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Abstract

This thesis deals with the stability analysis of linear discrete-time premium-reserve (P-

R) systems in a stochastic framework. Such systems are characterised by a mixture

of the premium pricing process and the medium- and long- term stability in the ac-

cumulated reserve (surplus) policy, and they play a key role in the modern actuarial

literature. Although the mathematical and practical analysis of P-R systems is well

studied and motivated, their stability properties have not been studied thoughtfully

and they are restricted in a deterministic framework.

In Engineering, during the last three decades, many useful techniques are developed

in linear robust control theory. This thesis is the first attempt to use some useful tools

from linear robust control theory in order to analyze the stability of these classical

insurance systems.

Analytically, in this thesis, P-R systems are first formulated with structural prop-

erties such that time-varying delays, random disturbance and parameter uncertain-

ties. Then as an extension of the previous literature, the results of stabilization and

the robust H∞-control of P-R systems are modelled in stochastic framework. Mean-

while, the risky investment impact on the P-R system stability condition is shown.

In this approach, the potential effects from changes in insurer’s investment strategy

is discussed. Next we develop regime switching P-R systems to describe the abrupt

structural changes in the economic fundamentals as well as the periodic switches in

the parameters. The results for the regime switching P-R system are illustrated by

means of two different approaches: markovian and arbitrary regime switching systems.

Finally, we show how robust guaranteed cost control could be implemented to solve an

optimal insurance problem.

In each chapter, Linear Matrix Inequality (LMI) sufficient conditions are derived

to solve the proposed sub-problems and numerical examples are given to illustrate the

applicability of the theoretical findings.
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Chapter 1

Introduction

1.1 Research problem and Motivation

The premium pricing process, the medium- and long- term stability in the reserve policy

under uncertainty are very challenging issues in the insurance world and particularly for

the pricing of General (Non-Life) Insurance products. Additionally, under the Solvency

II framework and different other national regulations, the stability and robustness of

the model are parameters that have to be also considered very seriously and thought-

fully. Thus, in the insurance market in order for the actuary to be able to price the

gross premium (or market premium) accurately, s/he should have a very good feeling

about the financial environment where the various uncertainties are appearing in, the

constraints that the insurance organization is facing from, and the stochastic nature of

many other financial and social variables that can interfere in the model. Ideally, even

the delays in reporting the claims and collecting the appropriate information from the

client (or/and for the accident or/and event) have to be estimated in order the model

to be more pragmatic and eventually realistic. Thus, the modelling of the uncertain pa-

rameters turns up to be one the most essential ones that has to be considered properly

in the development of any effective premium model and reserve process.

Consequently, the premium-reserve (P-R) model has to consider different types of

uncertainties as well as to face the impact of the external disturbances. So far, these

parameters have not been implemented altogether in P-R modelling. Therefore, in this

thesis, some advanced techniques from the linear robust control theory are used in order

to investigate the robust stability, stabilization and H∞ control for the P-R system,
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bringing in the actuarial science some very fruitful ideas and tools from engineering into

a stochastic, discrete-time framework. Here, we are interested not only in examining the

stability of the premium process, but also to find a premium such that the stabilization

of the process does occur. In more details, the purpose of the robust stabilization is

the design of a state feedback controller such as the resulting closed-loop system is

robust stochastically stable for all admissible uncertainties. Meanwhile this thesis is to

investigate several aspects of the problem of stability and stabilization for this premium

pricing and accumulated reserve problem subject to markovian and arbitrary switching

regimes.

1.2 Main objectives and contributions

• In Chapter 3, we discuss stability conditions for P-R systems with time-varying

delays and outside disturbances in a stochastic framework. This work extends

significantly the recent results proposed by Pantelous and Papageorgiou (2013)

[51] in a deterministic framework.

• In Chapter 4, we derive robust H∞ stabilization criteria of the P-R system by

considering available risky investments. Here, we discuss the impact of the risky

investment on the robust H∞ stabilization performance.

• In Chapter 5, a linear Markovian regime switching system in discrete-time is used

to model the medium- and long- term reserves and the premiums (P-R system)

of an insurer. We derive sufficient conditions for stability, the stabilization and

the robust H∞-control of a P-R system and analyse the potential effects from the

abrupt structural changes in the economic fundamentals as well as the insurer’s

strategy over a finite time period.

• In Chapter 6, we derive the result of extended stability and H∞ controller design

for arbitrary regime switching P-R systems.

• In Chapter 7, some preliminary result related to guaranteed cost control approach

to determine the optimal performance of the P-R system have been introduced.
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1.3 Structure of thesis

Chapter 2 introduces the reader some important relevant concepts from robust control

theory. Then, the history of applying control theory is reviewed with emphasis placed

on some previous results in actuarial literature, which are essential for the generation

of the models in this thesis.

Chapter 3 focuses on extending this classic actuarial problem in stochastic frame-

work. The main goal of the developments in this chapter is to provide a sufficient

condition on the design of a state feedback controller such that proposed closed-loop

P-R system is robust stochastically stable with parameter uncertainties and random

disturbances. First, some assumptions are discussed and most of these assumptions

remain same in all the chapters. Then the basic P-R system is introduced and the

robust stability and H∞ stability for the system is derived. Numerical examples are

used to show the usefulness of the theorems.

Before introducing the regime-switching models in Chapter 5 and 6, Chapter 4

contains the research of P-R system with predefined risky investment. The results

derived in Chapter 3 are extended in Chapter 4 in order to characterize robust H∞

stability in the discrete-time linear stochastic P-R system with risky investment.

In Chapter 5, the markovian regime switching model is then introduced in great de-

tails. The fundamental ideas and the mathematical derivation of the regime-switching

P-R system are declared, and the robust LMI stability, stabilization and H∞ control

problem are discussed. We show that in the case of discrete-time markovian switching

linear P-R system there is way to analyse stability and generate a feasible controller.

Chapter 6 focuses on the research on the same problem under arbitrary switching

framework. Both Chapter 5 and 6 deal with the problem of the stability analysis of

switched linear P-R systems. Chapter 5 and 6 contain illustrative examples based on

the solutions of sufficient LMI conditions.

Before concluding, Chapter 7 introduces a guaranteed cost control approach to

determine the optimal feedback controller when multiple performance targets of the P-

R model are required. In short, by a convex optimization problem based on LMI criteria

we understand the problem of minimization of a cost function along the stabilization

of trajectories of a P-R system.

Chapter 8 is our final chapter. In this chapter we give concluding remarks for the

3



contribution of this thesis and point some feasible further research directions for the

topic in this thesis.

1.4 Notation

Throughout this thesis, the matrices are assumed to have compatible dimensions. The

superscript T stands for the matrix transposition. diag{· · · } stands for a block-diagonal

matrix. For a symmetric matrix P > 0 (< 0) means P is positive (negative) definite. I

represents identity matrix and 0 denotes zero matrix. Rm denotes the m dimensional

Euclidean space. N is natural numbers set.
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Chapter 2

Literature Review

2.1 Control Theory: A useful tool in Engineering

Let’s consider a dynamic system; for example a flying aeroplane. The system is in a

certain state which is changing all the time. In the case of an aeroplane the state is

described by coordinates of the position of the aeroplane. The changes are caused by

internal dynamics of the system and maybe by some outside impulses. The motion

of an aeroplane is governed by the laws of kinetics together with disturbances caused

e.g. by changes in wind speed or air pressure. The system should be steered towards a

certain target. Then, we have an observation which gives some information about the

present state of the system. The observation may give complete information about the

state, but it may also be disturbed, delayed or otherwise incomplete. Finally, we have

some tools or variables which you can control and which affect the state of the system.

In an aeroplane that means different piloting measures.

Thus, the challenge which is considered in control theory is to find a rule which

best satisfies the criteria chosen. These criteria often suggest that the system should

not deviate too much from the target and that the correcting measures cannot be too

harsh. In order to do that we must first analyse the statistical properties of the system

and build a suitable model for it.

2.1.1 Stability of discrete time delay system

It’s easy to notice that time delay exists in various system such as biological, ecological,

economic, social, engineering systems etc. One reason is that time-delay parameters

5



are often used to model systems, where procession and transmission of information or

material are involved. For example, in economics, the central bank in a country often

attempts to influence the economy by adjusting interest rates; the effect of a change in

interest rates takes months to be translated into an impact on the economy. It would be

much more complicated to manage and control a system with time delays (especially,

the system with long delay). It has been shown that time delay is often a source of the

generation of oscillation and a source of instability of control systems (Kolmanovskii

and Myshkis, 1992 [38]).

Usually, stability conditions for time-delay systems can be classified in two types:

delay-dependent and delay-independent stability conditions; the former includes the

information on the size of the delay, while the latter does not. Generally speaking, delay

independent stability conditions are simpler to apply, while delay-dependent stability

conditions are less conservative especially in the case when the time delay is small. Since

delay-dependent stability conditions takes into account impact of the upper bound of

time delay, which makes the stability condition more relevant. In this thesis, our

research is mainly based on delay-dependent stability conditions since the time delay

in insurance system is relatively small.

The errors for the system will start to change only after the inherent delay times.

Therefore, it is crucial to properly anticipate and understand the existence of delays and

not to over-react. Otherwise, the system is very likely to become much more unstable.

At beginning, much attention is being paid to the delay-dependent stability, stabi-

lization, and H∞ control of linear systems with state delays. Less attention has been

paid to discrete-time systems with a time-delay, because a linear discrete-time sys-

tem with a constant integer time-delay can be transformed into a delay-free system by

means of a state-augmentation approach (Mahmoud, 1995 [42]). However this approach

is not suitable for systems with either unknown or time-varying delays. Over the past

decades, several articles have appeared on this topic. For example, for small time-

varying delays, the descriptor model transformation approach was employed to study

the delay dependent guaranteed-cost control of uncertain discrete-time delay systems;

Chen et al. (2003) [17], Bauer et al.(1993) [4], Kim (2001) [37] and Song and Kim(1998)

[64].

In fact, voluminous researches have been done on time-delay systems. A great

number of results for delay-dependent stability analysis on time-delay systems have

6



been reported in the literature (see e.g. Chen and Latchman, 1995 [16]; Chu, 1997

[19]; Hui and Hu, 1997 [36]; Dugard and Verriest, 1998 [23]; Su and Chu, 1999 [65];

Hmamed, 2000 [32]; Shi et al., 2000 [61]; Niculescu, 2001 [49]; Boukas and Liu, 2001

[9]; Boukas and Liu, 2002 [10]; Fridman and Shaked, 2002 [26]; Xu et al., 2002 [74]; Xu

et al., 2004 [75]; Zhou and Li, 2005 [80]; Chen et al., 2006 [15]; Shu et al., 2006 [63];

Sun et al., 2007 [67]).

Different theorems for delay-dependent stability analysis have been presented in

those papers. Meanwhile, many methods have been provided for delay dependent

stability for a class of linear discrete-time systems with time-varying delays. Most

importantly, appropriate Lyapunov functionals have been constructed to exhibit the

delay-dependent systems in those literatures, which provide us fruitful techniques to

analyse the problems.

2.1.2 Robustness and robust control

Robust control is a branch of control theory whose approach to controller design explic-

itly deals with uncertainty. Robust control methods concern a system with admissible

uncertain parameters and/or disturbances. Robustness means the systems achieve ro-

bust performance and/or stability in the presence of bounded modelling errors. Infor-

mally, we call a controller designed to be robust when it would work well for a particular

set of parameter uncertainties.

2.1.3 H∞ control

Definition 2.1. (Infinity norm)(Zhou et al. 1995 [79])

Let V be a vector space over R and let ‖ · ‖ be a norm defined on V . Then V is a

normed space. Now let’s consider a Cauchy sequence xt in a Banach space VB. Then

the corresponding infinity norm is defined as

‖x‖∞ , sup{| xt | : t ∈ N}.

A vital problem in classical and modern control is how to treat disturbance in control

systems. According to the previous numerous literature, probably H∞ control is the

most important example of a robust control technique, which was initially developed

by Duncan McFarlane and Keith Glover from Cambridge University. When outside
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unexpected disturbances enter the system, this method guarantees that the system will

not greatly deviate from expected trajectories. H∞ control is a key approach to deal

with robustness (Green and Limebeer, 1995 [29]). The standard H∞ control problem

for delay-free systems was solved in the late 1980s (Zhong, 2006 [78]). Since then, the

robust control of time-delay systems has attracted many researchers.

The so-called H∞ norm (see for instance, Francis and Khargonekar, 1995 [24] or

Helton and Merino, 1998 [33]), loosely speaking, focuses on the worst possible case and

it tries to minimise the maximum of a (linear) loss function of the state and control

variables, for an arbitrary input. In other words, this rule attempts to minimize the loss

in system when the circumstances are the worst possible. This actually is the famous

min-max decision rule in the game theory.

2.1.4 Linear Matrix Inequality

Definition 2.2. (Linear Matrix Inequality) A linear matrix inequality (LMI) is an

inequality

F (x) < 0, (2.1.1)

where F is an affine function.

The LMI (2.1.1) defines a convex constraint on x. That set is

ϑ := {x | F (x) < 0}, (2.1.2)

and the solution of F (x) < 0 is convex.

The convex constraint F (x) < 0 on x may seem special, but many convex sets

can be represented by LMI approach and have more attractive properties than general

convex sets.

Lyapunov theory is traditionally applied to the analysis of system stability. Mean-

while, in modern control theory, LMI is a very practical and efficient tool to solve some

optimization problems in control theory. Thus, different convex optimization and fea-

sibility problems arising from Lyapunov theory can be transformed to and represented

by LMIs under some well-known techniques and lemmas (eg. Schur complement, Moon

inequality), see Boyd et al., 1994 [11], Xu and Lam, 2008 [72].

The other main advantage of LMI is that we can possibly get the feasible numerical
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results for specific problems other than the analytic results. Because nowadays sev-

eral powerful programming toolboxes for LMI have been developed, the corresponding

solution for LMI could be efficiently generated.

Also in Scherer and Weiland (2004) [60], some basic properties of LMIs are discussed

which turn out to be very helpful to reduce multiple constraints on an unknown variable

to an equivalent constraint involving a single LMI.

According to Boyd et al., 1994 [11], application of LMI in system control is first

introduced when Lyapunov published his famous Lyapunov theory in about 1890. He

showed the differential equation

d

dt
x(t) = Ax(t), (2.1.3)

is stable if and only if there exists a positive definite matrix P such that

ATP + PA < 0. (2.1.4)

In this basic Lyapunov theory, P > 0 and ATP + PA < 0 are the basic form of LMI.

In 1940’s Lur’e and other researchers apply Lyapunov’s methods to real control

engineering problems. They solve the resulting LMIs analytically by hand due to lack

of consistent theory and computer algorithm. Therefore the result could only apply in

basic systems at that time.

In 1960’s, Positive-real lemma gives graphical techniques for solving another fam-

ily of LMIs. Among these graphical techniques, the Root-Locus (see Shinners, 1964

[62]) method is first implemented in classical P-R actuarial problems by Balzer and

Benjamin (1982) [3], then appears in Zimbidis and Haberman (2001) [82]. With the

restriction and limitation in algorithm of graphical techniques, they present analytical

stability condition for the deterministic P-R system at several critical time delay values.

However, we can still benefit from the approach by Balzer and Benjamin (1982) [3],

Zimbidis and Haberman (2001) [82] due to the fact that many optimization problems

in insurance can be formulated (or reformulated) using LMIs.

By 1970, It is shown that a certain algebraic Riccati equation (ARE) can be used

to solve the LMI appearing in the Positive-real lemma. In paper Willems 1971 [70] ,

Willems led to the LMI on quadratic optimal control:
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ATP + PA+Q PB + CT

BTP + C R

 ≥ 0 (2.1.5)

From the point of view of the modern control theory, these graphical and Riccati

equation methods are all analytic solutions that can be used to solve special forms of

LMIs.

In 1980’s, Nesterov and Nemirovskii developed interior-point methods. Then several

interior point algorithms for LMI problems have been implemented and tested, see

Nesterov et al. 1994, Nemirovski 2004 [48], [47]. Along with the development of

programming algorithm, these new development make LMIs a much more attractive

tool.

Therefore, after 1990’s various approaches have been proposed to obtain delay-

dependent stability conditions under the LMI approach, and LMI become popular and

has played an important role. Another reason which makes LMI conditions appeal-

ing is their frequent readiness to solve the corresponding synthesis problems once the

stability and/or other performance conditions have been established, especially when

state feedback is employed. The recent development on the LMI techniques in deriving

delay-dependent stability results for time-delay systems has been shown in the paper

Xu and Lam (2008) [72].

In this thesis, LMIs arise as functions of matrix variables rather than scalar valued

decision variables. As it is indicated later, LMI setting is popular since it came up,

because it can be solved in an efficient, flexible and reliable way. To author’s knowl-

edge, this thesis is the first research project to implement modern LMIs techniques to

insurance problem for P-R systems. This direction as we will see in the Chapter 8 has

the potential to be developed further. In the conclusion chapter, some ideas for further

research in insurance and finance are proposed.

2.2 Control Theory in Insurance

Control theory has originally emerged from engineering applications. For instance, the

military applications during and since World War II significantly boosted its growth and

popularity among engineers and mathematicians. Because many other systems have

been observed to have a mathematically corresponding structure, later control theory
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found many applications in other areas; like communication and networked control

systems, transportation, logistics, finance etc.

The development of control theory was initially based on a deterministic framework,

but soon it was enlarged to build on stochastic approach. Indeed, stochastic theory

is capable of explaining better why some ”rule-of-thumb” control rules used in prac-

tice had been so successfully compared with the results provided by the deterministic

framework. Nowadays, intensive theoretical research is carried out under the stochas-

tic framework, although the deterministic approach has not been forgotten at all, for

instance see Pantelous and Papageorgiou (2013) [51].

In spite of its popularity in many other areas, control theory has not belonged to the

standard toolbox of actuarial science. In Non-Life insurance world, control theory is a

fairly new area of research compared with the long history of actuarial mathematics.

Probably the first actuarial publications where the control theory has been involved

were the famous papers by De Finetti (1957) [22] and then Borch (1967) [8]. They

propose for the classical risk theory problem a control action based on a pre-defined

level of the surplus (accumulated) reserve, see Figure 2.1. Both of them suggest a

premium refund whenever the surplus exceeds a certain limiting level. Under this

arrangement, the premium for the tth year Pt is determined by the following equation:

Pt+1 = (1 + θ)E[claims] + 1(RΠ−Rt),

where 1 > θ > 0 is the loading factor; E [claims] is the expected claims of current year,

Rt is the reserve value at the end of the tth time period, ”RΠ ≥ 1” is the pre-defined

limiting (barrier) level of reserve and

1(RΠ−Rt) =


RΠ −Rt,when RΠ −Rt < 0

0, when RΠ −Rt > 0.

In De Finetti (1957) [22], a surplus process is modified by the introduction of a constant

dividend barrier. In previous research the surplus of the insurer is allowed to grow

infinite. However, in that paper, De Finetti tries to improve the classical ruin theory

framework by introducing a reflecting barrier for the surplus. When the surplus exceeds

the barrier, the excess is immediately distributed as a premium refund and the surplus

process restarts from the reflecting barrier, see Figure 2.1. He considers a discrete-time
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Figure 2.1: De Finetti’s approach to control of surplus.

model, in which the periodic gains of a company are +1 (with probability π, 1 > π > 1
2)

or −1 (with probability 1− π).

The optimisation goal of De Finetti is to maximise the expected total dividend

payments of the insurer before the ruin. According to the result in Gerber and Shiu

2004 [28], the ruin probability in his model is

(
1− π
π

)RΠ−1πd+n(1− π)m. (2.2.1)

d denotes the total dividends. The number of gains of +1 when the surplus at the

beginning of the period is less than barrier RΠ is now n, and m is now the number of

gains of −1.

In De Finetti model the insurance company has the option to pay out dividends of

its surplus to its beneficiaries up to the moment of ruin such that the expected sum of

the discounted paid out dividends from time zero until ruin is maximized. He proves

that if the surplus process evolves as a random walk, then an optimal way of paying

out dividends is according to a barrier strategy.

After De Finetti several control theoretical articles have appeared in actuarial pub-

lications. The models in these articles have employed both deterministic and stochas-

tic techniques and have mostly been linear. Actuarial works along this line include

Ryder (1977) [58], Cumpston (1978) [20], Bohman (1979) [5], Balzer and Benjamin

(1980, 1982) [2, 3], Martin-Löf (1983, 1994) [43, 44], Rantala (1986, 1988) [55, 56, 57],

Vandebroek-Dhaene (1990) [68], Zimbidis and Haberman (1993, 2001) [81, 82] , Hipp

(1998) [35], Möller (1998) [45] and Cairns (2000) [12]. Most of these focus on studying

the properties of a given control rule, though some also explore optimal solutions.
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Balzer and Benjamin (1980, 1982) [2, 3], Martin-Löf (1983, 1994) [43, 44] have tried

successfully to implement control theory for solving this interesting actuarial problem.

They propose a smooth control action for the determination of the premium which is

applied periodically and accordingly to the available information of the surplus process.

Thus, according to their research work, the proposed premium equation has finally

received the following form:

Pt+1 = (1 + θ)E[claims]− εRt−1. (2.2.2)

Moreover, Balzer and Benjamin (1980) [2] also discuss the effect of the delay on

the stability of the system and the optimal choice for the feedback factor ε when using

equation (2.2.2) with the surplus value with 1 year time delay.

Balzer and Benjamin (1982) [3] study further with 4 year time delay. In that paper,

a full extension of this kind of investigation is achieved by considering the delay factor

as a free parameter τ and by calculating the respective general conditions of stability

and optimality for the feedback factor ε. Their result show the system becomes unstable

when integer time-delay τ is great than 4. So, the premium equation (2.2.2) becomes,

Pt+1 = (1 + θ)E[claims]− εRt−τ . (2.2.3)

Vandebroek and Dhaene (1990) [68] prove that the premium equation (2.2.3) is the

optimal linear feedback controller for the premium pricing in the case that we require

to minimize the probability of ruin along with a smooth pattern for the development of

the premiums and reserves. For solving this problem, they use dynamic programming

techniques.

Rantala (1986, 1988) [55, 56] applies elements of control theory for a simultaneous

consideration and optimization of the premium and reserve fluctuation. He points out

that a suitable control of premiums can lead to a stable and realistic development of

the solvency margin.

Bonsdorff (1992) [6] investigates the solvency situation and the financial strength

of an insurer within a stochastic model. He points out that the solvency situation and

the financial strength of an insurer are affected by nearly all activities and decision-

making processes of the insurer such as premium rating, evaluation of the accumulated

reserve(surplus) of outstanding claims and investment strategy. It is also affected by
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external factors such as changes in the underwriting and investment markets, inflation

and international economic relations.

He presents the development of the financial situation of an insurer by the basic

equation:

U(t) = U(t− 1) +B(t) + I(t)−X(t)− E(t) (2.2.4)

where U(t) is solvency margin or surplus of a company,

B(t) is the premium income in year t,

I(t) is the investment income in year t,

X(t) is the total amount of claims in year t,

E(t) is the operational expense (in a wide sense, including, among other things, divi-

dends).

In Bonsdorff (1992) [6], the equation (2.2.4) provides a year-by-year transition for

the financial position. In the equation the premiums are earned premiums. Corre-

spondingly, claims are incurred claims. Investment income consists of cash yield and

change in value of assets. All the variables in the equation (2.2.4) are stochastic. The

time-delay factor is not considered in his paper.

Similarly with the previous modelling structure, Zimbidis and Haberman (2001)

[82] consider a discrete-time equation to describe the development of the accumulated

reserve process for an insurance system having constant time-delay and using an equa-

tion which evolve from equation (2.2.3) decision function for the determination of the

premium strategy.

Their approach says that the development of the accumulated reserve Rt, at the

end of each year, assuming also an accumulation factor 1 + r and r > 0 which is the

respective rate of the investment return of the surplus reserve, is given by

Rt+1 = (1 + r)Rt + e(Ĉt+1 − εRt−τ )− Ct+1, (2.2.5)

where e is the parameter for the administration expenses and the desired profit margin,

which can be expressed as (1− e) of the respective premium.

In their paper, the classical Root-Locus (see Shinners, 1964 [62]) method is used

for the investigation of the stability of the system and an appropriate feedback factor

ε is calculated using a specific premium decision function. Due to the limitation of
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their method, the analysis of the stability of a P-R process was based on time-invariant

parameters and constant delay factors without considering any type of uncertainty.

Recently, Pantelous and Papageorgiou (2013) [51], Pantelous and Yang (2014, 2015)

[52, 53] introduce time-varying delays and uncertainties in their P-R systems under

different frameworks. In their papers, the stability of the discrete-time P-R systems

with norm-bounded parameter uncertainties and time-varying delay are investigated

in a deterministic (Pantelous and Papageorgiou, 2013) [51] and stochastic framework

(Pantelous and Yang, 2014) [52], respectively. They propose H∞ criteria to be used for

the determination of the premium control rule. Most of these papers focus on studying

the properties of a given control rule, though some of them also explore feasible solutions

to a specific problem employing different optimality criteria. All papers are based on

discrete time approach.
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Chapter 3

Robust LMI stability,

stabilization and H∞ control for

Premium-Reserve systems with

uncertainties

3.1 Introduction

In section 2.2 we have introduced the history of P-R system development in actuarial

literature. The stability of P-R system with fixed-time delay is discussed by Zimbidis

and Haberman (2001) [82]. Although the result is extended in Pantelous and Papa-

georgiou (2013) [51], that P-R system is still restricted in deterministic framework.

In this chapter, we discuss explicit P-R systems with time-varying delay in stochastic

framework. This work extends significantly the recent results proposed by Pantelous

and Papageorgiou (2013) [51].

The result in this chapter is mainly based on Pantelous and Yang (2014) [52]. The

primary objective is to model the P-R system and provide a useful tool to analyze its

stability. This chapter is organized as follows: In order to model P-R system, some

key assumptions and preliminary concepts for the model in this section are presented

in section 3.2. Then section 3.3 shows how the system is modelled; This P-R process

system describes how the accumulated reserve is developing and how the premium

is calculated. The parameter uncertainties are assumed to be time-varying, norm-
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bounded and correlated. The delay is supposed to be time-varying and bounded as well.

Time-varying delay enable us to describe a P-R system with uncertain delay. In Chapter

5 and 6, mode-dependant delay which is another type of time delay is introduced.

Meanwhile, we concentrate on the P-R system with only risk-free investment option

available in this chapter. In section 3.4 and 3.5, the robust stability and stabilization

of the system are investigated under the assumption that the system’s disturbance

is equal to zero, closely following Pantelous and Papageorgiou (2013) [51] ideas. In

section 3.6, the system’s disturbance is not equal to zero. Our attention is focused

on the design of a state feedback controller so that the resulting closed-loop system is

robust stochastically stable with a particular disturbance attenuation level γ > 0 by

using results proposed by Xu et al. (2004) [75]. In section 3.5 and 3.6 respectively, two

interesting applications for a portfolio of three non-life insurance products illustrate

the main findings of this chapter. Moreover, we are assuming that dependency exists

among the different policies/products, as well as different uncertainties and a range of

time-delays. Section 3.7 concludes this chapter.

3.2 Assumptions

Here, the basic notation and assumptions for our model are described. Similarly as

in Pantelous and Papageorgiou (2013) [51] and Pantelous and Yang (2014) [52]. An

Insurance company which runs a portfolio of m General (Non-Life) policies (or products

lines) is considered, see for instance Booth et al. (1999) [7], Zaks et al. (2006) [77],

Pantelous et al. (2009) [50]. The insurer calculates a fair (and as much as possible a

competitive premium s/he can) annual gross premium covering the expected claims,

the respective administration expenses and the rational profit margin.

Assumption 3.1: We assume that there is a binding agreement between the insurer

and the insured indicating that all contracts will remain long term. This assumption

is strong but necessary in our model. It prevents withdrawal of the portfolio when

the premium needs to be increased due to the feedback controller effect when reserve is

negative. The relaxation of this assumption is considered in future research as elements

of the game theory will be taken into use. It may be possible to incorporate high penalty

for breaking contract in future research.

Assumption 3.2: Let P t = (P1,tP2,t · · ·Pm,t)T (where (·)T is the transpose vector)
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for t ∈ N be the vector of the premium paid in insurance lines 1, . . . ,m in one time

interval. Let Ct = (C1,tC2,t · · ·Cm,t)T for t ∈ N be the vector of the incurred claims

which assumed to follow a stochastic process.

In Pantelous and Papageorgiou (2013) [51], the attention for the incurred claims

has been restricted into the deterministic case. As an extension in Pantelous and Yang

(2014) [52], the incurred claims are assumed to follow a stochastic process.

Assumption 3.3: We denote by l2[Ω,Rm] the space of square-summable Rm-valued

vector functions on the probability space (Ω,F ,P), and we also denote by le2(N ;Rm)

the space ofm-dimensional nonanticipatory square-summable stochastic processes f(·) =

(f(t))t∈N on N with respect to a filtration (Ft)t∈N satisfying:

‖f‖2e2 = E{
∞∑
t=0

|f(t)|2} =

∞∑
t=0

E{|f(t)|2} <∞.

Here, we assume that Ct belongs to this general space, i.e. le2(N ;Rm) and is Ft−1

measurable for all t ∈ N. Meanwhile, Pt and Ct are adapted to the filtration Ft.

Assumption 3.4: As described in Zimbidis and Haberman (2001) [82], Pantelous and

Papageorgiou (2013) [51] and Pantelous and Yang (2014, 2015) [52, 53], the relationship

among the administration expenses, the relative operation costs, the desired profit

margin and corresponding premium can be expressed by the equation

Operation Costs + Profit Margin = (1− e)Pt

So, the above expression is valid for any year [t, t + 1). A typical feature of the op-

eration costs is that they can be estimated. For simplification, we assume that the

sum of operation costs and the desired profit is constant percentage of the respective

premium. Let us also recall that dividends have already been included in the concept

of the desired profits. We won’t consider dividends in great detail in this thesis.

Assumption 3.5: In the insurance industry, it is not realistic to assume a pre-

determined delay for reporting the full set of information of the total incurred claims to

the insurer, and consequently the accurate calculation of the reserves. This assumption

has been extensively discussed in Pantelous and Papageorgiou (2013) [51]. Taking into

account the ideas in Ackman et al. (1985) [1], it can be easily identify at least five sets

of significant factors:
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1. The event covered by the insurance policy may not occur at a single instant.

2. Delays may occur before a claimable event is reported to the insurer

3. It may not be possible to determine the magnitude of the claims even if the

insured event is already finished.

4. The legal liability of the insurer may not always be clear-cut, and there may be

considerable delays before the situation is clarified (possibly involving the court

issues).

5. There may be processing delays within the insurer’s administration departments.

Therefore, we consider a time-varying delay in this chapter, τt, which is upper and

lower bounded, i.e. τmin ≤ τt ≤ τmax with τmin, τmax ∈ N. So, considering a specific

time-delay interval, at the end of each year [t, t + 1], we have the exact information

up to the end of year t − τt. The upper and the lower bound for τt can be estimated

using past experience and statistical data. Moreover, the national and international

regulatory policy might be also applied for defining the upper bound of this interval.

Assumption 3.6: The portfolio of m individual insurance policies (or products) can

be either independent or dependent. The different products are dependent when there is

interaction among the different reserve accounts. If the individual insurance policies are

independent, the matrices J , E and the uncertain parameters ∆Et and ∆Jt should be

diagonal matrices. However, if dependence exists among the insurance policies we have

to use some weighted matrices J = [(rw)ij ] and E = [(ew)ij ] and uncertain parameter

∆J = [∆(rw)ij ] and ∆E = [∆(ew)ij ] for i, j = 1, 2, 3, ...m with
∑m

j=1wij = 1 for every

i = 1, 2...m

Assumption 3.7: The state of the insurer is described by one variable only, namely

reserve or risk capital. Similarly controller in premiums is the only control variable.
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3.3 Model formulation

3.3.1 The Reserve Process

Rt = (R1,tR2,t · · ·Rm,t)T is the vector of the accumulated reserves, where Ri,t is the

accumulated reserve of ith product at time t. The accumulated reserve Rt is defined by

Rt+1 = [J + ∆Jt]Rt(1 + vt) + eP t+1 − Ct+1, (3.3.1)

where J is the base investment return matrix and ∆Jt is the uncertain parameter,

Jt = J + ∆Jt. In this chapter, since we assume the accumulated reserve is invested in

risk-free assets, ∆Jt can be assumed to be zero in practice. Now, extending further the

existing literature, we assume that vt is a zero-mean real scalar process on a probability

space (Ω,F ,P) to model different types of financial uncertainties such as inflation,

taxation policy etc.

E{vt} = 0, E{v2
t } = σ. (3.3.2)

Moreover, we assume that the investment strategy is risk-free, and we are planning

to include also risky assets in a future work. Practically speaking, it is true that such

short term insurance products (relative to Non-Life insurance policies) are invested

predominately in standard bank accounts or/and in short-term ”secure” bonds (with

duration less than 6 months at the most).

Similar with J , the parameters E and Z are real constant base matrices. ∆Et

and ∆Zt are the respective parameter uncertainties. For the purpose of the modelling

process, J and E respectively could be a risk-free interest rate and a constant-base

return to the policyholders. Note that E + ∆Et should normally lay in the interval

[0, 1], because of restriction in feedback mechanism. Then, Z is a parameter of the

control input and e in (3.3.1) is a known real scalar parameter, see Assumption 3.4;

Finally, ∆Jt , ∆Et and ∆Zt are unknown matrices representing time-varying parameter

uncertainties, and they are assumed to be of the form:

[∆Jt − e∆Et − e∆Zt] = MFt[N1 N2 N3], (3.3.3)

M,N1, N2, N3 are known real constant matrices and Ft : N → Rs×j is an unknown
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time-varying matrix function satisfying

F Tt Ft ≤ I, ∀t ∈ N, (3.3.4)

∆Jt , ∆Et and ∆Zt are said to be admissible if both (3.3.3) and (3.3.4) hold.

’F Tt Ft ≤ I’ actually represents a convex set. Norm-bounded uncertainty corre-

sponds to a system which matrices range in the polytope of matrices. This means that

each parameter is only known to lie in a given fix polytope of matrices described by a

specific convex hull. In the norm bounded setting, parameter uncertainty is described

with range of parameter values. It means that each parameter ranges between upper

and lower bound values. Each parameter uncertainty is correlated through matrix M

and matrix function Ft defined by (3.3.3) and (3.3.4). This type of uncertainty mod-

elling is superior than other type of uncertain such us polytopic uncertainty. Because

norm-bounded uncertainty has a flexible structure such that it can easily incorporate

in system calculation.

3.3.2 The Premium Rating Rule

Pantelous and Papageorgiou (2013) have proposed a feedback mechanism for the pre-

mium rating rule to be

P t+1 = Ĉt+1 − [E + ∆Et]Rt−τ(t), (3.3.5)

where Ĉ is the ’claim estimator’, which is explained in more details in the next section.

E is a known real positive matrix and ∆Et is a parameter uncertainty, which vary

through time.

Compared with Pantelous and Papageorgiou (2013) [51] and Zimbidis and Haber-

man (2001) [82], see eq.(3.3.5), the stochastic parameter vt can be implemented as

well. Moreover, in order to be able to stabilize the P-R system, the controller Ut is

introduced, thus the formula describing the calculation of the premium is now given by

P t+1 = Ĉt+1 − {[E + ∆Et]Rt−τt − [Z + ∆Zt]Ut}(1 + v(t)), (3.3.6)

where U t ∈ Rm is the control input that has been added in the original system. How-

ever, for simplicity, without loss of generality, the state feedback controller is considered
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to be U t = KRt, where the matrix K should be determined. In practice, we can as-

sume Z is an identity matrix and ∆Z equals zero such that the controller is derived

directly. As it becomes clearer later in this chapter, the appropriate robust stabilizing

controllers for the P-R process are constructed by solving an appropriate LMI (convex

optimization) problem.

3.3.3 Claim’s Estimator

The claims have been incurred by the end of the accounting year. Since usually a

substantial part of the incurred claims is unknown when the balance sheet is compiled,

their total value has to be estimated. This estimate is for the claims incurred which

is subject to a considerable degree of errors. Meanwhile, the amount of claims in one

year would be cleared not until many years in the future, in some insurance lines or

cases even in one decade.

The premium Pt+1 for the (t + 1) year is calculated by claim estimator Ĉt+1. As

in Zimbidis and Haberman (2001) [82] Ĉt+1 is determined by the inflation-weighted

average of the most recent available claim experience of the f years [Ct−τt−f ,Ct−τt−f+1,

· · · ,Ct−τt ] and a feedback mechanism using the past reserve value of Rt−τ .

Ĉt+1 =
1

Me
[(1 + j)f+τtCt−τt−f + (1 + j)f+τt−1Ct−τt−f+1 + · · ·+ (1 + j)τtCt−τt ,

M =

f∑
k=0

(1 + j)f+τt−k.

where j is the inflation rate. An inaccurate claims estimation is misleading in many

ways and can have fatal consequences. For instance, an underestimation of the claims

incurred can result in unprofitable premium level. Underestimation of the claims also

leads to a higher probability of insolvency, which can delay corrective action by the

management. In this thesis, wt+1 is one of disturbance to system which is caused by

the error between estimated claim value and actual incurred value. It is not persistent

in infinite time horizon.

wt+1 = eĈt+1 − Ct+1 ∈ le2(N ;Rm),

where e has been explained in Assumption 3.4, Ct = (C1,tC2,t · · ·Cm,t)T for t ∈ N be
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the vector of the incurred claims which is assumed to follow a stochastic process.

3.3.4 P-R system

In this chapter, the P-R system is developed into a stochastic, discrete-time framework.

Theorem in Pantelous and Papageorgiou (2013) [51] is extended and, additionally,

the case that the system is affected by external disturbances wt+1 is also considered.

In other words, the actual incurred claims are not exactly the same with the claim

estimator, which makes significant difference from Pantelous and Papageorgiou (2013)

[51] research work. In their paper, the next period actual claim Ct+1 is assumed to be

exactly equal to proportion of respective claim estimator eĈt+1. In practice, a premium

which is sufficient enough to cover the expected claims and to keep stable the derived

reserves is always required. Consequently, the accumulated reserve process is defined

by

Θ1 :


Rt+1 = {[J +4Jt]Rt − e[E +4Et]Rt−τt}(1 + v(t)) + wt+1,

Rt = ϕ
t
for t ∈ [−τmax, 0],

(3.3.7)

where wt+1 = eĈt+1 − Ct+1 ∈ le2(N ;Rm). We denote the above system as Θ1. The

stochastic disturbance parameter v(t) is defined by eq. (3.3.2).

The P-R system Θ1 is the basic system without involving any state feedback con-

troller. In Section 3.4, the stability of Θ1 is investigated and a LMI criterion is devel-

oped. Furthermore, as it is visible later on, Θ1 is extended by introducing a system

feedback controller. The premium, P t+1, is given by the eq. (3.3.6), then the accumu-

lated reserve at time t+ 1 follows

Rt+1 = [J+∆Jt]Rt(1+v(t))−e[E+∆Et]Rt−τt(1+v(t))−e[Z+∆Zt]Ut(1+v(t))+wt+1.

Also, substituting the control input U t = KRt, our new closed loop system becomes

Rt+1 = {[J+∆Jt]−e[Z+∆Zt]K}Rt(1+v(t))−e[E+∆Et]Rt−τt(1+v(t))+wt+1, (3.3.8)

with initial conditions Rt = ϕt for t ∈ [−τmax, 0]. We denote the above system with
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feedback controller U t as Λ1.

Λ1 :


Rt+1 = {[J + ∆Jt]− e[Z + ∆Zt]K}Rt(1 + v(t))− e[E + ∆Et]Rt−τt(1 + v(t)) + wt+1,

Rt = ϕ
t
for t ∈ [−τmax, 0],

In Section 3.5, a method to construct a state feedback controller U t in order to

ensure the robust stability of the system is presented. Both theorems in 3.4 and 3.5 are

derived under the assumption that the disturbance input wt+1 = eĈt+1 − Ct+1 = 0,

which assume that the actual incurred claim cost in next period is equal to the value of

claim estimator. However, in section 3.6, we assume that the disturbance input exists,

which means that the wt+1 = eĈt+1−Ct+1 6= 0. A methodology of generating a desired

feedback controller is shown in that section.

3.4 Robust stability and Stabilization of the system

In Pantelous and Papageorgiou (2013) [51], the Ci,t was the expected incurred claims

of the ith product at the beginning of each period, and it has been considered to be

norm-bounded scalar. In this section, a similar criterion is derived but in a stochastic

framework. Thus, a sufficient condition for the robust stability of the system Θ1 is

given below with Theorem 3.1. However, before we proceed further, the following

known lemma and a necessary definition are needed.

Lemma 3.1. (Wang et al. 1992 [69]) Let A,B, C,D and F be real matrices of appro-

priate dimensions such that D > 0 and F TF ≤ I. Then, for any scalar µ > 0 such

that D − µBBT > 0,

(A+ BFC)TD(A+ BFC) ≤ AT (D − µBBT )−1A+
1

µ
CTC.

Lemma 3.2. (Schur complement) Let matrix X be

X =

A BT

B C

 ,
then X is negative definite if and only if C and A−BC−1BT are both negative definite.

X < 0⇐⇒ C < 0, A−BTC−1B < 0.

24



Definition 3.1. The uncertain stochastic discrete time-delay system Θ1 is said to be

robust stochastically stable if there exists a scalar c > 0 such that for all admissible

uncertainties

E[
∞∑
t=0

|Rt|2] ≤ c sup
−τmax≤t≤0

E[|ϕt|]2, (3.4.1)

when wt+1 = 0, where Rt denotes the premium reserve at time t.

Remark 3.1. This definition means that the total value of the accumulated reserve

process in the system is bounded by a finite number, i.e. for any ”admissible” input

the reaction of Rt is also bounded in the expected value sense.

To investigate the following robust stability of the system Θ1 with wt+1 = 0, we

introduce the following theorem.

Theorem 3.1. The uncertain discrete-time stochastic delay system Θ1 with wt+1 = 0

is robust stochastically stable if there exist matrices P > 0, Q > 0 and scalar µ1 > 0,

µ2 > 0 such that the following LMI holds:



(τmax − τmin + 1)e2Q− P + µ1N1
TN1 + σµ2N1

TN1 µ1N1
TN2 + σµ2N1

TN2

µ1N2
TN1 + σµ2N2

TN1 µ1N2
TN2 + σµ2N2

TN2 − e2Q

J −eE
√
σJ −e

√
σE

0 0

0 0

JT
√
σJT 0 0

−eET −e
√
σET 0 0

−P−1 0 M 0

0 −P−1 0 M

MT 0 −µ1I 0

0 MT 0 −µ2I


< 0. (3.4.2)

where the intermediate variables (N1, N2, N3 and σ) are defined in (3.3.2), (3.3.3) and

(3.3.4).
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Proof 3.1. First, we consider the system Θ1 with wt+1 = 0, which is

Rt+1 = {[J + ∆Jt]Rt − e[E + ∆Et]Rt−τt}(1 + v(t)). (3.4.3)

with the initial condition Rt = ϕt for t = −τmax,−τmax + 1, · · · , 0. We denote

matrices ∆A = [∆Jt − e∆Et] = MFt[N1 N2], A = [J − eE] and N = [N1 N2]

in this proof. As in Xu et al. (2004) [75] and Pantelous and Papageorgiou (2013)

[51], the following Lyapunov functional candidate for the above closed loop system is

considered.

Vt(Rt) = RTt PRt + V ∗t (Rt) + V ∗∗t (Rt), (3.4.4)

where

V ∗t (Rt) =
t−1∑

i=t−τt

RTi (e2Q)Ri, (3.4.5)

V ∗∗t (Rt) =

−τmin+1∑
j=−τmax+2

t−1∑
i=t+j−1

RTi (e2Q)Ri. (3.4.6)

Now, we should determine the difference between E[Vt+1(Rt+1)|Rt] and Vt(Rt), as this

result is used in the final step of our proof.

E[Vt+1(Rt+1)|Rt]− Vt(Rt) =

[RTt+1PRt+1 −RTt PRt] + [E[V ∗t+1(Rt+1)|Rt]− V ∗t (Rt)]

+[E[V ∗∗t+1(Rt+1)|Rt]− V ∗∗t (Rt)].

(3.4.7)
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Now, since the time-varying delay τmin ≤ τt ≤ τmax, denoting Q̃ = e2Q, we obtain

E[V ∗t+1(Rt+1)|Rt]− V ∗t (Rt) =
t∑

i=t+1−τt+1

RTi Q̃Ri −
t−1∑

i=t−τt

RTi Q̃Ri

= RTt Q̃Rt +
t−1∑

i=t+1−τt+1

RTi Q̃Ri

−
t−1∑

i=t+1−τt

RTi Q̃Ri −RTt−τtQ̃Rt−τt

≤ RTt Q̃Rt +

t−1∑
i=t+1−τt

RTi Q̃Ri +

t−τmin∑
i=t+1−τt+1

RTi Q̃Ri

−
t−1∑

i=t+1−τt

RTi Q̃Ri −RTt−τtQ̃Rt−τt

≤ RTt Q̃Rt −RTt−τtQ̃Rt−τt +

t−τ1∑
i=t+1−τmax

RTi Q̃Ri.

(3.4.8)

E[V ∗∗t+1(Rt+1)|Rt]− V ∗∗t (Rt) =

−τmin+1∑
j=−τmax+2

t∑
i=t+j

RTi Q̃Ri −
−τmin+1∑

j=−τmax+2

t−1∑
i=t+j−1

RTi Q̃Ri

= (τmax − τmin)RTt Q̃Rt −
t−τmin∑

t−τmax+1

RTi Q̃Ri. (3.4.9)

After transferring into a stochastic framework, finally we get

E[V ∗t+1(Rt)|Rt]− V ∗t (Rt) + E[V ∗∗t+1(Rt+1)|Rt]− V ∗∗t (Rt)

≤ (τmax − τmin + 1)RTt Q̃Rt −RTt−τtQ̃Rt−τt . (3.4.10)

The Schur complement formula implies

P−1 − µ−1
1 MMT > 0⇒ 1

µ1
MMT − P−1 < 0, (3.4.11)

and

P−1 − µ−1
2 MMT > 0⇒ 1

µ2
MMT − P−1 < 0. (3.4.12)
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Then the LMI becomese2τ̂Q− P 0

0 −e2Q

+ µ1N
TN +AT [

1

µ1
MMT − P−1]A

+ µ2σN
TN + σAT [

1

µ2
MMT − P−1]A <

−δI 0

0 0

 , (3.4.13)

where δ is a positive scalar and τ̂ = τmax − τmin + 1. Using Lemma 3.1, we can get:

µ1N
TN +AT [P−1 − 1

µ1
MMT ]A ≥ (A+MFN)TP (A+MFN). (3.4.14)

µ2N
TN +AT [P−1 − 1

µ2
MMT ]A ≥ (A+MFN)TP (A+MFN). (3.4.15)

In particular, from (3.4.13), (3.4.14) and (3.4.15), it follows that

e2τ̂Q− P 0

0 −e2Q

+ (A+MFN)TP (A+MFN)

+σ(A+MFN)TP (A+MFN) <

−δI 0

0 0

 . (3.4.16)

From the Lyapunov functional, we know that

Vt(Rt) = RTt PRt +
t−1∑

i=t−τt

RTi (e2Q)Ri +

−τmin+1∑
j=−τmax+2

t−1∑
i=t+j−1

RTi (e2Q)Ri.

Because τmin ≤ τt ≤ τmax and τmax − τmin > 1, we get

Vt(Rt) ≤ RTt PRt +

t−1∑
i=t−τmax

RTi (e2Q)Ri +

−τmin+1∑
j=−τmax+2

t−1∑
i=t−τmax

RTi (e2Q)Ri.

Then, we get λmax(P )|Rt|2 ≥ RTt PRt and λmax(Q)|Rt|2 ≥ RTt QRt. λmax( ) is the

maximum eigenvalue of respective matrix. Thus,

Vt(Rt) ≤ λmax(P )|Rt|2 + λmax(Q̃)τ̂

t−1∑
i=t−τmax

|Ri|2. (3.4.17)
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Let λ = max[λmax(P ), λmax(Q̃)]. Therefore

Vt(Rt) ≤ λ|Rt|2 + λτ̂
t−1∑

i=t−τmax

|Ri|2. (3.4.18)

With (3.4.7) and (3.4.10), it yields

E[Vt+1(Rt+1)|Rt]− Vt(Rt) ≤ [(J + ∆Jt)Rt − e(E + ∆Et)Rt−τt ]
TP [(J + ∆Jt)Rt

−e(E + ∆Et)Rt−τt ]−R
T
t PRt

+(τmax − τmin + 1)RTt Q̃Rt −RTt−τtQ̃Rt−τt

= ηT (t)

e2Qτ̂ − P 0

0 −e2Q


+(A+MFN)TP (A+MFN)

+σ(A+MFN)TP (A+MFN)
)
η(t), (3.4.19)

where η(t) = [RTt RTt−τt ]
T . Hence, from (3.4.19) and (3.4.16) it is easy to deduce that

E[Vt+1(Rt+1)|Rt]− Vt(Rt) < −δ|Rt|2. (3.4.20)

Now, summing up both sides of (3.4.20) from time 0 to time N

E[Vt+1(Rt+1)|Rt]− V0(R0) < −δ
N∑
i=0

|Rt|2. (3.4.21)

Then, after taking the expectation on both sides of the above equation, it follows that

E[Vt+1(Rt+1)]− E[V0(R0)] < −δE[

N∑
t=0

|Rt|2]. (3.4.22)

Thus,

E[

N∑
t=0

|Rt|2] ≤ 1

δ
E[V0(R0)]. (3.4.23)

Applying (3.4.18) at time t = 0 and rearranging, we have

V0(R0) ≤ λτ̂
0∑

i=−τmax

|Ri|2. (3.4.24)
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Therefore, after using mathematical transformation, the expectation becomes,

E[V0(R0)] ≤ λτ̂(τmax + 1) sup
−τmax≤t≤0

E[|ϕt|]2. (3.4.25)

Then, following calculations (3.4.23) and (3.4.25), we get

E[

N∑
t=0

|Rt|2 ≤ c sup
−τmax≤t≤0

E[|ϕt|]2, (3.4.26)

where c = 1
δλ[τ̂(τmax + 1)] > 0. From (3.4.26), we have

lim
N→∞

E[
N∑
t=0

|Rt|2 ≤ c sup
−τmax≤t≤0

E[|ϕt|]2.

This indicates that the uncertain discrete-time stochastic delay system Θ1 with wt+1 =

0 satisfies the Definition 1. Hence the Theorem 3.1 is derived. 2

Remark 3.2. Theorem 3.1 provides a sufficient condition for testing the robust stabil-

ity of an uncertain, stochastic, discrete-time, time-delay P-R system Θ1 with wt+1 = 0

constructed for a portfolio of different insurance products. Obviously, now the LMI cri-

terion is different compared with what it has been given in Pantelous and Papageorgiou

(2013) [51], as P-R process model in this chapter has been extended into a stochastic

framework.

Remark 3.3. The idea behind Lyapunov’s stability theory is as follows: assume there

exists a positive definite function with a unique minimum at the equilibrium. One can

think of such a function as a generalised description of the energy of the system. If we

perturb the state from its equilibrium, the energy will initially rise. If the energy of

the system constantly decreases along the solution of the autonomous system, it will

eventually bring the state back to the equilibrium. Such functions are called Lyapunov

function.

Lyapunov functions are of great importance for establishing stability of different

P-R systems in this thesis include the regime switched systems in Chapter 5 and 6.

We shall note some properties and methodology in proof 3.1 are used throughout this

thesis.
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3.5 Robust Stabilization of the system

So far we gave the sufficient condition for the robust stability of the P-R system Θ1 with

wt+1 = 0. In practice, it is possible that the P-R process can be unstable; however it

can be stabilized eventually with the appropriate choice of the premium strategy. Thus,

following the ideas by Xu et al. (2004) [75], in this part of the section, we consider a

control system in such a way that a feedback controller can be generated in order to

stabilize the original P-R process.

Consequently, the P-R system Λ1 with wt+1 = 0 is considered. The new system has

an additional input controller U t = KRt. In order to confirm that the new closed-loop

system is robust stochastically stable, the previous feedback controller is developed and

discussed.

When the feedback controller is determined, the system Λ1 with wt+1 = 0 is said

to be robust stochastically stabilizable with consideration of all admissible noises and

model uncertainties. Now, we can derive the following theorem:

Theorem 3.2. Consider the uncertain discrete stochastic time-delay system Λ1 with

wt+1 = 0. This P-R system is robust stochastically stabilizable if there exist matrices

X > 0, Q > 0, Y and scalar p1 > 0, p2 > 0 such that the following LMI holds,



−X 0 XJT − Y T eZT
√
σXJT −

√
σY T eZT

0 −Q −QeET −
√
σQeET

JX − eZY −eEQ p1MMT −X 0
√
σJX − e

√
σZY −e

√
σEQ 0 p2MMT −X

N1X +N3Y N2Q 0 0
√
σN1X +

√
σN3Y

√
σN2Q 0 0

τ̂X 0 0 0
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XNT
1 + Y TNT

3

√
σXNT

1 +
√
σY TNT

3 τ̂X

QNT
2

√
σQNT

2 0

0 0 0

0 0 0

−p1I 0 0

0 −p2I 0

0 0 −τ̂Q


< 0, (3.5.1)

where τ̂ = τmax − τmin + 1. Then, a robust stabilizing state feedback controller is given

by

U t = KRt = Y X−1Rt.

Remark 3.4. K is parametrised by Y X−1 so that we can implement Schur complement

to generate LMI 3.5.1. Matrix X and Y is the feasible solution of LMI 3.5.1.

Proof 3.2. Let X̂ = X−1, Q̂ = Q−1. Then, pre- and post-multiplying above LMI

(3.5.1) by

diag(X−1, Q−1, I , I , I , I ), we obtain



−X̂ 0 (J − eZY X−1)T (
√
σJ − e

√
σZY X−1)T

0 −Q̂ −eET −e
√
σET

J − eZY X−1 −eE pMMT − X̂−1 0
√
σJ − e

√
σZY X−1 −e

√
σE 0 p2MMT − X̂−1

N1 +N3Y X
−1 N2 0 0

√
σN1 +

√
σN3Y X

−1 √
σN2 0 0

τ̂I 0 0 0
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(N1 +N3Y X
−1)T (

√
σN1 +

√
σN3Y X

−1)T τ̂I

NT
2

√
σNT

2 0

0 0 0

0 0 0

−p1I 0 0

0 −p2I 0

0 0 −τ̂ Q̂−1


< 0. (3.5.2)

For convenience, we denote K = Y X−1, N1K = N1 +N5K and JK = J − eZK. Then,

the LMI which is given by eq. (3.5.1) is equal to



−X̂ 0 (JK)T (
√
σJK)T (N1K)T (

√
σN1K)T τ̂I

0 −Q̂ −eET −e
√
σET NT

2

√
σNT

2 0

JK −eE p1MMT − X̂−1 0 0 0 0
√
σJK −e

√
σE 0 p2MMT − X̂−1 0 0 0

N1K N2 0 0 −p1I 0 0
√
σN1K

√
σN2 0 0 0 −p2I 0

τ̂I 0 0 0 0 0 −τ̂ Q̂−1


< 0.

(3.5.3)

Then we pre- and post-multiply inequity (3.5.3) by diag(I , I , X̂, X̂, I , I ) and apply the

Schur complement formula, we get



τ̂ Q̂− X̂ + p̂1N1K
TN1K +

√
σp̂2N1K

TN1K p̂1N1K
TN2 +

√
σp̂2N1K

TN2

p̂1N2
TN1K +

√
σp̂2N2

TN1K p̂1N2
TN2 +

√
σp̂2N2

TN2 − Q̂

X̂JK X̂(−e)E
√
σX̂JK

√
σX̂(−e)E

0 0

0 0
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(JK)T X̂
√
σ(JK)T X̂ 0 0

−eET X̂ −e
√
σET X̂ 0 0

−X̂ 0 X̂M 0

0 −X̂ 0 X̂M

MT X̂ 0 −p̂1I 0

0 MT X̂ 0 −p̂2I


< 0. (3.5.4)

where p̂ = p−1. Now, from equation (3.5.4) and LMI (3.4.2), we can apply the controller

Ut into the system Λ1 with wt+1 = 0. Then we get the following closed-loop system:

Rt+1 = {{[J +4Jt]− e[Z +4Zt]K}Rt − e[E +4Et]Rt−τt}(1 + v(t)). (3.5.5)

Therefore, with Theorem 3.1, the LMI (3.5.4) indicates that the system Λ1 with wt+1 =

0 is robust stochastically stable. The proof is finished, because the new system is stable

with the controller which has to be designed using the LMI (3.5.1). 2

Remark 3.5. The results for the robust stability of the pricing process for a portfolio

of different insurance products are directly applicable, since the manager can use the

existing m-files of the LMI MatLab toolbox to check whether there exist such desirable

matrices and scalar such that the required LMI holds. A reasonable controller can

be derived by simple calculation U t = Y X−1Rt. However, before using the result,

the manager should estimate the specific range of different time-varying parameter

uncertainties and the time-delay.

Remark 3.6. The previous theorem provides a sufficient condition for the solvability

of the robust stabilization problem for uncertain discrete stochastic time-delay systems.

A desired state feedback controller can be obtained by solving the derived LMI (convex

optimization problem).

3.5.1 Numerical Application 1.1

In this sub-section, we present a numerical example to illustrate the effectiveness and

applicability of the main results of this section and to generate the corresponding input

controller.

The life insurance products are not quite suitable in this thesis, because life insur-

ance concerns a long term investment and requires predetermined periodic payments
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from policyholder. Coverage period for most non-life insurance policies is normally one

year.

Let’s consider an insurance company which runs a portfolio with 3 general insur-

ance products. We assume that the P-R process is given by an uncertain discrete-

time stochastic time-delay system with parameter uncertainties, see (3.3.6) and (3.3.8).

Thus, in this example, the input controller U t = Y X−1Rt is used.

For this portfolio, we have interaction (dependency) among the three products.

Our target is to trace the long term movement of the accumulated reserve. Since

we introduce the feedback controller, our long-term aim is to stabilize the movement

of the accumulated reserve. Practically speaking, this means that we prefer to see

accumulated reserve of the insurance company to move around fixed constant level (i.e.

not permitting over-shooting). Although it can be kept at lower levels, obviously the

company can still make profits as profit margin based on the Assumption 3.4 is allowed.

• First the value of the reserve accounts at t = 0 is given by the following matrix,

R0 =


R0(1)

R0(2)

R0(3)

 =


0

0

0

 ,

i.e. at time t = 0, we assume that the reserve account of each product is 0 pounds

respectively.

• For the time delay, we assume that the time-varying delay varies between τmin = 1

and τmin = 3 (in years). Therefore, we have accurate information upto −τmin =

−3. We set

R−3 =


R−3(1)

R−3(2)

R−3(3)

 = R−2 =


R−2(1)

R−2(2)

R−2(3)

 = R−1 =


R−1(1)

R−1(2)

R−1(3)

 =


27m

34m

16m

 .
• In our model, it is assumed that the insurer can invest the premium surplus into

risk-free investments (T-bills) to generate additional income. Since dependencies

exist, we have to use weights in the parameter matrix. We assume that the
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corresponding rate of income is given from the following matrix:

J =


1.030w11 1.02w1,2 1.02w1,3

1.05w2,1 1.040w2,2 1.02w2,3

1.03w3,1 1.02w3,2 1.02w3,3

 .

The value of J can be determined by return rate for each risk-free asset in market.

• We assume the weight ratios wn,m which demonstrates the solvency relation be-

tween each product have the following values:

w1,1 = 0.85, w1,2 = 0.1 and w1,3 = 0.05,

w2,1 = 0.2, w2,2 = 0.7 and w2,3 = 0.1,

w3,1 = 0.1, w3,2 = 0.2 and w3,3 = 0.7.

• The parameter E comes from the negative mechanism proposed by Balzer and

Benjamin (1980, 1982) [2, 3]. With the indication in Zimbidis and Haberman

(2001) [82] and Pantelous and Papageorgiou (2013) [51], the value of E could be

the constant base return rate of policyholder rather than issuer.

For the examples, we assume the value in the parameter matrix E

E =


0.005 ∗ w1,1 0.006 ∗ w1,2 0.006 ∗ w1,3

0.004 ∗ w2,1 0.005 ∗ w2,2 0.006 ∗ w2,3

0.004 ∗ w3,1 0.005 ∗ w3,2 0.006 ∗ w3,3

 ,

• For parameter e, we let e = 0.8, which means 1 − 0.8 = 0.2 (or 20%) of the

premium revenue is used to cover the administration and operating cost and give

company a reasonable profit margin.

• For parameter σ, we let σ = 0.09,
√
σ = 0.3.

• The time-varying unknown parameter uncertainty ∆Jt , ∆Et and ∆Zt have been

defined by equation

[∆Jt − e∆Et − e∆Zt] = MFt[N1 N2 N3],
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where

M =


0.02 0 0

0 0.03 0

0 0 0.02

 ,

N1 =


2 3 1

3 1 1

1 3 1

 , N2 =


2 2 1

2 1 2

2 1 3

 , N3 =


2 1 3

3 1 2

1 3 2

 .
In order to get the desirable positive definite matrices X, Q, and Y and parameters

p1 and p2 such that the LMI criterion is satisfied, we use the already known functions

of the Matlab LMI Control toolbox for solving this problem. Then, we can obtain the

feasible solution which is given by

X =


1.6024 −0.7453 −1.0951

−0.7453 1.1437 −0.1648

−1.0951 −0.1648 1.5895

× 107 with eigenvalue


0.0854

1.4445

2.8057

× 107,

Q =


2.1645 −1.1286 −1.2698

−1.1286 2.1266 −0.1774

−1.2698 −0.1774 1.5113

× 10−7 with eigenvalue


0.1389

2.0348

3.6286

× 108,

Y =


1.2217 −0.2364 −1.0212

−0.0777 0.4792 −0.3010

−0.8879 −0.2346 1.2454

× 107

and p1 = 7.6283× 108, p2 = 4.1725× 108.

In this case, feasible solution p1 and p2 are positive numbers, and matrices X and

Q are positive definite. Thus, the pre-defined conditions are satisfied. This means that

we can try to generate a proper input controller to stabilize the pricing-reserve system.

So the desired feedback controller is given by

U t =


1.3315 0.7112 0.3486

0.2918 0.6201 0.0760

−0.5708 −0.5287 0.3354

Rt. (3.5.6)

Using Theorem 3.2, by substituting the feedback controller U t into the P-R system
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Λ1 ((3.3.6) and (3.3.8)) with wt = 0, the accumulated reserve process can be stabilized.

As we can see in the Figure 3.1 and 3.2, the simulation lasts from t = 0 to t = 52 weeks

(i.e. one insurance year). The Figure 3.1 shows the movement of the accumulated

reserve for each dependent product. As we can see clearly the accumulated reserve for

each product converges to 0 after a certain time-period (no overshoots appear). This

indicates that the system always stays in a stable state with the impact of the input

controller on the P-R system Λ1 with wt = 0. In Figure 3.2, the movement of P-R

system Λ1 for each dependent product is provided. In this case, by introducing the

state feedback controller (3.5.6), we can manipulate the stability of the system Λ1 with

wt = 0.

In the next section we would like to consider a more complicated system with

disturbance wt 6= 0. Thus, the robust stochastic stability of the system is presented.
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Figure 3.1: The movement of the accumulated reserve for each dependent product.

Figure 3.2: The premium process for each dependent product.

3.6 Robust H∞ control

In section 3.4 and 3.5, the disturbance of the P-R system is assumed to be zero. For the

very first time according to the author’s knowledge, the disturbance is assumed to be

non-zero, i.e. wt 6= 0, in system Θ1 and Λ1. In order to be able to investigate such kinds

of systems, robust H∞ control is implemented, see Xu et al. (2004) [75]. Here, the

state feedback controller U t = KRt is determined such that the resulting closed-loop

system is robust stochastically stable with disturbance attenuation level γ which is a

given constant performance level. The disturbance attenuation γ is a parameter which

measures the accumulated impact of the outside disturbance on the system output. In
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the insurance industry, we can consider γ as a parameter which measures the influence

of the disturbance in the market for the accumulated reserve. Before we present the

necessary LMI theorem, we would like to introduce a very useful definition for what it

follows.

Definition 3.2. The uncertain stochastic discrete time-delay system system Θ1 is said

to be robust stochastically stable with disturbance attenuation level γ if it is robust

stable and (3.6.1) is satisfied,

||Lt||e2 ≤ γ||wt||e2 , (3.6.1)

for all nonzero wt ∈ le2(N);Rm), and is Ft−1 measurable for all t ∈ N, where γ > 0

is a given scalar and Lt = CRt is the control output. Details for the control output is

discussed in remark 5.1.

From Definition 3.2, one sees that such a P-R system maps finite-energy disturbance

wt into the corresponding finite energy output signal Lt of the considered P-R system.

3.6.1 Robust H∞ stability of system Θ1

First, we consider the system Θ1. It should be emphasized now that the wt+1 6= 0.

Rt+1 = {[J +4Jt]Rt − e[E +4Et]Rt−τ(t)}(1 + v(t)) + wt+1,

Rt = ϕt for t ∈ [−τmax, 0], (Θ1)

Theorem 3.3. Given a constant scalar γ > 0, the uncertain discrete stochastic time-

delay system Θ1 is robust stochastically stable with disturbance level γ if there exist

matrices P > 0, Q > 0 and scalar µ1 > 0, µ2 > 0 such that the following LMI holds:



(τmax − τmin + 1)e2Q− P + µ1N1
TN1 + σµ2N1

TN1 + CTC µ1N1
TN2 + σµ2N1

TN2

µ1N2
TN1 + σµ2N2

TN1 µ1N2
TN2 + σµ2N2

TN2 − e2Q

0 0

PJ −ePE
√
σPJ −e

√
σPE

0 0

0 0
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0 JTP
√
σJTP 0 0

0 −eETP −e
√
σETP 0 0

γ2I I 0 0 0

I −P 0 PM 0

0 0 −P 0 PM

0 MTP 0 −µ1I 0

0 0 MTP 0 −µ2I


< 0. (3.6.2)

Proof 3.3. From Definition 3.2, two conditions should be satisfied in order the uncer-

tain stochastic system to be robust stochastically stable with disturbance attenuation

level γ. One is that the system should be robust stochastically stable. The other

condition is given by (3.6.1)

||Lt||e2 ≤ γ||wt||e2 ,

for all wt ∈ le2(N);Rm), and is Ft−1 measurable for all t ∈ N. First, it is easy to

deduce LMI (3.6.2) into the following LMI



(τmax − τmin + 1)e2Q− P + µ1N1
TN1 + σµ2N1

TN1 µ1N1
TN2 + σµ2N1

TN2

µ1N2
TN1 + σµ2N2

TN1 µ1N2
TN2 + σµ2N2

TN2 − e2Q

J −eE
√
σJ −e

√
σE

0 0

0 0

JT
√
σJT 0 0

−eET −e
√
σET 0 0

−P−1 0 M 0

0 −P−1 0 M

MT 0 −µ1I 0

0 MT 0 −µ2I


< 0.
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According to Theorem 3.1, we can conclude that this system is robust stochastically

stable. With the next step, our aim is to show that ||Lt||e2 ≤ γ||wt||e2 holds for all

nonzero wt. To prove this, we define

TN = E{
N∑
t=0

(|Lt|2 − γ2|wt|2)}, (3.6.3)

where scalar N > 0 is an integer. The proof is similar to the derivation of proof in

Theorem 3.1, as we can show

TN = E{
N∑
t=0

(|Lt|2 + E[Vt+1(Rt+1)|Rt]− Vt(Rt)− γ2|wt|2)} − E[VN+1(RN+1)]

≤ E{
N∑
t=0

(|Lt|2 + E[Vt+1(Rt+1)|Rt]− Vt(Rt)− γ2|wt|2)}

≤ E{
N∑
t=0

ηT
t
φtηt}, (3.6.4)

where Vt(Rt) is defined by Lyapunov candidate function which has been shown in proof

of Theorem 3.1 and

η
t

= [RTt RTt−τt wTt ]T ,

φt = Ω̃ + [Ã+ ∆Ãt]
TP [Ã+ ∆Ãt] + σ[Ã+ ∆Ãt]

TP [Ã+ ∆Ãt]

with

Ω̃ =


e2τ̂Q− P + CTC 0 0

0 −e2Q 0

0 0 −γ2I

 , Ã = [J −eE I], ∆Ã = [∆J −e∆E 0].

The Schur complement formula implies eq. (3.4.11) and (3.4.12), and

Ω̃ + µ1N
TN − ÃT [

1

µ1
MMT − P−1]Ã+ σµ2N

TN − σÃT [
1

µ2
MMT − P−1]Ã < 0.

With the notation N = [N1 N2 0] and ∆Ã = [∆Jt −e∆Et 0] = MFt[N1 N2 0]
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and by using Lemma 3.1, we can get:

µ1N
TN + ÃT [P−1 − 1

µ1
MMT ]Ã ≥ (Ã+ ∆Ã)TP (Ã+ ∆Ã).

and

µ2N
TN + ÃT [P−1 − 1

µ2
MMT ]Ã ≥ (Ã+ ∆Ã)TP (Ã+ ∆Ã).

From these and Ω̃ + µ1N
TN − ÃT [ 1

µ1
MMT − P−1]Ã+ σµ2N

TN − σÃT [ 1
µ2
MMT −

P−1]Ã < 0, it is easy to see that φt < 0, which implies TN < 0.

Therefore, the inequality ||Lt||e2 ≤ γ||wt||e2 holds for all wt. This completes our proof,

as the robust H∞ control condition for the P-R system has been proven. 2

3.6.2 Feedback controller of system Λ1

Now, the system Λ1 is considered taking a state feedback controller such that the

resulting closed-loop system to be robust stochastically stabilizable with disturbance

attenuation level γ.

Rt+1 = {[J + ∆Jt]− e[Z + ∆Zt]K}Rt(1 + v(t))− e[E + ∆Et]Rt−τt(1 + v(t)) + wt+1,

Rt = ϕt for t ∈ [−τmax, 0], (Λ1)

Theorem 3.4. This system Λ1 is robust stochastically stabilizable with disturbance

attenuation γ if there exist matrices X > 0, Q > 0 and a scalar p1 > 0, p2 > 0 such

that the following matrix inequality holds:

−X 0 0 XJT − Y T eZT
√
σXJT −

√
σY T eZT

0 −Q 0 −QeET −
√
σQeET

0 0 −γ2I IT 0

JX − eZY −eEQ I p1MMT −X 0
√
σJX − e

√
σZY −e

√
σEQ 0 0 p2MMT −X

N1X +N3Y N2Q 0 0 0
√
σN1X +

√
σN3Y

√
σN2Q 0 0 0

τ̂X 0 0 0 0

CX 0 0 0 0
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XNT
1 + Y TNT

3

√
σXNT

1 +
√
σY TNT

3 τ̂X XCT

QNT
2

√
σQNT

2 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−p1I 0 0 0

0 −p2I 0 0

0 0 −τ̂Q 0

0 0 0 −I



< 0, (3.6.5)

where τ̂ = τmax − τmin + 1, I is identity matrix.

Proof 3.4. The proof of Theorem 3.4 is similar with the proof of Theorem 3.2, so it

is omitted.

3.6.3 Numerical Example 1.2

In this sub-section, we extend the example that has been presented previously to show

how the robust H∞ technique can be used in the P-R system process. Thus, the

portfolio we simulate is the same with the portfolio assumed in Example 1. However,

we should give values to some new parameters involved.

• For parameter γ, mathematical meaning has been shown in Definition 3.2. In

practice, we can regards γ as a parameter which measures how much the controller

can resist the impact caused by a big disturbance in market. In this example, we

set γ = 1.7 is the given value (but not optimal).

• For the parameter matrix of control output C, we assume C = [0.2 0.2 0.3].

In order to get the desirable positive definite matrices X, Q, and Y and parameters

p1 and p2 such that the LMI criteria is satisfied, we use the already known functions

of the Matlab LMI Control toolbox for solving this problem. Then, we can obtain the

solution which is given by

X =


1.5463 −1.1364 −0.2748

−1.1364 1.8209 −0.4556

−0.2748 −0.4556 0.4885

× 104 with eigenvalue


0.0006

1.0157

2.8395

× 104,
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Q =


1.0427 −0.7083 −0.4652

−0.7083 0.6984 0.1850

−0.4652 0.1850 0.3100

× 106 with eigenvalue


0.0107

0.2805

1.7598

× 106,

Y =


9.1061 −5.5834 −2.3602

−0.4507 6.8092 −4.2375

−3.3289 0.0003 2.2334

× 103

and p1 = 8.5682× 105 and p2 = 8.7581× 105 .

In this case, since all conditions are satisfied we can generate the the input controller

by U t = Y X−1Rt. Thus, the desired state feedback controller is given by

U t =


0.5147 −0.0442 −0.2349

0.6752 0.8783 0.3315

0.2399 0.3886 0.9545

Rt.

The results are provided for the time-period of t = 52 weeks in simulation, and the

Figures 3.3, 3.4 and 3.5 derive. Figure 3.3 and 3.5 respectively, show the movement of

the accumulated reserve for each dependent product and for whole portfolio. In Figure

3.4, the movement of the charged premium is presented. From those figures, we can

clearly see that the controlled reserve for each dependent product fluctuates around 0

after the first week. Obviously, the reason that the reserve is not exactly converge into 0,

see also example 1, is related to the fact that new random disturbances affect the system.

As we can also observe the state feedback controller U t help to reduce the impact of

the disturbance and eventually stabilizes the system quickly. In Figure 3.4, we can see

that the premium moves stochastically around a constant level (no drift is observed

for any of the available products). Moreover, the premium for each dependent product

stays positive for the whole duration of the simulations. Compared this simulation with

the example in 3.5.1, we can see the disturbance wt affect significantly the trajectory

of accumulated reserves. The accumulated reserves doesn’t converge to a fixed level

within finite period. However, the state feedback controller U t ensure the fluctuation

of the accumulated reserves are bounded with a certain level γ and stable.

In this case, by using the robust H∞ tool to generate the state feedback controller

U t, we can manipulate the stability of the system even though the system disturbance

wt 6= 0 .
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To calculated the most suitable feasible solution to complex LMI 3.6.5, we use the

feasp algorithm in LMI toolbox in Matlab, see Gahinet et al. (1995) [27]). With proper

setting, this toolbox will directly give us the feasible solution when it does exists feasible

solution.

3.7 Summary

In this chapter we propose a P-R system model for different insurance dependent prod-

ucts. This model considers a negative feedback mechanism for the reserves, it invests

the surplus in short-term risk-free assets, and it assumes time-varying, bounded delays

for the accumulated reserves into a stochastic, discrete-time framework considering also

a set of different norm-bounded parameter uncertainties for the coefficients involved in

the model. Thus, the new model extends significantly the one that has been proposed

recently by Pantelous and Papageorgiou (2013) [51]. In [51], the P-R system is deter-

ministic and don’t consider the impact of disturbance on P-R system.

Moreover, a control parameter is introduced into the system Λ1 and we present

some new ideas to generate an effective state feedback controller for the P-R system

stabilizing the unstable nominal system by using a LMI criterion. However, all the

derived results are achieved under the assumption that wt = 0. Finally, in section 3.6,

we assume the disturbance to be non-zero and for the very first time according to the

our knowledge, the robust H∞ control for the reserve process is investigated. With the

input controller, the premium is adjusted to reasonable level. Both robust stochastic

stability and a pre-specified disturbance attenuation level can be guaranteed for all

admissible uncertainties. Corresponding results have been illustrated by introducing

two numerical examples.
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Figure 3.3: The movement of the accumulated reserve for each dependent product.

Figure 3.4: The premium process for each dependent product.
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Figure 3.5: The movement of the accumulated reserve for the whole portfolio.
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Chapter 4

Predefined Portfolio Strategy

4.1 Introduction

Nowadays, under the Solvency II framework (and different other national regulations),

the stability and robustness of the model are parameters that have to be also considered

very seriously and thoughtfully. Thus, in the insurance market, in order for the actuary

to be able to price the gross (or market) premium accurately, s/he should have a very

good feeling about the financial environment where the various uncertainties appear

in. Moreover, the constraints that the insurance organization is facing from the market

and the stochastic nature of many other financial, social and economic variables and

risks that interfere in the model should also be considered. This major extension from

the classical literature has been developed and investigated very recently by Pantelous

and Yang (2014) [52]. Thus, a P-R system model for different insurance dependent

products was constructed into a stochastic, discrete-time framework. Their model

considers again a negative feedback mechanism for the reserves, it invests the whole

surplus in short-term risk-free assets, and it assumes time-varying, bounded delays for

the accumulated reserves considering also a set of different norm-bounded parameter

uncertainties for the coefficients involved in the model. Finally, the optimal premium

has derived using the ideas of H∞ control; see the results in Chapter 3 and Pantelous

and Yang (2014) [52].

So far, in previous chapter, it has been assumed that all the accumulated reserves

are invested in risk-free assets (T-Bills or bank accounts) which, obviously in practice

is partially true as (short-term) bonds (or other risky investments) can also be incor-
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porated and they can be used for decreasing the insurance premium∗. Additionally,

the investment strategy is considered to be pre-defined and unchanged for the whole

duration of the process, leaving as a future research plan the optimal asset allocation

problem. Therefore, in the present chapter, we investigate the robust H∞ stabiliza-

tion performance of the P-R system by considering available, however still pre-defined,

risky investment. Obviously, this work extends further the recent results proposed by

Pantelous and Yang (2014) [52]. Here, we are interested in investigating how the risky

investment might affect the robust H∞ stabilization performance and in what extend.

Again, it appears that we plan to solve different LMI criteria in order to be able to

derive a state-feedback controller for the P-R system such that the resulting closed-loop

system is robust stochastically stable for all admissible uncertainties.

The result in this chapter is mainly based on Pantelous and Yang (2015) [53]. This

chapter is organized as follows: In section 4.2.1, some key assumptions and preliminary

concepts for the model are presented. In section 4.2.2, we define the system which

considers one risky investment. In section 4.3 we design a state feedback controller such

that the resulting closed-loop system is robust stochastically stable with a particular

disturbance attenuation level γ > 0. In this chapter, the available investment is pre-

defined, and it contains a single risky and risk-free asset. In section 4.4, an interesting

numerical example helps to illustrate the impact of the risky investment in the system.

Section 4.5 concludes the chapter.

4.2 Model Description

4.2.1 Assumptions

In this chapter, the basic notations and assumptions for P-R system are same with

those appeared in section 3.2 of Chapter 3 (see also Pantelous and Yang, 2014 [52],

Pantelous and Yang, 2015 [53]), so unnecessary details are omitted.

4.2.2 Model Formulation

In the present chapter, the P-R system model which considers also a risky asset

investment is developed into a stochastic, discrete-time framework. Assume Rt =

∗Matt Wirz article, The Wall Street Journal: ”Why Falling Bond Yields Are Raising Your Auto
Insurance Premium?”: August 13, 2012
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(R1,tR2,t · · ·Rm,t)T be the vector expression of the accumulated reserves, where Ri,t is

the accumulated reserves of ith product at time t. Now, the accumulated reserve, Rt,

is given by

Rt+1 = m1[J1 + ∆J1t]Rt +m2[J2 + ∆J2t]Rt + eP t+1 − Ct+1 +m2[J3 + ∆J3t]Rtvt,

Same with that in Chapter 3, the trajectory of premium is formulated in this chapter

as follows:

P t+1 = Ĉt+1 − [E + ∆Et]Rt−τt − [Z + ∆Zt]U t, (4.2.1)

U t ∈ Rm is the control input. From the above two equations, we can get

Rt+1 = m1[J1 + ∆J1t]Rt +m2[J2 + ∆J2t]Rt + e{Ĉn+1 − [E + ∆Et]Rt−τt

−[Z + ∆Zt]U t} − Ct+1 +m2[J3 + ∆J3t]Rtvt

= {m1[J1 + ∆J1t] +m2[J2 + ∆J2t]}Rt − e[E + ∆Et]Rt−τt − e[Z + ∆Zt]U t

+eĈn+1 − Ct+1 +m2[J3 + ∆J3t]Rtvt

= [J
′
+ ∆J

′
]Rt − e[E + ∆Et]Rt−τt − e[Z + ∆Zt]U t + wt+1 +m2[J3 + ∆J3t]Rtvt,

(4.2.2)

where wt+1 = eĈt+1 − Ct+1, J1t = J1 + ∆J1t, J2t = J2 + ∆J2t, J3t = J3 + ∆J3t,

J
′

= m1J1 + m2J2, ∆J
′
t = m1∆J1t + m2∆J2t. J1 and J2 are the base investment

return matrices for the risk-free and risky asset, accordingly. J3 is the matrix which

represents the volatility of the random process for the risky asset return. J3 could

be estimated by historic data. ∆J1t, ∆J2t and ∆J3t are the corresponding parameter

uncertainties. Normally J2t > J1t, since insurer demand extra return in order to hold

a volatile investment as the classical mean-variance model indicated.

Moreover, {vt} is a zero-mean real scalar process on a probability space (Ω,F ,P).

Similar with Chapter 3, it is supposed that

E(vt) = 0, E(v2
t ) = 1. (4.2.3)

Now, we assume that proportion of the investment of the reserve is split into risk-

free and risky asset. Let m1 be the weight of risk-free investment, and risky investment

account for m2 of total accumulated reserve. Thus, m1 + m2 = 1. m1 and m2 are
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predefined fixed weight at current stage. Since we consider the risky investment, we

assume that the return of risky investment follows stochastic process {vt}. Ĉ is the

’claim estimator’ described in Chapter 3 and the calculation has been also discussed. E

is a known real positive matrix and ∆Et is a parameter uncertainty, which can be varied

with time. Similarly, in this chapter, Z is also a known real constant parameter matrix,

and ∆Zt is the respective parameter uncertainty. In practice, E could be considered as

a constant-base return to the policyholders. Normally, we can assume Z is an identity

matrix and ∆Z equals zero such that the controller is derived directly. e in eq. (4.2.2)

is a known real scalar parameter; ∆J
′
, ∆Et and ∆Zt, ∆J3t are unknown matrices

representing time-varying parameter uncertainties, and are assumed to be form of

[∆J
′
t − e∆Et − e∆Zt m2∆J3t] = MFt[N1 N2 N3 N4], (4.2.4)

M,N1, N2, N3, N4 are known real constant matrices and Ft(·) : N→ Rs×j is an unknown

time-varying matrix function satisfying

F Tt Ft ≤ I, ∀t ∈ N, (4.2.5)

∆J
′
t , ∆Et, ∆Zt and ∆J3t are said to be admissible if both eq.(4.2.4) and eq.(4.2.5)

hold.

According to eq.(4.2.2), we define the basic system without controller as

Rt+1 = m1[J1 + ∆J1t]Rt +m2[J2 + ∆J2t]Rt + e{Ĉt+1 − [E + ∆Et]Rt−τt}

−Ct+1 +m2[J3 + ∆J3t]Rtvt

= {m1[J1 + ∆J1t] +m2[J2 + ∆J2t]}Rt − e[E + ∆Et]Rt−τt

+eĈt+1 − Ct+1 +m2[J3 + ∆J3t]Rtvt

= [J
′
+ ∆J

′
]Rt − e[E + ∆Et]Rt−τt + wt+1 +m2[J3 + ∆J3t]Rtvt.

(4.2.6)

The state feedback controller is calculated by U t = KRt, where K is a matrix to be

determined. An appropriate robust stabilizing controller U t for a specific P-R system

can be constructed by solving the LMI criteria in this chapter. The initial condition is
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defined by

Rt = ϕt for t ∈ [−τmax, 0]. (4.2.7)

ϕt is deterministic for a P-R system. We denote system eq. (4.2.6) without con-

troller element and eq. (4.2.7) as Θ2 and denote system eq. (4.2.2) and eq. (4.2.7) as

Λ2. The stochastic disturbance parameter v(t) is defined by eq. (4.2.3).

(open-loop system)

Θ2 :


Rt+1 = [J

′
+ ∆J

′
]Rt − e[E + ∆Et]Rt−τt + wt+1 +m2[J3 + ∆J3t]Rtvt

Rt = ϕt for t ∈ [−τmax, 0].

(closed-loop system)

Λ2 :


Rt+1 = [J

′
+ ∆J

′
]Rt − e[E + ∆Et]Rt−τt − e[Z + ∆Zt]Ut + wt+1 +m2[J3 + ∆J3t]Rtvt

Rt = ϕt for t ∈ [−τmax, 0].

4.3 Robust H∞ control

In this section, the robust H∞ control is used to investigate the stability of systems

Θ2 and Λ2. We extend the previous research by considering the presence of a risky in-

vestment. Here, we can determine a state feedback controller in the form of U t = KRt

such that the resulting closed-loop system is robust stochastically stable with distur-

bance attenuation level γ which is a given constant performance level. The disturbance

attenuation γ is a parameter which measure the accumulated impact of the outside

disturbance on the system output. In the insurance industry, we can consider γ as a

parameter which measures the influence of the disturbance in the market for the ac-

cumulated reserve, see Pantelous and Yang (2014) [52]. Because insurer always wants

to minimize the impact of unexpected events and disturbance, we desire a small γ in

P-R system. Before we present the necessary LMI theorem, we would like to introduce

a very useful definition. The following definition has same mathematical expression in

Definition 3.2, but P-R system consider a risky investment in this chapter.

Definition 4.1. The uncertain stochastic discrete time-delay system system Θ2 is said

to be robust stochastically stable with disturbance attenuation level γ if it is robust
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stable and the (4.3.1) is satisfied,

||Lt||e2 ≤ γ||wt||e2 , (4.3.1)

for all nonzero wt ∈ le2(N ;Rm), and is Ft−1 measurable for all t ∈ N, where γ > 0 is a

given scalar and Lt = CRt is the control output. Matrix C is a known constant matrix.

4.3.1 Robust H∞ stability of system Θ2

First, we consider the system Θ2. It should be emphasized that the wt+1 6= 0.

Theorem 4.1. Given a constant scalar γ > 0, the uncertain discrete stochastic time-

delay system Θ2 is robust stochastically stable with disturbance level γ if there exist

matrices P > 0, Q > 0 and scalar µ1 > 0, µ2 > 0 such that the following LMI holds:



e2τ̂Q− P + µ1N1
TN1 + µ2N4

TN4 + CTC µ1N1
TN2 0

µ1N2
TN1 µ1N2

TN2 − e2Q 0

0 0 −γ2I

PJ
′ −ePE I

m2PJ3 0 0

0 0 0

0 0 0

J
′TP m2J

T
3 P 0 0

−eETP 0 0 0

I 0 0 0

−P 0 PM 0

0 −P 0 PM

MTP 0 −µ1I 0

0 MTP 0 −µ2I


< 0. (4.3.2)

Proof 4.1. The proof is similar with that of Theorem 3.3 in Chapter 3, so unnecessary

details are omitted. From Definition 3.1, two conditions should be satisfied in order

the uncertain stochastic system to be robust stochastically stable with disturbance
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attenuation level γ. One is that the system should be robust stochastically stable. The

other condition is given by (4.3.1) for all wt ∈ le2(N ;Rm), and is Ft−1 measurable for

all t ∈ N. First, it is easy to transform LMI (4.3.2) into the following LMI



e2τ̂Q− P + µ1N1
TN1 + µ2N4

TN4 µ1N1
TN2 J ′

T
m2J

T
3 0 0

µ1N2
TN1 µ1N2

TN2 − e2Q −eET 0 0 0

J
′ −eE −P−1 0 M 0

m2J3 0 0 −P−1 0 M

0 0 MT 0 −µ1I 0

0 0 0 MT 0 −µ2I


< 0.

According to Theorem 3.1 in Chapter 3, we can conclude that this system is robust

stochastically stable. With the next step, our aim is to show that ||Lt||e2 ≤ γ||wt||e2
holds for all nonzero wt. To prove this, we can follow the steps in Chapter 4 based on

TN = E{
N∑
t=0

(|Lt|2 − γ2|wt|2)}, (4.3.3)

where scalar N > 0 is an integer. By using results from the proof of Theorem 3.1 in

Chapter 3, we can get

TN ≤ E{
N∑
t=0

ηT
t
φ
t
η
t
}, (4.3.4)

where Vt(Rt) which is defined by Lyapunov candidate function, η
t

and φt have been

defined in the way as in section 3.6. By using the Schur complement formula and

Lemma 3.1, it can be proved that φt < 0, which implies TN < 0. Therefore, the

inequality ||Lt||e2 ≤ γ||wt||e2 holds for all wt. This completes our proof, as the robust

H∞ control condition for the P-R system with risky asset has been proven. 2

4.3.2 Robust feedback controller of system Λ2

Now, the system Λ2 is considered taking into account a state feedback controller such

that the resulting closed-loop system to be robust stochastically stabilizable with dis-

turbance attenuation level γ.

Theorem 4.2. This system Λ2 is robust stochastically stabilizable with disturbance

attenuation γ, if there exist matrices X > 0, Q > 0 and a scalar p1 > 0, p2 > 0 such as

the following matrix inequality holds :
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

−X 0 0 XJ
′T − Y T eZT m2XJ

T
3

0 −Q 0 −QeET 0

0 0 −γ2I I 0

J
′
X − eZY −eEQ I p1MMT −X 0

m2J3X 0 0 0 p2MMT −X

N1X +N3Y N2Q 0 0 0

N4X 0 0 0 0

τ̂X 0 0 0 0

CX 0 0 0 0

XNT
1 + Y TNT

3 XNT
4 τ̂X XCT

QNT
2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

−p1I 0 0 0

0 −p2I 0 0

0 0 −τ̂Q 0

0 0 0 −I



< 0, (4.3.5)

where τ̂ = τmax − τmin + 1, I is identity matrix

Proof 4.2. Since the proof process is similar to Theorem 3.2 in Chapter 3, therefore we

omit it here. 2

4.4 Numerical Application 2

In this section we conduct the numerical test of the theorems proposed in the previous

section. We assume that the investment management team of the General (Non-Life)

Insurance company intends to invest the accumulated reserves to a single risk-free and

risky asset. Data from the Shanghai Stock Exchange market are used for the risky

asset in our application. The weight of risk-free investment is m1, and the weight of
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risky investment is m2. We conduct 11 cases to simulate the effect of the different

combinations of m1 and m2 into our closed-loop P-R system.

In the same way with Chapter 3, let us consider an insurance company which

runs 3 products. We assume that the P-R system is given by an uncertain discrete-

time stochastic time-delay system with parameter uncertainties, see Λ2. Thus, in this

example, the input controller U t = Y X−1Rt is used.

For this portfolio, we have interaction (dependency) among the three products.

Our target is to trace the long term movement of the accumulated reserve. Since

we introduce the feedback controller, our long-term aim is to stabilize the movement

of the accumulated reserve. Practically speaking, it means that we prefer to see the

accumulated reserve Rt of the insurance company to move around a fixed level (i.e.

not permitting over-shooting). Although it can be kept at lower levels, obviously the

company can still make profits as profit margin based on the Assumption 3.4 is allowed.

• First the value of the reserve accounts at t = 0 is given by the following matrix,

R0 =


R0(1)

R0(2)

R0(3)

 =


0

0

0

 ,

i.e. at time t = 0, we assume that the reserve account of each product is 0 pounds

respectively.

• For the time delay, we assume that the time-varying delay varies between τmin = 1

and τmax = 3 (in years). Therefore, we have accurate information upto −τmax =

−3. We set

R−3 =


R−3(1)

R−3(2)

R−3(3)

 = R−2 =


R−2(1)

R−2(2)

R−2(3)

 = R−1 =


R−1(1)

R−1(2)

R−1(3)

 =


0

0

0

 .
• In our model, it is assumed that the insurer can invest the premium surplus

into risk-free investment (T-bills) and risky investment (liquid stock) to generate

additional income. Since dependencies exist, we have to use weights in the pa-

rameter matrix. We assume that the corresponding rate of income is given from
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the following matrix:

J1 =


1.021 ∗ w1,1 1.021 ∗ w1,2 1.021 ∗ w1,3

1.021 ∗ w2,1 1.021 ∗ w2,2 1.021 ∗ w2,3

1.021vw3,1 1.021 ∗ w3,2 1.021 ∗ w3,3

 ,

J2 =


1.039 ∗ w1,1 1.039 ∗ w1,2 1.039 ∗ w1,3

1.039 ∗ w2,1 1.039 ∗ w2,2 1.039 ∗ w2,3

1.039 ∗ w3,1 1.039 ∗ w3,2 1.039 ∗ w3,3

 .
• For parameter J3, we collect 280 daily data from 1 January 2013 to 7 March 2014

to calculate the historic volatility.

We let J3 =


0.245 ∗ w1,1 0.245 ∗ w1,2 0.245 ∗ w1,3

0.245 ∗ w2,1 0.245 ∗ w2,2 0.245 ∗ w2,3

0.245 ∗ w3,1 0.245 ∗ w3,2 0.245 ∗ w3,3

 .
• The weight ratios wn,m which demonstrates the solvency relation between each

product have the following values:

w1,1 = 0.86, w1,2 = 0.07 and w1,3 = 0.07,

w2,1 = 0.10, w2,2 = 0.87 and w2,3 = 0.03,

w3,1 = 0.08, w3,2 = 0.09 and w3,3 = 0.83.

• The parameter E comes from the negative mechanism proposed by Balzer and

Benjamin (1980, 1982) [2, 3]. With the indication in Pantelous and Yang (2014)

[52], the value of E could be the constant base return rate of policyholder rather

than issuer.

For the examples, we assume the value in the parameter matrix E

E =


0.013 ∗ w1,1 0.013 ∗ w1,2 0.013 ∗ w1,3

0.013 ∗ w2,1 0.015 ∗ w2,2 0.011 ∗ w2,3

0.013 ∗ w3,1 0.013 ∗ w3,2 0.016 ∗ w3,3

 ,

• For parameter e, we let e = 0.8, which means 1 − 0.8 = 0.2 (or 20%) of the

premium revenue is used to cover the administration and operating cost and give

company a reasonable profit margin.
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• The time-varying unknown parameter uncertainty ∆J
′
t , ∆Et, ∆Zt and ∆J3t have

been defined by equation

[∆J
′
t − e∆Et − e∆Zt m2∆J3t] = MFt[N1 N2 N3 N4],

where

M =


2 0 0

0 3 0

0 0 2

 ,

N1 =


0.008 0.002 0.002

0.002 0.008 0.002

0.001 0.003 0.006

 , N2 =


−0.01 −0.05 −0.03

−0.05 −0.01 −0.05

−0.05 −0.02 −0.01

 ,

N3 =


0.3 0.1 0.1

0.1 0.3 0.1

0.1 0.1 0.3

 , N4 =


0.003 0.001 0.002

0.002 0.008 0.002

0.001 0.003 0.006

 .

• Feedback parameter Z =


0.5 0 0

0 0.5 0

0 0 0.5

 ,

• Control output parameter C =


1 0 0

0 1 0

0 0 1

 .
For different proportions of m1,m2, we can define different investment strategies.

Thus, here (see Table 4.1), the following portfolio allocations are considered:

Case 1 2 3 4 5 6 7 8 9 10 11

m1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
m2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Table 4.1: Different portfolio allocations: We start from (m1 = 100%,m2 = 0%) and
we end with (m1 = 0%,m2 = 100%)
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In order to get the desirable feedback controller for each situation, we use the

functions of the Matlab LMI Control toolbox for solving this problem such that the

feasible positive definite matrices X, Q, and Y and parameters p1 and p2 is calculated.

The results for the feedback controllers are as follows:

• When m1 = 1,m2 = 0,

U t = KRt = Y X−1Rt


0.7955 0.2466 0.2787

−0.2287 0.1545 −0.3305

0.1233 0.1393 0.6138

Rt. (4.4.1)

• When m1 = 0.5,m2 = 0.5,

U t = KRt = Y X−1Rt


0.8325 0.2876 0.3233

−0.2325 0.0698 −0.3317

0.1873 0.2008 0.6163

Rt. (4.4.2)

• When m1 = 0,m2 = 1,

U t = KRt = Y X−1Rt


0.8285 0.2969 0.3130

−0.3198 0.0570 −0.3362

0.1736 0.1856 0.6172

Rt. (4.4.3)

As we can see in figures 4.1-4.6, the simulation lasts from t = 0 to t = 52 time

periods. We can assume time period is one year. Figures 4.1 and 4.2 show the movement

of the premium and accumulated reserve process for each product respectively, for the

case 6, i.e. when equal proportion to risk-free and risky asset (m1 = m2 = 50%) exists.

In figures 4.3 and 4.4, respectively, a comparison for the premium and the accumulated

reserve for the 2nd product for three distinguished cases is provided. Initially, it is

assumed that no risky asset is present (Case 1), then equal proportion to risk-free and

risky asset is provided (Case 2) and, finally, no risk-free investment is given (Case 3).

As it can be seen, there is distinction for both premium and reserve processes, and

the investment strategy can affect the decision-making process of the managerial team.

With the figures 4.5 and 4.6, the total premium and corresponding accumulated reserve

for the same cases as with figure 4.3 and 4.4 are provided. Figure 4.7 demonstrates the
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disturbance level wt for product 2 in each period. For the first 20 time periods, the

disturbance level is much higher than last 32 periods.

Moreover, we can observe from figure 4.7 that in the period when the absolute value

of the disturbance wt (which measures the difference between estimated and actual

claims occurred) is bigger, the premium for the case 11 (i.e. when only investment in

risky asset exist) tends to be lower, for all the products, and it fluctuates more heavily

than in any other case. Additionally, in our numerical example, when the disturbance

level is lower, the premium is almost equal due to the effect of the feedback controller

for each of those cases. The results are really very interesting, and particularly, with

consideration of uncertainties, for higher expectation from the risky assets the premium

can be lower making the company more competitive, increasing possibly its volume of

business.

4.5 Summary

In this chapter, the P-R system for a general insurance product model is modified to

incorporate the risky investment so that P-R process could be stabilized using robust

H∞ control. First, we have included the risky-asset in the original system which is

defined in Chapter 3. This extends the research in Chapter 3 since the accumulated

reserves (surplus) only allows to invest in risk-free investment in Chapter 3. The robust

H∞ stability and the stabilization problems of the new system have been investigated.

System controller could be generated by LMI in section 4.3. In section 4.3, a numerical

result on the model was conducted by using Matlab and LMI package. It shows the

impact of available risky investment on premium and accumulated reserve process. Un-

der some assumptions, the sensitivity of the risky investment weight could be analyzed

in the simulation.

In future research work, we may assume the investment plan is not predefined and

we design an optimal investment plan for the system under uncertainty. We could also

investigate this topic by assuming there exists n risk-free andm risky assets. And weight

m1, m2 may becomes controllable variables such that we could analyse the optimal mix

between weights m1, m2. We may introduce monte-carlo simulation to analyse possible

consequence of optimal weight. Moreover, it will be interested to extend this topic in

order to incorporate elements of the robust guaranteed performance control.
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Figure 4.1: The premium for the three products for the case 6: (m1 = 50%,m2 = 50%).

Figure 4.2: The accumulated reserve for the three products for the case 6: (m1 =
50%,m2 = 50%).

Figure 4.3: The premium for the product 2 for the case 1: (m1 = 100%,m2 = 0%), 6:
(m1 = 50%,m2 = 50%) and 11: (m1 = 0%,m2 = 100%).
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Figure 4.4: The accumulated reserve for the product 2 for the case 1: (m1 = 100%,m2 =
0%), 6: (m1 = 50%,m2 = 50%) and 11: (m1 = 0%,m2 = 100%).

Figure 4.5: The total premium for the case 1: (m1 = 100%,m2 = 0%), 6: (m1 =
50%,m2 = 50%) and 11: (m1 = 0%,m2 = 100%).
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Figure 4.6: The total reserve for the case 1: (m1 = 100%,m2 = 0%), 6: (m1 =
50%,m2 = 50%) and 11: (m1 = 0%,m2 = 100%).

Figure 4.7: Disturbance level wt for the product 2 for all the cases: from t = 0 to
t = 52.
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Chapter 5

Robust stability, stabilization and

H∞ control for markovian regime

switching P-R systems

5.1 Introduction

In Chapter 3, we have discussed the robust stability, stabilization and H∞ control for

the premium pricing process, the medium- and long-term stability in the reserve policy

under uncertainty and presence of disturbances. During the last two decades, appli-

cations of Markovian regime switching models in finance and macroeconomics have

received a significant attention among researchers and particularly, market practition-

ers. However, so far relatively little research has been done in the insurance literature.

This chapter is an attempt to consider how a linear Markovian regime switching system

in discrete-time could be used to model the medium- and long- term reserves and the

premiums (Known as P-R system) of an insurer. Some recently developed techniques

from linear robust control theory are applied to explore the stability, the stabilization

and the robust H∞-control of a P-R system and the potential effects from the abrupt

structural changes in the economic fundamentals as well as the insurer’s strategy over

a finite time period.
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5.1.1 Regime Switching Systems

In the insurance industry, the interest in time-varying parameter models has been in-

creased in the last decades. The Solvency II framework and the development of some

national regulations, have increased the interest in the stability and robustness of the

models used to describe insurers’ behaviour. One example of that is Pantelous and

Papageorgiou (2013) [51], Pantelous and Yang (2014, 2015) [52, 53], which use the

recent claim experience and a feedback mechanism based on the surplus value to con-

trol the premium level. The main results in those papers are shown in Chapter 3 and

4. But all these models assume only one standard regime for the P-R system. In fi-

nancial economics, it is indicated that statistical relationships among variables in many

macroeconomic/finance models may be inconsistent. Thus, we can model and even pos-

sibly predict such shock events in many different ways, since it might contain dramatic

changes in the system’s behaviour. The abrupt effect on model is mostly associated

with events like financial or economic crises or with significant changes in government

policies. For the insurance company and its stakeholders, in practice, different strategies

should be implemented under different economic environments. Therefore, an ”ideal”

model of the P-R process should be able to take into account this significant factor.

One possible technique, widely used in financial economics, is so called regime switching

models. In these models the studied processes are assumed to have several ”regimes”

with their own regime specific parameters and rules for regime switching.

5.1.2 Markovian Regime Switching Systems

Let us start first with a brief analysis of the basic concepts. First, for dynamical systems,

various criteria have been developed to prove their stability; the famous Lyapunov

method is the most general one. Thus, the way to establish Lyapunov stability for

dynamical systems is by means of Lyapunov functions. Moreover, in feedback control

(called also closed loop control), the system output is measured and compared with

the desired value; the system continually attempts to reduce the error between the two

values. The most important property of the feedback control is that it always compares

and adjusts the actual status in order to arrive at the target status. Therefore, the

feedback is usually superior to the open loop approach (i.e. feedforward or open loop

control, which is based only pre-set values) for practical applications since it is robust
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against unexpected disturbances and model uncertainty.

In the literature of quantitative finance, regime switching models try to capture the

instabilities (or discontinuities) in the different variables involved in the model over long

term. Some well-motivated, popular examples are: a) bull and bear regimes alternating

in financial markets and their economic impact; b) it is well known that exchange rates

tend to alternate protracted periods of depreciation and appreciation; c) monetary

policy can change suddenly because of the down and upswings in the economy.

Markovian switching represents the most widely applied and well-known class of

regime switching models in both finance and macroeconomics. Many researchers use

the Markov properties to describe abrupt changes of different stochastic processes.

Guidolin (2011) [31] reviews and summarises the research trends of the application of

Markovian switching in finance for the last 20 years. Discrete Markovian jump linear

system (DMJLS) may represent a large class of regime switching systems subject to

abrupt changes in structures. A discrete Markov chain governs the transition dynamics

between the different regimes.

In the present chapter, we assume that time delay and switching signal always

exist following closely the ideas by Zimbidis and Haberman (2001) [82], Pantelous and

Papageorgiou (2013) [51] and Pantelous and Yang (2014, 2015) [52, 53]. Thus, the

model of regime switching systems with time-delay is naturally used to analyse the

P-R pricing process. In our framework, the switching dynamics are modelled by a

Markovian jump process (see Assumption 5.4), and then the study of the stability and

stabilizability is provided for the derived discrete-time Markovian jump P-R system.

The Markovian regime switching system environment used in this chapter increases

the flexibility of the parameters and hopefully allows us to model a more representative

real market dynamics system. Our objective is to present a new approach to investigate

and manipulate the stability of the P-R system. Furthermore, a H∞ controller for the

Markovian jump switched system is designed which guarantees the stability of the

switching system.

5.1.3 Structure

This chapter is organized as follows: In section 5.2, the necessary notation and some

key assumptions are presented. In section 5.3, the new P-R system is formulated

under some particular assumptions and in a Markovian regime switching framework.
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In section 5.4 and 5.5, the LMI conditions for robust stabilization and H∞ control are

derived, respectively by using the concepts proposed by Pantelous and Yang (2014) [52]

and Boukas and Liu (2001) [9]. Then, a numerical example is exploited to demonstrate

the effectiveness of the developed method in section 5.6. Finally, section 5.7 concludes

the whole chapter.

5.2 Assumptions

Here, the necessary notation and basic assumptions for our model are described. Some

assumptions are almost the same with those in Chapter 3 and 4, so only a brief expla-

nation is provided here.

Assumption 5.1: Same with Assumption 3.1 in Chapter 3.

Assumption 5.2: Same with Assumption 3.2 and Assumption 3.3 in Chapter 3.

Assumption 5.3: Same with Assumption 3.4 in Chapter 3.

Assumption 5.4: Let {σt; t ≥ 0} be a discrete-time Markov chain with finite state

space S = {1, 2 · · ·N}. Denote the state transition matrix by P = [pij ]i,j∈S , i.e., the

transition probabilities of {σt, t ≥ 0} are given by:

Pr[σt+1 = j|σt = i] = pij for i, j ∈ S,

with pij ≥ 0 for i, j ∈ S, and
∑N

j=1 pij = 1, for i ∈ S. The transition probability is

time-independent. Thus, the resulting Markov chain is time-homogeneous.

Assumption 5.5: Positive integer τi represents the time delay when the system oper-

ates in the regime i. Then we denote

τmax = max{τi, i ∈ S},

τmin = min{τi, i ∈ S}.

We consider a mode-dependent delay, τσt , which is upper and lower bounded, i.e.

τmin ≤ τσt ≤ τmax with τmin, τmax ∈ N. So, considering a specific time-delay interval, at

the end of each year [t, t+ 1), we have the exact information up to the end of the year

t − τt. The value for τi can be estimated using past experience and statistical data.

Moreover, the national and international regulatory policy might be also applied for
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defining the upper bound of this interval.

Assumption 5.6: Same with Assumption 3.6 in Chapter 3.

Assumption 5.7: Same with Assumption 3.7 in Chapter 3.

5.3 Model Formulation

5.3.1 The Premium Rating Rule

The rating of premiums usually depends on available claims experience, on the general

and specific market condition and on the strategy and restriction of the company and

so on. Therefore, mathematical modelling of this very complicated process is not an

easy task. Moreover, it is difficult to find an ”ideal” mathematical formula to cover

accurately all aspects of the premium setting, thus it is necessary to try to find ap-

proximate rules for the anticipated behaviour of the insurer. Zimbidis and Haberman

(2001) [82], Pantelous and Papageorgiou (2013) [51] propose a premium rating formula

which embeds the feedback mechanism by,

P t+1 = Ĉt+1 − [E + ∆Et]Rt−τt ,

where Ĉ is the claim estimator, which is explained in more details in the next section.

P t = (P1,tP2,t · · ·Pm,t)T for t ∈ N be the vector of the premium paid in insurance lines

1, . . . ,m in one time interval. E is a known real positive matrix, which adjusts the

premiums based on the level of the reserve with time lag τt and ∆Et is a parameter

uncertainty, which vary through time. Note that E + ∆Et should normally lies in the

interval [0, 1]. τt stands for the time delay (see Assumption 5.5). Moreover, in Pantelous

and Yang (2014) [52], an additional controller U t in the premium P t is introduced to

stabilize the reserve process; how to get U t is explained later. Thus in Pantelous and

Yang (2014, 2015) [52, 53], the premium process is formulated as follows:

P t+1 = Ĉt+1 − [E + ∆Et]Rt−τt − [Z + ∆Zt]U t.

Now we assume that the equation above can work in different regimes with regime-

specific parameters. Hence the model is developed as a Markovian jump linear system
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and the premium process is formulated as:

P t+1 = Ĉt+1 − [Eσt + ∆Eσt,t]Rt−τt − [Zσt + ∆Zσt,t]U t. (5.3.1)

The equation above means that the premium P t at time t + 1 is Ĉt+1 plus a

correction which depends linearly on the past reserve Rt−τt and the current reserve

Rt values through U t. The dependence can be controlled by varying the values of the

involved parameters. Time delay on information is also considered. U t ∈ Rm is the

control input that has been added in the original system. However, for simplicity, the

state feedback controller is considered to depend on the latest value of R: U t = K1iRt,

where the matrix K1i should be determined by solving an appropriate LMI (convex

optimization) problem.

In this model, the insurer can control its financial position. A suitable control of

premiums can lead to a stable and realistic evolution of the reserve as well as solvency

margin.

5.3.2 The Reserve Process

Let Rt = (R1,tR2,t · · ·Rm,t)T be the vector expression of the reserves, where Ri,t is the

reserve of ith insurance line at time t. The reserve, Rt, evolves according to

Rt+1 = [Jσt + ∆Jσt,t]Rt + eP t+1 − Ct+1. (5.3.2)

Jσt is the investment return matrices in time t for the risk-free asset. It is possible to

include also risky assets but we leave it for a future work. Practically speaking, it is

true that such short term insurance lines (relative to Non-Life insurance policies) are

invested predominately in standard bank accounts or/and in short-term secure bonds

(with duration less than 6 months at the most). Switching signal σt is a piecewise

constant function of time which takes value i in the finite set S = [1 2 · · ·N ]. The

Markov chain states represent different system regimes. We assume that the switching

signal σt is governed by a Markovian jump process (see Assumption 5.4). The premiums

are assumed to be the earned premiums and claims are incurred claims. Investment

income consists of cash yield and change in value of assets. All the variables in the
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basic equation (except e) are stochastic. From the equations (5.3.1) and (5.3.2), we get

Rt+1 = [Jσt + ∆Jσt,t]Rt + e{Ĉt+1 − [Eσt + ∆Eσt,t]Rt−τt − [Zσt + ∆Zσt,t]U t} − Ct+1

= [Jσt + ∆Jσt,t]Rt − e[Eσt + ∆Eσt,t]Rt−τt − e[Zσt + ∆Zσt,t]U t + wt+1.

(5.3.3)

The parameters Ji, Ei and Zi are real constant base matrices. ∆Ji,t, ∆Ei,t and ∆Zi,t

are the respective parameter uncertainties. For the purpose of the modelling process,

Ji and Ei respectively could be a risk-free interest rate and a constant-base return to

the policyholders. Then, Zi is a parameter of the control input. Normally, Zi is an

identity matrix with proper dimensions. Finally, ∆Ji,t, ∆Ei,t and ∆Zi,t are unknown

matrices representing time-varying parameter uncertainties, and they are assumed to

be of the form:

[∆Ji,t − e∆Ei,t − e∆Zi,t] = MiFt[N1i N2i N3i], (5.3.4)

Mi, N1i, N2i, N3i are known real constant matrices and Ft : N → Rs×j is an unknown

time-varying matrix function satisfying

F Tt Ft ≤ I, ∀t ∈ N, (5.3.5)

∆Ji,t , ∆Ei,t and ∆Zi,t are said to be admissible if they satisfy both (5.3.4) and (5.3.5).

Thus we have the following discrete time Markovian jump linear P-R system:

Θ3 :


Rt+1 = [Jσt + ∆Jσt,t]Rt − e[Eσt + ∆Eσt,t]Rt−τt − e[Zσt + ∆Zσt,t]U t + wt+1

Rt = ϕ
t

for t ∈ [−τmax, 0].

The system has N system regimes. We denote system Θ3 without controller element

U t and disturbance wt+1 as Θ31. System Θ3 without disturbance wt+1 is denoted as

Θ32. System Θ3 without controller element U t is denoted as Θ33. The observation (see

next Remark) is denoted as zt, where zt = CRt is the control output.

Remark 5.1. Many H∞ control problem can be demonstrated by the Figure 5.1,

where z is called the controlled output or observation and w is an outside disturbance.

Obviously, u is the controller and G is the system/plant. In some systems, it is not
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possible to directly detect (observe) the accurate status of the state variable y, and we

may design and use some observation tools (for instance, we use thermometer to gauge

temperature in a heating system). In this situation, we rely on observer z instead of

the state variable y to analyse the system process. Intuitively speaking, H∞ control

minimise the maximum impact of w on the observer z (please notice it’s not y). In our

case, the P-R process is studied in robust H∞ control framework. The full system Θ3

should be

Θ3 :


Rt+1 = [Jσt + ∆Jσt,t]Rt − e[Eσt + ∆Eσt,t]Rt−τt − e[Zσt + ∆Zσt,t]U t + wt+1

zt = [Cσt + ∆Cσt,t]Rt − e[C
′
σt + ∆C

′
σt,t]Rt−τt − e[C

′′
σt + ∆C

′′
σt,t]U t + C

′′′
wt+1,

Rt = ϕ
t

for t ∈ [−τmax, 0].

However, for simplicity, we let ∆Cσt,t, [C
′
σt +∆C

′
σt,t], [C

′′
σt +∆C

′′
σt,t], C

′′′
to be equal to

0 and Cσt = C, then the control output becomes zt = CRt and C is the identity matrix

in our numerical example. Practically, it means that we always assume the observation

from the system is exactly the accumulated reserve value itself, which doesn’t need any

other modification. In other words, the current state of accumulated reserve accounts

Rt can be accurately and directly gauged, although the current value is not the true

value due to the time-delay factor. When Rt is positive, insurer can pay back part

of accumulated reserves as the feedback mechanism indicated. While Rt is negative,

insurer would like to charge a higher premium to policyholder. Surely, we can give

our P-R system another practical meaning by making a more complicated structured

observer zt.

Remark 5.2. Under the linear control theory framework, the financial position is

governed by a linear equation, where the reserve at time t depends linearly on the

previous state, on the previous control action and on the disturbance wt+1.

Both premium and reserve processes have linear relationship with the original claims

process. The claims process is a driving force in the system, and the control equation

determines how the total energy of the claims process is channelled via the system to

the premium and to reserve, respectively. In real world applications it may be a part

of an insurance portfolio or line or a company.
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Figure 5.1: Feedback Control System

5.4 Robust Stability

In this section, the robust stability is considered. Before we proceed further we reca-

pitulate the following lemma which is needed later.

Lemma 5.1. (Xie et al., 1992 [71]) Given appropriately dimensioned matrices Σ1, Σ2,

Σ3, with ΣT
1 = Σ1. Then

Σ1 + Σ3FtΣ2 + ΣT
2 F

T
t ΣT

3 < 0,

holds for all Ft, satisfying F Tt Ft ≤ I, if and only if for some ε > 0,

Σ1 + εΣT
2 Σ2 + ε−1Σ3ΣT

3 < 0.

Definition 5.1. The uncertain stochastic discrete time-delay system Θ1 is said to be

robust stochastically stable if there exists a scalar c > 0 such that for all admissible

uncertainties

E[
∞∑
t=0

|Rt|2|R0, σ0] ≤ c sup
−τmax≤t≤0

E[|ϕ
t
|]2, (5.4.1)

when wt+1 = 0, where Rt denotes the reserve at time t under initial condition.

5.4.1 Stability of System Θ31

In this subsection, we consider the uncertain discrete time system Θ3 with state feed-

back controller U t = 0 and disturbance wt+1 = 0. It means that the actual incurred
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claims are exactly the same with the estimation.

Rt+1 = [Jσt + ∆Jσt,t]Rt − e[Eσt + ∆Eσt,t]Rt−τt ,

Rt = ϕ
t

for t ∈ [−τmax, 0]. (Θ31)

Theorem 5.1. For given scalars τmax > τmin ≥ 0, the system Θ31 is robust stochas-

tically stable, if there exist matrices Xi > 0, L > 0, εi > 0, ∀i ∈ S, such that the

following LMI condition holds:



−Xi 0 XiJ
T
i Hi XiN

T
1i Xi

0 −L −eLETi Hi LNT
2i 0

HT
i JiXi −eHT

i EiL Λi 0 0

N1iXi N2iL 0 −εiI 0

Xi 0 0 0 −1
%L


< 0, (5.4.2)

where

X = diag{X1, · · · , Xi}, Λi = −X + εiH
T
i MiM

T
i Hi,

Hi = (
√
pi1I · · ·

√
piNI),

1

%
= 1 + (1− pmin)(τmax − τmin),

and pmin = min{pii, i ∈ S}for i ∈ S.

Proof 5.1. Let matrices Pi = X−1
i and Q = L−1. We can construct the Lyapunov

functional candidate:

Vσt(Rt) = V 1(Rt) + V 2(Rt) + V 3(Rt), (5.4.3)

where

V 1(Rt) , RTt PσtRt, (5.4.4)

V 2(Rt) ,
t−1∑

l=t−τσt

RTl QRl, (5.4.5)

V 3(Rt) ,
−τmin+1∑

k=−τmax+1

t−1∑
l=t+k−1

RTl Q̃Rl, (5.4.6)

and Q̃ = (1−pmin)Q. We define ∆Vσt(Rt) = E[Vσt+1(Rt+1)|Rt]−Vσt(Rt). Then, based
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on the results in Boukas and Liu (2001) [9] and Theorem 1 in Pantelous and Yang

(2014) [52], the following equality holds

E[V 1(Rt+1)|Rt, σt = i]− V 1(Rt) = RTt [(Ji + ∆Ji,t)
TGi(Ji + ∆Ji,t)− Pi]Rt

+2RTt [Ji + ∆Ji,t − e(Ei + ∆Ei,t)]
TGi[−e(Ei + ∆Ei,t)]Rt

+RTt−τi [−e(Ei + ∆Ei,t)]
TGi[−e(Ei + ∆Ei,t)]Rt−τi ,

(5.4.7)

where P = diag{P1, · · · , Pi} and Gi = HiPHT
i . Meanwhile,

E[V 2(Rt+1)|Rt, σt = i]− V 2(Rt) = pii[

t∑
l=t−τi+1

−
t−1∑

l=t−τi

]RTl QRl

+
∑
i 6=j

pij [
t∑

l=t−τj+1

−
t−1∑

l=t−τi

]RTl QRl

= pii[R
T
t QRt −RTt−τiQRt−τi ] +

∑
i 6=j

pij [
t∑

l=t−τj+1

−
t−1∑

l=t−τi+1

]RTl QRl −
∑
j 6=i

pijR
T
t−τiQRt−τi

= RTt QRt −RTt−τiQRt−τi

+
∑
i 6=j

pij [
t−1∑

l=t−τj+1

−
t−1∑

l=t−τi+1

]RTl QRl.

Note that,
t−1∑

l=t−τj+1

RTl QRl =
t−1∑

l=t−τmin+1

RTl QRl +

t−τmin∑
l=t−τj+1

RTl QRl.

Therefore,

E[V 2(Rt+1)|Rt, σt = i]− V 2(Rt) = RTt QRt −RTt−τiQRt−τi

+
∑
i 6=j

pij [

t−1∑
l=t−τmin+1

+

t−τmin∑
l=t−τj+1

−
t−1∑

l=t−τi+1

]RTl QRl.

Since
t−1∑

l=t−τmin+1

RTl QRl ≤
t−1∑

l=t−τi+1

RTl QRl
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and ∑
i 6=j

pij = 1− pii ≤ 1− pmin,

E[V 2(Rt+1)|Rt, σt = i]− V 2(Rt) ≤ RTt QRt −RTt−τiQRt−τi +
∑
i 6=j

pij

t−τmin∑
l=t−τj+1

RTl QRl

≤ RTt QRt −RTt−τiQRt−τi

+(1− pmin)

t−τmin∑
l=t−τmax+1

RTl QRl.

Also,

E[V 3(Rt+1)|Rt, σt = i]− V 3(Rt) = (τmax − τmin)RTt Q̃Rt −
t−τmin∑
l=t−τmax

RTl Q̃Rl. (5.4.8)

From (5.4.7), (5.4.8) and (5.4.8), we can show that

E[Vσt+1(Rt+1)|Rt, σt = i]− Vi(Rt) ≤ RTt [(Ji + ∆Ji,t)
TGi(Ji + ∆Ji,t)− Pi]Rt

+2RTt [Ji + ∆Ji,t − e(Ei + ∆Ei,t)]
TGi[−e(Ei + ∆Ei,t)]Rt

+RTt−τi [−e(Ei + ∆Ei,t)]
TGi[−e(Ei + ∆Ei,t)]Rt−τi

+RTt QRt −RTt−τiQRt−τi + (1− pmin)(τmax − τmin)RTt QRt. (5.4.9)

(5.4.9) is equivalent to

E[Vσt+1(Rt+1)|Rt]− Vσt(Rt) ≤ ξT (t)Ψσtξ(t), (5.4.10)

where

ξ(t) = [RTt RTt−τs ]
T ,

∀i ∈ S,Ψi =

A1i A2i

A3i A4i

 ,
A1i = (Ji + ∆Ji,t)

TGi(Ji + ∆Ji,t)− Pi + %Q,

A2i = [Ji + ∆Ji,t − e(Ei + ∆Ei,t)]
TGi[−e(Ei + ∆Ei,t)],

A3i = [−e(Ei + ∆Ei,t)]
TGi[Ji + ∆Ji,t − e(Ei + ∆Ei,t)],
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A4i = [−e(Ei + ∆Ei,t)]
TGi[−e(Ei + ∆Ei,t)]−Q.

By Schur complement and Gi = HiPHT
i , we can derive a matrix Ωi from Ψi .Therefore,

Ωi = Σ1 + Σ3FtΣ2 + ΣT
2 F

T
t ΣT

3 , (5.4.11)

where

Σ1 =


−Pi + %Q 0 JTi Hi

0 −Q −eETi Hi

HiJi −eHiEi −P−1

 < 0, (5.4.12)

Σ2 = [0 0 MT
i Hi]

T ,

Σ3 = [N1i N2i 0].

Similar with the method in Pantelous and Yang (2014) [52] (and references therein),

(5.4.1) leads to the following inequality by Schur complement


−Xi + %XiL

−1Xi 0 XiJ
T
i Hi XiN

T
1i

0 −L −eLETi Hi LNT
2i

HT
i JiXi −eHT

i EiL Λi 0

N1iXi N2iL 0 −εiI

 < 0. (5.4.13)

Let Xi = P−1
i , L = Q−1. Pre and post-multiplying the both sides of (5.4.13) by

diag{Pi, Q, I, I}


−Pi + %Q 0 JTi Hi NT

1i

0 −Q −eETi Hi NT
2i

HT
i Ji −eHT

i Ei −P−1 + εiH
T
i MiM

T
i Hi 0

N1i N2i 0 −εiI

 < 0. (5.4.14)

Therefore, if LMI condition (5.4.2) is satisfied, we can show

Σ1 + εiΣ2ΣT
2 + ε−1

i ΣT
3 Σ3 < 0.


−Pi + %Q 0 JTi Hi

0 −Q −eETi Hi

HiJi −eHiEi −P−1

+


0 0 0

0 0 0

0 0 εiH
T
i MiM

T
i Hi

+


NT

1i

NT
2i

0

 ε−1
i

[
NT

1i NT
2i 0

]
< 0
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According to Lemma 5.1, which is the result in Xie et al. (1992) [71], it indicates that:

Ωi = Σ1 + Σ3FtΣ2 + ΣT
2 F

T
t ΣT

3 < 0.

It means those LMI condition (5.4.2) can guarantee that Ωi < 0. In particular, it

follows that

Ωi <


−δI 0 0

0 0 0

0 0 0

 , (5.4.15)

Ψi <

−δI 0

0 0

 , (5.4.16)

where δ is a positive scalar. Because τmin ≤ τi ≤ τmax and τmax − τmin > 1, we get

Vσt(Rt) ≤ RTt PRt +

t−1∑
l=t−τmax

RTl QRl +

−τmin+1∑
k=−τmax+1

t−1∑
l=t−τmax

RTl QRl.

Then, we get λmax(P )|Rt|2 ≥ RTt PRt and λmax(Q)|Rt|2 ≥ RTt QRt. λmax( ) is the

maximum eigenvalue of respective matrix. Thus, following close Pantelous and Papa-

georgiou (2013) [51] and Pantelous and Yang (2014) [52], we can derive

Vσt(Rt) ≤ λ|Rt|2 + λ(τmax − τmin + 1)
t−1∑

l=t−τmax

|Rl|2, (5.4.17)

where λ = max[λmax(P ), λmax(Q)]. Hence, from (5.4.10) and (5.4.16) it is easy to

deduce that

E[Vσt+1(Rt+1)|Rt]− Vσt(Rt) < −δ|Rt|2. (5.4.18)

Now, summing up both sides of (5.4.18) over time t

E[Vσt+1(Rt+1)|Rt]− Vσ0(R0) < −δ
t∑

s=0

|Rs|2. (5.4.19)

Then, after taking the expectation on both sides of the above equation, it follows that

E[Vσt+1(Rt+1)]− E[Vσ0(R0)] < −δE[

t∑
s=0

|Rs|2]. (5.4.20)
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Thus,

E[
t∑

s=0

|Rs|2] ≤ 1

δ
E[Vσ0(R0)]. (5.4.21)

Applying (5.4.17) at time t = 0 and rearranging, we have

Vσ0(R0) ≤ λ|R0|2 + λ(τmax − τmin + 1)

−1∑
l=−τmax

|Rl|2

≤ λ(τmax − τmin + 1)
0∑

l=−τmax

|Rl|2.

Therefore, after using mathematical transformation, the expectation becomes,

E[Vσ0(R0)] ≤ λ(τmax − τmin + 1)(τmax + 1) sup
−τmax≤t≤0

E[|ϕ
t
|]2. (5.4.22)

Then, following calculations (5.4.21) and (5.4.22), we get

E[

t∑
s=0

|Rs|2] ≤ c sup
−τmax≤t≤0

E[|ϕ
t
|]2, (5.4.23)

where c = 1
δλ[(τmax−τmin+1)(τmax+1)] > 0. The above calculations shows the positive

scalar c has relationship with upper and lower bound the time delay, which extend the

result in Theorem 1 in Boukas and Liu (2002) [10]. From (5.4.23), we have

lim
t→∞

E[
t∑

s=0

|Rs|2] ≤ c sup
−τmax≤t≤0

E[|ϕ
t
|]2.

This shows that the system Θ31 is robust stochastically stable when LMI condition

(5.4.2) is satisfied. 2

5.4.2 Stabilization of System Θ32

System Θ3 with state feedback controller U t 6= 0 and disturbance wt+1 = 0, which we

denoted as Θ32, is given by

Rt+1 = [Jσt + ∆Jσt,t]Rt − e[Eσt + ∆Eσt,t]Rt−τt − e[Zσt + ∆Zσt,t]U t,

Rt = ϕ
t

for t ∈ [−τmax, 0], (Θ32)
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and

U t = K1iRt.

Theorem 5.2. Consider the uncertain regime switching system Θ32, this system is

robust stochastically stabilizable if there exist matrices L > 0, Xi > 0, Yi > 0, and

εi > 0, ∀i ∈ S, such that the following LMI condition holds:



−Xi 0 XiJ
T
i Hi − eYiZTi Hi XiN

T
1i + YiN

T
3i Xi

0 −L −eLETi Hi LNT
2i 0

HT
i JiXi − eHT

i ZiYi −eHT
i EiL Λi 0 0

N1iXi +N3iYi N2iL 0 −εiI 0

Xi 0 0 0 −1
%L


< 0.

(5.4.24)

In this case, an appropriate robust stabilizing state feedback controller can be chosen as

U t = YiX
−1
i Rt.

Proof 5.2. From Theorem 5.1, LMI (5.4.24) guarantees that the following system

(5.4.25) is robust stochastically stable. (The parameter Jσt , ∆Jσt are replaced by

Jσt + ZσtKσt , ∆Jσt + ∆ZσtKσt .)

Rt+1 = [Jσt + ZσtK1σt + ∆Jσt + ∆ZσtK1σt ]Rt − e[Eσt + ∆Eσt ]Rt−τt ,

Rt = ϕt for t ∈ [−τmax, 0]. (5.4.25)

Therefore, we have Θ32 is robust stochastically stable, since system Θ32 and system

(5.4.25) describe the same system. The proof is completed. 2

Remark 5.3. The theorem above provides a sufficient condition for the solvability of

the robust stabilization problem for uncertain regime switching system Θ32. A desired

state feedback controller can be obtained by solving the LMI in (5.4.24).
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5.5 Robust H∞ Stability and H∞ Controller Synthesis

5.5.1 Robust H∞ Stability

In this sub-section, H∞ stability is considered. Intuitively H∞ stability means that the

magnitude of movement in output due to the system disturbance is bounded by γ. In

our application it means that the worst impact of disturbance in claim process on the

reserve level is bounded when the system is robust stochastically stable. Time-delay

in this chapter is mode-dependant, which is more conservative than that in Chapter 3

and 4.

Definition 5.2. The uncertain stochastic discrete time-delay system Θ3 is said to be

robust stochastically stable with disturbance attenuation level γ if it is robust stable

and the (5.5.1) is satisfied,

||zt|R0, σ0||e2 ≤ γ||wt||e2 , (5.5.1)

for all nonzero wt ∈ le2(N ;Rm), and wt is Ft−1 measurable for all t ∈ N, where γ > 0

is a given scalar and zt = CRt is the control output.

Here we consider the P-R system Θ33 which take the impact of outside disturbance

wt+1 into account and without controller. Then the P-R process reduces to

Θ33 :


Rt+1 = [Jσt + ∆Jσt,t]Rt − e[Eσt + ∆Eσt,t]Rt−τt + wt+1,

zt = CRt,

Rt = ϕ
t

for t ∈ [−τmax, 0].

Theorem 5.3. For given scalars τmax > τmin ≥ 0, the system Θ33 is robust stochas-

tically stable with disturbance attenuation level γ > 0, if there exist matrices L > 0,
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Xi > 0 and εi > 0, such that the following LMI condition holds ∀i ∈ S:



−Xi 0 0 XiC
T XiJ

T
i Hi XiN

T
1i Xi

0 −L 0 0 −eLETi Hi LNT
2i 0

0 0 −γ2I 0 Hi 0 0

CXi 0 0 −I 0 0 0

HT
i JiXi −eHT

i EiL HT
i 0 Λi 0 0

N1iXi N2iL 0 0 0 −εiI 0

Xi 0 0 0 0 0 −1
%L


< 0. (5.5.2)

Proof 5.3. Denote again

Vσt(Rt) = V 1(Rt) + V 2(Rt) + V 3(Rt), (5.5.3)

where V 1(Rt), V
2(Rt) and V 3(Rt) are defined in (5.4.4), (5.4.5), (5.4.6). Following the

same procedure as in Theorem 5.1, we can get formulas similar to (5.4.10) and (5.4.11).

From (5.5.2), it is easy to deduce the following matrix



−Xi 0 XiJ
T
i Hi XiN

T
1i Xi

0 −L −eLETi Hi LNT
2i 0

HT
i JiXi −eHT

i EiL Λi 0 0

N1iXi N2iL 0 −εiI 0

Xi 0 0 0 −1
%L


< 0. (5.5.4)

Therefore, Θ33 is robust stable. With the next step, our aim is to show that ||zt||e2 ≤

γ||wt||e2 holds for all nonzero wt and γ > 0. To prove this, we need to define

TH∞ = E{
N∑
t=0

(zTt zt − γ2wTt wt)|R0, σt = 0}. (5.5.5)

With zero initial condition we know Vσ0(R0) = 0. On the other hand, we have shown in

Theorem 5.1 that E[Vσt+1(Rt+1)]− E[Vσt(Rt)] ≤ 0. Therefore, for any time T we have

that E
(∑T

t=0 E[Vσt+1(Rt+1)|Rt]− Vσt(Rt)
)
≤ 0 and VT(RT) ≥ 0, which after tending

T→∞ will give us

E

( ∞∑
t=0

E[Vσt+1(Rt+1)|Rt]− Vσt(Rt)

)
≤ 0.
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Using this relation and the definition of TH∞

TH∞ = E

( ∞∑
t=0

[E[Vt+1(Rt+1)|Rt]− Vt(Rt) + zTt zt − γ2wTt wt]

)

−E

( ∞∑
t=0

[E[Vt+1(Rt+1)|Rt]− Vt(Rt)]

)

= E

( ∞∑
t=0

[ξT (t)Ψσtξ(t) + zTt zt − γ2wTt wt]

)
− VT+1(RT+1) + Vσ0(R0),T→∞

≤ E

( ∞∑
t=0

[ξT (t)Ψσtξ(t) + zTt zt − γ2wTt wt]

)

= E
∞∑
t=0

ηT (t)Ψ̃σtη(t), (5.5.6)

where η(t) = [RTt RTt−τσt wTt+1]T ,

∀i ∈ S, Ψ̃i =


A1i + CTC A2i 0

A3i A4i 0

0 0 −γ2I

 .
A1i, A2i, A3i, A4i are defined in proof of Theorem 5.1. With the Schur complement, the

inequalities conditions in Theorem 5.3 can guarantee that for each i ∈ S, Ψ̃i < 0 and

therefore we get TH∞ < 0, under zero initial conditions. Then, the system is robust

stochastically stable with an H∞ norm bound γ. 2

5.5.2 H∞ Controller of system Θ3

Here, we consider the uncertain discrete time system Θ3 with state feedback controller

U t 6= 0 and disturbance wt+1 6= 0. It means that the actual incurred claims are not

the same as the estimator. We use following LMI condition to find a feasible state H∞

controller to control this process.

Theorem 5.4. Consider the uncertain regime switching system Θ3. This system is

robust stochastically stabilizable with disturbance attenuation level γ > 0 if there exist

matrices Xi > 0, Yi > 0, L > 0, and εi > 0, such that following LMI condition holds:
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

−Xi 0 0 XiC
T

0 −L 0 0

0 0 −γ2I 0

CXi 0 0 −I

HT
i JiXi − eHT

i ZiYi −eHT
i EiL HT

i 0

N1iXi +N3iXi N2iL 0 0

Xi 0 0 0

XiJ
T
i Hi − eYiZTi Hi XiN

T
1i + YiN

T
3i Xi

−eLETi Hi LNT
2i 0

Hi 0 0

0 0 0

Λi 0 0

0 −εiI 0

0 0 −1
%L


< 0. (5.5.7)

In this case, an appropriate robust stabilizing state feedback controller can be

Ut = K1iRt, K1i = YiX
−1
i .

Proof 5.4. The proof of Theorem 5.4 is similar with Theorem 5.2, so it is omitted.

2

5.5.3 Special case: One dimensional insurance line

So far, the state variable in the model is considered as a multidimensional vector, which

means that it can be applied in an insurance company with multiple lines. Just for a

better understanding and applicability of the main result of this chapter, here, let us

assume that the system Θ3 contains only one insurance line. Therefore, the parameters

and state variables are scalar:

Rt+1 = [jσt + ∆jσt,t]Rt − e[εσt + ∆εσt,t]Rt−τt − e[zσt + ∆zσt,t]Ut + wt+1,
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Rt = ϕt for t ∈ [−τmax, 0]. (5.5.8)

Proposition 1. Consider the above scalar system, This system is robust stochastically

stabilizable with disturbance attenuation level γ if there exist scalar xi > 0, yi > 0,

l > 0, and pi > 0, such that the following condition holds



−xi 0 0 xic xijihi − eyizihi xin1i + yin3i xi

0 −l 0 0 −eleihi ln2i 0

0 0 −γ2I 0 hi 0 0

cxi 0 0 −1 0 0 0

hijixi − ehiziyi −ehieiL hi 0 Λi 0 0

n1ixi + n3ixi n2iL 0 0 0 −pi 0

xi 0 0 0 0 0 −1
%L


< 0,

(5.5.9)

In this case, an appropriate robust stabilizing state feedback controller can be

Ut = K1iRt, where K1i = yix
−1
i .

Remark 5.4. When the model is used in studying general financial strength conditions,

it is useful at first to define a basic case (nominal system), in which certain specified

values are fixed for the parameters of the model. Then sensitivity analysis can be carried

out. By varying the size of the portfolio, its composition and other basic parameters, it

is possible to study how the business reacts to various external and internal impulses.

Here, ji, ei, zi are known real constant matrices with appropriate dimensions repre-

senting the nominal systems for each i ∈ S.

5.6 Numerical Application 3

In this section, a numerical application for illustrating the applicability of the theo-

retical results for an insurance company is formulated. We assume that it runs three

different insurance lines which are mutually correlated. Then, we use the result from

Theorem 5.4 to find out the H∞ controller such that the total reserve process is sta-

bilized with a particular disturbance attenuation level γ. Let us recall that when the

model is applied by a particular insurer, the basic parameters, the parameter uncer-
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tainty and disturbance distribution have to be estimated based on real data and realistic

assumptions. Here, we assume that the Markovian switching state space is S = [1, 2],

which indicates that there are two different system regimes for the system Θ3. In the

following paragraphs, the necessary parameters are described in details.

• First the value of the reserve accounts at t = 0 is given by the following matrix,

R0 =


R0(1)

R0(2)

R0(3)

 =


0

0

0

 ,

i.e. at time t = 0, we assume that the reserve account for each insurance lines is

£ 0 pounds, respectively.

• For the time delay, we assume that the mode-dependent delay are τ(i = 1) = 3

for Regime 1 and τ(i = 2) = 1 for Regime 2. Therefore, τmin = 1 and τmax = 3:

R−3 =


R−3(1)

R−3(2)

R−3(3)

 = R−2 =


R−2(1)

R−2(2)

R−2(3)

 = R−1 =


R−1(1)

R−1(2)

R−1(3)

 =


£270, 000

£340, 000

£160, 000

 .

• In our model, it is assumed that the insurer can invest the reserve in risk-free

investments (T-bills) to generate additional income. Since dependencies among 3

insurance lines exist, we have to use weights in the parameter matrix. We assume

that the corresponding rate of income is given from the following matrix:

For Regime 1

J1 =


1.021 ∗ w1,1 1.021 ∗ w1,2 1.021 ∗ w1,3

1.021 ∗ w2,1 1.021 ∗ w2,2 1.021 ∗ w2,3

1.021 ∗ w3,1 1.021 ∗ w3,2 1.021 ∗ w3,3

 .
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For Regime 2

J2 =


1.039 ∗ w1,1 1.039 ∗ w1,2 1.039 ∗ w1,3

1.039 ∗ w2,1 1.039 ∗ w2,2 1.039 ∗ w2,3

1.039 ∗ w3,1 1.039 ∗ w3,2 1.039 ∗ w3,3

 .

• The weight ratios wnm which demonstrates the solvency relation between each

line have the following values:

w1,1 = 0.86, w1,2 = 0.07 and w1,3 = 0.07,

w2,1 = 0.10, w2,2 = 0.87 and w2,3 = 0.03,

w3,1 = 0.08, w3,2 = 0.09 and w3,3 = 0.83.

• The parameter E comes from the mechanism proposed by Balzer and Benjamin

(1980, 1982). The value of E could be the constant base return rate of policyholder

rather than issuer.

For the examples, we assume that the value in the parameter matrix E:

For Regime 1

E1 =


0.13 ∗ w1,1 0.13 ∗ w1,2 0.13 ∗ w1,3

0.13 ∗ w2,1 0.13 ∗ w2,2 0.13 ∗ w2,3

0.13 ∗ w3,1 0.13 ∗ w3,2 0.13 ∗ w3,3

 ,

For Regime 2

E2 =


0.18 ∗ w1,1 0.18 ∗ w1,2 0.18 ∗ w1,3

0.18 ∗ w2,1 0.18 ∗ w2,2 0.18 ∗ w2,3

0.18 ∗ w3,1 0.18 ∗ w3,2 0.18 ∗ w3,3

 .

• For the parameter e, we let e = 0.8, which means that 1− 0.8 = 0.2 (or 20%) of

the premium revenue is used to cover the administration and operating cost and

give to the company a reasonable profit margin.

• γ = 3.7. This is the given value (not optimal) which measures the maximum

impact level of the disturbance on the reserves.
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• The time-varying unknown parameter uncertainties ∆Ji,n , ∆Ei,n and ∆Zi,n,

i ∈ [1, 2] are defined by:

[∆Ji,t − e∆Ei,t − e∆Zi,t] = MiFt[N1i N2i N3i],

where

M1 =


0.002 0 0

0 0.003 0

0 0 0.002

 ,

M2 =


0.005 0 0

0 0.005 0

0 0 0.004

 ,

N11 =


2 3 1

3 1 1

1 3 1

 , N21 =


2 2 1

2 1 2

2 1 3

 , N31 =


2 1 3

3 1 2

1 3 2

 .

N12 =


2 3 1

3 1 1

1 3 1

 , N22 =


2 2 1

2 1 2

2 1 3

 , N32 =


2 1 3

3 1 2

1 3 2

 .
• We assume that the insurer will change the operating regime influenced by some

key economic and market factors which are not constant. In this application, it

is assumed that the insurer can switch between 2 regimes. Thus, two different

transition probabilities are. Type 2 switching transits more frequently than Type

1.

Transition probability (Type 1 switching)

Π1 =

0.9 0.1

0.5 0.5

 .
Transition probability (Type 2 switching)

Π2 =

0.7 0.3

0.5 0.5

 .
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Here, the performance of system under different markovian switching signals is

presented. The simulation results are provided for the time-period of t = 52 weeks.

By applying the result of the Theorem 5.4, the H∞ controller is derived, and we get

the feedback controller for each regime separately under Type 1 switching signal

(see Figure 5.2) are as below:

If system is in Regime 1:

K11 =


0.9491 0.0197 −0.0047

0.0867 1.1114 0.0364

0.0029 −0.0794 1.0063

 .

If system is in Regime 2:

K12 =


0.9381 0.0025 −0.0189

0.0792 1.1370 0.0211

0.0021 −0.1045 1.0176

 .

It is clear that under the Type 1 switching signal (Figure 5.2), not too many changes

are proposed between the two modes (regimes). Generally speaking, it can be consid-

ered as a quite stable case.

Now, when the model is under Type 2 switching signal (see Figure 5.3), the

controller for each regime is as below.

If system is in Mode 1:

K11 =


0.9479 0.0216 −0.0066

0.0909 1.1135 0.0382

0.0012 −0.0817 1.0075

 .

If system is in Mode 2:

K12 =


0.9365 0.0013 −0.0199

0.0788 1.1373 0.0204

0.0021 −0.1055 1.0173

 .

On contrary under the Type 2 switching signal (see Figure 5.3), the changes between

the two modes (regimes) vary frequently. Thus, it can be seen as a quite volatile case.
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In Figure 5.4 and 5.5, the movement of the charged premium is presented for

the three lines under the Type 1 and 2 signal, respectively. From those figures, we

can clearly see that the controlled premium for each dependent line fluctuates around

£150,000 (no drift is observed though for any of the available lines and for both sig-

nals). Moreover, it should be mentioned that the premium for each dependent line

stays positive for the whole duration of the simulations.

Obviously, as we can also observe in the Figure 5.4 and 5.5, the state feedback

controller U t helps to reduce the impact of the disturbance and eventually stabilizes

the system quickly. Thus, in the Figure 5.6 and 5.7, the movement of the charged

reserve is presented for the three lines under the Type 1 and 2 signal, respectively.

Finally, it is interested in observing the Figure 5.8, where the total reserve is presented

and a comparison is provided for both types of signals. Obviously, the reason that

the reserve is not exactly converging to 0, see also Pantelous and Yang (2014) [52], is

related to the fact that new random disturbances affect the system. As it is expected,

the Type 2 signal gives higher fluctuation compared with the Type 1 signal.

To summarize in this application, by using the robust H∞ tool to generate the

state feedback controller U t, we manipulate the stability of the system even though the

system disturbance wt 6= 0.

5.7 Summary

In this chapter, a Markovian regime switching P-R model for different insurance lines

has been proposed in order to describe abrupt changes in structures. This regime

switching model considers a negative feedback mechanism for the reserves, invests the

surplus in short-term risk-free (T-bills) assets, and also assumes time-varying, bounded

delays for the reserves in a stochastic, discrete-time framework. The parameter un-

certainties for the coefficients involved in the model are also norm-bounded. Thus,

the new model extends significantly the models proposed by Zimbidis and Haberman

(2001) [82], Pantelous and Papageorgiou (2013) [51] and Pantelous and Yang (2014,

2015) [52, 53].

Additionally, a control parameter is introduced in the system Θ3 and some new ideas

to generate an effective state feedback controller for the P-R system are presented. The

LMI conditions for the robust stabilization and a feasible H∞ controller are derived
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through a series of Lemmas and Theorems. Thus, for the very first time, according to

our knowledge, a linear robust control theory for Markovian regime switching systems

has been implemented in the P-R model. Thus, with the H∞ controller, the premium

is adjusted to reasonable levels for different modes (regimes). Both robust stochastic

stability and a pre-specified disturbance attenuation level can be guaranteed for all

admissible uncertainties. Corresponding results have been illustrated by introducing a

numerical example.

91



Figure 5.2: Markovian switching signal: Type 1

Figure 5.3: Markovian switching signal: Type 2

Figure 5.4: The evolution of the three Premiums under the Type 1 signal
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Figure 5.5: The evolution of the three Premiums under the Type 2 signal

Figure 5.6: The evolution of the accumulated reserves under the Type 1 signal
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Figure 5.7: The evolution of the accumulated reserves under the Type 2 signal

Figure 5.8: The comparison of the total reserve: Type 1 vs Type 2 switching
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Chapter 6

Arbitrary Regime Switching

System

6.1 Introduction

Regime-switching systems have attracted much attention in the last decade. Regime-

switching models have become an powerful modelling tool for applied work, such as in

the highway supervisory system, the constrained robotics, the control of aircraft and

air traffic control and so on. Particularly we should note applications in measures of

economic output, such as real Gross Domestic Product (GDP), which have been used

to model and identify the phases of the business cycle, regime shift in inflation and

interest rates. Thus many important results related to switched systems have been

reported in the literature, see Piger (2011) [59].

Regime-switching models can be classified into two categories: Arbitrary regime

switching models and Markov regime switching models. The primary difference between

these two approaches is in how the evolution of the state process is modelled. Generally

arbitrary regime switching model gives more conservative result than Markov regime

switching model, because we know less regime shifts information in arbitrary regime

switching model, see Sun et al. (2007) [67].

A model which uses the recent claim experience and a negative feedback mecha-

nism of the known surplus value is proposed in Pantelous and Yang (2014) [52]. That

model assumes a time-varying, bounded delay factor, time-varying parameters and dif-

ferent types of norm-bounded uncertainties. In Chapter 5, the impact of the switching
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regime is analysed by considering a markovian switching signal. However, in contrast

to markovian switching regime, it can be also assumed that the switching sequence is

not known a priori and look for stability results under arbitrary switching sequences.

In this chapter, we would like to reformulate that system and investigate the stability

and H∞ controller of the system which consider an arbitrary switching signal. This

would be a complementary research for the Chapter 5.

For P-R system of insurance product, it is worth noting that we investigate the

stability under arbitrary switching signal. For this issue, the Lyapunov function method

is proposed to study this P-R system.

In this chapter, we investigate the problems of stability analysis and H∞ controller

synthesis for arbitrary regime switching systems. The contribution of this chapter lies

in that the extended stability and H∞ controller design results for regime switching P-R

systems with mode-dependent delay are given. First, the correlative assumptions and

definitions are proposed. Then the model is transformed into discrete time arbitrary

switching systems with mode-dependent time delay, which is quite similar with the

system in Chapter 5. Then based on the result in Sun et al. (2007) [67], we apply the

descriptor system approach to uncertain discrete-time switched systems with mode-

dependent delays by constructing a switched Lyapunov function which is important

for the late development. Through some useful lemma and LMI, the new stability

criterion is proposed and H∞ controller is generated, which guarantees the stability of

the system in this chapter. Finally, a numerical example is exploited to demonstrate

the effectiveness of the developed method.

6.2 Problem formulation

6.2.1 Assumptions

Here, the necessary notation and basic assumptions for our model are described. Some

assumptions are almost the same with that in Zimbidis and Haberman (2001) [82],

Pantelous and Papageorgiou (2013) [51] and Pantelous and Yang (2014, 2015) [52, 53].

so only a brief explanation for the different assumptions is provided here.

Assumption 6.1: Same with Assumption 3.1 in Chapter 3.

Assumption 6.2: Same with Assumption 3.2 and Assumption 3.3 in Chapter 3.

Assumption 6.3: Same with Assumption 3.4 in Chapter 3.
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Assumption 6.4: Let {σt; t ≥ 0} be a arbitrary switching signal with state space

S = {1, 2 · · ·N}. σt is a piecewise constant function of time and the transition proba-

bility is is unknown or not existed. We assume that the switching signal σt is unknown

a prior, but its instantaneous value is available in real time.

Assumption 6.5: Positive integer τi represents the time delay when the system oper-

ates in the regime i. Then we denote

τmax = max{τi, i ∈ S},

τmin = min{τi, i ∈ S}.

We consider a mode-dependent time-varying delay, τt, which is upper and lower bounded,

i.e. τmin ≤ τt ≤ τmax with τmin, τmax ∈ N. So, considering a specific time-delay interval,

at the end of each year [t, t+1], we have the exact information up to the end of the year

t− τt. As indicated in previous chapters’ assumption, the value for τi can be estimated

using past experience and statistical data. Moreover, the national and international

regulatory policy might be also applied for defining the upper bound of this interval.

Assumption 6.6: Same with Assumption 3.6 in Chapter 3.

Assumption 6.7: Same with Assumption 3.7 in Chapter 3..

6.2.2 Model Formulation

In the present chapter, the P-R process is described by a arbitrary regime switching

system with time-varying delays which extend the model used in Chapter 5. Assume

Rt = (R1,tR2,t · · ·Rm,t)T be the vector expression of the accumulated reserves, where

Ri,t is the accumulated reserves of ith product at time t. As in Chapter 5, the premium

process is formulated as follow:

P t+1 = Ĉt+1 − [Eσt + ∆Eσt,t]Rt−τt − [Zσt + ∆Zσt,t]U t. (6.2.1)

U t ∈ Rm is the control input. Here, we develop the model into the arbitrary switched

system. Let Rt = (R1,tR2,t · · ·Rm,t)T be the vector expression of the reserves, where

Ri,t is the reserve of ith insurance line at time t. The reserve, Rt, evolves according to

Rt+1 = [Jσt + ∆Jσt,t]Rt + eP t+1 − Ct+1. (6.2.2)
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Same with those in Chapter 5, Jσt is the investment return matrices in time t for the

risk-free asset. It is possible to include also risky assets but we leave it for a future

work. Switching signal σt is a piecewise constant function of time which takes value i in

the finite set S = [1 2 · · ·N ]. We assume that the switching signal σt is governed by

a Arbitrary jump process (see Assumption 6.4). The premiums are assumed to be the

earned premiums and claims are incurred claims as well. From the equations (6.2.1)

and (6.2.2), we get

Rt+1 = [Jσt + ∆Jσt,t]Rt + e{Ĉt+1 − [Eσt + ∆Eσt,t]Rt−τt − [Zσt + ∆Zσt,t]U t} − Ct+1

= [Jσt + ∆Jσt,t]Rt − e[Eσt + ∆Eσt,t]Rt−τt − e[Zσt + ∆Zσt,t]U t + wt+1.

The parameters Ji, Ei and Zi are real constant base matrices. ∆Ji,t, ∆Ei,t and ∆Zi,t

are the respective parameter uncertainties. For the purpose of the modelling process,

Ji and Ei respectively could be a risk-free interest rate and a constant-base return to

the policyholders. Then, Zi is a parameter of the control input. Finally, ∆Ji,t, ∆Ei,t

and ∆Zi,t are unknown matrices representing time-varying parameter uncertainties,

and they are assumed to be of the form:

[∆Ji,t − e∆Ei,t − e∆Zi,t] = MiFt[N1i N2i N3i], (6.2.3)

Mi, N1i, N2i, N3i are known real constant matrices and Ft : N → Rs×j is an unknown

time-varying matrix function satisfying

F Tt Ft ≤ I, ∀t ∈ N, (6.2.4)

∆Ji,t , ∆Ei,t and ∆Zi,t are said to be admissible if they satisfy both (6.2.3) and (6.2.4).

Thus we have the following discrete time arbitrary regime switching linear P-R system:

Θ4 :


Rt+1 = [Jσt + ∆Jσt,t]Rt − e[Eσt + ∆Eσt,t]Rt−τt − e[Zσt + ∆Zσt,t]U t + wt+1

Rt = ϕ
t

for t ∈ [−τmax, 0].

The system has N system regimes. We denote system Θ4 without controller element

U t and disturbance wt+1 as Θ41. System Θ4 without disturbance wt+1 is denoted as

Θ42. The observation is denoted as zt, where zt = CRt is the control output.
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Lemma 6.1. (Gu et al. 2003 [30]) Assume that τt : Z+ → 1, 2, ... and τt < τmax,

where τmax is a positive integer, then for any positive-definite matrix P ∈ Rn×n and

vector function Rt, we have

τmax

t−1∑
m=t−τmax

Y T
mQY m >


t−1∑

m=t−τσt

Y T
m}

Q


t−1∑

m=t−τσt

Y m


This chapter is concerned with the robust stability analysis and design problems

for the arbitrary switched P-R system and it is complementary research of markovian

switched system in Chapter 5. Our objective is to present an approach to investigate

and manipulate the stability of arbitrary switched P-R system.

6.3 Robust stability and stabilitzation

6.3.1 Robust stability of system Θ41

The uncertain discrete time system Θ4 with U t = 0 and wt+1 = 0.

Θ41 :


Rt+1 = [Jσt + ∆Jσt,t]Rt − e[Eσt + ∆Eσt,t]Rt−τt

Rt = ϕ
t

for t ∈ [−τmax, 0].
(6.3.1)

Theorem 6.1. The system Θ41 is robust stochastically stable for any time-varying

delay τσt satisfying τmax > τmin ≥ 0, if there exist matrices Pi, Q > 0, Li, Si, εi > 0,

such that the following conditions hold for ∀(i, j) ∈ S × S:



Λ1 Λ2 eLTi Ei LTi Mi (N1i +N2i)
T

ΛT2 Λ3 eSTi Ei STi Mi 0

eETi Li eETi Si −Q 0 −NT
2i

MT
i Li MT

i Si 0 −εiI 0

N1i +N2i 0 −N2i 0 −ε−1
i I


< 0, (6.3.2)

where Λ1 = LTi [Ji − eEi − I] + [Ji − eEi − I]TLi + Pj − Pi,

Λ2 = Pj − LTi + [Ji − eEi − I]TSi,

Λ3 = Pj + τ2
maxQ− Si − STi .
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Proof 6.1.

Y t , Rt+1 −Rt (6.3.3)

= [Ji + ∆Ji,t − I]Rt − e[Ei + ∆Ei,t]Rt−τσt ,

Since

Rt−τσt = Rt −
t−1∑

m=t−τσt

Y m (6.3.4)

Then, system Θ1 can be transformed into

Rt+1 = [Ji + ∆Ji,t − e(Ei + ∆Ei,t)]Rt + e[Ei + ∆Ei,t]
t−1∑

m=t−τσt

Y m, (6.3.5)

Y t = {Ji + ∆Ji,t − e[Ei + ∆Ei,t]− I}Rt + e[Ei + ∆Ei,t]

t−1∑
m=t−τσt

Y m, (6.3.6)

We can construct a switching Lyapunov Function:

Vσt(Rt) = RTt PσtRt + τmax

0∑
k=−τmax+1

t−1∑
m=t−1+k

Y T
mQY m (6.3.7)

Pσt , Q is the feasible solution satisfying 6.3.2. Define ∆Vσt(Rt) = E[Vσt(Rt+1)|Rt] −

Vσt(Rt)] and the transition regime at time t, t+ 1 are σt = i, σt+1 = j.

∆Vσt(Rt) = E[Vσt(Rt+1)|Rt]− Vσt(Rt)]

= RTt+1PjRt+1 −RTt PiRt + τ2
maxY

T
t QY t − τmax

t−1∑
m=t−τmax

Y T
mQY m

≤ 2RTt PjY t +RTt (Pj − Pi)Rt + Y T
t (Pj + τ2

maxQ)Y t

−


t−1∑

m=t−τσt

Y T
m}

Q


t−1∑

m=t−τσt

Y m

 . (6.3.8)

From (6.3.6) we know

2[RTt L
T
i +Y T

t X
T
i ]{−Y t+{Ji+∆Ji,t−e[Ei+∆Ei,t]−I}Rt+e[Ei+∆Ei,t]

t−1∑
m=t−τσt

Y m} = 0.

(6.3.9)
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We set N t =
∑t−1

m=t−τσt
Y m and combine (6.3.8) with (6.3.9). Then, the following

formula can be derived:

∆Vσt(Rt) ≤ ξT (t)Ψijξ(t), (6.3.10)

where

ξ(t) = [RTt Y T
t NT

t ]T ,

and

Ψij =


A1 A2 eLTi Ei

AT2 A3 eSTi Ei

eETi Li eETi Si −Q

 [] (6.3.11)

with

A1 = LTi [Ji + ∆Ji,t − e[Ei + ∆Ei,t]− I] + [Ji + ∆Ji,t − e[Ei + ∆Ei,t]− I]TLi + Pj − Pi,

A2 = Pj − LTi + [Ji + ∆Ji,t − e[Ei + ∆Ei,t]− I]TSi,

A3 = Pj + τ2
maxQ− Si − STi .

Then, we can develop (6.3.11) to

Ψij =


Λ1 Λ2 eLTi Ei

ΛT2 Λ3 eSTi Ei

eETi Li eETi Si −Q

+


LTi Mi

STi Mi

0

Ft [N1i +N2i 0 −N2i

]

+


(N1i +N2i)

T

0

−NT
2i

F Tt [MT
i Li MT

i Si 0
]
, i, j ∈ S. (6.3.12)
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Similar with the method in Chapter 3 and Chapter 5, if LMI condition (6.3.2) is

satisfied, it can lead to the following inequality by Schur complement


Λ1 Λ2 eLTi Ei

ΛT2 Λ3 eSTi Ei

eETi Li eETi Si −Q

+ ε−1
i


LTi Mi

STi Mi

0

[MT
i Li MT

i Si 0
]

+εi


(N1i +N2i)

T

0

−NT
2i

[N1i +N2i 0 −N2i

]
< 0, i, j ∈ S. (6.3.13)

According to Lemma 5.1, which is the result in Xie et al. (1992) [71], it indicates that


Λ1 Λ2 eLTi Ei

ΛT2 Λ3 eSTi Ei

eETi Li eETi Si −Q

+


LTi Mi

STi Mi

0

Ft [N1i +N2i 0 −N2i

]

+


(N1i +N2i)

T

0

−NT
2i

F Tt [MT
i Li MT

i Si 0
]
< 0, i, j ∈ S. (6.3.14)

It means the LMI condition (6.3.2) can guarantee that Ψij < 0. Therefore, ∆Vσt(Rt) <

0 is always satisfied for all t ≥ 0. Using the standard Lyapunov stability theory we have

that the system Θ41 is robust stable when LMI condition 6.3.2 is satisfied. This com-

pletes the proof. 2

6.3.2 Stabilization of system Θ42

System Θ4 with state feedback controller U t 6= 0 and disturbance wt+1 = 0, which we

denoted as Θ42, is

Θ42 :


Rt+1 = [Jσt + ∆Jσt,t]Rt − e[Eσt + ∆Eσt,t]Rt−τσ(t)

− e[Zσt + ∆Zσt,t]U t,

Rt = ϕ
t

for t ∈ [−τmax, 0].

(6.3.15)

The state feedback controller is in the form of U i = K1iRt.

Theorem 6.2. The uncertain switched system Θ42 is robust stochastically stabilizable
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with state, if for each i ∈ S there exist matrices Xi, Yi, Q̃ > 0, Bi, Di, εi > 0, such

that the following LMI conditions hold for ∀(i, j) ∈ S × S:



−Xi Π1 0 0 Π2 Xi +DT
i τmaxD

T
i

ΠT
1 Π3 eQ̃Ei Mi 0 BT

i τmaxB
T
i

0 eETi Q̃ −Q̃ 0 −Q̃NT
2i 0 0

0 MT
i 0 −εiI 0 0 0

ΠT
2 0 −Q̃TN2i 0 −ε−1

i I 0 0

XT
i +Di Bi 0 0 0 −Xj 0

τmaxDi τmaxBi 0 0 0 0 −U


< 0. (6.3.16)

In this case, an appropriate robust stabilizing state feedback controller can be chosen as

U t = YiX
−1
i Rt, where

Π1 = Xi[Ji − eEi − I]T − eY T
i Z

T
i −DT

i ,

Π2 = Xi[N1i +N2i]
T + Y T

i N
T
3i,

Π3 = −Bi −BT
i ,

Proof 6.2. From Theorem 6.1 and for σt = i, σt+1 = j, we have that the sufficient

condition for robust stability of system Θ42 is

Φij =


Φ1 Φ2 eLTi Ei

ΦT
2 Φ3 eSTi Ei

eETi Li eETi Si −Q

+


LTi Mi

STi Mi

0

Ft [N1i +N2i 0 −N2i

]

+


(N1i +N2i)

T

0

−NT
2i

F Tt [MT
i Li MT

i Si 0
]
, i, j ∈ S. (6.3.17)

where

Φ1 = LTi [Ji − eEi − eZiK1i − I] + [Ji − eEi − eZiK1i − I]TLi + Pj − Pi,

Φ2 = Pj − LTi + [Ji − eEi − eZiK1i − I]TSi,

Φ3 = Pj + τ2
maxQ− Si − STi .

We set Xi = P−1
i , Bi = S−1

i , Di = −BiLiXi, Q̃ = Q−1 and Yi = K1iXi. Based on
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the result in Sun et al. (2007) [67], we have LMI conditions (6.3.16) is equivalent with

(6.3.17). Therefore, we have Θ42 is robust stochastically stable. The proof for Theorem

6.2 is completed. 2

6.4 Robust H∞ stability and H∞ Controller of system Θ4

Here we consider the P-R system Θ4 which take the impact of outside disturbance wt+1

t and controller into account.

Θ4 :


Rt+1 = [Jσt + ∆Jσt,t]Rt − e[Eσt + ∆Eσt,t]Rt−τt − e[Zσt + ∆Zσt,t]U t + wt+1

Rt = ϕ
t

for t ∈ [−τmax, 0].

zt = CRt

and state feedback controller:

U t = K1iRt.

Theorem 6.3. The system Θ4 is robust stabilizable with noise attenuation level γ, if

there exist matrices Xi,Yi, Q̃ > 0, Bi, and Di, such that the following conditions hold

∀(i, j) ∈ S × S:



−Xi Π1 0 0 XiC
T 0 Π2 Xi +DT

i τmaxD
T
i

ΠT
1 Π3 eQ̃Ei I 0 Mi 0 BT

i τmaxB
T
i

0 eETi Q̃ −Q̃ 0 0 0 −Q̃NT
2i 0 0

0 I 0 −γ2I 0 0 0 0 0

CXT
i 0 0 0 I 0 0 0 0

0 MT
i 0 0 0 −εiI 0 0 0

ΠT
2 0 −Q̃TN2i 0 0 0 −ε−1

i I 0 0

XT
i +Di Bi 0 0 0 0 0 −Xj 0

τmaxDi τmaxBi 0 0 0 0 0 0 −Q̃



< 0.

(6.4.1)

In this case, an appropriate robust stabilizing state feedback controller can be chosen as

U t = YiX
−1
i Rt.
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Proof 6.3. We redefine system Θ4 as



Rt+1 = Rt + Y t,

Y t = {Ji + ∆Ji,t − e[Ei + ∆Ei,t]− e[Zi + ∆Zi,t]K1i − I}Rt + wt+1

+ e[Ei + ∆Ei,t]

t−1∑
m=t−τσt

Y m,

zt = CRt.

(6.4.2)

We can construct a switching Lyapunov Function same as (6.3.7). Similar to the proof

of Theorem 6.2, we have LMI condition (6.4.1) indicate that system Θ4 with wt+1 = 0

is robust stabilizable. With the next step, our aim is to show that ||zt||e2 ≤ γ||wt||e2
holds for all nonzero wt and γ > 0. To prove this, we need to define

TH∞ = E{
N∑
t=0

(zTt zt − γ2wTt wt)|R0,σt = 0}. (6.4.3)

With zero initial condition we know Vσ0(R0) = 0. On the other hand, we have shown in

Theorem 6.1 that E[Vσt+1(Rt+1)]− E[Vσt(Rt)] ≤ 0. Therefore, for any time T we have

that E
(∑T

t=0 E[Vσt+1(Rt+1)|Rt]− Vσt(Rt)
)
≤ 0 and VT(RT) ≥ 0, which after tending

T→∞ will give us

E

( ∞∑
t=0

E[Vσt+1(Rt+1)|Rt]− Vσt(Rt)

)
≤ 0.

Using this relation and the definition of TH∞

TH∞ = E

( ∞∑
t=0

[E[Vt+1(Rt+1)|Rt]− Vt(Rt) + zTt zt − γ2wTt wt]

)

−E

( ∞∑
t=0

[E[Vt+1(Rt+1)|Rt]− Vt(Rt)]

)
. (6.4.4)

Similar to the proof in Chapter 5 the inequalities conditions in Theorem 6.3 can guaran-

tee that for each (i, j) ∈ S×S, TH∞ < 0 under zero initial conditions. Then, the system

is robust stochastically stable with an H∞ norm bound γ. 2

105



6.5 Numerical Application 4

In this section, a numerical application for illustrating the applicability of the theoretical

results for arbitrary regime switching is shown. Let us recall that the same regime

switching P-R system in Numerical Application 3 is run by an insurance company. We

assume the initial state condition, fixed part of parameters and time delay are same

with Numerical Application 3 in Chapter 5. However the regime switching signal is

arbitrary signal instead of markovian signal, and the parameter uncertainties. Then,

we use the result from the Theorem 6.3 to find out the H∞ controller such that the

total reserve process is stabilized with a particular disturbance attenuation level γ. The

different element with Numerical Example 3 is described here:

• γ = 21.8. This is the value the maximum impact level of the disturbance to the

reserves.

• The time-varying unknown parameter uncertainties ∆Ji,t , ∆Ei,t and ∆Zi,t, i ∈

[1, 2] are defined by:

[∆Ji,t − e∆Ei,t − e∆Zi,t] = MiFt[N1i N2i N3i],

where

M1 =


0.002 0 0

0 0.003 0

0 0 0.002

 ,

M2 =


0.005 0 0

0 0.005 0

0 0 0.004

 ,

N11 =


4 6 2

6 3 3

4 5 5

 , N21 =


6 3 4

5 6 5

3 2 5

 , N31 =


6 3 3

3 5 5

3 3 5

 .

N12 =


4 6 2

6 3 3

4 5 5

 , N22 =


6 3 4

5 6 5

3 2 5

 , N32 =


6 3 3

3 5 5

3 3 5

 .
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Here, the performance of system under different arbitrary switching signals is pre-

sented. The simulation results are provided for the time-period of t = 52 weeks.

By applying the result of the Theorem 6.3 , the H∞-controller is derived, and we

get the feedback controller for each regime separately under arbitrary switching signal

are:

If system is in Regime 1:

K11 =


0.6783 −0.9012 −0.8369

−0.7034 0.8533 −0.6048

1.1697 1.2032 2.6863

 .
If system is in Regime 2:

K12 =


1.0600 −0.5498 −0.4322

−0.8053 0.7840 −0.6738

0.8661 0.8753 2.2867

 .

6.5.1 Summary

As mentioned in Chapter 5, regime switching linear P-R systems exhibit complex dy-

namical behavior which can be critical for their stability properties. In this chapter we

analyse the stability of arbitrary regime switching linear systems and contribute to a

better understanding of the stability properties along with markovian regime switching

linear P-R systems.

Following same path in Chapter 5, a linear robust control theory for arbitrary regime

switching systems has been implemented in the P-R model. The LMI conditions for the

robust stabilization and a feasible H∞ controller for system Θ4 are derived through

a series of Lemmas and Theorems. Thus, with the H∞ controller, the premium is

adjusted to reasonable levels for different modes (regimes). Both robust stochastic

stability and a pre-specified disturbance attenuation level can be guaranteed for all

admissible uncertainties. Corresponding results have been illustrated by introducing a

numerical example.
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Figure 6.1: Arbitrary switching signal

Figure 6.2: The evolution of the three Premiums under the arbitrary switching signal

Figure 6.3: The evolution of the the three accumulated reserves account under the
arbitrary switching signal
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Chapter 7

H∞ Robust guaranteed cost

control

7.1 Introduction

In practical applications, the choice of control policy depends upon the optimization of

some preassigned performance criteria. When designing a controller for a real system,

it is often desirable to make the controlled system not only stable but also guarantee

an adequate level of performance. To deal with such control problems, the so-called

guaranteed cost control approach was first introduced by Chang and Peng (1972) [14].

The objective of this approach is to establish an upper bound on a given performance

index so that the system performance degradation incurred by the uncertainties is

guaranteed to be less than this bound. For guaranteed cost control, a great number

of results on this topic have been reported in the literature and various approaches

have been proposed. For example, in Petersen and McFarlane (1994) [54], notion of

the quadratic guaranteed cost control was introduced to allow for a quadratic perfor-

mance index and a Riccati equation approach was presented for designing quadratic

guaranteed cost controllers, where the system was delay-free. In Yu and Chu (1999)

[76], an LMI approach was proposed to deal with the guaranteed cost control problem

for a class of linear time delay systems with time-varying norm-bounded parameter

uncertainty, and a sufficient condition for the existence of memoryless state-feedback

guaranteed cost controllers was derived. In Chen et al. (2003) [18], the solutions to

the guaranteed cost control problem via state-feedback are presented for a class of un-
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certain Markovian jump systems with mode-dependent delays in LMI framework, and

the delay dependent/independent sufficient conditions for the existence of guaranteed

cost state-feedback controllers have been derived.

In recent years, multi-objectives design approach for control systems has received

more and more attention. In modern control theory it is common to minimize a perfor-

mance index which may be a generalized quadratic energy function, in many cases with

some secondary constraints (or limitations on the range or character of the solution).

This may be seen as a ”natural” requirement as most systems in nature operate in such

a way as to minimize energy consumption (Hendricks et al., 2008 [34]). In the P-R

system, it could be desirable that the system can satisfy another characteristic besides

the stability of accumulated reserve trajectory.

7.2 Model formulation

The assumption in this chapter is almost same with those in Chapter 3, except for

the time-delay. In this chapter, positive integer τ1 represents the state time delay of

system. Unlike previous chapters, it is a fixed but unknown definite integer satisfying

0 ≤ τ1 ≤ τmax with τmax ∈ N. So, considering a specific time-delay interval, at the

end of each year [t, t + 1), we have the exact information up to the end of the year

t − τ1. The value for τmax in this chapter can be estimated using past experience and

statistical data. Consider the following system:
Rt+1 = [J + ∆Jt]Rt − e[E + ∆Et]Rt−τ1 − e[Z + ∆Zt]Ut + wt+1,

zt = CRt,

Rt = ϕt for t ∈ [−τmax, 0].

Also, after substituting the control input U t = KRt, our new closed loop P-R

system becomes

Θ5 :


Rt+1 = {[J + ∆Jt]− e[Z + ∆Zt]K}Rt − e[E + ∆Et]Rt−τ1 + wt+1,

zt = CRt,

Rt = ϕt for t ∈ [−τmax, 0].
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Performance index for the P-R system is defined as follow:

PI =
∞∑
t=0

[RTt QR
T
t + UTt RU t], (7.2.1)

where Q and R are given positive definite weight symmetrical matrices.

7.3 Main result

Definition 7.1. For a given positive constant γ > 0 and symmetrical positive definite

matricesQ andR, state feedback controller U t is a robustH∞ guaranteed cost controller

for the P-R systems Θ5, if the following conditions holds for all the admissible parameter

uncertainties.

1. The closed-loop system Θ5 is stable, when wt+1 = 0

2. With the zero initial condition, the controlled output zt satisfies

||zt||e2 ≤ γ||wt||e2 ,

3. In the case when wt = 0, the performance index for the P-R system is

PI =

∞∑
t=0

[RTt QR
T
t + UTt RU t] < k

where k is a positive number.

7.3.1 H∞ guaranteed cost control

To get the result in this chapter, Lemma 3.2 and Lemma 5.1 are used.

Theorem 7.1. For the given constant γ > 0 and the performance index (7.2.1), a

sufficient condition for the existence of H∞ guaranteed cost controller U t = KRt for

P-R systems Θ5 is that it exists symmetrical positive definite matrices P , S1 such that

for all admissible parameter uncertainties, the following matrix inequality holds
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

−P−1 [J + ∆Jt]− e[Z + ∆Zt]K −e[E + ∆Et] I 0

{[J + ∆Jt]− e[Z + ∆Zt]K}T Ω 0 0 CT

−e{E + ∆Et}T 0 −S1 0 0

I 0 0 γI 0

0 C 0 0 I


< 0,

(7.3.1)

where Ω = −P + S1 +KTS2K +Q+KTRK.

Proof 7.1. Here the closed loop P-R system uses the controller U t = KRt. If there

exist positive definite matrices P and S1 such that LMI (7.3.1) holds, we can construct

a generalized Lyapunov function Vt(Rt)

Vt(Rt) = RTt PRt +

t−1∑
i=t−τ1

RTi (S1)Ri, (7.3.2)

in the case when wt+1 = 0, the forward difference of Rt is

∆Vt(Rt) = Vt+1(Rt+1)− Vt(Rt) (7.3.3)

= RTt+1PRt+1 +RTt (−P + S1)Rt −RTt−τ1S1Rt−τ1

=

 Rt

Rt−τ1

T {[J + ∆Jt]− e[Z + ∆Zt]K}T

−e{E + ∆Et}T

P [(J + ∆Jt)− e(Z + ∆Zt)K −e(E + ∆Et)
]

+

Ω−Q−KTRK 0

0 −S1

 Rt

Rt−τ1 .


Considering the LMI (7.3.1) and Lemma 3.2 (Schur complements), we follow the same

method in Theorem 3.1. It is easy to get

∆Vt(Rt) < −RTt (Q+KTRK)RTt (7.3.4)

≤ −λmin(Q+KTRK)||Rt||2 < 0,

where λmin( ) is the minimum eigenvalue of respective matrix. Therefore, the closed-

loop system Θ5 is robust stable. Furthermore, if we have arbitrary disturbance wt+1 6=
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0, same as the proof in Theorem 3.3 and Theorem 5.3, we can get

∆Vt(Rt) + zTt zt − γ2wTt wt < 0. (7.3.5)

By the zero initial condition, we can develop equation (7.3.5) to

∞∑
t=1

zTt zt − γ2
∞∑
t=1

wTt wt < −V∞(R∞) ≤ 0. (7.3.6)

Thus,

||zt||e2 ≤ γ||wt||e2 .

Sum time t from 0 to ∞ at both sides of equation (7.3.4), we get

PI ≤ RT0 PR0 +
−1∑

i=−τ1

RTi S1Ri. (7.3.7)

The proof is completed. 2

Remark 7.1. Noticing that the closed-loop performance upper bound obtained from

inequality (7.3.7) depends on the initial condition of system Θ5. To remove this de-

pendence on the initial condition, we suppose that the initial state of system Θ5 is

unknown but all belongs to the set S = {R−i ∈ Rm, R−i = Uoi, o
T
i oi ≤ 1, i = [−τmax]},

where U is a given constant matrix. Thus, we can get

PI ≤ λmax(UTPU) + τ1λmax(UTS1U). (7.3.8)

Theorem 7.2. For the given constant γ > 0 and system and system performance index

PI , if there exists a positive scalar ε and symmetrical positive definite matrices X, L,

T and matrix Y such that the following LMI holds


T1 T2 T3

T T2 −εI 0

T T3 0 T4

 < 0, (7.3.9)
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where

T1 =



−X + 3εMMT JX − eZY −eEL 0 I 0

(JX − eZY )T −X 0 0 0 (CX)T

−eLEt 0 −L 0 0 0

0 0 0 −T 0 0

I 0 0 0 −γ2I 0

0 CX 0 0 0 −I


,

T2 =



0 0 0 0 0 0 0 0 0 0

XNT
1 Y TNT

2 0 0 0 0 0 0 0 0

0 0 LNT
3 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


,

T3 =


0 X 0 0 0 0

0 Y 0 0 0 0

0 X 0 0 0 0

0 Y 0 0 0 0



T

,

T4 =


−L 0 0 0

0 −T 0 0

0 0 −Q−1 0

0 0 0 −R−1

 ,

The state feedback controller U t = KRt = Y X−1Rt is a H∞ guaranteed cost control

law for systems Θ5 and the corresponding closed-loop performance index satisfies:

PI ≤ λmax(UTX−1U) + τmaxλmax(UTL−1U).
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Proof 7.2. The inequality (7.3.1) can be written as



−P−1 J − eZK −eE I 0

{J − eZK}T Ω 0 0 CT

−eET 0 −S1 0 0

I 0 0 γI 0

0 C 0 0 I



+



0 ∆Jt − e∆ZtK −e∆Et 0 0

{∆Jt − e∆ZtK}T 0 0 0 0

−e∆ETt 0 0 0 0

0 0 0 0 0

0 0 0 0 0


< 0 (7.3.10)

Since

[∆Jt − e∆Et − e∆Zt] = MFt[N1 N2 N3].

By Lemma 3.2 (Schur comlement), Lemma 5.1 and following same approach in the proof

of Theorem 3.2 and Theorem 3.4, we can prove that if there exists feasible positive def-

inite matrices X, L, T and matrix Y satisfying LMI (7.3.9), then then U t = KRt =

Y X−1Rt is a H∞ guaranteed cost control law for system Θ5 and the corresponding

closed-loop performance index PI is upper bounded. We should notice here X = P−1,

Y = KX, L = S−1
1 . 2

7.3.2 Optimal guaranteed cost controller

Substituting the given into LMI (7.3.9), and then by solving the following optimization

problem, we can get the guaranteed cost control law such that the corresponding closed-

loop performance index that upper bound is minimum.

115





min(α+ τmaxβ)

s.t 1)


T1 T2 T3

T T2 −εI 0

T T3 0 T4

 < 0

2)

−αI UT

U −X


3)

−βI UT

U −L



(7.3.11)

System (7.3.12) is a convex optimization problem, so we can get the global optimization

solution by the mincx in LMI software toolbox (see Gahinet et al. (1995) [27]) for this

optimization problem.

7.3.3 Numerical Example 5

In this section, we present a basic example to show how robust guaranteed cost control

can be useful to solve some affiliated problem in P-R problem. We consider a simple

system as:

Rt+1 = [J + ∆Jt]Rt − e[Z + ∆Zt]U t. (7.3.12)

Here, we know the relevant parameters are:

J =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

 , −eZ =


1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

0 0 0 0 0 0

 ,

Q =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , R =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1


,
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M =


0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 1 1 1 1 1 1

 . N1 =



0 0 0 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


,

N3 =



0 0 0 0 0 0

15.045 0 0 0 0 0

0 3.009 0 0 0 0

0 0 2.006 0 0 0

0 0 0 14.955 0 0

0 0 0 0 2.991 0

0 0 0 0 0 1.994


,

[∆Jt − e∆Zt] = MFt[N1 N3].

Based on the result in this chapter, the controller for the basic system (7.3.12) is derived.

Y =



−0.0001 0 0 0

0 −0.0052 0 0

0 0 −0.002 0

0.3789 0 0 0

0 0.0053 0 0

0 0 0.0117 0


, X =


0.6124 0 0 0

0 0.1022 0 0

0 0 0.1089 0

0 0 0 0.3698

 ,

and the feedback controller is

U t = Y X−1Rt =



−0.002 0 0 0

0 −0.0509 0 0

0 0 −0.0184 0

0.6187 0 0 0

0 0.0519 0 0

0 0 0.1074 0


Rt.

The corresponding Performance Index has a upper bound PI ≤ 23.3044.

117



Chapter 8

Conclusion and future research

The purpose of this thesis is to develop a sound approach for robust control of the

P-R system in insurance, which form the basis of good reserve management and pre-

mium rating policy. As an extension of previous literature, we define comprehensive

mathematical frameworks that adequately describe premium rating formation and ac-

cumulated reserve process. The P-R models in this thesis captures the essential factors

that influence the trajectories of premium and reserve. In particular, factors which

influence the stability of P-R system can be captured by the P-R models in this thesis.

These can provide insurance company a new approach for financial strength analysis,

solvency margin supervision and management of premium rating policy.

Modellers in actuarial science always face the difficulties from the complexity and

uncertainty around the model. Ideally, the model should be sufficiently sophisticated so

that it can appropriately capture real world behaviour. However, the classical models

are often one-dimensional deterministic models. The parameter in those classical mod-

els is fixed. Since real world behaviour is involved, actuaries should instead consider

more complicated model which captures those stochastic and uncertain factors. It is

impossible to model all the real world characteristics, but it is desirable to capture the

essential influential factors in an appropriate way, i.e. stochastic system and outside

disturbance in Chapter 3, risky investment in Chapter 4, and regime switching impact

in Chapter 5 and 6.

The disadvantage of such complex models is that they have difficulties in under-

standing and interpretation, because the stochastic and uncertain factors are not easy

to be described at same time in the model.
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On the contrary, the linear robust H∞ control theory which is initially developed

in engineering science can provide us powerful tools to describe real world behavior

sufficiently well. Therefore, we are motivated to implement the linear robust H∞

control theory into the classical P-R system problem. The results in this thesis give us

a solid and reliable framework to analyze, understand and manage the impact of these

uncertain and stochastic factors on the P-R system.

The models that we describe have been investigated by several researchers before,

but most of them are restricted only in deterministic linear system. One main con-

tribution of this thesis is illustrated in Chapter 3, where we extend the research on

the stability of linear stochastic P-R system model. Under Chapter 3 the model is

developed into a stochastic, discrete time framework and norm-bounded parameter

uncertainties have been also incorporated.

In Chapter 4, model defined in Chapter 3 is modified by taking into account a pre-

defined risky investment strategy, which makes the theorem more realistic in practice.

Same as Chapter 3, robust H∞ control problems for the P-R system are proposed using

LMI criteria.

During the last two decades, applications of regime switching models in finance and

macroeconomics have received a great attention among researchers and particularly,

market practitioners. In Chapter 5 and 6, research has been done in regime switch-

ing framework. Chapter 5 is an attempt to consider how a linear Markovian regime

switching system in discrete-time could be used to model the medium- and long- term

reserves and the premiums of an insurer. Meanwhile, Chapter 6 considers the problems

under the arbitrary regime switching assumption. The essence of those theorems is

based on sufficient LMI criteria.

The applicability of those theorems is demonstrated by numerical examples. In nu-

merical examples, we assume an insurance company runs a non-life insurance portfolio

containing multiple products, which may be exposed to outside financial and economic

disturbances, parameter uncertainties, etc.

The basic model in Chapter 7 can be viewed as an important cornerstone towards

a comprehensive multiple objects optimization problem. In this chapter, we care not

only the stability of P-R system but also minimization of cost function.

In future, we plan to extend the result in Chapter 3 and 4 by considering a model

with multiple independent stochastic factors. This would enable us to avoid predefined
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fixed investment plan for the portfolio and switch to dynamic portfolio investment. This

means we can control the allocation strategy between risk-free and risky investments

and possibly find an approach to create an optimal portfolio. Moreover, markovian

regime switching problem could be analyzed in stochastic framework and the affiliated

problems will be solved through robust guaranteed cost control approach. We have a

very strong assumption that the contract between the insurance company and policy-

holder will last for a very long time. This is not very realistic situation in competitive

market. So in future it is possible to implement a game theoretic model, and the relax-

ation of this assumption will be considered. Also, we could implement output feedback

mechanism instead of state feedback mechanism in P-R system.

Last but importantly, when we try to apply the models to solve real world P-R

system process problems, we should always keep in mind that we need to translate the

real world problem in an appropriate way. In order to effectively use the results in this

thesis, one needs to have a good understanding of the relevant insurance and financial

products. This includes a good understanding of external factors like economic devel-

opments (monetary policy, economic growth, insurance and financial markets, interest

rate behaviour, inflation, legal and political changes), environmental factors (natural

hazards, scientific developments, etc.), the insurance contracts itself, policyholder be-

haviour, management actions, etc. Therefore, besides the theoretical aspect, in the

future we need also to have a deeper understanding for the connection between the

models in this thesis and the real world actuarial applications. That means we should

give a reasonable approach to define the practical meaning and determine specific value

of uncertain parameters.
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