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Abstract

Consider the space of sequences of k letters ordered lexicographically. We study the set M(α) of

all maximal sequences for which the asymptotic proportions α of the letters are prescribed, where

a sequence is said to be maximal if it is at least as great as all of its tails. The infimum of M(α)

is called the α-infimax sequence, or the α-minimax sequence if the infimum is a minimum. We

give an algorithm which yields all infimax sequences, and show that the infimax is not a minimax

if and only if it is the α-infimax for every α in a simplex of dimension 1 or greater. These results

have applications to the theory of rotation sets of beta-shifts and torus homeomorphisms.

1. Introduction

Symbolic dynamics is a fundamental tool in dynamical systems theory, and the interaction

between the dynamics of the shift map and an order structure is frequently important. For

example, kneading theory [11] describes the dynamics of a unimodal map as the set of sequences

which are less than or equal to the kneading sequence of the map in the unimodal order;

while in Parry’s work [22] on beta-shifts it is the relationship between the shift map and the

lexicographic order which plays a central rôle. In such systems, a particular orbit is present

if the maximum (or more generally supremum) of the orbit is less than or equal to a given

sequence: hence, in order to decide whether or not a given dynamical feature is present, the key

question is the size of the minimum, or infimum, of the set of maximal sequences which exhibit

the feature. It is for this reason that such minimax and infimax sequences are important.

This paper provides a description of minimax and infimax sequences in the lexicographic

order, where the relevant dynamical feature – closely related to rotation vectors – is the

asymptotic proportions of the letters. In the remainder of the introduction we will first give an

informal description of the main results, and then expand on their dynamical significance.

Given k ≥ 2, let Σ = {1, 2, . . . , k}N be the space of sequences in the letters 1, 2, . . . , k, ordered

lexicographically, and let σ : Σ→ Σ be the shift map. A sequence w ∈ Σ is said to be maximal

if σr(w) ≤ w for all r ≥ 0.

We are interested in maximal sequences for which the asymptotic proportions of the letters

are given by some α ∈ ∆, where ∆ is the set of vectors in Rk with non-negative entries summing
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to 1. Denote by M(α) the subset of Σ consisting of maximal sequences w with the property

that, for each i with 1 ≤ i ≤ k, the asymptotic proportion of the letter i in w is given by αi.

Let I(α) denote the infimum of the set M(α), the α-infimax sequence. This infimum, while

necessarily maximal, need not in general be an element of M(α): when it is, it is called the

α-minimax sequence.

The main results of the paper can be summarised as follows:

Theorem 22. (Description of Infimaxes) There is an algorithm for computing I(α)

(to an arbitrary number of letters) in terms of a sequence of substitutions. This sequence of

substitutions is determined by the itinerary of α under a multi-dimensional continued fraction

map K : ∆→ ∆.

Theorem 24. (Infimax or Minimax) The infimum I(α) ofM(α) is a minimum, i.e. is an

element of M(α), if and only if α is the only point of ∆ with its itinerary.

We say that α is regular if it is the only point of ∆ with its itinerary, and that it is exceptional

otherwise. Whether α is regular or exceptional appears to depend on the growth rate of the

itinerary of α in a delicate way: our final result gives a flavour of this dependence.

Theorem 27. (Regular or exceptional) If the itinerary ofα grows at most quadratically

then α is regular; on the other hand, if it grows sufficiently fast then α is exceptional.

We now discuss the dynamical implications of these results in more detail. Let X be a

shift-invariant subset of Σ. The vector ρ(w) ∈ ∆ of asymptotic proportions of the letters in an

element w of X, if well-defined, is called the rotation vector of w, and the collection of all of

the rotation vectors of elements of X is called the rotation set ρ(X) of X. This terminology is

by analogy with manifold dynamics: in fact, in the authors’ forthcoming paper “New rotation

sets in a family of torus homeomorphisms”, these symbolic rotation vectors are related directly

to rotation vectors for torus homeomorphisms, and the techniques developed in this paper

make it possible to provide a detailed description of all of the rotation sets which arise in a

parameterised family of torus homeomorphisms.

When X is a subshift of finite type, a theorem of Ziemian [26] states that ρ(X) is a convex

set with finitely many extreme points, given by the rotation vectors of the minimal loops of

the transition diagram. While this result is useful, subshifts of finite type are rather special,

and are often ill-suited to understand dynamical behaviour in parameterised families, since

Markov partitions can change dramatically under small changes in the map. Here we consider

a broader class: in analogy with kneading theory and beta-shifts, we consider subshifts of the

form

X(v) = {w ∈ Σ : σr(w) ≤ v for all r ≥ 0},

where v ∈ Σ. In fact, since the supremum of any shift-invariant set is a maximal sequence,

and since X(v) = X(supX(v)), it suffices to consider the case where v is maximal, which we

henceforth assume.
Now if there is some w ∈M(α) with w ≤ v then it is clear that α ∈ ρ(X(v)), since if w ≤ v

and w is maximal than w ∈ X(v). Recalling that I(α) denotes the infimum of all of the
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w ∈M(α), it follows that

v > I(α) =⇒ α ∈ ρ(X(v)).

Similarly, it can be shown (see Lemma 19 below) that if w is any (not necessarily maximal)

element of Σ with ρ(w) = α, then the supremum of the orbit of w is at least I(α). Therefore

v < I(α) =⇒ α 6∈ ρ(X(v)).

Whether or not α ∈ ρ(X(v)) when v = I(α) depends on whether or not I(α) has rotation

vector α: that is, on whether it is an α-minimax, or only an α-infimax. Therefore the results

of this paper make it possible to determine whether or not α ∈ ρ(X(v)) by comparing v

with the single sequence I(α). Moreover, since a consequence of the above discussion is that

ρ(X(v)) can only change as v passes through an element of the set I = {I(α) : α ∈ ∆} of

infimaxes, understanding how the structure of ρ(X(v)) changes as v increases is closely related

to understanding the structure of the set of initial segments of I.

It is well known [14, 25] that when k = 2, all of the infimaxes are minimaxes and are the

Sturmian sequences studied by Morse and Hedlund [21, 16]. Thus the infimax sequences with

k ≥ 3 letters can be seen as extensions of the two letter Sturmians. The construction of infimax

sequences described here is reminiscent of the construction of Sturmian sequences through their

relationship with continued fraction expansions. First there is a division-remainder procedure,

similar to the standard Euclidean algorithm, which produces a sequence n of non-negative

integers, analogous to the partial quotients of a continued fraction expansion (this sequence

is the itinerary of the orbit of α under K : ∆→ ∆ with respect to a certain partition of ∆,

just as the sequence of partial quotients of the continued fraction expansion of α ∈ (0, 1) is the

itinerary of α under the Gauss map). Second, this itinerary is used to construct a sequence

of substitutions which are applied successively to the single letter k, producing a sequence of

words of increasing lengths, each of which is an initial subword of the infimax. If α is a rational

vector then the minimax sequence is periodic, and is determined after finitely many steps of

the algorithm.

Since their introduction in 1940, Sturmian sequences have been studied extensively [1]. The

wide range of fascinating and deep properties which they exhibit has inspired attempts to find

classes of sequences in k > 2 symbols which share these properties. It was quickly discovered

that no single class generalizes all of the key properties of Sturmians.

The infimax sequences defined here generalize the infimax property of Sturmians to an

arbitrary number of symbols, and it is therefore natural to ask: what other properties do they

share with Sturmians, and how do they relate to the other generalizations which have been

defined?
Some properties are easy to determine. Infimax sequences in the case k > 2 are very far

from being balanced and, in general, are not of Arnoux-Rauzy type [4], and do not provide

good rational approximations. In addition, their rate of convergence to their digit frequency

vector can be much slower than that of rigid rotation on a torus (this is shown in the authors’

forthcoming paper “New rotation sets in a family of torus homeomorphisms”), and their orbit

closures are not always uniquely ergodic [8].

Other more subtle properties merit further investigation. Jenkinson [18, 17] has shown that

the measures associated with Sturmian sequences minimize the dispersion amongst ergodic
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invariant measures of x 7→ 2x mod 1 having the same digit frequency. Thus, for example,

treating binary words as base 2 expansions of points of [0, 1], amongst binary words of length q

which contain the symbol 1 exactly p times, the Sturmian word has the smallest geometric

mean and the smallest standard deviation about its arithmetic mean p/q. The analogs of this

beautiful result for infimaxes are currently being studied.

A fundamental property of Sturmians is that they code the orbits of a rigid rotation of

the circle. This is sometimes expressed by saying that rigid circle rotation is their geometric

model. Rigid rotation on a circle can be viewed as an interval exchange map on two intervals,

and interval exchanges on more intervals occur as geometric models for known classes of

sequences with k > 2 symbols [23, 2, 12, 19]. Thus another natural question is whether or

not k-symbol infimaxes are always codings of interval exchange maps on k intervals. Some of

them are, but there are straightforward counter-examples (such as infimaxes with itinerary

11110): the issue is therefore to distinguish the two cases. Using the terminology and results of

Ferenczi and Zamboni [13], this is closely related to the problem of determining which rational

frequency vectors give rise to clustering Burrows-Wheeler transforms. As we discuss at the end

of Section 2, the infimax sequences code the attractors in the family of interval translation

maps on k intervals studied by Bruin and Troubetzkoy [7, 8].

Another natural question is the relationship of the multi-dimensional continued fraction

algorithm used in this paper with existing algorithms. As with multi-symbol generalizations of

Sturmians, no single multi-dimensional continued fraction algorithm yields all of the properties

enjoyed in the classical one-dimensional case [24]. The purpose of the algorithm defined here is

to generate infimax sequences and as such it contributes little to the understanding of rational

approximation in higher dimensions. However, the existence of exceptional sets on which all

points have the same expansion make it an interesting algorithm in its own right, and questions

such as its ergodicity merit further study.

Section 2 contains basic definitions and precise statements of the theorems described above.

Some preliminary results are presented in Section 3, and a finite version of the problem is then

treated in Section 4: given non-negative integers a1, . . . , ak, what is the smallest maximal word

which contains exactly ai occurrences of each letter i? The solution of this problem is required

later in the paper, and also introduces the main ideas in a more straightforward context.

In Section 5 we prove the validity of the algorithm for determining infimax sequences,

before finishing, in Section 6, by considering the conditions under which infimax sequences

are minimaxes.

2. Definitions, notation, and statement of results

Let k ≥ 2 be the number of letters in our alphabet A = {1, . . . , k}. We fix k throughout, and

suppress the dependence of objects on it, except in Remark 9 and in the final part of the proof

of Theorem 24.

Denote by Σ the space AN of sequences with entries in A: we consider 0 to be a natural

number, so that elements w of Σ are indexed as w = (wr)r≥0. Order Σ lexicographically, and

endow it with the product topology (where A is discrete).
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Similarly, denote by A∗ the set of non-trivial finite words over the alphabet A, ordered

lexicographically with the convention that any proper initial subword of W ∈ A∗ is greater

than W (this convention is simply to ensure that A∗ is totally ordered, and does not affect any

of the results of the paper). Given W ∈ A∗ and i ∈ A, write |W | ≥ 1 for the length of W , and

|W |i ≥ 0 for the number of occurences of the letter i in W .

If V,W ∈ A∗, denote by VW the concatenation of V and W , by W = WWWW . . . the

element of Σ given by infinite repetition of W , and by VW the element VWWWW . . . of Σ.

An element of Σ of the form W is said to be periodic. Given W ∈ A∗ and n ≥ 0, denote

Wn = WW . . .W the n-fold repetition of W , an element of A∗ provided that n > 0: if n = 0

then Wn denotes the empty word, which will be used only when concatenated with elements

of A∗.
If w ∈ Σ and r ≥ 1 is an integer, write w(r) = w0w1 . . . wr−1, the element of A∗ formed by

the first r letters of w.
The shift map σ : Σ→ Σ is defined by σ(w)r = wr+1. An element w of Σ is said to be

maximal if it is the maximum element of its σ-orbit: that is, if σr(w) ≤ w for all r ≥ 0. We

write M⊂ Σ for the set of maximal elements. Observe that M is a closed subset of Σ, for if

w ∈ Σ is not maximal then there is some r ≥ 0 with σr(w) > w, and it follows that σr(w′) > w′

for all w′ ∈ Σ sufficiently close to w.

Given W ∈ A∗, write ρ(W ) ∈ Qk for the vector whose ith component is the proportion of

the letter i in W : that is, ρ(W )i = |W |i/|W |. Let

∆ =
{
α ∈ Rk≥0 : αk > 0,

∑
αi = 1

}
,

the simplex which contains these rational vectors, with the face αk = 0 removed, equipped with

the maximum metric d∞. Removing the face αk = 0 makes the statements of the results of the

paper cleaner, and clearly if αk = 0 then the problem reduces to one with a smaller value of k.

Given α ∈ ∆, denote by R(α) the set of elements of Σ with asymptotic proportions of

letters α:

R(α) =
{
w ∈ Σ : ρ

(
w(r)

)
→ α as r →∞

}
⊂ Σ.

Remark 1. R(α) is not closed in Σ. For example, when k = 2 the sequence 2r 21 is

an element of R(1/2, 1/2) for all r ≥ 0, but 2r 21→ 2 6∈ R(1/2, 1/2) as r →∞. This is a

consequence of the more general observation that the asymptotic proportions of elements of Σ,

which depend on their tails, do not interact well with the order and topology on Σ, which are

defined using the heads of its elements.

We define also the set of maximal sequences with proportions α,

M(α) =M∩R(α).

Following on from Remark 1, observe that it is easy to construct elements of M(α). Provided

that α 6= (0, 0, . . . , 0, 1) then there are elements of R(α) for which there is an upper bound N

on the number of consecutive occurences of the letter k, and prepending kN+1 to such an

element yields an element ofM(α). On the other hand, if α = (0, 0, . . . , 0, 1) then k ∈M(α).
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In particular, since every non-empty subset of Σ has an infimum, we can define the α-infimax

sequence I(α) by

I(α) = infM(α).

I(α) is necessarily an element of M, but need not be an element of R(α), which is not

closed in Σ. In the case that it is (and so is an element of M(α)), we call it the α-minimax
sequence.

Having introduced the basic objects of study, we now turn to the algorithm for constructing

I(α), which is given in terms of the itinerary of α under a certain dynamical systemK : ∆→ ∆,

defined piecewise on the subsets

∆n =

{
α ∈ ∆ :

⌊
α1

αk

⌋
= n

}
⊂ ∆ (n ∈ N),

where bxc denotes the integer part of x. First, let Kn : ∆n → ∆ be given by

Kn(α) =

(
α2

1− α1
,

α3

1− α1
, . . . ,

αk−1

1− α1
,
α1 − nαk

1− α1
,

(n+ 1)αk − α1

1− α1

)
. (2.1)

Each Kn is a projectivity: an embedding induced on a subset of Rk by the action of an element

of GLk+1(R) on projective coordinates in RPk. As such, it sends convex sets to convex sets.

Its inverse K−1
n : ∆→ ∆n is given by

K−1
n (α) =

(
(n+ 1)αk−1 + nαk

D
,
α1

D
,
α2

D
, . . . ,

αk−2

D
,
αk−1 + αk

D

)
, (2.2)

where D = (n+ 1)αk−1 + nαk + 1.

Let J : ∆→ N be given by J(α) = bα1/αkc, so that α ∈ ∆J(α). Then define K : ∆→ ∆ by

K(α) = KJ(α)(α),

which is a multi-dimensional continued fraction map [24]. Associated to K is an itinerary map

Φ: ∆→ NN defined by

Φ(α)r = J(Kr(α)) (r ∈ N).

We shall see that the infimax sequence I(α) is obtained from a sequence of substitutions

associated with Φ(α). Recall that a substitution on A is a map Λ: A → A∗. Overloading

notation, this induces maps Λ: A∗ → A∗ and Λ: Σ→ Σ which replace each letter of the input

sequence with its image: Λ(w0w1w2 . . .) = Λ(w0)Λ(w1)Λ(w2) . . .. Define substitutions Λn for

each n ∈ N by

Λn :

 i 7→ (i+ 1) if 1 ≤ i ≤ k − 2,
(k − 1) 7→ k 1n+1, and
k 7→ k 1n.

(2.3)

Observe that the expression (2.2) for K−1
n (α) results precisely from translating (2.3) in such

a way as to give the proportions of each letter in Λn(w) in terms of the proportions in w, that

is,

w ∈ R(α) ⇐⇒ Λn(w) ∈ R(K−1
n (α)).
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Given n ∈ NN, define substitutions Λn,r for each r ∈ N by

Λn,r = Λn0 ◦ Λn1 ◦ · · · ◦ Λnr .

Then define a map S : NN → Σ by

S(n) = lim
r→∞

Λn,r

(
k
)

= lim
r→∞

Λn,r(k),

where in the first definition Λn,r is regarded as a map Σ→ Σ, and in the second as a map

A∗ → A∗. The limit exists since Λnr+1(k) begins with the letter k, and hence Λn,r(k) is an

initial subword of Λn,r+1(k) for all r.

The first main theorem of the paper states that, for every α ∈ ∆, the corresponding infimax

sequence is given by S(Φ(α)).

Theorem 22. Let α ∈ ∆. Then I(α) = S(Φ(α)).

The question of whether or not the infimax sequence is a minimax (that is, of whether or

not an α-minimax exists) is answered by the following result:

Theorem 24. Let α ∈ ∆. Then

a) Φ−1(Φ(α)) ⊂ ∆ is a d-dimensional simplex for some d with 0 ≤ d ≤ k − 2.

b) I(α) is the minimum of M(α) if and only if Φ−1(Φ(α)) is a point.

There is therefore a fundamental distinction between regular elements α of ∆, for which

Φ−1(Φ(α)) is a point, and exceptional elements for which this is not the case. That both

possibilities occur is the content of the following theorem.

Theorem 27. Let α ∈ ∆ and n = Φ(α).

a) If there is some C such that 0 < nr ≤ Cr2 for all r, then α is regular.

b) If k ≥ 3 and nr ≥ 2r+2
∏r−1
i=0 (ni + 2) for all r ≥ 1, then Φ−1(Φ(α)) is a simplex of

dimension k − 2, so that α is exceptional.

Notice that if k = 2 then Theorem 24 a) gives that every α ∈ ∆ is regular.

The growth condition of Theorem 27 b) is designed for ease of proof and can be improved

without difficulty. Providing a precise characterisation of the set of regular α when k ≥ 3, by

contrast, appears to be a challenging problem.

The substitutions Λn which play a central rôle here appear in a different context in papers

of Bruin and Troubetzkoy [8] and Bruin [7] (dealing respectively with the case k = 3 and the

case k ≥ 3). These papers are concerned with a certain class of interval translation mappings

(which are defined similarly to interval exchange mappings except that the images of the

monotone pieces can overlap). The most interesting case is when the maps are of infinite

type, which means that the attractor is a Cantor set. An interval translation mapping with

k monotone pieces which is of infinite type can be renormalized infinitely often, with each

renormalization being described by a substitution on the space of k-symbol itineraries. The
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dynamics on the attractor is therefore given by the subshift generated by the sequence of

substitutions corresponding to the sequence of renormalizations.

It turns out that the substitutions arising from renormalization of k-piece interval translation

mappings in the class considered by Bruin and Troubetzkoy are exactly the substitutions Λn
of (2.3). Their results provide extensions of some of the results of this paper, particularly in

the case k = 3: see Remarks 25 b) and 29 a).

Cassaigne and Nicolas [10] use the family of limiting sequences obtained by Bruin and

Troubetskoy to illustrate techniques for calculating the factor complexity of sequences associ-

ated with s-adic constructions. In the language of this paper, they show that the factor com-

plexity function p(n) of infimax sequences in the case k = 3 satisfies p(n+ 1)− p(n) ∈ {2, 3}
for all n, excluding certain trivial cases.

3. Preliminaries

In this section we state some basic facts about the maps defined in Section 2. The proofs are

routine, and could be omitted on first reading. The crucial result for what follows is Corollary 6,

which asserts that the map S ◦ Φ is lower semi-continuous.

Lemma 2. Let n ∈ N. Then the substitution Λn : A∗ → A∗ is strictly order-preserving.

Similarly Λn : Σ→ Σ is strictly order-preserving, with Λn(M) ⊆M.

Proof. To show that Λn : A∗ → A∗ is strictly order-preserving, suppose that V,W ∈ A∗

with V < W . Then either W is a proper initial subword of V , in which case Λn(W ) is a proper

initial subword of Λn(V ), so that Λn(V ) < Λn(W ) as required; or there is some R ≥ 0 with

Vr = Wr for 0 ≤ r < R and VR < WR. If VR ≤ k − 2 then it is obvious that Λn(V ) < Λn(W ).

On the other hand, if VR = k − 1 and WR = k, then Λn(V ) = Λn(V0 . . . VR−1)k1n+1 . . ., and

Λn(W ) = Λn(V0 . . . VR−1)k1n . . .. If W has length R+ 1 then Λn(W ) is a proper initial subword

of Λn(V ), so that Λn(V ) < Λn(W ); while if W has length greater than R+ 1, then the letter

following Λn(V0 . . . VR−1)k1n in Λn(W ), being the first letter in the Λn-image of a letter, is

not 1, so again Λn(V ) < Λn(W ) as required.

The proof that Λn : Σ→ Σ is strictly order-preserving is similar but simpler, since there is

no longer any need to worry about the ends of the words.

To show that Λn(M) ⊆M, let w ∈M. Consider w0, the first, and hence largest, letter

in w. If w0 < k − 1 then Λn(wr) = wr + 1 for all r, and it is clear that Λn(w) ∈M. Assume

therefore that w0 ≥ k − 1, so that Λn(w) begins with the letter k. Suppose for a contradiction

that Λn(w) is not maximal, so that Λn(w) = V v for some V ∈ A∗ and v ∈ Σ with v > V v.

Since V0 = k we must have v0 = k. Since k can only occur as the first letter in the Λn-image

of a letter, it follows that w = Uu with Λn(U) = V and Λn(u) = v. Since w is maximal we

have u ≤ Uu, and since Λn is order-preserving we have v = Λn(u) ≤ Λn(Uu) = V v, which is

the required contradiction.

The following lemma is an immediate consequence of the definition (2.3) of the substitu-

tions Λn.
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Lemma 3. Let n0, n1, . . . , nk−2 be any natural numbers. Then Λn0 ◦ Λn1 ◦ · · · ◦ Λnk−2
(W )

has initial letter k for all W ∈ A∗.

Proof. If W0 = i < k, then (Λn(W ))0 = i+ 1 for all n ∈ N; while if W0 = k then

(Λn(W ))0 = k also.

Endow NN with the product topology, and order it reverse lexicographically: that is,

lexicographically with the convention that 0 > 1 > 2 > 3 > · · · . This convention is to ensure

that S : NN → Σ is order-preserving.

Lemma 4. S : NN → Σ is continuous and strictly order-preserving, with image contained

in M.

Proof. Let n ∈ NN.

To show that S(n) ∈M, observe that Λn,r

(
k
)
∈M for each r by Lemma 2. The result

follows since M is closed in Σ.
To show that S is continuous at n, observe that since Λn(k) = k1n, the word Ln,r := Λn,r(k)

has length at least 1 +
∑r
s=0 ns. Therefore if m ∈ NN satisfies m(r+1) = n(r+1), then S(m) and

S(n) agree to at least 1 +
∑r
s=0 ns letters. This establishes that S is continuous at n provided

that ns 6= 0 for arbitrarily large s.

To show continuity at n in the case where n = n0 . . . nr−10 for some r ≥ 0, observe that, for

R ≥ k − 1,

ΛR0 (k1) = ΛR−1
0 (k2) = · · · = ΛR−k+2

0 (k (k − 1)) = ΛR−k+1
0 (k k 1),

and, repeating the argument, ΛR0 (k1) has initial subword k1+bR/(k−1)c. Now if m 6= n is very

close to n, then m = n0 . . . nr−1 0Rmr+R . . ., where R is very large and mr+R > 0. It follows

that

Lm,r+R = Λn,r−1(ΛR0 (k1 . . .)) = Λn,r−1(k1+bR/(k−1)c . . .)

agrees with S(n) = Λn,r−1

(
k
)

to at least 1 + bR/(k − 1)c letters, establishing continuity at n

as required.

To show that S is strictly order-preserving, let m ∈ NN with m < n, so that there is some

r ∈ N with m(r) = n(r) but mr > nr (since NN is ordered reverse lexicographically). Then

Λn,r−1(Λnr (k`)) is an initial subword of S(n) for some letter ` ∈ A, while Λn,r−1(Λmr (k)) is

an initial subword of S(m). Now Λmr
(k) = k1mr < k1nrΛnr

(`) = Λnr
(k`) since mr > nr, so

that S(m) < S(n) by Lemma 2 as required.

Using the definitions of the product topology on Σ and the lexicographical order on A∗, the

standard definition of lower semi-continuity for functions from a metric space X into Σ can be

phrased as follows: f : X → Σ is lower semi-continuous at x ∈ X if

∀R ∈ N, ∃ε > 0, d(x, y) < ε =⇒ f(y)(R) ≥ f(x)(R).
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Similarly, f : X → NN is lower semi-continuous at x if the same condition holds, bearing in

mind that the ≥ should be interpreted reverse lexicographically.

Although the itinerary map Φ: ∆→ NN is discontinuous at all preimages under K of the

discontinuity set of K, it is everywhere lower semi-continuous:

Lemma 5. Φ: ∆→ NN is lower semi-continuous.

Proof. We need to show that for all R ∈ N and all α ∈ ∆, there is an ε > 0 such that if

d∞(α,β) < ε then Φ(β)(R) ≥ Φ(α)(R). The proof is by induction on R.

For the case R = 0, observe that for all α ∈ ∆ there is some ε > 0 such that if d∞(α,β) < ε

then β ∈ ∆J(α) ∪∆J(α)−1, so that J(β) ≤ J(α) and hence Φ(β)(0) ≥ Φ(α)(0) as required.

If R > 0, then for each α ∈ ∆ there is, by the inductive hypothesis, some δ > 0 such that

if d∞(K(α),γ) < δ then Φ(γ)(R−1) ≥ Φ(K(α))(R−1). Then, by continuity of KJ(α), there is

some ε > 0 such that if d∞(α,β) < ε then either J(β) = J(α) and d∞(K(α),K(β)) < δ; or

J(β) < J(α). In either case, Φ(β)(R) ≥ Φ(α)(R) as required.

Combining Lemma 4 and Lemma 5 gives

Corollary 6. S ◦ Φ: ∆→M is lower semi-continuous.

The next lemma and remark describe the case in which one of the components of α is zero,

so that the problem can be reduced to one over a smaller alphabet.

Lemma 7. Let α ∈ ∆ have itinerary n = Φ(α), and let 1 ≤ i ≤ k − 1. Then αi = 0 if and

only if nr = 0 for all r ≡ i− 1 mod k − 1.

Proof. By (2.1), if α1 = 0 then K(α)k−1 = K0(α)k−1 = 0, while if αi = 0 for some i with

2 ≤ i ≤ k − 1 then K(α)i−1 = 0. Since Φ(α)0 = 0 whenever α1 = 0, it follows immediately that

if αi = 0 then nr = 0 for all r ≡ i− 1 mod k − 1.

For the converse observe first, by a straightforward induction on i, that if 0 ≤ i ≤ k − 2 and

if n0 = 0, then

Kni
◦Kni−1

◦ · · · ◦Kn0
(α)j =

αj+i+1

/(
1−

∑i+1
`=1 α`

)
if 1 ≤ j ≤ k − i− 2,

α1

/(
1−

∑i+1
`=1 α`

)
if j = k − i− 1,

independently of n1, . . . , ni. The case i = k − 2 gives

Knk−2
◦Knk−1

◦ · · · ◦Kn0(α)1 =
α1

αk
≥ α1

1− α1
,

provided only that n0 = 0. Now if nr = 0 for all r ≡ 0 mod k − 1 then repeated application of

this inequality gives Ks(k−1)(α)1 ≥ α1/(1− α1)s for all s ≥ 0, and since Ks(k−1)(α)1 < 1 for

all s it follows that α1 = 0, establishing the converse in the case i = 1.
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The statement for arbitrary i ≤ k − 1 follows. For if nr = 0 for all r ≡ i− 1 mod k − 1, then

β = Ki−1(α) has itinerary m = Φ(β) satisfying mr = 0 for all r ≡ 0 mod k − 1. Therefore

β1 = 0, and hence αi = 0 by i− 1 applications of (2.2).

Corollary 8. Let α ∈ ∆ and n = Φ(α). Then the following are equivalent:

a) For all r ≥ 0, no component of Kr(α) is zero; and

b) For all r ≥ 0, there is some s ≥ 0 with nr+s(k−1) 6= 0.

Remark 9. This remark relates the K-orbit of α when some αi = 0 to the K-orbit

of the point β obtained by deleting the ith component of α. We therefore include the

value of k in our notation, writing ∆k instead of ∆. For each i with 1 ≤ i ≤ k − 1, write

∆k,i = {α ∈ ∆k : αi = 0}, the ith face of ∆, and let πi : ∆k,i → ∆k−1 be the bijection which

forgets αi: that is, πi(α) = (α1, . . . , αi−1, αi+1, . . . , αk). The bijection πi clearly also depends

on k, as do the maps K, but no confusion will arise from continuing to suppress this dependence.

Now if k ≥ 3 and α ∈ ∆k,i, then it follows directly from (2.1) that

K(α) =

{
π−1
k−1 ◦ π1(α) if i = 1,

π−1
i−1 ◦K ◦ πi(α) if 2 ≤ i ≤ k − 1.

In particular, the itinerary Φ(πi(α)) is obtained from Φ(α) by deleting the zeroes which occur

at each position r ≡ i− 1 mod k − 1.

As stated in Section 2, if n ∈ NN it is not in general the case that there is only a single point

of ∆ with itinerary n. However, it is a straightforward consequence of Lemma 7 that Φ−1(n)

is a single point for itineraries of the form n = W 0.

Lemma 10. Let n = n0n1 . . . nr−10 ∈ NN. Then there is a unique α ∈ ∆ with Φ(α) = n,

namely α = K−1
n0
◦K−1

n1
◦ · · · ◦K−1

nr−1
(0, 0, . . . , 0, 1).

Proof. Φ(α) = n if and only if α = K−1
n0
◦K−1

n1
◦ · · · ◦K−1

nr−1
(β) for some β with itinerary 0.

But Φ(β) = 0 if and only if β = (0, 0, . . . , 0, 1) by Lemma 7.

In particular, if α has an itinerary of this form then α ∈ Qk. Theorem 16 states that, con-

versely, every element α of ∆ ∩Qk has such an itinerary: that is, that Kr(α) = (0, 0, . . . , 0, 1)

for some r.

4. The finite version

In this section we solve a finite version of the minimax problem, which is a necessary precursor

to our later results. The simplicity of the solution makes it straightforward to understand the

origin of the maps Kn and the substitutions Λn.
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A word W ∈ A∗ is said to be maximal if W is a maximal element of Σ or, equivalently, if

W = UV =⇒ W ≥ V U , i.e. W is at least as large as all of its cyclic permutations.

Let ∆̂ = {a = (a1, . . . , ak) ∈ Nk : ak > 0}, the discrete analogue of the space ∆. Continuing

the analogy, we write for each a ∈ ∆̂

R̂(a) = {W ∈ A∗ : |W |i = ai for 1 ≤ i ≤ k} (a finite set),

M̂(a) = {W ∈ R̂(a) : W is maximal}, and

Î(a) = minM̂(a).

Remark 11. An obvious comment, which is nevertheless important for the proof of

Theorem 13 below, is that every W ∈ R̂(a) has a cyclic permutation which belongs to M̂(a).

For each n ∈ N write ∆̂n = {a ∈ ∆̂ : nak ≤ a1 < (n+ 1) ak}, and define a bijection

K̂n : ∆̂n → ∆̂ by

K̂n(a) = (a2, a3, . . . , ak−1, a1 − nak, (n+ 1)ak − a1),

whose inverse K̂−1
n : ∆̂→ ∆̂n, the Abelianization of the substitution Λn, is given by

K̂−1
n (a) = ((n+ 1)ak−1 + nak, a1, a2, . . . , ak−2, ak−1 + ak).

Lemma 12. Let a ∈ ∆̂. Then the set Λ−1
n (M̂(a)) of words whose image under Λn lies in

M̂(a) is exactly M̂(K̂n(a)).

Proof. To show that Λ−1
n (M̂(a)) ⊂ M̂(K̂n(a)), let W ∈ A∗ with Λn(W ) ∈ M̂(a). Then

W ∈ R̂(K̂n(a)) by comparison of the right-hand side of (2.3) with the formula for K̂−1
n .

Moreover, W is maximal: for if W = UV < V U then Λn(W ) = Λn(U)Λn(V ) < Λn(V )Λn(U)

by Lemma 2, contradicting the maximality of Λn(W ).

To show that Λn(W ) ∈ M̂(a) for all W ∈ M̂(K̂n(a)), it follows as above that Λn(W ) ∈
R̂(a). That it is maximal follows from translating the statement Λn(M) ⊆M (Lemma 2) into

the finite setting:

W maximal =⇒ W ∈M =⇒ Λn(W ) = Λn(W ) ∈M =⇒ Λn(W ) maximal.

The following theorem gives the fundamental relationship between the substitutions, the

linear maps associated to the division-remainder algorithm, and the minimax: the substitution

Λn sends the minimax for a to the minimax for K̂−1
n (a).
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Theorem 13. Let a ∈ ∆̂.

(a) If ai = 0 for all i < k then Î(a) = kak .

(b) Otherwise, Î(a) = Λn(Î(K̂n(a))), where n = ba1/akc.

Remarks 14.

a) The theorem gives rise to a straightforward algorithm for calculating Î(a): the key point

is that the sum of the entries of K̂n(a) is a1 less than the sum of the entries of a; and if

ai > 0 for any i < k, then a1 will be positive after applying i− 1 terms of the appropriate

sequence of K̂n’s. Therefore repeatedly applying K̂ba1/akc eventually yields an a with ai = 0

for all i < k. The hand implementation of this algorithm is illustrated in Examples 15

below, while the statement of Theorem 13 translates directly into a recursive algorithm for

computer implementation.

b) By linearity of the K̂n we have Î(Na) = Î(a)N for each integer N ≥ 1.

Examples 15. Let k = 3 and a = (24, 3, 14). We have

(24, 3, 14)
K̂1−→ (3, 10, 4)

K̂0−→ (10, 3, 1)
K̂10−→ (3, 0, 1)

K̂3−→ (0, 0, 1),

so that

Î(24, 3, 14) = Λ1Λ0Λ10Λ3(3) = Λ1Λ0Λ10(313) = Λ1Λ0(311023) = Λ1(3 210 (31)3) = 31 (311)10 (312)3.

Notice that the intermediate words 313, 311023, and 3 210 (31)3 are Î(3, 0, 1), Î(10, 3, 1), and

Î(3, 10, 4) respectively.

Similarly, if k = 4 and a = (2, 3, 1, 3) then

(2, 3, 1, 3)
K̂0−→ (3, 1, 2, 1)

K̂3−→ (1, 2, 0, 1)
K̂1−→ (2, 0, 0, 1)

K̂2−→ (0, 0, 0, 1),

so that

Î(2, 3, 1, 3) = Λ0Λ3Λ1Λ2(4) = Λ0Λ3Λ1(411) = Λ0Λ3(4122) = Λ0(4111233) = 422234141.

Proof of Theorem 13. Statement (a) is obvious, since kak is the unique element of

R̂(0, 0, . . . , 0, ak).

For (b), it suffices to show that Î(a) is in the image of Λn, where n = ba1/akc: the result

then follows immediately from Lemmas 12 and 2.

Since a1 ≥ nak there are elements of R̂(a), and hence, by Remark 11, of M̂(a), in which

every occurence of the letter k is followed by the word 1n, and such elements of M̂(a) are

smaller than any element of M̂(a) which does not have this property. Therefore

Î(a) = k1nW1 k1nW2 · · · k1nWak
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for some words Wr which do not contain the letter k. Moreover, the letters must be arranged

in ascending order in each Wr: that is,

Wr = 1nr,12nr,2 · · · (k − 1)nr,k−1

for each r, where the nr,s are non-negative integers. For if this were not the case, then replacing

each Wr with a word in which the same letters are arranged in ascending order would decrease

every cyclic permutation of Î(a) starting with k, so that there would be an element of M̂(a)

smaller than Î(a).

To show that Î(a) is in the image of Λn, it therefore suffices to show that nr,1 ≤ 1 for all r.

Observe first that
∑ak
r=1 nr,1 = a1 − nak < ak, so that at least one nr,1 is zero, and in particular

n1,1 = 0 by maximality of Î(a).

Suppose for a contradiction that ns,1 ≥ 2 for some least s. Define words W ′r for 1 ≤ r ≤ ak
by W ′s−1 = 1Ws−1, Ws = 1W ′s, and W ′r = Wr for r 6= s− 1, s: that is, push one of the 1s from

Ws to Ws−1. Then taking an appropriate cyclic permutation yields an element W ′ of M̂(a)

given by

W ′ = k1nW ′t k1nW ′t+1 · · · k1nW ′ak k1nW ′1 · · · k1nW ′t−1,

where t is not equal to s since W ′s starts with the letter 1 by choice of s, but W ′t does not start

with the letter 1 by maximality of W ′. Now

W ′ < k1nWt k1nWt+1 · · · k1nWak k1nW1 · · · k1nWt−1 ≤ Î(a),

where the first inequality is by definition of the words W ′r together with t 6= s, and the second

is by maximality of Î(a). This contradicts that Î(a) is the minimum element of M̂(a),

establishing that Î(a) is in the image of Λn as required.

To connect this result with the formalism used in the general case, observe that

∆̂n
K̂n−−−−→ ∆̂yπ yπ

∆n
Kn−−−−→ ∆

(4.1)

commutes, where π : ∆̂→ ∆ is defined by π(a) = a/
∑
ai. Moreover, the functions K̂n can be

gathered into a single function K̂ : ∆̂→ ∆̂ defined by K̂(a) = K̂ba1/akc(a), giving rise to an

itinerary map Φ̂: ∆̂→ NN defined by

Φ̂(a)r = n ⇐⇒ K̂r(a) ∈ ∆̂n.

Since K̂r(a) = (0, 0, . . . , 0, 1), a fixed point of K̂, for some r, the itinerary Φ̂(a) has only finitely

many non-zero entries.

The following is then a restatement of Theorem 13. Note that it does not claim to give the

minimum element of M(α) for rational α, but only the minimum periodic element: that this

is in fact the minimum of M(α) will follow from Theorem 22 below.
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Theorem 16. Letα ∈ ∆ ∩Qk. Then the itinerary ofα is of the form Φ(α) = n0 n1 . . . nr−1 0,

and the minimum periodic element P(α) of M(α) is equal to S(Φ(α)).

Proof. Let a ∈ ∆̂ be the smallest integer vector which is a positive multiple of α. Then

any periodic element ofM(α) is of the form W , where W ∈ M̂(Na) for some N ≥ 1. However

Î(Na) = Î(a)N by Remark 14b), so that the smallest periodic element of M(α) is Î(a).

It is immediate from (4.1) that Φ(α) = Φ̂(a), so that in particular n = Φ(α) is of the given

form. Then

P(α) = Î(a) = Λn,r−1(k) = S(Φ(α))

as required.

Remark 17. In the computer science and combinatorics of words literature, the term

Lyndon words is used for words that are minimal amongst their cyclic permutations with

respect to the lexicographic order [3, 20]. Therefore maximal words are the same as Lyndon

words when the ordering of A is reversed, and the results of this section can be rephrased as

determining the largest Lyndon word with a given number of each of the letters.

5. Proof of Theorem 22: I(α) = S(Φ(α))

In this section we prove that the infimum I(α) ofM(α) is given by S(Φ(α)). We show first

(Lemma 19) that S(Φ(α)) is a lower bound ofM(α), and then (Lemma 21) that it lies in the

closure of M(α).

That S(Φ(α)) is a lower bound of M(α) is a special case of a more general result. Given

any w ∈ Σ, define supw ∈M by

supw = sup
r≥0

σr(w),

so that w = supw if and only if w ∈M. Lemma 19 below states that if w ∈ R(α) then

S(Φ(α)) ≤ supw: in particular, if w ∈M(α) then S(Φ(α)) ≤ w as required.

The proof uses the finite version of the result as expressed by Theorem 16, and we start with

a lemma which provides appropriate rational approximations to α together with corresponding

periodic approximations to the supremum of an element of R(α).

Lemma 18. Let α ∈ ∆, w ∈ R(α), R ∈ N and ε > 0. Then there is some β ∈ ∆ ∩Qk and

a periodic v ∈M(β) such that d∞(α,β) < ε and (supw)(R) = v(R).

Proof. Write s = supw. By definition of the supremum, there is some r ≥ 0 such that

(σr(w))(R) = s(R). Since σr(w) ∈ R(α), there is an initial subword s(R)W of σr(w) long enough

that

d∞(α,ρ(s(R)W 1R)) < ε.
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Let U be the length R word with the property that (σr(w))(2R+|W |) = s(R)W U .

Let v ∈M be the maximal shift of the periodic sequence u = s(R)W 1R. We shall show that

v(R) = s(R) which will establish the result, with β = ρ(s(R)W 1R).

Since s, and hence u, begins with the letter k, v(R) is a subword of s(R)W 1R ≤ s(R)W U :

but every length R subword of s(R)W U is a subword of w, and hence is less than or equal to

s(R) by the definition of the supremum. Therefore v(R) ≤ s(R). On the other hand, however,

v(R) ≥ u(R) = s(R), since v ≥ u. This establishes the result.

Lemma 19. Let α ∈ ∆ and w ∈ R(α). Then S(Φ(α)) ≤ supw. In particular, S(Φ(α)) is

a lower bound of M(α).

Proof. Write s = supw. To show that S(Φ(α)) ≤ s, it suffices to show that

S(Φ(α))(R) ≤ s(R) for every R ∈ N. Fix such an R.

By the lower semi-continuity of S ◦ Φ (Corollary 6), there is some ε > 0 such that if

d∞(α,β) < ε then S(Φ(α))(R) ≤ S(Φ(β))(R).

By Lemma 18 there is some β with d∞(α,β) < ε and some periodic v ∈M(β) with

s(R) = v(R). Theorem 16 gives v ≥ S(Φ(β)). Then

S(Φ(α))(R) ≤ S(Φ(β))(R) ≤ v(R) = s(R)

as required.

We now turn to proving that S(Φ(α)) ∈M(α). To do this we need to construct elements

of M(α) which agree with S(Φ(α)) on arbitrarily long initial subwords, and the following

straightforward lemma will be used for this purpose.

Lemma 20. Let α ∈ ∆, R ∈ N, and ε > 0. Then there is some β ∈ ∆ ∩Qk such that

d∞(α,β) < ε and Φ(β)(R) = Φ(α)(R).

Proof. The proof is by induction on R, with the base case R = 0 being the statement that

rational elements are dense in ∆.
Suppose then that R > 0. Let n = J(α), so that α ∈ ∆n. Recall that K|∆n

= Kn : ∆n → ∆

is a homeomorphism. By the inductive hypothesis, there is a sequence (γi) in ∆ ∩Qk converging

to K(α) with Φ(γi)
(R−1) = Φ(K(α))(R−1) for all i. Let β = K−1

n (γi) for some i large enough

that d∞(α,β) < ε.

Lemma 21. Let α ∈ ∆. Then S(Φ(α)) ∈M(α).

Proof. If α ∈ ∆ ∩Qk then S(Φ(α)) ∈M(α) by Theorem 16, so we assume that α 6∈ Qk,

and in particular, by Lemma 10, that n = Φ(α) has infinitely many non-zero entries.
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It suffices to find, for each R, an element w of M(α) with initial subword Λn,R(k). We can

assume that nR+1 > 0, since otherwise we increase R until this is the case.

Using Lemma 20, find for each r ≥ 0 an element βr of ∆ ∩Qk with d∞(α,βr) < 1/2r, whose

itinerary

Φ(βr) = nr = nr,0nr,1 . . . nr,Lr0,

satisfies nr,s = ns for 0 ≤ s ≤ R+ 1.

Set U = Λn0Λn1 · · ·ΛnR
ΛnR+1−1(k), and Wr = Λnr,0Λnr,1 · · ·Λnr,Lr

(k) for each r, so that

ρ(Wr) = βr. Write L = |U | and Lr = |Ur| for r ≥ 0. Choose integers pr ≥ 1 for r ≥ 0

inductively to satisfy
∑r
s=0 psLs > 2rLr+1. Finally, set

w = U W p0

0 W p1

1 W p2

2 . . . . (5.1)

We will show that w ∈M(α), which will establish the result since it has initial subword

Λn,R(k). To show that w ∈ R(α), let I = {(r, s) : r ∈ N, 0 ≤ s < pr} ordered lexicographically,

and define an increasing function ` : I → N by `(r, s) = L+ sLr +
∑r−1
t=0 ptLt, the index of the

beginning of the (s+ 1)th subword Wr in (5.1). Now since ρ(Wr)→ α as r →∞ we have

that for all ε > 0 there is some J such that d∞(α,ρ(w(`(r,s)))) < ε for all (r, s) > (J, 0). On

the other hand, given any t ≥ `(1, 0), we have d∞(ρ(w(t)),ρ(w(`(r,s)))) < 1/2r, where (r, s)

is greatest with `(r, s) ≤ t, by choice of the pr. Therefore d∞(α,ρ(w(t)))→ 0 as t→∞ as

required.

It remains to show that w is maximal. Now we can write

w = Λn0Λn1 · · ·ΛnR
(ΛnR+1−1(k)ΛnR+1

(u))

for some u ∈ Σ. However ΛnR+1−1(k)ΛnR+1
(u) = k 1nR+1−1ΛnR+1

(u) is maximal, since it has

initial subword k 1nR+1−1 followed by a letter other than 1, whereas every letter k in ΛnR+1
(u)

is followed by at least nR+1 consecutive 1s. Therefore w is also maximal by Lemma 2.

Combining Lemmas 19 and 21 gives the result we have been working towards.

Theorem 22. Let α ∈ ∆. Then I(α) = S(Φ(α)).

Remarks 23.
a) The proofs of Lemmas 18 and 19 only depend on being able to find arbitrarily long initial

subwords W of w ∈ R(α) with ρ(W ) arbitrarily close to α. It follows that the results of this

section remain true if elements of R(α) are only required to have subsequential limits α,

which is a common approach in the definition of rotation sets. To be precise, for each α ∈ ∆

write

R′(α) =
{
w ∈ Σ : ρ

(
w(ri)

)
→ α for some ri →∞

}
⊂ Σ,

and M′(α) =M∩R′(α). Then S(Φ(α)) is the infimum of M′(α), and S(Φ(α)) ≤ supw

for all w ∈ R′(α).



Page 18 of 28 PHILIP BOYLAND, ANDRÉ DE CARVALHO, AND TOBY HALL

b) The infimax sequences S(Φ(α)) are almost periodic: for every initial subword W of S(Φ(α)),

there is some N with the property that every length N subword of S(Φ(α)) contains W .

As a consequence, the orbit closure

Σα = {σr(S(Φ(α))) : r ≥ 0}

is a minimal σ-invariant set.

To show almost periodicity, assume that α 6∈ Qk (since otherwise S(Φ(α)) is periodic and

therefore almost periodic), and write n = Φ(α). Pick r large enough that Λn,r(k) has

initial subword W . Now Λnr+1 ◦ Λnr+2 ◦ · · · ◦ Λnr+k−1
(i) has initial letter k for all i with

1 ≤ i ≤ k by Lemma 3, so that Ui := Λn,r+k−1(i) has initial subword W for each i. However

S(Φ(α)) = Λn,r+k−1(u) for some u ∈ Σ, and is therefore a concatenation of the words Ui.

This establishes the result, with N = 2 max1≤i≤k |Ui|.

6. Minimax sequences

In this section we address the question of when the infimum I(α) of M(α) is a minimum.

Since the set of maximal elements is a closed subset of Σ, I(α) is necessarily maximal, and

the issue is whether or not it belongs to R(α). We will show that this happens exactly when

Φ−1(Φ(α)) = {α}. We shall also show that this condition holds for some values of α (in fact

we already know by Lemma 10 and Theorem 16 that it holds for α rational), but fails when

the itinerary Φ(α) grows too rapidly.

Theorem 24. Let α ∈ ∆. Then

a) Φ−1(Φ(α)) is a d-dimensional simplex for some d with 0 ≤ d ≤ k − 2.

b) I(α) is the minimum of M(α) if and only if Φ−1(Φ(α)) is a point.

Proof. Write n = Φ(α).

a) The homeomorphisms K−1
n : ∆→ ∆n of (2.2) extend by the same formulae to homeomor-

phisms K−1
n : ∆→ ∆n ⊆ ∆ of compact simplices. Define, for each r ∈ N, an embedding

Υn,r = K−1
n0
◦K−1

n1
◦ · · · ◦K−1

nr
: ∆→ ∆.

The images An,r = Υn,r(∆) of these embeddings form a decreasing sequence of non-

empty compact subsets of ∆, which are (k − 1)-dimensional simplices since each K−1
n is

a projectivity. Moreover An,r ⊂ ∆ for all r ≥ k − 1, since if αi > 0 for some 1 ≤ i < k then

Υn,k−1−i(α)k−1 > 0, and therefore Υn,k−i(α)k > 0: it follows that

Φ−1(n) =
⋂
r≥0

An,r

is a non-empty compact convex subset of ∆, consisting of all those points which have

itinerary n: this set is a simplex by a theorem of Borovikov [6], which states that the

intersection of a decreasing sequence of simplices is a simplex. Since rational elements of ∆
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do not share their itineraries with any other points by Lemma 10 and Theorem 16, Φ−1(n)

cannot contain more than one rational point, and hence has dimension at most k − 2.

b) If α ∈ Qk then the result follows by Lemma 10 and Theorem 16, so suppose that α 6∈ Qk.

In particular nr > 0 for arbitrarily large r, and hence |Λn,r(k)| → ∞ as r →∞.

Set

α(i)
r = Υn,r(e

(i)) = ρ(Λn,r(i))

for each r ∈ N and 1 ≤ i ≤ k, where e(i) = (0, . . . , 0, 1, 0, . . . , 0) is the ith vertex of ∆. By

compactness and convexity, Φ−1(Φ(α)) = {α} if and only if α
(i)
r → α as r →∞ for each i.

Suppose first then that Φ−1(Φ(α)) = {α}: we need to show that S(n) ∈ R(α).

Let ε > 0: we will show that d∞(ρ(S(n)(m)),α) < ε for all sufficiently large m. To do this, let

R ≥ 0 be such that d∞(α
(i)
R ,α) < ε/2 for all 1 ≤ i ≤ k, and write Wi for the word Λn,R(i):

thus d∞(ρ(Wi),α) < ε/2 for all i. Let L = max1≤i≤k |Wi|.
Now

S(n) = lim
r→∞

Λn,r(k) = lim
r→∞,r>R

Λn,R(ΛnR+1
◦ · · · ◦ Λnr

(k))

is a concatenation of the words Wi. Therefore d∞(ρ(S(n)(m)),α) < ε whenever m > 2L/ε,

as required.

Conversely, suppose that S(n) ∈ R(α), so that α
(k)
r → α as r →∞. We need to show that

Φ−1(Φ(α)) = {α}, or equivalently that α
(i)
r → α as r →∞ for each i. The proof is by

induction on k ≥ 2, with the case k = 2 immediate since then Φ−1(Φ(α)) = {α} for all α

by a).

We distinguish two cases.

(i) Suppose first that for every i with 1 ≤ i ≤ k − 1, there are arbitrarily large integers

r ≡ i− 1 mod k − 1 with the property that nr > 0.

Write L
(i)
r = |Λn,r(i)| for each r ∈ N and 1 ≤ i ≤ k, so that α

(i)
r L

(i)
r is an integer vector

whose entries give the number of occurences of each letter in Λn,r(i). Comparing the

expressions Λn,r(k − 1) = Λn,r−1(k 1nr+1) and Λn,r(k) = Λn,r−1(k 1nr ) gives

α(k−1)
r =

α
(k)
r L

(k)
r +α

(1)
r−1L

(1)
r−1

L
(k)
r + L

(1)
r−1

. (6.1)

On the other hand, the first of these two expressions alone gives

α(k−1)
r =

α
(k)
r−1L

(k)
r−1 + (nr + 1)α

(1)
r−1L

(1)
r−1

L
(k)
r−1 + (nr + 1)L

(1)
r−1

. (6.2)

Solving (6.1) and (6.2) for α
(k−1)
r in terms of α

(k)
r and α

(k)
r−1 under the assumption

nr > 0 gives

α(k−1)
r = α(k)

r +
L

(k)
r−1

(nr + 1)L
(k)
r − L(k)

r−1

(
α(k)
r −α

(k)
r−1

)
.
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Since α
(k)
r → α as r →∞, it follows that for any ε > 0 there is some R such that

d∞(α
(k)
r ,α) < ε for all r ≥ R, and d∞(α

(k−1)
r ,α) < ε for all r ≥ R with nr > 0: for

L
(k)
r ≥ L(k)

r−1 for all r, so that L
(k)
r−1 ≤ (nr + 1)L

(k)
r − L(k)

r−1 provided that nr > 0.

Now suppose that r ≥ R with nr > 0. Then the expressions Λn,r(i) = Λn,r−1(i+ 1)

for 1 ≤ i ≤ k − 2 give α
(1)
r+k−2 = α

(k−1)
r so that, by (6.1),

α
(k−1)
r+k−1 =

α
(k)
r+k−1L

(k)
r+k−1 +α

(k−1)
r L

(k−1)
r

L
(k)
r+k−1 + L

(k−1)
r

and hence α
(k−1)
r+k−1 is a convex combination of points within ε of α and so is itself

within ε of α. Inductively it follows that d∞(α
(k−1)
r+s(k−1),α) < ε for all s ∈ N. Since, by

the defining assumption of this case, there are r ≥ R with nr > 0 in every congruence

class modulo k − 1, we have d∞(α
(k−1)
r ,α) < ε for all sufficiently large r. Therefore

α
(k−1)
r → α as r →∞.

Since α
(i)
r = α

(k−1)
r+i−(k−1) for all 1 ≤ i ≤ k − 2 and r ≥ (k − 1)− i, it follows that

α
(i)
r → α as r →∞ for all i as required.

(ii) Suppose then that there is some i with 1 ≤ i ≤ k − 1 such that nr = 0 for all sufficiently

large r ≡ i− 1 mod k − 1. We shall show that if Φ(β) = n then β = α. Now for

each r ∈ N we have that Φ(β) = n if and only if β = K−1
n0
◦K−1

n1
◦ · · · ◦K−1

nr−1
(β′)

for some β′ with Φ(β′) = nrnr+1 . . ., so we can suppose without loss of generality

that nr = 0 for every r ≡ 0 mod k − 1, and hence by Lemma 7 that α1 = β1 = 0. By

Remark 9 (and using the notation introduced there), m := Φ(π1(α)) = Φ(π1(β)) is

obtained from n by deleting the zero entries in positions which are multiples of k − 1.

Write αr = α
(k)
r and α′r = Υm,r(0, 0, . . . , 0, 1) ∈ ∆k−1 for each r ∈ N. We shall show

that

α′s(k−2)+i = π1(αs(k−1)+i+1) whenever 0 ≤ i ≤ k − 3 and s ∈ N. (6.3)

That is, the proportions of letters in each Λm,r(k − 1) (a sequence over k − 1 letters)

is obtained from the proportions of letters in Λn,r′(k) by deleting an initial zero,

where r′ is an appropriate index which increases with r. This will establish the result.

For then αr → α implies α′r → π1(α), or in other words S(m) ∈ R(π1(α)). Hence

π1(α) = π1(β) by the inductive hypothesis, so that α = β as required.

Observe first that when s = 0, equation (6.3) reads

K−1
m0
◦K−1

m1
◦ · · · ◦K−1

mi
(0, . . . , 0, 1) = π1(K−1

0 ◦K−1
m0
◦K−1

m1
◦ · · · ◦K−1

mi
(0, 0, . . . , 0, 1))

(6.4)

for 0 ≤ i ≤ k − 3, where on the left hand side (0, . . . , 0, 1) ∈ ∆k−1, and on the right

hand side (0, 0, . . . , 0, 1) ∈ ∆k. This is a straightforward consequence of (2.2): since

i ≤ k − 3, the (k − 1)th component of K−1
m0
◦K−1

m1
◦ · · · ◦K−1

mi
(0, 0, . . . , 0, 1) ∈ ∆k is

zero, so that applying K−1
0 cyclically permutes the first k − 1 components.
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Now it follows from (2.2) that

π−1
i+1 ◦K

−1
m = K−1

m ◦ π−1
i : ∆k−1 → ∆k,i+1

for all 1 ≤ i ≤ k − 2 and all m ∈ N. Applying this for i = 1, 2, . . . , k − 2 in succession

gives

π−1
k−1 ◦K

−1
mk−2

◦ · · · ◦K−1
m1

= K−1
mk−2

◦ · · · ◦K−1
m1
◦ π−1

1 : ∆k−1 → ∆k,k−1

for all m1, . . . ,mk−2. Then, using again the observation that if α ∈ ∆k,k−1 then K−1
0

cyclically permutes its components,

K−1
mk−2

◦ · · · ◦K−1
m1

= π1 ◦K−1
0 ◦K−1

mk−2
◦ · · · ◦K−1

m1
◦ π−1

1 : ∆k−1 → ∆k−1 (6.5)

for all m1, . . . ,mk−2.

Applying (6.4) followed by s applications of (6.5) establishes (6.3) as required.

Remarks 25.

a) It is clear that if Φ−1(n) is more than just one point, then S(n) can only be the minimum

of M(α) for at most one α ∈ Φ−1(n). The content of the final part of the proof is that in

fact it is not the minimum of any of the sets M(α), and indeed does not belong to R(α)

for any α ∈ ∆.

b) Combining Theorem 24 b) with Lemma 17 of [8] and Lemma 4.2 of [7] yields the following

result: the action of the shift map on the orbit closure Σα of Remarks 23 b) is uniquely

ergodic if and only if α is regular.

In view of this result, we make the following definitions:

Definitions 26. α ∈ ∆ is regular if Φ−1(Φ(α)) = {α}, and exceptional otherwise.

When k = 2, every α ∈ ∆ is regular by Theorem 24 a). Therefore, in the two letter case,

there is an α-minimax sequence for all α: these are the well-known Sturmian sequences [14,

25]. When k ≥ 3, we have already seen that α is regular if it is rational (i.e. if Φ(α)r = 0 for

all sufficiently large r). The following theorem states that the same is true when Φ(α)r > 0

grows at most quadratically with r, and, on the other hand, that if Φ(α)r grows too fast then

α is exceptional.

Theorem 27. Let α ∈ ∆ and n = Φ(α).

a) If there is some C such that 0 < nr ≤ Cr2 for all r, then α is regular.

b) If k ≥ 3 and nr ≥ 2r+2
∏r−1
i=0 (ni + 2) for all r ≥ 1, then Φ−1(Φ(α)) is a simplex of

dimension k − 2, so that α is exceptional.

Proof. We use the notation of the proof of Theorem 24.
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a) We will use a theorem of Birkhoff [5, 9] to show that ∆ is contracted by the embeddings Υn,r,

and we start by giving some necessary definitions and stating this theorem. Let A = (aij)

be a k by k matrix with strictly positive entries, and fA be its projective action on ∆: that

is, fA : ∆→ ∆ is defined by

fA(α) =
Aα

||Aα||1
.

Define also

d(A) = max
1≤i,j,l,m≤k

ailajm
aimajl

≥ 1 (6.6)

(that is, d(A) is the largest number that can be obtained by choosing four elements of A

arranged in a rectangle, and dividing the product of the two elements on one diagonal by

the product of the two elements on the other). d(A) is stricly greater than one unless A has

rank 1.

Let τ : [1,∞)→ [0, 1) be the strictly increasing function τ(d) = (
√
d− 1)/(

√
d+ 1). Write ∆̊

for the simplex ∆ less its faces, and let δ : ∆̊× ∆̊→ R≥0 be Hilbert’s projective metric

(which generates the Euclidean topology),

δ(α,β) = log max
1≤i,j≤k

αi βj
αj βi

.

Birkhoff’s theorem states that, provided d(A) > 1, the restriction of fA to ∆̊ contracts the

metric δ by τ(d(A)): that is, δ(fA(α), fA(β)) ≤ τ(d(A)) δ(α,β) for all α,β ∈ ∆̊.

Now let A(n) be the k by k matrix with A(n)1,k−1 = n+ 1, A(n)1,k = n, A(n)i,i−1 = 1 for

2 ≤ i ≤ k, A(n)k,k = 1, and all other entries zero: as an example, when k = 5,

A(n) =


0 0 0 n+ 1 n
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1

 .

By (2.2), we have fA(n) = K−1
n : ∆→ ∆. Although A(n) has some zero entries, we shall see

that any product of 2k − 3 such matrices A(nr) with each nr > 0 is strictly positive.

Write A(n0, . . . , nr) =
∏r
s=0A(ns). By considering the action of Λn0 ◦ · · · ◦ Λnk−3

on each

of the letters 1, . . . , k, it can be seen that A(n0, . . . , nk−3) has row i, for 1 ≤ i ≤ k − 2,

consisting of i zeros followed by ni−1 + 1 and then ni−1 in the other columns; row k − 1 has

a 1 in column 1 and zeros in the other columns; and row k has a zero in column 1 and 1s in

the other columns. Similarly A(nk−2, . . . , n2k−4) has row i, for 1 ≤ i ≤ k − 1, consisting of

i− 1 zeros followed by nk−3+i + 1 on the diagonal and nk−3+i in the other columns; while
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row k has 1 in every column. As an example, when k = 5, these two matrices are given by
0 n0 + 1 n0 n0 n0

0 0 n1 + 1 n1 n1

0 0 0 n2 + 1 n2

1 0 0 0 0
0 1 1 1 1

 and


n3 + 1 n3 n3 n3 n3

0 n4 + 1 n4 n4 n4

0 0 n5 + 1 n5 n5

0 0 0 n6 + 1 n6

1 1 1 1 1

 .

The product A(n0, . . . , n2k−4) = (aij)1≤i,j≤k of these matrices is therefore strictly positive

when each nr > 0, with each aij a polynomial of degree at most 2 in n0, . . . , n2k−4. We shall

show that, for each 1 ≤ i ≤ k and each 1 ≤ l < m ≤ k, the quotient ail/aim is bounded above

by 2, while the quotient aim/ail is bounded above by a linear function of nk−1, . . . , n2k−4.

As a consequence, since (6.6) says that d(A) is the product of one quotient of the first type

and one of the second, there is some R, depending only on k, such that

d(A(n0, . . . , n2k−4)) ≤ R(nk−1 + · · ·+ n2k−4) (6.7)

provided that each nr > 0.

The claim is straightforward when i = k − 1, in which case ail is either nk−2 or nk−2 + 1;

and when i = k, in which case ai1 = 1, ail = 2 +
∑k−3+l
j=k−1 nj for 2 ≤ l ≤ k − 1, and aik =

ai,k−1 − 1. When 1 ≤ i ≤ k − 2, the explicit descriptions of the elements of A(n0, . . . , nk−3)

and A(nk−2, . . . , n2k−4) give

ail =


ni−1 if 1 ≤ l ≤ i,
ni−1(nk+i−2 + 2) + (nk+i−2 + 1) if l = i+ 1,

ni−1

(
2 +

∑k+l−3
j=k+i−2 nj

)
+ nk+i−2 if i+ 2 ≤ l < k,

ni−1

(
1 +

∑2k−4
j=k+i−2 nj

)
+ nk+i−2 if l = k,

from which the claim follows.

Now let α ∈ ∆, and suppose that there is some C such that n = Φ(α) satisfies 0 < nr ≤ Cr2

for all r. For each r ≥ 0 we have

Υn,(r+1)(2k−3)−1(∆) = (K−1
n0
◦ · · · ◦K−1

n2k−4
) ◦ (K−1

n2k−3
◦ · · · ◦K−1

n4k−7
) ◦ · · · ◦

(K−1
nr(2k−3)

◦ · · · ◦K−1
n(r+1)(2k−3)−1

)(∆)

Since (K−1
nr(2k−3)

◦ · · · ◦K−1
n(r+1)(2k−3)−1

)(∆) ⊂ ∆̊ (because the product of 2k − 3 matrices

A(n) is strictly positive), it is enough to show that

∞∏
r=0

τ(d(A(nr(2k−3), . . . , n(r+1)(2k−3)−1))) = 0.

By (6.7) and nr ≤ Cr2, there is some Q depending only on C and k such that dr :=

d(A(nr(2k−3), . . . , n(r+1)(2k−3)−1)) ≤ (Qr)2 for all r ≥ 1, so that τ(dr) ≤ (Qr − 1)/(Qr + 1).

Recall that if 0 < ar ≤ 1 for all r then
∏∞
r=0 ar = 0 if and only if

∑∞
r=0

(
1
ar
− 1
)

diverges.
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Since

1

τ(dr)
− 1 ≥ 2

Qr − 1
,

the result follows.

b) Set

δr = min
1≤i<j≤k−1

d∞(α(i)
r ,α(j)

r )

for each r ≥ 0, the smallest distance between a pair of vertices in the simplex An,r excluding

the vertex Υn,r(0, 0, . . . , 0, 1). We shall show that δ0 = 1 and δr ≥ δr−1 − 1/2r+2 for each

r ≥ 1, so that δr > 3/4 for all r. It is therefore not possible for all of the α
(j)
r to converge

to the same point.

That δ0 = 1 is straightforward, since α
(i)
0 = K−1

n0
(e(i)) is equal to e(i+1) if 1 ≤ i ≤ k − 2,

and to ((n0 + 1)e(1) + e(k))/(n0 + 2) if i = k − 1.

Now let r ≥ 1. If 1 ≤ i ≤ k − 2 then we have Λn,r(i) = Λn,r−1(Λnr
(i)) = Λn,r−1(i+ 1), so

that

α(i)
r = α

(i+1)
r−1 for 1 ≤ i ≤ k − 2.

Consider then the case i = k − 1. By (6.2)

α(k−1)
r =

α
(k)
r−1L

(k)
r−1 + (nr + 1)α

(1)
r−1L

(1)
r−1

L
(k)
r−1 + (nr + 1)L

(1)
r−1

,

so that

α(k−1)
r −α(1)

r−1 =
L

(k)
r−1

(
α

(k)
r−1 −α

(1)
r−1

)
(nr + 1)L

(1)
r−1 + L

(k)
r−1

,

in which each component has absolute value bounded above by
∏r−1
i=0 (ni + 2)/nr ≤ 1/2r+2,

using L
(k)
r−1 ≤

∏r−1
i=0 (ni + 2) in the numerator and L

(i)
r−1 ≥ 1 in the denominator.

Therefore d∞(α
(k−1)
r ,α

(1)
r−1) ≤ 1/2r+2, and we saw in the first part of the proof that

d∞(α
(i)
r ,α

(i+1)
r−1 ) = 0 for 1 ≤ i ≤ k − 2. This gives δr ≥ δr−1 − 1/2r+2 as required.

To show that Φ−1(Φ(α)) is a simplex of dimension k − 2, let π : Rk → Rk−1 be projection

onto the first k − 1 coordinates. Then

V0 := {π(α
(i)
0 ) : 1 ≤ i ≤ k − 1} = {(n0 + 1)π(e(1))/(n0 + 2), π(e(2)), π(e(3)), . . . , π(e(k−1))},

and (n0 + 1)/(n0 + 2) ≥ 1/2. Now for each r ≥ 1, the set Vr := {π(α
(i)
r ) : 1 ≤ i ≤ k − 1} is

within d∞-Hausdorff distance 1/4 of V0, and hence the same is true for the limit V∞. The

k − 1 points of V∞ therefore span a simplex of dimension k − 2, which is the π-image of a

simplex of dimension k − 2 contained in Φ−1(Φ(α)).
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Example 28. The conditions of Theorem 27a) are obviously satisfied when n = Φ(α) =

n0 . . . nr−1 is periodic without any zero entries: by the theorem, such a sequence is the itinerary

of a unique periodic point of K. The corresponding minimax sequence I(α) is the fixed point

of the substitution Λn0
◦ · · · ◦ Λnr−1

, and therefore generates a substitution minimal set [15].

The simplest such example is when k = 3 and Φ(α) = 1. The minimum of M(α) is then

given by

lim
r→∞

Λr1(3) = 3123113122312311311312311312231223123113122312311311312311311312 . . . ,

the unique fixed point of Λ1. In this example α is the unique fixed point of K1 or, equivalently,

the (suitably normalized) strictly positive eigenvector of the matrix

A(1) =

 0 2 1
1 0 0
0 1 1


from the proof of Theorem 27a). Notice that the minimum of M(α) is not of Arnoux-Rauzy

type [4]: for example, it has six factors of length two, and the substitution Λ1 is not Pisot.

Remarks 29.
a) Theorems 11 and 12 of [8] improve substantially on Theorem 27 in the case k = 3 (only).

After translation to the notation used here, they read:

Theorem (Bruin and Troubetzkoy) Let k = 3, and let α ∈ ∆ and n = Φ(α).

– For each r ≥ 0, let L2r = min{s ≥ 1 : n2r+s 6= 0}. If either

∑
r

n2r

n2r + 1

√
1

(n2r−1 + 1)L2r
=∞, or

∏
r

n2r + 1

n2r−1 + 1 + 1
L2r

= 0,

or if either condition holds for the shift σ(n) = Φ(K(α)) of n, then α is regular.

– If there is some λ > 1 such that nr+1 ≥ λnr for all sufficiently large r, then α is

exceptional.

This result gives rise to a striking pair of examples: on the one hand, if Φ(α)r = 2r for all r

then α is exceptional by the second statement; while on the other hand, if Φ(α)r = 2r when

r is even and Φ(α)r = 3r when r is odd, then α is regular by the second condition in the

former statement.
b) The result of Theorem 27a) clearly extends to the case where finitely many of the nr are

zero. When nr = 0 for arbitrarily large r the situation is more complicated, as the product

of 2k − 3 successive matrices need not be strictly positive. This can not always be remedied

by grouping the sequence of matrices more judiciously: in the case where nr(k−1) = 0 for

all r, no product A(ns, ns+1, . . . , ns+t) is strictly positive. This case arises when considering

the itinerary of an element α of ∆ which has some zero coordinates (Lemma 7), and can

be treated by induction on k.

c) The fact that the bound of (6.7) depends only on k − 2 of the 2k − 3 variables means that

it is sufficient for regularity to have control over the nr along an appropriate subsequence.
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d) The growth condition in Theorem 27b) — which, for example, is satisfied by nr = 223r

—

could easily be improved by improving the bounds on L
(k)
r−1 and L

(i)
r−1 in the penultimate

paragraph of the proof: the point here is simply to show that exceptional α exist. In fact,

numerical experiments suggest that, when k = 3, Φ−1(n) is a non-trivial interval when

nr = r3, so that even the k = 3 results of Bruin and Troubetzkoy are far from optimal.

We finish by showing – closely following the proof of Corollary 13 of [8] – that a generic

element n of NN is the itinerary of only one point. We use the following lemma.

Lemma 30. For all n ≥ 0, the map K−1
n : ∆̊→ ∆̊ does not expand the Hilbert metric: that

is, δ(K−1
n (α),K−1

n (β)) ≤ δ(α,β) for all α,β ∈ ∆̊.

Proof. Let α,β ∈ ∆̊, and write

α′ := K−1
n (α) = C ((n+ 1)αk−1 + nαk, α1, α2, . . . , αk−2, αk−1 + αk),

where C = C(α) is a constant, and similarly β′ := K−1
n (β). To prove the lemma, we need to

show that whenever 1 ≤ i < j ≤ k, there exist I and J between 1 and k with

α′i β
′
j

β′i α
′
j

≤ αI βJ
βI αJ

.

This can be established straightforwardly by cases, using the elementary fact that if a, b, c, d

are positive reals then (a+ b)/(c+ d) lies between a/c and b/d.

– If i and j are both between 2 and k − 1 then
α′iβ
′
j

β′iα
′
j

=
αi−1βj−1

βi−1αj−1
.

– If i = 1 and j < k then
((n+ 1)αk−1 + nαk)βj−1

((n+ 1)βk−1 + nβk)αj−1
lies between

(n+ 1)αk−1βj−1

(n+ 1)βk−1αj−1
=
αk−1βj−1

βk−1αj−1

and
nαkβj−1

nβkαj−1
=
αkβj−1

βkαj−1
.

– If i > 1 and j = k then the argument is identical, except that the factors n+ 1 and n are

omitted.

– If i = 1 and j = k then
((n+ 1)αk−1 + nαk)(βk−1 + βk)

((n+ 1)βk−1 + nβk)(αk−1 + αk)
lies between

((n+ 1)αk−1 + nαk)βk−1

((n+ 1)βk−1 + nβk)αk−1

and
((n+ 1)αk−1 + nαk)βk
((n+ 1)βk−1 + nβk)αk

, each of which is between two terms of the required type by

the argument above.

Let O ⊂ NN be the set of itineraries n which contain infinitely many disjoint subwords 12k−3,

and let Reg ⊂ NN be the set of regular itineraries n, i.e. those for which Φ−1(n) is a point.
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Theorem 31. O ⊂ Reg, and O is a dense Gδ subset of NN.

Proof. Let n ∈ O. As shown in the proof of Theorem 27, the map K
−(2k−3)
1 : ∆̊→ ∆̊ is

represented by the strictly positive matrix A(1)2k−3, and hence by Birkhoff’s theorem contracts

the Hilbert metric by a factor λ ∈ (0, 1). It follows, using Lemma 30, that if ri is the index of

the start of the ith disjoint subword 12k−3 in n, then we have

An,ri+(2k−3) = Υn,ri+(2k−3)(∆) = Υn,ri

(
K
−(2k−3)
1 (∆)

)
has diameter bounded above by λi−1D, where D is the Hilbert diameter of K

−(2k−3)
1 (∆) ⊂ ∆̊.

Therefore Φ−1(n) is a single point, so that n ∈ Reg.

For each N ≥ 0 let ON ⊂ NN be the set of itineraries which contain a word 12k−3 starting

after the N th symbol. Then ON is open and dense in the Baire space NN, so that O =
⋂
N≥0ON

is a dense Gδ subset of NN as required.
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