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Abstract 2 

Abstract 

Background 

Chronic pancreatitis (CP) is a disease of fibrosis of the pancreas for which alcohol is the main 

causative agent.  However, only a small proportion of alcoholics develop chronic pancreatitis. 

Genetic polymorphism may affect pancreatitis risk. 

 

Aim 

To determine the factors required to classify a chronic pancreatic population and identify genetic 

variations that may explain why only some alcoholics develop chronic pancreatitis.  

 

Methods 

The most appropriate method of diagnosing CP was assessed using a systematic review.  Genetics of 

different populations of alcohol-related chronic pancreatitics (ACP) were explored using four 

different techniques: genome-wide association study (GWAS); custom arrays; PCR of variable 

nucleotide tandem repeats (VNTR) and next generation sequencing (NGS) of selected genes. 

 

Results 

EUS and sMR were identified as giving the overall best sensitivity and specificity for diagnosing CP. 

GWAS revealed two associations with CP (identified and replicated) at PRSS1-PRSS2_rs10273639 (OR 

0.73, 95% CI 0.68-0.79) and X-linked CLDN2_rs12688220 (OR 1.39, 1.28-1.49) and the association 

was more pronounced in the ACP group (OR 0.56, 0.48-0.64)and OR 2.11, 1.84-2.42). 

The previously identified VNTR in CEL was shown to have a lower frequency of the normal repeat in 

ACP than alcoholic liver disease (ALD; OR 0.61, 0.41-0.93).  Homozygosity of the normal variant was 

more common in ALD than ACP (OR 0.53, 0.3-0.96) or Healthy Controls (OR 0.55, 0.3-1.00)). 

The NGS discovery phase lead on to validation of the 21 most significant SNPs with Sequenom array. 

This showed significance difference between ACP and ALD in allele frequency of the synonymous 

SNP, PRSS1_rs6666, (OR 1.99, 1.46-2.72)  

 

Conclusion 

A range of potential exonic and intronic sites have been identified that have association with a 

predisposition to developing chronic pancreatitis.  These findings show that further work is justified 

to fully assess the interaction of the different polymorphisms and their phenotypic significance in 

development of the disease. 
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1 Chapter 1: Introduction 

 Chronic Pancreatitis 1.1

Chronic pancreatitis (CP) is an inflammatory condition that causes irreversible fibrosis of the 

pancreas, leading to both structural and functional sequelae.1  CP is detrimental to an individual’s 

quality of life in many ways: severe abdominal pain, exocrine and endocrine failure and increased 

risk of developing pancreatic cancer. 

In countries where alcohol excess is common, about 70% of chronic pancreatitis is caused by 

alcoholism, however less than 3% of heavy alcohol users develop clinical CP.2,3 Chronic pancreatitis 

may suffer with additional alcohol-related co-morbidities and have complex social problems 

hindering medical and surgical management plans. 

.  
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1.1.1 Epidemiology 

Chronic pancreatitis has a prevalence of about 30 per 100,000 and annual incidence of 3-10 per 

100,000 per year; the incidence varies from 5-11 per 100,000 in men to 2-3 per 100,000 in women.4-7 

In a population of those with a history of alcohol-excess the incidence is increased to 92 per 100,000 

in men and 82 per 100,000 in women.7 The average life expectancy is 72 years, which is lower than 

that of idiopathic chronic pancreatitis (ICP; 80 years).8 The over-all mortality directly due to chronic 

pancreatitis has been calculated as 36% over 20 years.9  

Acute and chronic pancreatitis are discreet disease processes but there is some overlap, with acute 

developing into chronic, or acute-on-chronic flare ups of the disease.1 It is thought that in many 

cases ACP is a progression from an initial attack or multiple attacks of acute pancreatitis (AP), which 

may occur 1-19 years before manifestation of chronic pancreatitis.10 CP can develop as a result of 

acute attacks of pancreatitis; around a quarter of those who have AP go on to develop CP.11 

Acute pancreatitis is diagnosed by the presence of two out of three of the following: a clinical history 

of abdominal pain in keeping with acute pancreatitis; increased amylase greater than three times 

the upper limit of normal; radiological changes in keeping with pancreatic inflammation.12 Acute 

pancreatitis should be followed by full recovery of pancreatic function.13  Many individuals go on to 

experience recurrent episodes of acute alcoholic pancreatitis, which is classified as recurrent acute 

pancreatitis.  When symptoms fail to resolve between attacks then a diagnosis of chronic 

pancreatitis can be considered. Unfortunately no such internationally agreed diagnostic criteria for 

the diagnosis of chronic pancreatitis has been established. 

Chronic pancreatitis can present in a variety of ways; it can often be associated with acute or chronic 

abdominal pain, but some individuals may be pain free. Pain is the presenting feature in 77% of 

those with ACP.8  Pancreatic pain is often localized to the upper abdomen and may radiate to the 

back.  This pain is often refractory to analgesia. In severe cases the pain can lead to absence from 

work, hospitalizations and addiction to opioids.10,14,15 
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Painless chronic pancreatitis tends to present with steatorrhoea or be detected incidentally when a 

patient has a CT scan for another purpose and is sometimes difficult to distinguish from pancreatic 

cancer.16 

As yet there is no clear international consensus as to either the diagnosis or management of 

pancreatitis.  Individual groups from Italy, China, Germany, Spain, Belgium and Japan have produced 

guidance documents.17-23  To date there are no management guidelines produced for application in a 

British population and the first American guidelines on the diagnosis of pancreatitis were only 

published at the end of 2014, and therefore have not yet been widely adopted into clinical 

practice.24 
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1.1.2 Pathogenesis of Chronic Pancreatitis 

Despite the fact that CP can be caused by multiple different aetiologies (1.1.3) the consequence is 

fibrosis of the pancreas gland.  

Pancreatic stellate cells are the mediators of fibrosis in the pancreas, which leads to the formation of 

an extracellular matrix in interstitial spaces.25  This process leads to progressive loss of the lobular 

morphology and structure of the pancreas, deforming the large ducts and leading to changes in the 

islets.   

This pancreatic fibrosis is initiated by injury to the pancreas, the mechanism of which depends on 

the aetiology.  The exact pathogenesis of chronic pancreatitis is unknown, but several theories have 

emerged as to its mechanism, reflecting the different processes that may apply due to the variety of 

different aetiological factors implicated in the disease.26  The pathological development of CP is still 

unclear, but several common theories are discussed below including tryspin activation, by-products 

of alcohol metabolism, and oxidative stress. 
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1.1.2.1 Enzyme activation 

Trypsinogen is the inactive form of trypsin and cationic trypsinogen is the most plentiful isoform in 

human pancreatic juice, but there are several isoforms (Figure 1). When trypsin becomes active 

(normally by entropeptidases in the gut) it plays a central role in pancreatic exocrine physiology as it 

initiates the activation of other pancreatic digestive enzymes. In normal pancreatic acinar cells, only 

small amounts of trypsin are activated whilst still in the cell, and there is continued inactivation 

ongoing to prevent the digestion enzymes activation cascade and pancreatic auto digestion. When 

there is any disruption to this pathway there is risk of pancreatic damage. 

Pancreatic secretory trypsin inhibitor (SPINK1) inhibits up to 20% of the trypsin activity. If SPINK1 

fails to inhibit the trypsin activity, trypsin and other zymogens will be hydrolyzed. Hence, a mutation 

in the SPINK1 gene reduces this innate protection system and may lead to pancreatic auto digestion 

(acute pancreatitis) if the level of trypsin activity is increased above that of the protective threshold 

of SPINK1. 

Trypsin activation, such as in hereditary pancreatitis (HP), is believed by some to be insufficient to 

lead to chronic pancreatitis and in fact it is the sustained activation of inflammatory pathways by 

persistent pathogenic stimuli in the acinar cell that may be responsible for the development chronic 

pancreatitis.26 However other studies have shown that trypsin activation alone is insufficient to 

induce CP.27  
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Exon 2
28

 
Codon  15 20 25 30 35 40 45 50 55 60 65 
CTry  AAPFD DDDKI VGGYN CEENS VPYQV SLNSG YHFCG GSLIN EQWVV SAGHC YKS 

ATry  AAPFD DDDKI VGGYI CEENS VPYQV SLNSG YHFCG GSLIS EQWVV SAGHC YKS 

MTry AVPFD DDDKI VGGYT CEENS LPYQV    SLNSG YHFCG GSLIS EQWVV SAAHC YKT 

TRY6  AVPFD DDDKI VGGYT CEENS VPYQV SLNSG YHFCG GSLIS EQWVV SAGHC YKP 

  

Exon 3 

Codon  70 75 80 85 90  95 100 105 110 115 120    125 130    135 140 145 150 

CTry RI QVRLG EHNIE VLEGN EQFIN AAKII RHPQY DRKTL NNDIM LIKLS SRAVI NARVS TISLP TAPPA TGTKC LISGW GNTAS SGA 

ATry  RI QVRLG EHNIE VLEGN EQFIN AAKII RHPKY DSRTL NNDIL LIKLS SPAVI NSRVS AISLP TAPPA AGTES LISGW GNTLS SGA 

MTry RI QVRLG EHNIK VLEGN EQFIN AAKII RHPKY DRKTL NNDIM LIKLS SPAVI NARVS TISLP TAPPA AGTKC LISGW GNTLS FGA 

TRY6  RI QVRLG EHNIE VLEGN EQFIN AAKII RHPKY DRITL NNDIM LIKLS TPAVI NAHVS TISLP TAPPA AGTKC LISGW GNTLS SGA 

 

Exon 4 

Codon   155 160 165 170 175 180 185 190 195 

CTry  DY PDELQ CLDAP VLSQA KCEAS YPGKI TSNMF CVGFL EGGKD SCQ 

ATry  DY PDELQ CLDAP VLSQA ECEAS YPGKI TNNMF CVGFL EGGKD SCQ 

MTry  DY PDELK CLDAP VLTQA ECKAS YPGKI TSNMF CVGFL EGGKD SCQ 

TRY6  DY PDELQ CLDAP VLTQA KCKAS YPLKI TSKMF CVGFL EGGKD SCQ 

 

Figure 1 Different isoforms of trypsinogen 1 

Variation in amino acid sequence of exons 2-4 between between the isoenzymes of trypsinogen; cationic trypsinogen (CTry), anionic trypsinogen (ATry), 

meso trypsinogen (MTry) and Trypsinogen C  (TRY6). Differences for cationic trypsinogen are underlined. 

 



The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Introduction - Chronic Pancreatitis 28 

1.1.2.2 Fatty Acid Ethyl Esters and Calcium Overload 

It has been suggested that higher serum calcium levels may contribute to pancreatitis, as 

hypercalcaemia may predispose the pancreatic acinar cell to abnormal, sustained calcium levels, 

which lead to premature pancreatic protease activation and consequently pancreatitis.29 

Fatty acid ethyl-esters (FAEE), which are products of non-oxidative ethanol metabolism, increases 

calcium concentration through inositol trisphosphate receptors by causing calcium-ATPase pump 

failure due impaired mitochondrial ATP production. Fatty acid ethyl esters have been shown to 

induce pancreatic injury in vivo and in vitro.30 Lowering cellular fatty acid substrate concentrations 

may reduce cell injury in pancreatitis.29 

It has been shown that different FAEEs and the enzyme responsible for their synthesis (FAEE 

synthase) are present predominantly in the organs most often damaged by ethanol abuse, notably 

the pancreas and liver.31  Specific work done in animal models has shown that there is a direct link 

between the non-oxidative metabolism of alcohol to produce FAEE, and the damage of early 

pancreatic cell damage to cause pancreatitis (Figure 2).29,32 
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Figure 2 Schematic diagram of the effects of fatty acid ethyl esters on the pancreas 

(Photos courtesy of Dr D Criddle) 

Demostarates how the non oxidative metabolism of ethonal and fatty acids can lead to pancreatic 

damage. 
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1.1.2.3 Oxidative Stress 

The oxidative stress hypothesis is that by-products of hepatic oxidase activity damage the pancreas 

through chronic reflux of bile into the pancreatic duct.33  This theory has been better established in 

the development of AP.34 

1.1.2.4 Toxic-metabolic 

The toxic-metabolic theory is that alcohol is directly toxic to the acinar cell through a change in 

intracellular metabolism. This metabolic effect results in pancreatic lipid accumulation, fatty 

degeneration, cellular necrosis, and eventual widespread fibrosis. This association may be linked to 

the damage caused by calcium overload, which can lead to an abundance of FAEE, which in turn 

leads to pancreatitis.35 

1.1.2.5 Stone and Duct Obstruction 

It has been postulated that alcohol increases the lithogenicity of pancreatic juice, leading to stone 

formation within the pancreatic ducts. The stones continued contact with the surrounding ductal 

epithelium may lead to ulceration and scarring. Eventually, this can cause atrophy to the pancreas. 

Fibrosis occurs due to the chronic obstruction of flow from the acinar cells causing back pressure.36 

1.1.2.6 Necrosis-fibrosis 

The necrosis-fibrosis theory assumes that all chronic pancreatitis is caused by multiple attacks of 

acute pancreatitis leading to eventually chronic pancreatitis. The inflammation and necrosis 

associated with acute pancreatitis leads to scarring and fibrosis over time.  There is also extrinsic 

compression of the pancreatic ducts due to oedema leading to obstruction, with a consequence of 

stasis, leading to stone formation and atrophy of the pancreas.37 
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1.1.3 Aetiology  

The frequency of different aetiologies varies by geographical location, but in the UK, alcohol is the 

most common aetiology of chronic pancreatitis.38 

1.1.3.1 Alcohol-related Chronic Pancreatitis 

The most common cause of CP in the Western world is alcohol excess (70-90%).8,9,39 It is thought that 

ACP may only be clinically present in around 3% of those who drink to excess.3  Chronic pancreatitis 

is less prevalent than alcohol-related cirrhosis amongst those who drink to excess, and both 

pancreatitis and cirrhosis are not commonly found in the same individuals, suggesting that there 

may be other factors, which lead to susceptibility of either disease in some individuals.40  

Commonly accepted value of excess alcohol range from 20g/day to 80g/day.8,41,42 When the 

threshold was specifically sought by examining a large population of veterans and their relationship 

to alcohol consumption and the development of ACP, a threshold of 40g/day was given as the lower 

limit for very heavy drinking.43  No studies have given a specific time period over which alcohol 

needs to be consumed to develop ACP, but some patients appear to exhibit symptoms over the first 

few years, whereas in the majority there will be a decade or more before ACP is diagnosed.10  

The age of onset of ACP varies but on average is around 40 years of age.10  Once diagnosed with ACP, 

the 5-year survival rate has been estimated at 65%, 10-year survival 43% and the 20-year survival at 

20%.44   

1.1.3.2 Idiopathic Chronic Pancreatitis 

About 10% of cases are diagnosed as idiopathic.5  Calcifications, exocrine insufficiency and diabetes 

develop more slowly in early onset idiopathic chronic pancreatitis than in late onset and alcoholic 

pancreatitis.8 

Identified genes that contribute to idiopathic pancreatitis are SPINK1 (serine protease inhibitor, 

Kazal type 1), and CFTR (cystic fibrosis transmembrane conductance regulator).45,46 These are only 
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associated factors and lead to no clear pattern of inheritance, therefore they are classified as 

idiopathic rather than hereditary pancreatitis. 

1.1.3.3 Hereditary Pancreatitis 

About 1% of chronic pancreatitis is classified as hereditary pancreatitis (HP).5 Hereditary chronic 

pancreatitis is inherited in an autosomal dominant fashion with penetrance of approximately 70%.47 

In the majority of HP families there is a known mutation within the cationic trypsinogen gene 

(PRSS1).  The most common recognised disease causing mutations are p.R122H, p.N29I and arguably 

p.A16V that lead to increased stability of the trypsin product causing autodigestion.48-50 There are 

some families displaying the typical patterns of inheritance for which no disease causing mutation 

has yet been identified.51 The onset of symptoms is typically at 10-14 years of age although diagnosis 

may be delayed in individuals who are part of an as yet unidentified HP family.19,20 

1.1.3.4 Hypertriglyceridaemia  

Hypertriglyceridaemia is a rare cause of chronic pancreatitis that tends to involve the whole gland, 

but more commonly causing acute than chronic pancreatitis.52,53 Familial hypertriglyceridaemia (type 

I, IV or V; Table 1) or secondary triglyceridaemia with levels of triglyceride more than 1000 mg/dL 

may predispose individuals to recurrent acute pancreatitis.3 

Table 1 Classification of different types of familial hypertriglyceridaemia 

Modified from Tsuang 200953 

Classification Lipoprotein 

Blood lipids Risk of 
developing CP Triacylglycerol Combined hyperlipidaemia 

I CM ↑↑↑ ↑ Yes 
IIa LDL - ↑ ↑ No 

IIb LDL, VLDL ↑↑ ↑↑ No 

III IDL ↑↑ ↑↑  No 

Ⅳ VLDL ↑↑ - Yes 

Ⅴ VLDL, CM ↑↑↑ ↑ Yes 

CM – Chylomicrons; LDL – Low Density Lipoprotein; VLDL – Very Low Density Lipoprotein; 

IDL -Intermediate-density Lipoprotein 
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1.1.3.5 Less Common Aetiology 

Obstructive pancreatitis is a distinct entity according to the Marseilles classification, although this no 

longer seems to be recognised as such.1 However, obstruction can be an aetiological factor, for 

example in the case of CP caused by an obstructing pancreatic head tumour.  

Tropical pancreatitis occurs in geographical areas where low protein diet and cassava intake are 

common.54  The aetiology of tropical calcific pancreatitis is related to genetic mutations in the 

SPINK1 gene, but it is still unknown if environmental factors have an influence.55 

Pancreatitis can be caused by hypercalcaemia, either in its own right or secondary to 

hyperparathyroidism.56  Gallstones, the most common cause of acute pancreatitis, have not clearly 

been shown to cause chronic pancreatitis, although there is some evidence to support the 

development of fibrosis following gallstone pancreatitis.57-59  
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1.1.4 Risk Factors for Chronic Pancreatitis 

Risk factors associated with the development of chronic pancreatitis are commonly classified using 

the M-ANNHIEM classification (Table 2).42 

Table 2 M-ANNHEIM classification of risk factors of chronic pancreatitis 

 

A Alcohol consumption 
Excessive consumption (>80 g/day) 
Increased consumption (20–80 g/day) 
Low-Moderate consumption (<20 g/day) 

N Nicotine consumption 
(In cigarette smokers: description of nicotine consumption by pack-years) 

N  
 

Nutritional factors 
Nutrition (e.g., high caloric proportion of fat and protein) 
Hyperlipidemia 

H  
 

Hereditary factors 
Hereditary pancreatitis (defined according to Whitcomb)48 
Familial pancreatitis (defined according to Whitcomb)48 
Early-onset idiopathic pancreatitis 
Late-onset idiopathic pancreatitis 
Tropical pancreatitis 

E Efferent duct factors 
Pancreas divisum 
Annular pancreas and other congenital abnormalities of the pancreas 
Pancreatic duct obstruction (e.g., tumors) 
Posttraumatic pancreatic duct scars 
Sphincter of Odd dysfunction 

I Immunological Factors 
Autoimmune pancreatitis 
Sjögren syndrome-associated chronic pancreatitis 
Inflammatory bowel disease-associated chronic pancreatitis 
Chronic pancreatitis with autoimmune diseases 
(e.g., primary sclerosing cholangitis, primary biliary cirrhosis) 

M Miscellaneous and rare metabolic factors 
Hypercalcaemia and hyperparathyroidism 
Chronic renal failure 
Drugs 
Toxins 
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1.1.5 Diagnosis of Chronic Pancreatitis 

There have been several attempts to reach a consensus on the classification of CP. The Marseilles 

criteria of 1963, 19841 and 198860 provided a clear category defining acute pancreatitis and removed 

the terms acute relapsing and chronic relapsing pancreatitis. The Cambridge classification set in 

198461 classified the severity of disease but is predominately related to ERCP imaging results, and 

mainly idenfies large duct diease., The use of the Cambridge classification in ERCP is now becoming 

obsolete as a diagnostic test due to the high risk of ERCP induced pancreatitis.62  There is currently 

no clear consensus into the best way to diagnose or classify chronic pancreatitis.  The 2014 APA 

guidelines have provided new approaches to this, but they have not yet been validated in clinical 

practice.24 

Imaging is commonly used to confirm the diagnosis and may also assess of the morphology of 

disease to diagnose complications of pancreatitis such as pseudocysts or pancreatic cancer.  The 

diagnosis of advanced CP may be more straightforward if there are calcifications, which may be 

picked up with a plain abdominal X-ray, although these are not completely exclusive to CP.63,64 

Calcifications typically develop years after the onset of symptoms in alcoholics (median 8.7 years) 

and even longer in early onset idiopathic pancreatitis (24.9 years).8  The main diagnostic challenge is 

detecting early stage disease.  
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1.1.5.1 Endoscopic Retrograde Cholangiopancreatography 

Traditionally the most commonly used diagnostic test was Endoscopic Retrograde 

Cholangiopancreatography (ERCP), which could clearly demonstrate the morphology of the duct 

system. ERCP has been traditionally used as the gold-standard against which other modalities have 

been assessed.65  However, it has more recently been recommended that it is only used for 

therapeutic procedures due to the high risk of post-ERCP pancreatitis.62 This is not necessarily the 

case as in individuals with hereditary pancreatitis, who have such extensive damage to the pancreas, 

further pancreatitis is unlikely to be induced.66  However, in this instance it is unlikely that the ERCP 

will be carried out for diagnosis, but rather for screening of this population for the development of 

cancer.67 

1.1.5.2 Magnetic Resonance Imaging and Magnetic Resonance 
Cholangiopancreatography  

Magnetic Resonance Cholangiopancreatography (MRCP) is increasingly being used, as it is a safe, 

non-invasive modality, which does not involve radiation, and does not cause acute pancreatitis. 

Magnetic Resonance Imaging (MRI) can also show extra-pancreatic anatomy. The delineation of the 

pancreatic ducts can be maximized by the administration of secretin.  MRCP can be used to measure 

main pancreatic duct size.68  These measurements tend to be less than that in an ERCP probably 

because contrast injection distends the duct in ERCP and this is not the case in MRCP.69 Side 

branches smaller than 1mm are not well demonstrated at MRCP and therefore the sensitivity for 

side branch abnormalities is low in MRCP.69,70 After secretin injection, duodenal fluid volume can be 

calculated and used as a marker of secretary function, but the value of routine use of secretin in MRI 

is unclear.71  MRI may be superior to CT in detection of fibrosis, but more work needs to be done to 

assess this further.72 
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1.1.5.3 Computer Tomography  

In the early stages of disease, the Computer Tomography (CT) may be normal or show features 

related to acute pancreatitis. CT cannot demonstrate the subtle changes in the side branches that 

can be appreciated using ERCP.73  CT can be useful in the differential diagnosis of carcinoma. Chronic 

pancreatitis may be picked up incidentally when a CT is performed for other reasons.  Its specific use 

for the diagnosis of CP has not been well evaluated but it has been recommended as the first line 

imaging method by the APA 2014 guidelines.24 

1.1.5.4 Endoscopic Ultrasound 

Endoscopic Ultrasound (EUS) has an increasing role in the diagnosis and management of chronic 

pancreatitis. EUS in some studies has been shown to be as effective as ERCP in diagnosing CP.74  EUS 

can also demonstrate abnormalities in many individuals without definite ERCP features.75  EUS 

allows high resolution imaging of both the parenchyma and pancreatic ducts. Experienced clinicians 

can detect early stage CP with good inter-observer agreement (92%).75 

Features include focal hypoechoic areas, irregularity of the main pancreatic duct, dilated side 

branches and echogenic foci.75 The parenchymal features of early chronic pancreatitis are lobulated 

parenchymal pattern and alternating echo-rich and echo-poor areas. Parenchymal changes reflect 

chronic pancreatitis and are independent of age and Body Mass Index (BMI).76 The sensitivity for 

diagnosis of CP in individuals with typical histories and minimal changes on ERCP are quoted as being 

around 86-88%.75,77 

Recent guidance has been given in the diagnosis of CP using EUS, which is referred to as the 

Rosemont classification.78  This has been formed by consensus opinion, and has yet been validated 

for use in diagnostic accuracy. 
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In some centres elastography has been used as an adjunct to enhance the interpretation of EUS. 

Studies into the efficacy of this are limited at present, but results are promising and this warrants 

further investigation.79 

1.1.5.5 Pancreatic Exocrine Function Tests 

Impaired pancreatic enzyme secretion is a common feature in advanced disease but is not 

pathognomonic for chronic pancreatitis. Due to the large functional reserve of the exocrine 

pancreas, function tests may not become abnormal until a large proportion of the parenchyma is 

destroyed.80  Steatorrhoea only becomes clinically evident after about 90% of the pancreas has been 

damaged.80 Pancreatic tumours often cause pancreatic insufficiency and this is an important 

differential diagnosis.81 Those with mild morphological evidence of chronic pancreatitis on imaging 

are expected to have normal pancreatic function tests.81 The purpose of testing is to aid diagnosis 

but abnormalities are insufficient in themselves to diagnose chronic pancreatitis.23 

Formalised direct pancreatic function tests are seldom available outside a few academic centres and 

have problems of standardization, are time consuming and expensive. 

Indirect tests such as faecal elastase measurement or the pancreolauryl test (PLT) are the most 

acceptable form of testing for the majority of people. Elastase is stable in transit through the gut and 

can be measured in stool using ELISA. This test is superior to faecal chymotrypsin but is not able to 

diagnose chronic pancreatitis at an early stage.81-85 

1.1.5.6 Biopsy 

The gold standard for diagnosis of chronic pancreatitis is histopathology, which is rarely available 

unless surgery has been undertaken.65 A few studies have looked at the diagnostic benefit of 

pancreatic biopsy.86,87 However, the biopsy procedure can cause pancreatitis, haemorrhage or fistula 

and there is commonly high false negative results due to potential biopsying of spared areas of 

pancreas.86  
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1.1.5.7 Challenges to Diagnosis of Chronic Pancreatitis 

1.1.5.7.1 Pancreatic Cancer 

Pancreatic cancers and chronic pancreatitis can be potential differentials of pancreatic pathology 

and both can co-exist, making their differentiation challenging.88 Histological diagnosis, which would 

normally be the gold standard to confirm or refute neoplasia, can be difficult as disease may be 

patchy and absence of neoplastic, or fibrosed cells in a biopsy sample, does not necessarily rule out 

the diagnosis.87  Therefore in some cases a definitive diagnosis can only be confirmed with resection, 

with a high risk of morbidity and mortality to the patient. 

1.1.5.7.2 Minimal Change Pancreatitis and Early Chronic Pancreatitis 

A small number of individuals with a clinical diagnosis of CP have equivocal or minor abnormalities of 

the pancreas evident on imaging. This minimal change pancreatitis is more commonly identified in 

middle-aged women and alcohol excess is uncommon.89  Pancreatitics may have normal or abnormal 

pancreatic function tests.90  Due to the difficulty in obtaining objective evidence despite clinical 

symptoms, these cases may often end up being undiagnosed. 

1.1.5.7.3 Groove Pancreatitis 

Groove pancreatitis is a form of segmental chronic pancreatitis that occurs between the dorsocranial 

part of the head and the duodenum. The diagnosis is typically made in men aged 40-50 years with a 

history of alcohol excess with a relatively short history of pain (often less than one year).91 The main 

significance of groove pancreatitis is that the clinical findings can conflict with pancreatic cancer 

causing diagnostic dilemma preoperatively.91  
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1.1.6 Consequences of the Development of Chronic Pancreatitis 

Those with CP may exhibit some or all of the associated problems below. There is no classical 

pattern as to which problems develop, which adds to the difficultly of diagnosing the disease.  

Traditionally, before current investigations were available, the triad of pain, exocrine and endocrine 

insufficiency would be diagnostic of chronic pancreatitis, but now with more sensitive tests, some 

individuals may even be picked up incidentally without any suggestive clinical features. 

1.1.6.1 Chronic Pain 

The most significant consequence for the majority of individuals with CP is the chronic pain that can 

be associated with fibrosis of the pancreas.92  Once pain develops, it can be very difficult to treat and 

patients will often become opiate dependant.  Interventions which can be attempted when opiates 

are no longer effective in pain management include: EUS-guided coeliac plexus block, thoracoscopic 

splanchnicectomy or decompression procedures which can either be endoscopic or surgical but the 

outcomes are often poor, as once pain is established, even with removal of the tissue the nerve 

innovation continues.93 

1.1.6.2 Endocrine Insufficiency 

One of the two main functions of the pancreas is the endocrine release of insulin, and therefore 

chronic damage to the pancreas parenchyma often leads to the development of diabetes.94  

Diabetes purely induced by reduction of parenchyma is referred to as a distinct entity, Type 3c 

diabetes mellitus.95 This is thought to account for around 10% of all cases of diabetes, and the most 

common cause of Type 3c diabetes mellitus is CP.95 

1.1.6.3 Exocrine Insufficiency 

The second role of the pancreas is the production and excretion of digestive juices. Therefore 

damage and loss of cell function leads to exocrine insufficiency in a proportion of pancreatitics.  This 

leads predominately to a reduction in fat absorption, and therefore by default, insufficiency of the 
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fat-soluble vitamins, A, D, E and K.  Pancreatitics can end up with malnutrition related to their CP, 

but this may overlap with aetiology such as alcohol that compounds the lack of absorption with low 

dietary intake.96  Exocrine insufficiency can often be effectively treated with enzyme replacement 

therapy.97 

1.1.6.3.1 Osteoporosis 

Osteoporosis is becoming increasingly recognised as a complication of chronic pancreatitis.98 Due to 

the poor absorption of the fat-soluble vitamins as a result of the exocrine insufficiency, there is poor 

uptake of Vitamin D, leading to osteoporosis and increased fracture rate.99 There are no current 

guidelines into the management of osteoporosis risk in those with chronic pancreatitis.100 

1.1.6.4 Pancreatic Cancer 

The link between pancreatic cancer and chronic pancreatitis is complex.  One is often found to co-

exist with the other, and both can potentially be the causative agent for the other: CP can cause 

neoplasia due to dysplastic changes in the fibrosed tissues over time; tumours can cause obstruction 

of outflow from the pancreas leading to chronic pancreatitis changed in the distal pancreas.101  There 

is an increased incidence of PDAC with CP patients.101 Although at present there are no suitable 

methods for screening of pancreas cancer, lifelong surveillance maybe advisable in these individuals 

should such a test be found.102-104 
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1.1.7 Summary 

Chronic pancreatitis has a prevalence of about 30 per 100000 with the incidence rising tenfold in a 

population of those with a history of heavy drinking.  Chronic pancreatitis is caused by fibrosis of the 

pancreas leading to progressive loss of both structure and function of the gland.  There are multiple 

causes identified, of which alcoholism is the most common.  In addition, an individual’s risk can be 

increased by smoking, poor diet and genetic factors. 

Alcohol-related chronic pancreatitis may develop due to a build-up of FAEE within the pancreas, a 

breakdown of non-oxidative metabolism of alcohol and fat. Although there is the suggestion that 

different drinking patterns and different levels of fat consumption may bear some part in this 

process, it is remains unclear if there is any genetic component. 

No international consensus has been developed as to how to diagnose chronic pancreatitis.  This is 

partly contributed to by the lack of clear definition on what the disease is, and no current diagnostic 

gold standard that is suitable to compare current and future studies against.  Therefore, there would 

be benefit in systematically reviewing the available literature to assess and identify the best 

methods for the diagnosis of chronic pancreatitis. 

  



The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Introduction – Alcohol Metabolism 43 

 Alcohol Metabolism 1.2

As discussed, there are many reasons why individuals develop chronic pancreatitis, however, to 

quote Apte, the most obvious response to the question, why do individuals develop chronic 

pancreatitis is, “it’s the alcohol, stupid”.105 

1.2.1 Ethanol Metabolism 

Ethanol is a two-carbon alcohol and due to its small size and alcoholic hydroxyl group is soluble in 

both aqueous and lipid solutions. These factors allow ethanol to pass freely through the cells of the 

intestinal wall and travel via the portal circulation to the liver, where the majority of alcohol 

metabolism occurs.106 

Alcohol can be metabolised through several different pathways (Figure 3). 

 

Figure 3 Oxidative and non-oxidative metabolism pathways of ethanol and lipids  

Oxidation of ethanol can also occur in peroxisomes with catalase activity but this oxidation pathway 

requires hydrogen peroxide (H2O2) and therefore plays no significant role under normal physiological 

conditions.  
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1.2.1.1 Alcohol Dehydrogenase Pathway 

The main pathway responsible for the majority of ethanol metabolism is initiated by alcohol 

dehydrogenase (ADH; Table 6). ADH is commonly found in hepatocytes and requires NAD+ to oxidize 

ethanol to acetaldehyde, which upon entering the mitochondria is oxidized by aldehyde 

dehydrogenases (ALDH) to produce acetate. 

There are two primary ALDH enzymes involved in this process; ALDH1A1 and ALDH2.107 ALDH1A1 is a 

cytosolic enzyme while ALDH2 resides in the mitochondria. The majority of acetaldehyde oxidation 

utilises ALDH2 in the mitochondria, however, a small amount of oxidation occurs in the cytosol via 

ALDH1.  

1.2.1.2 Microsomal Ethanol Oxidation System  

The alternate ethanol metabolism pathway is the microsomal ethanol oxidizing system (MEOS). This 

pathway uses CYP2E1 and requires NADPH. This pathway is more commonly used in individuals with 

chronic alcohol consumption.108 

1.2.1.3 Non-oxidative Pathway 

The non-oxidative pathway is catalysed by fatty acid ethyl ester (FAEE) synthase (carboxylesterase), 

which results in the formation of FAEE and takes place primarily in the pancreas.109  Due to this 

association with fatty acids, the pathways of alcohol and lipid metabolism are interlinked. 

Alcohol can be metabolised through several different but predominately oxidative pathways.  

However it has been demonstrated that inhibition of oxidative pathways can lead to an increase in 

both hepatic and pancreatic FAEE levels, which are products of non-oxidative metabolism 

(Figure 3).110  This demonstrates that the oxidative and non-oxidative pathways are potential 

inversely linked.32 The preference towards non-oxidative metabolism appears to be stronger in the 

pancreas than in other organs.111 
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1.2.2 Metabolism of Triglycerides 

Alcohol and triglyceride metabolism are closely linked with increased alcohol intake having a J-

shaped relationship with triglyceride levels.112 

Apolipoprotein (APOB), which is related to VLDL synthesis, has been shown to reduce expression 

when alcohol is ingested.113  Acute alcohol intake has been shown to decrease the activity of 

lipoprotein lipase, therefore reducing the lipolysis of VLDL and chylomicrons, causing an increase in 

their presence with increasing alcohol consumption.114  

Chronic alcohol consumption has been demonstrated to increase free fatty acid release, mediated 

by activation of hormone sensitive lipase (LIPE) and a decrease in insulin sensitivity.113 This 

mechanism may contribute to the development of alcoholic steatosis of the liver.  
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1.2.3 Effects of Ethanol Metabolism 

The metabolic effects of inebriation mostly derive from the action of ADH and ALDH and the 

NADH/NAD+ ratio imbalance they cause.  The NADH produced during alcohol metabolism must be 

reduced back to NAD+, therefore the continued ability to metabolize ethanol is dependent upon the 

capacity of hepatocytes to reduce NADH.115 The reduction of NADH is moderated by the Krebs cycle 

in the mitochondria, which in turn is affected by the NADH produced by the ADH and ALDH 

reactions.  There is an increase of hepatic lactate production due to the effect of NADH on the 

hepatic lactate dehydrogenase (LDH) reaction leading to a decrease in the liver’s capacity to deliver 

glucose.115 

The altered NADH/NAD+ ratio also leads to a decrease in fatty acid oxidation, as this process requires 

NAD+.  An increase in fatty acid synthesis and triglyceride production by the liver are associated with 

reduced fatty acid oxidation.116  In the mitochondria, the metabolism of acetaldehyde to acetate 

leads to increased levels of acetyl-CoA, which is diverted to fatty acid synthesis.116 The reduction in 

cytosolic NAD+ leads to reduced activity of glycerol-3-phosphate dehydrogenase (GPDH) resulting in 

increased levels of glycerol 3-phosphate, which aids in the synthesis of the triglycerides. This leads to 

fatty acid deposition in the liver, causing fatty liver syndrome and hyperlipidaemia.106 

Acetaldehyde is produced as a part of alcohol metabolism.  The acetaldehyde combines with 

proteins, nucleic acids and other compounds resulting in impaired activity of the affected 

compounds. Acetaldehyde compounds are known to promote cancer development.106 

Ethanol metabolism can lead to an oxygen deficit in the liver; the metabolism of ethanol requires 

oxygen, therefore there are higher demands on oxygen from the blood.  Hepatocytes residing beside 

arteries supplying oxygenated blood to the liver will tend to take up more than their normal share of 

oxygen and therefore the perivenous hepatocyte may have depleted levels of oxygen; therefore this 

hypoxic area is normally the first to show evidence of damage from chronic alcohol consumption.117 
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The metabolism of ethanol via the CYP2E1 pathway results in increased reactive oxygen species 

(ROS) production, including superoxide, hydrogen peroxide, and hydroxyl radicals.118 ROS production 

is associated with cancer development, atherosclerosis, diabetes, inflammation, aging, and other 

harmful processes.119 Under normal conditions, a balance between ROS production and antioxidant 

removal exists in cells but this balance can be disturbed. Alcohol consumption increases ROS 

production which leads to oxidative stress, an established pathway in the development of chronic 

pancreatitis.120 

Under conditions of acute ethanol consumption, the majority of ethanol is degraded by the hepatic 

oxidative pathways, predominantly the alcohol dehydrogenase mediated pathway. However, under 

conditions of chronic ethanol consumption, hepatic MEOS activity and non-oxidative pathways are 

induced and quantitatively make a greater contribution to ethanol catabolism. 

1.2.3.1 Organ Specific Effects of Alcohol 

It remains unclear why organs other than the liver develop alcohol-induced damage, especially the 

heart, pancreas, and brain, which lack or show minimal oxidative metabolism of ethanol and 

therefore are free of substantial acetaldehyde production.31 

Alcohol encourages the collection of fat in the liver predominately through replacement of ethanol 

with fatty acids as the main hepatic fuel; the degree of fat deposition depends on the dietary supply 

of lipids.121 

A statistically significant increase of class III alcohol dehydrogenase (ADH3) isoenzymes has been 

demonstrated in serum from individuals with both acute and chronic pancreatitis. In addition the 

activity of the class I ADH isoenzyme was significantly higher in serum from ACP patients.122  



The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Introduction – Alcohol Metabolism 48 

1.2.4 Ethanol Metabolism and Alcoholism 

In addition to the predisposition of individuals to develop chronic pancreatitis in relation to their 

alcohol consumption, it must also be considered that some individuals have a greater predisposition 

for substance abuse. 

There are several different commonly described polymorphisms of both ADH and ALDH genes 

(Appendix 10.1). Several of these variations have been linked with alcohol dependence (AD).123 

ADH1A, ADH1B, ADH1C and ALDH2 all play a central role in alcohol metabolism.124 It is thought that 

genetic variability in these genes is associated with an individual’s susceptibility to developing 

alcoholism and this also has potential to mediate alcohol-related tissue damage. Common 

polymorphisms exist in both ADH1B and ADH1C genes, which are associated with varying levels of 

enzymatic activity (Table 6).125 

The ADH1B alleles occur at different frequencies in different populations. For example, the ADH1B*1 

form is found predominantly in Caucasian and Black populations, whereas ADH1B*2 is more 

common in Chinese and Japanese populations and is seen in around 25% of people with a Jewish 

background.126-128 

Although many ALDH genes have been identified, only ALDH2 and to a lesser extent ALDH1 have 

been shown to metabolise acetaldehyde.129  

Because polymorphisms of ADH and ALDH2 play an important role in determining peak blood 

acetaldehyde levels, they also influence vulnerability to alcohol dependence; polymorphisms that 

elevate acetaldehyde levels reduce the amount of alcohol drunk. As a consequence, alcohol-induced 

tissue damage is reduced in populations that harbour these polymorphisms due to the reduced 

preference for drinking.130   
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1.2.5 Summary 

Ethanol metabolism has many different pathways, which commonly produce disease-causing 

products such as acetaldehyde, reactive oxygen species, and fatty acid ethyl esters.  Oxidative 

metabolism is chosen preferentially but under some circumstances, especially within the pancreas, 

the non-oxidative pathway may be used. 

Genetic variations in genes related to alcohol metabolism have been shown to influence those who 

become dependent on alcohol.  Alcohol excess can lead to various disease processes effecting the 

liver, pancreas, heart and brain, but not all diseases seem to be directly dose-related, and some 

individuals may be more predisposed to one disease process rather than another. 
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 Alcoholic Liver Disease 1.3

This thesis examines why some individuals who abuse alcohol get pancreatitis while others do not. 

Alcohol can cause damage to other organs in the body other than the pancreas, the most prominent 

of which is the liver.  Alcoholic liver disease (ALD) arises in around 30% of heavy drinkers and liver 

cirrhosis in 10%.131,132 

1.3.1 Definition of Alcoholic Liver Disease 

ALD is a combination of different disease processes with the liver, as a result of alcohol excess, which 

include fatty liver, hepatitis and cirrhosis. 

1.3.1.1 Alcoholic Fatty Liver Disease 

Heavy alcohol consumption, even over only a few days, starts the build-up of fats within the liver 

(steatosis), which is the first step of the development of ALD.  Steatosis does not cause any systemic 

symptoms and is reversible, but if excess alcohol consumption continues the extent of the liver 

disease will progress. 

1.3.1.2 Alcoholic Hepatitis 

Alcoholic hepatitis is normally the second stage of the development of ALD. Excess alcohol intake 

over a more prolonged period of time leads to inflammation of the liver.  The liver damage 

associated with mild alcoholic hepatitis is usually reversible if alcohol consumption is stopped. 

1.3.1.3 Cirrhosis 

Cirrhosis is the final stage of ALD, when the disease is well established and the liver becomes 

significantly scarred.  Once decompensated cirrhosis is established then life expectancy at 5 years 

can be as low as 15%.133 
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1.3.2 Pathophysiology of Alcoholic Liver Disease 

In the presence of alcohol excess, liver disease is due to production of toxic metabolite acetaldehyde 

in the liver. Acetaldehyde is toxic to the mitochondria, which promotes leakage.134 

In addition, the generation of NADH, which promotes steatosis of the liver by stimulating the 

synthesis of fatty acids and opposing their oxidation. Excess dietary lipids and their replacement with 

triglycerides also promote steatosis.  

The CYP2E1 metabolism pathway releases free radicals, which cause oxidative stress and in turn can 

lead to altered enzyme activity. Oxidative stress and associated cellular injury promote inflammation 

in the liver. 

Intracellular concentration of free fatty acids may be in sufficient levels to damage membranes, 

leading to necrosis and inflammation, which can progress to fibrosis and ultimately cirrhosis.134 

1.3.3 Natural History of Alcoholic Liver Disease 

Studies of individuals with a strong history of alcohol excess suggest that 80% develop steatosis, 

which is the earliest and most common histopathological manifestation of ALD.131 Steatosis occurs in 

most people consuming alcohol in excess of 80g/day, but normally resolves within 2–4 weeks of 

abstinence; only 20–40% individuals with steatosis go on to develop alcoholic steatohepatitis (ASH) 

and of them only around 40% will go on to develop cirrhosis.135,136 In some cases the hepatitis stage 

may be bypassed but the overall figure for the development of alcoholic cirrhosis is approximately 

10% of heavy drinkers. 

There is an increased susceptibility of women as compared with men to develop alcoholic liver 

disease, however overall the disease process in more common in men, as they are more likely to 

consume alcohol to excess.137 
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1.3.4 Diagnosis of Alcoholic Liver Disease 

It can be very difficult to predict the clinical stage in ALD before the development of decompensated 

cirrhosis.131 In addition, some ALD patients may present with decompensated chronic liver disease 

without cirrhosis on biopsy. Therefore staging of ALD is most accurately performed though liver 

biopsy, which is not always available or suitable, especially for those with deranged clotting function. 

Typical laboratory findings in ALD include transaminase levels with aspartate aminotransferase (AST) 

greater than alanine aminotransferase (ALT) as well as increased mean corpuscular volume (MCV), 

and gamma-glutamyltranspeptidase (GGT). In unclear cases, the diagnosis can be supported by 

imaging and liver biopsy. The histological features of ALD can ultimately define the diagnosis 

according to the typical presence and distribution of hepatic steatosis, inflammation, and Mallory-

Denk bodies (inclusions found in the cytoplasm of liver cells).138 

1.3.5 Chronic Pancreatitis and Alcoholic Liver Disease  

There has been shown to be an inverse relationship between the risk of developing pancreatitis 

symptoms and the risk of developing liver symptoms, suggesting that the mechanism of the 

development of these disease processes is different.139  Even when histologic samples are examined 

the correlation of presence of the two disease processes is low.140 

Chronic alcoholic liver disease and chronic pancreatitis have a well-described association due to their 

common aetiology.40  Although most individuals with alcoholic pancreatitis do not have cirrhosis, 

72% of those with chronic pancreatitis have abnormal liver biopsies (12.5% have cirrhosis, and the 

remaining patients have steatosis, cholestasis, hepatitis or fibrosis).40 About 15% of individuals with 

known cirrhosis have evidence of chronic pancreatitis.40 

Several studies have looked at lifestyle factors to assess if alcohol intake or type predisposed 

patients to the develop ACP or ALD (Table 3).141 These studies show no conclusive evidence that 

specific drinking habits affect a patient’s predisposition to develop either ALD or ACP. 
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It has been shown that ACP, rather than ALD, may be more common in alcoholics who smoke.142  

Studies looking at the consumption of a high-protein and high-fat diet as a factor in the development 

of chronic pancreatitis in the alcoholic patient have not shown any direct association.137 
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Table 3 Review of published effects of drinking habits on the development of Alcohol-related Chronic Pancreatitis and Alcoholic Liver Disease 

 

Paper Year Population 

Number of participants 

(ACP vs. ALD) 

Age started drinking 

(ACP vs. ALD) 

Type of alcohol consumed 

(ACP vs. ALD) 

Daily intake 

(ACP vs. ALD) 

Wilson141 1985 Australia 20 vs. 33 No comment 

Beer (70% vs. 48%; NS) 

Spirits (25% vs. 55%; NS) 

Wine (5% vs. 27%; p = 0.07) 

No comment 

Mezey137 1988 USA 42 vs. 18 No comment 

Beer (7% vs. 33%; p = 0.01) 

Spirits (50% vs. 39%; NS) 

Wine (14% vs. 6%; NS) 

180 vs. 218g/day; NS 

Levy143 1995 France 56 vs. 50 19 vs. 19.6; NS 

Beer (77% vs. 84%; NS) 

Spirits (75% vs. 76%; NS) 

Wine (80% vs. 98%; p < 0.005)  

2.1 vs. 2.5g/day/kg; NS 

 

Nakamura144 

 

2004 Japan 59 vs. 17 No comment Spirits (71% vs. 53%; p = 0.05) 
>150g/day  

58% vs. 71%; NS 

 

Veena145 

 

2012 India 119 vs. 188 24.3 vs. 22.8 years; NS No comment 129 vs. 131g/day; NS 

 

Spicak146 

 

2012 Czech 66 vs. 80 
Started before age 15 

(29% vs. 88%; p = 0.03) 
Beer (77% vs. 56%; p = 0.02) 58 vs. 64g/day; NS 
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1.3.6 Summary 

Alcoholic liver disease is present in around 30% of all patients with a strong history of alcohol 

dependence.  Clinically, there is little overlap in patients who develop ACP and ALD, suggesting that 

it is not simply the amount of alcohol consumed leading to a disease process but in fact there may 

be genetic aspects that leads to development of one disease process over another. 

Life style and environmental factors have been compared between the two groups to try and 

account for the different disease processes, but no clear trend has been identified to explain this. 
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 Genetics 1.4

1.4.1 Characterising Genetic Differences 

Variations can be in several different forms such as Single Nucleotide Polymorphisms (SNPs), 

Insertions or Deletions (Indels), Variable Nucleotide Tandem Repeat (VNTR) and Copy Number 

Variants (CNV) as detailed below in Table 4. 

Table 4 Summary of commonly found polymorphisms  

Polymorphism Description 

Single 

Nucleotide 

Polymorphisms 

(SNPs) 

SNPs are when a single genomic position has more than one potential base. In 

non protein-coding regions may still affect transcription on gene coding, but 

often their effect cannot be clearly quantified.  These could be due to codon bias, 

enhanced binding or be at a splice site.147  

Insertion and 

Deletions (Indel) 

Insertion or the deletion of bases in DNA. If the indel is not a multiple of three 

then this will cause a frame shift in the amino acids produced, therefore, natural 

selection makes their presence uncommon in coding regions. Indels can be 

difficult to pick up accurately in some forms of genetic sequencing depending on 

the mechanism of base reads.  

Variable 

Nucleotide 

Tandem Repeat 

(VNTR 

The nulecotide repeats cluster together and oriented in the same direction. 

Individual repeats can be removed from (or added to) the VNTR via 

recombination or replication errors, leading to alleles with different numbers of 

repeats, commonly trinucleotide repeats.148 Due to the repetitive nature of the 

sequence, many sequencing techniques that use short amplicons to eventually 

build the genomic sequence can fail to sequence VNTRs; the fragmentation of the 

DNA prevents accurate reconstruction of the repeating sequence.  

Copy Number 

Variants (CNV) 

 

CNVs are a duplication of a gene, or a section of a gene, meaning that the copied 

area may be more active.  It is often difficult to identify CNVs as most sequencing 

techniques will only read a sequence and not quantify the proportionate amount 

of it.  
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1.4.2 Genetics of Chronic Pancreatitis 

In the majority of cases the genetics of chronic pancreatitis is poorly understood.  Only small 

numbers of patients are either classified as having hereditary or familial CP.149 The development of 

CP is complex and multifactorial with potential gene-gene interactions in addition to gene-

environmental factors.  Genetic influence can be divided into those with hereditary pancreatitis (a 

clear pattern of autosomal dominant inheritance), familial pancreatitis (those with a family 

predisposition with no clear autosomal link) and those with potential associated genetic factors. 

Genetic risk factors that link alcohol to susceptibility to CP have not been clearly defined.150 

1.4.2.1 Hereditary Pancreatitis 

Those patients classified with HP exhibit an autosomal dominant pattern of inheritance that 

accounts for around 1% of all known cases of chronic pancreatitis.151 Around 80% of hereditary 

pancreatitis cases can be attributed to known variants in the serine protease 1 (PRSS1) gene, which 

is the only identified disease-causing gene, with the remaining 20% due to an as yet unknown 

cause.152 PRSS1 codes for cationic trypsinogen and disease causing variants within this gene have a 

generally accepted penetrance of around 70%.47 Within the hereditary pancreatitis subpopulation, 

the cumulative risk of pancreatitis cancer rises from a 6-7-fold increase in sporadic CP patients to 

around 69 fold.101  

The first identified and most commonly found variant within PRSS1 is p.R122H, accounting for 

around 50-65% of known HP cases.67,153,154 The variant p.R122H results in increased trypsin stability, 

increased zymogen stability and increased autoactivation leading to increased intrapancreatic 

trypsin activity which can lead to pancreatitis.48,155 

An additional polymorphism affecting the same codon but with a different affect is p.R122C.156  This 

adds an extra cysteine leading to partial misfolding of the recombinant protein causing reduced 

activity, autolysis, and autoactivation similar to p.R122H.157 
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The p.N29I variant accounts for 20% of HP cases.47  It has no effect on trypsin or trypsinogen stability 

but increased autoactivation.158 The less common p.N29T variation exhibits a phenotype similar to 

that of p.R122H and therefore as increased autoactivation was the common factor observed within 

the previously documented variations, the conclusion was put forward that autoactivation is the 

common pathogenic mechanism of hereditary pancreatitis.155,159 

p.A16V has been identified as a less frequent variant of PRSS1 in patients with pancreatitis.50,160  

p.A16V affects the first amino acid of mature trypsinogen, residing at the start of the signal peptide, 

although not forming a part of it, and therefore it is considered to influence secretion. However, the 

low penetrance of p.A16V (44%) may suggest this is a fairly conservative substitution, and has been 

identified in idiopathic CP cases with no family history.47 

Copy number variants have also been demonstrated within PRSS1.156  A list of commonly identified 

variations is found in Table 5.  An up-to-date list of known PRSS1 variants is collated at 

http://www.pancreasgenetics.org/.  
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Table 5 Time line of identification of disease causing mutations reported in PRSS1 

(modified from Chen161) 

 
Missense mutation  

1996 p.R122H48 Increases trypsin stability and enhances trypsinogen autoactivation162 

1997 p.N29I49 Enhances trypsinogen autoactivation and increases trypsin stability155 

1999 p.A16V50 Possibly increases the rate of chymotrypsinogen C-mediated 

trypsinogen activation163 

1999 p.K23R164 Increases trypsinogen autoactivation165 

2000 p.D22G166 Increases trypsinogen autoactivation165 

2001 p.R116C167,168 Results in protein misfolding that possibly leads to endoplasmic 

reticulum stress169 

2001 p.R122C170 Increases trypsin stability and enhances trypsinogen autoactivation157 

2002 p.N29T171 Enhances trypsinogen autoactivation and increases trypsin stability155 

2003 p.D19A165 Increases trypsinogen autoactivation165 

Copy number mutation 

2006 605-kb triplication172 Gene dosage effect 

2008 605-kb duplication156 Gene dosage effect 

2010 320-kb complex CNM173 Gene dosage effect 

Double gain-of-function mutation  

2008 PRSS2/PRSS1 hybrid174 Gene dosage effect plus the effect of PRSS1 p.N29I 

Microduplication 

2011 p.K23 I24insIDK175 Increases trypsinogen autoactivation175 

PRSS1-PRSS2 loci 

2012 PRSS1-PRSS2 SNP176 Disease susceptibility by altering expression of the trypsinogen gene 
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1.4.2.2 Familial Chronic Pancreatitis 

Familial chronic pancreatitis (FCP) are cases in which there is not a clear autosomal dominant 

pattern of inheritance, but there is a familial trend.  The two genes that have been commonly 

associated with this form of pancreatitis are SPINK1 and CFTR. 

1.4.2.2.1 Serine protease inhibitor, Kazal-type 1 

SPINK1 encodes PSTI (pancreatic secretory trypsin inhibitor; one of the defensive mechanisms 

against premature trypsin activition within the acinar cells) and SPINK1 mutations are thought to be 

a disease modifying factor rather than being a disease-causing factor in chronic pancreatitis.177,178 

SPINK1 was first associated with chronic pancreatitis with the indication of p.N34S variant in 18.75% 

of idiopathic CP patients, but not present in any controls.45 However, p.N34S variant has not been 

demonstrated to result in a functional defect. By expression studies, p.L14P and p.L14R mutations 

demonstrated a markedly reduced SPINK1 expression and resulted in loss of function.179 

A few other polymorphisms have been noted in SPINK (including p.D50E, p.P55S and p.C58C), but 

their clinical significance remains unclear.180 

There is some evidence that SPINK1 may work in synergy with other variants.  It has been recently 

reported that the coinheritance of CFTR p.R75Q and SPINK1 p.N34S variants is significantly higher in 

patients with idiopathic chronic pancreatitis than in controls (8.75% vs. 0.38%).181  In addition there 

is some evidence that p.N34S variant may be more potent in a specific haplotype with other 

variations.182 

A calcium-sensing receptor (CASR) gene variant (p.L173P) has been associated with a family with the 

p.N34S SPINK1 variant, who also have a history of familial hypocalciuric hypercalcaemia.158  An 

association has also been demonstrated with the presence of the p.R990G CASR variant, with the 

common SPINK1 variant, especially in the presence of heavy alcohol consumption.183  
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p.P163R, p.I427S, p.D433H, p.V477A, all lying within CASR, have also been described as being 

associated with CP in the presence of p.N34S.184  

1.4.2.2.2 Cystic fibrosis transmembrane conductance regulator  

Cystic fibrosis transmembrane conductance regulator (CFTR) is most commonly associated with 

cystic fibrosis (CF), a disease caused by high chloride output from secretory cells, predominately in 

the lungs and the pancreas, and therefore commonly causes pancreatic dysfunction.  Symptoms of 

pancreatitis can be present in the absence of any other associated CF features.185 

CFTR disease causing variants are common in the normal population (1 in 25 patients) but normally 

these variants need to be inherited from both parents to cause CF itself.  However, some of the 

heterozygous variants can lead to chronic pancreatitis.186-188 

Initial studies into the effect of CFTR variations in CP showed 134 patients with CP for 22 mutations 

of the CFTR gene. None of the patients had a mutation on both copies of the CFTR gene.46 Eighteen 

patients (13.4%) had a CFTR mutation on a single chromosome, as compared with a frequency of 

5.3% among 600 controls (p < 0.001). A total of 10.4% (14/134) of the patients had the 5T-allele 

(intron 8), which is twice the expected frequency (p = 0.008).  The most commonly recognised CFTR 

variants are p.R75Q, p.I148T, 5T-allele and p.E528E.189 

A specific CFTR haplotype has been shown to be associated to CP compared to healthy controls 

(p=0.045).186 The haplotype contains three common synonymous SNPS, CFTR_rs213950 (p.V470M), 

CFTR_rs1042077 (p.T854T) and CFTR_rs1800136 (p.Q1463Q), none of which are known to be 

associated with CP. 

  



The Role of Genetic Variation in the Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Introduction – Genetics of Alcohol Metabolism 62 

1.4.2.2.3 Other Genes Associated with Familial Chronic Pancreatitis 

1.4.2.2.3.1 PRSS1 

Although some mutations in PRSS1 are very clearly associated with hereditary pancreatitis (Chapter 

1.4.2.1) the penetrance of some other variants is so low that they are better described as being 

associated with FCP. This could be extended to include the p.A16V variant described in the HP 

section.47 

Other non-synonymous polymorphisms, such as p.K170E and p.E79K have been shown to have an 

association with CP, but their true pathogenic nature is unclear.190 

1.4.2.2.3.2 PRSS2 

PRSS2, which encodes anionic trypsinogen, lies close to the genetic position of PRSS1.191  The variant 

p.G191R in PRSS2 has been shown to be protective against the development of chronic 

pancreatitis.192 The polymorphism was present in 3.4% controls but in only 1.3% of CP patients (OR 

0.37); these findings were confirmed in Japanese populations.
159

 p.G191R is thought to moderate 

intrapancreatic trypsin activity and thereby protects against chronic pancreatitis.191 

A PRSS1/PRSS2 hybrid, containing exon 1 and 2 from PRSS2 and exons 3 to 5 from PRSS1, has been 

demonstrated in a French family.174 This was thought to be disease causing by acting simultaneously 

as a 'quantitative' copy number mutation and a 'qualitative' missense mutation. 

There has been reported CNV associated with both duplication and triplication of a 605kb segment 

on chromosome 7q35 associated with chronic pancreatitis.  This has led to both increased copy 

number of PRSS1 as well as PRSS2.193 
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1.4.2.2.3.3 PRSS3 

Protease, serine, 3 (PRSS3) encodes a trypsinogen (mesotrypsin), a member of trypsin family. This 

enzyme is expressed in the brain and pancreas and is resistant to common trypsin inhibitors. Four 

transcript variants encoding different isoforms have been described for this gene. 

Although PRSS3 is thought to be a likely candidate gene for development for CP, several studies have 

failed to develop a clear causative relationship.194,195 There has been a possible association with 

p.E32del, a frequent polymorphic variant, but has not been demonstrated to a statistically significant 

level.195 No CNVs have not been demonstrated in PRSS3.196 

1.4.2.2.3.4 Chymotrypsin C 

Chymotrypsin C (CTRC) codes for a protein that promotes the degradation of trypsin and has been 

shown to be associated with idiopathic and alcoholic chronic pancreatitis.197 The CTRC variants are 

known to exhibit diminished secretion and/or activity.189 

One study identified two common variants and 19 rare variants in patients with idiopathic chronic 

pancreatitis.198 These rare variants, when combined, were shown to be significantly higher in ICP 

than controls (12% vs. 1.1%; OR, 11.8; p < 0.001)). 

p.R254W and p.K247_R254del were significantly overrepresented in patients with alcoholic, 

idiopathic or hereditary chronic pancreatitis (2.1% vs. 0.6% and 1.2% vs. 0.1% respectively).197 

Functional analysis of these and other associated CTRC variants showed impaired chymotrypsin C 

activity and/or reduced secretion. 
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1.4.3 The Genetics of Alcohol Metabolism 

There are several key genes associated with both the oxidative and non-oxidative pathways of 

alcohol dependence.199 Several of these genes have common polymorphisms and are linked to 

protection against the development of alcohol dependence, predominately through causing adverse 

reactions due to high acetaldehyde levels caused by the enzyme dysfunction. 

1.4.3.1 Alcohol Metabolism and Alcohol Dehydrogenase 

There are several different genes, and gene classes of alcohol dehydrogenase (Table 6).  One group 

has claimed specific expression of ALDH1A1, ALDH2, ADH1, and ADH5 in pancreas, although no 

other group has substantiated this.200 

 

Table 6 Enzymes within the Alcohol Dehydrogenase (ADH) family 

(Modified from Hurley 2012125) 

Gene Name and 

Common Haplotypes$ Gene Class Protein Name KM(mM) for Ethanol Primary Tissue 

ADH1 I α 4.0 Liver 

ADH2*1 

ADH2*2 

ADH2*3 

I 

 

β1 

β2 

β3 

0.05 

0.9 

40 

Liver, lung 

  

  

ADH3*1 

ADH3*2 

I 

I 

γ1 

γ2 

1.0 

0.6 

Liver, stomach 

  

ADH4 II π 30 Liver, cornea 

ADH5 III χ >1000 Widely expressed 

ADH6 V ADH6 Unknown Stomach 

ADH7 IV μ or σ 30 Liver, stomach 
$Description of haplotypes is given in Appendix 10.1.  
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1.4.3.1.1 Alcohol Dehydrogenase 1A 

Two common genetic variants have been identified in ADH1A1, ADH1A1*2 (17bp deletion in the 

promoter region present in many different populations) and ADH1A1*3 (3bp insertion in the 

promoter region only described in those of African descent); both polymorphisms have been 

associated with alcohol dependence.201 

1.4.3.1.2 Alcohol Dehydrogenase 1B 

The three most studied alleles of ADH1B are referred to as ADH1B*1 (the reference allele, encoding 

β1 with arginine at both positions 48 and 370 in the amino acid chain), ADH1B*2 (encoding β2 by 

p.R48H (ADH1B_rs1229984)), and ADH1B*3 (encoding β3 p.R370C (ADH1B_rs2066702); Table 39). 

ADH1B*2 has been shown to be negatively associated with alcohol dependence, due to the 

problems of alcohol metabolism present in this population group.202  The frequency of the ADH1B*2 

carriers has not been shown to be different in ACP than other alcohol dependent populations.203 

1.4.3.1.3 Alcohol Dehydrogenase 1C 

The two most studied polymorphism ADH1C are ADH1C*1 and ADH1C*2 (Appendix 10.1, Table 40). 

These two alleles differ at two sites, resulting in two amino acid changes: the enzyme encoded by 

ADH1C*2 (γ2) has amino acid variation of p.R272Q (ADH1C_rs1693482) and p.I350V (ADH1C_rs698). 

The functional change in relation to p.I350V may be related to linkage disequilibrium with p.R48H 

within ADH1B.204 

In a study of Polish populations, those homozygous for ADH1C*2 were thought to be protected from 

chronic pancreatitis compared to other populations exposed to alcohol excess.205  Other studies 

report no association of ADH1C*1 with alcohol dependance (AD) in European samples.206 
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1.4.3.2 Alcohol metabolism and Aldehyde Dehydrogenase 

An intron identified in ALDH1A1_rs8187974 may be associated with alcohol consumption behavior, 

but needs to be replicated to prove these data.207 No other associations have been well described. 

This is more common in individuals with a polymorphism in ALDH2 (Appendix 10.1) that leads to low 

acetaldehyde oxidizing capacity, which is functionally significant even in the heterozygous form.208 

This polymorphism is prevalent in those of Chinese, Japanese, and Korean descent, leading to high 

leaves of intoxication in these populations after relatively little intake, meaning this variant is 

strongly protective against alcohol dependence. The polymorphism is not normally demonstrated in 

European or African populations.209 

Other than the well-described polymorphism of ALDH2, there have not been any other disease 

associated SNPs described within the coding gene. ALDH2*2 is common in oriental populations, 

being present in around 50% Chinese and Japanese populations.127,128 ALDH2*2 heterozygotes and 

particularly homozygotes show increased acetaldehyde levels after alcohol consumption and 

therefore experience significant negative physiological responses to alcohol.210 

1.4.3.3 Alcohol metabolism and Cytochrome P450 

There are several different polymorphisms of CYP2E1 (Appendix 10.1, Table 41) which vary between 

populations.211 

The CYP2E1*1D polymorphism is found more commonly in non-Caucasian populations, and has been 

shown to increase the risk of alcohol dependence.212 This trend was also present in Caucasian 

populations, but did not reach significance. 

There is a well described relationship with both alcohol dependence and ALD with CYP2E1*5B (also 

known as CYP2E1*c2), and to a lesser extent with CYP2E1*5A.213  



The Role of Genetic Variation in the Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Introduction – Genetics of Alcohol Metabolism 67 

1.4.3.4 Genes of Alcohol Metabolism Associated with Chronic Pancreatitis 

Although there is a clear association between the consumption of alcohol and chronic pancreatitis, 

the sensitivity of the pancreas to injury from alcohol is dependent on other factors (environmental, 

dietary or genetic).214 Specifically within the subgroup of patients with ACP, certain genetic 

polymorphisms have been identified within the genes commonly associated with alcohol 

metabolism that appear to predispose patients to the development of alcohol dependence and 

chronic pancreatitis. 

The frequency of the ADH1B*2 carriers has not been shown to be different in ACP than other alcohol 

dependent populations.203 

Those homozygous for ADH1C*2, in a Polish population, have been shown in one study to be 

protected from chronic pancreatitis compared to controls exposed to alcohol excess and did not 

develop chronic pancreatitis.205  

The common ALDH2*2 has been shown to be more common in ACP (71%) than in alcoholics without 

signs of the disease (48%), but was statistically lower than in the normal population (76%) which was 

replicated in a similar study.203,215 

Heterozygotes CYP2E1*5A/CYP2E1*5B were present only in patients consuming excessive amounts 

of ethanol, in 7% of patients with alcoholic cirrhosis and in 4.5% of those with ACP.216  This has not 

been demonstrated in other studies but they may be insufficiently powered to identify these rare 

polymorphisms.217,218 Carboxyl-ester lipase (CEL) has been examined previously in two different 

studies.41,219 The original work, carried out in Japan, showed an association between both the 

absence of ACP and being homozygous for the normal 16-repeat alleles and an increase incidence of 

ACP in individuals with a repeat longer than 16-repeats.219  However, when attempts were made to 

replicate this in a second Germany population, the findings were not substantiated.41 
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In addition to its established association with hypertriglyceridemia, the LPL polymorphism, p.S447X 

has been specifically linked with patients with a history of pancreatic calcification and 

steatorrhoea.220 

APOC2 deficiency is an uncommon, autosomal dominant condition that is normally identified in 

childhood and can lead to pancreatitis.221 There are individual reports of loss of function 

polymorphism such as p.V40T in APOC2 or p.T133R in APOA5 can lead to hypertriglyceridemia, 

which therefore can lead to pancreatitis.222 
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1.4.3.5 ABO Blood Group System 

The ABO blood type is well recognized to be associated with some disease processes such as gastric 

cancer.  In the case of pancreatic diseases, several studies have identified an association between 

those who developed pancreatic cancer and a SNP in linkage disequilibrium with the O blood group, 

giving a raised OR of 1.2 (95% confidence interval 1.12-1.28).223,224 

Although there is some association with pancreatic cancer, other studies have failed to show an 

association with chronic pancreatitis.153,225,226  
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1.4.4 Genetics of Alcohol Liver Disease 

Other than the established association of ADH1B*1, ADH1C*2 and ALDH2*1 with the risk of 

developing AD, there is no evidence that any of the commonly recognised enzymes involved in the 

metabolism of ethanol have any effect on the development of ALD.227 

CYP2E1*5B (intronic SNPs CYP2E1_rs3813867 and CYP2E1_rs2031920) has been shown to be an 

associated factor with the development of ALD in both an Asian, and a Caucasian population.213 

Interleukin 1B has been shown to have some association with the development of ALD in one 

study.228 The SNP IL1B_rs16944 is present significantly more often in patients with alcoholic cirrhosis 

than in those with non-cirrhotic ALD (p = 0.026), heavy drinkers without ALD (p = 0.001), and HC (p = 

0.032). The frequencies of IL1B_rs16944 (p = 0.030) and of IL1B_rs1143634 (p = 0.027) were both 

significantly higher in heavy drinkers without ALD than in patients with ALD.  The haplotype, 

IL1B_rs16944/IL1B_rs1143634 was associated with the development of alcoholic cirrhosis (p < 0.05). 

Several studies have shown a polymorphism within PNPLA3 is associated with ALD, 

PNPLA3_rs738409 (p.I148M).227  The presence of the minor SNP has been shown in four studies to 

significantly increase the OR of developing ALD.229 
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1.4.5 Methods for Assessing Genetic Variation 

When assessing different modalities of genetic sequencing for their suitability for a specific project, 

several factors need to be taken into account: the type of disease processes (germline, somatic); the 

type of variation to be assessed; area to be assessed; time scale of the project; and budget of the 

project. 

There are many different techniques that are currently available for genetic sequencing but each has 

different implications in terms of throughput, area to be sequenced, time, and cost.   This is a field 

that is constantly evolving, but below are a description of the more traditional methods used over 

the last few decades, moving into Next Generation Sequencing (NGS) options which became 

available following the first whole genome sequencing in 2002. 

1.4.5.1 Sanger Sequencing 

The classical chain-termination method requires a single-stranded DNA template, a DNA primer, 

DNA polymerase and both normal and modified di-deoxynucleotidetriphosphates (ddNTPs), the 

latter of which terminate DNA strand elongation.230  The different ddNTPs can be selectively 

fluorescently labelled. The various products are then measured and the sequence derived by 

ordering the lengths. 

This system works well when small-scale projects require long continuous sequences, of over 500bp 

reads, or when the sequence to be read is largely unknown as there is no reference sequence to 

compare sequenced fragments to; otherwise it has been mostly superseded by other techniques. 

1.4.5.2 Polymerase Chain Reaction (PCR) based approaches 

There are a variety of techniques based on the selective ability to produce a product by PCR (e.g. 

allele specific PCR) or differential sizes of products from different alleles (e.g. Small Tandem Repeat 

analysis), which can be used to distinguish known alleles. 
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1.4.5.3 Single Nucleotide Polymorphism (SNP) arrays 

SNP arrays potentially contain hundreds of thousands of probes that are designed to specifically 

hybridize with the complimentary section of DNA.  Fluorescently labelled target sequences then bind 

to the probe. The total strength of the signal depends upon the amount of target sample binding to 

the probes allowing some quantitation, as well as the identity of the target sample sequence by 

binding to a probe with a known position on the chip. 

SNP arrays are a common way of assessing SNPs over a large genetic area. Panels can be off-the-

shelf or custom made to look at specific SNPs or genetic areas.  They are commonly used for large-

scale discovery experiments such as Gene-Wide Association Studies (GWAS) where hundreds of 

thousands of SNPs can be read on a single chip. 

1.4.5.4 Next Generation Sequencing (NGS) 

Following the first human genome being sequenced in 2000, there has been a range of different 

commercial sequencing machines that have become available to re-sequence the large section of 

the genome. These are based on massively parallel sequencing: the sequencing of many single 

fragments in individual reactions.  These include products produced by Roche, Illumina, Applied 

Biosystems and Life Technologies that are described further in Table 7. 

Depending on the accuracy required and whether germline or somatic mutations are to be 

identified, the depth of coverage must be taken into account with NGS. In the case of germline 

mutation, coverage of x20-x100 would be expected and this may be over x1000 in the case of 

somatic mutations. 

1.4.5.4.1 Next Generation Sequencing Methods 

Roche 454 uses pyrosequencing techniques to sequence DNA.  It is a fast, high throughput machine, 

but is proportionally much more expensive to run than other similar products. 
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Both the HiSeq and MiSeq from Illumina use polymerase-based reactions to sequence.  HiSeq 

processing time is over a week per run.  It is good for sequencing a large amount of DNA from a 

limited number of samples, but is poor at multiplexing many samples.  The MiSeq is the smaller 

quicker, benchtop version of the same technique. 

Applied Biosystems SOLID has high throughput but long sequencing times and has the advantage of 

a low error rate. 

The Ion Torrent™ uses a semi-conductor chip that detects hydrogen ions that are released during 

polymerization of DNA.  Hydrogen ions are released when the appropriate next sequential base is 

incorporated, leading to a peak in amplitude; when two or more matching bases are incorporated 

sequentially, then the amplitude in increase proportionately. 

The system has the advantages that it is relatively inexpensive to buy the machine and is quick to 

run.  Its accuracy at detecting SNPs is much better than those of Indels or homopolymers (a 

sequence of identical bases). 

 

 



 

 

7
4

 

Table 7 Comparison of the different properties of different Next Generation Sequence platforms 

Data taken from manufactures websites and in correct as of 5
th

 September 2014 

Manufacturer Platform NGS chemistry Read length Run time Gb per run Accuracy 
Cost per 

Mb Pros Cons 

Roche 454 Pyrosequencing 700 bp 1day 0.45 0.999 $10 USD 

Longer reads 
improve 

mapping in 
repetitive 

regions; fast 
runs 

High reagent 
cost; high error 
rates in homo-

polymers repeats 

Illumina HiSeq 
Polymerase-based 

sequence-by-
synthesis 

100 bp 3–10 days 600 Gb 0.999 $0.07 USD 

Currently the 
most widely 

used platform in 
the field 

Low multiplexing 
capability of 

samples 

Illumina MiSeq 
Polymerase-based 

sequence-by-
synthesis 

300 bp 27 hrs 8.5 0.999 $0.50 USD 
  

Applied 
Biosystems 

SOLID 
Ligation-based 

sequencing 
50 bp 7–14 days 600 Gb 0.9994 $0.13 USD 

Two-base 
encoding 
provides 

inherent error 
correction 

Long run times 

Life 
Technologies 

Ion 
Torrent™ 

Ion semiconductor 
sequencing 

200-400 bp 2 hrs 100-200 
Mb 

0.99 $1.00 USD Low cost, speed Difficulty with 
reading 

homopolymers 



The Role of Genetic Variation in the Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Introduction – Characterising Genetic Differences 75 

1.4.5.5 Sequence Capture 

Whichever NGS method might be adopted, there needs to be some method of selection of the DNA 

to be sequenced, as whole genome sequencing is costly, time consuming and makes data analysis 

very challenging.  In the case of small sections (up to 1000bp) traditional PCR may be appropriate, 

however, in most cases this will be too limited to cover the required area, and therefore sequence 

capture techniques should be used. These are commercially available, and can be used to isolate the 

necessary genes. 

Two of the main modalities to achieve this are Haloplex and SureSelect.  Both methods use similar 

processes.  Haloplex works by first denaturing or shearing the DNA, then hybridizing with specific 

probes and barcodes for multiplexing. These specific regions are then captured using magnetic 

beads and a PCR amplification is undertaken to prepare the samples for downstream NGS. 
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1.4.6 Summary 

A common type of variation in the human genome, accounting for phenotypical differences, are 

SNPs.  At the current time there is a wide array of different techniques to obtain specific subsets of 

genetic data; whole genome sequencing is unfeasible, due to time, cost and difficulty with data 

analysis.   Therefore a more focused approach is required.  This can either be in the form of sampling 

of different SNPs throughout the genome (GWAS), targeting SNPs in specific areas such as in custom 

arrays or targeted sequencing of specific genetic areas (focused NGS). In addition other areas such as 

VNTR cannot be sequenced by these common methods and in these cases specific PCR techniques 

can be used with either Sanger sequencing or frequent analysis performed to assess the product. 

When concentrating on specific areas of investigation, this can been done by analysis of a wide 

range of SNPs regardless of disease type (GWAS), a focus on SNPs thought to be associated with that 

disease processes, or a similar mechanism through custom arrays or selection of areas of interest 

based on a hypothesis of the mechanism of disease.  The use of a variety of different but 

complimentary methods will give the most inclusive approach to identifying the role of genetic 

variations in predisposition to alcohol-related chronic pancreatitis. 
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2 Chapter 2: Aim and Objectives 

 

 

 Aim 2.1

 To determine the factors required to classify a chronic pancreatic population and 

identify genetic variations that may explain why only some alcoholics develop 

chronic pancreatitis. 

 

 Objectives 2.2

 Systematically review methods of diagnosis of chronic pancreatitis to assess the 

most effected method of diagnosing the disease and defining a disease population.  

 To identify polymorphisms in selected genes associated with lipid and ethanol 

metabolism. 

 To identify polymorphisms in selected genes associated with trypsinogen activation. 
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3 Chapter 3: Systematic Review of the Diagnosis of Chronic 
Pancreatitis 

While clinical features can be indicative, consensus is lacking as to which diagnostic tests reliably 

confirm the presence or absence of CP.12 Many tests have been used either individually or in 

combination, but no single gold standard has emerged. The most widely used reference tests have 

been the identification of ductal changes viewed by ERCP, now considered too high risk to perform 

as a diagnostic procedure, and histology that is usually only available in those with severe disease 

undergoing surgery.62,231-233 

 Materials and Methods 3.1

3.1.1 Data Sources and Search Strategy 

The systematic review was carried out in reference to the Cochrane Handbook for Diagnostic Test 

Accuracy.234 The author (MJ) and James Nicholson (JACN) independently performed searches of 

databases for publications from 1980 to 2012: MEDLINE (PubMed), Web of Science, and Cochrane 

Central Register of Controlled Trials & Database of Systematic Reviews (CENTRAL). The following 

terms were used to search the databases (where * is a wildcard): “chronic pancreatitis”[Title] AND 

((“imaging” OR “etiolog*” OR “aetiolog*” OR “clinical” OR “history” OR “abdominal x-ray” OR “tube” 

OR “tubeless” OR “CCK” OR “CT” OR “topography” OR “tomography” OR “ultrasound*” OR “US” OR 

“USS” OR “endoscop*” OR “EUS” OR “ERCP” OR “magnetic” OR “MR” OR “MRI” OR “MR” OR 

“function” OR “PFT” OR “faecal elast*” OR “fecal elast*” OR “secretin” OR “Ca199” OR “Ca-199” OR 

“Ca19.9” OR “biomarker*” OR “guideline*”) AND (“diagnose*” OR “diagnostic*” OR “diagnosi*”)). 

Only full text articles in English were included.  Abstracts were reviewed and potentially relevant 

papers were obtained and evaluated in detail by two independent authors; where there was failure 

of consensus, a third author adjudicated (Thomas Hanna, TH). Once the papers were selected a 

detailed review of referenced papers was carried out to obtain any studies that may have been 

missed in the original search. 
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3.1.2 Study Selection 

Studies assessing the specificity and sensitivity of diagnostic tests in a population of patients with 

suspected chronic pancreatitis (classed as cohort), or in a group of known pancreatitis patients 

compared with either healthy controls or individuals with other gastrointestinal diseases (classed as 

case control) were eligible for inclusion.235 

Exclusion criteria included: abstracts, reviews, letters and case reports; studies only including 

animals; studies in which the aim was not the diagnosis of chronic pancreatitis; studies aiming to 

differentiate mass forming CP from cancer; studies that did not attempt to measure diagnostic value 

of a test; studies not stating how the diagnosis of CP was arrived at and studies for which data could 

not be successfully extracted either from the presented data or following correspondence with the 

authors. 

3.1.3 Data Extraction 

MJ and TH independently extracted data using a predesigned form, and any discrepancies in data 

extraction were resolved by consensus (JACN). In studies where a cohort of patients with suspected 

CP were compared to a group of normal controls, data on normal controls was excluded and the 

study was classified as a cohort study. 

3.1.4 Data Synthesis and Analysis 

Data provided from different diagnostic tests were considered separately.  When it was not possible 

to extract data from the paper, the source data was requested from the authors for use in the 

systematic review. In cases where data were presented giving both the pre-determined cut-off level 

for diagnosis and the optimum level for that study, only data using the pre-determined cut-off levels 

were used. 
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3.1.5 Quality Assessment 

The quality of included studies was assessed using factors that would influence the outcome of 

diagnostic studies (Figure 5).  Size of study was not included as this was taken into account by 

weighting of the studies in the model. 

3.1.6 Statistical Analysis 

Data are extracted from each study in terms of true positive (TP), false negative (FN), false positive 

(FP) and true negative (TN) frequencies by MJ and TH.  Each study is summarised in the form of 

sensitivities and specificities with associated 95% confidence intervals.  Meta-analyses techniques 

were carried out by Richard Jackson using a Bayesian Hierarchical Summary Receiver Operating 

Characteristic (HSROC) technique.236 This approach calculates the position and shapes of the receiver 

operator curve for each diagnostic test and allows for variability both within and between 

studies.  Diagnostic test is included as a covariate in the model as opposed to using different models 

for each test.  This ensures that model summaries are accounted for within study variability as many 

studies report on more than one test.  For the analysis of the full dataset, a two-step approach is 

carried out to account for study quality within the analysis. Here, studies with a quality score of one 

or two are considered as low quality studies and those with a score of three or greater as high 

quality studies.  Low score studies are initially analysed with vague uninformative priors.  The 

posterior results of the first stage are used to inform the analysis of the high quality studies through 

the prior distributions.  In this second step, the results from the low quality study are penalised by 

increasing the posterior variances by a factor of two. This approach is equivalent to a power priors 

approach and ensures that higher quality studies have a larger effect upon the analysis.237 For 

subgroup analysis, a simpler single step analysis is carried out due to the lack of data available.  For 

the subgroup analyses of endoscopic data, cut-off values were included as covariates in the analysis. 

Model summaries are presented in terms of summary sensitivity and specificity estimates with 

associated 95% credibility intervals for each summary statistic individually.  The shape of the 
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credibility interval is determined by the observed correlation between model parameters and the 

size set to contain 95% of the observed posterior estimates.  The diagnostic odds ratio, given by 

(sensitivity x specificity) / ((1-sensitivity) * (1-specificity)) is also presented as a summary measure. 

Publication bias due to sample size is investigated by plotting the log diagnostic odds ratio against 

the effective sample size (ESS).238 Analyses are carried out using the statistical packages WinBUGS 

and results compiled using R (version 3.01).239,240 Parameter estimates are obtained via a Monte 

Carlo Markov Chain (MCMC) procedure (10000 draws with a thin of 20 following burn in and 

convergence). 
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Figure 4 Flow diagram of studies considered in the systematic review 

  

Potentially relevant citations 

identified after screening of the 

electronic libraries (n = 1382) Citations excluded after title 

review (n = 956) 

Cancer 163 

Case report/series 189 

Letter 11 

Guidelines 7 

Review 106 

Not diagnostic 480 

Studies retrieved for more detailed 

evaluation (n = 190) 

Manual review of reference in 

selected studies 6 

  

Synthesis of all studies included in 
systematic review (n = 54)  
 

Abstracts reviewed (n = 426) 

Citations excluded after abstract 

review (n = 236) 

Cancer 9 

Case report/series 10 

Letter 10 

Not in English 2 

Review 131 

Not diagnostic 74 

  

Studies excluded after evaluation 

of full text due to (n = 150) 

Multiple reasons may apply 

  

Not assessing diagnosis 78 

No gold standard 7  
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Compared with cancer cases 5 

Other 9  



The Role of Genetic Variation in the Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Systematic review - Results 83 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Method used for assigning quality of evidence for systematic review 

 

One point for each quality factor; maximum score 5 

 Prospectively recruited patients  

 Taken from a population of patients with suspected chronic pancreatitis  

 Blinded reviewers of diagnostic tests 

 Pre-defined cut-off for diagnosis  

 Uniform gold standard  
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 Results 3.2

3.2.1 Population 

Using the search criteria 1373 studies were identified, of which 190 were retrieved for detailed 

review; 47 of these met the inclusion/exclusion criteria (Figure 4).  A further six studies were 

identified from papers cited within the references of the selected papers and one further study was 

added after the authors provided data that was previously unextractable.241 In total, 54 studies were 

identified which assessed the use of a diagnostic tests against defined criteria (Table 8). For the 

diagnosis of CP in a population of individuals with and without CP this gave a total of 5287 

individuals tested, of which 2298 (43%) had chronic pancreatitis.  Of these studies 35 were cohort-

type and 19 were case-control. In the cohort studies the pooled prevalence of chronic pancreatitis 

was 45% (95% CI, 40-50%); individual studies ranged from a prevalence of CP of 12% to 94%. 

3.2.2 Gold Standards 

Histology was used as the gold standard in nine of the published studies (two as the sole gold 

standard and seven in combination with other factors); and in all studies describing histology, tissue 

was obtained from resected pancreatic specimens.  In those studies where the classification of 

histology was specifically stated, the Ammann fibrosis classification was used.37 

ERCP was used as the gold standard in 40 (74%) of the studies and was either applied to all patients 

(19) or in a proportion of patients (21).  Criteria for ERCP diagnosis of CP included the Marseille 

criteria, and criteria described by Kasugai; following the development of the Cambridge classification 

in 1984, the majority of studies use this classification (25).61,242,243 

A mixed diagnostic standard was used to identify CP patients in 25 (46%) studies. Calcification was 

used as one of multiple factors in 8 (32%) of these studies. 
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3.2.3 Index Tests 

Data are presented by modality of test in Table 9, with sensitivities and specificities for each 

individual tested provided.  Investigations were broadly classified into pancreatic function tests (PFT; 

direct, serum, or faecal) or imaging (conventional or endoscopic). This saw ten, eight, two, four and 

two different diagnostic modalities being analysed respectively, with the addition of one study using 

FNA with EUS, which was the only study using pathology as the evaluated diagnostic method.  

Table 10 shows those tests with three or more values, which could be pooled to provide combined 

sensitivities, specificities and diagnostic odds ratios (DOR; Figure 6).   

3.2.4 Variation Over Time 

Figures 7 and 8 show the variation of the examination of different diagnostic tests and gold 

standards over the decades. This demonstrates the decline of ERCP being used as a gold standard for 

the diagnosis of CP, with an increase in the use of EUS and MR as a suitable diagnostic modality. 

3.2.5 Comparison of Specific Test 

Several studies compared the utility of faecal elastase and faecal chymotrypsin in the diagnosis of 

CP.  Both sensitivity and specificity were higher in pooled elastase results (Table 10 and Figure 6). 

Five studies examined the use of MR, and most also assessed the effect of secretin in improving its 

diagnostic performance.  Although secretin improved the specificity, it reduced the sensitivity of the 

test (Table 10 and Figure 6). 

Endoscopic ultrasound was the most assessed diagnostic modality, although the diagnostic criteria 

varied between studies (Table 11).  When the number of criteria required for a diagnosis was 

considered the sensitivity decreased, but the specificity increased with each extra criterion required 

(Figure 9 and Table 12).   
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3.2.6 Publication bias 

Publication bias was assessed by both study size and quality score of each publication.  There was no 

publication bias demonstrated in smaller studies (Figure 10, p=0.15), but poor quality studies 

showed higher diagnostic odds ratios (Figure 11, p=0.019). 

 



 

 

Table 8 Details of included studies in systematic review  

Study Country 
P/
R 

Co/
CC 

No. of 
pts

&
 

No. CP 
pts (%) Investigations tested Gold standard 

Consecutive 
patients Blinded 

Diagnostic 
Cut-off Q 

Ruddell 1981
244

 UK P CC 297 27 (9) Serum Immunoreactive Trypsin Lundh test
245

 No Unclear Set in paper 2 

Stern 1981
246

 Australia P CC 83 50 (60) Serum Pancreatic Polypeptide PFT/Calc/ERCP/Op No Unclear Pre-set 2 

Valentini 1981
247

 Italy P Co 59 7 (12) Duodenal Bicarbonate ERCP No No Set in paper 3 

Noda 1983
248

 Japan P CC 262 79 (49) Secretin-Pancreozymin test, 
Duodenal Dimethadione 

Calc/Histology No Unclear Set in paper 1 

Enselv 1984
249

 Denmark P Co 80 25 (31) Serum Immunoreactive Trypsin, 
Pancreatic Polypeptide, Isoamylase 

PI/Calc/Previous AP Yes Unclear Pre-set 3 

Tait 1984
250

 Australia P CC 76 38 (50) Serum Amylase, Pancreatic Isoamylase ERCP/Calc/Histology No Unclear Pre-set 2 

Gaia 1985
251

 Italy P CC 98 40 (41) Duodenal Lactoferrin ERCP/Calc Unclear Unclear Set in paper 1 

Hamilton 1986
252

 UK P Co 18 6 (33) Duodenal Bicarbonate, Trypsin ERCP Unclear Yes Pre-set 5 

Heij 1987
253

 Netherlands R Co 69 (58) 36 (52) Secretin CCK test ERCP Unclear  No Optimised 1 

Moller-Peterson 
1988

254
 

Denmark P Co 105 36 (34) Serum Trypsin Immunoreactivity, 
Lipase, Pancreatic Isoamylase 

ERCP/CT/AUS Yes Yes Optimised 3 

Bolondi 1989
255

 Italy P CC 33 15 (45) Secretin AUS History + PI Yes No Not defined 1 

Riedel 1991
256

 South Africa P CC 76 16 (21) Faecal Chymotrypsin ERCP/PFT No Unclear Pre-set 2 

Dominguez-Munoz 
1993

257
 

Germany P Co 296 167 (56)  Serum Amylase, Lipase, 
Immunoreactive Trypsin 

ERCP/CT/ PFT Yes Unclear Optimised 2 

Dominguez-Munoz
258

 Germany P CC 144 90 (63) Serum Pancreolauryl test ERCP/CT/Clinical No Yes Pre-set 3 

Natterman 1993
77

 Germany P CC 94 51 (54) EUS ERCP Unclear Unclear Not defined 2 

Wiersema 1993
75

 USA P Co 69 (67) 19 (28) EUS, Duodenal Bicarbonate ERCP Unclear Yes Pre-set 5 

Bozkurt 1994
259

 Germany P Co 48 38 (79) Duodenal Lipase, Amylase, Bicarbonate 
CT, AUS 

ERCP No Yes Pre-set 4 

Buscail 1995
260

 France P CC 62 44 (71) AUS, CT, EUS, ERCP Histology/Calc/PI Yes Yes Unclear 2 

Dominguez-Munoz 
1995

81
 

Germany P CC 69 20 (29) Serum Pancreolauryl ERCP/CT/Clinical No Unclear Pre-set 2 

Lankisch 1996
261

 Germany R Co 202 110 (54) Secretin-Pancreozymin test ERCP Unclear Unclear Not defined 2 

Glasbrenner 1996
262

 Germany P CC 188 63 (34) Serum Pancreolauryl test, 
Faecal Elastase, Chymotrypsin 

ERCP No Unclear Pre-set 3 

Amann 1996
263

 USA P CC 36 14 (39) Faecal Elastase ERCP/Calc/Op/PI No Unclear Pre-set 2 

Kitagawa 1997
264

 Japan P Co 424(324 197 (61) Secretin test AUS/CT/ERP No Unclear Set in paper 2 

Katischinski 1997
265

 Germany P CC 33 11 (33) Faecal Elastase, Chymotrypsin AUS/CT/ERCP No Unclear Pre-set 2 

Lock 1997
266

 Germany R Co 60 40 (67) Serum Pancreolauryl test ERCP Unclear Unclear Optimised 2 

Sahai 1998
76

 USA P Co 126 96 (76) EUS ERCP Yes Yes Optimised 5 

Dominguez-Munoz 
1998

267
 

Germany P Co 271 127 (47) Serum Pancreolauryl test AUS/CT/ERCP Yes Yes Pre-set 4 

Catalano 1998
268

 USA P Co 80 38 (48) EUS ERCP/PFT Yes Yes Pre-set 4 



 

 

Gullo 1999
82

 Italy P CC 140 44 (31) Faecal Elastase, Chymotrypsin History/ERCP/AUS No Unclear Optimised 2 

Hastier 1999
269

 France P CC 104 14 (13) EUS ERCP Yes Unclear Not defined 2 

Pezzilli 2000
270

 Italy P CC 81 50 (62) Serum Amylase, Trypsinogen, Lipase, 
Pancreatic Isoamylase, Elastase-1 

ERCP/Calc/Histology/ 
Clinical 

Unclear Unclear Pre-set 2 

Hollerbach 2001
86

 Germany P Co 37 31 (84) EUS with FNA ERCP No  Yes Optimised 5 

Hardt 2002
271

 Germany P Co 251(213 201 (94) Faecal Elastase ERCP Yes Yes Pre-set 5 

Kahl 2002
74

 Germany P Co 130 92 (71) EUS ERCP No Unclear Pre-set 3 

Keim 2003
272

 Germany P Co 212 45 (21) Faecal Elastase ERCP Yes Yes Pre-set 5 

Conwell 2003
273

 USA P Co 18 6 (33) Duodenal bicarbonate ERCP Yes Yes Pre-set 4 

Chowdhury 2005
274

 USA R Co 74 28 (38) EUS Duodenal Bicarbonate Unclear Yes Optimised 2 

Draganov 2005
275

 USA P Co 23 (19) 9 (47) Standard secretin stimulation test, 
Intraductal secretin stimulation test 

ERCP No Unclear Optimised 3 

Conwell 2007
276

 USA R Co 56 23 (41) EUS Duodenal Bicarbonate Unclear Yes Pre-set 4 

Conwell 2007
276

 USA R Co 36 17 (47) Duodenal Bicarbonate ERCP No No Pre-set 4 

Miyakawa 2007
277

 Japan R Co 106 41 (39) EUS ERCP/MR/CT/PFT Unclear Unclear Not defined 2 

Pungpapong 2007
278

 USA P Co 79 38 (48) Duodenal Interleukin-8, EUS ERCP/CT/MR/Histology No Yes Pre-set 5 

Pungpapong 2007
279

 USA P Co 99 40 (40) MR, EUS ERCP/Histology/Clinical Yes No Pre-set 3 

Varadarajulu 2007
280

 USA P Co 42 21 (50) EUS Histology Yes Yes Optimised 4 

Bilgin 2008
281

 Germany R Co 81 25 (31) MR Faecal Elastase Yes No Not defined 2 

Parsi 2008
282

 USA P Co 35 24 (69) Duodenal Lipase ERCP/MR/Histology/PI Yes Yes Pre-set 4 

Schlaudaff 2008
283

 Germany P Co 62 9 (15) sMR AUS/CT/ERCP Yes Yes Not defined 3 

Akisik 2009
284

 USA R Co 89 52 (58) MR, sMR ERCP/CT/Clinical No Yes Optimised 2 

Akisik 2009
285

 USA P CC 28 12 (43) MR ERCP Unclear Yes Optimised 3 

Stevens 2009
286

 USA P CC 84 (50) 14 (28) Duodenal Lipase, EUS CT Yes Yes Optimised 3 

Stevens 2009
287

 USA P Co 100 41 (41) EUS (Radial/Linear) Duodenal Bicarbonate Yes Yes Optimised 4 

Balci 2010
288

 USA R Co 36 12 (33) MR, sMR Duodenal Bicarbonate No No Not defined 2 

Albashir 2010
289

 USA R Co 25 21 (84) EUS, Duodenal Bicarbonate Histology No Yes Pre-set 4 

Law 2012
241

 USA P Co 69 16 (23) Duodenal Lipase, Amylase, Bicarbonate EUS No Unclear Not defined 3 

& - Values in brackets are the actual number of patients included in the results. 
P – Prospective; R – Retrospective 
CC – Case control; Co - cohort 
PEI - (%6hr urinary PABA in 1st day)/(%6hr urinary PABA in 2nd day); PABA - Para-aminobenzoic acid 
Calc – Calcifications 
Q – Quality score as calculated from factors in Figure 5. 
Op – underwent operation for chronic pancreatitis; AP – Acute pancreatitis 
ERCP – Endoscopic retrograde cholangiopancreatography; AUS – Abdominal Ultrasound; MR – Magnetic resonance; sMR – Secretin enhanced Magnetic resonance; CT – Computer 
Tomography; EUS – Endoscopic Ultrasound; PFT – Pancreatic function test; PI – Pancreatic insufficiency  



 

 

Table 9 Individual tests separately extracted from each study, grouped by modality with sensitivity and specificity with 95% confidence intervals 

Test Diagnostic test Study Gold standard Criteria Cut-off diagnosis TP FN FP TN Sensitivity (CI 95%) Specificity (CI 95%) 

D
ir

ec
t 

P
an

cr
ea

ti
c 

fu
n

ct
io

n
 T

es
t 

Amylase Bozkurt 1994
259

 ERCP Cambridge≥1
61

 >5000 IU/h 27 11 0 10 0.71 [0.54, 0.84] 1.00 [0.66, 1.00] 

Law 2012
241

 EUS Wiersema
75

 ≥5 >5000 IU/L 8 8 10 43 0.50 [0.26, 0.74] 0.81 [0.68, 0.90] 

Lactoferrin (LF) 
     LF/Chymotrypsin 
     LF/Lipase 

Gaia 1985
251

 ERCP/Radiology Kasugai
243

 - 29 11 5 53 0.73 [0.56, 0.85] 0.91 [0.80, 0.97] 

- 34 6 5 53 0.86 [0.71, 0.94] 0.91 [0.80, 0.97] 

- 38 2 3 55 0.95 [0.82, 0.99] 0.95 [0.85, 0.99] 

Dimethadione Noda 1983
248

 Histology/Calc Japan 1971
290

 <32.8 mg/h 77 2 12 71 0.97 [0.90, 1.00] 0.86 [0.76, 0.92] 

Interleukin-8 Pungpapong 2007
279

 ERCP/CT/MR/Histology Cambridge
61

 ≥20 pg/ml 18 20 3 38 0.47 [0.31, 0.64] 0.93 [0.79, 0.98] 

Trypsin Hamilton 1986
252

£ ERCP Cambridge
61

 <50 mg/h 2 4 0 12 0.33 [0.06, 0.76] 1.00 [0.70, 1.00] 

Bicarbonate Valentini 1981
247

 ERCP Any criteria - 2 5 21 30 0.29 [0.05, 0.70] 0.59 [0.44, 0.72] 

Hamilton 1986
252

£ ERCP Cambridge
61

 <20mmol/h 2 4 0 12 0.33 [0.06, 0.76] 1.00 [0.70, 1.00] 

Wiersema 1993
75

 ERCP Cambridge
61

 <105meq/dl 3 1 6 6 0.75 [0.22, 0.99] 0.50 [0.22, 0.78] 

Bozkurt 1994
259

 ERCP Cambridge
61

 <30mmol/h 31 7 0 10 0.82 [0.65, 0.92] 1.00 [0.66, 1.00] 

Conwell 2003
273

 ERCP Cambridge
61

 <80 mEq/L 5 1 5 7 0.83 [0.36, 0.99] 0.58 [0.29, 0.84] 

Draganov 2005
275

 ERCP Cambridge
61

 SST <80 mEq/L 5 4 4 6 0.56 [0.23, 0.85] 0.60 [0.27, 0.86] 

IDST <105 mEq/L 10 0 4 5 1.00 [0.66, 1.00] 0.56 [0.23, 0.85] 

Conwell 2007
276

 ERCP Cambridge
61

 <80 mEq/L 16 1 4 15 0.94 [0.69, 1.00] 0.79 [0.54, 0.93] 

Stevens 2009
286

 CT * <80 mEq/L 13 1 11 25 0.93 [0.64, 1.00] 0.69 [0.52, 0.83] 

Albashir 2010
289

 Histology Ammann
37

 <80 mM 12 2 1 2 0.86 [0.56, 0.97] 0.67 [0.13, 0.98] 

Law 2012
241

 EUS Wiersema
75

 ≥5 <80 mM
286

 9 7 11 42 0.56 [0.31, 0.79] 0.79 [0.66, 0.89] 

Lipase Bozkurt 1994
259

 ERCP Cambridge
61

 <100000 IU/h 38 0 0 10 1.00 [0.89, 1.00] 1.00 [0.66, 1.00] 

Parsi 2008
282

 ERCP/MR/PI/Histology Cambridge
61

 <800 IU/mL 23 1 7 4 0.96 [0.77, 1.00] 0.36 [0.12, 0.68] 

Stevens 2009
286

 CT * <300000 IU/L 11 3 13 23 0.79 [0.49, 0.94] 0.64 [0.46, 0.79] 

Law 2012
241

 EUS Wiersema
75

 ≥5 <300000 IU/L
286

 16 0 48 5 1.00 [0.76, 1.00] 0.09 [0.03, 0.21] 

Secretin CCK Heij 1987
253

 ERCP Kasugai
243

 Z score 30 6 2 20 0.83 [0.67, 0.93] 0.91 [0.69, 0.98] 

Secretin test~ Kitagawa 1997
264

 AUS/CT/ERP Japan 1995
291

 See paper
264

 118 17 6 121 0.87 [0.80, 0.92] 0.95 [0.90, 0.98] 

SPT
292

 Noda 1983
248

 Histology/Calc Japan 1971
290

 - 70 9 28 55 0.89 [0.79, 0.94] 0.66 [0.55, 0.76] 

Lankisch 1996
261

 ERCP Cambridge
61

 HCO3<70mEq/l
292

 87 23 7 85 0.79 [0.70, 0.86] 0.92 [0.84, 0.97] 

Se
ru

m
 

Amylase Tait 1984
250

 ERCP/Calc/Histology Kasugai
243

 >198 IU/L 7 31 0 38 0.18 [0.08, 0.35] 1.00 [0.89, 1.00] 

Dominguez-Munoz 1993
257

 ERCP/CT/Fluorescence Cambridge
61

 >240 IU/L 37 130 8 121 0.22 [0.16, 0.29] 0.94 [0.88, 0.97] 

Pezzilli 2000
270

 ERCP/Calc/Histology - >392 IU/L 13 37 4 26 0.26 [0.15, 0.41] 0.87 [0.68, 0.96] 

Elastase-1 Pezzilli 2000
270

 ERCP/Calc/Histology - >343 ng/dl 25 25 6 24 0.50 [0.36, 0.64] 0.80 [0.61, 0.92] 

Trypsinogen Pezzilli 2000
270

 ERCP/Calc/Histology - <15 ng/ml 14 36 0 30 0.28 [0.17, 0.43] 1.00 [0.86, 1.00] 

Trypsin Immunoreactivity Ruddell 1981
244

 Lundh test
245

 9.5µEqH+/ml/min <117 µg/l 7 20 11 259 0.26 [0.12, 0.47] 0.96 [0.93, 0.98] 

Enselv 1984
249

 PI/Calc/Previous AP Marseille
293

 <140 pg/ml 10 15 2 53 0.40 [0.22, 0.61] 0.96 [0.86, 0.99] 

Moller-Peterson 1988
254

 CT/AUS/ERCP Marseille
293

 <110 mcg/l 16 20 2 67 0.44 [0.28, 0.62] 0.97 [0.89, 0.99] 

Dominguez-Munoz 1993
257

 ERCP/CT/PFT Cambridge
61

 <80 ng/ml 34 133 2 127 0.20 [0.15, 0.27] 0.98 [0.94, 1.00] 



 

 

Lipase 
 

Moller-Peterson 1988
254

 CT/AUS/ERCP Marseille
293

 <7.0 mcg/l 11 25 1 68 0.31 [0.17, 0.48] 0.99 [0.91, 1.00] 

Dominguez-Munoz 1993
257

 ERCP/CT/PFT Cambridge
61

 <8 ng/ml 54 113 10 119 0.32 [0.25, 0.40] 0.92 [0.86, 0.96] 

Pezzilli 2000
270

 ERCP/Calc/Histology - <8IU/L 7 43 1 29 0.14 [0.06, 0.27] 0.97 [0.81, 1.00] 

Pancreatic polypeptide Stern 1981
246

 PFT/ERCP/Calc/Op - Peak/basal ratio<5 45 5 3 30 0.90 [0.77, 0.96] 0.91 [0.75, 0.98] 

Enselv 1984
249

 PI/Calc/Previous AP Marseille
293

 <50 pg/ml 11 14 3 52 0.44 [0.24, 0.65] 0.95 [0.84, 0.99] 

Isoamylase Enselv 1984
249

 PI/Calc/Previous AP Marseille
293

 <43 U/L 12 13 1 54 0.48 [0.28, 0.68] 0.98 [0.89, 1.00] 

Tait 1984
250

 ERCP/Calc/Histology Kasugai
243

 <36 IU/L 19 19 2 36 0.50 [0.34, 0.66] 0.95 [0.81, 0.99] 

Moller-Peterson 1988
254

 CT/AUS/ERCP Marseille
293

 <36 U/l 14 22 4 65 0.39 [0.24, 0.56] 0.94 [0.85, 0.98] 

Dominguez-Munoz 1993
257

 ERCP/CT/PFT Cambridge
61

 <40 U/L 45 122 5 124 0.27 [0.20, 0.34] 0.96 [0.91, 0.99] 

Pezzilli 2000
270

 ERCP/Calc/Histology - <27 IU/L 6 44 0 30 0.12 [0.05, 0.25] 1.00 [0.86, 1.00] 

Pancreolauryl 
(Fluorescein) 

Glasbrenner 1996
262

 ERCP Not stated ≤4.5 mcg/ml 36 15 17 49 0.71 [0.56, 0.82] 0.74 [0.62, 0.84] 

Dominguez-Munoz 1993
258

 ERCP/CT/Clinical Cambridge
61

 ≤4.5 mcg/ml 75 15 5 49 0.83 [0.74, 0.90] 0.91 [0.79, 0.97] 

Dominguez-Munoz 1995
81

 ERCP/CT/Clinical Cambridge
61

 ≤4.5 mcg/ml 14 6 10 26 0.70 [0.46, 0.87] 0.72 [0.55, 0.85] 

Lock 1997
266

 ERCP Cambridge
61

 ≤4.5 mcg/ml 27 13 10 10 0.68 [0.51, 0.81] 0.50 [0.28, 0.72] 

Dominguez-Munoz 1998
267

 AUS/CT/ERCP 
294, 295

 ≤4.0 mg/L 101 26 22 122 0.80 [0.71, 0.86] 0.85 [0.78, 0.90] 

Fa
ec

al
 

Elastase Dominguez-Munoz 1995
81

 ERCP/CT/Clinical Cambridge
61

 <200 mcg/g 14 6 6 41 0.70 [0.46, 0.87] 0.87 [0.74, 0.95] 

Amann 1996
263

 History/ERCP/PFT/Calc/Op - <200 mcg/g 10 4 4 18 0.71 [0.42, 0.90] 0.82 [0.59, 0.94] 

Glasbrenner 1996
262

 ERCP - <200 mcg/g 50 13 28 97 0.79 [0.67, 0.88] 0.78 [0.69, 0.84] 

Katischinski 1997
265

 AUS/CT/ERCP - <200 mcg/g 7 4 1 21 0.64 [0.32, 0.88] 0.95 [0.75, 1.00] 

Gullo 1999
82

 History/ERCP/AUS Cambridge
61

 <190 mcg/g 34 10 4 94 0.77 [0.62, 0.88] 0.96 [0.89, 0.99] 

Hardt 2002
271

 ERCP Cambridge
61

 <200 mcg/g 91 110 3 9 0.45 [0.38, 0.52] 0.75 [0.43, 0.93] 

Keim 2003
272

 
 

ERCP Cambridge
61

 scheBo 200mcg/g 
BIOSERV200mcg/g 

31 
35 

14 
10 

38 
40 

129 
127 

0.69 [0.53, 0.81] 
0.78 [0.63, 0.88] 

0.77 [0.70, 0.83] 
0.76 [0.69, 0.82] 

Chymotrypsin Riedel 1991
256

 ERCP/PFT - >5 U/g  15 1 32 28 0.94 [0.68, 1.00] 0.47 [0.34, 0.60] 

Dominguez-Munoz 1995
81

 ERCP/CT/Clinical Cambridge
61

 >3 U/g 8 12 3 33 0.40 [0.20, 0.64] 0.92 [0.76, 0.98] 

Glasbrenner 1996
262

 ERCP - >3 U/g 30 33 22 103 0.48 [0.35, 0.60] 0.82 [0.74, 0.88] 

Katischinski 1997
265

 AUS/CT/ERCP - >3 U/g 3 8 1 21 0.27 [0.07, 0.61] 0.95 [0.75, 1.00] 

Gullo 1999
82

 History/ERCP/AUS Cambridge
61

 >6 U/g 25 19 15 82 0.57 [0.41, 0.71] 0.85 [0.75, 0.91] 

Keim 2003
272

 ERCP Cambridge
61

 >13.2 U/g 26 19 79 88 0.58 [0.42, 0.72] 0.53 [0.45, 0.60] 

Im
ag

in
g 

AUS Bozkurt 1994
259

 ERCP Cambridge
61

 Any changes 33 5 5 5 0.87 [0.71, 0.95] 0.50 [0.20, 0.80] 

Buscail1995
260

 Calc/Histology/PI - Any changes 25 5 19 13 0.83 [0.65, 0.94] 0.41 [0.24, 0.59] 

sAUS Bolondi 1989
255

£ History + PI Gullo
296

 >50%MPD change 8 7 2 16 0.53 [0.27, 0.78] 0.89 [0.64, 0.98] 

CT Bozkurt 1994
259

 ERCP Cambridge
61

 Any changes 33 5 4 6 0.87 [0.71, 0.95] 0.60 [0.27, 0.86] 

Buscail 1995
260

 Calc/Histology/PI - Any changes 33 1 11 17 0.97 [0.83, 1.00] 0.61 [0.41, 0.78] 

MR 
 

Pungpapong 2007
279

 ERCP/Histology/Clinical  Cambridge
61

 Paper specific 37 3 4 55 0.93 [0.79, 0.98] 0.93 [0.83, 0.98] 

Schlaudraff 2008
283

 AUS/CT/ERCP - 
&

 6 3 4 49 0.67 [0.31, 0.91] 0.92 [0.81, 0.98] 

Bilgin 2008
281

 Faecal elastase <200mcg/g Cambridge
61

 21 4 31 46 0.84 [0.63, 0.95] 0.60 [0.48, 0.71] 

Akisik 2009
284

 ERCP/CT/Clinical Cambridge
61

 ADC179x10
-5

mm
2
/s 37 13 13 24 0.74 [0.60, 0.85] 0.65 [0.47, 0.79] 

Balci 2010
288

 Bicarbonate <80mEq/L Cambridge
61

 7 5 9 15 0.58 [0.29, 0.84] 0.63 [0.41, 0.80] 



 

 

~ The total volume, total amylase output, and maximal bicarbonate concentration were measured in each sample during a 60-min period after injection of secretin. 
* Calcification/PD dilation/atrophy 
$ 

Main pancreatic duct dilation in the absence of structural obstruction, dilated side branches, intraductal stones, ductal irregularity, reduced T1-signal intensity, atrophy 
& pancreatic duct stenosis or dilatation, dilatation of the ductal side branches, presence of pseudocysts, and extrapancreatic abscess formation. 
# 1- slight, output of only one or more enzymes impaired; 2 - moderate, bicarbonate concentration and enzyme output reduced, stool fat excretion still normal; and 3 - severe, abnormal SPT 
result plus steatorrhoea 
£ - MCP – Minimal change pancreatitis 
IDST - Intraductal secretin stimulation test; SPT - Secretin-pancreozymin test 
CCK – Cholecystokinin; PEI - PABA excretion index; PABA - Para-aminobenzoic acid 
PI – Pancreatic insufficiency 
ERCP – Endoscopic retrograde cholangiopancreatography; AUS – Abdominal Ultrasound; sAUS – Secretin Abdominal Ultrasound; MR – Magnetic resonance; sMR – Secretin Magnetic 
resonance; CT – Computer Tomography; EUS – Endoscopic Ultrasound; PFT – Pancreatic function test; PI – Pancreatic insufficiency 
ADC - Apparent Diffusion Coefficient; FNA – Fine needle aspiration; PI – Pancreatic insufficiency;  ST – standard secretin test;  PPJ – pure pancreatic juice test

sMR Schlaudraff 2008
283

 AUS/CT/ERCP - 
&

 6.5 2.5 2 51 0.72 [0.35, 0.94] 0.96 [0.86, 1.00] 

Akisik 2009
284

 ERCP/CT/Clinical Cambridge
61

 ADC 210x10
-5

mm
2
/s 33 19 7 29 0.63 [0.49, 0.76] 0.81 [0.63, 0.91] 

Akisik 2009
285

 ERCP Cambridge
61

 ADC 220x10
5
mm

2
/s 13 0 4 11 1.00 [0.72, 1.00] 0.73 [0.45, 0.91] 

Balci 2010
288

 Bicarbonate <80mEq/L Duodenal filling 12 0 0 24 1.00 [0.70, 1.00] 1.00 [0.83, 1.00] 

ERCP Buscail 1995
260

 Histology/Calc/PI - Any changes
295

 19 7 0 18 0.73 [0.52, 0.88] 1.00 [0.78, 1.00] 

EUS Natterman 1993
77

 ERCP Cambridge
61

 ≥1
77

 50 1 27 36 0.98 [0.88, 1.00] 0.57 [0.44, 0.69] 

Wiersema 1993
75

 ERCP Cambridge
61

 ≥3
75

 19 0 10 38 1.00 [0.79, 1.00] 0.79 [0.65, 0.89] 

Buscail 1995
260

 Calc/Histology/PI - ≥1
260

 39 5 0 18 0.89 [0.75, 0.96] 1.00 [0.78, 1.00] 

Sahai 1998
76

 ERCP Cambridge
61

 Radial ≥4
76

 
Radial ≥6 

60 
36 

36 
60 

9 
1 

21 
29 

0.63 [0.52, 0.72] 
0.38 [0.28, 0.48] 

0.70 [0.50, 0.85] 
0.97 [0.81, 1.00] 

Catalano 1998
268

 ERCP/ST/PPJ Cambridge
61

 ≥3
268

 36 0 27 17 1.00 [0.88, 1.00] 0.39 [0.25, 0.54] 

Hastier 1999
269

 ERCP Kasugai
243

 ≥1
297

 13 1 17 40 0.93 [0.64, 1.00] 0.70 [0.56, 0.81] 

Hollerbach 2001
86

 ERCP Cambridge
61

 ≥1
86

 30 1 2 4 0.97 [0.81, 1.00] 0.67 [0.24, 0.94] 

Kahl 2002
74

£ ERCP Cambridge
61

 ≥1
75

 92 0 36 6 1.00 [0.95, 1.00] 0.14 [0.06, 0.29] 

Chowdhury 2005
274

 IDST <80 mEq/L ≥4
274

 16 12 16 30 0.57 [0.37, 0.75] 0.65 [0.50, 0.78] 

Pungpapong 2007
279

 ERCP/Histology/Clinical  Cambridge
61

 ≥4
279 26 14 6 53 0.65 [0.48, 0.79] 0.90 [0.79, 0.96] 

Conwell 2007
298

 Bicarbonate <80 mEq/L ≥6
298

 12 34 0 10 0.26 [0.15, 0.41] 1.00 [0.66, 1.00] 

Miyakawa 2007
277

 ERCP/MR/CT/PFT Japan 1995
291

 ≥1
277

 33 8 19 46 0.80 [0.65, 0.91] 0.71 [0.58, 0.81] 

Varadarajulu 2007
280

 Histology Ammann
37

 Radial ≥4
76

 
Radial ≥6 

19 
9 

2 
12 

3 
0 

18 
21 

0.90 [0.68, 0.98] 
0.43 [0.23, 0.66] 

0.86 [0.63, 0.96] 
1.00 [0.81, 1.00] 

Stevens 2009
286

 CT * Radial≥4
76

 14 0 5 31 1.00 [0.73, 1.00] 0.86 [0.70, 0.95] 

Stevens 2009
287

 Bicarbonate  <80mmol/L Radial ≥4
76

 
Radial ≥6 
Linear ≥4 
Linear ≥6 

28 
17 
18 
13 

13 
24 
23 
28 

3 
0 
3 
1 

56 
51 
56 
58 

0.68 [0.52, 0.81] 
 0.41 [0.27, 0.58] 
0.44 [0.29, 0.60] 
0.32 [0.19, 0.48] 

0.95 [0.85, 0.99] 
1.00 [0.91, 1.00] 
0.95 [0.85, 0.99] 
0.98 [0.90, 1.00] 

Albashir 2010
289

 Histology Ammann
37

 ≥4
76

 16 3 0 4 0.84 [0.60, 0.96] 1.00 [0.40, 1.00] 

EUS FNA Hollerbach 2001
86

 ERCP Cambridge
61

 Feteke
87

 24  0 1 2 1.00 [0.83, 1.00] 0.67 [0.13, 0.98] 
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Table 10 Pooled sensitivity and specificity of tests to diagnose chronic pancreatitis where at least 
three studies were available  

Study type Pooled sensitivity (95% CI) Pooled specificity (95% CI) 

Duodenal bicarbonate 0.78  (0.61, 0.90) 0.72  (0.59, 0.87) 

Lipase 0.96  (0.76, 1.00) 0.57  (0.23, 0.90) 

Serum Amylase 0.40  (0.16, 0.80) 0.93  (0.74, 0.99) 

Serum Trypsin Immunoreactivity 0.33  (0.20, 0.57) 0.97  (0.88, 0.99) 

Serum Lipase 0.28  (0.13, 0.63) 0.95  (0.80, 0.99) 

Serum Isoamylase    0.35  (0.22, 0.62) 0.96  (0.92, 0.98) 

Serum Pancreolauryl 0.75 (0.60, 0.86) 0.78 (0.58, 0.89) 

Faecal Elastase 0.69  (0.55, 0.81) 0.85  (0.75, 0.91) 

Faecal Chymotrypsin 0.54  (0.20, 0.85) 0.78  (0.51, 0.95) 

MR 0.79  (0.47, 0.92) 0.77  (0.51, 0.94) 

sMR 0.87  (0.47, 0.99) 0.88  (0.58, 0.98) 

EUS 0.87  (0.72, 0.95) 0.82  (0.68, 0.91) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Forest plot showing pooled diagnostic odds rations for individual tests where at least 
three studies were available 



 

 

 

Table 11 Evaluation of the variation of EUS criteria employed between different studies 

 

 
Number of Criteria 

 

Parenchymal Ductal Other 

Hypo- 
echoic foci 

Hyper-
echoic foci 

Cysts Lobularity Micro- 
calcifications 

Hyperechoic 
strands 

Hyperechoic 
duct margins 

Irregular 
calibre MPD 

Dilation of  
MPD 

Dilatation of  
side branches 

Calculi Narrow 
Duct 

 

Nattermann 199377 ≥1 Yes Yes Yes Yes No No Yes Yes Yes Yes Yes No No 

Wiersema 199375 ≥3 Yes >3 mm >3mm Yes No No Yes Irregular 
contour 

Yes Yes Yes Yes No 

Buscail 1995260  ≥1 Hetero- 
geneous 

>3 mm Yes No No No No No No No Yes No No 

Sahai 199876 - No 1-2mm >2mm 2-5mm 
lobules 

No Yes Yes Yes >3mm head, 
>2mm body, 
>1mm tail 

Viable side 
braches 

Yes No No 

Catalano 1998268 ≥3 Hetero- 
geneous 

Yes > 5 mm No No Septa Yes Yes >3mm Side-branch 
ectasia 

Yes No No 

Hastier 1999269 ≥1 No No Yes HC Yes No Yes Duct wall 
irregular 

>3mm 
increased 
diameter 

Yes Stones or 
protein 
plugs 

No ~ 

Hollerbach 200186 ≥1 No Yes Pseudocysts Yes Yes No No ? Yes No Yes Yes No 

Chowdhury 2005274 - Yes Yes Yes Yes No Yes Yes Yes Yes Viable side 
braches 

No No No 

Conwell 2007298 ≥6 No Yes Yes Yes No Yes Yes Yes Yes Yes Yes No No 

Miyakawa 2007277 ≥1 No Yes No Yes No Yes No Yes No No No No No 

Pungpapong 2007279 ≥4 No Yes Yes Yes No Yes Yes Yes Yes Yes Yes No No 

Rosemont  
Criteria 200978 

§ No MajorA 
(shadow); 
Minor (w/o 
shadow) 

Minor MajorB (HnC); 
Minor (w/o 
HnC) 

No Minor Minor Minor Minor Minor 
(≥1mm) 

Major A No No 

§Rosemont criteria - Consistent -1 MajorA + ≥3 Minor; 1 MajorA + MajorB; or 2 MajorA. Suggestive 1 MajorA + <3 Minor; 1 MajorB ≥3 Minor; ≥5 minor.  Indeterminate 3-4 Minor; MajorB +<3 Minor 

HnC – Honeycombing 

~ Other complications - Microcyst formation; Vascular thrombosis; Biliary stenosis 
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Figure 7 Variation of test assessed for diagnosing chronic pancreatitis over time 
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Figure 8 Variation of gold standard used for diagnosing chronic pancreatitis over time 

Imaging includes a combination of AUS, CT and ERCP 
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Figure 9 Pooled studies for EUS including sensitivity and specificity by cut-off point 

Circle diameter represents sample size and colour represented the minimum number of EUS criteria 

needed to diagnosis chronic pancreatitis. ROC curve developed from pooled sensitivities and 

specificities of the different cut-off levels. 

  

Key: Number 
of criteria
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Table 12 Variation of sensitivity and specificity using different numbers of EUS diagnostic criteria  
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Figure 10 Funnel plot demonstrating publication bias on the basis of study sample size 

ESS: Effective sample size. Technique taken from Deeks et al.238  
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Figure 11 Box plot demonstrating study bias between low quality studies and high quality studies  

There was a statistically significant difference between the diagnostic odds ratio between the lowest 

quality studies (score 1) and the highest (score 5; p=0.019). 
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 Discussion 3.3

This is the first systematic review of tests used to diagnose CP and provides a comprehensive 

analysis of all tests evaluated over four decades. Despite the lack of standardisation and the 

possibility to undertake meta-analyses on only 12 of 27 tests, we found clear evidence to support 

the use of EUS and MRI, the latter preferably with secretin. These two tests were found to have the 

highest pooled sensitivities and specificities, each in excess of 0.80, making them the most accurate 

tests evaluated to establish a diagnosis of CP. Either or both would therefore be appropriate as first 

line tests when there is a strong suspicion of CP.  

None of the nine function tests performed as well as EUS or secretin MRI, although some were 

found to have either pooled sensitivities or pooled specificities that were comparable, such as the 

pooled sensitivity of duodenal lipase or pooled specificity of faecal elastase. This is likely in part 

because deficiency is apparent only after very marked parenchymal loss;299 also, loss of function may 

be secondary to other diseases.300 Where faecal tests are deemed appropriate, the data supports 

the use of faecal elastase over faecal chymotrypsin. Poor sensitivity and specificity of pancreatic 

function tests mean, however, that it is likely to be more appropriate to confirm structural changes 

either in the form of imaging or histology to make a diagnosis. Simple function testing may be useful 

as a screening tool, provided the relatively low pooled sensitivity (e.g. of faecal elastase) is 

recognised, thus when clinical suspicion remains despite normal function testing, EUS or secretin 

MRI would be preferable. Furthermore, the addition of endoscopic pancreatic function testing, 

digital image analysis and/or elastography to EUS may increase sensitivity and/or specificity, but we 

have not been able to assess these or other combinations. 

Tools commonly used for quality assessment of diagnostic tests include STARD, which does not 

evaluate study design, and QUADAS2, which does not give an objective value to compare the quality 

of one study against another.301,302 In our review the quality of studies was assessed using a newly 

defined composite measure that included prospective design, individuals with the suspected 



The Role of Genetic Variation in the Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Systematic Review – Discussion 101 

disease, blinding, pre-defined diagnostic criteria and uniform application of the chosen gold 

standard (Figure 5). This quantifiable score allowed for appropriate weighting of the studies in the 

pooled analysis, to reduce bias in the calculation of accuracy. Consistent with this, the quality score 

demonstrated higher diagnostic ORs in lower quality studies (Figure 11). 

Pre-defined diagnostic criteria are necessary to evaluate any test that has been developed for 

general application, but in several studies diagnostic thresholds were selected after testing to 

optimise diagnostic efficiency (13); in a further 12 it was not stated what the diagnostic cut-off was 

or how it was obtained.234  Post hoc selection of diagnostic cut-off levels will tend to inflate 

diagnostic sensitivity and specificity, unlikely to be reproduced by subsequent validation.303 Well-

established diagnostic criteria are available for a minority of tests e.g. faecal elastase at 200 µg/g, 

duodenal bicarbonate at 80 mEq/L and ERCP using the Cambridge criteria.61,81,304 Some studies used 

the same scoring systems for EUS, but in the main these varied (Table 11). Increasing the number of 

EUS criteria increased specificity while decreasing sensitivity (Table 12); four diagnostic criteria gave 

the highest accuracy. No study has yet evaluated the Rosemont criteria, developed in the search for 

consensus in scoring EUS; randomised studies using predefined criteria are needed, preferably with 

long-term follow up. 78 

We excluded studies evaluating the diagnosis of CP in the context of suspected pancreatic cancer. In 

such studies the suspicion of neoplasm is the diagnostic priority and affects the nature of diagnostic 

tests chosen, such as CT and positron emission tomography.305 The number of studies included in 

this review that examined the efficiency of CT in the primary diagnosis of CP was small. None of the 

studies used contemporary CT technology, which can more readily identify calcification, duct dilation 

and atrophy indicative of CP.306,307 Therefore, assessment of the utility of CT in the diagnosis of CP 

requires further evaluation. 

Three studies specifically addressed the detection of early CP, but not surprisingly either sensitivity 

or specificity was low; complicating factors include fibrosis and atrophy that are more frequent in 
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elderly, asymptomatic individuals.74,252,255 Accurate identification of minimal change CP could 

significantly improve patient management by avoiding extensive diagnostic delay, which can 

otherwise result in pursuit of alternative diagnostic pathways and inappropriate treatment. Both 

EUS and secretin MRI are capable of identifying modest changes, e.g. when functional assessment 

and CT imaging is normal. Notably, EUS has been shown to be more sensitive than ERCP in the 

identification of early changes.74 Nevertheless treatment decisions require substantial confidence in 

results, essential in the planning of surgical treatment of CP. When available, histology remains the 

final arbiter in the identification of CP. While wide bore needle sampling can provide sufficient 

pancreatic tissue to identify CP at an early stage, sampling may be misleading, not representative of 

the whole pancreas and itself carries additional risk.37,233 Further studies are needed to determine 

the clinical utility of these and more recently developed technologies in suspected minimal change 

CP, both singly and in combination, preferably in randomised studies that also address outcomes. 

This will minimise bias inherent in comparisons made between those with a normal or highly 

abnormal pancreas, as in the 19 diagnostic case-control studies evaluated in retrospective studies.308 

Accordingly here the quality score was weighted towards prospective cohort studies. 

We made the basis for the assessment of diagnostic tests comparison with a gold standard. Ductal 

changes on ERCP were the most commonly used gold standard, but recommendations that it should 

only be used as a therapeutic intervention mean that diagnostic ERCP is no longer appropriate.62 

Histology was used as the gold standard in a minority of studies, most frequently from resected 

specimens. This approach is likely to have introduced bias, as those individuals who undergo 

resection tend to be those with the most severe disease or those in whom there is a strong suspicion 

of cancer. In addition, scoring of histology can be subjective and is aligned to that found in alcoholic 

CP.37 Composite gold standards were used in 25 (46%) of the 54 studies examined, but lacked 

uniformity. In practice CP requires a combination of all diagnostic approaches, including clinical 

features, functional assessment, imaging and histology. As with most diseases some criteria may not 

need to be positive for the diagnosis to be made, e.g. CP can be painless or there may be no evident 
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loss of function, but the priority is to identify CP in the presence of either so that appropriate advice 

and treatment can be given promptly. Further work is required to develop consensus, incorporating 

all informative components in the diagnosis of CP. 

Studies that analyse the diagnosis of CP are wide ranging in both modality and study design.  The 

most analysed test of EUS shows good overall sensitivity and specificity, and should be 

recommended for diagnosis of CP, either in addition to, or in place of secretin MRI which shows 

promising results but requires further evaluation. 
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4 Chapter 4: Genome-wide Association Study 

Although alcohol has long been known to be of the primary causative agents of chronic pancreatitis, 

it has also been recognised that genetic contributions are relevant since the identification of PRSS1, 

CFTR and SPINK1 variants as associated factors with pancreatitis risk. This idea was explored further 

with a genome wide approach to identify further genes that may have an association with the 

development of chronic pancreatitis. 

As part of this thesis samples from well-characterised patients with chronic pancreatitis were 

selected, DNA extracted and the DNA sent along with anonymised clinical data by myself to a 

collaborative project in Pittsburgh combining samples from USA, Germany and Spain. This work has 

been published by Whitcomb et al, and contains the materials and methods and results for the 

study.176 

 Discussion 4.1

The GWAS carried out in collaboration with the Pittsburgh group, was the first GWAS to be carried 

out in chronic pancreatitis.  Collaboration between many groups was required to obtain the large 

number of samples needed to run a GWAS. Over 300 samples were provided from the biobanks held 

in the Liverpool Pancreas Biomedical Research Unit. 

Through discovery and validation stages, two highly significant and reproducable SNPs were 

identified one in the region of PRSS1 and the other in the not previously associated Claudin-2 gene; 

PRSS1-PRSS2_rs10273639 and CLDN_rs12688220. These produced an odds ratio (OR) of 0.734 (p = 

2.0 × 10−14) and 1.385 (p = 2.3 x 10-27) respectively. 

Overall, the when assessing patients with established alcohol-related pancreatitis the estimated 

odds ratio (OR) were greater for both PRSS1-PRSS2_rs10273639 and CLDN_rs12688220 than those 

produced for cases with pancreatitis of other etiology. This suggests that the effects of both loci may 

be increased in the presence of alcohol consumption.  
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The GWAS study used a combination of different patient populations including those with recurrent 

acute pancreatitis (RAP).  This is due to the theory that there is a progression of disease from acute, 

through to recurrent acute and then on to chronic pancreatitis, but not all individuals will necessarily 

go through all stages, or some patients may no as of yet developed chronic pancreatitis, although 

with time this will occur.49 However, this has not been unequivocally proven, and therefore the 

pathophysiology of the RAP group may not exactly mirror that of CP. Nonetheless, in this study there 

is the same distribution of PRSS1-PRSS2_rs10273639 between the RAP and the CP cohorts 

suggesting that the polymorphism has a similar effect on the two populations.  In contrast the 

CLDN2 polymorphism was more strongly associated with CP than RAP, suggesting that it may act to 

accelerate the transition from RAP to CP.  

The major allele at the PRSS1-PRSS2 locus has been shown to be associated with reduced PRSS1 

expression. This effect is independent of the previously reported rare gain-of-function PRSS1 

variants that increase susceptibility to both RAP and chronic pancreatitis.48  As this allele occurs 

commonly, there would need to be a combination of other factors present in association with this 

polymorphism for chronic pancreatitis to develop. 

Claudin-2 acts as a tight junction protein, forming cation-selective ion and water channels between 

endothelial cells. It is normally expressed at low levels in the tight junction between pancreatic ducts 

and in pancreatic islets.309-311 Although it has been infrequently examined in humans, in a porcine 

model Claudin-2 has been identified in higher levels in acinar cells under stress.312 As calcium levels 

have previously been shown to be associated with the development of acute pancreatitis, poor 

regulation of this in association with the CLDN2 haplotype may explain the association with chronic 

pancreatitis. 

 



The Role of Genetic Variation in the Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Next Generation Sequencing - Methods 106 

5 Chapter 5: Next Generation Sequencing 

As the break down products of fat and alcohol metabolism have been shown to have a clear 

association with the development of chronic pancreatitis, it was hypothesised that variations in 

genes involved in these pathways may impact on the risk of developing chronic pacnreatitis.110  

Therefore full deep sequencing was undertaken of the exons of the selected genes to identify 

potential loci of interest. 

 Materials and Methods 5.1

5.1.1 Patients and samples 

To assess for genetic polymorphisms clinical samples were required from both disease and control 

populations. Table 13 details the different ways samples were obtained. 

5.1.1.1 Existing Resectional Sample Biobank 

There is an existing biobank of samples from pancreatic patients at RLBUHT; these samples have 

predominately been collected from patients undergoing operative procedures on the pancreas, with 

samples of blood (stored as serum, plasma and cell pellets) and urine, being taken alongside 

operative specimens including pancreatic juice, trucut biopsies of the pancreas and histological 

specimens of diseased and normal pancreas, bile duct and duodenum.  This work has been on-going 

since 1997, meaning within the larger bank there is a collection of over 100 samples from patients 

with histologically confirmed CP that was available before the start of this specific project. 

In most cases these previously recruited individuals had the most severe phenotype of the disease, 

i.e. requiring surgical intervention; the only exceptions to this being those patients with mass 

forming pancreatitis who may have undergone resection for suspicion of cancer, rather than in 

relation to symptoms of CP.  The CP samples were also derived from a range of different aetiologies, 

but patients’ more commonly had the idiopathic form of this disease. 
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5.1.1.2 Chronic Pancreatitis Biobank 

Therefore, at the start of this body of work, ethical approval was sought for a chronic pancreatitis 

biobank that would allow the attainment of samples of blood from patients with suspected or 

confirmed CP (10/WN003/46). 

To identify the patients with CP, clinic lists for the four weekly pancreato-biliary clinics were 

screened prior to clinic by cross-referencing with a list of patients who had previously been 

identified as having CP through clinic letter review, EUS results or through the pancreas resection 

database. 

Patients were approached in accordance with the ethical approval, given the appropriate patient 

information sheet (PIS) and fully consented. After the consent form was completed, the blood was 

collected as per standard operating procedures (SOP) of the GCLP facility (GCLPTSS055/2 and 

GCLPTSS040/1). 

Samples were processed into serum, plasma and cell pellets and stored in the PBRU -80oC freezers 

until they were required for further use in the project.  

5.1.1.3 Control Biobank 

In conjunction with this, a mirrored group of patients required recruitment to be used as a control 

group, and a separate ethical approval for blood samples for this group was obtained (11/NW/0347). 

Control patients with a history of alcohol excess were identified patients within the “Lifestyles” clinic 

(for alcohol dependence) or through the hepatology weekly clinic. Once collected they were 

processed using the same methods as the CP samples, and stored for further use. 

Additional healthy controls (HC) were collect through local donors at the University of Liverpool who 

volunteered for involvement in the research project (08/H1017/19). 
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5.1.1.4 Liver Transplant Tissue Samples 

Additional samples were obtained for the NIHR Birmingham Liver Biomedical Research Unit.  These 

were samples of liver tissue collected from patients undergoing liver transplants due to alcohol 

related cirrhosis in line with NREC approval (09/H1010/75). These samples were kept at -80oC for 

long-term storage.  
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5.1.1.5 Discovery Phase 

5.1.1.5.1 Chronic Pancreatitis 

Participants included in the CEL study had to meet the following criteria 

- symptoms typical of chronic pancreatitis 

- alcohol excess of greater than 35u/wk (equivalent of >40g/day)43 for at least 5 years 

- radiological evidence of chronic pancreatitis (CT/MRI/EUS) 

- cell pellet available for DNA extraction 

- patient consented to take part in research projects 

5.1.1.5.2 Alcoholic Control  

For patients to be included in the discovery phase on the NGS section they had to meet the following 

criteria 

- no personal or family history of chronic pancreatitis 

- alcohol excess of greater than 35u/wk (equivalent of >40g/day)43 for at least 5 years 

- radiological evidence of a morphologically normal pancreatitis (CT/MRI/EUS) 

- cell pellet available for DNA extraction 

- patient consented to take part in research projects 
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5.1.1.6 Validation 

5.1.1.6.1 Chronic Pancreatitis 

Patients included in the validation phase on the NGS section had met the following criteria 

- symptoms typical of chronic pancreatitis 

- alcohol excess of greater than 35u/wk (equivalent of >40g/day)43 for at least 5 years 

- cell pellet available for DNA extraction 

- patient consented to take part in research projects 

5.1.1.6.2 Alcoholic Control  

Patients included in the validation phase on the NGS section had met the following criteria 

- no personal or family history of chronic pancreatitis 

- alcohol excess of greater than 35u/wk (equivalent of >40g/day)43 for at least 5 years 

- cell pellet available for DNA extraction 

- patient consented to take part in research projects 
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Table 13 Diagnostic criteria for classification into the different groups used in the genetic studies 

 

 
 

Clinical history of 
CP 

Clinical history of 
ALD 

Confirmation of 
disease 

Confirmation of 
alcohol excess 

Alcohol-related 
Chronic 

Pancreatitis 
(ACP) 

Good clinical 
history 

suggesting CP 

No clinical history 
that would be 

suspicious of ALD 

Histology, CT scan, or 
EUS confirming a 
diagnosis of CP 

A history of 
alcohol excess 
greater than 

35units/week for 
over 5 years 

Alcoholic Control 
(ACtrl) 

No clinical history 
that would be 

suspicious of CP 

 

 

 

CT scan of abdomen 
showing a 

morphologically 
normal pancreas 

Alcoholic Liver 
Disease 
(ALD) 

Good clinical 
history suggesting 

ALD 
Alcoholic Health 

Controls  
(AHC) No clinical history 

that would be 
suspicious of ALD 

 

Health Controls 
(HC) 

No history 
suggestive of 

alcohol excess 
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5.1.2 DNA Preparation 

5.1.2.1 Cell Pellets 

DNA was extracted from the previously stored red cell pellets, using MagnaPure System as per SOP 

of the GCLP facility (GCLPEQU020/3). 

The red cell pellet stored in 2ml Eppendorf tube was diluted with 0.6ml of PBS.  0.4ml of the 

resuspended cell pellet was used per sample for DNA extraction using the 100-400 DNA extraction 

protocol, to elute 0.1ml of DNA.  All extracted DNA was stored at -20oC until further use. All details 

relating to each elution was recorded on Matrix LIMS (Autoscribe, Reading) and on a MagnaPure 

machine (Roche Diagnostics, UK). 

5.1.2.2 Liver Tissue 

A Cryostat (Thermo Scientific, UK) was used to keep the liver tissue frozen while slicing thin sections 

of liver tissue before DNA was extracted.  QIAamp DNA Micro Kit (Qiagen, Baltimore USA) was used 

to extract DNA from the liver tissue going through the processes of lysis, binding, washing and 

elution as detailed in the May 2010 handbook. 
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5.1.3 DNA Quality Control 

DNA extracted by both methods was quality controlled and quantified using three methods as 

detailed below.  If standards were not met in any of the three methods, then the sample was not 

used in any further experiments and a new sample was eluted from the stock of cell pellets. 

Once DNA samples had satisfied all three quality control tests, the 225ng of DNA was diluted in 45l 

of nuclease-free water to make a concentration of 5ng/l ready for use in the sequence capture. 

5.1.3.1 Gel Electrophoresis 

2l of the stock DNA solution was added to 2l of nuclease-free water, and 1l of loading buffer.  

This was loaded on to a 100ml 1% agarose gel containing Gelred™ (Biotium, California) with a 1kb 

ladder.  The gel was run at 75v for 90 minutes before photographing under UV light.  The DNA run 

on the gel was deemed acceptable if there was a smear of product greater than 2.5 KB with no 

evidence of a smear of degraded DNA below this. 

5.1.3.2 NanoDrop Spectrophotometry 

Before any readings were taken, the NanoDrop Spectrophotometer (Thermo Scientific, Delaware 

USA) was cleaned with nuclease-free water, and a blank reading was carried out using 1l of a 

“blank” created by running a sample of nuclease-free water through the MagnaPure protocol.  Then 

1l of each sample ware run through the machine and the DNA concentration and the 260/280 

ratios were recorded.  Sample with a 260/280 ratio outside 1.8 to 2.0 were excluded from further 

processing as per SOP of the GCLP facility (GCLPEQU029/1). 

5.1.3.3 Qubit® dsDNA HS Assay 

Concentration on the DNA was quantified using Qubit® dsDNA HS Assay (Life Technologies, Paisley).  

Samples were processed in batches of 8 or less.  Before quantification of any samples the machine 

was calibrated using two standards provided in the kits following the manufacturer’s instructions. 
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5.1.4 Selection of Genes of Interest 

An extensive review of the literature in relation to genes known to be involved in the lipid and 

alcohol metabolism pathways was undertaken (http://geneontology.org//).  This gave the list shown 

in Appendix 10.2 Table 42.   Many of these genes were considered as too peripheral to the main 

metabolism pathways describe in Chapter 1.1, while others were eliminated from further 

consideration because there was no literature reference to significant impacts on the overall 

pathway in deletion studies. After eliminating genes of less interest, a final list of potential candidate 

genes was formed. These were inputted into a gene ontology program (Ingenuity pathway analysis, 

IPA 6, Qiagen Redwood city, USA), to establish the pathways between the potential genes, and to 

identify if there were other key genes within the pathway that had not yet been identified.  

Given previous literature in relation to alcohol-related chronic pancreatitis, the main interest was 

the genetics of lipid and alcohol metabolism, and therefore the majority of genes included related 

directly to these processes.  However, as PRSS1, SPINK1 and CFTR have an established associated 

with chronic pancreatitis, it was felt to be beneficial to include them in the sequencing to allow any 

interaction with variants in these genes, and the genes of alcohol metabolism to be assessed. 

 

http://geneontology.org/
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5.1.5 Sequence Capture (Haloplex) 

The specific design for the sequence capture was created using the Haloplex design tool (Life 

Technologies, Paisley, UK), selecting the exonic regions from the candidate genes; the resulting 

design coverage is shown in Appendix 10.2, Table 43. 

For each batch of sequence capture performed, 15 clinical samples were run with one control 

sample provided with the kit. During the process, individual barcodes were added to each amplicon 

to allow multiplexing of up to 16 different samples on one NGS reaction.  Samples were processed in 

accordance with Protocol Version D.1, November 2012.  21 cycles were used in the PCR step. 

5.1.5.1 Bioanalyzer 

The 2100 Bioanalyzer instrument (Agilent, Santa Clara, California) was used with Agilent High 

Sensitivity DNA Kit to quantify the product produced by each Haloplex reaction to allow multiplexing 

of the samples with equal distribution.  Samples with insufficient product (defined as less than 

300pg/l, and variation from expected trace; see example in Figure 12) were deemed unsuitable for 

NGS, and therefore additional DNA from the same patient was run through the Haloplex, before 

being quantified by the Bioanalyzer again to confirm its suitability.  Samples were processed in 

accordance with Protocol Agilent High Sensitivity DNA Kit Guide, Version 5/09. 
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Figure 12 Typical output of the Haloplex capture product read with the Bioanalyzer 

Peaks at 35bp and 10380bp are the ladder markers.  The peak at 125bp indicated the PCR primers 

than have failed to bind to DNA. If this equated to greater than 10% of the overall product then the 

sample would need to be washed (this was not required for any of our samples). The majority of 

product from the Haloplex, including barcodes was between 200bp to 550bp as demonstrated on 

the graph. 
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5.1.6 Ion Torrent™ 

5.1.6.1 Ion OneTouch™ 

Following the quality and quantification measurements of each of the Haloplex products with the 

Bioanalyzer, the samples were multiplexed (15 or 16 samples with different Haloplex barcodes) with 

equivalent quantities of amplicons to give 20l of product with 0.01328nM of multiplexed amplicons. 

The sample preparation of the sequencing on the Ion Torrent™ was carried out using the Ion 

OneTouch™ (Life Technologies, Paisley, UK) system with the Protocol Ion OneTouch™ 200 Template 

Kit v2 DL (Cat Number 4480285, Publication Number MAN0006957, Revision 5). During this process, 

there is clonal amplification of the individual amplicons, and then each of the individual amplicons is 

combined with a bead within a detergent bubble to create an Isolate Positive Ion Sphere™.   

5.1.6.2 Ion Torrent™ 

The prepared samples from the Ion OneTouch™ were then loaded onto a 318 chip following the 

protocol Simplified Ion PGMTM 
Chip Loading with the Ion PGMTM 

Weighted Chip Bucket, Publication 

Number MAN0007517 Revision 1.0. 

The Ion Torrent PGM machine was then set up following the Ion PGMTM Sequencing 200 Kit v2 Ion 

316TM 
Chip v2 Publication Number MAN0007273 Revision 3.0. Two chips were run in sequential pairs 

over a 24hour period to maximize the efficiency of the machine 

5.1.7 Data Output from Ion Torrent™  

The data produced from each chip run was stored on a specific server, and data was initially out 

putted from the Torrent Suite™. Basic data was provided on the number of read, length of reads and 

quality of reads (Figure 13).  The fingerprint of the chip loading was provided to show the efficiency 

of live beads loaded onto the chip (Figure 13). Overall run results for each chip are presented in 

Appendix 10.3; by chip in Table 45 and by sample in Table 46. 
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Figure 13 Sample of summary statistics from Torrent Suite™ 

The figure shows the total number of bases read, the percentage of beads loaded onto the chip 

which contained a single amplicons sequence, the total number of individual usable reads, the mean 

read length and a histogram of the variation in read lengths.  This is for 16 multiplexed samples run 

on an individual chip. The image shows the evenness of loading with red indicating high levels of 

leading, green/yellow poorly levels of loading and blue is out with the loading area of the chip. 

 

5.1.8 Data Analysis from Ion Torrent™ 

The reads for each sample were downloaded from the Ion Torrent™ PGM in Fastq format. With the 

assistance of Roy Chaudhuri (Centre for Genenomic Research, University of Liverpool) the reads 

were mapped to the human reference genome version hg19 using Bowtie2 version 2.1.0, using the 

option "-very-sensitive-local". Reads which mapped ambiguously, defined as those with a mapping 

quality score below 10, were excluded from further analysis.313 Reads containing indels were 

realigned using IndelRealigner from GATK version 2.0, and variants were called using the GATK 

UnifiedGenotyper.314  
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5.1.8.1 Calling individual SNPs 

All genetic variation from the base line reads were produced per run in individual .csv files. All 

potential SNP positions were identified, and where the number of reads at that position for each run 

was <6, then this was called as not read.  Where no variant was called at greater than 6 reads, this 

was considered as no variant called. For any sample that called a variant, but less than 25%, this was 

also classed as not read. All variant read at between 25-75% of the reads were classed as 

heterozygous, and variant reads of >75% were classed as homozygous. 

5.1.8.2 SNPs of Interest 

The SNPs of Interest, selected for further validation of their significance, where selected by 

performing a χ2 analysis of both the heterozygous and homozygous frequency of each SNP between 

the ACP and ACtrl groups. A p value of less than 0.05 was considered significant. 

This long-list of potential SNPs were then individually examined to confirm that the polymorphism 

had been read in both directions, and did not follow a homopolymer, approximate insertions or 

deletions which may lead to a misread of the data.  Only SNPs that had been found to have a 

significant difference between the groups, and appeared to be genuine calls were included in the 

final list of SNPs of Interest, which were then validated, in a second population. 

These SNPs were assessed for their previous inclusion in reports of disease association in the 

literature.  
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5.1.9 Linkage Disequilibrium  

Deviation (D) is the difference between the observed and expected frequency of each haplotype 

where 0 indicates complete linkage equilibrium.   

Equation 1 Standard measure of Linkage Disequilibrium 

D = (x11)(x22) – (x12)(x21) 

Standardisation of D (which can range from -0.25 to 0.25) can be performed based on the theoretical 

maximum and minimum relative to D (Figure 14). 

Equation 2 Normalisation of deviation 

D’ =   |D| 
          Dmax 

Figure 14 Relationship between allele frequencies and deviation from expected values 

 A1 A2 Total 

B1 x11 = p1q1 + D x21 = p2q1 - D q1 

B2 x12 = p1q2 - D x22 = p2q2 + D q2 

Total p1 p2  

Correlation (r2) between a pair of loci is calculated using the following formula 

Equation 3 Correlation between loci  
r2=         D2     

             p1p2q1q2 

 

As data was only available to pairs of alleles, and due to the short reads produced by the Ion 

Torrent™ the probability of each haplotype occurring had to be imputed from the source data. 

5.1.9.1.1 Tagging SNPs 

To identify if the SNPs of Interest had been previously reported, tagging SNP were identified using 

data taken for 1000 genomes website (http://browser.1000genomes.org/index.html) included SNPs 

with r2>0.8 and D’ >0.9, and the tagging SNPs were then investigated in the literature. 

  

http://browser.1000genomes.org/index.html
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5.1.10 Concordance of Results between Modalities 

The Liverpool subsection of the data produced by the GWAS was compared to identify comparable 

SNPs analysed and overlap of patient samples.  Results from the two methods were directly 

compared to calculate the correlation between the two techniques, and specifically between 

different SNPs.  

5.1.11 Sequenom Validation 

The MassARRAY® System (Agena, San Diego, California) using MALDI-TOF based technology was 

utilized to run the selected SNPs in Stage 1 for the Stage 2 analysis.  This work was carried out with 

the assistance of Daniel Carr from the Wolfson Centre for Personalised Medicine, University of 

Liverpool. 

Where the Sequenom was unable to assess the SNPs, then TaqMan PCR was designed to assess the 

SNPs.  This data was compared to the original Ion Torrent™ results to calculate a correlation 

between the two techniques. 
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5.1.12 Haplotype Analysis  

To assess for disease haplotypes in the most strongly associated SNPs, the other SNPs read on the 

same chromosome were compared to the reference SNP, and those SNPs that correlated with the 

reference SNP in either the ACP or the ACtrl population (as tested by χ2 with a p value of less than 

0.05), were then included in the haplotype design. Each of these loci were combined in location 

order to form an allelotype (e.g. 0/0 0/1 0/1 1/1 0/0); OR were calculated with a 95% confidence 

interval. 

To assess for a haplotype association, considering all the possible alternative haplotypes from each 

allelotype, the counts were based on the total number of haplotypes possible per allelotype and 

these haplotypes were tabulate as the most likely imputed haplotype for each group. A χ2 test was 

run to give a measure of the significance of disease association OR. Where there were no patients in 

one group (making computation of the OR impossible), 0.5 is added to all groups.315 

Once the significance of each OR was identified, the least significant factors were removed in a 

stepwise fashion to see if this affected the model, until the most significant model was identified. 
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 Results 5.2

5.2.1 Patients 

A total of 203 patients (102 for ACP and 101 ACtrl) successfully went through Haloplex sequence 

capture successfully and were sequenced on the Ion Torrent™.  The demographics of the patients 

sequenced are given in Table 14. 

 

Table 14 Patient demographics of Alcohol-related Chronic Pancreatitis and Alcohol Control groups  

 
 Alcohol-related  

Chronic Pancreatitis (102) 

Alcohol Controls  

(101) 

Age Median (range) 44 years (26-77) 50 years (25-89) 

Sex  Male 

Female 

87 

15 

61 

40 

Smoking Never 

Former 

Current 

Missing 

9 

69 

17 

7 

30 

44 

26 

1 

Alcohol Former  

Current 

Missing 

64 

32 

6 

50 

37 

14 

Diabetes Not known to be diabetic 

Diabetic 

Missing 

58 

36 

8 

81 

20 

0 

Diagnosis of CP 

confirmed or 

refuted 

CT 

EUS 

Histology 

91 

18 

42 

101 

0 

0 

History of ALD No 

Yes 

102 

0 

9 

92 

Source of DNA 

 

Blood 

Liver biopsy 

102 

0 

88 

13 
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5.2.2 Next Generation Sequencing Analysis 

Within the sequenced area 2776 different SNPs were identified within at least one of the samples, of 

which only 1484 (53.5%) were known to be SNPs, as demonstrated by possession of an rs or a CM 

identifier. 

SNPs were identified in all of the sequenced genes.  The variation of each SNP between the ACP and 

the ACtrl group is demonstrated in Figure 15. Those SNPs that either demonstrated significant 

difference between the groups for either presence of the SNP either as a heterozygote or a 

homozygote SNP were identified for further validation (Table 23), and will be referred to as the SNPs 

of Interest.  Significance was defined as p < 0.05 when analysed with χ2.  



 

 

1
2

5
 

 

 

  

Figure 15 Manhattan plot of Next Generation Sequencing data presented by gene 

Width of gene on base access represents the number of SNPs identified within that gene, and not the overall size of that gene.  



The Role of Genetic Variation in the Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Results – Next Generation Sequencing 126 

5.2.3 Known Chronic Pancreatitis Associated Variant Analysis 

5.2.3.1 PRSS1 

No patients exhibited variants in the most common recognised PRSS1 mutations of p.R122H or 

p.N29I.  Two individuals appeared to show p.A16V variant from the Ion Torrent™ alignment 

(Table 15).  Analysis of these patients is documented below. 

p.D162D and p.N246N are common polymorphisms in linkage disequilibrium and were thought to 

have no pathogenic consequences. p.K170E has only been described in four separate reports, and it 

is unclear if there is any pathologic consequence.190 

There were significantly more patients exhibiting the p.D162D polymorphism in the ACP group than 

in the ACtrl group (OR 1.80, 1.2-2.7; p = 0.004).  This is discussed further in Chapter 5.3.2.8.1. 

 

Table 15 Genotypes of commonly known PRSS1 SNPs  

 
   Alcohol-related 

Chronic Pancreatitis Alcoholic Controls 

  Pub MAF Major Hetero Minor Major Hetero Minor 

PRSS1_rs20200380550 p.A16V - 102 0 0 97 2 0 

PRSS1_rs6666164 p.D162D 0.3966 26 41 29 40 42 15 

PRSS1_rs201550522190 p.K170E 0.0016 87 9 1 87 8 0 

PRSS1_rs6667164 p.N246N 0.3938 8 47 45 17 42 37 

MAF – Published minor allele frequency; Major – Homozygous for major allele; Hetero – Major and 

minor allele; Minor – Homozygous for minor allele frequency.  
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5.2.3.1.1 p.A16V 

To confirm the p.A16V variants identified in the two control patients, Sanger sequencing of the 

genetic area was carried out using the primers and methods described by Threadgold et al.177  The 

sequences from both the patients’ samples are as show in Figure 16, with no clear G to A base 

transition at point 183. On further analysis of the surrounding sequence, the isoform of cationic 

trypsin, mesotrypsin, has Valine rather than Alanine at codon position 16 (Figure 1), and it is 

therefore likely that both the sequence capture and alignment tool lead to mesotrypsin being 

misread as cationic trypsin at this point. 

 

Figure 16 Sanger sequencing trace showing the area of potential p.A16V polymorphism 

The potential polymorphism lies at point 180, where GA was read in this sample with the Ion 

Torrent. 

 
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5.2.3.2 SPINK1 

Table 16 Genotypes of commonly recognised SPINK1 polymorphisms  

  Alcohol-related 

Chronic Pancreatitis Alcoholic Controls 

Pub MAF Major Hetero Minor Major Hetero Minor 

SPINK1_rs1710731545 p.N34S 0.006 67 6 0 58 1 0 

SPINK1_rs111966833180 p.P55S 0.003 89 2 0 78 2 0 

Pub MAF – Published minor allele frequency; Major – Homozygous for major allele; Hetero – Major 
and minor allele; Minor – Homozygous for minor allele frequency 

 

The commonly known SNPs in relation to SPINK1 are presented in Table 16. 

Due to the small numbers there was no difference in the prevalence of p.N34S between the ACP 

group and the ACtrl group, although there was a trend towards more of the polymorphisms in the 

ACP group (Fisher’s exact p = 0.13).  However, the frequencies demonstrated are representative of 

those that would be expected to be found in an ACP population.178 

There was no difference in the presence of p.P55S, and none of the other variants were identified in 

any of the samples tested.  
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5.2.3.3 Cystic Fibrosis Transmembrane Conductance Regulator 

Table 17  Genotypes of commonly reported CFTR SNPs 

Pathogenic polymorphisms are identified in bold 

The result for the common CFTR SNPs are presented in Table 17; underlining indicates SNP thought 

to have a pathogenic consequence.  Although there were high number of CFTR variants identified in 

the ACP group compared to ACtrl, none of the variants were significantly associated with ACP and 

when either the presence of the disease causing variants or all variants were taken into account, 

there was no statistical difference between the groups (p = 0.369 and 0.097 respectively).  

 
 

Alcohol-related 

Chronic Pancreatitis Alcoholic Controls 

MAF Major Hetero Minor Major Hetero Minor 

CFTR_rs1800076189 p.R75Q 0.0064 87 11 0 83 5 1 

CFTR_rs78655421316 p.R117H 0.0005 98 4 0 97 2 0 

CFTR_rs35516286189 p.I148T 0.0014 102 0 0 96 1 0 

CFTR_rs143486492317 p.R297Q 0.002 99 1 0 89 0 0 

CFTR_rs121908753316 p.R352Q rare 64 5 1 53 5 1 

CFTR_rs213950318 p.V470M 0.4179 32 52 15 35 43 12 

CFTR_rs1801178189 p.I507V rare 69 1 0 62 0 0 

CFTR_rs1800095189 p.E528D 0.0106 63 5 0 58 0 0 

CFTR_rs1800098319 p.G576A 0.0024 91 3 0 82 1 0 

CFTR_rs1800100320 p.R668C 0.0041 99 3 0 96 1 0 

CFTR_rs1800103321 p.I807M 0.001 88 1 0 85 0 0 

CFTR_rs1042077322 p.T854T 0.4792 39 51 10 39 39 12 

CFTR_rs1800109323 p.T966T 0.0062 100 1 0 96 1 0 

CFTR_rs1800118 p.T1095T 0.0018 100 0 0 94 2 0 

CFTR_rs1800121324 p.Q1186Q 0.002 91 1 0 80 0 0 

CFTR_rs34911792189 p.S1235R 0.0037 90 0 0 80 1 0 

CFTR_rs1800130325 p.P1290P 0.0647 89 9 0 92 4 0 

CFTR_rs1800135 p.Y1424Y 0.0042 98 3 1 95 1 0 

CFTR_rs1800136326 p.Q1463Q 0.1861 73 25 0 70 23 1 

         

 Alcohol-related 

Chronic Pancreatitis Alcoholic Controls 

Cumulative CFTR variants  
Any variation 

No 

variation 
Any variation 

No 

variation 

Total Pathogenic  13 89 8 93 

Total  82 20 70 31 
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The previously described CFTR haplotype was examined in this population (CFTR_rs213950, 

CFTR_rs1042077 and CFTR_rs1800136).186 The haplotypes were imputed using the method 

described in Chapter 6.1.12. The results are presented in Table 18.  Unlike previous reports, there 

were no differences identified in any of the most common haplotypes between those with alcohol-

related chronic pancreatitis and those with a history of alcohol excess. We see more A-G-G and less 

A-G-A than in previous reports, which could be potentially due to different populations used, or 

different control type. 

Table 18 CFTR risk haplotype assessed by Next Generation Sequencing data 

 
 Allele frequency  

CFTR Haplotype ACP ACtrl OR (95%CI) p value 

G-T-G 0.46 0.48 0.944 (0.485-1.835) NS 

G-T-A 0.03 0.05 0.734 (0.133-4.069) NS 

A-T-G 0.13 0.09 1.518 (0.517-4.451) NS 

A-G-G 0.15 0.18 0.807 (0.331-1.967) NS 

A-G-A 0.05 0.05 1.200 (0.258-5.571) NS 

Other 0.17 0.16 1.049 (0.426-2.580) NS 
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5.2.4 Known Variants in Genes of Alcohol Metabolism 

Below is a review of the previously reported polymorphisms in the genes of alcohol metabolism. 

5.2.4.1 Alcohol Dehydrogenase 

Previously described SNPs ADH1B_rs2066702, ADH1B_rs2018417 and ADH1B_rs1041969 were 

covered but no variants were identified in the population samples; the sequencing did not cover 

ADH1B_rs1789882. Results are presented in Table 19. 

 

Table 19 Distribution of recognised polymorphisms in the exons of ADH1B, ADH1C and ADH4 

  Alcohol-related 

Chronic Pancreatitis Alcoholic Controls 

Pub MAF Major Hetero Minor Major Hetero Minor 

ADH1B_rs1229983207 p.K20K 0.0289 75 6 1 66 2 1 

ADH1B_rs1229984202 p.R48H 0.2117 92 4 4 92 2 2 

ADH1B_rs6413413327 p.T60S 0.0078 98 3 0 91 5 0 

ADH1C_rs698202 p.I350V 0.2143 25 36 17 22 38 15 

ADH1C_rs1693482202 p.R272Q 0.2143 67 21 10 81 8 7 

ADH1C_rs1693425328 p.V158V 0.2145 60 13 10 50 15 10 

ADH1C_rs2241894328 p.T151T 0.4716 76 17 3 65 18 2 

ADH1C_rs1789915328 p.C104C 0.1502 60 14 8 48 16 6 

ADH4_rs1126670329 p.P255P 0.1528 77 12 11 70 18 9 

ADH4_rs1126671329 p.I309V 0.1530 18 24 9 23 24 8 

ADH4_rs1126672329 p.L351L 0.1172 52 32 13 54 23 13 

MAF – Minor allele frequency; Major – Homozygous for major allele; Hetero – Major and minor 

allele; Minor – Homozygous for minor allele frequency). 

 

 

All previously reported exonic SNPs in Alcohol Dehydrogenase 1C were covered, and their 

distribution between the groups is demonstrated in Table 19. 



The Role of Genetic Variation in the Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Next Generation Sequencing - Results 132 

The only one of these SNPs which shows a significant difference between the groups is 

ADH1C_rs1693482 (OR 2.04, 1.17-3.59; p = 0.017), which has been previously associated with 

alcohol dependence. 

Those SNPs which have been previously been assessed in relation to pancreatitis and had variants 

called in our population are presented in Table 19.  In addition, the sequencing covered SNP 

ADH4_rs139053416 and ADH1B_rs143067434, but no polymorphisms were identified within our 

study population. 

The previously reported SNP, ADH6_rs3857224, lies within the intronic region, and therefore was 

not covered by the Next Generation Sequencing. 

The previously reported area of ADH7 associated with alcohol dependence, ADH7_rs2654849, was 

not read as it lies outside of the exonic region.330 The polymorphism ADH7_rs971074 was within the 

sequence data but no polymorphisms were identified.   
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5.2.4.2 Aldehyde Dehydrogenase 

The commonly recognized variant ALDH2_rs671, known as ALDH2*2 was covered by the analysis, 

but no variations were identified, which is in keeping with its preponderance in Asian populations. 

5.2.4.3 Cytochrome P450 

There have been several different haplotypes described in the literature; a summary is given in 

Appendix 10.1. 

Of the different polymorphisms previously described within CYP2E1, CYP2E1*2 was covered but no 

polymorphism was identified in any of the samples, and CYP2E1*5B was not read as the 

polymorphisms lie within the intronic region. Results of CYP2E1*3 and CYP2E1*4 are given in 

Table 20. 

Table 20 Distribution of recognised polymorphisms in the exons of CYP2E1  

 
  Alcohol-related 

Chronic Pancreatitis Alcoholic Controls 

Pub MAF Major Hetero Minor Major Hetero Minor 

CYP2E1_rs55897648209 p.I389V 0.0004 95 0 0 92 1 0 

CYP2E1_rs6413419211 p.V179I 0.0778 92 5 0 92 5 0 

CYP2E1_rs915909211 p.I321I 0.027 101 1 0 100 0 0 

CYP2E1_rs2515641211 p.P421P 0.2991 73 26 0 72 22 0 
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5.2.4.4 Genes of Lipid Metabolism 

5.2.4.4.1 Lipoprotein Lipase 

The previous described SNPs in relation to LPL are presented in Table 21.  There were no differences 

between groups. 

Table 21 Previously identifed polymorphisms in the exons of LPL, APOA5 and APOE 

 

  Alcohol-related 

Chronic Pancreatitis Alcoholic Controls 

Pub MAF Major Hetero Minor Major Hetero Minor 

LPL_rs328220 p.S474X 0.0925 85 14 1 75 18 1 

LPL_rs1801177114 p.D36N 0.0176 98 4 0 94 2 0 

LPL_rs268114 p.N318S 0.0052 98 3 0 95 2 0 

APOA5_rs3135506114 p.S19W 0.0557 86 5 0 78 7 0 

APOE_rs429358114 p.C130R 0.1506 69 13 2 61 20 3 

APOE_rs7412114 p.R176C 0.0751 73 9 3 74 11 3 

 

Only one previously significant SNP was reported in APOA5, and this had no difference between 

groups.  The previously described SNPs in APOE, with no significant difference between groups, and 

no deviation from the published MAF. 

5.2.4.5 ABO Blood System 

The SNP ABO_rs505922 commonly used to establish the ABO group of an individual was not 

sequenced as it lies in an intronic region.  The SNPs that were sequenced are presented in Table 22; 

there was no difference between groups. 

Table 22 Genotypes of previously identified SNPs in ABO 
  Alcohol-related 

Chronic Pancreatitis Alcoholic Controls 

Pub MAF Major Hetero Minor Major Hetero Minor 

ABO_rs8176746225 p.L266M 0.1528 80 12 3 73 10 0 

ABO_rs8176747226 p.G268A 0.0106 81 12 2 73 9 0 
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5.2.5 Next Generation Sequencing SNPs of Interest 

The key SNPs of Interest, which were shown to have statistically significant results between the 

groups, are presented in Table 23. SNP MGLL_rs116367069, did show significance with initial 

analysis, without correction factors, but has lost significance when reanalysed with χ2 using Yate’s 

correction factor.  A comparison is made of the OR by allele frequency for each of these significant 

SNPs in Table 24.   
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Table 23 Next Generation Sequencing significant results from SNPs of Interest 
     Alcohol-related 

Chronic Pancreatitis Alcoholic Controls 

 
P values 

SNP  Chr,position  Amino Pub MAF Major Hetero Minor Major Hetero Minor Hetero Minor 

ACACB_rs17848835 12,109692053 C/T p.T2027I 0.0757 88 10 0 68 23 6 0.0006 0.0140 

ADH1C_rs1693482 4,100263965 C/T p.R272Q 0.2143 67 21 10 81 8 7 0.0111 0.6131 

ADH5_rs116010022 4,99997409 C/A Intron 0.0052 100 1 0 91 7 0 0.0332 - 

ADH6_rs4147545 4,100128753 T/C Intron 0.4307 39 39 13 47 37 3 0.1768 0.0326 

APOB_novel 2,21228282 A/G p.L3820L - 42 34 4 16 46 1 0.0012 0.3841 

APOB_rs72653066 2,21246382 C/G Intron 0.0042 89 7 0 90 0 0 0.0142 - 

APOC3_rs4520 11,116701535 T/C p.G34G 0.4030 4 56 40 9 67 21 0.1598 0.0058 

CES5A_rs7500040 16,55897519 G/A Intron 0.2742 50 14 8 46 13 1 0.4335 0.0395 

CES5A_rs200911306 16,55983724 C/T p.V45I 0.0002 27 15 3 22 3 0 0.0159 0.5479 

FABP1_rs2241883 2,88424066 T/C p.T94A 0.2232 41 30 15 53 26 5 0.0466 0.0303 

FABP3_rs11578034 1,31842153 C/T Intron 0.0172 97 1 0 86 8 0 0.0168 - 

FABP6_rs10056214 5,159665485 G/C Intron 0.1188 33 18 49 48 17 29 0.0133 0.0127 

IL1B_rs1143633 2,113590467 C/G Intron 0.3109 34 46 9 49 28 3 0.0034 0.1385 

LDLR_rs1003723 19,11224181 C/T Intron 0.2768 33 51 13 22 48 27 0.1107 0.0203 

LIPA_rs1051338 10,91007360 T/G p.T16P 0.2861 49 16 3 51 4 1 0.0111 0.6260 

LIPC_rs690 15,58834741 G/T p.V155V 0.4780 20 38 40 26 44 22 0.2373 0.0139 

LIPC_rs3751542 15,58856033 T/C Intron 0.3992 57 35 8 55 35 1 0.6610 0.0182 

LPL_novel 8,19809449 C/T p.N120S - 35 35 3 18 62 2 0.001 0.58 

MGLL_rs116367069 3,127411206 A/G Intron 0.0146 88 7 2 89 2 0 0.0592 0.4978 

PRSS1_rs6666 7,142460313 T/C p.D162D 0.3966 26 41 29 40 42 15 0.0484 0.0167 

PTPRR_rs10506608 12,71155380 A/G p.F166F 0.0475 79 16 2 86 7 0 0.0313 0.4976 

Column 3 – reference allele/allele change; Pub MAF – Published Minor allele frequency; Major – Homozygous for major allele; Hetero – Major and minor 

allele; Minor – Homozygous for minor allele frequency. 
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Table 24 Next Generation Sequencing SNPs of Interest odds ratio in ACP group compared to ACtrl  

 

SNP Amino OR Lower CI Upper CI p value 
ACACB_rs17848835 p.T2027I 4.094 1.965 8.530 0.002 
ADH1C_rs1693482 p.R272Q 0.489 0.279 0.858 0.013 
ADH5_rs116010022 Intron 7.444 0.907 61.080 0.051 
ADH6_rs4147545 Intron 0.591 0.373 0.935 0.025 
APOB_novel p.L3820L 1.729 1.045 2.860 0.033 
APOB_rs72653066 Intron 0.073 0.004 1.303 0.067 
APOC3_rs4520 p.G34G 0.603 0.400 0.910 0.016 
CES5A_rs7500040 Intron 0.543 0.277 1.065 0.076 
CES5A_rs200911306 p.V45I 0.210 0.059 0.743 0.016 
FABP1_rs2241883 p.T94A 0.509 0.314 0.826 0.006 
FABP3_rs11578034 Intron 8.667 1.073 69.981 0.043 
FABP6_rs10056214 Intron 0.481 0.321 0.721 <0.001 
IL1B_rs1143633 Intron 0.481 0.295 0.782 0.003 
LDLR_rs1003723 Intron 1.685 1.126 2.520 0.011 
LIPA_rs1051338 p.T16P 0.293 0.115 0.751 0.011 
LIPC_rs690 p.V155V 0.606 0.403 0.910 0.016 
LIPC_rs3751542 Intron 0.746 0.461 1.206 0.232 
LPL_novel p.N140S 1.725 1.070 2.780 0.025 
MGLL_rs116367069 Intron 0.185 0.040 0.846 0.030 
PRSS1_rs6666 p.D162D 0.554 0.369 0.832 0.004 
PTPRR_rs10506608 p.F166F 0.340 0.140 0.825 0.017 
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5.2.6 Biological Effects of SNPs of Interest 

The potential effect of the SNPs of Interest was evaluated using commonly used web based tools 

(http://sift.jcvi.org and http://genetics.bwh.harvard.edu/pph2/).  The data from these tools is 

presented in Table 25. 

Table 25 Analysis of predicted effects of the SNPs of Interest 

Predicted effects were assessed using SIFT and Polyphen web based tools. 

Gene Chr,position Amino SIFT Orthologues SIFT Homologues Polyphen 

ACACB_rs17848835 12,109692053 p.T2027I 0.22 TOLERATED 0.01 DAMAGING BENIGN 

ADH1C_rs1693482 4,100263965 p.R272Q 0.05 DAMAGING  0.11 BENIGN 

ADH5_rs116010022 4,99997409 Intron - - - 

ADH6_rs4147545 4,100128753 Intron - - - 

APOB_novel 2,21228282 p.L3820L TOLERATED   

APOB_rs72653066 2,21246382 Intron - - - 

APOC3_rs4520 11,116701535 p.G34G TOLERATED  1 

CES5A_rs7500040 16,55897519 Intron - - - 

CES5A_rs200911306 16,55983724 p.V45I TOLERATED  BENIGN 

FABP1_rs2241883 2,88424066 p.T94A 0.52 TOLERATED 0.35 TOLERATED 0.68 

FABP3_rs11578034 1,31842153 Intron - - - 

FABP6_rs10056214 5,159665485 Intron - - - 

IL1B_rs1143633 2,113590467 Intron - - - 

LDLR_rs1003723 19,11224181 Intron - - - 

LIPA_rs1051338 10,91007360 p.T16P 0.23 TOLERATED 0.10 TOLERATED 0.21 

LIPC_rs690 15,58834741 p.V155V TOLERATED  0.58 

LIPC_rs3751542 15,58856033 Intron - - - 

LPL_novel 8,19809449 p.N140S   BENIGN 

MGLL_rs116367069 3,127411206 Intron - - - 

PRSS1_rs6666 7,142460313 p.D162D TOLERATED  1 

PTPRR_rs10506608 12,71155380 p.F166F TOLERATED  1 

http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
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5.2.7 Linkage Disequilibrium 

Linkage disequilibrium could not be calculated between the majority of the SNPs of Interest as they 

did not lie on the same chromosome. Among those SNPs that were lying on the same gene, then 

linkage analysis was undertaken as described in the methods. 

There was no linkage disequilibrium demonstrated between any of the SNPs of Interest (Table 26). 

5.2.8 Tagging SNPs 

A list of tagging SNPs associated with the 21 SNPs of Interest is available in Appendix 10.3. Fifteen 

tagging SNPs were also mapped by the NGS sequencing covering five of the SNPs of Interest 

(Table 27). The correlation between the pairs of SNPs was assessed from the available NGS data.  

The absolute correlation ranged from 0.225 to 0.977 between SNPs. 
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Table 26 Linkage disequilibrium analysis for SNPs of Interest  

 
 

 
Distance (bp) 

Alcohol-related 

Chronic Pancreatitis Alcoholic Controls 

Chr 1st SNP 2nd SNP  r2 D' r2 D' 

2 APOB_novel APOB_rs72653066 18100 0.8691 0.7624 0.1101 0.0767 

APOB_novel FABP1_rs2241883 67195784 0.0979 0.1993 0.0106 0.0235 

APOB_novel IL1B_rs1143633 92362185 0.0556 0.0409 0.0008 0.0029 

APOB_rs72653066 FABP1_rs22418831 67177684 0.2743 0.7194 0.0214 0.3913 

APOB_rs72653066 IL1B_rs1143633 92344085 0.0505 0.0174 0.0594 0.0001 

FABP1_rs2241883 IL1B_rs1143633 25166401 0.0754 0.1612 0.0036 0.0198 

4 ADH5_rs116010022 ADH6_rs4147545 135212 0.0253 0.1487 - 0.0019 

ADH5_rs116010022 ADH1C_rs1693482 266556 0.0366 0.3188 - 0.0238 

ADH6_rs4147545 ADH1C_rs1693482 131344 0.0045 0.2167 - 0.0034 

12 PTPRR_rs10506608 ACACB_rs17848835 38536673 0.1889 0.1900 0.0313 0.0262 

15 LIPC_rs690 LIPC_rs3751542 21292 0.0240 0.6895 0.0004 0.0135 

http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp&cmd=search&term=+rs2241883
http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp&cmd=search&term=+rs2241883
http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp&cmd=search&term=+rs2241883
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Table 27 Correlation of tagging SNPs within the Next Generation Sequencing data  

The SNPs of Interest were assessed for any tagging SNPs that had been identified and for which sequencing data was available from the Next Generation 

Sequencing results. 

Reference SNP Tagging SNPs r2 D' 

Actual correlation 

ACP ACtrl 

PTPRR_rs10506608 PTPRR_rs11178399 1 1 0.977 0.976 

LDLR_rs1003723 LDLR_rs12710260 1 1 0.912 0.716 

LDLR_rs688 0.889 0.976 0.364 0.225 

LDLR_rs5925 0.889 0.976 0.821 0.747 

IL1B_rs1143633 IL1B_rs1143643 0.971 1 0.857 0.759 

ADH1C_rs1693482 

 

ADH1C_rs1612735 1 1 0.670 0.426 

ADH1C_rs698 1 1 0.658 0.474 

ADH1C_rs1693471 1 1 0.692 0.636 

ADH1C_rs1789912 1 1 0.779 0.897 

ADH1C_rs1693425 1 1 0.716 0.720 

ADH1C_rs1693426 1 1 0.682 0.608 

ADH1C_rs1693431 1 1 0.690 0.500 

PRSS1_rs6666 PRSS1_rs6667 1 1 0.680 0.606 

PRSS1_rs4726576 1 1 0.618 0.561 



The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Next Generation Sequencing - Results 142 

5.2.9 Sensitivity Sub-analysis of Next Generation Sequencing Samples 

5.2.9.1 Quality control 

In cases where the initial NGS run was believed to be of poor quality (less than 90% converge at 6 

bases), then the samples were either re-run from the same Haloplex extraction, or if the quality of 

the Haloplex samples was called into question, the DNA was re-run from the start of the Haloplex 

phase and then re-run on the Ion Torrent™.  In those cases where the second run had good 

coverage, this run was used exclusively for analysis; in those run where there was also concern to 

the coverage of the second run of sequencing results, the first and second runs results were 

concatenated, and if the overall reads at the position of the previously identified SNPs was greater 

than 90% at x6 depth, the concatenated data was used, otherwise that patient was discarded 

(occurred in one ACtrl case).  When these “pure” datasets were compared with the “concatenated” 

data sets, there were significant differences in the number of SNP variant calls made (Table 28).  

Those samples that had poor coverage of more than 50% of the SNPs read in the dataset (less than 6 

reads per SNP) were removed from the analysis.  This included 10 samples (two ACP, eight ACtrl).  

There were no statistically difference in the results between the original and sub-analysis (Table 47). 

5.2.9.2 Alcoholic Liver Disease compared to Disease-free Alcoholic Controls 

Of the 101 original ACtrl samples run on NGS, only 91 had a clear diagnosis of ALD.  There was no 

statistical difference determined between the groups, but the numbers were very small in the 

disease free alcoholic control group (AHC). 

5.2.9.3 Control Blood Samples compared to Control Liver Samples  

Twelve of the control DNA samples were extracted from liver tissue using Qiagen kits, as opposed to 

MagNA Pure extracted samples from peripheral blood.  Differences in the number of SNPs called and 

overall coverage was analysed and no difference was demonstrated between either sample groups. 
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5.2.9.4 Disease Status According to History of Alcohol Consumption 

Sub-analysis was attempted to identify and compare heavy drinkers to lighter drinkers within the 

study groups (based on frequency of alcohol consumption).  However, over 50% of data were 

missing for both ACP and ACtrl groups due to different sample collection methods and difficulty in 

obtaining meaningful histories from patients. We had sufficient data to confirm that there was high 

alcohol consumption, but did not have information on the exact quantities of consumption, 

especially from the Birmingham liver samples. Therefore this sub-analysis could not be undertaken. 
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Table 28 Comparison on the frequency of call types between individual samples, or those where 
samples were concatenated from two runs 

 

 

Individual Samples Concatenated Samples 
 Mean calls SEM Mean calls SEM p value 

Not called 1033.60 56.31 1270.44 117.01 0.149 

No variant 2878.39 50.72 2642.13 101.16 0.109 

Heterozygous for variant 208.80 5.12 153.30 20.65 0.001 

Homozygous for variant 105.76 2.24 160.13 30.68 <0.001 

 

A sub-analysis of the whole dataset was performed excluding those patients who did not have a 

good enough quality score in their own right. The sensitivity analysis led to 6 of the SNPs no longer 

being of significance.  For most there was a minor change in the numbers, and changes in 

significance were likely due to the reduced number of reads.  However, in the case of 

IL1B_rs1143633, there was a significant shift in both OR and p value, suggesting this original 

difference may have been purely an artefact. The data are available in Appendix 10.2. 
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5.2.10 Internal Validation - Next Generation Sequencing compared with Genome-
wide Association Study 

Forty-six of the ACP samples were analysed by both the GWAS method and NGS.  A total of 219 SNPs 

were covered by both modalities, giving over 10,000 comparable SNPs.  Due to drop out of reads 

from some areas of the NGS results, there were 9300 points that were comparable, of which 8916 

were concordant.  This gave an overall accuracy of the dataset of 96%.  126 of the 219 SNPs analysis 

were 100% concordant.  Of the remaining 97 SNPs with some element of discordance, there was a 

range of 44% to 98%. 
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5.2.11 Next Generation Sequencing Validation with Sequenom (Stage 1) 

Of the initial batch of 203 samples, 170 were rerun to confirm the results using the Sequenom array.  

Details of the demographics of the samples used are presented in Table 31.  An example of the 

genotype cluster is given in Figure 17.  The Sequenom results are presented in Table 32. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Example SNP genotype clusters on Sequenom for PTPRR_rs10506608 

Red and blue indicate called homozygotes, green indicates heterozygotes, and black is non-called 

(missing) genotypes.  This graph shows the distinct separation between the different groups. 
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5.2.12 Next Generation Sequencing Validation with Sequenom (Stage 2) 

The validation set were then run through the same Sequenom chip, using a second set of patient 

samples as described in Table 31.  Results are presented in Table 32 and concordance of samples is 

presented in Table 30. 

In addition to the ACP groups and ALD groups, 49 HC who had a history of alcohol excess with no 

evidence of ACP or ALD, were also sequenced with the Sequenom.  The results are presented in 

Table 33, in comparison with the combined ACP and ALD groups. 

An assessment was made of the correlation of SNPs read between the two sequencing modalities, 

comparing exact matches, those that had 50% discordance (on matching allele) and 100% 

(complete) discordance (neither allele matching); Table 29. 

Table 29 Correlation between Next Generation Sequencing and Sequenom data 

 

SNP 
Exact 

Match 
50% 

discordant 
100% 

discordant % Correlation % Discordant 
ACACB_rs17848835 147 18 19 89.09 22.62 

ADH1C_rs1693482 76 87 0 46.63 0 

ADH5_rs116010022 165 3 0 98.21 0 

ADH6_rs4147545 120 27 2 81.63 1.24 

APOB_rs72653066 157 0 12 100 12.77 

APOC3_rs4520 118 48 10 71.08 11.11 

CES5A_rs7500040 91 16 8 85.05 8.6 

FABP1_rs2241883 124 15 0 89.21 0 

FABP3_rs11578034 153 3 5 98.08 4.2 

FABP6_rs10056214 81 81 63 50 41.72 

IL1B_rs1143633 95 49 6 65.97 6.82 

LDLR_rs1003723 129 35 3 78.66 3 

LIPA_rs1051338 65 34 11 65.66 11 

LIPC_rs3751542 122 38 1 76.25 0.89 

LIPC_rs690 130 28 2 82.28 2 

MGLL_rs116367069 154 4 0 97.47 0 

PRSS1_rs6666 89 73 2 54.94 2.15 

PTPRR_rs10506608 154 7 0 95.65 0 
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Table 30 Comparison of additional validation step between using Sanger sequencing in comparison to Next Generation Sequencing and Sequenom 
results 

 

  Sanger results 

 Number that are 
discordant 

Agrees with NGS Agrees with Sequenom Agrees with neither Misread 

ACACB_rs17848835 18 6 (33%) 12 (67%) 0 0 

ADH1C_rs1693482 88 6 (7%) 6 (7%) 16 (18%) 60 (68%) 

ADH5_rs116010022 3 1 (33%) 2 (67%) 0 0 

FABP1_rs2241883 15 2 (13%) 13 (87%) 0 0 

FABP3_rs11578034 3 0 (0%) 3 (100%) 0 0 

IL1B_rs1143633 49 4 (8%) 44 (90%) 1 (2%) 0 

LIPA_rs1051338 34 3 (9%) 31 (91%) 0 0 

LIPC_rs690 28 4 (14%) 24 (86%) 0 0 

LIPC_rs3751542 37 4 (11%) 33 (89%) 0 0 

MGLL_rs116367069 4 1 (25%) 3 (75%) 0 0 

PRSS1_rs6666 71 4 (6%) 53 (75%) 1 (1%) 13 (18%) 

PTPRR_rs10506608 7 2 (29%) 5 (71%) 0 0 
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Table 31 Characterisation of the demographics of the samples used in the Sequenom validation  

 

 Stage 1 Stage 2 Combined 

ACP (114) ACtrl (87) ACP (80) ACtrl (85) ACP (194) ACtrl (172) 

Age Median (range) 53 years 

(26-90) 

52 years 

(26-77) 

43 years 

(22-73) 

57 years 

(34-94) 

49 years 

(22-90) 

55 years 

(26-94) 

Sex  Male 

Female 

87 

27 

55 

32 

68 

12 

54 

30 

155 

39 

109 

62 

Smoking Never 

Former 

Current 

Missing 

9 

28 

76 

1 

27 

19 

36 

5 

6 

10 

57 

7 

23 

21 

39 

1 

15 

38 

133 

8 

50 

40 

75 

6 

Alcohol Former Current 

Missing 

70 

40 

4 

44 

27 

16 

52 

22 

6 

46 

37 

1 

132 

62 

10 

90 

64 

26 

Diabetes No 

Diabetic 

Missing 

74 

39 

1 

80 

7 

0 

44 

28 

8 

69 

15 

0 

118 

67 

9 

149 

22 

0 

Diagnosis of CP 

confirmed or refuted 

CT 

EUS 

Histology 

102 

19 

52 

80 

0 

0 

71 

16 

32 

79 

0 

0 

173 

35 

84 

159 

0 

0 

History of ALD No 

Yes 

114 

0 

4 

83 

80 

0 

8 

77 

194 

0 

12 

160 

Source of DNA 

 

Blood 

Liver biopsy 

114 

0 

40 

47 

80 

0 

85 

0 

194 

0 

125 

47 
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Table 32 Sequenom results from the Stage 1, Stage 2 and both stages combined comparing Alcohol-related Chronic Pancreatitis and Alcoholic Controls  

 

  

Stage 1 Stage 2 Stage 1 & 2 Combined  

Presence of 
variant 

Homozygous for 
variant 

Presence of 
variant 

Homozygous for 
variant 

Presence of 
variant 

Homozygous for 
variant 

OR p value OR p value OR p value OR p value OR p value OR p value 

ACACB rs17848835 0.412 0.039 0.134 0.082 1.541 0.291 3.960 0.210 0.930 0.499 0.492 0.437 

ADH1C_rs1693482 0.604 0.214 0.833 0.865 0.655 0.844 0.320 - 0.667 0.035 0.715 0.344 

ADH5_rs116010022 0.215 0.194 1.125 - 0.640 0.448 - - 0.362 0.140 - - 

ADH6_rs4147545 1.435 0.386 3.428 0.093 0.740 0.470 1.535 0.228 0.967 0.970 1.989 0.033 

APOB rs72653066 4.684 0.040 - - 2.527 0.594 - - 3.106 0.066 - - 

APOC3_rs4520 0.994 0.945 1.743 0.405 1.213 0.434 0.632 0.464 1.058 0.660 0.994 0.930 

CES5A_rs7500040 0.419 0.080 0.522 0.078 0.198 0.174 0.783 0.321 0.369 0.044 0.660 0.045 

FABP1_rs2241883 0.620 0.159 0.745 0.454 1.407 0.292 0.977 0.790 0.882 0.779 0.854 0.477 

FABP3_rs11578034 0.845 0.123 - - 1.939 0.210 - - 0.637 0.657 - - 

FABP6_rs10056214 2.104 0.217 - - 1.381 0.407 - - 1.788 0.106 - - 

IL1B_rs1143633 0.718 0.648 0.659 0.119 1.035 0.774 0.912 0.907 0.873 0.654 0.802 0.269 

LDLR_rs1003723 0.879 0.609 0.635 0.282 1.048 0.781 0.690 0.221 0.961 0.872 0.658 0.106 

LIPA_rs1051338 1.793 0.058 1.141 0.810 0.676 0.089 0.413 0.067 1.033 0.775 0.649 0.275 

LIPC_rs3751542 0.576 0.043 0.933 0.761 0.676 0.313 1.087 0.822 0.616 0.027 1.071 0.914 

LIPC_rs690 0.789 0.153 1.284 0.535 0.893 0.591 0.957 0.984 0.859 0.546 1.107 0.689 

MGLL_rs116367069 1.775 0.347 2.278 0.241 1.589 0.300 - - 2.112 0.164 0.970 0.307 

PRSS1_rs6666 3.529 0.004 1.421 0.131 5.930 <0.001 2.534 0.011 4.432 <0.001 1.840 0.003 

PTPRR_rs10506608 3.122 0.025 1.114 0.250 0.348 0.013 0.15 0.046 0.924 0.930 0.320 0.323 
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Table 33 Combined results of Stage 1 and Stage 2 of Sequenom validation comparing allele frequencies between Alcohol-related Chronic Pancreatitis, 
Alcoholic Liver Disease and Alcoholic Healthy Controls 

 
    Allele frequency  ACP compared to ALD ACP compared to AHC ALD compared to AHC 

  Alleles ACP ALD AHC  OR p value OR p value OR p value 

ACACB rs17848835 C T 0.11 0.13 0.102   0.93 0.623 0.816 0.539 0.878 0.792 

ADH1C_rs1693482 C T 0.251 0.321 0.143   0.734 0.057 1.410 0.141 1.921 0.007 

ADH5_rs116010022 C A 0.008 0.021 0.01   0.362 0.126 0.944 0.961 2.605 0.359 

ADH6_rs4147545 A G 0.331 0.298 0.327   0.967 0.407 0.906 0.627 0.937 0.932 

APOB rs72653066 G C 0.025 0.008 0   3.106 0.081 - 0.087 - 0.327 

APOC3_rs4520 C T 0.262 0.25 0.224   1.058 0.833 1.409 0.264 1.331 0.330 

CES5A_rs7500040 G A 0.251 0.178 0.163   0.652 0.021 0.582 0.038 0.893 0.579 

FABP1_rs2241883 T C 0.29 0.267 0.316   0.882 0.46 1.135 0.600 1.286 0.295 

FABP3_rs11578034 C T 0.006 0.008 0   0.637 0.622 - 0.425 - 0.319 

FABP6_rs10056214 C G 0.083 0.054 0.056   1.788 0.084 1.314 0.564 0.735 0.532 

IL1B_rs1143633 G A 0.395 0.359 0.357   0.873 0.347 0.573 0.398 0.656 0.843 

LDLR_rs1003723 C T 0.406 0.444 0.52   0.961 0.297 0.637 0.053 0.663 0.230 

LIPA_rs1051338 A C 0.312 0.322 0.357   1.033 0.653 1.063 0.672 1.029 0.912 

LIPC_rs3751542 A G 0.285 0.34 0.245   0.616 0.098 1.211 0.531 1.965 0.082 

LIPC_rs690 G T 0.428 0.426 0.490   0.859 1 1.398 0.389 1.628 0.389 

MGLL_rs116367069 A G 0.058 0.035 0.051   2.187 0.045 0.761 0.636 0.360 0.039 

PRSS1_rs6666 T C 0.702 0.539 0.488   1.991 <0.001 3.063 <0.001 1.538 0.020 

PTPRR_rs10506608 A G 0.072 0.079 0.102   0.924 0.596 0.771 0.626 0.834 0.905 
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5.2.13 Next Generation Sequencing Haplotype Analysis 

The most consistent polymorphism throughout the NGS analysis was PRSS1_rs6666.  This SNP has 

been previously described, but is believed to be benign in nature and is common within both 

populations, therefore, it was felt it could in fact be a marker for a haplotype, which holds the 

disease causing polymorphism.  Therefore, all other SNPs on Chromosome 7, where PRSS1_rs6666 

lies, were examined to look at their association with PRSS1_rs6666 using χ2 in both the disease and 

control populations.  Those SNPs which showed significance at the <0.05 level were included in the 

haplotype analysis.  The OR was calculated for the common haplotypes in both the disease group 

and the control group.  If there was no effect on the model exhibited by the presence of a SNP, it 

was dropped from the haplotype and the new, smaller haplotype were analysed.  This was done 

sequentially until the most significant haplotype was formed.  The results of this analysis are shown 

in Table 34. No haplotype was produced that gave better OR than simply using the polymorphism 

PRSS1_rs6666 as a factor.  
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Table 34 Comparison of different haplotypes and the association with Alcohol-related Chronic 
Pancreatitis in relation to Alcoholic Controls 

 

CFTR PRSS1     

rs1042077 rs1800136 rs6666 rs201550522     

p.T854T p.Q1463Q p.D162D p.K170E OR Upper CI Lower CI p value 

T G T A 0.516 0.305 0.873 0.01 

T G T G 1.942 0.178 21.159 NS 

T G C A 1.947 1.147 3.306 0.013 

T G C G 2.051 0.073 57.828 NS 

T A T A 1.177 0.256 5.411 NS 

T A T G -   NS 

T A C A 1.273 0.316 5.127 NS 

T A C G -   NS 

G G T A 0.728 0.399 1.329 NS 

G G T G 0.281 0.016 4.852 NS 

G G C A 1.294 0.624 2.684 NS 

G G C G 0.075 0.000 24.121 NS 

G A T A 1.110 0.290 4.251 NS 

G A T G -   NS 

G A C A 1.299 0.380 4.441 NS 

G A C G -   NS 
        

T G T  0.542 0.323 0.911 0.020 

T G C  1.969 1.163 3.333 0.013 

T A T  1.373 0.313 6.028 NS 

T A C  1.307 0.327 5.226 NS 

G G T  0.688 0.381 1.243 NS 

G G C  1.163 0.571 2.368 NS 

G A T  1.139 0.300 4.332 NS 

G A C  1.325 0.389 4.510 NS 
        

T  T  0.581 0.351 0.961 0.035 

T  C  1.963 1.179 3.269 0.009 

G  T  0.733 0.420 1.280 NS 

G  C  1.217 0.645 2.297 NS 
        

  T  0.554 0.369 0.832 0.004 

  C  1.804 1.202 2.707 0.004 
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 Discussion 5.3

5.3.1 Previous Identified Variants 

5.3.1.1 Protease, Serine, 1 (Trypsin 1) 

The most well-known disease causing variants within PRSS1 are autosomal dominant in expression, 

and therefore would not be expected to be represented within this population of patients with no 

familial history of pancreatic disease.  Initially results of the NGS work suggested some patients were 

exhibiting the p.A16V polymorphism, but on further investigation this was shown to be a misread.  

This is not unexpected within the trypsin coding genes as there are many genetic similarities 

between them (Figure 1) which may lead to either cleavage of the wrong amplicons initially or 

misalignment of amplicons within the Ion Torrent™ leading to apparent polymorphisms.  In the case 

of p.A16V, this variant mirrors the natural variation within PRSS3, leading to misreading of this 

region in a few of the samples. 

The previously reported, but believed to not be disease related, polymorphisms p.D162D and 

p.N264N will be addressed in Chapter 6.3.2.8.1. 

5.3.1.2 Serine Protease Inhibitor Kazal Type I 

p.N34S SPINK1 was first identified as an associated factor in 2000 at which time it was thought to be 

a clearly causative factor with 23% of tested CP patients having the variant, and none of the 

controls.45  However, subsequent studies have shown the variant could be present in healthy 

controls, but the frequency was still higher in patients with CP (most commonly those who 

developed idiopathic CP from childhood).  Therefore it is unsurprising that both ACP and ACtrl 

groups showed the presence of p.N34S, and although the prevalence was higher in the ACP group, 

this did not reach significance in the small sample size used. 
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5.3.1.3 Cystic Fibrosis Transmembrane Conductance Regulator 

There has been a previously reported risk haplotype within CFTR associated with chronic 

pancreatitis, which includes two of the significant CFTR SNPS identified. The haplotypes were 

imputed using three SNPs in the haplotype (CFTR_rs213950, CFTR_rs1042077 and 

CFTR_rs1800136).186 The previously described CFTR haplotype was reconfirmed by the SNP array 

data (Table 18).186  Both these populations used a mix of ACP and ICP patients compared to the 

normal population. When we examined the NGS results of an ACP population compared to an ACtrl 

group for these polymorphisms, no difference was shown (Table 34).  It may be that this association 

is only exhibited within the ICP group, but this theory will need to be tested in further in an ICP 

population.  

In all cases the haplotype analysis has been carried out using software based on probabilistic models 

to create the likely haplotypes, therefore it is likely that some haplotypes will be over, or under 

called in frequency.331  The best way to create haplotypes is using points that can be sequencing on 

the same strand with long distance sequencing, but this was not possible within our study 

populations and therefore imputation was the only method of analysis available. 

The Whitcomb group recently reported that the coinheritance of CFTR p.R75Q and SPINK1 p.N34S 

variants is significantly higher in patients with idiopathic chronic pancreatitis than in controls (8.75% 

vs. 0.38%).181 In our population, none of the participants were found to have both the p.R75Q and 

p.N34S variation in either subgroup.  
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5.3.2 Significant SNPs identified in the NGS analysis 

5.3.2.1 Alcohol Dehydrogenase 

The polymorphism, ADH1C_rs1693482 (p.R272Q), has been frequently described in the literature in 

relation to alcohol dependence, and has also been associated with other alcohol risk diseases such 

as gastric cancer.202,332 

It has been shown that the duodenal and jejunal activity of ADH1C is reduced in the presence of the 

ADH1C_rs1693482.6 

Many different populations have shown to have a strong association with this polymorphism and 

alcoholism.123,127 Analysis of a Korean GWAS has showed an association of ADH1C_rs1693482 to 

alcohol dependence but it was felt that this association might be driven through linkage 

disequilibrium with ADH1B_rs1229984 (p.R48H), rather than be a pathogenic polymorphism in its 

own right.123 Similar results have been reported in a British and Irish population although the level of 

linkage disequilibrium was not as strong.202 

Some other studies have been less sure of the AD risk of ADH1C_rs1693482 in Europeans.206,333,334 

However it is felt that there is some independent effect of both ADH1B and ADH1C on the drinking 

habits of European populations.334,335 

One paper has suggested that there is also an association of this polymorphism with the 

development of ALD in combination with ADH1C_rs698 (p.I350V) and ADH1B_rs1229984 

(p.R48H).336 p.R272Q and p.I350V were shown to be in almost complete linkage disequilibrium 

(Appendix 10.4, Table 48). The 272Q/350V allele increased the risk of alcohol dependence in the 

homozygous form (OR 1.78, 1.11-2.85; p = 0.016). When ADH1B 48H was combined with the wild 

type ADH1C R272/I350 allele, it was protective against ALD (OR 0.37, 0.16-0.85; p = 0.019). 

The significance of ADH1C_rs1693482 was maintained following the validation stage, but only 

between the ALD group and the AHC (OR 4.44, 1.71-11.52); ACP and AHC approached but did not 
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reach significance.  Both these finding are supported by the previous findings in relation to alcohol 

dependence which is likely to be the genuine significance from this polymorphism. 

A meta-analysis of 6796 cases and 6938 controls including samples of Asian, European, African, and 

Native American origins showed strong evidence of association between ADH1C_rs698 (p.I350V) and 

alcohol dependence (OR 1.51, 1.31-1.73; p = 1 × 10-8)337 with Asian population demonstrating a 

stronger association (OR 2.14, 1.89-2.43; p = 4 × 10-33). The findings support that ADH1C_rs698 may 

increase the risk of AD as well as alcohol-related cirrhosis in pooled populations, with the most 

consistent effects in Asians.337  There was no difference demonstrated between ACP and ACtrl in our 

population (Table 33). 

The common polymorphism ADH1B*2 has been well described to be heavily associated with alcohol 

dependence.123 As all patients used in this analysis had a history of alcohol dependence, there was 

no association shown between the groups (8/100 vs. 4/96). 

It has been shown that ADH1C_rs698 (p.I350V) substitution is in linkage disequilibrium with the 

ADH1B_rs1229984 (p.R48H) substitution, and that the ADH1B_rs1229984 polymorphism is 

responsible for differences in ethanol metabolism and alcoholism among Taiwanese populations, 

with the ADH1C_rs698 variant showing association only because of linkage disequilibrium.204 

ADH5_rs116010022 is a previously identified intronic SNP, which has not been reported as being 

involved in any disease processes before.  This SNP has been shown to be in complete linkage 

disequilibrium with 6 other intronic SNPs (Appendix 10.4, Table 48), none of which have been 

identified in the literature. 
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5.3.2.2 Lipase and Lipoprotein 

The SNP LDLR_rs1003723 lies in the intronic region.  It has been reported in two different studies by 

the same group to have an association with an increased risk of bile duct cancer and also has been 

show to raise total cholesterol (p = 0.002) and LDL (p = 0.01).338,339 

There are several tagging SNPs associated with LDLR_rs1003723, two of which lie within coding 

regions of LDLR, but both are synonymous variations. 

The closely associated tagging SNP, LDLR_rs688, is non-synonymous and codes for p.N591N.  In 

previous work, despite its non-synonymous nature, it has been shown to exhibit functional changes 

to LDLR, leading to increased plasma total and LDL cholesterol.340  This is thought to be due to an 

association with increased exon 12 alternative splicing.341,342 

The associated SNP LDLR_rs5925 leads to the synonymous variant, p.V653V.  A meta-analysis of 

studies assessing the role of LDLR in cerebral infarction showed that LDLR_rs5925 had been shown in 

three studies to be associated with an increased risk.342 

LDLR_rs2738446 and LDLR_rs2738450 are both closely linked intronic SNPs, which have been 

examined in relation to modification of stroke presentation. In one study, a significant overall 

association between small vessel occlusion and the CC genotype was observed when compared to 

non-small vessel occlusion (OR 2.0, 1.08-3.70; p = 0.025).343   
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LIPA_rs1051338 lies within exon 2 and causes an amino acid change (p.T16P).  It has previously been 

reported in a study related to obesity that, after adjustments for the effect of age, sex, diabetes, and 

medication, the C allele of SNP LIPA_rs1051338 was associated with lower blood pressure (systolic p 

= 0.004; diastolic p = 0.006).344  It has also been shown to cause a significant reduction in 24S-

hydroxycholesterol/cholesterol in one study.345 

A previous GWAS examining coronary artery disease showed a tagging SNP, LIPA_rs1412444 was 

strongly associated with expression of the LIPA transcript itself but was not associated with 

hyperlipidemia.
346 This was supported by a separate GWAS.347 

Another tagging SNP, LIPA_rs2246942, within the LIPA gene was associated with an increased risk of 

coronary heart disease (cases vs. HC: OR 1.63 (1.02-2.60), p = 0.04).348 
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LIPC_rs690 is a  common synonymous SNP (p.V155V), which is only reported in one previous 

publication in relation to cleft lip, where it was found to have a weak association with the 

development of both cleft palate and dental abnormalities.  However, when multiple testing is 

taking into account, the significance is lost.349  There have been no recognised tagging SNPs in 

association with this variation. 

MGLL_rs116367069 is a SNP that codes for an intronic region of monoglyceride lipase.  This SNP has 

not been noted in the literature, nor does it have any associated tagging SNPs.  

Following the validation process, MGLL was shown to be significantly different between ACP and 

ALD groups (OR 2.19, 0.01-4.64) and ALD and AHC groups (OR 0.38, 0.15-0.98). There was no 

difference between the ACP and AHC suggesting that the association may be with ALD rather than 

with ACP.  
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5.3.2.3 Trypsin 

5.3.2.3.1 PRSS1_rs6666 

This SNP codes for a common synonymous variant in PRSS1_rs666 (p.D162D).164 Previous reports on 

this SNP are listed in Table 35.  The normally reported allele frequencies for different populations are 

given in Table 36.  It is reported to be in complete linkage disequilibrium with PRSS1_rs6667 

(p.N246N).168 

The majority of reports have suggested that there is no difference between with ACP or ICP 

populations.350,351 However, there have been two studies (one published and one in abstract) 

suggesting there may be a relationship. One small study showed that the frequency of the C allele 

was higher in ACP group compared to HC (OR 8.44, 2.39-29.79).352  The study presented in abstract 

also suggested that the C allele was in higher frequency in the ACP and ICP patients compared to 

healthy controls.353 

These two studies support our findings produced by the NGS and the validation with Sequenom of 

PRSS1_rs6666.352,353  Of note, these studies are both carried out within European populations. 

Table36 shows that there is a great variation in the frequency of this SNP within different 

populations, and this may account for the absence of a difference being identified in some other 

studies. 

As this is a synonymous SNP, there is no clear reason why it could be causative, therefore it was 

postulated that it may be a marker for a disease haplotype.  Using the technique described in the 

methods, several potential haplotypes were devised using other SNP identified within chromosome 

7, however, the attrition of other potential SNPs did not increase the OR or the probity of the effect 

of PRSS1_rs6666.  As only the exons of PRSS1 and CFTR were specifically sequenced as part of NGS, 

we cannot rule out other significant variants within non-coding regions, which could be important in 

the disease haplotype.  This could be further investigated using long-range sequencing of the PRSS1 

area.  



 

 

1
6

2
 

Table 35 Previous published reports of PRSS1_rs6666 

Paper Year Country 
Nomenclature 
used by paper 

Population group Frequency of polymorphism 

Gorry49 1997 USA Asp162 HP families Not stated 

Teich354 1998 Germany nt 133807 (C/T) HP vs. relatives of HP  7/7 (100%) vs. 3/14 (21%) 

Ferec164 1999 France D162D HP families  No comment  

Nishimori355 1999 Japan 162Asp HP families No comment 

*Gomez Lira356 2001 Italy 133807 C/T  NHNST 13/50 (26%) NHNST 

O’Reilly352 2001 UK C133807T ACP vs. HC 9/29 (31%) vs. 19/24 (79%); p < 0.001 

Tautermann168 2001 Germany D162D ICP 34/109 (31%) 

Chandak357 2002 India D162D TCP vs. HC 58/68 (85%) vs. 90/100 (90%); p = 0.5 

*Patuzzo357 2002 Italy 133807 C/T NHNST 21/50 (24%) 

Guarner353 2003 Spain D162D 5.3.2.3.2 44 ACP vs. 22 ICP vs. 34 HC 23/44 (52%) vs. 12/22 (55%) vs. 28/34 (82%) 

Bernardino351 2003 Brazil N264N (64 ACP, 16 ICP, 2 HP) vs. 200 HC 47/164 (29%) vs. 85/300 (28%) p = 1 

Chandak358 2004 India 162Asp (37 HP, 120 ICP, 41 ACP) vs. 290 HC 88% vs. 90% 

Tzetis350 2007 Greece p.D162D ICP/RAP vs. HC 9/25 (36%) vs. 10/25 (40%); p = 1 

Liu359 2009 China 133807 C/T (22 ACP, 16 ICP, 30 TG, 35 HP, 150 GS) 27/253 (11%) 

Johnstone 2014 UK p.D162D ACP vs. ALD vs. AHC 105/352 (30%) vs. 155/342 (45%) vs. 54/102 

(53%) 

NHNST – Neonatal Hypertrypsinaemia with normal sweat chloride tests.  

*Gomez Lira 2001 and Patuzzo 2002 may be using the same population. 
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Table 36 MAF of PRSS1_rs6666 in different populations 

Region C T 

Africa 0.41 0.59 

American 0.53 0.47 

Asian 

Han Chinese, Beijing 

Southern Han Chinese 

0.22 

0.27 

0.24 

0.78 

0.73 

0.76 

Europe 

British 

Spain 

Italy 

0.58 

0.53 

0.58 

0.58 

0.42 

0.47 

0.42 

0.42 

South Asia 

India 

Sri Lanka 

0.28 

0.3 

0.2 

0.72 

0.7 

0.8 

All 0.4 0.6 

Data taken from 1000 genomes database 4th Nov 2014. 

The T allele polymorphism is reported to have a lower frequency in Europeans (0.4), whereas it is 

more frequent in subjects of Asian origin (0.75) or subjects from those from India (0.9).360 

To assess what the functional significance of rs666 may be, we examined codon usage, which 

showed no bias to either codon, there was no splice site at the region of the variant and in a search 

for micro RNA that bound to PRSS1, only has-miR-185 was shown to be associated.  There was no 

association with the sequence in exon 4.  When assessing for enhancer binding, one potential 

transcription factor that would bind preferentially to the T variant was identified.  This gave an 18% 

increase in function, but this is unlikely to be the main promoter of this gene.  

5.3.2.3.2.1 PRSS1_rs6667 

The most common tagging SNP is p.N246N, which has been reported alongside PRSS1_rs6666 in 

most papers, the only exception being Bernardino et al.351  In this paper there was no difference in 

frequency of PRSS1_rs6667 in either CP or control groups in a Brazilian population. 

In this study there was no significance found in PRSS1_rs6667.  Where PRSS1_rs66667 was 

compared to PRSS1_rs6666 there was only between a 60-68% correlation in reads, accounting for 
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the difference in significance. The difference in reads may be related to the difficultly in sequencing 

the trypsin regions, due to the multiple isoforms, which can lead to misalignment and misreading of 

these readings as demonstrated in Figure 1. 

PRSS1_rs6667 was examined in a similar way to assess for codon bias, splice sites, micro RNA and 

binding enhancers, but nothing of significance was found. 

Other tagging SNPs are reported in Appendix 10.4, Table 48.  None lie within exonic regions or have 

been previously reported on in the literature. 
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5.3.3 Quality of Next Generation Sequencing Results 

Sub-analysis was performed removing the ten samples that had insufficient coverage to produce 

50% on the SNPs analysed, and this had no effect on outcome.  This cut off may have been fairly 

conservative, 28 samples lay beneath 70% covered and 69 samples had less than 90% coverage, but 

due to the small sample size used, such a large reduction in number would be likely to remove any 

true significance from the results. 

Quality control of the Next Generation Sequencing results showed that results were less reliable 

from samples where the results from two chips had been concatenated and including these results 

may have given false positive readings.  These samples were excluded from sub-analysis, and 

showed better consistency of results (Table 47).  As a consequence, the sub-analysis has reduced 

down the number of samples that can be analysed, and therefore some samples may lose 

significance simply due to the reduced numbers. 

5.3.3.1 Calling of Variants 

The appropriate calling of variants by the Ion Torrent™ first required correct alignment of the 

amplicons to the reference structure, and also requires the appropriate criteria to identify whether 

there is truly a variant at this point, or simply a misread in the DNA.  As with all tests there is a 

balance between sensitivity and the specificity that must be achieved.  We selected a custom 

designed approach to both the alignment and the SNP calls to try and optimise the sensitivity and 

specificity of the test.  The identification of false reads is less common in the case of germline 

mutations, and a fairly high threshold (>25% calls) is required to ensure this.  It is more probable that 

some true variants may be missed due to exclusion of individuals with any reads under 25%.  There 

may also be miscalling between homozygous and heterozygous calls, which lie at a cut-off of above 

and below 75% of all calls, respectively.  This system may lead to bias towards the calling of SNPs, 

rather than the normal variant.361 
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5.3.3.2 Nature of Variants 

The most commonly recognised reading errors, specific to the Ion Torrent™ system are 

homopolymers.362  Due to the nature of the reading system the number of bases in homopolymers is 

calculated by the amplitude of the pH change, which has more variability with the more consecutive 

reads at this point.  As a result of this, when the potential SNPs of Interest were examined, many 

were discarded as they were related to a long homopolymer, and all variant reads appeared to be in 

relation to this.  As a result any variants either directly related to the homopolymers or which 

immediately juxtapose a homopolymer, are likely to be assumed to be this common read error. 

5.3.3.3 Phenotypic Significance of Variants 

To assess the potential phenotypic sequelae of some of the variants expresses, different online tools 

(SIFT and Polyphen) were used to assess the potential likelihood of an effect by looking at 

homologues and orthologues of the sequence.363   These tools are only useful in the case of non-

synonymous SNPs, and only give a predication related to other species, or similar polymorphism 

identified within the same species, which may not be related to the genuine significance of the SNP 

in question. 

5.3.3.4 Tagging SNPs 

The use of Tagging SNPs to identify the true area of genetic interest is a common approach, and 

relies on close LD between the SNPs selected.364  In the NGS work, there were some unexpected 

inconsistencies between the calls of pairs of tagging SNPs, making the validity of this difficult to 

assess.  

5.3.3.5 Next Generation Sequencing Validation 

The NGS data was independently validated in part by cross over with the GWAS data and Sequenom 

sequencing and with Sanger sequencing in the case of p.A16V.  There were some SNPs with poor 

concordance between the different modalities. The individual SNP analysis performed as part of the 
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GWAS and Sequenom sequencing, exhibit similar sequencing techniques, and this may explain 

consistent errors between different modalities.  The NGS uses different technology, but relies on 

good use of alignment and calling tools to produce an accurate result.  

Due to the discrepancies in some SNPs between the NGS and Sequenom validation data, further 

Sanger sequencing was undertaken as a second stage of validation, to determine which of the 

modalities are more consistent, or whether any differences are just natural variation in the reads 

between different modalities.  This showed that for the most part that the Sequenom provided more 

reliable reads than the analysis of the NGS data.  This may have been in part due to the analysis 

pipeline used to interpret the ion torrent data that may have been due to difficulties with alignment 

or with call thresholds in relation to the interpretation of the data. 

These steps of validation have allowed us to hone the analysis to identify a few key SNPs that have 

been replicated in two populations with more than one modality of analysis.  Further work can be 

done to reassess the original NGS output to identify if there are other key SNPs that may be been 

overlooked with the original analysis. In addition the key SNPs, which have been shown to be 

significant in this work need to be further, assess in similar and different populations to confirm the 

validity of results.  Once a clear association is established, further research will need to be conducted 

to confirm what the physiological process is that leads to disease predisposition.  

5.3.4 Statistical Analysis 

Due to the large amount of data create by the Next Generation Sequencing, there is potential risk of 

identifying false positive results due to multiple testing.  In larger studies such as GWAS, there is 

commonly alteration to the p value using Bonferroni correction.365 However it was not felt 

appropriate in this study due to the small sample size in the discovery set, and the specific selection 

of the genetic areas for study. 
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6 Chapter 6: Variable Nuculeotide Tandam Repeat in Carboxyl-
ester Lipase  

FAEEs are a product of the non-oxidative metabolism of ethanol and fatty acids; carboxyl-ester 

lipase (CEL) is a key enzyme involved in this metabolic pathway.29,366,367 

There is a 33bp Variable Number Tandem Repeat (VNTR) in exon 11 (the final exon) of CEL.368 This 

VNTR sits in a functional domain of the gene and is most commonly represented by a 16–repeat 

variant, but between 3 and 23 repeats have been reported, with segment duplication also present in 

up to 5% of individuals.369  

Due to the lack of consistency in the literature, we sought to further investigate potential 

associations between this polymorphism and ACP using a combined strategy with both a matched 

control cohort of alcoholic liver disease patients and a group of healthy controls from a British 

population. 

 Materials and Methods 6.1

6.1.1 Patients 

6.1.1.1 Chronic Pancreatitis 

Participants included in the CEL study had to meet the following criteria 

- symptoms typical of chronic pancreatitis 

- alcohol excess of greater than 35u/wk (equivalent of >40g/day)43 for at least 5 years 

- radiological evidence of chronic pancreatitis (CT/MRI/EUS) 

- cell pellet available for DNA extraction 

- patient consented to take part in research projects 
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6.1.1.2 Alcoholic Liver Disease 

Participants included in the CEL study had to meet the following criteria 

- no personal or family history of chronic pancreatitis 

- reviewed by the hepatology clinic with a diagnosis of alcoholic liver disease or having 

undergone a liver transplant for alcoholic cirrhosis 

- alcohol excess of greater than 35u/wk (equivalent of >40g/day)43 for at least 5 years 

- radiological evidence of a morphologically normal pancreatitis (CT/MRI/EUS) 

- cell pellet available for DNA extraction 

- patient consented to take part in research projects 

6.1.1.3 Healthy Controls 

Participants included in the CEL study had to meet the following criteria 

- no personal or family history of chronic pancreatitis 

- no personal or family history of alcoholic liver disease 

- no history of alcohol excess 

- DNA available 

- patient consented to take part in research projects 

 

These criteria parallel the type of patient samples used for the NGS project, but the actual groups 

used had some overlap, were not the same.  
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6.1.2 Association of Carboxyl-Ester Lipase Variable Nucleotide Tandem Repeat  

6.1.2.1 Polymerase Chain Reaction  

PCR was performed using minor modifications on methodology previously described by Torsvik et 

al.369 A PCR reaction volume of 10µl was used, containing 1 x GC buffer I, 0.34mM dNTPs, 0.2U LaTaq 

Polymerase (TaKaRa, Japan RR02AG), 1.0M betaine (Sigma-Aldrich, USA), 0.2µM CEL_VNTR_F primer 

(5’-ACCGACCAGGAGGCCACCC-3’), 0.2µM CEL-VNTR_R2 primer (5’-CCTGGGGTCCCACTCTTGT-3’; 

labelled with HEX) and 20ng template DNA.  The PCR cycle was 94oC for 1min 30s; then 94oC for 30s, 

61oC for 30s and 72oC for 1min 10s for 40 cycles, followed by 72oC for 5min, and cooling to 4oC. 

6.1.2.2 Fragment Analysis 

The PCR product (2μl) was mixed with 10 μl of Hi-Di™ Formamide and 0.5 μl GeneScan™ 1000 ROX 

Size Standard (both Life Technologies, Paisley) heated at 95oC for 2 min and snap chilled on ice prior 

to loading on a 3130 Genetic Analyser (Life Technologies, Paisley).  Electrophoretic separation 

utilised a 36cm capillary array and POP7 polymer.  The GeneMapper software v2.0 (Life 

Technologies, Paisley) was used to analyse the detected peaks. 

6.1.2.3 Statistical Analysis 

Haplotypes were subdivided into short (S), normal (N) or long (L) VNTR alleles; the most common 

number of repeats (16) was classified as normal, those with less than 16 repeats as short, and those 

with more than 16, as long.219  Data were presented using medians (interquartile range).  Differences 

between cohorts were examined using χ2 or Fisher’s exact test for categorical data and Mann-

Whitney-U for continuous data (SPSS 20.0, Chicago, Illinois). 

To test whether there was selection for or against homozygotes and whether populations were 

representative, Hardy Weinberg equilibrium was used (p2 + 2pq + q2 = 1). This was tested using the χ2 

test of expected numbers of homozygote and heterozygote based on allele frequency, taking the 16-

repeat VNTR as the major allelotype (p) and any variation from this as the minor allelotype (q).
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 Results  6.2

In total 284 samples were analysed, 102 ACP, 91 ALD, and 91 HC: median age ACP 42 (37-49) years, 

ALD 57 years (50-63; p < 0.001).  Male distribution between the groups was 86 ACP (84%), 60 ALD 

(66%) and 36 HC (40%; Table 37). 

Results were assessed using both gel electrophoresis (Figure 19) and capillary electrophoresis 

(Figure 20). 

Data on individual allele frequencies by group are presented in Table 38.  The overall frequency of 

the normal, 16-repeat allele was statistically different between ACP (56%) and ALD (67%; p = 0.020).  

There was no significant difference between ACP and the HC (58%) groups (p = 0.729) and the 

difference between ALD and the HC groups tended towards, but did not reach statistical significance 

(p = 0.062).  The long allele was more common in patients with ACP (6%) than ALD (2%; p = 0.036), 

but there was no significant difference in either group from HC (4%; p > 0.1). 

Genotypes of patients by cohort group are presented in Table 39.  Again there was a significant 

difference between the number of individuals homozygous for the normal 16-repeat (NN) between 

ACP (33%) and ALD (47%; p = 0.034).  This difference was upheld between the ALD and HC (33%) 

groups (p = 0.049) but not between ACP and HC (p = 0.928).  There was also a greater representation 

of NL genotype in the ACP patients (9%) compared to both HC (2%) and ALD patients (0%; ACP vs. 

ALD, p = 0.004). Duplicates of the CEL VNTR were identified in 8 (3%) patients with no variation 

between groups. 

The level of selection of the different groups for or against the normal allele was tested using the 

Hardy-Weinberg equation.  For all groups, there was no selection for or against homozygotes.  

There was no significant difference between the distribution of alleles between males and females 

(S, 36% vs. 37%; N, 60% vs. 62%; L, 5% vs. 3%; p>0.1).  
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Table 37 Demographics of the Alcohol-related Chronic Pancreatitis and Alcohol Control groups  

 

 

  

  
Alcohol-related Chronic 

Pancreatitis (101) 
Alcohol Controls 

(91) 

Age (years)     Median (range) 43 (20-72) 57 (34-80) 

Sex                   Male 
                         Female 

85 
16 

60 
31 

Smoking          Never 
                         Former 
                         Current 
                         Missing 

10 
18 
69 
4 

31 
21 
38 
1 

Alcohol            Former 
                         Current 

71 
30 

58 
33 

Diabetes         Yes 
                         No 

39 
62 

21 
70 

CP confirmed/refuted 
                         CT 
                         Histology 

 
97 
55 

 
91 
0 
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Figure 18 Electrophoresis gel showing CEL PCR product for different combinations of Variable 
Tandem Repeats 

Different samples are represented: NN, homozygous for the normal 16 repeat at 617bp; SN, 

heterozygous for normal (16 repeats) and the shorter 10, 14 or 15 repeat VNTR; and NL, 

heterozygous for the normal 16-repeat and the longer 17 repeat. 

  

 NN SN NL          SN           NN          SN      NN    SN 

1000bp 

700bp 

500bp 

400bp 
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Figure 19 Capillary electrophoresis output for a) short/normal and b) homozygous normal VNTR  

Red -ROX1000 ladder; Blue/green - marked PCR product showing a double peak at 518bp (13 

repeats) and 617bp (16 repeats) in trace a, and only a single peak at 617bp for trace b. 

  

a)        262   293 317                        439                    557                  692 

b)        262   293 317                       439                           557                      692 
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Table 38 Total allele frequencies of the CEL VNTR by cohort 

 
Number of VNTR repeats ACP (%) ALD (%) HC (%) ACP vs. ALD p value 

7 2 (1.0) 0 (0) 0 (0) 0.501 

10 0 (0) 1 (0.5) 0 (0) 0.472 

11 1 (0.5) 0 (0) 0 (0) 1.000 

12 8 (3.9) 2 (1.1) 1 (0.5) 0.110 

13 12 (5.8) 8 (4.3) 14 (7.6) 0.508 

14 29 (14.0) 19 (10.3) 29 (15.8) 0.260 

15 28 (13.5) 28 (15.1) 27 (14.7) 0.650 

16 115 (55.6) 124 (67.0) 106 (57.6) 0.020 

17 10 (4.8) 3 (1.6) 7 (3.8) 0.094 

18 2 (1.0) 0 (0) 0 (0) 0.501 

Total 207 185 184  

p value was calculated using χ2 or Fisher’s exact test as appropriate.  

p < 0.05 was considered significant and is highlighted in bold. 

 

Table 39 Frequency of genotypes by groups of VNTR repeats 

 
Genotypes ACP (%) ALD (%) HC (%) ACP vs. ALD p value 

SS 18 (17.6) 8 (8.8) 11 (12.1) 0.072 

SN 37 (36.3) 35 (38.5) 41 (45.0) 0.754 

SSN 2 (2.0) 2 (2.2) 2 (2.2) 0.908 

SL 2 (2.0) 2 (2.2) 4 (4.4) 0.908 

NN 33 (32.6) 43 (47.3) 30 (33.0) 0.034 

SNL 1 (1.0) 1 (1.1) 0 (0)  0.935 

NL 9 (8.8) 0 (0) 3 (3.3) 0.004 

LL 0 (0) 0 (0) 0 (0) 1.000 

Total 102 91 91  

S – short (15 repeats or fewer); N – normal (16 repeats); L – long (17 or 18 repeats) 

p value was calculated using χ2 or Fisher’s exact test as appropriate.  

p < 0.05 was considered significant and is highlighted in bold. 
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 Discussion 6.3

This work corroborates the original findings of a Japanese study, which reported a reduced number 

of homozygous normal (16-repeat, NN) genotype in ACP populations and an increased frequency of 

NL genotype as compared to a non-pancreatic disease alcoholic population.219 This study did not 

establish an association of VNTR length with ACP compared to healthy controls, consistent with the 

subsequent European study.41  Therefore, although the results of the two original studies appear to 

be conflicting, it has been shown the difference in results could be explained by the difference in the 

control groups selected rather than any difference in ethnicity or other confounding factor. 

In this study, ALD patients were exclusively used rather than individuals defined as simply alcoholic 

without pancreatitis.  This was due to the availability of individuals; those individuals who attended 

hospital with alcohol dependence normally did so as they had some pathological process, which in 

most cases was either liver disease or pancreatic disease.  The majority of individuals presenting to 

hospital with problems related to alcohol have either liver or pancreatic disease. The alcoholic 

controls used by Miyasaka et al were only expressly stated as being free from pancreatic disease; 

liver disease can be assumed but was not mentioned.219  Therefore, a difference in distribution 

between VNTR length in ALD and other groups could have been the true effect seen in the original 

Japanese paper, but the association was missed due to lack of classification of the ALD population. 

Ragvin et al did not use any individuals with a history of alcohol excess, other than those with 

confirmed ACP.41 The lack of any association with length of VNTR is therefore consistent with the 

hypothesis that the true difference in VNTR length is associated with ALD.  

The present study includes an ALD group with VNTR length in Hardy Weinberg equilibrium, but with 

NN group over-represented compared to other groups (ACP or HC).  

There is ambiguity in relation to the association of ACP and ALD.  It has been reported that clinical 

ACP and ALD occur concurrently in around 16-20% of ACP/ALD cases, but the prevalence may be 
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higher at a histological level.140,370,371 However it is generally agreed that there is some unknown 

factor(s) that predispose individuals to one or other disease process.139,144  We appreciate there is a 

risk that members of either ALD group or the ACP group could subsequently develop the opposite 

disease process.  The median age of patient within the ALD group was significantly higher than those 

with ACP, reducing the possibility of including individuals at high risk of ACP in the ALD group. The 

difference in age and gender distribution is typical of other studies.137,141 

Further work needs to be done on how CEL variants may protect those with problems of alcohol 

abuse from ALD. 
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7 Chapter 7: Overall Discussion 

 Patients 7.1

7.1.1 Definition of Alcohol Excess 

There is no clear consensus as to how much alcohol is required to classify a patient as having alcohol 

induced chronic pancreatitis.  Due to the difficulty in obtaining and recording a clear alcohol history 

and the difficult groups of patients included in the study there was no clear way of comparing the 

volumes or types of alcohol consumed in our patient group. This problem is further augmented by 

the fact that different countries classify their alcohol consumption in different units, making 

extrapolation of results more challenging. Alcohol units, which are the usual method of 

quantification in the UK, equate to 10g of alcohol.372  However most studies arising from the USA 

utilise “drinks” which contain 8g grams, and therefore this can make superficial interpretation of 

studies confusing.43 

Previous studies have not shown that the differential outcome (ACP or ALD) is determined by the 

relative volume or type of consumption (Table 3). Therefore, although the lack of adequate 

classification remains a concern it is unlikely to impact on the final conclusions of this thesis. 

7.1.2 Defining the Presence or Absence of Pancreatitis 

The majority of genome wide studies such as the GWAS project, which require large populations, 

normally from multiple different institutes, inevitably have to rely on the appropriate diagnosis of CP 

by the local investigators.176 This poses a problem because there is a lack of international consensus 

on the diagnosis of CP.17,18,24 Therefore, in all such studies there is a risk of some individuals being 

included in either disease or control groups inappropriately. 

The systematic review of the diagnosis of chronic pancreatitis showed that the best diagnostic 

modalities were EUS or MR to confirm or refute the diagnosis of pancreatitis; in the NGS study we 
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used CT scan to predominately diagnose the presence or absence of chronic pancreatitis. Where 

other modalities were available they were also used in the diagnosis of pancreatitis.  

Although CT has been poorly examined as a specific modality for the diagnosis of CP, in clinical 

practice it is commonly use to both diagnosis CP and to rule out other pathology.  The APA has now 

recommended CT as the first line diagnostic tool.24 

This study was not carried out on the basis of a clinical trial and so no systematic use of imaging was 

applied to the patients without pancreatitis. There is therefore reliance on the clinical interpretation 

of the clinicians who managed and reported on these patients. This is not ideal but is in line with 

most other studies of this type.24,373 

7.1.3 Control Groups 

Several different control groups were used for different parts of the analysis.  For the GWAS a 

different control cohort was utilised.374,375 This meant inclusion of both an unselected cohort group 

and groups specifically selected to balance against a different disease process.375 The prevalence of 

CP is low so it is unlikely that many (if any) CP patients would have been inadvertently included 

within the control groups. If any had been included this would reduce the power to identify risk 

genotypes and would not have led to false associations.  

In the NGS section of the study, two different control populations were obtained: participants with a 

strong history of alcohol excess and no history of any alcohol related disease; and participants with a 

strong history of alcohol excess and a history of ALD.  In most cases it was possible to review recent 

CT scans to eliminate the possibility of CP although clearly otherwise healthy controls would not 

routinely have imaging of the pancreas. Individuals with ALD were an exception to this as they were 

being scanned as part of their management.  Therefore this well characterised group was selected as 

the main comparator for the ACP group. 
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Comparison of genetic differences in patients with ACP and ALD could identify polymorphisms 

related to ACP or ALD (or potentially to both in opposite directions). To determine if features were 

related to alcohol rather than disease process a second analysis was done using the alcohol excess 

healthy controls (AHC), to indicate how the frequency mediated from the population base line.  The 

AHC group was chosen rather than a traditional HC group as several polymorphisms have been 

described in relation to alcohol dependence, and these may have falsely been shown to be related 

to either ACP or ALD, when in fact it is related to the increased consumption of alcohol, inherent in 

these patient groups.123 

7.1.4 Heterogeneity between Groups 

Although it would be preferable to have been able to use direct standardisation for all factors other 

than the presence or absence of ACP, this was not possible as there are natural differences between 

groups, such as higher rates of diabetes within ACP patients.95 There was a higher ratio of men in the 

ACP group than the ALD group. Men are more likely to be alcoholics than women, but there has 

been a purported increased susceptibility to ALD in women,137,376 but ACP is more common in men6. 

It was difficult to assess differences between drinking patter in in our groups due to missing data. 

Various studies have shown difference between alcohol drinking patterns in AP and ALD, but these 

findings have not been replicated across different studies (Table 3). 

The pattern of smoking was different between the two groups with more ACP patients smoking. 

Smoking is a known risk factor for ACP, but this may also be true for ALD.43,377 

7.1.5 Bias in Sample Source 

All different sample groups will have inherent sources of bias, which may affect the final results 

produced.  One such example is the chronic pancreatitis samples obtained for the NGS work.  The 

original source available were all from operative samples, and these would have been derived from 

two distinct groups of individuals: either end-stage chronic pancreatitis making it an extreme 



The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Discussion 181 

phenotype; or individuals who may have been resected as their disease was presumed to be cancer, 

but only found to be CP on histology. The first group would not give a representative picture of all 

chronic pancreatitics, and may skew findings towards a sub group, which may either augment, or 

hide the true genetic results.  The second group are not a typical CP group and again would likely 

hide any true finding.  To attempt to mitigate for this, additional criteria were added including the 

need for a clear clinical history of pancreatitis, and samples were collected from less severe cases of 

chronic pancreatitis, where they were not yet requiring surgical intervention. 

 Synonymous SNPs 7.2

Synonymous SNPs are normally classified as polymorphisms, which are considered to be neutral in 

nature; however, this may not always be the case. Through analysis of the mRNA produced from 

variant alleles, there is evidence that many human disease genes contain exonic variants that affect 

pre-mRNA splicing therefore inactivating genes by inducing the splicing machinery to skip mutant 

exons.147 Alternative splicing is a regulated process during gene expression that can result in a single 

gene coding for multiple proteins.341 It has been shown at least 74% of human multi-exon genes are 

alternatively spliced, and this may give an explanation for the effects of some of the polymorphisms 

identified.378 
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8 Chapter 8: Conclusion 

This thesis sought to establish the role of genetic variation in the predisposition of alcohol-related 

chronic pancreatitis.  Initially, the patient group of patients with clinically proven diagnosis of CP had 

to be defined. Assessment of the literature has suggested that either EUS or MR scanning may be 

the most sensitive way of identifying patient with a good clinical history, however in current practice 

CT scanning is the most commonly used modality, diagnosis is specific to CP and does allow 

appropriate characterisation of the group. 

In terms of the genetic disposition, this was explored in several ways, including GWAS assessing an 

array of predefined loci, and exploring previously identified role of fatty acid ethyl esters by looking 

at CEL VNTR and Next Generation Sequencing of targeted genes. 

GWAS revealed two associations with CP (identified and replicated) at PRSS1-PRSS2_rs10273639 (OR 

0.73, 95% CI 0.68-0.79) and X-linked CLDN2_rs12688220 (OR 1.39, 1.28-1.49) and the association 

was more pronounced in the ACP group (OR 0.56, 0.48-0.64 and OR 2.11, 1.84-2.42). CLDN 

polymorphism has been shown to produce a difference in phenotypes; its role in chronic pancreatitis 

may be related to calcium transport, and this needs to be explored further. 

The previously identified VNTR in CEL was shown to have a lower frequency of the normal repeat in 

ACP than ALD (OR 0.61, 0.41-0.93).  Homozygosity of the normal variant was more common in ALD 

than ACP (OR 0.53, 0.3-0.96) or Healthy Controls (OR 0.55, 0.3-1.00)). The variations in the results 

identified in this work are most likely to be related to differences in the control groups used.  This 

may be most useful in explaining difference between development of one pathology or the other.  

The NGS discovery phase led on to validation of the 21 most significant SNPs with Sequenom array. 

This showed a significance difference between ACP and ALD in allele frequency of the synonymous 

SNP, PRSS1_rs6666, (OR 1.99, 1.46-2.72) and between presence or absence of a polymorphism in 

ADH1C_rs1693482 (OR 1.49, 1.11-2.01).   
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p.D162D lies within PRSS1, which is a gene of known significance in chronic pancreatitis, but the 

direct significance of the polymorphisms itself in unknown. This needs to be explored further in 

larger groups to identify if the association is held out in all populations, and if this SNP holds the true 

relationship, or is a marker for a disease associated variant. 

The polymorphisms identified within this thesis are linked with their roles in metabolism of alcohol 

in the development of pancreatitis, which is a cascade of calcium influx, leading to activation of 

trypsinogen. Where we have identified significant differences the mechanism is not always clear, 

and this may represent linkage of genotype or subtitle difference that may impact only in specific 

tissues. 

This work has identified a range of potential exonic and intronic sites associated with a 

predisposition of developing chronic pancreatitis on a background of alcohol excess.  Further work 

needs to be done on how these factors interact, and assess their presence in further populations. 
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10 Chapter 10: Appendices 

 Common Alleles of Genes of Alcohol Metabolism 10.1

10.1.1 Alcohol Dehydrogenase 1B 

Table 40 Table demonstrating the amino acid difference between the different ADH1B alleles 

 
  Amino acid position 48  

ADH1B_rs1229984 

Amino acid position 370  

ADH1B_rs2066702 

ADH1B*1 β1 R R 

ADH1B*2 β2 H R 

ADH1B*3 β3 R C 

 

10.1.2 Alcohol Dehydrogenase 1C 

Table 41 Table demonstrating the amino acid difference between the different ADH1C alleles 

 
 Amino acid position 272  

ADH1C_rs1693482 

Amino acid position 350  

ADH1C_rs698 

ADH1C*1 γ1 R I 

ADH1C*2 γ2 Q V 

 

10.1.3 Aldehyde Dehydrogenase 2 

ALDH2*2 varies from the normal allele with a polymorphism ALDH2_rs671 (p.E504K) 



 

 

2
1
1
 

10.1.4 Cytochrome P450 

Table 42 Table demonstrating the amino acid difference between the different CYP2E1 alleles 

 

 Repeats 

intronic 

rs2070676 

intronic 

rs72559710 

p.R76H 

rs55897648 

p.I389V 

rs6413419 

p.V1791 

rs3813867 

intronic 

rs6413432 

intronic 

rs2031920 

intronic 

rs2070673 

intronic 

rs2070672 

intronic 

CYP2E1*1A           

CYP2E1*1B  x         

CYP2E1*1C Six          

CYP2E1*1D Eight          

CYP2E1*2   x        

CYP2E1*3    x       

CYP2E1*4     x      

CYP2E1*5A      x x x   

CYP2E1*5B      x  x   

CYP2E1*6       x    

CYP2E1*7A         x  

CYP2E1*7B        x   

CYP2E1*7C         x x 
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  Genes of Interest 10.2

10.2.1 Genes of Alcohol Metabolism 

Table 43 Long list of genes known to be related to alcohol metabolism  

 
Gene symbol Gene name 

ABCA1 ATP-binding cassette sub-family A member 1 

ABCG1 ATP-binding cassette sub-family G member 1 

ACAA2 3-ketoacyl-CoA thiolase, mitochondrial 

ACACA Acetyl-CoA carboxylase alpha 

ACACB Acetyl-CoA carboxylase beta 

ACADL Long-chain specific acyl-CoA dehydrogenase, mitochondrial 

ACADVL Very long-chain specific acyl-CoA dehydrogenase, mitochondrial 

ACER1 Alkaline ceramidase 1 

ACER2 Alkaline ceramidase 2 

ACER3 Alkaline ceramidase 3 

ACHE Acetyl cholinesterase 

ACSL3 Long-chain-fatty-acid--CoA ligase 3 

ACSS1 Acetyl-coenzyme A synthetase 2-like, mitochondrial 

ACSS2 Acetyl-coenzyme A synthetase, cytoplasmic 

ADH1A Alcohol dehydrogenase 1A 

ADH1B Alcohol dehydrogenase 1B 

ADH1C Alcohol dehydrogenase 1C 

ADH4 Alcohol dehydrogenase 4 

ADH5 Alcohol dehydrogenase class-3 

ADH6 Alcohol dehydrogenase 6 

ADH7 Alcohol dehydrogenase class 4 mu/sigma chain 

AGPAT6 Glycerol-3-phosphate acyltransferase 4 

AKR1B10 Aldo-keto reductase family 1 member B10 

AKR1C3 Aldo-keto reductase family 1 member C3 

AKR1D1 3-oxo-5-beta-steroid 4-dehydrogenase 

ALDH18A1 Aldehyde dehydrogenase 18 family, member A1 

ALDH1A1 Aldehyde dehydrogenase 1 family, member A1 

ALDH1A2 Aldehyde dehydrogenase 1 family, member A2 

ALDH1A3 Aldehyde dehydrogenase family 1 member A3 

ALDH1B1 Aldehyde dehydrogenase X, mitochondrial 

ALDH1L1 Aldehyde dehydrogenase 1 family, member L1 

ALDH1L2 Aldehyde dehydrogenase 1 family, member L2 

ALDH2 Aldehyde dehydrogenase 2, mitochondrial 

ALDH3A2 Fatty aldehyde dehydrogenase 

ALDH3B1 Aldehyde dehydrogenase family 3 member B1 

ALDH3B2 Aldehyde dehydrogenase family 3 member B2 

ALDH5A1 Aldehyde dehydrogenase 5 family, member A1 
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ALDH6A1 Aldehyde dehydrogenase 6 family, member A1 

ALDH7A1 Alpha-aminoadipic semialdehyde dehydrogenase 

ANGPTL3 Angiopoietin-related protein 3 

APLP2 Amyloid-like protein 2 

APOA1 Apolipoprotein A-I 

APOA2 Apolipoprotein A-II 

APOA4 Apolipoprotein A-IV 

APOA5 Apolipoprotein A-V 

APOB Apolipoprotein B 

APOC1 Truncated apolipoprotein C-I 

APOC3 Apolipoprotein C-III 

APOE Apolipoprotein E 

APOF Apolipoprotein F 

APOL1 Apolipoprotein L1 

APOL2 Apolipoprotein L2 

APP Amyloid beta A4 protein 

ASM Acid sphingomyelinase 

AWAT2 Acyl-CoA wax alcohol acyltransferase 2 

BCHE Butyrylcholinesterase, isoform CRA_a 

BCMO1 Beta, beta-carotene 15,15'-monooxygenase 

BMP2 Bone morphogenetic protein 2 

BMP5 Bone morphogenetic protein 5 

BMP6 Bone morphogenetic protein 6 

CACNA1H Voltage-dependent T-type calcium channel subunit alpha-1H 

CALM1 Calmodulin 

CAT Catalase 

CDS1 Phosphatide cytidylyltransferase 1 

CEBPA CCAAT/enhancer-binding protein alpha 

CEL Bile salt-activated lipase 

CEPT1 Choline/ethanolaminephosphotransferase 1 

CES1 Carboxylesterase1 

CES2 Carboxylesterase 2 

CES3 Carboxylesterase 3 

CES5a Carboxylesterase 5A 

CES6 Carboxylesterase 6 

CETP Cholesteryl ester transfer protein 

CFTR Cystic fibrosis transmembrane conductance regulator 

CH25H Cholesterol 25-hydroxylase 

CHAT Choline O-acetyltransferase 

CHDH Choline dehydrogenase, mitochondrial 

CHKA Choline kinase alpha 

CHKB Choline/ethanolamine kinase 

CHPT1 Cholinephosphotransferase 1 

CLN3 Battenin 

CLN6 Ceroid-lipofuscinosis neuronal protein 6 



The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Appendix – Genes of Interest 214 

CLPS Colipase, pancreatic 

CNBP Cellular nucleic acid-binding protein 

COQ2 4-hydroxybenzoate polyprenyltransferase, mitochondrial 

COQ3 Hexaprenyldihydroxybenzoate methyltransferase, mitochondrial 

CUBN Cubilin 

CYB5R1 NADH-cytochrome b5 reductase 1 

CYB5R2 NADH-cytochrome b5 reductase 2 

CYB5R3 NADH-cytochrome b5 reductase 3 

CYP11A1 Cholesterol side-chain cleavage enzyme, mitochondrial 

CYP11B1 Cytochrome P450 11B1, mitochondrial 

CYP11B2 Cytochrome P450 11B2, mitochondrial 

CYP17A1 Steroid 17-alpha-hydroxylase/17,20 lyase 

CYP19A1 Aromatase 

CYP1A1 Cytochrome P450 1A1 

CYP1B1 Cytochrome P450 1B1 

CYP21A2 cytochrome P450, family 21, subfamily A, polypeptide 2 

CYP24A1 cytochrome P450, family 24, subfamily A, polypeptide 1 

CYP27A1 cytochrome P450, family 27, subfamily A, polypeptide 1 

CYP2E1 cytochrome P450, family 2, subfamily E, polypeptide 1  

CYP2R1 Vitamin D 25-hydroxylase 

CYP39A1 24-hydroxycholesterol 7-alpha-hydroxylase 

CYP3A4 Cytochrome P450 3A4 

CYP46A1 Cholesterol 24-hydroxylase 

CYP51A1 Lanosterol 14-alpha demethylase 

CYP7A1 Cholesterol 7-alpha-monooxygenase 

CYP7B1 25-hydroxycholesterol 7-alpha-hydroxylase 

CYP8B1 7-alpha-hydroxycholest-4-en-3-one 12-alpha-hydroxylase 

DBI Diazepam binding inhibitor (GABA receptor modulator, acyl-CoA binding protein) 

DEGS2 Sphingolipid delta(4)-desaturase/C4-hydroxylase DES2 

DGAT1 Diacylglycerol O-acyltransferase 1 

DGAT2 Diacylglycerol O-acyltransferase 2 

DHCR24 Delta(24)-sterol reductase 

DHCR7 7-dehydrocholesterol reductase 

DHRS3 Short-chain dehydrogenase/reductase 3 

DHRS4 Dehydrogenase/reductase SDR family member 4 

DHRS9 Dehydrogenase/reductase SDR family member 9 

DKK3 Dickkopf-related protein 3 

DMGDH Dimethylglycine dehydrogenase, mitochondrial 

DPAGT1 UDP-N-acetylglucosamine--dolichyl-phosphate  
N-acetylglucosaminephosphotransferase 

DPM1 Dolichol-phosphate mannosyltransferase subunit 1 

DPM2 Dolichol phosphate-mannose biosynthesis regulatory protein 

EBP 3-beta-hydroxysteroid-Delta(8),Delta(7)-isomerase 

EBPL Emopamil-binding protein-like 

ENPP2 Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 
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ENPP6 Ectonucleotide pyrophosphatase/phosphodiesterase family member 6 

ENPP7 Ectonucleotide pyrophosphatase/phosphodiesterase family member 7 

EPHX2 Bifunctional epoxide hydrolase 2 

EPM2A Laforin 

FABP1 Fatty acid-binding protein 1 

FABP2 Fatty acid-binding protein 2 

FABP3 Fatty acid-binding protein 3 

FABP5 Fatty acid-binding protein 5 

FABP6 Fatty acid-binding protein 6 

FADS1 Fatty acid desaturase 1  

FADS2 Fatty acid desaturase 2 

FADS3 Fatty acid desaturase 3  

FDFT1 Farnesyl-diphosphate farnesyltransferase 1 

FDPS Farnesyl pyrophosphate synthase 

FDX1 Adrenodoxin, mitochondrial 

FDXR Ferredoxin reductase 

FECH Ferrochelatase, mitochondrial 

FGF1 Fibroblast growth factor 1 

FGF2 Fibroblast growth factor 2 

FGF23 Fibroblast growth factor 23 

FGL1 Fibrinogen-like protein 1 

G6PD Glucose-6-phosphate 1-dehydrogenase 

GALK1 Galactokinase 

GALNT2 Polypeptide N-acetylgalactosaminyltransferase 2 

GBA Glucosylceramidase 

GC Vitamin D-binding protein 

GCKR Glucokinase regulator  

GDE1 Glycerophosphodiester phosphodiesterase 1 

GDPD1 Glycerophosphodiester phosphodiesterase domain-containing protein 1 

GDPD2 Glycerophosphoinositol inositolphosphodiesterase GDPD2 

GDPD3 Glycerophosphodiester phosphodiesterase domain-containing protein 3 

GDPD4 Glycerophosphodiester phosphodiesterase domain-containing protein 4 

GDPD5 Glycerophosphodiester phosphodiesterase domain-containing protein 5 

GFI1 Zinc finger protein Gfi-1 

GGPS1 Geranylgeranyl pyrophosphate synthase 

GK Glycerol kinase 

GK2 Glycerol kinase 2 

GK5 Putative glycerol kinase 5 

GOT1 Aspartate aminotransferase, cytoplasmic 

GPD2 Glycerol-3-phosphate dehydrogenase, mitochondrial 

GPER1 G-protein coupled estrogen receptor 1 

GPLD1 Phosphatidylinositol-glycan-specific phospholipase D 

HAO1 Hydroxyacid oxidase 1 

HDLBP high density lipoprotein binding protein 

HMGCR 3-hydroxy-3-methylglutaryl-coenzyme A reductase 
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HMGCS1 Hydroxymethylglutaryl-CoA synthase, cytoplasmic 

HMGCS2 Hydroxymethylglutaryl-CoA synthase, mitochondrial 

HRH1 Histamine H1 receptor 

HSD17B1 Estradiol 17-beta-dehydrogenase 1 

HSD17B3 Testosterone 17-beta-dehydrogenase 3 

HSD17B7 3-keto-steroid reductase 

IDI1 Isopentenyl-diphosphate Delta-isomerase 1 

IDI2 Isopentenyl-diphosphate delta-isomerase 2 

IFNG Interferon gamma 

IGF1 Insulin-like growth factor I 

IL1a Interleukin-1 alpha 

IL1B Interleukin-1 beta 

IL4 Interleukin-4 

IMPA2 Inositol monophosphatase 2 

IMPAD1 Inositol monophosphatase 3 

INPP1 Inositol polyphosphate 1-phosphatase 

INPP5D Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 1 

INPP5E 72 kDa inositol polyphosphate 5-phosphatase 

INPP5J Phosphatidylinositol 4,5-bisphosphate 5-phosphatase A 

INPP5K Inositol polyphosphate 5-phosphatase K 

INPPL1 Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 2 

INSIG1 Insulin-induced gene 1 protein 

INSIG2 Insulin-induced gene 2 protein 

IP6K1 Inositol hexakisphosphate kinase 1 

IP6K2 Inositol hexakisphosphate kinase 2 

IP6K3 Inositol hexakisphosphate kinase 3 

IPMK Inositol polyphosphate multikinase 

IPPK Inositol-pentakisphosphate 2-kinase 

ISYNA1 Inositol-3-phosphate synthase 1 

ITPK1 Inositol-tetrakisphosphate 1-kinase 

ITPKA Inositol-trisphosphate 3-kinase A 

ITPKB Inositol-trisphosphate 3-kinase B 

ITPKC Inositol-trisphosphate 3-kinase C 

CPT1A Carnitine palmitoyltransferase 1A (liver) 

LBR Lamin-B receptor 

LCAT Phosphatidylcholine-sterol acyltransferase 

LDLR Low-density lipoprotein receptor 

LDLRAP1 Low density lipoprotein receptor adapter protein 1 

LEP Leptin 

LEPR Leptin receptor 

LGMN Legumain 

LHCGR Lutropin-choriogonadotropic hormone receptor 

LIPA Lipase A, lysosomal acid, cholesterol esterase 

LIPC Hepatic triacylglycerol lipase 

LIPE Hormone-sensitive lipase 
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LMF1 Lipase maturation factor 1 

LPCAT1 Lysophosphatidylcholine acyltransferase 1 

LPCAT2 Lysophosphatidylcholine acyltransferase 2 

LPCAT3 Lysophospholipid acyltransferase 3 

LPCAT4 Lysophospholipid acyltransferase 4 

LPIN1 Phosphatidate phosphatase LPIN1 

LPIN2 Phosphatidate phosphatase LPIN2 

LPIN3 Phosphatidate phosphatase LPIN3 

LPL Lipoprotein lipase  

LRAT Lecithin retinol acyltransferase 

LRP1 Prolow-density lipoprotein receptor-related protein 1 

LRP2 Low-density lipoprotein receptor-related protein 2 

LRP5 Low-density lipoprotein receptor-related protein 5 

LSS Lanosterol synthase 

MAS1 Proto-oncogene Mas 

MBOAT2 Lysophospholipid acyltransferase 2 

MBTPS1 Membrane-bound transcription factor site-1 protease 

MBTPS2 Membrane-bound transcription factor site-2 protease 

MECP2 Methyl-CpG-binding protein 2 

MGLL Monoglyceride lipase 

MINPP1 Multiple inositol polyphosphate phosphatase 1 

MIOX Myo-Inositol oxygenase 

MOGAT1 2-acylglycerol O-acyltransferase 1 

MOGAT2 2-acylglycerol O-acyltransferase 2 

MOGAT3 2-acylglycerol O-acyltransferase 3 

MSMO1 Methylsterol monooxygenase 1 

MT3 Metallothionein-3 

MTMR2 Myotubularin-related protein 2 

MTMR7 Myotubularin-related protein 7 

MVD Diphosphomevalonate decarboxylase 

MVK Mevalonate kinase 

NFKB1 Nuclear factor NF-kappa-B p105 subunit 

NPC1 Niemann-Pick C1 protein 

NPC1L1 Niemann-Pick C1-like protein 1 

NPC2 Epididymal secretory protein E1 

NQO1 NAD(P)H dehydrogenase, quinone 1 

NQO2 NAD(P)H dehydrogenase, quinone 2 

NR0B2 Nuclear receptor subfamily 0 group B member 2 

NR1H4 Bile acid receptor 

NSDHL Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating 

NUDT10 Diphosphoinositol polyphosphate phosphohydrolase 3-alpha 

NUDT11 Diphosphoinositol polyphosphate phosphohydrolase 3-beta 

NUDT3 Diphosphoinositol polyphosphate phosphohydrolase 1 

NUDT4 Diphosphoinositol polyphosphate phosphohydrolase 2 

OCRL Inositol polyphosphate 5-phosphatase OCRL-1 
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OSBPL1A Oxysterol-binding protein-related protein 1 

OSBPL5 Oxysterol-binding protein-related protein 5 

P2RY1 P2Y purinoceptor 1 

PAFAH1B1 Platelet-activating factor acetylhydrolase IB subunit alpha 

PARK7 Protein DJ-1 

PCK1 Phosphoenolpyruvate carboxykinase, cytosolic [GTP] 

PCSK9 Proprotein convertase subtilisin/kexin type 9 

PCTP Phosphatidylcholine transfer protein 

PCYT1A Choline-phosphate cytidylyltransferase A 

PCYT1B Choline-phosphate cytidylyltransferase B 

PECR Peroxisomal trans-2-enoyl-CoA reductase 

PEMT Phosphatidylethanolamine N-methyltransferase 

PEX2 Peroxisome biogenesis factor 2 

PHOSPHO1 Phosphoethanolamine/phosphocholine phosphatase 

PLA2G10 Group 10 secretory phospholipase A2 

PLA2G12A Group XIIA secretory phospholipase A2 

PLA2G15 Group XV phospholipase A2 

PLA2G16 Phospholipase A2, group XVI 

PLA2G1B phospholipase A2, group IB  

PLA2G2A Phospholipase A2, membrane associated 

PLA2G2D Group IID secretory phospholipase A2 

PLA2G2E Group IIE secretory phospholipase A2 

PLA2G2F Group IIF secretory phospholipase A2 

PLA2G3 Group 3 secretory phospholipase A2 

PLA2G4A Cytosolic phospholipase A2 

PLA2G4B Cytosolic phospholipase A2 beta 

PLA2G4C Cytosolic phospholipase A2 gamma 

PLA2G4D Cytosolic phospholipase A2 delta 

PLA2G4E Cytosolic phospholipase A2 epsilon 

PLA2G4F Cytosolic phospholipase A2 zeta 

PLA2G5 Calcium-dependent phospholipase A2 

PLA2G6 85/88 kDa calcium-independent phospholipase A2 

PLB1 Phospholipase B1, membrane-associated 

PLBD1 Phospholipase B-like 1 

PLCB1 phospholipase C, beta 1  

PLCB2 phospholipase C, beta 2  

PLCB3 phospholipase C, beta 3  

PLCB4 phospholipase C, beta 4  

PLCD1 phospholipase C, delta 1 

PLCD3 phospholipase C, delta 3 

PLCE1 phospholipase C, epsilon 1 

PLCG1 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 

PLCG2 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 

PLCH1 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-1 

PLCH2 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase eta-2 
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PLCZ1 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase zeta-1 

PLD4 Phospholipase D4 

PLEK Pleckstrin 

PMVK Phosphomevalonate kinase 

PNLIP Pancreatic lipase 

PNLIPRP1 Pancreatic lipase-related protein 1 

PNLIPRP2 Pancreatic lipase-related protein 2 

PNPLA6 Neuropathy target esterase 

PNPLA8 Calcium-independent phospholipase A2-gamma 

PON1 Serum paraoxonase/arylesterase 1 

POR NADPH--cytochrome P450 reductase 

POU1F1 Pituitary-specific positive transcription factor 1 

PPARD Peroxisome proliferator-activated receptor delta 

PPIP5K1 Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 1 

PPIP5K2 Inositol hexakisphosphate and diphosphoinositol-pentakisphosphate kinase 2 

PRKAA1 5'-AMP-activated protein kinase catalytic subunit alpha-1 

PRKAA2 5'-AMP-activated protein kinase catalytic subunit alpha-2 

PRKAG2 5'-AMP-activated protein kinase subunit gamma-2 

PRKCD Protein kinase C delta type 

PTAFR Platelet-activating factor receptor 

PTH1R Parathyroid hormone/parathyroid hormone-related peptide receptor 

PTK2B Protein-tyrosine kinase 2-beta 

PTPMT1 Phosphatidylglycerophosphatase and protein-tyrosine phosphatase 1 

PTPRR Protein tyrosine phosphatase, receptor type, R 

RBP4 Retinol-binding protein 4 

RDH10 Retinol dehydrogenase 10 

RDH11 Retinol dehydrogenase 11 

RDH12 Retinol dehydrogenase 12 

RDH5 Retinol dehydrogenase 5 

RDH8 Retinol dehydrogenase 8 

REST RE1-silencing transcription factor 

RETSAT All-trans-retinol 13,14-reductase 

RPE65 Retinoid isomerohydrolase 

RXRA Retinoic acid receptor RXR-alpha 

SAMD8 Sphingomyelin synthase-related protein 1 

SC5D Lathosterol oxidase 

SCAP Sterol regulatory element-binding protein cleavage-activating protein 

SCARB1 Scavenger receptor class B member 1 

SCARF1 Scavenger receptor class F member 1 

SCP2 Non-specific lipid-transfer protein 

SDR16C5 Epidermal retinol dehydrogenase 2 

SEC14L2 SEC14-like protein 2 

SGMS1 Phosphatidylcholine:ceramide cholinephosphotransferase 1 

SGMS2 Phosphatidylcholine:ceramide cholinephosphotransferase 2 

SGPP1 Sphingosine-1-phosphate phosphatase 1 
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SGPP2 Sphingosine-1-phosphate phosphatase 2 

SLC27A1 Long-chain fatty acid transport protein 1 

SLC34A1 Sodium-dependent phosphate transport protein 2A 

SLC5A3 Sodium/myo-inositol cotransporter 

SMPD1 Sphingomyelin phosphodiesterase 1 

SMPD2 Sphingomyelin phosphodiesterase 2 

SMPD3 Sphingomyelin phosphodiesterase 3 

SMPD4 Sphingomyelin phosphodiesterase 4 

SMPDL3A Acid sphingomyelinase-like phosphodiesterase 3a 

SMPDL3B Acid sphingomyelinase-like phosphodiesterase 3b 

SNAI1 Zinc finger protein SNAI1 

SNAI2 Zinc finger protein SNAI2 

SNCA Alpha-synuclein 

SNX17 Sorting nexin-17 

SOAT1 Sterol O-acyltransferase 1 

SOAT2 Sterol O-acyltransferase 2 

SOD1 Superoxide dismutase [Cu-Zn] 

SORD Sorbitol dehydrogenase 

SORL1 Sortilin-related receptor 

SPHK1 Sphingosine kinase 1 

SPHK2 Sphingosine kinase 2 

SPTLC1 Serine palmitoyltransferase 1 

SPTLC2 Serine palmitoyltransferase 2 

SQLE Squalene monooxygenase 

SRD5A3 Polyprenol reductase 

SREBF1 Sterol regulatory element-binding protein 1 

SREBF2 Sterol regulatory element-binding protein 2 

STAR Steroidogenic acute regulatory protein, mitochondrial 

STARD3 StAR-related lipid transfer protein 3 

SYNJ1 Synaptojanin-1 

TM7SF2 Transmembrane 7 superfamily member 2 

TNF Tumor necrosis factor 

TNFSF4 Tumor necrosis factor ligand superfamily member 4 

TRERF1 Transcriptional-regulating factor 1 

TTR Transthyretin 

VDR Vitamin D3 receptor 

VLDLR Very low-density lipoprotein receptor 

WNT4 Protein Wnt-4 

IMPA1 inositol(myo)-1(or 4)-monophosphatase 1 
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10.2.2 Background on Genes of Interest 

Information presented on the chosen Genes of Interest. Data obtained from the NCBI website 

(http://www.ncbi.nlm.nih.gov/gene and http://www.ncbi.nlm.nih.gov/omim). 

10.2.2.1 ABO - ABO blood group  

Also known as GTB; NAGAT; A3GALNT; A3GALT1 

Gene ID: 28     Location: 9q34.2 

Summary Encodes for proteins related to the ABO blood group system. The 'O' blood group is 

caused by a deletion of guanine at position 258 resulting in a frameshift, leading to production of 

different protein.  

10.2.2.2 ACACA - Acetyl-CoA carboxylase alpha 

Also known as ACC; ACAC; ACC1; ACCA; ACACAD 

Gene ID: 31    Location: 17q21 

Summary Encodes an enzyme which catalyses the carboxylation of acetyl-CoA to malonyl-CoA which 

is the rate limiting step in the synthesis of fatty acids. ACC-alpha is highly enriched in lipogenic 

tissues.  

10.2.2.3 ACACB - Acetyl-CoA carboxylase beta  

Also known as ACC2; ACCB; HACC275 

Gene ID: 32     Location: 12q24.11 

Summary Like ACACA, encodes an enzyme which catalyses the carboxylation of acetyl-CoA to 

malonyl-CoA which is the rate limiting step in the synthesis of fatty acids. ACACB controls fatty acid 

oxidation by preventing the rate-limiting step in fatty acid uptake and mitochondrial oxidation. 

ACACB may in fact be involved in the regulation of fatty acid oxidation, rather than fatty acid 

synthesis. Increased concentrations of catecholamines promote the ultilisation of lipid stores from 

adipose tissue during fast, which is the rate-limiting enzyme in fatty acid synthesis.  

http://www.ncbi.nlm.nih.gov/gene
http://www.ncbi.nlm.nih.gov/omim
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10.2.2.4 ACSS2 - Acyl-CoA synthetase short-chain family member 2  

Also known as ACS; ACSA; ACAS2; ACECS; dJ1161H23.1 

Gene ID: 55902    Location: 20q11.22 

Summary Encodes for a cytosolic enzyme that helps catalyses activation of acetate, which is use for 

lipid synthesis and generation of energy. The protein acts as a monomer and produces acetyl-CoA 

from acetate in a reaction that requires ATP.  

10.2.2.5 ADH1A - Alcohol dehydrogenase 1A (class I), alpha polypeptide  

Also known as ADH1 

Gene ID: 124    Location: 4q23 

Summary Encodes for a protein member of the alcohol dehydrogenase family, which catalyses the 

oxidation of alcohols to aldehydes. This gene is active in the liver in early fetal life but only weakly 

active in adult liver. This gene is clustered with six other alcohol dehydrogenase genes, on 

chromosome 4. Mutations in this gene are associated with substance dependence.  The class I ADH 

genes account for the majority of the ethanol-oxidizing capacity of the liver.  

10.2.2.6 ADH1B - Alcohol dehydrogenase 1B (class I), beta polypeptide 

Also known as ADH2; HEL-S-117 

Gene ID: 125    Location: 4q23 

Summary Encodes for a protein is a member of the alcohol dehydrogenase family, which includes a 

wide variety of substrates, including ethanol, retinol, other aliphatic alcohols, and lipid peroxidation 

products. It is highly active in ethanol oxidation and plays a major role in ethanol catabolism.  

10.2.2.7 ADH1C - Alcohol dehydrogenase 1C (class I), gamma polypeptide  

Also known as ADH3 

Gene ID: 126     Location: 4q23 

Summary Encodes for class I alcohol dehydrogenase, which is a member of the alcohol 

dehydrogenase family. Similar properties to ADH1B. 
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10.2.2.8 ADH4 - Alcohol dehydrogenase 4 (class II), pi polypeptide 

Also known as ADH-2; HEL-S-4 

Gene ID: 127    Location: 4q22 

Summary Encodes class II alcohol dehydrogenase 4 (pi subunit), a member of the alcohol 

dehydrogenase family. Has high oxidation activity with aliphatic and aromatic alcohols but is less 

sensitive with pyrazole. There is cluster of alcohol dehydrogenase genes chromosome 4 in relation 

to this gene.  It is a distinct from other human liver alcohol dehydrogenases and this therefore 

termed it Pi-alcohol dehydrogenase. This enzyme accounts for up to 40% of the total ethanol 

oxidation when intoxicating levels of alcohol have been consumed.  

10.2.2.9 ADH5 - Alcohol dehydrogenase 5 (class III), chi polypeptide  

Also known as FDH; ADHX; ADH-3; FALDH; GSNOR; GSH-FDH 

Gene ID: 128     Location: 4q23 

Summary Encodes a protein for a member of the alcohol dehydrogenase family. It oxidizes ethanol 

very poorly but oxidases long-chain primary alcohols well.  The human genome contains several non-

transcribed pseudogenes related to this gene. 

10.2.2.10 ADH6 - Alcohol dehydrogenase 6 (class V)  

Also known as ADH-5 

Gene ID: 130     Location: 4q23 

Summary This gene encodes class V alcohol dehydrogenase, which is a member of the alcohol 

dehydrogenase family. This gene is expressed in the stomach as well as in the liver, and it contains a 

glucocorticoid response element upstream of its 5' UTR, which is a steroid hormone receptor-

binding site.  
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10.2.2.11 ADH7 - Alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide  

Also known as ADH4 

Gene ID: 131     Location: 4q23-q24 

Summary This gene encodes class IV alcohol dehydrogenase 7 mu or sigma subunit, which is a 

member of the alcohol dehydrogenase family. The enzyme encoded by this gene is inefficient in 

ethanol oxidation, but is the most active as a retinol dehydrogenase; thus it may participate in the 

synthesis of retinoic acid, a hormone important for cellular differentiation. The expression of this 

gene is much more abundant in stomach than liver, thus differing from the other known gene family 

members.  

10.2.2.12 ALDH1A2 - Aldehyde dehydrogenase 1 family, member A2  

Also known as RALDH2; RALDH2-T; RALDH(II) 

Gene ID: 8854    Location: 15q21.3 

Summary This protein belongs to the aldehyde dehydrogenase family of proteins. The product of 

this gene is an enzyme that catalyzes the synthesis of retinoic acid from retinaldehyde. Retinoic acid, 

the active derivative of vitamin A (retinol), is a hormonal signaling molecule that functions in 

developing and adult tissues.  

10.2.2.13 ALDH1A3 - Aldehyde dehydrogenase 1 family, member A3 

Also known as ALDH6; MCOP8; RALDH3; ALDH1A6 

Gene ID: 220     Location: 15q26.3 

Summary Encodes for an enzyme, part of aldehyde dehydrogenase isozymes, playing a major role in 

the detoxification of aldehydes generated by alcohol metabolism and lipid peroxidation. 

  



The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Appendix – Genes of Interest 225 

10.2.2.14 ALDH1L1 - Aldehyde dehydrogenase 1 family, member L1 

Also known as FDH; FTHFD; 10-fTHF; 10-FTHFDH 

Gene ID: 10840     Location: 3q21.3 

Summary The loss of expression or function of this enzyme is associated with reduced apoptosis, 

increased cell motility, and as a consequence, progression of cancer.  

10.2.2.15 ALDH1L2 - Aldehyde dehydrogenase 1 family, member L2  

Also known as mtFDH 

Gene ID: 160428     Location: 12q23.3 

Summary It has an essential role in the distribution of carbon groups between cytosolic and 

mitochondrial cell compartments.  

10.2.2.16 ALDH2 - Aldehyde dehydrogenase 2 family (mitochondrial) 

Also known as ALDM; ALDHI; ALDH-E2  

Gene ID: 217     Location: 12q24.2 

Summary Aldehyde dehydrogenase is the second enzyme of the main oxidative pathway for 

metabolism of alcohol. The higher frequency of acute alcohol intoxication with the Oriental 

population compared to Caucasians may be related to the mitochondrial isozyme that is absence of 

catalytic activity; these individuals may also have a greater susceptibility to many types of cancer.  

10.2.2.17 ALDH3B1 - Aldehyde dehydrogenase 3 family, member B1 

Also known as ALDH4; ALDH7 

Gene ID: 221     Location: 11q13 

Summary This gene is expressed in kidney and lung, however, the functional significance of this gene 

is unknown. It shares a close evolutionary relationship with ALDH7 and ALDH8.  
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10.2.2.18 ALDH5A1 - Aldehyde dehydrogenase 5 family, member A1  

Also known as SSDH; SSADH 

Gene ID: 7915      Location: 6p22 

Summary A deficiency of this enzyme is a rare inborn error in the metabolism of the 

neurotransmitter 4-aminobutyric acid. In response to the defect, physiologic fluids from individuals 

accumulate GHB, a compound with numerous neuromodulatory properties.  

10.2.2.19 ALDH6A1 - Aldehyde dehydrogenase 6 family, member A1 

Also known as MMSDH; MMSADHA  

Gene ID: 4329     Location: 14q24.3 

Summary Encodes a protein that plays a role in the valine and pyrimidine catabolic pathways. This 

protein catalyzes the irreversible oxidative decarboxylation of malonate and methylmalonate 

semialdehydes to acetyl- and propionyl-CoA.  

10.2.2.20 APOA1 - Apolipoprotein A-I  

Gene ID: 335     Location: 11q23-q24 

Summary Encodes for the major protein component of high-density lipoprotein. IT promotes the 

movement of cholesterol to the liver from tissues for excretion, and is responsible for the formation 

of most plasma cholesteryl esters. This gene is closely linked with two other apolipoprotein genes on 

chromosome 11.  Furthermore to removing cholesterol from cells, HDL also delivers cholesterol to 

cells through cholesteryl esters that are selectively transferred from HDL particles into the cell.  

10.2.2.21 APOA4 - Apolipoprotein A-IV  

Gene ID: 337     Location: 11q23 

Summary This protein is primarily made in the intestine and is associated with chylomicron particles. 

Its exact function is unclear.  
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10.2.2.22 APOA5 - Apolipoprotein A-V  

Also known as RAP3; APOAV 

Gene ID: 116519     Location: 11q23 

Summary Encodes a protein that plays a key role in regulating the plasma triglyceride levels. It is a 

component of high-density lipoprotein.  Mutations in this gene have been associated with 

hypertriglyceridemia and hyperlipoproteinaemia.  

10.2.2.23 APOB - Apolipoprotein B  

Also known as FLDB; LDLCQ4 

Gene ID: 338     Location: 2p24-p23  

Summary Encodes for the main apolipoprotein of chylomicrons and low-density lipoproteins, both 

intestinal and the hepatic forms. Mutations in this gene cause hypobetalipoproteinemia, 

normotriglyceridaemic hypobetalipoproteinemia, and hypercholesterolemia which are all diseases 

affecting plasma cholesterol levels. 

10.2.2.24 APOC3 - Apolipoprotein C-III  

Also known as HALP2; APOCIII 

Gene ID: 345     Location: 11q23.3 

Summary Encodes for a very low-density lipoprotein protein. It inhibits both lipoprotein lipase and 

hepatic lipase, delaying catabolism of triglyceride-rich particles. The APOA1, APOC3 and APOA4 

genes are closely linked. Increased APOC3 levels leads to hypertriglyceridemia.  

10.2.2.25 APOE - Apolipoprotein E 

Also known as AD2; LPG; LDLCQ5 

Gene ID: 348     Location: 19q13.2 

Summary Apolipoprotein E, a main apoprotein of the chylomicron, binds to a specific receptor on 

liver cells and peripheral cells lowing chylomicron remnants and very low-density lipoprotein 

remnants to be rapidly removed from the circulation. APOE is essential for the normal catabolism of 
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triglyceride-rich lipoprotein constituents. Defects in APOE result in familial dysbetalipoproteinaemia, 

or hyperlipoproteinaemia, which cause increased plasma cholesterol and triglycerides due to 

impaired clearance of chylomicron and VLDL remnants. 

10.2.2.26 CEL - Carboxyl ester lipase 

Also known as BAL; FAP; BSDL; BSSL; CELL; FAPP; LIPA; CEase; MODY8 

Gene ID: 1056   Location: 9q34.3 

Summary Encodes a glycoprotein secreted by the pancreas into the digestive tract, hydrolysing 

cholesterol and lipid-soluble vitamin ester hydrolysis, aiding absorption and promoting large 

chylomicron production in the intestine. It is also thought to modulate the progression of 

atherosclerosis. This gene contains a VNTR in the coding region that may influence the function of 

the encoded protein. 

10.2.2.27 CES1 - Carboxylesterase 1 

Also known as CEH; REH; TGH; ACAT; CE-1; CES2; HMSE; SES1; HMSE1; PCE-1; hCE-1  

Gene ID: 1066     Location: 16q22.2 

Summary Encodes a member of the carboxylesterase large family, which is responsible for the 

hydrolysis or transesterification of various xenobiotics, and endogenous substrates with ester or 

amide bonds. It has a role in fatty acyl and cholesterol ester metabolism.  This enzyme is one of the 

main liver enzymes and is key for liver drug clearance. 

10.2.2.28 CES4A - Carboxylesterase 4A  

Also known as CES6; CES8  

Gene ID: 283848    Location: 16q22.1 

Summary This enzyme is involved in fatty acyl and cholesterol ester metabolism, and may play a role 

in the detoxification of drugs and xenobiotics tissues of the body and in the cerebrospinal fluid.  
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10.2.2.29 CES5A - Carboxylesterase 5A  

Also known as CES5; CES7; CAUXIN; CES4C1 

Gene ID: 221223    Location: 16q12.2  

Summary This enzyme Involved in fatty acyl and cholesterol ester metabolism, regulating the 

production of a pheromone precursor and may contribute to lipid and cholesterol transfer.  

10.2.2.30 CFTR - Cystic fibrosis transmembrane conductance regulator  

Also known as CF; MRP7; ABC35; ABCC7; CFTR/MRP; TNR-CFTR 

Gene ID: 1080     Location: 7q31.2 

Summary Encodes for a protein, which functions as a chloride channel and helps control its 

transport pathway. It is a member of the ATP-binding cassette (ABC) transporter superfamily. ABC 

proteins transport various molecules across extra- and intra-cellular membranes. Mutations in this 

gene are associated with the autosomal recessive disorders cystic fibrosis and congenital bilateral 

aplasia of the vas deferens.  

10.2.2.31 CLPS - Colipase, pancreatic  

Gene ID: 1208      Location: 6p21.31 

Summary Encodes for a protein, which is a cofactor required by pancreatic lipase to efficiently 

hydrolyse dietary lipids. Colipase is thought to help anchor lipase to the surface of lipid micelles, 

negating any destabilising influence of intestinal bile salts.  This gene is only been identified as being 

expressed in pancreatic acinar cells. 

10.2.2.32 CPT1A - Carnitine palmitoyltransferase 1A (liver)  

Also known as CPT1; CPT1-L; L-CPT1 

Gene ID: 1374     Location: 11q13.2 

Summary CPT1A is the key enzyme in the carnitine-dependent transport across the mitochondrial 

inner membrane and its deficiency results in a decreased rate of fatty acid beta-oxidation. 

Alternatively spliced transcript variants encoding different isoforms have been found for this gene.  
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Major control over fatty acid oxidation process is exerted at the level of CPT1 by virtue of the unique 

inhabitability of this enzyme by malonyl-CoA. This fuel 'cross talk' was first recognized in the context 

of hepatic cytogenesis and its regulation and thereafter emerged as a central component of 

metabolism in a variety of tissues. 

10.2.2.33 CTRB1 - Chymotrypsinogen B1 

Gene ID: 1504     Location: 6q23.1 

Also known as CTRB 

Summary This gene encodes for a protein, which is part of a family of serine proteases. It is secreted 

into the gastrointestinal tract as an inactive precursor, and is then activated by proteolytic cleavage 

with trypsin. 

10.2.2.34 CYP2E1 - Cytochrome P450, family 2, subfamily E, polypeptide 1  

Gene ID: 1571     Location: 10q26.3 

Also known as CPE1; CYP2E; P450-J; P450C2E 

Summary This gene encodes a member of the cytochrome P450 superfamily of enzymes, which are 

monooxygenases that catalyze many reactions involved in synthesis of cholesterol and steroids and 

in drug metabolism. This protein localizes to the endoplasmic reticulum and is induced by ethanol, 

the diabetic state, and starvation. The enzyme metabolizes both endogenous substrates, such as 

ethanol, acetone, and acetal, as well as exogenous substrates including benzene, carbon 

tetrachloride, ethylene glycol, and nitrosamines, which are premutagens, found in cigarette smoke. 

Due to its many substrates, this enzyme may be involved in such varied processes as 

gluconeogenesis, hepatic cirrhosis, diabetes, and cancer.217,218,379,380 

10.2.2.35 FABP1 - Fatty acid binding protein 1, liver  

Also known as FABPL; L-FABP 

Gene ID: 2168     Location: 2p11 

Summary This gene encodes the fatty acid binding protein found in liver. Fatty acid binding proteins 
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are a family of small, highly conserved, cytoplasmic proteins that bind long-chain fatty acids and 

other hydrophobic ligands. This protein and FABP6 are also able to bind bile acids. It is thought that 

FABPs roles include fatty acid uptake, transport, and metabolism and is required for cholesterol 

synthesis. 

10.2.2.36 FABP2 - Fatty acid binding protein 2, intestinal  

Also known as FABPI; I-FABP 

Gene ID: 2169     Location: 4q28-q31 

Summary FABPs are divided into at least three distinct types, namely the hepatic-, intestinal- and 

cardiac-type. They form 14-15 kDa proteins and are thought to participate in the uptake, 

intracellular metabolism and/or transport of long-chain fatty acids. They may also be responsible in 

the modulation of cell growth and proliferation. FABP2 contains four exons and is an abundant 

cytosolic protein in small intestine epithelial cells. It may participate in the uptake, intracellular 

metabolism and/or transport of long chain fatty acids.  This gene has a polymorphism at codon 54 

that identified an alanine-encoding allele and a threonine-encoding allele (FABP2_rs1799883). Thr-

54 protein is associated with increased fat oxidation and insulin resistance.  

10.2.2.37 FABP3 - Fatty acid binding protein 3, muscle and heart  

Also known as MDGI; FABP11; H-FABP; M-FABP; O-FABP 

Gene ID: 2170    Location: 1p33-p32 

Summary The intracellular fatty acid-binding proteins (FABPs) belong to a multi-gene family and are 

divided into at least three distinct types, namely the hepatic-, intestinal- and cardiac-type. They form 

14-15 kDa proteins and are thought to participate in the uptake, intracellular metabolism and/or 

transport of long-chain fatty acids. They may also be responsible in the modulation of cell growth 

and proliferation. FABP3 contains four exons and its function is to arrest growth of mammary 

epithelial cells. This gene is a candidate tumor suppressor gene for human breast cancer. 
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10.2.2.38 FABP6 - Fatty acid binding protein 6, ileal  

Also known as ILBP; I-15P; I-BAP; ILBP3; ILLBP; I-BABP; I-BALB 

Gene ID: 2172    Location: 5q33.3-q34 

Summary This gene encodes the ileal fatty acid binding protein. Fatty acid binding proteins are a 

family of small, highly conserved, cytoplasmic proteins that bind long-chain fatty acids and other 

hydrophobic ligands. FABP6 and FABP1 (the liver fatty acid binding protein) are also able to bind bile 

acids. It is thought that FABPs roles include fatty acid uptake, transport, and metabolism.  

10.2.2.39 FADS1 - Fatty acid desaturase 1  

Also known as D5D; TU12; FADS6; FADSD5; LLCDL1 

Gene ID: 3992    Location: 11q12.2-q13.1  

Summary The protein encoded by this gene is a member of the fatty acid desaturase (FADS) gene 

family. Desaturase enzymes regulate unsaturation of fatty acids through the introduction of double 

bonds between defined carbons of the fatty acyl chain. FADS family members are considered fusion 

products composed of an N-terminal cytochrome b5-like domain and a C-terminal multiple 

membrane-spanning desaturase, both of which are characterized by conserved histidine motifs. This 

gene is clustered with family members FADS1 and FADS2 at 11q12-q13.1; this cluster is thought to 

have arisen evolutionarily from gene duplication based on its similar exon/intron organization.  The 

FADS1 substrate/product pair ratio is associated with LDL cholesterol, HDL cholesterol and 

triglycerides. 

10.2.2.40 FADS2 - Fatty acid desaturase 2  

Also known as D6D; DES6; TU13; FADSD6; LLCDL2; SLL0262 

Gene ID: 9415     Location: 11q12.2 

Summary Desaturase enzymes regulate unsaturation of fatty acids through the introduction of 

double bonds between defined carbons of the fatty acyl chain. Similar profile to FADS1. 
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10.2.2.41 FADS3 - Fatty acid desaturase 3  

Also known as CYB5RP; LLCDL3 

Gene ID: 3995    Location: 11q12-q13.1 

Summary Desaturase enzymes regulate unsaturation of fatty acids through the introduction of 

double bonds between defined carbons of the fatty acyl chain. Similar profile to FADS1.  

10.2.2.42 GALNT2 - UDP-N-acetyl-alpha-D-galactosamine: N-acetylgalactosaminyltransferase 2  

Also known as GalNAc-T2 

Gene ID: 2590    Location: 1q41-q42 

Summary This gene encodes polypeptide N-acetylgalactosaminyltransferase 2, a member of the 

GalNAc-transferases family. This family transfers an N-acetyl galactosamine to the hydroxyl group of 

a serine or threonine residue in the first step of O-linked oligosaccharide biosynthesis. Individual 

GalNAc-transferases have distinct activities and initiation of O-glycosylation in a cell is regulated by a 

repertoire of GalNAc-transferases.  

10.2.2.43 GCKR - Glucokinase (regulator) 

Also known as GKRP; FGQTL5 

Gene ID: 2646     Location: 2p23 

Summary Encodes for a regulatory protein that inhibits glucokinase by forming an inactive complex 

with the enzyme in both the liver and pancreatic islet cells. This gene is considered a susceptibility 

gene candidate for a form of maturity-onset diabetes of the young (MODY).  

10.2.2.44 IL1A - Interleukin 1, alpha 

Also known as IL1; IL-1A; IL1F1; IL1-ALPHA 

Gene ID: 3552    Location: 2q14 

Summary Encodes for a protein by this gene is a member of the interleukin 1 cytokine family. This 

cytokine is involved in various immune responses and inflammatory processes. It is released in 

response to cell injury-causing apoptosis.  
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10.2.2.45 IL1B - Interleukin 1, beta  

Also known as IL-1; IL1F2; IL1-BETA 

Gene ID: 3553     Location: 2q14 

Summary Encodes for a protein by this gene is a member of the interleukin 1 cytokine family. This 

cytokine is produced by activated macrophages, which is proteolytically processed to its active form 

by caspase 1. This cytokine is an important mediator of the inflammatory response, and is involved 

in a variety of cellular activities, including cell proliferation, differentiation, and apoptosis. The 

induction of cyclooxygenase-2 (by this cytokine in the central nervous system is found to contribute 

to inflammatory pain hypersensitivity. This gene and eight other interleukin 1 family genes form a 

cytokine gene cluster on chromosome 2.  The IL1 system contains genetic polymorphisms that are 

associated with fat mass in young men.381 

10.2.2.46 LDLR - Low density lipoprotein receptor 

Also known as FH; FHC; LDLCQ2 

Gene ID: 3949    Location: 19p13.2  

Summary The low-density lipoprotein receptor gene family consists of cell surface proteins involved 

in receptor-mediated endocytosis of specific ligands. LDL is normally bound at the cell membrane 

and taken into the cell ending up in lysosomes where the protein is degraded and the cholesterol is 

made available for repression of microsomal enzyme 3-hydroxy-3-methylglutaryl coenzyme A 

reductase, the rate-limiting step in cholesterol synthesis. At the same time, a reciprocal stimulation 

of cholesterol ester synthesis takes place. Mutations in this gene cause the autosomal dominant 

disorder, familial hypercholesterolemia. Alternate splicing results in multiple transcript variants. 

10.2.2.47 LIPA - Lipase A, lysosomal acid, cholesterol esterase  

Also known as LAL; CESD 

Gene ID: 3988    Location: 10q23.2-q23.3  

Summary This gene encodes lipase A, the lysosomal acid lipase (cholesterol ester hydrolase). This 
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enzyme functions in the lysosome to catalyze the hydrolysis of cholesteryl esters and triglycerides. 

Mutations in this gene can result in Wolman disease and cholesteryl ester storage disease. 

Alternatively spliced transcript variants encoding the same protein have been found for this gene. 

10.2.2.48 LIPC- Lipase, hepatic  

Also known as HL; HTGL; LIPH; HDLCQ12 

Gene ID: 3990    Location: 15q21-q23  

Summary LIPC encodes hepatic triglyceride lipase, which is expressed in liver. LIPC has the dual 

functions of triglyceride hydrolase and ligand/bridging factor for receptor-mediated lipoprotein 

uptake.  SNPs in the LIPC gene (LIPC_rs369262181, LIPC_rs12594375, LIPC_rs8023503, 

LIPC_rs4775047, and LIPC_rs11634134) are linked with HDL cholesterol levels.  

10.2.2.49 LPL - Lipoprotein lipase  

Also known as LIPD; HDLCQ11 

Gene ID: 4023    Location: 8p22  

Summary Lipoprotein lipase is expressed in heart, muscle, and adipose tissue. LPL functions as a 

homodimer, and has the dual functions of triglyceride hydrolase and ligand/bridging factor for 

receptor-mediated lipoprotein uptake. Severe mutations that cause LPL deficiency result in type I 

hyperlipoproteinaemia, while less extreme mutations in LPL are linked to many disorders of 

lipoprotein metabolism.  

10.2.2.50 LIPE - Lipase, hormone-sensitive   

Also known as HSL; LHS 

Gene ID: 3991     Location: 19q13.2 

Summary The protein encoded by this gene has a long and a short form, generated by use of 

alternative translational start codons. The long form converts cholesteryl esters to free cholesterol 

for steroid hormone production. The short form is expressed in adipose tissue, among others, where 

it hydrolyzes stored triglycerides to free fatty acids.   Hormone-sensitive lipase has a vital role in the 
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mobilization of free fatty acids from adipose tissue by controlling the rate of lipolysis of the stored 

triglycerides. LIPE regulates energy homeostasis by catalyzing the rate-limiting step in adipose tissue 

lipolysis. Like glycogen phosphorylate, the corresponding enzyme in carbohydrate metabolism, LIPE 

is under acute neuronal and hormonal control. In both cases activation by catecholamines occurs 

through the cAMP-mediated phosphorylation of a single serine residue. The dephosphorylation of 

LIPE by insulin is responsible for the antilipolytic effect of this hormone, one of its most important 

actions. 

10.2.2.51 MGLL - Monoglyceride lipase  

Also known as MGL; HUK5; MAGL; HU-K5 

Gene ID: 11343    Location: 3q21.3 

Summary This gene encodes a serine hydrolase of the AB hydrolase superfamily that catalyzes the 

conversion of monoacylglycerides to free fatty acids and glycerol. The encoded protein plays a 

critical role in several physiological processes including pain and nociperception through hydrolysis 

of the endocannabinoid 2-arachidonoylglycerol. Expression of this gene may play a role in cancer 

tumour genesis and metastasis. MGLL functions together with LIPE; to hydrolyze intracellular 

triglyceride stores in adipocytes and other cells to fatty acids and glycerol. MGLL may also 

complement LPL in completing hydrolysis of Monoglyceride resulting from degradation of 

lipoprotein triglycerides. 

10.2.2.52 NQO1 - NAD(P)H dehydrogenase, quinone 1 

Also known as DTD; QR1; DHQU; DIA4; NMOR1; NMORI 

Gene ID: 1728    Location: 16q22.1 

Summary This gene is a member of the NAD dehydrogenase (quinone) family and encodes a 

cytoplasmic 2-electron reductase. This FAD-binding protein forms homodimers and reduces 

quinones to hydroquinones. This protein's enzymatic activity prevents the one electron reduction of 

quinones that results in the production of radical species. Mutations in this gene have been 



The Role of Genetic Variation in Predisposition to Alcohol-related Chronic Pancreatitis                             2015 

Appendix – Genes of Interest 237 

associated with tardive dyskinesia, an increased risk of haematotoxicity after exposure to benzene, 

and susceptibility to various forms of cancer. Altered expression of this protein has been seen in 

many tumors and is also associated with Alzheimer's disease. Alternate transcriptional splice 

variants, encoding different isoforms, have been characterized. 

10.2.2.53 NQO2 - NAD(P)H dehydrogenase, quinone 2  

Also known as QR2; DHQV; DIA6; NMOR2 

Gene ID: 4835    Location: 6p25.2 

Summary NQO2 is a flavoprotein that catalyzes the 2-electron reduction of various quinones, redox 

dyes, and the vitamin K menadione. NQO2 predominantly uses dihydronicotinamide riboside as the 

electron donor. Mutations in this gene have been associated with neurodegenerative diseases and 

several cancers. 

10.2.2.54 PNLIP - Pancreatic lipase 

Also known as PL; PTL; PNLIPD 

Gene ID: 5406    Location: 10q26.1 

Summary This gene is a member of the lipase gene family. It encodes a carboxyl esterase that 

hydrolyzes insoluble, emulsified triglycerides, and is essential for the efficient digestion of dietary 

fats. This gene is expressed specifically in the pancreas. 

10.2.2.55 PNLIPRP1- Pancreatic lipase-related protein 1  

Also known as PLRP1 

Gene ID: 5407    Location: 10q25.3 

Summary Pancreatic lipase fulfills a key function in dietary fat absorption by hydrolyzing triglycerides 

into diglycerides and subsequently into monoglycerides and free fatty acids. 
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10.2.2.56 PNLIPRP2 - Pancreatic lipase-related protein 2  

Also known as PLRP2 

Gene ID: 5408    Location: 10q25.3 

Summary PNLIPRP2 is essential for fat digestions. The expression level of PNLIPRP2 in pancreas was 

approximately 6-fold lower than the expression levels of PNLIPRP1. 

10.2.2.57 PRSS1 - Protease, serine, 1 (trypsin 1) 

Also known as TRP1; TRY1; TRY4; TRYP1 

Gene ID: 5644    Location: 7q34  

Summary This gene encodes a trypsinogen, which is a member of the trypsin family of serine 

proteases. This enzyme is secreted by the pancreas and cleaved to its active form in the small 

intestine. It is active on peptide linkages involving the carboxyl group of lysine or arginine. Mutations 

in this gene are associated with hereditary pancreatitis due to the trypsin self-destruct mechanism of 

trypsin designed to prevent pancreatic autodigestion; active trypsin is inhibited normally by a limited 

supply of trypsin inhibitor (e.g. SPINK1).48  

10.2.2.58 PTPRR - Protein tyrosine phosphatase, receptor type, R  

Also known as PTPRQ; EC-PTP; PCPTP1; PTP-SL; PTPBR7 

Gene ID: 5801    Location: 12q15 

Summary Encodes for a protein that is a member of the protein tyrosine phosphatase (PTP) family. 

PTPs are signalling molecules, regulating a range of cellular processes including cell growth, 

differentiation, mitotic cycle, and oncogenic transformation.  
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10.2.2.59 SCARB1 - Scavenger receptor class B, member 1  

Gene ID: 949     Location: 12q24.31 

Also known as CLA1; SRB1; CLA-1; SR-BI; CD36L1; HDLQTL6 

Summary Encodes a protein that is a plasma membrane receptor for HDL cholesterol. The encoded 

protein mediates cholesterol transfer to and from HDL.  A polymorphism (p.P297S) has been 

associated with familial HDL hypercholesterolaemia. 

10.2.2.60 SPINK1 - Serine peptidase inhibitor, Kazal type  

Gene ID: 6690    Location: 5q32 

Also known as TCP; PCTT; PSTI; TATI; Spink3 

Summary Encodes a protein that inhibits trypsin, an enzyme that is secreted by pancreatic acinar 

cells into pancreatic juice. It prevents the premature trypsin-catalyzed activation of zymogens within 

the pancreas. Mutations in this gene are associated with pancreatitis. 
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10.2.3 Coverage of Genes of Interest 

Table 44 Selected genes for Next Generation Sequencing with Haloplex Coverage 

Table displaying number of exons/regions covered by the Haloplex capture, the number of base 

pairs in the combined sequence, and overage coverage and the number of regions with either 90% 

total coverage or less than 90% total coverage. 

Gene Regions Size Coverage >90% <90% 

ABO 7 1064 100% 7 0 

ACACA 58 7205 100% 58 0 

ACACB 53 7377 100% 53 0 

ACSS2 22 2145 100% 22 0 

ADH1A 9 1128 100% 9 0 

ADH1B 10 1128 99.41% 10 0 

ADH1C 9 1128 99.54% 9 0 

ADH4 11 1143 100% 11 0 

ADH5 11 1125 100% 11 0 

ADH6 9 1132 100% 9 0 

ADH7 10 1239 100% 10 0 

ALDH1 13 1506 100% 13 0 

ALDH18A1 17 2388 100% 17 0 

ALDH1A2 17 1557 100% 17 0 

ALDH1A3 14 1539 100% 14 0 

ALDH1L1 24 2709 100% 24 0 

ALDH1L2 24 2772 100% 24 0 

ALDH2 14 1554 100% 14 0 

ALDH3B1 9 1404 100% 9 0 

ALDH5A1 11 1647 100% 11 0 

ALDH6A1 12 1608 100% 10 0 

APOA1 3 804 100% 3 0 

APOA4 3 1191 99.52% 3 0 

APOA5 3 1101 100% 3 0 

APOB 30 13692 100% 3 0 

APOC3 3 300 100% 3 0 

APOE 4 954 100% 4 0 

CEL 11 2271 80.21% 8 3 

CES1 15 1707 83.09% 11 4 

CES2 12 1872 100% 12 0 

CES3 14 1716 100% 14 0 

CES5a 17 1888 100% 17 0 
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CES6 15 1404 100% 15 0 

CFTR 27 4443 100% 27 0 

CLPS 4 339 100% 4 0 

CYP2E1 9 1482 100% 9 0 

FABP1 4 384 100% 4 0 

FABP2 4 399 100% 4 0 

FABP3 4 402 100% 4 0 

FABP6 7 534 100% 7 0 

FADS1 15 1506 100% 15 0 

FADS2 17 1335 100% 17 0 

FADS3 12 1338 100% 10 0 

GALNT2 18 1716 100% 18 0 

GCKR 21 1878 100% 21 0 

IL1a 6 816 100% 6 0 

IL1b 6 810 100% 6 0 

L-CPT1 20 2358 100% 20 0 

LDLR 19 2583 100% 19 0 

LIPA 10 1200 93.98% 9 1 

LIPC 10 1500 100% 10 0 

LIPE 10 3231 99.91% 10 0 

LPL 11 1428 100% 11 0 

MGLL 11 942 100% 11 0 

NQO1 7 825 100% 7 0 

NQO2 8 696 98.07% 7 1 

PNLIP 12 1398 100% 12 0 

PNLIPRP1 13 1404 100% 13 0 

PNLIPRP2 14 1412 100% 14 0 

PRSS1 6 744 100% 6 0 

PTPRR 17 1974 100% 17 0 

SCARB1 15 1650 98.44% 14 1 

SPINK1 4 240 100% 4 0 

 

  



 

 

2
4
2
 

  Ion Torrent™ Coverage 10.3

10.3.1 By Chip  

Table 45 Assessment of SNP coverage of samples by chip run on the Ion Torrent™ 

Chip 8 and Chip 9 both failed and those samples were run on alternative chips. 

Chip 

Number 

Chip 

Loading % 

Total Reads 

(M) 

Mean Read 

Length (bp) 

Q20 bases 

(M) 

Output 

(M) 

Minimum % 

read 

Maximum % 

read 

Average % 

reads 

Number of 

successful samples 

1 69 4.09 136 472 557 69.8 99.0 89.2 15/15 

2 78 4.24 129 507 551 81.1 99.0 92.1 15/15 

3 71 5.02 153 652 768 50.2 100.0 83.5 6/15 

4 86 5.2 141 623 735 59.3 99.2 90.5 13/15 

5 82 4.12 148 518 610 61.8 98.3 90.5 8/16 

6 80 4.24 155 562 658 84.5 99.8 95.5 15/16 

7 76 6.21 148 779 920 44.6 100.0 93.0 16/16 

10 73 3.07 141 372 435 64.7 97.7 89.8 12/16 

11 83 3.4 97 269 331 60.6 98.8 80.2 8/16 

12 76 3.13 120 325 378 47.6 99.6 84.8 11/16 

13 86 6.44 139 781 898 66.4 100.0 93.5 12/16 

14 84 3.88 114 374 446 57.7 99.8 90.2 14/16 

15 76 5.30 142 671 754 25.3 100.0 78.2 15/16 

16 84 4.35 132 509 577 6.9 98.5 65.8 15/16 

17 61 3.23 88 234 286 42.5 98.0 83.2 5/16 
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10.3.2 By Sample 

Table 46 Assessment of coverage of the SNPs within the Genes of Interest 

Those with less than six reads coverage were classed as not covered. 

CP patients include CP numbers, L numbers, M numbers, R numbers and T numbers 
Control patients include Ctrl numbers, CEM numbers and S numbers 
 
Patient ID Reads Mean read 

(bp) 

Mapped reads No. of SNPs 

read 

% of SNPs 

read 

Chips used 

CP007 19911886 117 192076 2768 75.6 Single 

CP012 43848817 152 342043 3540 96.6 Single 

CP013 26484080 154 202046 3630 99.1 Single 

CP014 191589 139 170691 3427 93.6 Single 

CP017 13254499 135 113741 2556 69.8 Single 

CP018 7452426 130 69539 2746 75 Combined 

CP022 9159246 125 88639 2644 72.2 Single 

CP027 34680040 135 278106 3546 96.8 Single 

CP028 13493242 142 109875 3346 91.3 Combined 

CP040 31152624 150 243265 3632 99.2 Single 

CP042 19262379 146 151977 3360 91.7 Single 

CP043 26476979 154 203744 3532 96.4 Single 

CP044 245083936 152 1909228 3573 97.5 Combined 

CP051 18805688 140 155140 3571 97.5 Combined 

CP052 17681752 150 139128 3213 87.7 Single 

CP056 10839376 95 141307 2645 72.2 Combined 

CP061 51394225 143 413499 3443 94 Single 

CP064 31368678 137 271408 3254 88.8 Single 

CP077 76388158 148 600871 3599 98.3 Single 

CP078 45846323 136 391590 3602 98.3 Single 

CP079 5984144 102 71327 2834 77.4 Combined 

CP080 36563513 146 291702 3641 99.4 Single 

CP081 27310654 158 205072 2872 78.4 Combined 

CP083 72860853 150 567479 3534 96.5 Single 

CP085 36602136 121 372470 3620 98.8 Single 

CP086 8512676 161 62742 3485 95.1 Combined 

CP090 21464466 151 166953 3470 94.7 Single 

CP092 25565426 129 213748 2811 76.7 Single 

CP094 52213300 150 410378 2227 60.8 Combined 

CP097 38264283 158 288810 3430 93.6 Combined 

CP101 33237521 161 241343 3097 84.5 Single 

CP108 27660642 127 251984 3451 94.2 Single 

CP122 49752488 152 385131 3662 100 Single 
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CP135 21777358 140 181040 3566 97.4 Combined 

CP136 29262359 163 209141 3549 96.9 Single 

CP140 39197526 160 285029 3606 98.4 Single 

CP141 61873692 153 473188 3661 99.9 Single 

CP147 33890556 160 248496 3647 99.6 Single 

CP151 18909506 143 155684 3532 96.4 Single 

CP152 11990284 151 95300 3312 90.4 Single 

CP153 20330747 153 157513 3509 95.8 Single 

CP154 18060625 152 140759 3514 95.9 Single 

CP156 18133891 151 140346 3407 93 Single 

CP159 8047163 134 68133 2173 59.3 Single 

CP164 44054545 145 355359 3564 97.3 Single 

CP177 24415643 143 199977 3543 96.7 Single 

CP183 34013071 137 292622 3303 90.2 Single 

CP193 14139595 153 110824 2900 79.2 Combined 

CP199 30851134 133 269847 3243 88.5 Single 

CP203 37787751 140 318543 3132 85.5 Single 

CP207 34243856 132 302539 2969 81.1 Single 

CP212 38421792 141 319121 3628 99 Single 

CP214 768973 159 759278 3064 83.6 Combined 

CP215 91798416 141 751807 3661 99.9 Combined 

CP222 28560266 145 230386 3427 93.6 Single 

CP223 55732646 140 457295 3662 100 Single 

CP224 27919215 158 207533 1839 50.2 Single 

CP227 27230459 140 231042 3566 97.4 Single 

CP229 36121595 161 260703 3542 96.7 Single 

CP234 20174156 151 156435 3605 98.4 Single 

CP241 29636154 112 319443 3637 99.3 Single 

CP245 29763883 155 225516 3641 99.4 Single 

CP254 75859428 154 584976 3654 99.8 Single 

CP257 34249599 162 245336 3595 98.1 Single 

CP264 36269771 160 266252 3459 94.4 Single 

CP269 8610050 125 82715 3149 86 Single 

CP278 53699131 153 409486 3662 100 Single 

CP287 39208649 153 301129 3205 87.5 Single 

CP292 48668322 148 386452 3662 100 Single 

CP299 22038260 134 179671 3256 88.9 Single 

CP310 25104659 136 200904 3098 84.6 Single 

CP315 44833595 136 378456 3611 98.6 Single 

CP316 22105237 137 175039 3527 96.3 Single 

CP322 26385564 136 209737 3607 98.5 Single 

CP328 31113267 137 245041 3552 97 Single 

CP329 48627256 133 397094 3537 96.6 Single 
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CP330 23609261 160 172686 3292 89.9 Single 

CP333 139218191 123 1087074 2488 67.9 Single 

CP335 14693055 123 128673 2794 76.3 Single 

CP338 65005793 133 528681 3650 99.6 Single 

CP343 64244375 134 519733 3268 89.2 Single 

CP353 44315567 155 341561 2934 80.1 Single 

CP367 52706886 150 409771 2688 73.4 Single 

CP368 33298455 160 242728 3596 98.2 Single 

CP397 43175487 136 366622 3025 82.6 Single 

CP414 46230626 134 392047 3086 84.2 Single 

CP415 62548991 138 525329 2431 66.4 Single 

CP438 35889375 110 388145 3465 94.6 Single 

CP453 1628769 134 14183 1020 27.8 Single 

CP456 3548172 123 34075 3601 98.3 Single 

CP457 2561874 118 25676 1556 42.5 Single 

L1083 23734542 120 227315 3208 87.6 Single 

L1230 9996173 140 83656 2306 63 Single 

M1477 42822362 133 368685 3586 97.9 Single 

M1533 15703008 145 131231 2219 60.6 Single 

M1704 43133700 160 312236 3647 99.6 Single 

M1839 20826945 141 165126 2307 63 Single 

M1847 17081166 125 164655 3503 95.6 Single 

M1861 17356658 158 128783 3320 90.6 Single 

R2404 13052769 142 115834 2542 69.4 Single 

R2431 19692423 144 159069 3343 91.3 Single 

T451 37991108 131 289726 3591 98 Single 

CEM19 3047695 147 23647 3352 91.5 Single 

CEM49 11118780 97 134130 3089 84.3 Single 

CEM60 9579093 99 118159 3280 89.5 Single 

Ctrl027 10749873 129 100492 2335 63.7 Combined 

Ctrl028 17011350 131 153914 3473 94.8 Combined 

Ctrl029 30941898 139 256451 3442 94 Single 

Ctrl030 9621955 132 87562 2547 69.5 Combined 

Ctrl031 32974861 140 273870 3648 99.6 Single 

Ctrl032 9581697 144 77340 2371 64.7 Single 

Ctrl033 33676044 162 248253 3631 99.1 Single 

Ctrl034 32693119 160 242209 3386 92.4 Single 

Ctrl035 22961811 109 250037 3616 98.7 Single 

Ctrl036 38709871 156 294205 2262 61.8 Single 

Ctrl037 14345845 141 119089 3239 88.4 Single 

Ctrl038 39523388 145 317848 3602 98.3 Single 

Ctrl039 192410495 146 1270079 3569 97.4 Single 

Ctrl040 38629209 151 304987 3439 93.9 Single 
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Ctrl041 2911528 127 28230 1987 54.2 Combined 

Ctrl042 71232608 122 723170 3584 97.8 Single 

Ctrl043 3833212 114 39830 2353 64.2 Single 

Ctrl044 6348693 128 59745 2437 66.5 Combined 

Ctrl045 75049692 153 577852 3660 99.9 Single 

Ctrl046 11090860 116 111193 2794 76.3 Single 

Ctrl048 18062276 129 151321 3096 84.5 Single 

Ctrl049 16452443 90 195669 3084 84.2 Single 

Ctrl050 25853741 122 228449 3575 97.6 Single 

Ctrl052 66555893 87 851901 1596 43.6 Single 

Ctrl054 22463420 144 183326 3579 97.7 Single 

Ctrl055 32143885 120 306904 3551 96.9 Single 

Ctrl056 2028618 162 14772 1633 44.6 Single 

Ctrl057 15070029 87 212578 2172 59.3 Single 

Ctrl058 19599204 121 175550 3256 88.9 Single 

Ctrl059 59961311 159 446107 3643 99.5 Single 

Ctrl060 53499194 147 411028 3608 98.5 Single 

Ctrl061 18842916 147 150232 3273 89.4 Single 

Ctrl062 43401843 161 319627 3654 99.8 Single 

Ctrl065 45459346 148 360991 3662 100 Single 

Ctrl066 76672912 154 579649 3648 99.6 Single 

Ctrl067 34472167 132 297945 3432 93.7 Single 

Ctrl068 29310907 141 238442 3538 96.6 Single 

Ctrl070 36600822 122 358918 3654 99.8 Single 

Ctrl071 39371273 146 317250 3550 96.9 Single 

Ctrl073 95054783 131 857178 3653 99.7 Single 

Ctrl074 17081903 118 174871 3392 92.6 Single 

Ctrl075 23465798 137 198480 3340 91.2 Single 

Ctrl076 7860989 136 67564 1743 47.6 Single 

Ctrl077 29502445 154 223415 3601 98.3 Single 

Ctrl078 63225638 143 518176 3285 89.7 Single 

Ctrl079 24583770 133 213354 3296 90 Single 

Ctrl080 34563885 147 276103 3480 95 Single 

Ctrl081 31850865 145 258233 3572 97.5 Single 

Ctrl082 19745228 143 160690 3169 86.5 Single 

Ctrl083 24042183 152 186364 3537 96.6 Single 

Ctrl085 10213130 144 81891 2988 81.6 Single 

Ctrl086 25866066 152 201105 3305 90.2 Single 

Ctrl087 42828878 148 339741 3562 97.2 Single 

Ctrl089 31625921 141 257510 2992 81.7 Single 

Ctrl090 71534815 136 591031 2343 64 Single 

Ctrl091 29862027 139 248123 3187 87 Single 

Ctrl092 22872559 146 178653 3346 91.3 Single 
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Ctrl093 14820102 97 184711 3408 93 Single 

Ctrl095 18968843 144 153432 3489 95.2 Single 

Ctrl096 25928521 142 211407 3577 97.7 Single 

Ctrl097 21551164 147 171567 3393 92.6 Single 

Ctrl099 27037512 147 206219 3443 94 Single 

Ctrl100 6750860 145 54784 2803 76.5 Single 

Ctrl103 16370113 139 137794 2913 79.5 Single 

Ctrl104 46518318 141 385476 3647 99.6 Single 

Ctrl105 37674270 145 300981 3640 99.4 Single 

Ctrl108 47948723 130 423241 3401 92.8 Combined 

Ctrl111 14447003 142 120070 2606 71.1 Single 

Ctrl113 67121077 148 509786 784 21.4 Single 

Ctrl116 58989418 138 492367 3622 98.9 Single 

Ctrl117 69177009 145 538919 927 25.3 Single 

Ctrl118 3719003 128 33744 963 26.3 Single 

Ctrl119 45297531 149 344345 3239 88.4 Single 

Ctrl121 8280025 144 67782 3167 86.5 Single 

Ctrl122 95976251 142 757842 3663 100 Single 

Ctrl123 30899611 137 251190 2197 60 Single 

Ctrl124 34615355 120 330951 3489 95.2 Single 

Ctrl128 73082706 145 568212 3643 99.5 Single 

Ctrl130 28760925 136 248725 3503 95.6 Single 

Ctrl131 99933399 143 789911 3546 96.8 Single 

Ctrl136 89660544 142 714274 2030 55.4 Single 

Ctrl138 4354294 125 40773 1697 46.3 Single 

Ctrl141 5219456 114 53145 3562 97.2 Single 

Ctrl151 4238081 122 40795 2575 70.3 Single 

Ctrl152 1711571 133 14904 252 6.9 Single 

S038305 14591406 140 119867 3512 95.9 Single 

S038310 42607252 135 351857 2982 81.4 Single 

S038312 13486193 121 127499 3516 96 Single 

S038324 50993582 135 432986 3633 99.2 Single 

S038327 35838234 133 308785 3569 97.4 Single 

S038330 44598485 134 374320 2421 66.1 Single 

S038334 3057051 133 26502 2115 57.7 Single 

S038336 92781017 138 752359 3641 99.4 Single 

S038341 58970491 135 504539 3635 99.2 Single 

S038342 50997197 140 418151 3655 99.8 Single 

S038344 2046388 141 16298 3585 97.9 Single 

S038345 2786863 136 23526 2592 70.8 Combined 

S038360 16487839 133 141023 3609 98.5 Combined 
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10.3.3 Comparison of SNP Calls Removing Results from Concatenated Samples 

Table 47 Sensitivity analysis excluding results that had been concatenated from two runs  

The sensitivity analysis contains 85 patients in the alcohol-related chronic pancreatitis group and 89 patients in the alcoholic control group. 

  Original analysis Sensitivity analysis 

SNP Amino OR Lower CI Upper CI p value OR Lower CI Upper CI p value 

ACACB_rs17848835 p.T2027I 4.094 1.965 8.530 0.002 3.507 1.665 7.385 0.001 

ADH1C_rs1693482 p.R272Q 0.489 0.279 0.858 0.013 0.483 0.267 0.875 0.016 

ADH5_rs116010022 Intron 7.444 0.907 61.080 0.051 6.035 0.719 50.658 0.098 

ADH6_rs4147545 Intron 0.591 0.373 0.935 0.025 0.646 0.397 1.050 0.078 

APOB_novel p.L3820L 1.729 1.045 2.860 0.033 1.914 1.108 3.307 0.020 

APOB_rs72653066 Intron 0.073 0.004 1.303 0.067 0.069 0.004 1.230 0.062 

APOC3_rs4520 p.G34G 0.603 0.400 0.910 0.016 0.625 0.405 0.964 0.018 

CES5A_rs7500040 Intron 0.543 0.277 1.065 0.076 0.670 0.332 1.352 0.264 

CES5A_rs200911306 p.V45I 0.210 0.059 0.743 0.016 0.337 0.090 1.269 0.108 

FABP1_rs2241883 p.T94A 0.509 0.314 0.826 0.006 0.442 0.262 0.746 0.002 

FABP3_rs11578034 Intron 8.667 1.073 69.981 0.043 8.244 1.020 66.649 0.048 

FABP6_rs10056214 Intron 0.481 0.321 0.721 <0.001 0.428 0.278 0.659 <0.001 

IL1B_rs1143633 Intron 0.481 0.295 0.782 0.003 0.916 0.530 1.583 0.753 

LDLR_rs1003723 Intron 1.685 1.126 2.520 0.011 1.608 1.051 2.461 0.029 

LIPA_rs1051338 p.T16P 0.293 0.115 0.751 0.011 0.277 0.108 0.716 0.008 

LIPC_rs690 p.V155V 0.606 0.403 0.910 0.016 0.636 0.414 0.978 0.039 

LIPC_rs3751542 Intron 0.746 0.461 1.206 0.232 0.841 0.505 1.401 0.506 

MGLL_rs116367069 Intron 0.185 0.040 0.846 0.025 0.221 0.047 1.038 0.056 

PRSS1_rs6666 p.D162D 0.554 0.369 0.832 0.030 0.559 0.364 0.858 0.008 

PTPRR_rs10506608 p.F54F 0.340 0.140 0.825 0.004 0.358 0.145 0.881 0.025 
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 Tagging SNPs 10.4

Table 48 Tagging SNPs for the SNPs of Interest 

Data on the SNPs of Interest identify recognised tagging SNPs with r2>0.8 and D’ >0.9. Data taken for 
1000 genomes website (http://browser.1000genomes.org/index.html) 

 

Reference SNP Tagging SNPs Amino acid r2 D' 

ACACB_rs17848835 NA non coding   

ADH1C_rs1693482 rs1789892 non coding 1 1 

rs1154433 non coding 1 1 

rs1229978 non coding 1 1 

rs1662031 non coding 1 1 

rs1612735 non coding 1 1 

rs1789898 non coding 1 1 

rs1442479 non coding 1 1 

rs1442480 non coding 1 1 

rs1789900 non coding 1 1 

rs1442481 non coding 1 1 

rs1693456 non coding 1 1 

rs1662060 non coding 1 1 

rs1789902 non coding 1 1 

rs1693476 non coding 1 1 

rs1662059 non coding 1 1 

rs698 p.I350V 1 1 

CM033593 non coding 1 1 

rs3114048 non coding 1 1 

rs1693471 non coding 1 1 

rs1662058 non coding 1 1 

rs1693477 non coding 1 1 

rs1789906 non coding 1 1 

rs904093 non coding 1 1 

rs904094 non coding 1 1 

rs904095 non coding 1 1 

rs1662057 non coding 1 1 

rs1789908 non coding 1 1 

rs904096 non coding 1 1 

rs1789910 non coding 1 1 

rs1693480 non coding 1 1 

rs1789911 non coding 1 1 

http://browser.1000genomes.org/index.html
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rs1693481 non coding 1 1 

rs1789912 non coding 1 1 

CM860053 non coding 1 1 

rs1631460 non coding 1 1 

rs41496344 non coding 1 1 

rs1693424 non coding 1 1 

rs1625439 non coding 1 1 

rs62307297 non coding 1 1 

rs62307298 non coding 1 1 

rs1789914 non coding 1 1 

rs1693425 p.V158V 1 1 

rs1693426 non coding 1 1 

rs1662053 non coding 1 1 

rs1662052 non coding 1 1 

rs1789916 non coding 1 1 

rs1693427 non coding 1 1 

rs1693428 non coding 1 1 

rs1789917 non coding 1 1 

rs1662051 non coding 1 1 

rs1693430 non coding 1 1 

rs1789919 non coding 1 1 

rs1693431 non coding 1 1 

rs1629270 non coding 1 1 

rs1662049 non coding 1 1 

rs1789924 non coding 1 1 

rs1629838 non coding 1 1 

rs2584453 non coding 1 1 

rs1789925 non coding 1 1 

rs2453980 non coding 1 1 

rs980972 non coding 1 1 

rs1693470 non coding 1 1 

rs1662039 non coding 1 1 

rs2851300 non coding 1 1 

rs1234584 non coding 1 1 

rs1662021 non coding 1 1 

rs1662020 non coding 1 1 

rs1235415 non coding 1 1 

rs1229858 non coding 1 1 

rs1229856 non coding 1 1 

rs1229855 non coding 1 1 

rs1229854 non coding 1 1 
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rs1229851 non coding 1 1 

rs1154435 non coding 1 1 

rs1154438 non coding 1 1 

rs1154439 non coding 1 1 

rs1154440 non coding 1 1 

rs1229973 non coding 1 1 

rs1583974 non coding 1 1 

rs1154442 non coding 1 1 

rs1154444 non coding 1 1 

rs1154445 non coding 1 1 

rs1154447 non coding 1 1 

rs2851299 non coding 0.978 1 

rs1789913 non coding 0.978 1 

rs1662048 non coding 0.978 1 

rs1693469 non coding 0.978 1 

rs1238015 non coding 0.978 1 

rs1229857 non coding 0.978 1 

rs1693483 non coding 0.956 1 

rs283415 non coding 0.935 1 

rs283408 non coding 0.935 1 

rs11499826 non coding 0.893 1 

rs4093924 non coding 0.872 1 

ADH5_rs116010022 rs144904000 non coding 1 1 

rs142452522 non coding 1 1 

rs148416104 non coding 1 1 

rs149709952 non coding 1 1 

rs146788033 non coding 1 1 

rs146829324 non coding 1 1 

ADH6_rs4147545 rs4333190 non coding 0.95 1 

rs2903166 non coding 0.95 1 

rs3857224 non coding 0.95 1 

rs10030920 non coding 0.95 1 

APOB_rs72653066 rs116359745 non coding 1 1 

rs113190464 non coding 1 1 

APOC3_rs4520 NA non coding   

CES5A_rs7500040 rs3859105 non coding 0.957 1 

rs3859106 non coding 0.957 1 

rs3933468 non coding 0.957 1 

rs8049600 non coding 0.957 1 

rs8048974 non coding 0.957 1 

rs6499794 non coding 0.957 1 
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rs12445603 non coding 0.957 1 

rs6499792 non coding 0.957 1 

rs6416762 non coding 0.916 1 

rs6499793 non coding 0.871 0.954 

rs11647975 non coding 0.811 1 

FABP1_rs2241883 rs1545223 non coding 1 1 

CM042701 non coding 1 1 

FABP3_rs11578034 rs34406633 non coding 1 1 

rs34278290 non coding 1 1 

rs11589125 non coding 1 1 

rs12744206 non coding 1 1 

rs12749261 non coding 1 1 

rs2275437 p.A109A 1 1 

rs35961897 non coding 1 1 

rs4949405 non coding 1 1 

rs12756878 non coding 0.829 1 

FABP6_rs10056214 rs10071871 non coding 1 1 

rs10071756 non coding 0.847 1 

rs10056227 non coding 0.847 1 

rs10079413 non coding 0.847 1 

rs10058512 non coding 0.847 1 

rs4921267 non coding 0.847 1 

rs4921268 non coding 0.847 1 

rs4921122 non coding 0.847 1 

rs2042259 non coding 0.847 1 

IL1B_rs1143633 rs3917368 non coding 0.971 1 

rs3181067 non coding 0.971 1 

rs1143643 non coding 0.971 1 

LDLR_rs1003723 rs12983082 non coding 1 1 

rs12710260 non coding 1 1 

CS022877 non coding 1 1 

CS040544 non coding 1 1 

rs1962352 non coding 0.889 0.976 

rs688 p.N591N 0.889 0.976 

CM984053 non coding 0.889 0.976 

rs28786710 non coding 0.889 0.976 

rs2738448 non coding 0.889 0.976 

rs2738449 non coding 0.889 0.976 

rs2738450 non coding 0.889 0.976 

rs2738452 non coding 0.889 0.976 

rs2915967 non coding 0.889 0.976 
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rs9789302 non coding 0.889 0.976 

rs9789303 non coding 0.889 0.976 

rs34554139 non coding 0.889 0.976 

rs5925 p.V653V 0.889 0.976 

CM080431 non coding 0.889 0.976 

rs17248819 non coding 0.872 1 

rs111867267 non coding 0.868 0.975 

rs9789328 non coding 0.845 0.93 

rs10422256 non coding 0.816 1 

rs67475684 non coding 0.808 0.974 

rs2738453 non coding 0.808 0.974 

LIPA_rs1051338 rs2246828 non coding 1 1 

rs2250645 non coding 1 1 

rs1332327 non coding 1 1 

rs2243547 non coding 0.977 1 

rs1412444 non coding 0.954 1 

rs2246833 non coding 0.932 1 

rs1332328 non coding 0.932 1 

rs1412445 non coding 0.932 1 

rs2246941 non coding 0.911 1 

rs2246942 non coding 0.911 1 

rs1332329 non coding 0.911 1 

rs2250644 non coding 0.908 0.975 

LIPC_rs690 NA non coding   

LIPC_rs3751542 rs3829460 non coding 1 1 

rs7175421 non coding 1 1 

rs4562992 non coding 1 1 

rs190316834 non coding 0.843 1 

rs28619338 non coding 0.831 1 

rs2242064 non coding 0.831 1 

MGLL_rs116367069 NA non coding   

PRSS1_rs6666 rs6667 p.N246N 1 1 

rs10258394 non coding 1 1 

rs4726576 non coding 1 1 

rs10273639 non coding 1 1 

rs9969188 non coding 1 1 

rs2855972 non coding 0.978 1 

rs13246726 non coding 0.956 0.978 

rs35031873 non coding 0.956 0.978 

rs13230029 non coding 0.956 0.978 

rs13230134 non coding 0.956 0.978 
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rs28706856 non coding 0.956 0.978 

rs1969595 non coding 0.956 0.978 

rs13225332 non coding 0.956 0.978 

rs11765409 non coding 0.956 0.978 

rs12534573 non coding 0.956 0.978 

rs12534595 non coding 0.956 0.978 

rs4726580 non coding 0.956 0.978 

rs11769872 non coding 0.956 0.978 

rs11770572 non coding 0.956 0.978 

rs10952531 non coding 0.956 0.978 

rs4726581 non coding 0.956 0.978 

rs4726582 non coding 0.956 0.978 

rs4726583 non coding 0.956 0.978 

rs71529533 non coding 0.956 0.978 

rs4726586 non coding 0.956 0.978 

rs34500324 non coding 0.956 0.978 

rs4726587 non coding 0.956 0.978 

rs4726588 non coding 0.956 0.978 

rs13229600 non coding 0.956 0.978 

rs13229701 non coding 0.956 0.978 

rs13228878 non coding 0.956 0.978 

rs2367484 non coding 0.956 0.978 

rs2886990 non coding 0.956 0.978 

rs10952532 non coding 0.956 0.978 

rs1811090 non coding 0.895 1 

rs1985888 non coding 0.895 1 

rs2011216 non coding 0.895 1 

rs4726578 non coding 0.895 1 

rs4726575 non coding 0.853 0.976 

rs375656559 non coding 0.853 0.976 

rs71529532 non coding 0.853 0.976 

rs10246334 non coding 0.853 0.976 

rs2367343 non coding 0.853 0.976 

rs34708921 non coding 0.853 0.976 

rs10081384 non coding 0.853 0.976 

rs2187629 non coding 0.853 0.976 

rs10447734 non coding 0.853 0.976 

rs3757377 non coding 0.819 1 

rs3757378 non coding 0.819 1 

PTPRR_rs10506608 rs11178395 non coding 1 1 

rs10506607 non coding 1 1 
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rs73144109 non coding 1 1 

rs11178397 non coding 1 1 

rs11178399 non coding 1 1 

rs138264731 non coding 1 1 

rs145149665 non coding 1 1 

rs149570049 non coding 1 1 

rs7313937 non coding 1 1 

rs7132092 non coding 1 1 

rs7299834 non coding 1 1 

rs12369285 non coding 1 1 

rs73144199 non coding 1 1 

rs11178394 non coding 1 1 

rs59474063 non coding 0.941 1 

rs138137514 non coding 0.878 1 

rs11178393 non coding 0.841 1 

 


