 

Birmingham Heartlands Hospital 

Birmingham Women’s Hospital 

Liverpool Women’s Hospital 

Royal Shrewsbury Hospital 

Royal Wolverhampton Hospital 

Sheffield Teaching Hospitals 

University Hospitals of Coventry and 
Warwickshire 

University Hospitals of Leicester 

Table presenting each factor used to divide samples based on their levels. The description of the 

levels is presented in the comment column. 
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This chapter presents the results obtained from the HS–SPME–GC–MS and the HS–GC–

Sensor analyses. The GC–sensor data were analysed using the modelling pipeline described 

in chapter 2.2.6. 

3.1 Mass spectrometry 

Several analyses were performed using results generated by the mass spectrometer. Uni-

variate statistical analyses were applied to compare the number of compounds identified 

across data classes. Compounds reported by Metab and features reported by XCMS were 

analysed quantitatively using uni-variate, multi-variate and modelling tools. 

3.1.1 Results based on Metab output 

A pipeline allowing the identification of the compounds was applied to the data. A library 

was built using AMDIS software and NIST database. This library, AMDIS and Metab were 

used to generate a report containing compounds identified and their abundances per 

sample. This section presents the results of the analyses performed on these data. 

3.1.1.1 Univariate analysis of the number of compounds identified in 

healthy control samples 

Analysis of the number of compounds identified per samples was performed on 329 

healthy control samples. This section compares the number of compounds identified within 

healthy control samples and defines factors associated with the potential differences. 

Figure 20 shows the number of compounds found in 329 samples from healthy patients 

presented according to the different factors analysed (Table 17). 
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Figure 20: Number of compounds identified from healthy patients samples grouped according to 

various factors. Boxplot presenting the number of compounds identified in 329 samples based on 

factors (see Table 17 for details). The number of sample per sub-group is shown in brackets. 

 



67 
 

Overall, 62 ± 20 compounds were identified in 329 samples (median ± IQR or interquartile 

range). A Mann-Whitney test was applied to compare delivery types and gender whereas 

Kruskal-Wallis tests were used for the other factors. The Spearman’s correlation coefficient 

was calculated for the gestation duration, the birth weight and the age at sampling 

grouped by 5 and 10 days; they were then tested for significance. Results are presented in 

Table 18. 

Three factors showed a significant difference between sub-groups, these were the feeding 

type and the age at sampling grouped by 5 and 10 days. The age at sampling showed a 

greater difference if the samples from babies older than 100 days were removed before a 

Kruskal-Wallis test. In general, more compounds were observed as the age at sampling 

increased. However, no correlation was found with the Spearman’s correlation coefficient. 

Table 18: Comparison of the number of compounds identified in healthy patients samples 

clustered according to various factors. 

 

p-value 
similarity 

p-value 
correlation 

Feeding type 0.018 N/A 

Hospital 0.774 N/A 

Gestation duration 1 >0.05 

Birth weight 0.652 >0.05 

Delivery type 1 N/A 

Gender 0.489 N/A 

Age at sampling grouped by 5 days  0.032 >0.05 

Age at sampling grouped by 10 days 0.007 >0.05 

Age at sampling lower than 100 days 
grouped by 5 days 

0.002 >0.05 

Age at sampling lower than 100 days 
grouped by 10 days 

<0.001 >0.05 

Table presenting results of the test for the difference within each factor considered and correlation 

between factors and the number of compounds (Mann-Whitney test for 2 sub-groups and Kruskal-

Wallis test if more than 2 sub-groups present; Spearman rho statistics used for the correlation; 

Bonferroni correction applied with both tests). 
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3.1.1.2 Univariate analysis of the number of compounds identified in 

matched healthy control and confirmed NEC samples 

Analysis of the number of compounds identified per sample was performed on samples 

from each condition and classified using different factors. In total, 166 samples from 

healthy controls were compared to 85 samples from confirmed NEC, approximately 2 

samples from healthy control patients for each confirmed NEC case. This section compares 

the number of compounds identified between statuses (confirmed NEC and healthy 

control) and defines factors associated with potential differences. 

Figure 21 and Figure 22 present the number of compounds found in 85 confirmed NEC and 

166 healthy control samples when grouped according to the factors described in Table 17. 

A median of 62 ± 22 compounds per sample were identified in 166 healthy control samples 

and 63 ± 25 compounds per sample were identified in confirmed NEC samples (median ± 

IQR). Mann-Whitney tests were applied to compare delivery types and gender, while 

Kruskal-Wallis tests were used for the other factors. The Spearman’s correlation coefficient 

was calculated for the gestation duration, the birth weight and age at sampling. Gender 

was the only factor showing a significant difference for matched healthy control samples. A 

slight trend could be observed when samples were grouped by age at sampling; however, it 

was neither significantly different nor correlated. 
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Figure 21: Number of compounds identified in samples from confirmed NEC cases and healthy 

controls grouped according to various factors. Boxplot presenting the number of compounds 

identified in 85 samples from NEC patients and 166 healthy controls divided according to the feeding 

type, the hospital, the delivery type and the gender (see Table 17 for details). The number of sample 

per sub-group is shown in brackets. (* p < 0.05; Mann-Whitney tests were applied to compare 

delivery types and gender, while Kruskal-Wallis tests were used for the feeding type and the 

hospital) 
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Figure 22: Number of compounds identified in samples from confirmed NEC cases and healthy 

controls grouped according to various factors. Boxplot presenting the number of compounds 

identified in 85 samples from NEC patients and 166 healthy controls divided according to the 

gestation duration, the birth weight and the age at sampling grouped by 5 and 10 days (see Table 17 

for details). The number of sample per sub-group is shown in brackets. (p > 0.05; Kruskal-Wallis test) 
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In addition, to compare various factors while considering health statuses, two-way ANOVA 

were applied. This test was chosen as Kruskal-Wallis test could not be applied to consider 

interaction between factors. Table 19 presents the results of two-way ANOVA for the 

number of compounds identified when comparing the status and the various factors 

presented above. It showed no significant difference between confirmed NEC and matched 

healthy controls, which are also illustrated in Figure 21 and Figure 22. The gender was the 

only factor associated with a significantly different number of identified compounds (Figure 

21). This difference may have happened by chance despite the utilisation of Bonferroni 

correction. There was no significant interaction between statuses and factors. 

Table 19 Comparison of each independent factor, status and interactions. 

Factor p-value 

Between confirmed 
NEC and healthy 

control 

Difference 
within 
factor 

Interaction 

Feeding type 1 1 1 

Hospital 1 1 1 

Delivery type 1 1 1 

Gender 1 0.010 1 

Gestation duration 1 1 1 

Birth weight 1 0.091 1 

Age at sampling 
grouped by 5 days 

1 0.469 1 

Age at sampling 
grouped by 10 days 

1 0.116 1 

Table presenting the results of two-way ANOVA to test influence of factors and statuses on the 

number of compounds and their interactions. (Bonferroni correction was applied) 

Figure 22 showed a potential trend for the age at sampling grouped by 5 and 10 days for 

confirmed NEC and healthy control where the number of VOCs identified seemed to 

increase according to the age at sampling. However, neither the difference in the number 

of compounds identified across ages at sampling, nor correlation between the number of 

compounds identified and the age at sampling were significant (Table 19). 
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Figure 23 presents the boxplots with the number of compounds found in samples from 

confirmed NEC and healthy controls for days 1 to 6 prior to diagnosis.  

No significant differences were observed while comparing confirmed NEC and healthy 

controls (Mann-Whitney test; p-values > 0.05), moreover, the number of compounds 

identified at each day of sampling prior to diagnosis was compared within health status. 

Neither differences nor correlations were significant (Kruskal-Wallis test used for 

differences; Spearman rho statistics used for correlation; p-values > 0.05). 

 

Figure 23: Number of identified compounds in confirmed NEC and healthy control samples at each 

day prior to diagnosis. Boxplot presenting the number of compounds identified in samples from 

both statuses at days -1 to -6 prior to diagnosis. The number of samples per sub-group is shown in 

brackets. (p > 0.05; Mann-Whitney tests) 
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3.1.1.3 Compounds chemical family 

This section presents the different chemical families detected in samples from confirmed 

NEC and healthy controls at each day prior to diagnosis. 

Figure 24 presents the profile of chemical families detected in samples from confirmed NEC 

and healthy controls; Figure 25 presents the profile of chemical families detected according 

to the number of days prior to diagnosis. A total of 166 samples from healthy control and 

85 samples from confirmed NEC patients were considered. 

Mann-Whitney was applied on each compound’s family to test for significance between 

confirmed NEC and healthy control samples. P-values were corrected using Bonferroni 

correction and none of them was significantly different at 5%. Kruskal-Wallis was applied 

on each compound’s family to test for significance between days prior to diagnosis within 

confirmed NEC and healthy control samples. Again, p-values were corrected using 

Bonferroni correction and none of them was significantly different at 5%. 

 

Figure 24: Chemical families detected in samples from confirmed NEC and healthy control. Stacked 

bar plot illustrating the distribution of the chemical families associated with compounds found in 

samples from confirmed NEC and healthy control patients. (p > 0.05; Mann-Whitney followed by 

Bonferroni correction) 
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Figure 25: Chemical families detected at each day prior to diagnosis for confirmed NEC and healthy 

control. Stacked bar plot illustrating the distribution of the chemical families detected at days 1 to 6 

prior diagnosis. Families of compounds were tested for differences within statuses (p > 0.05; Kruskal-

Wallis followed by Bonferroni correction) 

3.1.1.4 Compounds prevalence in different group of samples 

In total, the AMDIS library built during this work contained 229 compounds. However, few 

compounds were expected to be highly prevalent among analysed samples. The aim of this 

section is to investigate which compounds were highly prevalent in the different groups of 

samples investigated: confirmed NEC cases plus matched healthy controls (251 samples); 

confirmed NEC cases (85); matched healthy controls (166); and healthy controls (329). 

Compounds present in 80% of at least one of these 4 groups of samples were presented in 

Table 20. Few compounds were prevalent in more than 80% of the samples. In total, 21 

compounds had a high frequency (>80%) in healthy control samples, 17 in confirmed NEC 

plus control samples, 16 in confirmed NEC samples and 19 in matched healthy control 

samples. 
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Table 20: Most prevalent compound identified in different groups of sample. 

RT 

[min] 
Compound names 

Confirmed 
NEC and 
healthy 
control 
(n=251) 

Confirmed 
NEC 

(n=85) 

Healthy 
control 
(n=166) 

Healthy 
control 
(n=329) 

6.6 Ethanol 99% 99% 99% 98% 

22.3 Heptanal 98% 96% 98% 98% 

24.3 
2, 2, 4, 6, 6-
pentamethylheptane 

97% 99% 96% 96% 

12.7 Acetic acid 96% 98% 96% 97% 

18.4 Hexanal 96% 98% 96% 97% 

29.5 Nonanal 95% 95% 95% 95% 

10.3 2, 3-butanedione 95% 94% 95% 93% 

7.4 Acetone 94% 92% 95% 97% 

9.0 2-methylpropanal 92% 89% 93% 94% 

16.2 Propanoic acid 90% 91% 90% 93% 

25.8 
2, 2, 4, 4-
tetramethyloctane 

90% 94% 87% 85% 

20.7 Xylene 86% 84% 87% 88% 

9.6 1-propanol 86% 84% 87% 86% 

7.2 Propanal 86% 80% 89% 91% 

25.7 Benzaldehyde 82% 82% 83% 85% 

24.8 2-pentylfuran 82% 84% 81% 84% 

19.5 Butanoic acid 80% 76% 81% 80% 

13.9 1-penten-3-one 79% 73% 83% 81% 

21.1 2-E-hexenal 78% 72% 82% 84% 

14.2 Pentanal 75% 73% 76% 81% 

26.1 Octanal 75% 68% 79% 81% 

Table listing the most prevalent compounds in the 4 sets of samples, their prevalence is quoted as a 

percentage of the sample. 
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3.1.1.5 Univariate analysis of the intensities of compounds found in 

healthy control samples to investigate the influence of 

multiple factors 

Univariate analysis was performed to investigate the influence of multiple factors on VOCs 

intensities emitted from 329 healthy control samples. 

A total of 46 compounds were identified in the 329 healthy controls samples analysed. 

Their abundances were then compared within levels of factors described in Table 17. Table 

21 shows the number of compound associated with p-values lower than 0.05 when missing 

values were substituted using either half the lowest value across status for each compound 

or k-NN algorithm (t-test for 2 sub-groups and ANOVA if more than 2 sub-groups were 

present; with Bonferroni correction). No Spearman’s correlation coefficient was significant 

between the intensities of the compounds and the factors considered. 

Table 21: Number of compounds with significantly different intensities while healthy control 

samples were analysed according to various factors. 

 Number of compounds 

 

Half lowest value k-NN 

Age at sampling grouped by 10 days 14 8 

Age at sampling grouped by 5 days 12 6 

Birth weight 14 9 

Delivery type 0 0 

Feeding type 2 0 

Gender 1 0 

Gestation duration 9 4 

Hospital 7 3 

Total 59 30 

Table presenting the number of compounds which intensities showed a p-value lower than 0.05 

when tested for differences between levels based on 329 samples clustered according to the factors 

presented in Table 17. Missing values were replaced either by half the lowest value across status for 

each compound or by k-NN averaging (T-test for 2 sub-groups and ANOVA test if more than 2 sub-

groups present; with Bonferroni correction).  
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Some factors seemed to have a stronger influence on the intensities of the VOCs identified. 

Age at sampling and birth weight showed a high number of VOCs present at significantly 

different intensities across ages and birth weights, respectively. Gestation duration and 

hospital also showed some VOCs at significantly different intensities. In contrast, the 

delivery type, feed type and gender seemed to have very low or no influence in the 

abundances of VOCs found, with none or very few compounds present at significantly 

different intensities. This trend was observed with both imputation methods, although the 

number of significantly different compounds was higher when half the lowest value was 

used instead of k-NN algorithm. 

3.1.1.6 Univariate analysis of the intensities of compounds found in 

confirmed NEC and matched healthy control samples to 

investigate the influence of factors 

In addition to the investigation on healthy control samples described above (see 3.1.1.5), 

VOCs found in NEC samples and matched controls were further analysed in order to 

determine which factors might affect their intensities or relative abundances. This section 

presents the factors that influence the intensity of VOCs found in these samples. 

The abundances of all 50 compounds identified in the 166 healthy control samples and 85 

confirmed NEC samples were compared between the levels of each factors described in 

Table 17. Table 22 presents the number of compounds showing p-values lower than 0.05 

when missing values were substituted by either half the lowest value for that compound 

(across samples from both statuses) or using k-Nearest Neighbour (t-test for 2 sub-groups 

and ANOVA test if more than 2 sub-groups present; with Bonferroni correction). 

There was a higher number of VOCs present at significantly different intensities within 

levels of most factors tested when analysing healthy control samples than confirmed NEC 

cases. The imputation method used on the missing data produced small differences in the 

results. Age at sampling seemed to impact VOC intensities for both groups, while the birth 

weight and the hospital influenced VOC intensities on healthy control samples. 
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Table 22: Number of compounds which showed significantly different intensities while confirmed 

NEC and healthy control samples were analysed according to various factors. 

 
Number of compounds 

in confirmed NEC 
samples 

Number of compounds 
in healthy control 

samples 

 
Half lowest value k-NN Half lowest value k-NN 

Age at sampling grouped by 
10 days 

2 3 7 8 

Age at sampling grouped by 
5 days 

0 0 5 6 

Birth weight 0 1 5 2 

Delivery type 0 0 0 0 

Feeding type 1 0 0 0 

Gender 0 0 2 0 

Gestation duration 0 0 0 2 

Hospital 1 0 5 5 

Total 4 4 24 23 

Table presenting the number of compounds with intensities having a p-value less than 0.05 when 

tested for differences between levels based on 85 confirmed NEC and 166 healthy control samples 

grouped according to the factors (see Table 17 for details). Missing values were replaced by either 

by half the lowest value for each compound or by k-NN averaging (T-test for 2 sub-groups and 

ANOVA test if more than 2 sub-groups present; with Bonferroni correction). 

Spearman’s correlation coefficient was calculated for the intensities of VOCs found in 

confirmed NEC cases and healthy control, with missing values substituted by half the 

lowest value and k-NN. It showed a significant correlation for N-propylacetate and 

propanol. Missing values were substituted by half the lowest value in both cases. 

N-propylacetate (RT: 14.4 min) was correlated with the age at sampling when grouped by 5 

days for the confirmed NEC samples (p < 0.05; Spearman rho statistics), however it was not 

significantly different (ANOVA p-value greater than 0.05). Propanol (RT: 9.6 min) was 

correlated with the age at sampling when grouped by 5 days for the healthy control 

samples (p < 0.05; Spearman rho statistics) and was significantly different (ANOVA p-value 

< 0.001) (Figure 26). 
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Figure 26: Compounds with intensities correlated to the age at sampling. Boxplot showing VOCs 

with significant correlation between their abundances and the age at sampling grouped by 5 days. 

N-propylacetate (RT: 14.4 min) was correlated in confirmed NEC samples while propanol (RT: 9.6 

min) was correlated in healthy control samples (p < 0.05; Spearman rho statistics). 

3.1.1.7 Univariate analysis on the intensities of compounds 

comparing confirmed NEC and matched healthy control 

samples 

VOC profiles were analysed using univariate statistical tools in order to identify differences 

between confirmed NEC and healthy controls. Qualitative and quantitative analyses were 

applied. This section presents VOCs that showed significant differences between confirmed 

NEC and healthy control patients at individual days prior to diagnosis. 

The log transformed intensities of each compound found in confirmed NEC and healthy 

control samples were compared at each day prior to diagnosis. Missing values were 

replaced by half the lowest value and using k-NN. In addition, samples of each data class, 

confirmed NEC and healthy control, were grouped by 2 and 3 days and, subsequently, all 

days were combined. 

Table 23 presents the identities (ID) of compounds showing frequencies or abundances in 

confirmed NEC samples significantly different than in healthy control samples (p-value < 

0.01; Chi-square with continuity correction was applied for frequencies comparison and t-

test for intensities comparison). Table 24 presents their respective names. 
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Table 23: Comparison of frequencies and intensities of compounds found in confirmed NEC and 

healthy control samples. 

Day(s) 
investigated 

Frequencies 
comparison 

k-NN Half lowest value 

Day -1 15 - 15 

Day -2 14 4 - 

Day -3 - - 18 

Day -4 5 12, 10, 8, 13, 3 6, 5 

Day -5 - - - 

Day -6 - 2 11, 17 

Day -1 & -2 - - 7 

Day -3 & -4 - - - 

Day -5 & -6 16 - - 

Day -1, -2 & -3 19 - 18 

Day -4, -5 & -6 - - 9 

All days 1, 7 - 1, 7 

Summary of identification number (in relation to Table 24) of significantly different compounds at 

different time points or group of time points. Missing values were substituted with half the lowest 

value of the compounds intensity across groups and k-NN algorithm (p < 0.01; Chi-square with 

continuity correction for frequencies comparison and t-test for intensities comparison). For 

compounds more abundant in confirmed NEC samples, the IDs are bold. 
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Table 24: Names and identification number of compounds identified in relation to Table 23. 

ID Name 
RT 
[min] ID Name 

RT 
[min] 

1 2-butanone 10.6 11 Propyl ester 2-methylbutanoic acid 23.3 

2 2-methylbutanal 12.8 12 2, 6, 10-trimethyldodecane 26.0 

3 N-propyl acetate 14.4 13 2, 7, 10-trimethyldodecane 26.4 

4 Toluene 16.5 14 Hexanoic acid 26.4 

5 2-E-pentenal 17.1 15 2,2,6-trimethylcyclohexanone 27.7 

6 2-E-hexenal 21.1 16 3,4-dimethylcyclohexanol 30.7 

7 4-heptanone 21.2 17 6-methyl-2-heptanone 30.9 

8 3-methylbutanoic acid 21.5 18 Ethyl ester decanoic acid 37.6 

9 2-methylbutanoic acid 21.8 19 Propanal 7.2 

10 Heptanal 22.3  

  List of the compound names, retention time (RT) and identification number (ID) related to Table 23. 

For compounds more abundant in confirmed NEC samples, the IDs are bold. 

When Bonferroni correction was applied, only 3 compounds showed significantly different 

abundances between confirmed NEC and healthy control samples. All three compounds 

had missing values replaced by half the lowest value. 2,2,6-trimethylcyclohexanone was 

present at significantly higher abundance in healthy controls samples the day equivalent to 

one day prior to diagnosis. The compounds 2-E-pentenal and 2-E-hexenal were present at 

higher abundances in healthy control samples the day equivalent to four days prior to 

diagnosis (Figure 27). 
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Figure 27: Compounds found at significantly different abundances between confirmed NEC and 

healthy controls. Log of the compounds intensities at different days prior to diagnosis for both 

statuses illustrated with a boxplot. Missing data were replaced using half the lowest value of each 

compound. (p < 0.05, t-test followed by Bonferroni correction). 

3.1.1.8 Comparisons of the intensities of compounds within 

confirmed NEC or matched healthy control samples 

This section evaluates the variability of VOC abundances within status. 

ANOVA followed by Tukey HSD test was applied on confirmed NEC data to compare days 

prior to diagnosis. Five compounds were different at 1% significance; they are presented in 

Figure 28 with Tukey HSD test results. None of the abundances was significantly correlated 

with the days prior to diagnosis (p > 0.05; Pearson’s correlation coefficients). 

The same tests, followed by Bonferroni correction, were applied on matched healthy 

control data to compare days prior to diagnosis. Again five compounds were significantly 

different (Figure 29). In addition, Pearson’s correlation coefficients were calculated for each 

compound and only propanol showed a significant decrease in abundance as the days prior 

to diagnosis decrease (p-value < 0.05). 
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Figure 28: Intensities of significant compounds within confirmed NEC patients. This panel shows 

the compounds present at significantly different abundances, at a level of 1%, between days prior to 

diagnosis in confirmed NEC samples. Missing values were implemented using half the lowest value 

(* p < 0.05 and ** p < 0.01 for Tukey-HSD test; ANOVA and Tukey-HSD test). No abundances were 

significantly correlated with the days prior to diagnosis (p > 0.05; Pearson’s correlation coefficients). 

 

Figure 29: Intensities of compounds of interest within healthy controls. This panel shows the 

compounds present at significantly different abundances between days prior to diagnosis in healthy 

control samples. 2-methylbutanoic acid was different at a level of significance of 1% while the others 

were different at a level of significance of 5%. The top row shows VOC abundances when k-NN was 

used for imputing missing values, while the bottom row shows VOC abundances when half the 

lowest value was used for missing values substitution (* p < 0.05 for Tukey-HSD test; ANOVA and 

Tukey-HSD test, followed by Bonferroni correction). Propanol was the only significantly correlated 

compound (p < 0.05; Pearson’s correlation coefficients). 
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3.1.1.9 Modelling VOC profile for sample classification 

Classification of samples based on VOC abundances was performed using different 

statistical techniques. This section presents in detail every step applied for this process and 

the results obtained. 

Statistical models were built based on the VOC profile reported by Metab. The first step 

was to select the compounds or features that best described the differences between 

confirmed NEC and healthy controls. For this, 50 compounds identified in 50% or more of 

the samples of at least one condition, confirmed NEC or healthy control, along with the age 

at sampling in days, food type, hospital, gestation duration in days, birth weight in grams, 

delivery type and sex were submitted to a step-wise linear discriminant analysis[91] and 

two random forest[91], [104] algorithms for feature selection. The analysis was performed 

at each day prior to diagnosis and with missing values replaced using either half the lowest 

value of each compound across status or k-NN algorithm (Table 25). The gestation duration 

and the birth weight were the most selected features.  

At each day prior to diagnosis, RF and k-NN algorithms were applied to classify samples 

based on every feature that was selected by at least one of the feature selection algorithm 

(Table 25). Table 26 presents the accuracies and kappa values obtained from sample 

classification after repeated 10-fold cross validation. 

The results of sample classification (Table 26) were improved when missing data were 

replaced using k-NN algorithm, therefore, further analyses were performed only on this 

data. Features selected more than twice across the 6 days prior to diagnosis, as presented 

in Table 25, were used for each day prior to diagnosis. In this case, RF, LDA, k-NN, PLS, SVM 

using radial, linear and polynomial kernel algorithms were applied. The results were 

validated repeated double cross-validation (Table 27 and Table 28). The sensitivity reported 

using RF was lower than reported by SVM linear; however the specificity reported by RF 

was higher than reported by SVM linear. The best result was recorded at 4 day prior to 

diagnosis, when the number of samples considered for each class was similar. It indicates 

that the unbalanced nature of the dataset used for some days may affect the results of 

sample classification. 
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Table 25: Features selection for modelling and sample classification based on Metab results. 

Selected features 
RT 
[min] 

Half the lowest value 

(number of algorithms 

selecting the feature) 

Days prior to diagnosis 

k-NN 

(number of algorithms 

selecting the feature) 

Days prior to diagnosis 

  
1 2 3 4 5 6 sum 1 2 3 4 5 6 sum 

Birth weight 
 

1 1 2 2 0 2 8 1 0 3 3 0 3 10 

Gestation 
 

3 0 3 0 2 0 8 3 0 2 0 2 0 7 

Hexanal 18.4 0 0 0 2 1 0 3 1 0 0 1 2 0 4 

Acetone 7.4 0 2 2 0 0 0 4 0 2 1 0 0 0 3 

2-Z-heptanal 25.0 0 0 1 0 2 0 3 0 3 0 0 0 0 3 

2-methylbutanoic acid 21.8 0 0 0 1 0 0 1 0 0 0 1 0 2 3 

2-pentylfuran 24.8 0 0 0 1 0 0 1 0 0 0 3 0 0 3 

Pentanal 14.2 0 0 0 0 0 0 0 0 0 0 2 1 0 3 

2-butanone 10.6 0 0 0 0 0 0 0 0 0 0 0 0 3 3 

1-penten-3-one 13.9 2 0 0 1 0 0 3 0 0 0 2 0 0 2 

2, 3-butanedione 9.0 0 0 0 0 0 3 3 0 0 0 0 0 2 2 

2-methylpropanal 22.3 0 1 0 0 0 0 1 1 1 0 0 0 0 2 

Heptanal 10.3 0 0 0 1 0 0 1 0 0 0 2 0 0 2 

2-E-octenal 28.6 0 0 0 0 0 0 0 0 2 0 0 0 0 2 

2-cyclopenten-1-one, 
4-acetyl-2, 3, 4, 5, 5-
pentamethyl 

34.3 0 0 0 0 0 0 0 0 0 0 0 2 0 2 

2-methylbutanal 12.8 0 0 0 0 0 0 0 0 0 0 0 0 2 2 

3,4-dimethyl 
cyclohexanol 

20.3 0 1 0 0 1 2 4 0 1 0 0 0 0 1 

Ethylbenzene 21.2 1 0 0 0 1 0 2 0 0 0 1 0 0 1 

4-heptanone 30.7 0 1 0 0 1 0 2 0 0 0 0 1 0 1 

2-E-pentenal 17.1 0 0 0 2 0 0 2 0 0 0 0 0 1 1 
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3-methylbutanoic acid 21.5 0 0 0 2 0 0 2 0 0 0 1 0 0 1 

Carbon disulfide 7.8 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

Propanoic acid 16.2 0 0 0 0 0 0 0 0 1 0 0 0 0 1 

Ethyl acetate 10.6 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

2-ethylfuran 13.5 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

Sex 
 

0 0 0 0 0 0 0 0 0 1 0 0 0 1 

3-methylbutanal 12.5 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

3, 3, 4-trimethyldecane 27.0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

2-E-hexenal 7.2 0 0 0 3 0 0 3 0 0 0 0 0 0 0 

Propanal 21.0 1 0 1 0 0 0 2 0 0 0 0 0 0 0 

Acetic acid 27.8 0 0 0 0 0 2 2 0 0 0 0 0 0 0 

1-decen-3-one 28.7 0 0 0 0 0 2 2 0 0 0 0 0 0 0 

5-Ethylcyclopent-1-
enecarboxaldehyde 

12.7 0 0 0 1 0 0 1 0 0 0 0 0 0 0 

Benzeneacetaldehyde 25.2 0 0 0 0 1 0 1 0 0 0 0 0 0 0 

Table presenting the variables evaluated for modelling and the number of feature selection 

algorithms that positively selected each of these features. This analysis was performed on results 

reported by Metab when missing values were replaced using either half the lowest value or k-NN 

algorithm. Three feature selection algorithms were applied, a step-wise linear discriminant analysis 

and two random forest (RF) algorithms. The ‘sum’ columns present the number of times each 

feature was selected across all days using each NA’s substitution techniques. 
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Table 26: Results of sample classification, based on all and selected features in Metab results, using two classifiers. 

Arguments 
implemented 
in the model 

Missing data 
substitution 
techniques 

Model 
tested 

Lowest 
accuracy  

% 

Mean accuracies [%] 

(kappa values) 

Day: 1 2 3 4 5 6 

Selected 
features 

Half the 
lowest value 

k-NN 64.2 
71.4 

(0.28) 
64.2 

(0.01) 
77.8 

(0.44) 
80.7 

(0.62) 
71.7 

(0.34) 
78.8 

(0.31) 

RF 51.5 
73.4 

(0.34) 
51.5        

(-0.13) 
74.0 

(0.34) 
86.2 

(0.71) 
71.9 

(0.34) 
83.9 

(0.46) 

k-NN 

k-NN 66.4 
66.4 

(0.20) 
67.8 

(0.15) 
71.2 

(0.31) 
82.4 

(0.62) 
70.8 

(0.37) 
85.6 

(0.55) 

RF 60.5 
60.5 

(0.09) 
77.1 

(0.34) 
63.5 

(0.13) 
73.8 

(0.46) 
72.9 

(0.38) 
77.6 

(0.34) 

K-Nearest Neighbour (k-NN) and random forest (RF) algorithm were applied on Metab results with missing data replaced using k-NN and half the lowest value. Selected 

features, specific for each day, were used (see Table 25). Results were validated using repeated 10-fold cross validation. Accuracy was defined as the sum of correctly 

classified and rejected samples divided by the total number of samples. 
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Table 27: Sample classification at each day prior to diagnosis based on Metab data. 

Day prior to 
diagnosis 

1 2 3 4 5 6 

 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

RF 69.1 38.6 84.4 67.1 26.4 84.8 63.2 28.3 79.3 76.0 72.7 79.1 66.7 34.6 83.4 72.0 24.6 91.6 

LDA 74.2 62.9 79.8 52.5 35.1 60.2 63.4 46.5 71.1 62.5 59.3 65.7 60.3 50.2 65.6 58.3 47.5 62.9 

k-NN 64.9 30.4 82.2 62.2 28.7 76.6 61.8 54.3 65.2 78.5 76.5 80.5 65.6 55.6 70.7 66.3 23.8 84.2 

PLS 69.6 48.8 80.0 61.0 21.9 77.1 65.0 27.2 82.6 74.9 77.1 73.2 63.1 32.7 78.8 65.1 28.8 79.9 

SVM Radial 65.5 7.3 93.7 66.4 0 90.4 65.2 9.3 91.2 75.7 69.2 81.3 62.2 4.4 92.0 67.4 0.4 90.1 

SVM Linear 75.7 58.9 84.1 63.0 33.2 76.3 64.1 46.1 72.6 69.0 65.4 72.6 60.8 43.3 69.8 70.8 45.0 81.7 

SVM Polynomial 74.3 39.6 91.3 67.6 4.3 90.7 62.7 16.0 84.4 77.5 72.2 82.2 62.0 16.7 85.6 69.1 15.4 89.1 

Random forest (RF), linear discriminant analysis (LDA), k-Nearest Neighbour (k-NN), partial least square (PLS), support vector machine (SVM) radial, linear and polynomial 

algorithm were applied for classification of Metab generated data and missing values replaced using k-NN algorithm. Results were validated using repeated double cross-

validation. Results were expressed using percentage of accuracy (acc), sensitivity (sens) and specificity (spec). Accuracy was defined as the sum of correctly classified 

samples divided by the total number of samples; sensitivity was defined as correctly positively classified samples divided by the sum of positive samples; specificity was 

defined as correctly negatively classified samples divided by the sum of negative samples. 

 



 

89 
 

Table 28: Median values of accuracy, sensitivity and specificity across 6 days prior to diagnosis 

based on Metab data. 

 

Median 
accuracy 

% 

Median 
sensitivity 

% 

Median 
specificity 

% 

RF 68.1 31.4 83.9 

LDA 61.4 48.9 65.6 

k-NN 65.2 42.4 78.6 

PLS 65.1 30.7 79.4 

SVM Radial 66.0 5.8 90.8 

SVM Linear 66.6 45.6 74.4 

SVM Polynomial 68.3 16.3 87.4 

Summary of the modelling results expressed using percentage of median values of accuracy, 

sensitivity and specificity for each model applied (Random forest (RF), linear discriminant analysis 

(LDA), k-Nearest Neighbour (k-NN), partial least square (PLS), support vector machine (SVM) radial, 

linear and polynomial algorithm) for the 6 days prior to diagnosis. Results were validated using 

repeated double cross-validation.  Accuracy was defined as the sum of correctly classified samples 

divided by the total number of samples; sensitivity was defined as correctly positively classified 

samples divided by the sum of positive samples; specificity was defined as correctly negatively 

classified samples divided by the sum of negative samples. 
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3.1.2 Results based on XCMS output 

XCMS was an algorithm used to profile the ion mass fragments associated with specific 

conditions, such as confirmed NEC and healthy controls, and also to identify which of these 

ion mass fragments were present at significantly different abundances across conditions. 

This section presents results of the analysis based on XCMS-generated data. 

3.1.2.1 Univariate analysis of the intensities of features found in 

confirmed NEC and healthy control samples to investigate the 

influence of factors 

The abundances of ion mass fragments reported by XCMS were investigated using 

univariate tools to determine the influence of different factors, in a manner similar to the 

Metab-based analysis. The m/z, or mass to charge ratio, of the ion mass fragments 

reported by XCMS and their associated retention times could be used to identify the name 

of the associated compound using the library built in AMDIS. 

Abundances for each 356 features identified in 166 healthy controls’ and 85 confirmed 

NEC’s samples were compared between the levels for each factors described in Table 17. 

Table 29 presents the number of compounds with p-values lower than 0.05 when missing 

values were substituted by either half the lowest value for each feature (across samples 

from both statuses) or using k-NN (t-test for 2 sub-groups and ANOVA test if more than 2 

sub-groups present; with Bonferroni correction applied). 
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Table 29: Number of features which showed significant different intensities while confirmed NEC 

and matched healthy control samples were analysed according to various factors. 

 
Number of features in 

confirmed NEC samples 
Number of features in 

healthy control samples 

 Half lowest value k-NN Half lowest value k-NN 

Age at sampling grouped 
by 10 days 

6 6 37 33 

Age at sampling grouped 
by 5 days 

1 1 35 34 

Birth weight 5 3 32 25 

Delivery type 0 0 6 6 

Feeding type 0 0 0 0 

Gender 0 0 2 2 

Gestation duration 3 2 0 0 

Hospital 0 0 23 22 

Total 15 12 135 122 

The number of features found by XCMS with intensities having a p-value lower than 0.05 when 

tested for differences between levels based on 85 confirmed NEC and 166 healthy control samples 

grouped according to factors. Missing values were replaced by either half the lowest value for each 

compound or k-NN algorithm (t-test for 2 sub-groups and ANOVA test if more than 2 sub-groups 

present; with Bonferroni correction applied). 

A higher variation within healthy control samples was observed compared to confirmed 

NEC samples. The age at sampling and the birth weight seemed to be major factors 

influencing feature intensities for both statuses and the hospital might also have an impact 

on the compounds intensities in healthy control samples. 

Spearman’s correlation coefficient showed a significant correlation for two ions at specific 

retention time. The results were identical for both substitution methods applied on the 

missing values. A m/z of 66 at a retention time of 28.05 minutes was positively correlated 

with the age at sampling when grouped by 5 days for confirmed NEC samples; and a m/z of 

85 at a retention time of 16.52 minutes was correlated with the age at sampling when 

grouped by 5 days for both the healthy controls and the confirmed NEC (Figure 30). 
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Figure 30: Features with intensities correlated to the age at sampling. Boxplot showing features 

with significant correlation between their abundances and the age at sampling grouped by 5 days. 

On the left side, missing values were substituted by half the lowest value and on the right side using 

k-NN. (p < 0.05; Spearman rho statistics). 
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3.1.2.2 Univariate analysis of the intensities of features comparing 

confirmed NEC and matched healthy control samples 

In order to compare healthy controls and confirmed NEC samples, the data were divided 

according to days prior to diagnosis. Each day was investigated separately, grouped by 2 

and 3 days and, subsequently, all days were considered as a single dataset.  

Table 30 and Table 31 present the day(s) investigated, the potential compound name and 

the significantly different ions between confirmed NEC and healthy controls. T-test was 

applied for intensities comparison without Bonferroni correction. Table 30 presents results 

when missing data were replaced using k-NN algorithm and Table 31 presents results when 

missing data were replaced using half the lowest value. 

The identification of compound name was achieved by matching ions and their retention 

times to compounds present in the AMDIS library. Only retention times with two ions or 

more were considered for compound identification. The results were similar for both 

missing data substitution techniques. Indole and 2-pentenal were significantly different 1 

day prior to diagnosis when missing data were replaced with half the lowest value. 

In Table 30 and Table 31, the same ion may occur more than once for the same compound 

if ions were significantly different at multiple retention times.  
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Table 30: Comparison of feature intensities found in confirmed NEC and healthy control samples 

with missing values implemented using k-NN algorithm. 

Day(s) 
investigated 

Compound 
(RT [min]) 

ions 
Number 
of ions 

Greater 
intensity 

Day 3 Ethanol (6.6-6.7) 
13, 15, 15, 19, 24, 26, 27, 
31, 33, 41, 42, 43, 44, 45, 
45, 46, 47, 47 

18 NEC 

Day 3 Nonanal (29.4-29.5) 55, 68, 98, 114 4 NEC 

Day 4 Hexanal (18.2-18.3) 55, 56, 57, 67, 72, 82 6 Control 

Day 4 Xylene (20.5-20.6) 
50, 51, 62, 63, 65, 77, 78, 
89, 91, 92, 102, 106, 106, 
107 

14 Control 

Day 4 Xylene (21.6-21.7) 
50, 51, 63, 65, 77, 91, 
102, 103, 107 

9 Control 

Day 4 Heptanal (22.2) 70, 72 2 Control 

Day 4 
D-limonene 
(26.0-26.1) 

67, 68 2 Control 

Day 4 Nonanal (29.5) 55, 56 2 Control 

Day 5 Ethanol (6.7) 43, 44 2 NEC 

Day 5 Hexanal (18.3) 41, 55 2 NEC 

Day 5 Nonanal (29.4-29.5) 55, 56, 67, 68, 70, 82, 98 7 NEC 

Day 6 
2-methylbutanoic acid 
(21.5-21.7) 

50, 74 2 Control 

Day 5 & 6 Nonanal (29.4-29.5) 56, 67, 70 3 NEC 

Day 4, 5 & 6 Styrene (21.5-21.7) 39, 74 2 Control 

All days Ethanol (6.7) 27, 30, 30 3 NEC 

All days Indole (38.4) 62, 63, 89, 116 4 NEC 

Summary of significantly different ions at different days prior to diagnosis investigated and their 

potential identification, with comparison to AMDIS library. Missing values were substituted using k-

NN algorithm (p < 0.05; t-test). 
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Table 31: Comparison of feature intensities found in confirmed NEC and healthy control samples 

with missing values substituted by half the lowest value. 

Day(s) 
investigated 

Compound (RT [min]) Ions [m/z] 
Number 
of ions 

Greater 
intensity 

Day 1 2-pentenal (17.0-17.1) 81, 82 2 Control 

Day 1 Indole (38.4) 62, 116 2 NEC 

Day 3 Ethanol (6.6-6.7) 
13, 15, 15, 19, 24, 26, 
27, 31, 33, 41, 42, 44, 
45, 45, 46, 47, 47 

17 NEC 

Day 3 Nonanal (29.4-29.5) 55, 68, 98, 114 4 NEC 

Day 4 Hexanal (18.2-18.3) 55, 56, 57, 67, 72, 82 6 Control 

Day 4 Xylene (20.5-20.6) 
50, 51, 62, 63, 65, 77, 
78, 89, 91, 92, 102, 106, 
106, 107 

14 Control 

Day 4 Xylene (21.6-21.7) 
50, 51, 63, 65, 77, 91, 
102, 103, 107 

9 Control 

Day 4 Heptanal (22.2) 70, 72 2 Control 

Day 4 
D-limonene (26.0-
26.1) 

67, 68 2 Control 

Day 4 Nonanal (29.5) 55, 56 2 Control 

Day 5 Ethanol (6.7) 42, 43, 44 3 NEC 

Day 5 Hexanal (18.3) 41, 55, 56 3 NEC 

Day 5 Nonanal (29.4-29.5) 55, 56, 67, 68, 70, 82, 98 7 NEC 

Day 6 
2-methylbutanoic acid 
(21.6-21.7) 

50, 74 2 Control 

Day 5 & 6 Nonanal (29.4-29.5) 56, 67, 70 3 NEC 

Day 1, 2 & 3 Ethanol (6.6-6.7) 19, 47 2 NEC 

All days Ethanol (6.7) 27, 30, 30 3 NEC 

All days Indole (38.4) 58, 62, 63, 89, 116 5 NEC 

Summary of significantly different ions at different days prior to diagnosis investigated and their 

potential identification, with comparison to AMDIS library. Missing values were substituted using 

half the lowest value (p < 0.05; t-test). 
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3.1.2.3 Comparison of the intensities of features within confirmed 

NEC and matched healthy control samples 

This section aims to evaluate the variability of VOC abundance within statuses. 

ANOVA was applied on confirmed NEC data to compare days prior to diagnosis. Six ions 

allowed the identification of nonanal. Their mass to charge ratios were of 55, 56, 82, 95, 98, 

114; at retention times of 29.4-29.5 minutes. 

ANOVA was also applied on healthy control data to compare days prior to diagnosis (Table 

32). The compound name, deduced by matching ions and their retention times to 

compounds present in the AMDIS library, is presented as well as the significant ions and the 

number of significant ions. Only retention times with two ions, or more, were considered 

for compound identification. The same ion may occur more than once for the same 

compound if ions were significantly different at multiple retention times.  

Missing data were replaced using half the lowest value and applying k-NN algorithm. 

ANOVA were applied to test differences. 

 

Table 32: Comparison of feature intensities, found in healthy control samples, during the 6 days 

prior to diagnosis. 

 
half the lowest value k-NN 

Compound name 
(RT [min]) 

Ions [m/z] 
Number 
of ions 

Ions [m/z] 
Number 
of ions 

Ethanol (6.6-6.7) 

13, 14, 15, 15, 19, 
24, 25, 25, 26, 26, 
27, 29, 29, 30, 30, 
31, 33, 41, 42, 43, 
44, 45, 45, 47 

24 

13, 14, 15, 15, 19, 
24, 25, 25, 26, 26, 
27, 29, 29, 30, 30, 
31, 33, 41, 42, 43, 
44, 45, 45, 47, 47 

25 

Isopropanol (7.4-7.7) 
15, 37, 37, 38, 39, 
39, 41, 42, 42, 45, 
45, 59, 59 

13 
15, 37, 37, 38, 39, 
39, 41, 42, 42, 45, 
45, 59, 59 

13 

Dichloromethane (8.2-8.3) 49, 71, 84, 84, 88 5 49, 71, 84, 84, 88 5 

Cyclopentane (8.3-8.4) 42, 70 2 42, 70 2 

3-methylbutanal 
(12.3-12.7) 

15, 29, 41, 57 4 15, 29, 41, 57 4 
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3-methylbutylmethanoate 
(16.0-16.2) 

38, 39, 48, 49, 50, 
51, 52, 52, 53, 75, 
76, 78, 80, 89 

14 
26, 39, 48, 49, 50, 
51, 78, 80, 89 

9 

Propanoic acid (16.1-16.2) 26, 74, 74 3 
38, 52, 52, 53, 74, 
74, 75, 76 

8 

Pyridine (16.2-16.4) 38, 78, 79, 80 4 38, 78, 79, 80 4 

Toluene (16.5-16.6) 
37, 62, 63, 64, 64, 
65, 65, 79, 90, 91, 
91, 92, 92, 93 

14 
37, 62, 63, 64, 64, 
65, 65, 79, 90, 91, 
91, 92, 92, 93 

14 

Xylene (20.5-20.6) 
39, 50, 53, 62, 63, 
64, 76, 78, 89, 
102, 107 

11 
39, 50, 53, 62, 63, 
64, 76, 78, 89, 
102, 107 

11 

Xylene (21.6-21.7) 
50, 63, 65, 76, 77, 
78, 91, 102, 103, 
106, 107 

11 
50, 63, 65, 76, 77, 
91, 102, 103, 106, 
107 

10 

Styrene (21.5-21.7) 51, 104 2 39, 51, 74, 78, 104 5 

Heptanal (22.2-22.3) 70, 72, 82, 94 4 70, 72, 82, 94 4 

3-methylenecycloheptene 
(22.6) 

80, 92, 93, 93 4 80, 92, 93, 93 4 

1-butylheptylbenzene 
(34.9) 

189, 232 2 – – 

Indole (38.4-38.5) 
63, 64, 89, 90, 
116, 117, 118, 62, 
63, 64, 89, 90, 116 

13 

58, 58, 62, 63, 63, 
64, 64, 89, 89, 90, 
90, 116, 116, 117, 
118 

15 

Unknown 1 (11.14-11.23) 
47, 82, 83, 83, 85, 
87 

6 
47, 82, 83, 83, 85, 
87 

6 

Unknown 2 (12.44-12.55) 12, 62, 62, 64, 78 5 12, 62, 62, 64, 78 5 

Unknown 3 (25.43-25.54) 105, 106, 120 3 105, 106, 120 3 

Potential identifications suggested based on ions which were significantly different. ANOVA test was 

applied to compare ion intensities between days prior to diagnosis within healthy control samples. 

Results using both missing data substitution techniques are presented. (p < 0.05; ANOVA) 

  



 

98 
 

3.1.2.4 Modelling VOC profile for sample classification 

Classification of samples based on features abundances was performed using different 

statistical modelling techniques. This section presents in detail every step applied for this 

process and the results achieved. The approach was similar to classifications performed on 

Metab data (see 3.1.1.9). However, statistical models were built based on the feature 

profile reported by XCMS. 

Features that best described the differences between confirmed NEC and healthy controls 

were selected from the 356 features identified in 50% or more of the samples of at least 

one condition (confirmed NEC or healthy control), in addition to the age at sampling in 

days, food type, unit, gestation duration in days, birth weight in grams, delivery type and 

sex. The analysis applied a step-wise linear discriminant analysis and two random forest 

classification algorithms. This analysis was performed separately for each individual day 

prior to diagnosis and with missing values replaced using either half the lowest value of 

each compound across status or k-NN algorithm (Table 33). Features selected varied 

considerably between days and according to the technique of imputation of missing data. 

Gestation duration and birth weight were among the most important features to 

differentiate confirmed NEC and healthy control samples (Table 33). 

K-NN and random forest algorithms were applied on the selected features at each day prior 

to diagnosis. Results were validated using repeated 10-fold cross-validation. Accuracies and 

Kappa values were calculated for both models based on data with missing values 

substituted using k-NN algorithm and half the lowest value (Table 34). Results were 

improved when missing data were replaced with half the lowest value for each compound 

(Table 34). Therefore, further analyses were performed using this method. 

Seven classifiers were applied on the data: RF, LDA, k-NN, PLS, SVM using radial, linear and 

polynomial kernel algorithms. Accuracies, sensitivities and specificities were calculated at 

each day prior to diagnosis using classification models with repeated double cross-

validation (Table 35). To summarize, the median accuracy, sensitivity and specificity across 

the 6 days prior to diagnosis, for each model applied on the data were calculated and were 

presented in the Table 36. LDA, RF and SVM linear algorithm performed fairly similarly with 

median within 5% of variation.  
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Table 33: Features selection for modelling and sample classification based on XCMS data. 

m/z or 
feature 

RT 
[min] 

Half the lowest value k-NN 

Day:1 2 3 4 5 6 sum 1 2 3 4 5 6 sum 

Gestation 
duration 

 
3 0 0 0 2 0 5 3 0 0 0 2 0 5 

176 17.0 0 3 0 0 0 0 3 0 2 0 0 0 0 2 

Birth 
weight 

 
0 0 1 2 0 0 3 0 0 1 2 0 0 3 

55 18.3 0 0 0 3 0 0 3 0 0 0 3 0 0 3 

44 6.7 0 0 0 0 3 0 3 0 0 0 0 3 0 3 

50 16.2 2 0 0 0 0 0 2 0 0 0 0 0 0 0 

18 6.2 0 0 2 0 0 0 2 0 0 0 0 0 0 0 

24 6.7 0 0 2 0 0 0 2 0 0 2 0 0 0 2 

101 6.2 0 0 2 0 0 0 2 0 0 2 0 0 0 2 

136 25.2 0 0 0 2 0 0 2 0 0 0 2 0 0 2 

39 21.5 0 0 0 2 0 0 2 0 0 0 2 0 0 2 

70 22.2 0 0 0 2 0 0 2 0 0 0 2 0 0 2 

43 6.7 0 0 0 0 2 0 2 0 0 0 0 2 0 2 

192 17.2 0 0 0 0 0 2 2 0 0 0 0 0 2 2 

249 23.4 0 0 0 0 0 2 2 0 0 0 0 0 3 3 

51 16.2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

84 8.2 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

281 23.4 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

103 21.7 1 0 0 0 0 0 1 0 0 0 0 0 0 0 

19 7.6 0 1 0 0 0 0 1 0 0 0 0 0 0 0 

20 6.2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

101 6.3 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

18 6.2 0 0 1 0 0 0 1 0 0 0 0 0 0 0 
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15 6.7 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

14 6.7 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

81 17.0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 

235 23.3 0 0 0 1 0 0 1 0 0 0 0 0 0 0 

95 20.8 0 1 0 0 0 0 1 0 1 0 0 0 0 1 

165 17.0 0 1 0 0 0 0 1 0 1 0 0 0 0 1 

97 17.1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 

16 6.2 0 0 1 0 0 0 1 0 0 1 0 0 0 1 

98 29.4 0 0 1 0 0 0 1 0 0 1 0 0 0 1 

15 6.7 0 0 1 0 0 0 1 0 0 1 0 0 0 1 

82 17.1 0 0 0 1 0 0 1 0 0 0 1 0 0 1 

51 21.6 0 0 0 1 0 0 1 0 0 0 1 0 0 1 

93 25.4 0 0 0 1 0 0 1 0 0 0 1 0 0 1 

102 21.7 0 0 0 1 0 0 1 0 0 0 1 0 0 1 

232 34.0 0 0 0 1 0 0 1 0 1 0 0 0 0 1 

56 18.3 0 0 0 1 0 0 1 0 0 0 1 0 0 1 

75 23.4 0 0 0 0 1 0 1 0 0 0 0 1 0 1 

63 21.6 0 0 0 0 0 1 1 0 0 0 0 0 1 1 

265 23.4 0 0 0 0 0 1 1 0 0 0 0 0 1 1 

119 17.1 0 0 0 0 0 1 1 0 0 0 0 0 1 1 

116 38.4 1 0 0 0 0 0 1 2 0 0 0 0 0 2 

41 18.3 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

33 6.7 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

50 21.6 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

56 29.5 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

175 33.7 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

84 8.2 0 0 0 0 0 0 0 1 0 0 0 0 0 1 



 

101 
 

153 7.3 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

85 16.5 0 0 0 0 0 0 0 1 0 0 0 0 0 1 

66 28.1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

250 23.2 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

19 6.7 0 0 0 0 0 0 0 0 0 1 0 0 0 1 

283 23.3 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

126 23.4 0 0 0 0 0 0 0 0 0 0 1 0 0 1 

221 23.3 0 0 0 0 0 0 0 0 0 0 0 1 0 1 

43 10.4 0 0 0 0 0 0 0 1 0 0 0 1 0 2 

13 6.7 0 0 0 0 0 0 0 0 0 2 0 0 0 2 

Table presenting the number of times each feature has been selected at each day prior to diagnosis 

based on XCMS results when missing data were replaced using either half the lowest value for each 

features or k-NN algorithm. The mass to charge ratio (m/z) and retention time in minutes are 

presented for features identified. Three feature selection algorithms were applied on the data, a 

step-wise linear discriminant analysis and two random forest classification algorithm. The ‘sum’ 

columns present how many times each feature were selected across all days using each NA’s 

substitution techniques. 
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Table 34: Results of samples classification, based on selected features in XCMS data, using two classifiers. 

Arguments 
implemented 
in the model 

Missing data 
substitution 
techniques 

Model 
tested 

lowest 
accuracy  

% 

mean accuracies [%] 
(kappa values) 

Day: 1 2 3 4 5 6 

Selected 
features 

Half the 
lowest value 

k-NN 69.2 
69.3 

(0.297) 
74.3 

(0.364) 
72.6 

(0.194) 
82.8 

(0.645) 
76.6 

(0.471) 
69.2 

(0.172) 

RF 68.8 
72.8 

(0.373) 
80.4 

(0.548) 
68.8 

(0.188) 
81.8 

(0.631) 
72.3 

(0.345) 
69.3 

(0.179) 

k-NN 

k-NN 68.5 
69.2 

(0.269) 
72.8 

(0.318) 
70.2 

(0.151) 
80.6 

(0.581) 
75.8 

(0.493) 
68.5 

(0.153) 

RF 66.5 
74.9 

(0.423) 
80.0 

(0.53) 
66.5 

(0.164) 
81.2 

(0.61) 
72.6 

(0.36) 
69.6 

(0.188) 

K-Nearest Neighbour (k-NN) and random forest (RF) algorithm were applied on XC-MS results with missing data replaced using k-NN and half the lowest value. Selected 

features, specific for each day, were used (see Table 33). Results were validated using repeated 10-fold cross validation. Accuracy was defined as the sum of correctly 

classified and rejected samples divided by the total number of samples. 
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Table 35: Sample classification at each day prior to diagnosis based on XCMS data. 

Day prior to 
diagnosis 

1 2 3 4 5 6 

 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

RF 68.7 42.9 81.6 64.6 25.6 81.6 72.1 41.7 86.2 77.5 80.4 75.0 71.5 49.2 83.1 60.4 18.3 77.7 

LDA 68.8 48.1 79.1 65.5 46.8 73.7 73.7 47.5 85.9 74.4 79.4 70.0 69.8 54.6 77.7 60.0 26.3 74.3 

k-NN 65.9 43.0 77.4 68.1 28.3 85.2 70.4 36.4 86.3 80.4 90.3 71.6 75.0 59.0 83.3 58.7 22.9 73.6 

PLS 69.1 45.0 81.2 63.0 21.4 80.9 69.9 36.9 85.3 71.9 74.0 70.2 64.3 34.2 79.8 67.1 30.8 80.8 

SVM Radial 65.9 10.9 92.9 63.7 1.3 89.9 69.9 10.7 96.0 79.1 78.4 79.7 68.7 19.4 92.4 65.3 0.0 89.6 

SVM Linear 69.4 43.8 82.2 66.4 40.2 77.8 74.5 42.8 89.3 77.0 75.9 77.8 71.9 56.0 80.2 59.1 15.8 76.5 

SVM Polynomial 67.5 22.4 89.8 63.1 10.0 85.7 71.8 25.7 93.0 77.3 80.3 74.7 70.8 29.6 91.3 64.9 1.3 88.5 

Random forest (RF), linear discriminant analysis (LDA), k-Nearest Neighbour (k-NN), partial least square (PLS), support vector machine (SVM) radial, linear and polynomial 

algorithm were applied for classification on XCMS data, with missing values replaced using half the lowest value. Results were validated using repeated double cross-

validation. Results were expressed using percentage of accuracy (acc), sensitivity (sens) and specificity (spec). Accuracy was defined as the sum of correctly classified 

samples divided by the total number of samples; sensitivity was defined as correctly positively classified samples divided by the sum of positive samples; specificity was 

defined as correctly negatively classified samples divided by the sum of negative samples. 
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Table 36: Median values of accuracy, sensitivity and specificity across 6 days prior to diagnosis 

based on XCMS data. 

 

Median 
accuracy 

% 

Median 
sensitivity 

% 

Median 
specificity 

% 

RF 70.1 42.3 81.6 

LDA 69.3 47.8 76.0 

k-NN 69.2 39.7 80.3 

PLS 68.1 35.5 80.9 

SVM Radial 67.3 10.8 91.2 

SVM Linear 70.6 43.3 79.0 

SVM Polynomial 69.1 24.0 89.2 

Summary of the modelling results expressed using median values of percentage of accuracy, 

sensitivity and specificity for each model applied (Random forest (RF), linear discriminant analysis 

(LDA), k-Nearest Neighbour (k-NN), partial least square (PLS), support vector machine (SVM) radial, 

linear and polynomial algorithm) for the 6 days prior to diagnosis. Results were validated using 

repeated 10-fold cross-validation. Accuracy was defined as the sum of correctly classified samples 

divided by the total number of samples; sensitivity was defined as correctly positively classified 

samples divided by the sum of positive samples; specificity was defined as correctly negatively 

classified samples divided by the sum of negative samples. 

3.1.3 Summary of the compounds of interest 

This section highlights significant compounds identified using Metab and XCMS 

approaches. Using Metab results, qualitative and quantitative comparison of confirmed 

NEC and healthy control patients (Table 23) and compounds selected twice or more during 

sample classification (Table 25) were considered. Using XCMS results, compounds 

considered were identified based on ions with significantly different intensities between 

confirmed NEC and healthy control patients (Table 30 and Table 31). 

In total four compounds were significantly different while treating data using both 

pipelines: 2-E-pentenal (RT: 17.1 min), hexanal (RT: 18.2 min), 2-methylbutanoic acid (RT: 

21.8 min) and heptanal (RT: 22.3 min).  
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3.2 Sensor technology 

The sensor instrument did not allow identification of compounds. Instead, features were 

reported that indicated a change in the headspace gas/sensor interaction at a specific time 

point. Therefore, results were expressed exclusively using classification; features were 

selected and implemented into seven algorithms. This section presents results obtained at 

each day prior to diagnosis. 

Random forest (RF), linear discriminant analysis (LDA), k-Nearest Neighbour (k-NN), partial 

least square (PLS), support vector machine (SVM) using radial linear and polynomial Kernel 

algorithms, were applied for classification at each day prior to diagnosis. Table 37 presents 

results after leave-one-out validation applied. The number of samples available at each day 

for confirmed NEC and healthy control was presented in Table 14.  

SVM polynomial Kernel and SVM radial Kernel algorithm had a minimum of 80% of 

accuracy, sensitivity and specificity at each day prior to diagnosis (Table 37). In order to 

summarize Table 37, medians of accuracy, sensitivity and specificity across the 6 days prior 

to diagnosis were calculated for each algorithm (Table 38). Medians of accuracy, sensitivity 

and specificity were higher than 89% for Support vector machine polynomial kernel 

algorithm. 

Figure 31 illustrates these results using PCAs based on features selected at each day prior 

to diagnosis. The discrimination between healthy controls and confirmed NEC samples was 

relatively high with few overlapping samples for days 1, 3 and 5 prior to diagnosis. It 

reflected the high accuracy, sensitivity and specificity reported by the classification 

algorithms presented in Table 37. 
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Table 37: Sample classification at each day prior to diagnosis based on Sensor data. 

Day prior to 
diagnosis 

1 2 3 4 5 6 

 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

Acc 

% 

Sens 

% 

Spec 

% 

k-NN 88.6 70.0 94.1 96.3 88.9 100.0 86.5 73.3 91.9 100.0 100.0 100.0 92.3 92.9 92.0 95.5 83.3 100.0 

PLS 93.2 70.0 100.0 88.9 77.8 94.4 86.5 60.0 97.3 100.0 100.0 100.0 89.7 85.7 92.0 100.0 100.0 100.0 

RF 86.4 40.0 100.0 92.6 77.8 100.0 86.5 53.3 100.0 91.3 75.0 100.0 89.7 78.6 96.0 86.4 50.0 100.0 

LDA 90.9 80.0 94.1 92.6 88.9 94.4 84.6 73.3 89.2 65.2 50.0 73.3 87.2 92.9 84.0 54.5 50.0 56.3 

SVM Radial 95.5 90.0 97.1 100.0 100.0 100.0 86.5 86.7 86.5 95.7 100.0 93.3 84.6 92.9 80.0 95.5 100.0 93.8 

SVM Linear 88.6 80.0 91.2 100.0 100.0 100.0 88.5 66.7 97.3 91.3 87.5 93.3 84.6 85.7 84.0 95.5 83.3 100.0 

SVM Polynomial 95.5 90.0 97.1 96.3 100.0 94.4 86.5 80.0 89.2 91.3 100.0 86.7 89.7 92.9 88.0 95.5 100.0 93.8 

Random forest (RF), linear discriminant analysis (LDA), k-Nearest Neighbour (k-NN), partial least square (PLS), support vector machine (SVM) radial, linear and polynomial 

algorithm were applied for classification of Sensor data. Results were validated using leave-on-out validation. Results were expressed using percentage of accuracy (acc), 

sensitivity (sens) and specificity (spec). Accuracy was defined as the sum of correctly classified samples divided by the total number of samples; sensitivity was defined as 

correctly positively classified samples divided by the sum of positive samples; specificity was defined as correctly negatively classified samples divided by the sum of 

negative samples. 
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Table 38: Median values of accuracy, sensitivity and specificity across 6 days prior to diagnosis 

based on Sensor data. 

 

Median 
accuracy 

% 

Median 
sensitivity 

% 

Median 
specificity 

% 

k-NN 93.9 86.1 97.1 

PLS 91.5 81.7 98.6 

RF 88.1 64.2 100.0 

LDA 85.9 76.7 86.6 

SVM Radial 95.5 96.4 93.5 

SVM Linear 90.0 84.5 95.3 

SVM Polynomial 93.4 96.4 91.5 

Summary of the modelling results expressed using median values of percentage of accuracy, 

sensitivity and specificity for the 6 days prior to diagnosis and for each model applied (random forest 

(RF), linear discriminant analysis (LDA), k-Nearest Neighbour (k-NN), partial least square (PLS), 

support vector machine (SVM) radial, linear and polynomial algorithm). Results were validated using 

leave-on-out validation. Accuracy was defined as the sum of correctly classified samples divided by 

the total number of samples; sensitivity was defined as correctly positively classified samples divided 

by the sum of positive samples; specificity was defined as correctly negatively classified samples 

divided by the sum of negative samples. 
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Figure 31: Principal component analysis (PCA) of selected features from sensor data. This figure 

shows the PCAs applied to the features selected at each day prior to diagnosis from sensor data 

used to build classifier. 
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Discussion 
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Over 14,000 samples were collected from 1326 premature babies over 27 months with the 

expectation that some of the babies will have developed NEC. Sixty-four babies developed 

confirmed NEC. The aspiration was to build diagnostic models based on faecal headspace 

gases. Premature babies do not defaecate daily and when they do the volume of stool is 

extremely small. A total of 30 on 64 confirmed NEC patients had to be discarded due to lack 

of sample in six days prior to diagnosis: this arose because babies were treated elsewhere 

before being sent to a study hospital with the diagnosis of NEC. From over 14,000 samples, 

only 251 samples could be used to study NEC. In order to search for potential trends 

related specifically to healthy neonates, another 163 samples from healthy neonates were 

added to 166 samples from matched healthy controls samples to investigated trends in 

healthy neonates. 

4.1 Mass spectrometry 

Two pipelines were applied to analyse the data. The first involved the use of the AMDIS 

software in conjunction with the NIST library and the Metab package[69] and the second 

applied XCMS package[78], [88]. Their simultaneous application might allow a better 

coverage of the data. 

Faeces from preterm infants in early days of life were expected to show fewer volatile 

organic compounds (VOCs) than adult samples. A median of 101 compounds was 

previously reported from adult faecal samples.[47] When considering 329 samples from 

healthy preterm patients, a median of 62 VOCs per sample was identified (3.1.1.1). This 

lower number of identified VOCs might be due to the relatively simple diet of neonates 

compared to adults[27] and a less complex gut microbiota.[6] The gut microbiota of adults 

is diverse and contains at least one hundred sixty bacteria species[115] up to several 

hundred bacteria species,[116] where neonate microbiota is limited, with as few as 1 to 8 

major bacterial species.[6] A median of 62 compounds and 63 compounds were identified 

in 166 matched healthy control samples and 85 confirmed NEC samples, respectively 

(3.1.1.2). At each day prior to diagnosis the numbers of VOCs identified was similar (Figure 

23). This demonstrated the relative constancy of compounds emitted from confirmed NEC 

and matched healthy preterm faecal samples. However, the interquartile ranges were of 22 

and 25 compounds for matched healthy control samples and confirmed NEC samples, 

respectively. These values suggest some variability in the number of compounds per 

sample. 
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During the factors investigation, if the number of samples considered from healthy control 

patients varied the results were varied as well. The effect of feeding type and the age at 

sampling influenced the number of VOCs identified in 329 healthy control samples (Table 

18). However, when only 166 samples were considered, the gender was reported as a 

significant factor (Figure 21 and Figure 22). This discordance, when reducing the number of 

samples, illustrates the variability of this dataset. It might be a result of the multiple factors 

involved in the study (eg: delivery type, different hospitals). 

Compounds were grouped by families, based on their functional groups, and the 

prevalence of these families was compared (3.1.1.3). Compounds families were found to be 

similar between confirmed NEC and matched healthy control samples. This observation did 

not confirm that previously observed by Garner et al. who found dissimilarities in the 

number of esters between NEC and control samples.[44] Differences in findings between 

studies probably arose as the number of patients and samples considered differed greatly. 

Several classes of compounds were determined; however the vast majority of identified 

compounds belonged to 6 classes: aldehydes, ketones, alkanes, esters, alcohols and 

carboxylic acids. Except for carboxylic acids, results were in agreement with a previous 

study of neonate faeces.[27] 

The prevalence of compounds was also investigated. Sixteen compounds occurred in at 

least 80% of the 85 samples from confirmed NEC patients (Table 20). A few compounds 

were potential contaminants; ethanol and 1-propanol were measured in disinfectant, 

acetone in lab air and 2,2,4,6,6-pentamethylheptane in plastic tubing (see Appendix A). 

Table 39 presents the 16 common compounds and reports their occurrence in other body-

fluids.[117] Only 2,2,4,6,6-pentamethylheptane has not been previously observed in body-

fluids which suggests that it was likely to be a contaminant.  
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Table 39: Summary of the most prevalent compounds identified in confirmed NEC samples and 

correlation with literature. 

RT 

[min] 
Compound names 

Observed 
in human 

body 

RT 

[min] 
Compound names 

Observed 
in human 

body 

6.6 Ethanol Yes 18.4 Hexanal F 

7.2 Propanal F 20.7 Xylene F 

7.4 Acetone F 22.3 Heptanal F 

9.0 2-methylpropanal F 24.3 
2,2,4,6,6-
pentamethylheptane 

No 

9.6 1-propanol F 24.8 2-pentylfuran F 

10.3 2,3-butanedione F 25.7 Benzaldehyde F 

12.7 Acetic acid F 25.8 2,2,4,4-tetramethyloctane Yes 

16.2 Propanoic acid F 29.5 Nonanal F 

Presentation of the 16 most prevalent compounds identified in confirmed NEC samples along with 

an annotation if they have already been observed in human body-fluids (Yes / No) and, further, in 

faeces (F). Molecules were matched against the list built by De Lacy Costello et al.[117] 

Seventeen compounds were shared by 80% or more of the 251 samples from confirmed 

NEC and matched healthy controls, which is considerably less than the 44 VOCs shared by 

80% of 151 samples in adult cohort.[47] It might be explained by the origin of VOCs. Faecal 

VOCs may come mainly from the gut microbiota and it has been suggested that early 

microbiota has a high inter-individual diversity.[6], [43], [118] Further, this inconsistency of 

compounds between samples supports a concept suggested by Van de Kant et al. to 

investigate pattern, and not single compound, differences.[37] 
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The influence of demographic and environmental factors (see Table 17 for details) was 

investigated on the number of compounds identified and on intensity of compounds and 

features. This influence was of interest to clarify the data in case the factors have to be 

implemented in the data analysis. When the number of compounds identified in 329 

samples from healthy controls patients was considered, there was a significant difference 

with the donor’s age at sampling and their feeding type (Table 18). When 166 samples from 

matched controls were considered, only gender had a significant effect on the number of 

compounds identified (Figure 21 and Figure 22). However, age at sampling, birth weight, 

neonatal unit and gestation duration had a significant effect on the intensities of 

compounds identified in 329 healthy control samples (Table 21). Excepting gestation 

duration, these factors significantly influenced compound intensities in matched healthy 

control samples, while only age at sampling had an influence on compound intensities 

identified in confirmed NEC samples (Table 22). Similar results were obtained when 

considering the influence of factors on features intensities identified using XCMS (Table 

29). Age at sampling, birth weight and neonatal unit were the main factors influencing 

feature intensities in matched healthy control samples, while age at sampling and birth 

weight had an influence on feature intensities identified in confirmed NEC samples. In the 

light of these observations, age at sampling had an influence on the number of compounds 

identified in healthy controls and on the intensity of compounds and features identified in 

samples from both statuses. Meanwhile, birth weight and neonatal unit had a moderate 

impact on compound and feature intensities. 

Considering the factor influencing the results, the criteria presented in the Table 11 could 

be optimized if another project was to take place. The birth weight and the unit may be 

scored as 10 where the delivery type may be scored as 6. The birth weight calculation could 

be: 10 if 0 ≤ i ≤ 75; 6 if 76 ≤ i ≤ 150; 3 if 151 ≤ i ≤ 225; 0 if i > 226. 

When comparing compounds intensities to factors, the total number of compounds 

showing significantly different intensities in confirmed NEC and matched healthy control 

samples was different (Table 22). Four compounds had different intensities in confirmed 

NEC samples and more than 20 compounds had different intensities with respect to 

matched healthy control samples. The same observation was seen with features identified 

using XCMS, where in total up to 10 times more features were significantly different in 

matched healthy control samples compared to confirmed NEC samples (Table 29).  
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Days prior to diagnosis were compared using XCMS features identified in samples from 

confirmed NEC patients and only nonanal was significantly different. Moreover, while doing 

the same comparison using samples from matched healthy controls, 19 compounds 

identified were significantly different (3.1.2.3). These observations suggested a greater 

variability within healthy control samples than within confirmed NEC samples. It might be a 

result of a less diverse microbiota in ill babies. 

While investigating days individually or grouped together, several compounds, identified 

using Metab package, had different concentration at a level of significance of 1% (Table 

23). Moreover, 2-E-hexenal, 2-E-pentenal and 2,2,6-trimethylcyclohexanone had different 

concentration at a level of significance of 5% after application of Bonferroni correction for 

multiple comparisons (Figure 27). 2-E-hexenal and 2-E-pentenal had already been detected 

in faeces[27], [47], while 2,2,6-trimethylcyclohexanone had not. The latter was mostly 

absent from confirmed NEC samples explaining the boxplot being a single line at a low 

abundance (half the lowest concentration of that compound across samples). It is 

noteworthy that no compounds intensities were seen to be significantly different between 

classes, after application of Bonferroni correction, when missing data were replaced using 

k-NN algorithm. This is likely to be due to the bigger noise in healthy control samples, the 

high variability due to multiple factors and the nature of the imputation algorithm. 

Considering results from XCMS package, several features had different intensities between 

confirmed NEC and healthy control samples at a level of significance of 5% when days were 

considered individually or grouped together (Table 30 and Table 31). Moreover, when more 

than two ions had similar retention times, they were matched to the library built in AMDIS 

to allow potential identification. Ethanol, hexanal, heptanal, nonanal, two isomers of 

xylene, D-limonene, 2-methylbutanoic acid and indole were observed using both missing 

data imputation techniques. Except for the two isomers of xylene, each compound has 

previously been identified in faeces and listed in the Human Metabolome Database.[119]–

[121] 

Compounds of interest identified using Metab and XCMS packages were 2-E-pentenal, 2-

methylbutanoic acid, hexanal and heptanal. Furthermore, these four compounds were not 

listed as potential contaminants in the Appendix A and have already been observed in the 

human body.[121] 2-methylbutanoic acid, also called 2-methylbutyric acid, is a short-chain 

fatty acid. It has already been identified in adult faeces[47], [122], [123] and faecal 

samples[124]. It has been postulated that its origin is derived from branch-chain amino acid 



 

115 
 

metabolic pathways.[124] Hexanal, heptanal and 2-E-pentenal are aldehydes. Hexanal has 

been observed in adult[123] and child[125] faeces. It was postulated that its origin might 

be dietary, as it was found in carrots and potato tubers, however, the source in preterm 

infants must be different. Heptanal has been observed in adult faeces[47], [62], [125] and 

neonate faeces[27] as well. It has been positively associated with inflammatory bowel 

disease when compared with irritable bowel syndrome. It has also been identified in high 

abundance in Crohn’s disease patients samples[84],and iIts prevalence significantly 

decreased in samples from patients diagnosed with non-alcoholic fatty liver disease.[123] 

2-E-pentenal was observed in neonate faeces by De Lacy Costello et al.[27] 

Modelling algorithms were applied on results obtained with Metab and XCMS packages. 

Following a feature selection step (see Table 25 and Table 33) and preliminary results (see 

Table 26 and Table 34), seven classifiers were applied on two sets of data. When using 

Metab, missing values were replaced using k-NN algorithm. When using XCMS, missing 

values replaced using half the lowest value of each compounds. Samples from four days 

prior to diagnosis delivered the greatest accuracy, sensitivity and specificity values with 

both sets of data (Table 27 and Table 35). This is likely to be due to the number of samples 

from confirmed NEC and matched healthy controls being very similar (Table 16). 

Nevertheless, accuracy, sensitivity and specificity as great as 74.2%, 62.9% and 79.8% were 

obtained one day prior to diagnosis with LDA based on Metab data. Furthermore, median 

accuracy, sensitivity and specificity across 6 days were of 66.6%, 45.6% and 74.5%, 

respectively, using SVM linear kernel algorithm based on the Metab data and of 69.3%, 

47.8% and 76%, respectively, using LDA based on XCMS data (Table 28 and Table 36). 

An external statistician performed a backwards stepwise logistic regression on categorical 

data from Metab (see Appendix G). With this type of algorithm, the same model will be 

applied at each day prior to diagnosis. This might be an advantage for patient classification 

in comparison to algorithm such as PLS. ROC curve values were given for each day prior to 

diagnosis and when all days were considered together. No-cross validation was performed. 

Areas under the ROC curve were greater than 75%, demonstrating accuracy higher than 

80% when all days were considered together and between 79.2% and 89.5% for each day. 

Accuracies obtained were greater than with other method that used seven classifiers. 

However, no cross-validation was performed and this might have reduced these accuracies. 

Nevertheless, this external analysis tended to confirm the findings presented in this thesis. 
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Healthy control samples had a greater variation than confirmed NEC samples when 

intensities of compounds and features were considered. However, the number of VOCs 

identified and families of compounds were similar between confirmed NEC and healthy 

control samples. Moreover, few compound intensities showed strong differences between 

classes, as only 3 compounds were different when Bonferroni correction was applied. 

These observations suggested that confirmed NEC samples have a lower variability than 

healthy control samples and that the range of intensities in confirmed NEC samples might 

be contained in the range of healthy control samples. Although the number of healthy 

control samples, being almost twice the number of confirmed NEC samples (166 and 85, 

respectively), might be a reason for this behaviour, the nature of the samples might also 

influence the VOCs emitted. 

No other studies using GC–MS technology and investigating VOCs were found in the 

literature considering early diagnosis of NEC. Current research for NEC biomarkers obtained 

sensitivity and specificity as high as 93% and 90%, respectively, using urinary protein.[126] 

Furthermore, faecal calprotectin delivered sensitivity and specificity of 86% and 93%, 

respectively. However, faecal calprotectin levels did not change before abdominal signs 

and was therefore not applicable for early diagnosis.[126] Breath hydrogen has been tested 

for the differentiation between healthy controls and NEC patients. Sensitivity and 

specificity were relevant but the test generated too many false positive responses to be of 

interest.[127]  

Despite a relatively high variability within samples considering the number of compounds 

and their intensities, promising results were obtained with classification of samples with 

median accuracy, sensitivity and specificity as great as 69.3%, 47.8% and 76%, when 

considering the six days prior to diagnosis. 
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4.2 Sensor technology 

Results considering the sensor technology were straightforward as compounds 

identification could not be performed using this analytical platform. Following a feature 

selection step, seven classifiers were applied on the data (Table 37). Leave-on-out cross 

validation applied on sensor data was less robust than the validation applied on mass 

spectrometric data. The number of samples available for the GC–Sensor investigation 

explained this modification in data analysis compared to HS–SPME–GC–MS data 

investigation. As few as 6 confirmed NEC samples were available six days prior to diagnosis 

(Table 14). Two reasons explained this fact. First, the project placed a higher priority on 

mass spectrometric results, as more information was obtained from these results; 

secondly, the amount of sample available was small, see chapter 2.2.2. 

SVM radial kernel algorithm delivered the best results with medians accuracy, sensitivity 

and specificity across 6 days prior to diagnosis of 95.5%, 96.4% and 93.5%, respectively 

(Table 38). PCA plots demonstrated the separation between confirmed NEC and healthy 

control samples (Figure 31). 

A recently published study of faecal analysis using e-nose allowed sensitivity and specificity 

of 88.9% when samples collected a day before the diagnosis and the day of diagnosis were 

analysed.[45] Moreover, when samples of the same time window were compared with 

samples from patients suffering from sepsis, sensitivity and specificity were of 88.9% and 

56.5%, respectively.[45] This study had a similar goal as this thesis. Pattern analysis was 

applied on data collected, as presented in 1.2.3. Their results were similar to what we 

obtained; this confirmed the potential usefulness of VOCs for an early detection of NEC 

using faecal samples. Further, similarities in the methodology of both studies allowed us to 

consider their study as an external validation. 
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Chapter 5.  

Conclusion 
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In this thesis, VOCs emitted from faeces of neonates were investigated as potential 

biomarkers for NEC. We hypothesised that VOC patterns in healthy control samples might 

differ from patterns found in patients with NEC. Mass spectrometric results did not allow 

clear discrimination of the samples with both the sensitivity and accuracy remaining 

relatively low for clinical testing. However, results obtained using the sensor technology 

platform were similar to biomarkers found in the literature. Despite a lower number of 

patients being investigated using the sensor technology, the VOC patterns found were able 

to clearly discriminate confirmed NEC from healthy control samples. More importantly, this 

technology showed potential to diagnose the disease from 2 to 5 days prior to diagnosis, 

which may allow great improvement in the treatment of this disease. Our results agree 

with results reported previously[45]. One of the novelties of this project was the 

simultaneous application of two analytical platforms, which considerably enriched the 

information obtained from faecal samples. In order to develop an effective diagnostic tool, 

it will need to be, ideally, applicable worldwide. The next step will be the validation of our 

finding in a multinational study. Similarities in the results obtained from different devices 

will need to be certified and it might prove useful to reduce the instrument size and to 

simplify its utilization for medical staff. 
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Table 40: Potential contaminants identified in other studies. 

Name CAS number Origin References 

Ethanol 64-17-5 From disinfectant [54] 
1-propanol 71-23-8 From disinfectant [54] 
Propan-2-ol 67-63-0 Skin disinfectants [53], [54] 
3-hydroxy-2-butanone 513-86-0 Found in lab air [54] 
3-pentanone 96-22-0 Found in lab air [54] 
Acetone 67-64-1 Found in lab air [54] 
2-ethyl-1-hexanol 104-76-7 Likely from plastic [27] 
Bis (2-ethylhexyl) phthalate 117-81-7 Likely from plastic [27] 

2,2,4,6,6-pentamethylheptane 13475-82-6 
Likely from plastic tube; 
EVA, PP, PVC 

[52], [53] 

1,2-diphenlycyclobutane 3018-21-1 Plastic (ABS, PS) [52] 
4-phenylcyclohexene 4994-16-5 Plastic (ABS) [52] 

Cis-1,2-diphenlycyclobutane 7694-30-6 
Plastic (ABS, ABS/PVC 
alloy) 

[52] 

1-dodecanol 112-53-8 PVC [52] 
1-hexadecanol 36653-82-4 PVC [52] 
1-nonanol 143-08-8 PVC [52] 
1-tetradecanol 112-72-1 PVC, SEBS [52] 

2-ethylhexanol 104-76-7 
ABS, EVA, PGA, PVC, 
PVC/NBR 

[52] 

4-nonylphenol 104-40-5 ABS, PIPMA, PVC, SBR [52] 

2,6-di-tert-butyl-p-cresol 128-37-0 
ABS, NR, EVA, PE, PPEAA, 
PP, PS, PUR, PVC, SBR 

[52] 

9,12-octadecadienoic acid 60-33-3 NR, PE [52] 
(9E) 9-octadecenoic acid 112-79-8 PVC [52] 
(9Z) 9-octadecenoic acid 112-80-1 ABS, NR, PVC [52] 
Dodecanoic acid 143-07-7 ABS, NR, PVC, PE [52] 

Hexadecanoic acid 57-10-3 
ABS, ABS/PVC alloy, NR, 
PE, PS, PVC 

[52] 

Hexadecanoic acid butyl ester 111-06-8 PVC [52] 
Methyl 7-octadecenoate 28010-28-8 ABS [52] 
Octadecanoic acid 57-11-4 ABS, NR, PE [52] 
Octadecanoic acid butyl ester 123-95-5 PVC [52] 
1-heptadecene 6765-39-5 PVC [52] 
1-nonadecene 18435-45-5 ABS, PE, PVC [52] 
1-octadecene 112-88-9 ABS, NR, PE, PVC [52] 
2,6,10,14-
tetramethylhexadecane 

638-36-8 PE, PP, PVC [52] 

2,6,11-trimethyldodecane 31295-56-4 PP, SEBS [52] 
3,7-dimethyldecane 17312-54-8 PP, SEBS [52] 
E-5-eicosene 74685-30-6 NR, PE, PVC [52] 
Cyclododecane 294-62-2 ABS, PIPMA, PVC [52] 

Cyclohexadecane 295-65-8 
ABS, ABS/PVC alloy, PE, 
PVC 

[52] 

Cyclotetradecane 295-17-0 PPEAA, PUR, PVC [52] 

N-docosane 629-97-0 
ABS, PE, PP, PS, PVC, SBR, 
SEBS 

[52] 

Octane 17252-77-6  [21] 
Decane 124-18-5  [21] 
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Undecane 1120-21-4  [21] 
N-dodecane 112-40-3 ABS, PVC, PP, SEBS [52] 
N-eicosane 112-95-8 ABS, PE, PP, PS, PVC [52] 
N-heneicosane 629-94-7 PE, PP, PVC, SEBS [52] 
N-heptacosane 593-49-7 PP [52] 

N-heptadecane 629-79-7 
ABS, NR, EVA, PE, PP, PS, 
PUR, PVC 

[52] 

N-hexadecane 544-76-3 
NR, EVA, PE, PP, PUR, 
PVC 

[52] 

N-nonadecane 629-92-5 EVA, PE, PP, PVC [52] 

N-octadecane 593-45-3 
EVA, PE, PP, PS, PVC, 
SEBS 

[52] 

N-pentadecane 629-62-9 
NR, EVA, PE, PIPMA, PP, 
PS, PUR, PVC, SEBS 

[52] 

N-tetracosane 646-31-1 PE, PP, PS, PVC [52] 

N-tetradecane 629-59-4 
NR, PE, PIPMA, PP, PS, 
PUR, PVC, SBR, SEBS 

[52] 

Squalene 7683-64-9 EVA, PE, PS, SBR [52] 
2-ethylhexanoic acid 149-57-5 PIPMA, PGA, PVC [52] 
Adipic acid 124-04-9  PVC [52] 
Benzoic acid 65-85-0  PVC [52] 
Phenol 108-95-2  ABS, ABS/PVC alloy, PVC [52] 
P-tert-butyl benzoic acid 98-73-7 PVC [52] 
2,2,4-trimethyl-3-
carboxyisopropyl pentanoic 
acid isobutyl ester  

- PIPMA, PVC [52] 

2-ethyl hexanoic acid butyl 
ester 

 68443-63-0 PIPMA, PVC [52] 

2-ethyl hexanoic acid dodecyl 
ester 

 -  PVC [52] 

Butyl benzoate  136-60-7  PIPMA, PVC [52] 
Diethyl phtalate  84-66-2  NR, PUR [52] 
Diisooctyl adipate  1330-86-5  ABS, PVC [52] 
1,3-diphenyl-1,3-propanedione  120-46-7  PVC [52] 
Benzophenone  119-61-9 NR, PE, PIPMA, PVC, SBR [52] 
2-phenyl-2-butna  617-94-7  ABS, ABS/PVC alloy, SEBS [52] 
Acetophenone  98-86-2  ABS [52] 
Dibenzylamine  103-49-1 NR [52] 
Di(2-ethylhexyl) ether  10143-60-9  PVC [52] 
E-15-heptadecenal  - ABS, PVC [52] 
2-ethylhexanoic acid (2-EHA)  149-57-5 PIPMA, PGA, PVC [52] 
Adipic acid  124-04-9  PVC [52] 
Benzoic acid  65-85-0  PVC [52] 
Phenol  108-95-2  ABS, ABS/PVC alloy, PVC [52] 
P-tert-butyl benzoic acid  98-73-7 PVC [52] 

Presentation of the potential contaminants names, CAS number, suggested origin and references. 

Acronyms: acrylonitrile butadiene styrene (ABS), ethylene vinylacetate (EVA), natural rubber (NR), 

polyethylene (PE), polyglycolide (PGA), polyisopropyl methylacrylate (PIPMA), polypropylene (PP), 

poly(propylene - ethylene - acrylic acid) (PPEAA), polystyrene (PS), polyurethane (PUR), 

polyvinylchloride (PVC), nitrile butadiene rubber (NBR), styrene - butadiene rubber (SBR), styrene - 

ethylene - butadiene - styrene co-polymer (SEBS) We constructed the table.  
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Introduction
Metabolomics is considered one of the newest omics technologies 

and has grown rapidly in the last 10 years. It involves screening a 
large number of low molecular mass metabolites (<1.5Kd) present in 
biological samples [1,2]. Metabolomic techniques have been largely 
and successfully applied in the identification of biomarkers and the 
dissection of metabolic pathways associated with specific diseases 
[3]. More recently, a number of studies have emphasized the role of 
volatile organic compounds (VOCs) in identifying disease-specific 
metabolome patterns [4-8]. 

VOCs are a large and diverse group of carbon-based molecules 
whose accurate identification has the potential to revolutionize patient 
care. Most vapours emitted from biological samples (e.g. breath, sweat, 
blood, urine and faeces) contain VOCs which may have a potential 
link to specific diseases [9]. For example, 3-methylhexane, decane, 
caryophyllene naphthalene have been detected at significantly lower 
levels in the breath of breast cancer patients, while lauric acid and 
palmitic acid have been detected at high levels in biopsied tissue from 
melanoma patients [10,11]. In addition, VOCs analysis of urine, breath 
or faeces is non-invasive and can be performed at a low cost, which 
makes it suitable for use as a screening tool in clinical diagnosis and in 
monitoring the efficacy of therapies [12].

The faecal metabolome is a result of the complex interaction 

between the intestinal microbiome and the cell metabolism [13]. 
Therefore, the analysis of VOCs present in faecal samples is of particular 
relevance when dealing with gastrointestinal (GI) diseases. Healthcare 
professionals commonly observe unusual smells from the faeces of 
patients suffering from GI diseases such as celiac disease, Crohn’s 
disease, chronic pancreatitis or intestinal infections [14]. Therefore, 
there is an increasing use of faecal metabolomics to investigate both the 
pathophysiology of GI diseases and the role of the intestinal microbiota 
in the metabolism in states of health and disease.

The analysis of VOCs relies on an accurate and reliable extraction 
of metabolites from the biological sample [15]. A solid phase micro-
extraction (SPME) fibre is a solvent-free extraction technique ideally 
suited to metabolite extraction, as it minimises contact with possible 
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Abstract
The analysis of volatile organic compounds (VOCs) emitted from biological fluids such as blood, urine, breath 

and faeces, has been receiving more attention from researchers and clinicians due to their contribution to the 
metabolome and potential use as diagnostic tools in clinical settings. The faecal metabolome represents the final 
product of a complex interaction involving the gut microbiota and cell metabolism and an accurate measurement of 
the faecal volatile organic metabolome enables a better understanding of disease-related metabolic pathways and, 
eventually, identifying potential biomarkers. However, there is a lack of published evidence evaluating the sample 
preparation steps for faecal metabolome analysis and no well-defined protocol has been established. Consequently, 
different research groups employ diverse methodologies, which, ultimately, prevent comparison of results between 
laboratories.

We evaluated different aspects of sample preparation when processing murine and human faecal samples 
through a pipeline involving solid phase micro-extraction (SPME) coupled to gas chromatography-mass spectrometry 
(GC-MS). We identified the sample volume, the SPME fibre coating, the extraction conditions and the vial volume 
that produce the most accurate and reproducible results. Finally, we propose an optimized method for the direct 
SPME-GC-MS analysis of VOCs in murine and human faecal samples.

To the best of our knowledge, this is the first work evaluating different aspects of sample preparation for direct 
SPME-GC-MS analysis of VOCs and the first method proposed for the analysis of murine and human faecal samples. 
In addition, our proposed method can be coupled to the Automated Mass Spectral Deconvolution and Identification 
System (AMDIS) and the R software package, Metab, in order to produce results in a reliable and high-throughput 
manner.
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infectious agents from blood, stool and urine samples [16]. SPME 
can be coupled to high-performance liquid chromatography (HPLC), 
inductively coupled plasma (ICP) and gas chromatography-mass 
spectrometry (GC-MS), however, SPME-GC-MS is considered one 
of the most popular methods for the analysis of VOCs emitted from 
faecal samples [16,17]. The different possible SPME configurations 
and the distinct sample preparation steps directly affect the results 
produced by SPME-GC-MS analyses [18]. Parameters such as the 
SPME fibre coating, the extraction conditions (temperature and time) 
and the sample volume used ultimately determine the number of VOCs 
identified their abundances and the repeatability across replicates [18].
Therefore, an evaluation of each of these parameters is essential in order 
to obtain reliable and reproducible results. 

Although SPME-GC-MS has been used extensively for the analysis 
of VOCs from faecal samples [4,19-21], there is a lack of published 
evidence evaluating sample preparation steps and potential SPME 
extraction configurations prior to GC-MS analysis. Using human faecal 
samples, Dixon and co-workers [22] investigated the effect of different 
extraction times on VOCs when using 4 different SPME fibres. In 
addition, they compared the number of VOCs identified when using 
8 different SPME fibres and an extraction time of 20 min. Couch et 
al. [23] studied 2 SPME extraction times (20 min and 18 hrs) using 
3 different fibres. On the other hand, a thorough literature review 
resulted in no published protocols or methods regarding sample 
preparation for the direct SPME-GC-MS analysis of murine faecal 
samples. Therefore, different research groups have to evaluate the same 
method-related parameters prior to analysis of experimental samples. 
In addition, there is a lack of standardization between laboratories 
performing metabolomics. To the best of our knowledge, there is no 
single gold standard method for the direct SPME-GC-MS analysis of 
VOCs extracted from human and/or murine faecal samples, which 
results in different findings when analysing the same subject [20-22]
and prevents comparing results between labs. Thus, there is a current 
need for well-established method for the analysis of VOCs in murine 
and human faecal samples.

Here, we have evaluated the effect of different parameters for 
sample preparation and different SPME configurations on the analysis 
of VOCs from murine and human faecal samples. The number of 
VOCs identified and their abundances have been assessed when using 
different sample masses, distinct vial volumes, salting out of samples, 
and the effect of leaving samples at 1°C whilst loaded onto auto-sampler 
tray for 14 hours (overnight), applying different SPME extraction times 
and temperatures and using distinct SPME fibre coatings. Finally, 
we propose an optimized method for a reliable and high-throughput 
analysis of VOCs present in faecal samples.

Materials and Methods
Mouse faecal samples

Four inbred wild-type C57BL/6 mice were purchased from Charles 
River Laboratories (Margate, UK) at 9 weeks old and acclimatised under 
standard specific pathogen free (SPF) animal house conditions at the 
University of Liverpool for a minimum of 1 week prior to faecal sample 
collection. Animals were housed in a single cage under conventional 
conditions with food and water ad libitum and kept on a 12:12 hrs 
light-dark cycle. Samples of 3, 5, 10 and 20 pellets of mice faeces were 
collected during 3 consecutive weeks, placed in 10 ml glass vials and 
stored at -20°C. An additional four male inbred wild-type C57BL/6 
mice were purchased at 5 weeks old and housed individually in the 

same conditions. Samples of 10 pellets were collected from each of these 
four additional mice in a single week and used to assess the effect of vial 
volume, extraction time and temperature and SPME fibre coating, on 
the number and abundances of VOCs identified, as described below

Human faecal samples

Eleven faecal samples of variable masses were collected fresh from 
5 premature babies hospitalized across the UK. The 5 donors were 
chosen at random from a larger cohort study. In accordance to a clear 
protocol, samples were collected by nurses and stored at -20°C. The 
sampling took place after written parental consent, with research ethics 
committee approval (11/WM/0078). 

GC/MS conditions

A Perkin Elmer Clarus 500 GC/MS quadruple bench top system 
(Beacons field, UK) was used in combination with a Combi PAL auto-
sampler (CTC Analytics, Switzerland) for the analysis of all samples. 
The GC column used was a Zebron ZB-624 with inner diameter 
0.25 mm, length 60 m, film thickness 1.4 µm (Phenomenex, Maccles 
field, UK). The carrier gas used was helium of 99.996% purity (BOC, 
Sheffield, UK). The SPME fibres used were CAR-PDMS 85 µm and 
DVB-CAR-PDMS 50/30 µm (1 cm) (Sigma-Aldrich, Dorset, UK). 
Both fibres were pre-conditioned before use, in accordance with the 
manufacturer manual. Vials with magnetic caps of 2 ml (Crawford 
Scientific, Lanarkshire, UK) and 10 ml (Sigma-Aldrich, Dorset, UK) 
volume were used. The fibre desorption conditions were 5 minutes at 
220°C. The initial temperature of the GC oven was set at 40°C and held 
for 1 minute before increasing to 220°C at a rate of 5°C/min and held 
for 4 min with a total run time of 41 min. A solvent delay was set for the 
first 6 min and the MS was operated in electron impact ionization EI+ 
mode, scanning from ion mass fragments 10 to 300 m/z with an inter-
scan delay of 0.1 sec and a resolution of 1000 at FWHM (Full Width 
at Half Maximum). The helium gas flow rate was set at 1 ml/min. The 
sensitivity of the instrument was determined with 2-pentanone only 
and will vary for other compounds. The limit of detection, as being 3 
times the signal/noise ratio, of the method for 2-pentanone with DVB-
CAR-PDMS is 16 ppm and with CAR-PDMS is 40 ppm.

Sample mass optimisation

The number of VOCs identified and their abundances were evaluated 
according to different sample masses. Murine samples of 3, 5, 10 and 20 
pellets, in triplicate, were pre-incubated at 60°C for 30 min before VOC 
extraction using a CAR-PDMS SPME fibre at 60°C for 20 min prior to 
desorption into the GC oven. Only VOCs identified in every sample 
were then used for comparing the VOC abundances according to the 
sample mass used. The same procedure was applied to human faecal 
samples, where one single sample was initially divided into triplicates 
of 100, 450 and 700 mg. Then 4 additional samples were divided into 
triplicates of 50 and 100 mg. A pilot study (data not published) using 
human faecal samples between 130 and 1320 mg showed a plateau in 
the number of VOCs identified initiating at 700 mg. Therefore, sample 
masses greater than 700 mg were not investigated here.

Vial volume optimisation

The number of VOCs identified and their abundances were 
evaluated according to different vial volumes used for SPME-GC-MS 
analysis. For each vial volume of 2 and 10 ml, murine samples of 10 
pellets (n=4) and aliquots of 100 mg from one human samples (n=4) 
were analysed. Each sample was pre-incubated at 60°C for 30 min 
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before VOC extraction using a CAR-PDMS SPME fibre at 60°C for 20 
min prior to desorption into the GC oven.

Salting–out optimisation

The number of VOCs identified was evaluated according to the 
addition of 0, 0.5 or 1 ml of saturated sodium chloride solution. Three 
human faecal samples were divided into 9 aliquots of 100 mg, stored in 
10 ml vials and analysed with either 0 (n=3), 0.5 (n=3) or 1 ml (n=3) 
of sodium chloride solution added. Each sample was pre-incubated at 
60°C for 30 min before VOC extraction using a CAR-PDMS SPME 
fibre for 20 min at 60°C prior to desorption into the GC oven.

Leaving samples at 1°C overnight (14 hrs)

The abundances of identified VOCs were evaluated according to 
waiting time periods of 0 and 14 hrs at 1°C prior to SPME-GC-MS 
analysis. One human sample was divided into six aliquots and stored 
in 10 ml glass vials at -20°C. Three aliquots were analysed immediately 
after being taken from -20°C freezer (0 hrs), while three aliquots were 
analysed after being left at 1°C on the auto-sampler tray overnight (14 
hrs). Each sample was pre-incubated at 60°C for 30 min before VOC 
extraction onto a CAR-PDMS SPME fibre at 60°C for 20 min prior to 
desorption into the GC oven.

Extraction time optimisation

The number of VOCs identified was evaluated according to 
different SPME extraction times. Murine samples of 10 pellets were 
pre-incubated at 60°C for 30 min before VOC extraction using a CAR-
PDMS SPME fibre at 60°C for 10 (n=3), 20 (n=3) or 30 min (n=3) prior 
to desorption into the GC oven.

Extraction temperature optimisation

The number of VOCs identified was evaluated according to 
different SPME extraction temperatures. Murine samples of 10 pellets 
were pre-incubated at 60°C for 30 min before VOC extraction using a 
CAR-PDMS SPME fibre at 50 (n=3), 60 (n=3) or 70°C (n=3) for 20 min 
prior to desorption into the GC oven.

SPME fibre optimisation

The number of VOCs identified was evaluated according to two 
SPME fibres. Murine samples of 10 pellets were pre-incubated at 60°C 
for 30 min before VOCs extraction using CAR-PDMS (n=5) or DVB-
CAR-PDMS (n=5) SPME fibres at 60°C for 20 min prior to desorption 
into the GC oven. The same procedure was applied to a single human 
faecal sample divided into 10 aliquots of 100 mg.

Repeatability and multiple analyses

In order to assess the repeatability of the final method proposed in 
this paper, the VOC profiles of ten human samples were further used 
to calculate the variation within samples. Each individual sample was 
divided in triplicate, stored in 10 ml vials and pre-incubated at 60°C for 
30 min before VOCs extraction using a CAR-PDMS SPME fibre for 20 
min at 60°C prior to desorption into the GC oven. The abundances of 
the VOCs identified within each sample (n=3 per sample) were used to 
calculate their coefficient of variation. Finally, 3 of these human samples 
were reanalysed 3 additional times in order to determine the effect of 
multiple analyses of a single sample. 

Data processing

All GC-MS data were processed using the Automated Mass Spectral 

Deconvolution System (AMDIS-version 2.71, 2012) in conjunction 
with the NIST mass spectral library (version 2.0, 2011) and the R 
package Metab [24]. VOCs were identified using an in-house library 
built with AMDIS in combination to the NIST library. All statistics were 
performed using R version 3.0.2 [25,26]. A t-test or a one-way analysis 
of variance (ANOVA) followed by Tukey’s HSD test were applied to 
test differences between data classes. A principle component analysis 
(PCA) was used to show similarities within data classes. Final p-values 
were adjusted for multiple comparisons using Bonferroni correction. 
P-values<0.05 were considered as significant. 

Results
Sample mass optimization

In order to optimize the sample mass for direct SPME-GC-MS 
analysis, we compared the number and abundances of VOCs identified 
in murine faecal samples (mean ± SEM) of 3 (40.0 ± 14.1 mg), 5 (76.7 ± 
25 mg), 10 (133.3 ± 7 mg) and 20 (233.0 ± 25 mg) pellets; and in human 
faecal samples of 100 mg (100.3 ± 0.6 mg), 450 mg (455.1 ± 1.1 mg) and 
700 mg (700.6 ± 2.8 mg) (Figure 1) and then 50 mg (52.4 ± 0.4 mg) and 
100 mg (102.5 ± 0.2 mg) (Figure 2). Murine samples of 3 pellets showed 
a significantly lower number of VOCs than 20 pellets (p=0.05), with 
no significant difference in the number of VOCs between 10 and 20 
pellets (p=0.87). Six compounds (pentanal, pentane, propanal, hexanal, 
2,3-butandione and benzaldehyde) were consistently present in every 
murine sample with the compounds pentane and pentanal detected at 
significantly lower abundances in 3 and 5 pellets compared to 10 and 20 
pellets. The compound propanal was present at significantly different 
levels between 3 and 20 pellets. In human samples, 450 and 700 mg 
showed a significantly higher number of VOCs than samples of 100 
mg. There was no difference in the number of VOCs between 450 and 
700 mg. Eight compounds were identified in every human sample (2, 
3-butanedione, tetrahydrofurane, ethyl ester propanoic acid, n-propyl 
acetate, 2-pentenal (E), propyl ester propanoic acid, 2-methylpropanal, 
1-propanol) and their intensities were significantly higher in samples 
of 450 and 700 mg than samples of 100 mg. The additional comparison 
between 50 and 100 mg showed no difference in both the number 
of VOCs identified (data not shown) and their abundances. All the 
statistical analyses for sample mass optimisation were performed by 
ANOVA followed by Tukey’s HSD test and Bonferroni. 

Vial volume and salting–out optimisation

Vials of 2 ml showed a higher number of VOCs than vials of 10 
ml when analysing murine samples (Figure 3A). However, there 
were no significant differences in VOCs abundances between vials 
(T-test; p-value>0.05). On the other hand, human samples showed 
no significant differences in both the number and the abundances of 
VOCs detected (T-test; p-value>0.05) (Figure 3B and 3C). The addition 
of sodium chloride showed no significant differences in the number 
and abundances of VOCs (ANOVA followed by Tukey’s HSD test and 
Bonferroni; p-value>0.05) (Figure 3D).

Leaving samples at 1°C overnight (14 hrs)

Although there were no significant differences in the number of 
VOCs identified (T-test; p-value > 0.05) there were three compounds 
detected at slightly lower abundances at 14hrs (Figure 4D).

Extraction time and temperature optimization

Although there was no difference in the number of VOCs reported 
by the exposure times tested, 20 minutes produced the highest number 
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of VOCs (p=0.5) (Figure 4A). The exposure temperatures of 60 
and 70°C showed a significantly higher number of VOCs than 50°C 
(p=0.03). Although there was no significant difference between 60 and 
70°C (p=0.33), the exposure temperature of 60°C produced the highest 
number of VOCs (Figure 4B) (ANOVA followed by Tukey’s HSD test 
and Bonferroni).

SPME fibre optimization

DVB-CAR-PDMS showed a significantly higher number of VOCs 
when analysing murine samples (T-test; p=0.04). Seven compounds 
were exclusively detected by DVB-CAR-PDMS, while 2 compounds 
were exclusively detected by CAR-PDMS. Human samples showed 
no significant difference between SPME coatings, although five 
compounds were exclusively reported by CAR-PDMS and another five 
compounds were exclusively reported by DVB-CAR-PDMS (Figure 4C 
and Table 1). 

Optimized method

Based on the results presented above, we propose a SPME-GC-MS 
method for analysing murine and human faecal samples (Figure 5). We 
suggest murine samples are analysed using 10 to 20 pellets, stored in 
2 ml glass vials, incubated for 30 min at 60°C and extracted by DVB-
CAR-PDMS for 20 min. Alternatively, human samples of 450 mg 
should be stored in 2 or 10 ml glass vials, incubated for 30 min at 60°C 
and extracted by CAR-PDMS or DVB-CAR-PDMS for 20 min.
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Figure 1: Sample mass optimisation.(A-B) The number and abundances of volatile organic compounds (VOCs) identified in murine faecal samples of 3, 5, 10 and 
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Figure 2: Abundances of volatile organic compounds (VOCs) in samples 
of 50 and 100 mg. Scatterplot comparing the average log values of VOCs 
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black segment represents the function x=y, where compounds detected at 
similar levels between 50 and 100 mg are located inside of the 5% tolerance 
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Repeatability and multiple analyses

In order to assess the repeatability of our proposed method, we 
performed a principal component analysis (PCA) on the VOC profiles 
of 10 human faecal samples, each divided in triplicate (Figure 6). In 
addition, the mean, standard deviation and coefficient of variation 

(CV) were calculated across triplicates for each sample (Table 2). The 
PCA yielded results showing that each sample was clustered together. 
In average, 31.3 ± 10.5 VOCs were identified per human sample (mean 
± SD). The standard deviation for each sample was 2.9 ± 1.3 compounds 
and, in average, 90% of the VOC abundances showed a coefficient of 
variation smaller than 30%, which is considered adequate for diagnostic 
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Figure 3: Vial volume optimisation and salting-out. (A) Faecal samples collected from murine (n=4/volume, N=3) and human (n=4/volume; 10 ml=102.8 ± 1.7 mg, 2 
ml=101.9 ± 1.2 mg, N=3) using two different vial volumes, 2 ml and 10 ml (mean ± SEM; t-test). (B-C) Comparison of the two vial volumes studied, showing the mean 
of the abundance for each identified compounds (murine=11, humans=26) per size of vial (n=4/time) for both murine (B) and human samples (C), plotted against the 
other. The grey area indicates the 5% tolerance around the optimal function x=y. (D) Faecal samples collected from an individual human treated with 0.5 ml NaCl and 
1 ml NaCl and compared to a control sample (n=3/treatment; control=97.9 ± 2 mg, 0.5 ml NaCl=100.4 ± 3.6 mg, 1 ml NaCl=99.5 ± 3.2 mg) (mean ± SEM); ANOVA with 
Tukeys HSD followed by Bonferroni; *p<0.05, **p<0.01 and ***p<0.001.

Murine Human
CAR-PDMS DVB-CAR-PDMS CAR-PDMS DVB-CAR-PDMS

2,2-dimethylpropanoic acid 2-methyl-1-propanal propanoic acid 2-methyl-2-butenal

2-methylpentanal 2-pentanone 2-methylpropanoic acid butanoic acid, propyl ester
2-methylfuran 2,2-dimethylpropanoic acid cyclopentane

2-nonenal N,N-dimethylacetamide 2-pentenal, (E)
3-methylbutanal 1-propanol 2-ethyl-1-hexanol

1-penten-3-ol
2-heptanal

Table 1: SPME fibre optimisation. Murine and human faecal samples were analysed using a CAR-PDMS (n=5) or DVB-CAR-PDMS (n=5) SPME fibre. There were 2 
and 5 specific compounds found exclusively by CAR-PDMS in murine and human samples respectively, and 7 and 5 found exclusively by DVB-CAR-PDMS in murine and 
human samples, respectively.
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sensitivity [27]. Furthermore, the effect of analysing a single sample 
multiple times was assessed. The number of VOCs identified and their 
abundances were compared across 4 GC-MS runs (Table 3). There was 
a significant decrease in the number of VOCs identified (Figure 7) 
and 40% of these VOCs were detected at significantly lower or higher 
abundances after 4 GC-MS runs (ANOVA; p-value<0.05).

Discussion
In this section, we discuss the results obtained when evaluating 

different aspects of sample preparation and SPME configurations for 
direct SPME-GC-MS analysis. Murine and human faecal samples 
have shown similar behaviour regarding the mass selection; however, 
they differed considering SPME coatings affinity and the vials volume 
optimisation.

Sample mass optimization

The sample mass optimization showed the same pattern for murine 
and human samples (Figure 1). An increase in sample mass led to an 
increase in both the number of VOCs detected and their abundances, 
therefore reaching a limit of VOCs identified; a result of fibre overload. 
However, as the amount of mass per sample may be limited according 
to the study being conducted, we searched for the minimum sample 

 

10                             20                              30 50                             60                             70 

14          15          16          17          18          19          20

20

19

18

17

16

15

40

35

30

25

20

15

10

5

0

N
um

be
r o

f i
de

nt
ifi

ve
s 

VO
C

s

N
um

be
r o

f i
de

nt
ifi

ve
s 

VO
C

s
N

um
be

r o
f i

de
nt

ifi
ve

s 
VO

C
s

Log of the mean intesities after 14 hours

Lo
g 

of
 th

e 
m

ea
n 

in
te

si
tie

s 
at

 ti
m

e 
0

Temperature (oC)

35

30

25

20

15

10

5

0

Extraction time (mins)

Murine                                            Human

*

DVB-CAR-PDMS CAR-PDMS

B.

C. D.

*
25

20

15

10

5

0

A.

Figure 4: Solid phase micro-extraction (SPME) optimisation and volatile organic compound (VOC) abundances in samples left for 14 hours at 1°C. The num-
ber of VOCs identified in murine faecal samples according to the (A) extraction time and the (B) temperature applied to SPME coupled to gas chromatography- mass 
spectrometry (GC-MS) analysis (n=3); ANOVA with Tukeys HSD followed by Bonferroni. (C) The number of VOCs identified in murine and human faecal samples ac-
cording to the SPME fibre used (n=3); T-test. (D) Scatterplot comparing the average log values of VOC abundances from human faecal samples analysed straight after 
leaving the -20°C freezer and after 14 hrs at 1°C(n=3). The diagonal black segment represents the function x=y, where compounds detected at similar levels between 
time 0 and time 14 are located inside of the 5% tolerance region represented by the grey area.*p<0.05, **p<0.01 and ***p<0.001.

Sample mass

Vial volume

Incubation
temperature

SPME fibre
extraction

Murine

10 to 20 pellets

2 ml

60°C for 30 mins 60°C for 30 mins

  DVB-CAR-PDMS
  for 20 mins

  CAR-PDMS or
   DVB-CAR-PDMS

   for 20 mins

2 or 10 ml

50 to 100 mg

Human

Figure 5: Proposed optimised methods. A diagram summarising our 
proposed optimised methods for solid phase micro-extraction coupled to 
gas chromatography-mass spectrometry (SPME-GC-MS) analysis of volatile 
organic compounds (VOCs) in murine and human faecal samples. Ideally, 
multiple SPME fibre coatings should be applied in order to extract a higher 
diversity of VOCs. 
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mass that would produce the highest number of VOCs with the highest 
abundances. Murine samples of >20 faecal pellets were not included 
in this present study as no significant difference was found between 
samples of 10 and 20 pellets and it was found experimentally difficult 
to collect >20 pellets from individual mice. Therefore, we would predict 
that any number of murine faecal pellets higher than 20 would also 
produce a non-significant result. Figure 1C showed an increase in the 
number of VOCs identified between samples of 100 and 450 mg and 
between samples of 100 and 700 mg. The lack of difference between 
samples of 450 and 700 mg indicates that the SPME fibre reached its 
limit of absorbance at 450 mg. Therefore, samples of 10 pellets and 

samples of 450 mg showed the best results for murine and human 
samples respectively. Although human samples of 450 mg showed 
higher number of VOCs identified and higher abundances, samples of 
this mass are not always available. For example, studies with premature 
babies generally involve samples of 100 mg or less [28-30]. Therefore, 
we compared the results between samples of 50 and 100 mg in order 
to find the lowest possible sample mass able to produce a reasonable 
number of VOCs and reproducible abundances. Results showed no 
significant differences, which suggests that samples from 50 to 100 mg 
are appropriate in these cases (Figure 2).

Vial volume and salting–out optimisation

Although no significant differences were observed between the 
vials tested when analysing both murine and human samples (Figure 
3), 2 ml vials showed a much higher number of VOCs identified than 
10 ml vials when analysing murine samples. However, when analysing 
human samples, 10 ml vials showed a slightly higher number of VOCs 
identified than 2 ml vials (2 ml=24, 10 ml=26 VOCs). Therefore, 2 ml 
vials are recommended for the analysis of murine samples and 2 ml or 
10 ml vials when analysing human samples. This difference of behaviour 
might be explained by sample concentration. Certain compounds 
are more concentrated and at higher abundances in human samples 
compared to murine samples. Therefore, if the volume of headspace 
decreases then the levels of compounds in human samples will remain 
mostly unchanged whereas in murine samples the concentration 
increases leading to better coverage of the VOCs profiles in the samples. 
In addition, no significant differences were observed when salt was 
added to the samples. This could reflect the solid or semi-solid nature 
of the sample, which is only partially dissolved in the sodium chloride 
solution.
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Figure 6: Principal component analysis (PCA) for method repeatability. The results of a PCA applied to the volatile organic compounds (VOCs) profile of 10 
biological replicates, each divided in triplicates and analysed by solid phase micro-extraction coupled to gas chromatography-mass spectrometry (SPME-GC-MS).

Samples Number of VOCs ± S.D.
(VOCs in every 

technical replicate)

VOCs with CV <30%
(%)

Sample 1 24 ± 3 (19) 100
Sample 2 23 ± 1 (18) 100
Sample 3 20 ± 2 (12) 92
Sample 4 48 ± 5 (36) 89
Sample 5 37 ± 4 (26) 81
Sample 6 50 ± 4 (39) 95
Sample 7 32 ± 2 (21) 90
Sample 8 26 ± 4 (18) 67
Sample 9 26± 2 (19) 95
Sample 10 27± 2 (18) 94

Table 2: Repeatability of method. Ten biological replicates of human faecal 
samples were divided in triplicates and analysed by solid phase micro-extraction 
coupled to gas chromatography-mass spectrometry (SPME-GC-MS). The average 
number of volatile organic compounds (VOCs) and the standard deviation 
associated to each biological replicate is presented together with the number of 
VOCs in every technical replicate and the percentage of compound abundances 
showing a coefficient of variation (CV) smaller than 30%.
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Leaving samples at 1°C overnight (14 hrs)

There were no significant changes in VOC abundances when 
samples were left for 14h at 1°C prior to SPME-GC-MS analysis (Figure 
4D), which indicates that samples can be analysed overnight without 
significantly changing the VOC profiles or abundances. This result is 
particularly important for those experiments using GC-MS combined 
to auto-samplers that have a cooling tray with a minimum temperature 
of 1°C, where samples are generally sitting for up to 14 hours prior to 
injection. 

Extraction time and temperature optimization

Typically, the SPME extraction process is considered complete 
when the analyte concentration has reached distribution equilibrium 
between the sample matrix and the fibre coating. Until the distribution 
equilibrium is not reached, the extraction process is considered in pre-
equilibrium state. Our results showed that an increase in extraction 
time and temperature resulted in higher numbers of VOCs identified 
(Figure 4A and 4B). However, extraction times higher than 20 minutes 
and extraction temperatures higher than 60°C showed no improvement. 
These results indicate that in the pre-equilibrium state, a small change in 
extraction time and temperature result in a large change in the amount 
of analyte being absorbed. However, once the distribution gets close 
to the equilibrium, there are either no changes or only small changes 
in the amount of analyte absorbed. Therefore, the extraction time and 
temperature are not critical once equilibrium is nearly reached. These 

results are in agreement with previous work from our group and others 
(Figure 4A and 4B) [4,22,31].

SPME fibre optimization

Although there were no differences between the SPME fibres tested 
when analysing human samples, five compounds were exclusively 
detected by each specific fibre. On the other hand, the DVB/CAR/PDMS 
fibre was able to identify a higher number of compounds than the CAR/
PDMS fibre when analysing murine samples (Figure 4C), with seven 
compounds exclusively identified by DVB/CAR/PDMS. Therefore, 
when possible, we suggest the use of different SPME fibres in order to 
extract a greater diversity of compounds, which is in agreement with 
previous work from Dixon and collaborators [22]. However, if a single 
SPME fibre must be used, we suggest DVB/CAR/PDMS for murine 
studies whereas both types of SPME fibre can be equally applied for 
human samples. 

Optimized method

Our optimized method (Figure 5) shows two main differences when 
applied to murine or human samples. When a single fibre is available, 
murine samples should be analysed by DVB/CAR/PDMS fibre and 
using 2 ml vials, while human samples can be analysed by DVB/CAR/
PDMS or CAR/PDMS and using 2 or 10 ml vials. Our proposed method 
involves almost no sample preparation steps and results in reproducible 
and reliable VOC identification and quantification. Furthermore, our 
method can be easily combined to AMDIS software and Metab package 
in order to frame a powerful pipeline able to analyse VOCs in faecal 
samples in a reliable and high-throughput manner.

Repeatability and multiple analyses

The PCA results (Figure 6) showed technical replicates clustering 
together, which indicates low variability across samples and high 
reproducibility. The PCA results are consistent with the low standard 
deviation across technical replicates (Table 2) and with the fact that 
the great majority of VOC abundances (90%) showed a CV lower 
than 30%. Finally, multiple SPME-GC-MS analyses of a single sample 
showed significant influence on the results, with a significant decrease 
in the number of identified VOCs (Figure 7) and difference in the 
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Figure 7: Effect of multiple analyses of samples on the number of VOCs identified. Three human faecal samples were divided in triplicate and analysed 4 
consecutive times by solid phase micro-extraction coupled to gas chromatography-mass spectrometry (SPME-GC-MS). The number of VOCs identified in each 
analysis is presented for the three samples individually (n=3) and combined (n=9) (mean ± SEM); ANOVA with Tukeys HSD followed by Bonferroni; *p<0.05, **p<0.01 
and ***p<0.001.

SPME-GC-MS analyses VOCs present in 
triplicate

Percentage of 
significantly different 

abundances(%)
Sample 1 16 56
Sample 2 14 64
Sample 3 10 40

Table 3: Effect of multiple analyses of samples on the abundances. Three human 
faecal samples were divided in triplicate and analysed 4 consecutive times by 
solid phase micro-extraction coupled to gas chromatography-mass spectrometry 
(SPME-GC-MS). The number of volatile organic compounds (VOCs) present 
in at least 2 consecutive analyses is presented together with the percentage of 
compounds for which the intensities differed significantly after 4 analyses.
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intensity of at least 40% of the VOCs (Table 3) after 4 SPME-GC-MS 
re-runs of each sample. These differences confirmed the hypothesis 
that the sample’s headspace is affected by its analysis. Heating the faecal 
samples releases the majority of VOCs into the headspace air which 
are extracted and removed during the first SPME-GC-MS analysis. 
During the second, third and fourth analysis, the diversity and levels of 
specific VOCs are decreased, as confirmed in Figure 7. Therefore, each 
sample should be analysed once. The inter-individual variation between 
samples should also be taken into consideration, explaining the lower 
number of identified VOCs in sample 3 compared to sample 1 and 2 
(Figure 7).

This proposed optimised method for the analysis of human and 
murine faecal samples using SPME-GC-MS is specific for the GC-MS 
conditions described in the ‘Materials and Methods’ section. Therefore, 
any change introduced by altering these configurations may result in 
different outcomes compared to those described in this study.

Conclusion
We have evaluated several aspects involving the direct VOC 

analysis of murine and faecal samples via SPME-GC-MS. As a result, 
we proposed a new optimised method and demonstrated its high 
repeatability across technical replicates. To the best of our knowledge, 
this is the first study evaluating different aspects of SPME-GC-MS 
analysis of murine and human faecal samples and the first study 
suggesting an optimised method. Furthermore, our proposed method 
can be combined to the data analysis tools AMDIS and Metab in order 
to produce reliable results in a high-throughput way.
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Table 41: Library used for the data analysis during the method development. 

Name 
RT 

[min] 
1st ion 2nd ion 3rd ion 4th ion 

Ethanol 6.639 31 45 46 29 

2-propenal 7.097 56 55 27 26 

Propanal 7.219 58 29 28 27 

Acetone 7.373 43 58 42 15 

Isopropanol 7.579 45 43 41 39 

Carbon disulfide 7.799 76 44 78 38 

Acetonitrile 7.903 41 40 39 38 

Dicholormethane 8.193 84 49 86 51 

Cyclopentane 8.33 42 70 55 41 

Propanal, 2-methyl 9.015 43 41 72 39 

1-propanol 9.619 31 59 42 60 

Butanal 10.223 44 72 41 29 

2,3-butanedione 10.281 43 86 42 15 

2-butanone 10.55 43 72 29 57 

Ethyl acetate 10.593 43 45 70 61 

Tetrahydrofurane 11.16 42 41 72 71 

Formic acid 11.606 46 45 29 44 

Column bleed 11.829 147 148 73 66 

1-propanol, 2-methyl 11.995 43 41 42 33 

Butanal, 3-methyl 12.54 44 41 43 58 

Acetic acid 12.742 43 45 60 42 

Butanal, 2-methyl 12.831 57 41 58 29 

2-butenal, (E) 12.9 70 41 39 69 

3-buten-2-one, 3-methyl 13.281 41 43 84 69 

Furan, 2-ethyl 13.497 81 96 53 39 

1-penten-3-one 13.858 55 84 27 29 

2-pentanone 13.936 43 86 41 71 

2-Penten-1-ol, (Z) 13.991 57 29 67 43 

2,3-pentanedione 14.163 43 57 29 100 

Propanoic acid, ethyl ester 14.181 57 29 43 102 

Pentanal 14.203 44 41 58 29 

N-propyl acetate 14.36 43 61 73 42 

Propanoic acid, 2-methyl-, ethyl ester 15.986 43 71 41 29 

Acetoin 16.114 45 43 88 42 

1-butanol, 3-methyl-, formate 16.19 55 43 70 42 

Propanoic acid 16.215 74 45 73 28 

3-penten-2-one 16.343 69 41 43 39 

2-butenal, 2-methyl 16.422 84 55 41 69 

Pyridine 16.424 79 52 51 50 

1-pentanol 16.444 41 42 55 70 

Toluene 16.533 91 92 65 39 

2-pentenal, (E) 17.101 55 84 83 41 

Column bleed 17.124 207 28 209 133 
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Column bleed 17.152 207 191 209 208 

1-pentanol 17.411 42 55 41 70 

Butanoic acid, ethyl ester 17.688 71 43 88 41 

Propanoic acid, propyl ester 18.043 57 75 43 29 

Propanoic acid, 2-methyl 18.291 43 41 73 39 

Hexanal 18.369 44 41 56 43 

Furan, 2,3-dihydro-4-methyl 18.487 84 55 83 39 

5-isoxazolecarboxylic acid, 4,5-
dihydro-5-methyl-, methyl ester, (R) 

18.503 84 83 49 NA 

2-oxabicyclo[2.2.2]octan-6-ol, 1,3,3-
trimethyl 

19.095 71 43 126 56 

Column bleed 19.316 221 222 73 14 

Butanoic acid, 2-methyl-, ethyl ester 19.611 57 102 41 85 

Acetyl valeryl 19.628 57 43 41 85 

Butanoic acid 19.64 60 73 42 41 

Butanoic acid, 3-methyl-, ethyl ester 19.748 88 85 57 60 

Propanoic acid, 2,2-dimethyl 19.811 57 41 29 39 

Propane, 1-chloro-2,2-dimethyl 20.244 57 91 NA 1 

Propanoic acid, 2-methylpropyl ester 20.306 57 56 29 87 

Ethylbenzene 20.344 91 106 77 51 

Xylene 20.696 91 106 105 77 

1-butanol, 3-methyl-, acetate 20.732 43 70 55 41 

3-furaldehyde 20.822 96 95 39 38 

Butanoic acid, 2-methyl-3-oxo-, methyl 
ester 

20.829 43 88 55 87 

Acetic acid, diethyl 20.854 43 32 88 87 

2-hexenal, (E) 21.055 41 55 69 83 

4-heptanone 21.194 71 43 114 41 

1-hexanol 21.335 56 55 41 43 

Butanoic acid, propyl ester 21.453 71 43 89 41 

Butanoic acid, 3-methyl 21.484 60 43 41 87 

Styrene 21.798 104 103 78 77 

Xylene 21.802 91 106 105 77 

Butanoic acid, 2-methyl 21.805 74 57 41 87 

2-heptanone 22 43 58 71 59 

Heptanal 22.313 70 44 43 41 

3-methylenecycloheptene 22.568 32 108 93 77 

2-acetoxy-3-butanone 22.663 43 87 130 45 

Pyrazine, 2,5-dimethyl 22.674 108 42 39 40 

N,N-dimethylacetamide 22.914 44 87 43 72 

Cyclohexanone 23.11 55 42 98 69 

Butanoic acid, 2-methyl-, propyl ester 23.293 103 57 85 41 

Column bleed 23.392 18 281 283 249 

Column bleed 2 23.395 281 282 265 207 

Butanoic acid, 3-methyl-, propyl ester 23.414 85 103 43 57 

Methional 23.57 48 104 76 47 

1-ethyl-5-methylcyclopentene 23.97 81 110 67 79 
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3-heptyne, 5-methyl 23.988 81 110 67 79 

3-hepten-2-one 24.105 32 55 97 43 

1-butanol, 3-methyl-, propanoate 24.114 57 70 55 75 

Hexanal, 2-ethyl 24.218 72 57 41 43 

Decane 24.245 57 43 71 41 

Heptane, 2,2,4,6,6-pentamethyl 24.325 57 56 41 71 

Ethanone, 1-cyclopropyl-2-(4-
pyridinyl) 

24.477 32 93 41 69 

Bicyclo[3.1.1]heptane, 6,6-dimethyl-2-
methylene-, (1S) 

24.601 93 69 41 91 

Benzene, (1-butylhexyl) 24.654 91 105 147 17 

Furan, 2-pentyl 24.781 81 82 138 53 

2-heptanal, (Z) 25.001 41 57 43 83 

Hexanoic acid, ethyl ester 25.034 88 43 99 29 

1-hepten-3-one 25.185 32 17 70 55 

1-decen-3-one 25.206 70 55 43 97 

2,3-octanedione 25.227 43 71 99 41 

1-octen-3-ol 25.269 57 72 67 54 

Dimethyl trisulfide 25.369 126 79 57 45 

3-heptanone, 6-methyl 25.414 43 57 72 99 

3-octanone 25.414 57 43 72 99 

5-hepten-2-one, 6-methyl 25.6 43 108 41 69 

Benzaldehyde 25.711 106 105 77 51 

2,2,4,4-tetramethyloctane 25.824 57 99 41 43 

Pyrazine, trimethyl 25.942 122 42 81 39 

Octanal 26.062 43 84 41 44 

D-limonene 26.241 68 93 67 79 

Isoamyl nitrite 26.274 43 41 60 57 

Alkane(decane, 2,4,6-trimethyl-) 26.392 43 71 57 85 

Benzene, (1-propylheptyl) 26.398 91 133 218 175 

Pantolactone 26.409 71 68 57 43 

Hexanoic acid 26.468 60 73 41 43 

2-propanol, 1,1,1-trichloro-2-methyl- 26.515 59 43 16 127 

Decane, 2,6,6-trimethyl 26.526 57 71 43 70 

Dodecane, 2,6,11-trimethyl 26.552 57 71 43 70 

Pentane, 2,2,3,3-tetramethyl 26.559 57 71 70 43 

2H-pyran-2-one, tetrahydro 26.685 41 56 100 28 

2,4-heptadienal, (E,E) 26.703 81 110 53 67 

Eucalyptol 26.758 43 81 71 84 

Cyclopentanone, 2,4,4-trimethyl 26.922 83 55 126 56 

Decane, 3,3,4-trimethyl 27.017 71 70 57 43 

1-hexanol, 2-ethyl 27.136 57 41 43 70 

Cyclohexanone, 2,2,6-trimethyl 27.686 82 69 140 56 

Octane, 2,3,6,7-tetramethyl 27.787 18 71 43 57 

5-Ethylcyclopent-1-
enecarboxaldehyde 

27.789 67 95 124 41 

3-Cyclohexene-1-carboxaldehyde, 1- 27.819 67 95 124 55 
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methyl 

Dodecane 27.893 43 71 57 85 

Phenol 28.046 94 66 65 39 

Furan, 2-hexyl 28.278 32 81 60 82 

Pyrazine, 3-ethyl-2,5-dimethyl 28.445 135 136 42 39 

2-octenal, (E) 28.609 41 70 55 82 

Benzeneacetaldehyde 28.668 91 32 120 92 

column 28.834 73 267 268 74 

3,5-octadien-2-one 29.02 95 81 43 124 

3-octanol, 3,7-dimethyl 29.152 73 55 69 70 

3-carene 29.386 93 41 91 71 

Nonanal 29.544 57 41 43 56 

Furan, 2-butyltetrahydro 29.859 18 71 41 55 

Acetic acid, 2-ethylhexyl ester 30.417 70 43 57 55 

2-heptanone, 6-methyl 30.886 71 95 43 110 

Dodecane 30.969 57 43 71 85 

2,6-nonadienal, (E,E) 31.716 41 69 70 85 

Dodecanoic acid, ethyl ester 31.917 88 41 55 43 

2-nonenal, (E) 31.971 55 43 70 41 

(+)-2-bornanone 32.187 95 81 108 152 

2-dodecylcyclohexanone 32.28 69 98 55 43 

Formic acid, 2-ethylhexyl ester 33.187 57 70 112 55 

2-chloro-6-fluorobenzonitrile 33.697 155 157 120 100 

Benzene, 1,3-bis(1,1-dimethylethyl) 33.731 175 57 190 176 

3-carene 33.823 93 91 121 41 

2,4-nonadienal, (E,E) 33.958 81 41 67 138 

Column bleed 34.072 73 281 221 32 

Column bleed 34.21 73 207 147 32 

2-cyclopenten-1-one, 4-acetyl-
2,3,4,5,5-pentamethyl 

34.287 152 137 109 123 

N-butyric acid 2-ethylhexyl ester 34.368 71 70 43 112 

Benzene, (1-pentylhexyl) 34.602 91 18 161 105 

Benzene, (1-butylheptyl) 34.901 91 147 175 105 

2-decenal, (E) 35.05 70 55 41 83 

Benzene, (1-propyloctyl) 35.602 91 133 189 232 

Cyclohexene, 1-methyl-3-(1-
methylethenyl)-, (±) 

35.847 121 93 95 136 

Pentanoic acid, 2-ethylhexyl ester 36.994 85 70 57 112 

y-terpinene 37.148 93 121 136 68 

Decanoic acid, ethyl ester 37.575 88 101 155 43 

Indole 38.538 117 90 89 63 

Column bleed 39.168 281 147 73 207 

Column bleed 39.209 207 28 281 17 

Benzene, (1-pentylheptyl) 40.695 91 161 246 281 

Presentation of compound names, retention times and the first 4 ions used by Metab for each 

compound present in the library used during the data analysis of the method development. Library 

built using AMDIS and NIST database.  



 

147 
 

Table 42: Library applied during the data analysis of the study. 

Name 
RT 

[min] 
1st ion 2nd ion 3rd ion 4th ion 

Ethanol 6.639 31 45 46 29 

2-propenal 7.097 56 55 27 26 

Propanal 7.219 58 29 28 27 

Acetone 7.373 43 58 42 15 

Isopropanol 7.579 45 43 41 39 

Carbon disulfide 7.799 76 44 78 38 

Acetonitrile 7.903 41 40 39 38 

Dicholormethane 8.193 84 49 86 51 

Cyclopentane 8.33 42 70 55 41 

Propanal, 2-methyl 9.015 43 41 72 39 

1-propanol 9.619 31 59 42 60 

Butanal 10.223 44 72 41 29 

2,3-butanedione 10.281 43 86 42 15 

2-butanone 10.55 43 72 29 57 

Ethyl acetate 10.593 43 45 70 61 

Tetrahydrofurane 11.16 42 41 72 71 

Formic acid 11.606 46 45 29 44 

Column bleed 11.829 147 148 73 66 

1-propanol, 2-methyl 11.995 43 41 42 33 

Butanal, 3-methyl 12.54 44 41 43 58 

Acetic acid 12.742 43 45 60 42 

Butanal, 2-methyl 12.831 57 41 58 29 

2-butenal, (E) 12.9 70 41 39 69 

3-buten-2-one, 3-methyl 13.281 41 43 84 69 

1-butanol 13.294 56 41 43 31 

Furan, 2-ethyl 13.497 81 96 53 39 

1-penten-3-one 13.858 55 84 27 29 

2-pentanone 13.936 43 86 41 71 

2-penten-1-ol, (Z) 13.991 57 29 67 43 

2,3-pentanedione 14.163 43 57 29 100 

Propanoic acid, ethyl ester 14.181 57 29 43 102 

Pentanal 14.203 44 41 58 29 

N-propyl acetate 14.36 43 61 73 42 

2-propanone, 1-hydroxy 14.411 43 31 74 29 

Propanoic acid, 2-methyl-, ethyl ester 15.986 43 71 41 29 

Acetoin 16.114 45 43 88 42 

1-butanol, 3-methyl-, formate 16.19 55 43 70 42 

Propanoic acid 16.215 74 45 73 28 

3-penten-2-one 16.343 69 41 43 39 

2-butenal, 2-methyl 16.422 84 55 41 69 

Pyridine 16.424 79 52 51 50 

1-pentanol 16.444 41 42 55 70 

Toluene 16.533 91 92 65 39 
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2-pentenal, (E) 17.101 55 84 83 41 

Column bleed 17.124 207 28 209 133 

Column bleed 17.152 207 191 209 208 

1-pentanol 17.411 42 55 41 70 

Butanoic acid, ethyl ester 17.688 71 43 88 41 

Propanoic acid, propyl ester 18.043 57 75 43 29 

Propanoic acid, 2-methyl 18.291 43 41 73 39 

Hexanal 18.369 44 41 56 43 

Furan, 2,3-dihydro-4-methyl 18.487 84 55 83 39 

5-isoxazolecarboxylic acid, 4,5-dihydro-5-
methyl-, methyl ester, (R) 

18.503 84 83 49 NA 

Cyclobutanone, 2,2,3-trimethyl 18.855 55 70 42 41 

Butanoic acid, 1-methylethyl ester 19.064 43 71 89 41 

2-oxabicyclo[2.2.2]octan-6-ol, 1,3,3-
trimethyl 

19.095 71 43 126 56 

Column bleed 19.198 221 73 222 103 

Column bleed 19.316 221 222 73 14 

2,3-butanediol 19.594 45 43 57 29 

Butanoic acid, 2-methyl-, ethyl ester 19.611 57 102 41 85 

Acetyl valeryl 19.628 57 43 41 85 

Butanoic acid 19.64 60 73 42 41 

Butanoic acid, 3-methyl-, ethyl ester 19.748 88 85 57 60 

Propanoic acid, 2,2-dimethyl 19.811 57 41 29 39 

Propane, 1-chloro-2,2-dimethyl 20.244 57 91 NA 1 

Propanoic acid, 2-methylpropyl ester 20.306 57 56 29 87 

Ethylbenzene 20.344 91 106 77 51 

Xylene 20.696 91 106 105 77 

1-butanol, 3-methyl-, acetate 20.732 43 70 55 41 

3-furaldehyde 20.822 96 95 39 38 

Butanoic acid, 2-methyl-3-oxo-, methyl 
ester 

20.829 43 88 55 87 

Acetic acid, diethyl 20.854 43 32 88 87 

2-hexenal, (E) 21.055 41 55 69 83 

2-pentanone, 4-hydroxy-4-methyl 21.159 43 59 32 58 

4-heptanone 21.194 71 43 114 41 

Isocrotonic acid 21.228 86 39 41 68 

1-hexanol 21.335 56 55 41 43 

Butanoic acid, propyl ester 21.453 71 43 89 41 

Butanoic acid, 3-methyl 21.484 60 43 41 87 

Styrene 21.798 104 103 78 77 

Xylene 21.802 91 106 105 77 

Butanoic acid, 2-methyl 21.805 74 57 41 87 

2-heptanone 22 43 58 71 59 

Cyclohexanol 22.267 57 82 54 NA 

Heptanal 22.313 70 44 43 41 

3-methylenecycloheptene 22.568 32 108 93 77 

2-acetoxy-3-butanone 22.663 43 87 130 45 



 

149 
 

Pyrazine, 2,5-dimethyl 22.674 108 42 39 40 

Pentanoic acid 22.891 60 73 41 45 

N,N-dimethylacetamide 22.914 44 87 43 72 

Cyclohexanone 23.11 55 42 98 69 

Decane, 2,6,7-trimethyl 23.142 43 71 70 57 

Column bleed 23.242 281 282 283 133 

Butanoic acid, 2-methyl-, propyl ester 23.293 103 57 85 41 

Column bleed 23.392 18 281 283 249 

Column bleed 2 23.395 281 282 265 207 

Butanoic acid, 3-methyl-, propyl ester 23.414 85 103 43 57 

Butanoic acid, 2-methylpropyl ester 23.498 71 56 43 57 

2-heptenal, (E) 23.512 55 83 57 56 

Methional 23.57 48 104 76 47 

1-ethyl-5-methylcyclopentene 23.97 81 110 67 79 

3-heptyne, 5-methyl 23.988 81 110 67 79 

3-hepten-2-one 24.105 32 55 97 43 

1-butanol, 3-methyl-, propanoate 24.114 57 70 55 75 

Hexanal, 2-ethyl 24.218 72 57 41 43 

Decane 24.245 57 43 71 41 

Heptane, 2,2,4,6,6-pentamethyl 24.325 57 56 41 71 

Ethanone, 1-cyclopropyl-2-(4-pyridinyl) 24.477 32 93 41 69 

Nonane, 2,6-dimethyl 24.544 71 43 57 70 

Bicyclo[3.1.1]heptane, 6,6-dimethyl-2-
methylene-, (1S) 

24.601 93 69 41 91 

Benzene, (1-butylhexyl) 24.654 91 105 147 17 

Furan, 2-pentyl 24.781 81 82 138 53 

Heptane, 2,2,4,6,6-pentamethyl 24.927 57 56 41 85 

2-heptanal, (Z) 25.001 41 57 43 83 

Hexanoic acid, ethyl ester 25.034 88 43 99 29 

1-hepten-3-one 25.185 32 17 70 55 

1-decen-3-one 25.206 70 55 43 97 

2,3-octanedione 25.227 43 71 99 41 

1-octen-3-ol 25.269 57 72 67 54 

Pentanoic acid, 4-methyl 25.313 57 73 74 55 

Dimethyl trisulfide 25.369 126 79 57 45 

3-heptanone, 6-methyl 25.414 43 57 72 99 

3-octanone 25.414 57 43 72 99 

Butyrolactone 25.481 42 28 41 56 

5-hepten-2-one, 6-methyl 25.6 43 108 41 69 

Benzaldehyde 25.711 106 105 77 51 

Octane, 6-ethyl-2-methyl 25.82 57 71 43 85 

2,2,4,4-tetramethyloctane 25.824 57 99 41 43 

Decane, 3-methyl 25.84 57 71 85 43 

Pyrazine, trimethyl 25.942 122 42 81 39 

Dodecane, 2,6,10-trimethyl 25.949 57 71 43 70 

Octanal 26.062 43 84 41 44 
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2-propenoic acid, 4-methylpentyl ester 26.2 32 55 69 18 

D-limonene 26.241 68 93 67 79 

Isoamyl nitrite 26.274 43 41 60 57 

Alkane(decane, 2,4,6-trimethyl-) 26.392 43 71 57 85 

Pentane, 2,2,3,3-tetramethyl 26.392 57 71 70 43 

Benzene, (1-propylheptyl) 26.398 91 133 218 175 

Dodecane, 2,7,10-trimethyl 26.399 57 71 43 41 

Decane, 2,6,6-trimethyl 26.408 57 71 70 56 

Pantolactone 26.409 71 68 57 43 

Hexanoic acid 26.468 60 73 41 43 

2-propanol, 1,1,1-trichloro-2-methyl- 26.515 59 43 16 127 

Decane, 2,6,6-trimethyl 26.526 57 71 43 70 

Pentane, 3-ethyl-2,2-dimethyl 26.537 57 56 43 41 

Decane, 2,2-dimethyl 26.539 57 56 71 43 

Dodecane, 2,6,11-trimethyl 26.552 57 71 43 70 

Pentane, 2,2,3,3-tetramethyl 26.559 57 71 70 43 

1,4-hexadiene, 3-ethyl 26.561 81 71 53 110 

Undecane, 6,6-dimethyl 26.614 57 56 32 71 

2H-pyran-2-one, tetrahydro 26.685 41 56 100 28 

2,4-heptadienal, (E,E) 26.703 81 110 53 67 

Eucalyptol 26.758 43 81 71 84 

Cyclopentanone, 2,4,4-trimethyl 26.922 83 55 126 56 

Decane, 3,3,4-trimethyl 27.017 71 70 57 43 

Butanoic acid, 3-methylbutyl ester 27.067 70 71 43 55 

1-hexanol, 2-ethyl 27.136 57 41 43 70 

2,2,4,4-tetramethyloctane 27.415 57 55 41 99 

2,2,4,4-tetramethyloctane 27.426 57 55 41 43 

Cyclohexanone, 2,2,6-trimethyl 27.686 82 69 140 56 

Nonane, 4,5-dimethyl 27.753 71 57 43 85 

Octane, 2,3,6,7-tetramethyl 27.787 18 71 43 57 

5-ethylcyclopent-1-enecarboxaldehyde 27.789 67 95 124 41 

3-cyclohexene-1-carboxaldehyde, 1-
methyl 

27.819 67 95 124 55 

Dodecane 27.893 43 71 57 85 

Phenol 28.046 94 66 65 39 

Furan, 2-hexyl 28.143 81 82 53 152 

Decane, 3,3,8-trimethyl 28.44 57 71 70 41 

Pyrazine, 3-ethyl-2,5-dimethyl 28.445 135 136 42 39 

2-octenal, (E) 28.609 41 70 55 82 

Benzeneacetaldehyde 28.668 91 32 120 92 

Column bleed 28.834 73 267 268 74 

Formic acid, 2-methylbutyl ester 29.008 57 70 55 41 

3,5-octadien-2-one 29.02 95 81 43 124 

3-octanol, 3,7-dimethyl 29.152 73 55 69 70 

3-carene 29.386 93 41 91 71 

Nonanal 29.544 57 41 43 56 
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(E)-4-oxohex-2-enal 29.695 83 55 27 84 

Furan, 2-butyltetrahydro 29.859 18 71 41 55 

Undecane, 3-methyl 29.963 57 85 71 56 

1-nonen-4-ol 30.291 55 43 83 41 

Acetic acid, 2-ethylhexyl ester 30.417 70 43 57 55 

4-octene, 2,3,7-trimethyl-, [S-(E)] 30.466 69 83 55 111 

3,4-dimethylcyclohexanol 30.734 71 43 95 41 

2-heptanone, 6-methyl 30.886 71 95 43 110 

Dodecane 30.969 57 43 71 85 

2,5-pyrrolidinedione, 1-methyl 31.328 28 113 56 27 

1-octanol, 3,7-dimethyl 31.51 70 41 69 71 

Undecane, 2-methyl 31.702 71 57 85 43 

2,6-nonadienal, (E,E) 31.716 41 69 70 85 

1-nonene, 4,6,8-trimethyl 31.865 69 71 85 83 

Dodecanoic acid, ethyl ester 31.917 88 41 55 43 

2-nonenal, (E) 31.971 55 43 70 41 

(+)-2-bornanone 32.187 95 81 108 152 

2-dodecylcyclohexanone 32.28 69 98 55 43 

Heptane, 4-propyl 32.602 32 57 71 41 

Decanal 32.608 55 57 43 41 

Furan, 2-butyltetrahydro 32.929 71 55 43 41 

11-tricosene 33.034 55 57 69 97 

Formic acid, 2-ethylhexyl ester 33.187 57 70 112 55 

2-chloro-6-fluorobenzonitrile 33.697 155 157 120 100 

Benzene, 1,3-bis(1,1-dimethylethyl) 33.731 175 57 190 176 

3-carene 33.823 93 91 121 41 

2,4-nonadienal, (E,E) 33.958 81 41 67 138 

Column bleed 34.072 73 281 221 32 

Column bleed 34.21 73 207 147 32 

2-cyclopenten-1-one, 4-acetyl-2,3,4,5,5-
pentamethyl 

34.287 152 137 109 123 

N-butyric acid 2-ethylhexyl ester 34.368 71 70 43 112 

Benzene, (1-pentylhexyl) 34.602 91 18 161 105 

Benzene, (1-butylheptyl) 34.901 91 147 175 105 

2-decenal, (E) 35.05 70 55 41 83 

Cyclopentane, 1,3-dimethyl 35.075 70 41 55 43 

2-undecanone 35.279 58 43 71 59 

Benzene, (1-propyloctyl) 35.602 91 133 189 232 

Cyclohexene, 1-methyl-3-(1-
methylethenyl)-, (±) 

35.847 121 93 95 136 

1H-pyrrole-2,5-dione, 3-ethenyl-4-methyl 36.682 66 137 65 39 

2,4-decadienal 36.823 81 18 41 67 

Pentanoic acid, 2-ethylhexyl ester 36.994 85 70 57 112 

y-terpinene 37.148 93 121 136 68 

3-nonen-5-yne, 4-ethyl 37.293 121 77 91 94 

Decanoic acid, ethyl ester 37.575 88 101 155 43 
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2-undecenal 37.829 55 41 57 70 

Indole 38.538 117 90 89 63 

Column bleed 39.168 281 147 73 207 

Column bleed 39.209 207 28 281 17 

2-cyclohexen-1-ol, 2,6,6-trimethyl 39.235 84 55 43 207 

Benzene, (1-pentylheptyl) 40.695 91 161 246 281 

Dodecanoic acid, ethyl ester 44.156 88 101 43 41 

Dodecanoic acid, propyl ester 48.712 18 61 43 60 

Presentation of compound names, retention times and the first 4 ions used by Metab for each 

compound present in the library used during the data analysis of the Dove study results. Library built 

using AMDIS and NIST database. 
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Appendix E.  

Patient information sheet 
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Appendix F.  

Sampling SOP for hospital staff 
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Statistical modelling performed by an 

external statistician 
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An external statistician developed and applied a script to perform a backwards stepwise 

logistic regression. This appendix presents the method applied and results obtained. 

Method 

Using Metab data, with missing values replaced by 1, Mrs Greenwood developed a Stata 

script to perform a backwards stepwise logistic regression. Features were selected among 

the 50 VOCs and 7 factors (i.e. the age at sampling, food type, hospital, gestation duration, 

birth weight, delivery type and sex), and the same model was applied at each day prior to 

diagnosis and on all days grouped together. 

Results 

VOCs used by the model were 2-butanone (10.55 min), 2-heptanone (22.00 min), 2-Z-

heptanal (25.00 min), 1-decen-3-one (25.21 min), octanal (26.06 min) and carbon 

disulphide (7.8 min). Moreover, the gestation duration and the gender were also 

implemented. 

The area under the receiver operating characteristic (ROC) curve was calculated at each day 

prior to diagnosis and when all days were considered (Table 43). 

Table 43: Results of the logistic regression model. 

Day prior to diagnosis All 1 2 3 4 5 6 

N of observation 251 51 31 62 33 47 27 

Area under ROC curve 0.832 0.858 0.793 0.792 0.826 0.849 0.895 

Table presenting the number of samples available at each day prior to diagnosis and with all days 

grouped. Furthermore, the area under the ROC curve obtained using a backwards stepwise logistic 

regression applied on the data at each time point was presented. 
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