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Abstract

The existence of discrete properties is shown in the landscape of the Free-Fermionic

Heterotic-String vacua. These were discovered via the classification of the SO(10)

GUT gauge group and its subgroups, such as, the Pati-Salam, the Flipped SU(5) and

the SU(4) × SU(2) × U(1) models. The classification is carried out by fixing a set

of basis vectors and then varying the GGSO projection coefficients entering the one-

loop partition function. The analysis of the models is facilitated by deriving algebraic

expressions for the GGSO projections to enable a computerised analysis of the entire

String spectrum and the scanning of large spaces of vacua. The analysis reveals an

abundance of 3 generation models with exophobic String vacua. This is observed with

the SO(10) and the Pati-Salam models. Contrary to this, the Flipped SU(5) models

contained no exophobic vacua with an odd number of generations. Moreover, it is also

observed that the SU(4)C×SU(2)L×U(1)L models are substantially more constrained

and that no generations exist. The analysis of the SU(3)C×U(1)C×SU(2)L×U(1)L

and the SU(3)C × U(1)C × SU(2)L × SU(2)R models are being examined, which is

work in progress, that are expected to generate further interesting phenomenology.
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Chapter 1

Introduction

The LHC discovery of a Higgs-like resonance [1, 2] lends further support to the vi-

ability of the Standard Model as the effective parameterisation of all observational

subatomic data. However, the Standard Model only consists of three of the four

known forces in physics: the electromagnetic, weak and strong forces. On the other

hand, nature’s fourth force, gravity, is not included as it is only described by its

classical effects with general relativity. A promising attempt to solve this problem is

by using String theory, as it is also a consistent theory of quantum gravity. As String

theory is yet to be proven experimentally, one method is to focus on the consequences

of String models for the effective low-energy limit. Alternatively, the consequences of

the minimal low-energy requirements for String theory can also be considered. There-

fore, String theories have been formulated for all dimensions D < 10, in particular

directly in four space-time dimensions. In this thesis, the results in the Free-Fermionic

construction of String theory within these four space-time dimensions are presented.

The low-energy requirements such as N = 1 space-time supersymmetry and chiral

space-time fermions are considered. The consequences of these results for the models

derived from the Free-Fermionic construction of String theory are then discussed.

In this chapter, the Standard Model will be briefly reviewed as to some of its

theoretical shortcomings. Following this, the Grand Unified Theories (GUTs), with

some elaboration on the SU(5) GUT models, will then be discussed, as a possible

extension of the Standard Model. To finalize, a thesis outline of each of the remaining

chapters will be given.

1.1 The Standard Model

The Standard Model gives an excellent description of nature in agreement with

experimental data up to the energy scales of 8.1 TeV. It encompasses 3 of the 4

known interactions between elementary particles: the strong, the weak and the elec-
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tromagnetic interactions. Gravity is negligible at the present accessible experimental

scales and is therefore not included. The matter content of the Standard Model is

summarized in the following table:

Generation Fermion Symbol Electric Charge

Up quark u +2
3

1st Down quark d −1
3

Electron e −1

Electron neutrino νe 0

Charm quark c +2
3

2nd Strange quark s −1
3

Muon µ −1

Muon neutrino νµ 0

Top quark t +2
3

3rd Bottom quark b −1
3

Tau τ −1

Tau neutrino ντ 0

All the above particle content of the Standard Model has been detected in a number

of experiments carried out by the various colliders over the decades. Similarly, the

spin-1 vector bosons of the Standard Model that mediate the interactions, are sum-

marized in the following table:

Force Boson Symbol Electric Charge

Eletromagnetic Photon γ 0

Weak W-boson W± ±1

Z-boson Z0 0

Strong Gluon g1,...,8 0

These interactions are all described by gauge field theories. The electromagnetic and

the weak interactions are combined in the SU(2)L×U(1)Y electroweak gauge theory,

whereas the strong interactions are described by the gauge group SU(3)C . Therefore,

the Standard Model is often denoted as SU(3)C × SU(2)L × U(1)Y . In addition to

the above particles, the Standard Model contains a SU(2)L doublet, SU(3)C singlet,

called the Higgs boson

h =

(
h+

h0

)
.
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1.2 Grand Unified Theories

The Standard Model has been extremely successful, having survived all experi-

mental tests in the last five decades. Despite this, it is considered to be incomplete.

In regard to this, in what follows, some of the shortcomings will be assessed. Since,

these shortcomings are not based on any discrepancy between theory and experiment

or any theoretical inconsistencies, their evaluation is highly subjective. Yet, given

the desire for a unified and simple theory of the fundamental processes in nature, the

Standard Model is considered to be unsatisfactory. An example of a classical uni-

fied theory is Maxwell’s theory of electromagnetism. Here, the electric and magnetic

fields
−→
E ,
−→
B are specific aspects of one physical quantity, the field strength tensor

Fαβ defined as

Fαβ = ∂αAβ − ∂βAα =


0 −Ex −Ey −Ez
Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 .

The equations of motion or Maxwell’s equations are then written in terms of Fαβ,

∂αF
αβ =

4π

c
Jβ,

∂αF βγ + ∂βF γα + ∂γFαβ = 0,

with one current term Jβ. In quantum electrodynamics this translates to the fact

that all electric and magnetic interactions are parametrized by the same coupling

constant α = e2

4π
≈ 1

137
1, known as the fine structure constant. On the other hand,

in the SU(3)C ×SU(2)L×U(1)Y theory, there are 3 gauge coupling parameters: αS,

αW and α, where the parameter α here is the analogue of the QED fine structure

constant stated above. Thus, the three interactions are physically distinct. Another

major deficiency of the Standard Model, with respect to unification, is that the fourth

known interaction gravity is not included. There is no common framework for the

gauge field theories of the Standard Model and the classical theory of gravity. A

further unsatisfactory point of the Standard Model is its lack of simplicity, it has

many free parameters. Therefore, although the Standard Model provides a good

explanation of the current experimental observations, nevertheless it cannot be a

fundamental theory, and the search for such a theory is pressing and open issue in

particle physics today.

1The value observed at low energies
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In addition to the aesthetical questions of unification and simplicity, the structure

of the Standard Model provokes many unanswered questions, of which only a few

will be listed: Why is electric charge quantized? Why is there a hierarchy of fermion

masses? What is the origin of the family structure? How many fermion generations

are there? A proposed candidate to solve some of the problems of the Standard

Model is to consider GUTs [3], an example being the SU(5) models. Grand unified

theories, as the name suggests, focuses on the problem of unification in the Standard

Model, postulating on an enlarged internal symmetry to achieve this goal. Ever

since the development of the theories of special and general relativity, symmetries

have played an essential role in the construction of physical theories. The main

symmetry of the Standard Model and the foundation of its success is the gauge

symmetry SU(3)C × SU(2)L × U(1)Y . The central idea of GUTs is to assume that

SU(3)C , SU(2)L and U(1)Y are distinct subgroups of a larger gauge symmetry group

in which formerly disconnected fermions of a family, or bosons of different gauge

groups, transform in larger fermionic or bosonic multiplets. This larger symmetry

is unbroken above a yet-to-be-determined mass scale Mχ, that must be broken at

presently accessible energies, as it is not observed.

1.3 SU(5) GUT Models

In the SU(5) models, the fermions of a family transform as the 5 + 10, where

5 = (3,1)−2
3
⊕ (1,2)+1,

10 = (3,2)+1
3
⊕ (3,1)−4

3
⊕ (1,1)+2.

Here, the right hand side of the equations denotes the SU(3)C × SU(2)L × U(1)Y

decomposition. Looking at this decomposition, with a specific set of U(1)Y quantum

numbers, the 15 fermions of the first family are distributed over these representations

uniquely as

4



5 : ψiL =


dc1

dc2

dc3

e

−νe

 ,

10 : ψjk
L =

1√
2


0 uc3 −uc2 u1 d1

−uc3 0 uc1 u2 d2

uc2 −uc1 0 u3 d3

−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0

 ,

where the superscript c refers to the complex conjugate fields. The gauge bosons

transform globally under the 24 adjoint representation of the SU(5), given by

24 = (8,1)0 ⊕ (1,3)0 ⊕ (1,1)0 ⊕ (3,2)−5
3
⊕ (3,2)+5

3
,

with the notation as before. The first three multiplets denote the gauge bosons of the

Standard Model. The last two multiplets (3,2)−5
3

and (3,2)+5
3

are new to GUTs.

They have non-trivial quantum numbers under both the SU(3)C and SU(2)L gauge

groups. Therefore, they can mediate transitions between quarks and leptons, as well

as between quarks and anti-quarks (i.e. the dc and the e in the 5 and the uc and the

d in the 10, for example).

In order to accomplish the spontaneous symmetry breaking, the SU(5) models

uses a 24 and 5 of scalar Higgs particles: Φ24 and Φ5 respectively. The Φ24 can

break the SU(5) gauge group to the SU(3)c × SU(2)L × U(1)Y symmetry at a scale

Mχ ∼ 〈Φ24〉. This also splits Φ5 into a SU(3)C triplet H(3,1) and a SU(2)L doublet

h1,2. The latter is the Higgs doublet of the Standard Model which spontaneously

breaks the electroweak theory. In this way, the Standard Model is retrieved at low

energies, as required by a generalized correspondence principle. This completes the

particle content of the SU(5) models, with the only new particles being the extra

gauge bosons and the extra Higgs scalars.

A central predication of all GUTs is the decay of the proton via the lepto-quark

gauge bosons. Experimentally the lifetime of the proton τP [4] is known to be

τP ≥ 1034 years.

The minimal SU(5) models predicts τP ∼ O(1031) years and is therefore most likely
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ruled out experimentally. However, other models such as SO(10), E6 and the Flipped

SU(5) are consistent with this experiment. For this reason, there is an interest in

studying the Flipped SU(5) models, instead of the straight SU(5) models. The

Flipped SU(5) models differ from the straight SU(5) models, with the right-hand

neutrino being embedded in the 10 representation of the Flipped SU(5), rather than

the singlet. Therefore, the GUT can be broken with the 10 representation instead

of the adjoint representation. A detailed discussion of the Flipped SU(5) models are

the topic of discussion in chapter 4.

1.4 Thesis Outline

The chapters of this thesis are organised as follows:

• Chapter 2: The superstring theory is reviewed, where the classical and quan-

tum dynamics of the string are discussed.

• Chapter 3: The set up of the Free-Fermionic construction in the Heterotic-

String is shown. The one-loop partition function is defined at an arbitrary

point in the moduli space. This enables the derivation of specific constraints

deduced from modular invariance. These constraints lead to the ABK rules,

where String model building can be achieved.

• Chapter 4: The Flipped SU(5) classification of the Free-Fermionic Heterotic-

String vacua is presented. The constructed models are given by breaking the

SO(10) GUT symmetry at the String scale to the Flipped SU(5) subgroup.

A set of basis vectors defined by the boundary conditions assigned to the free

fermions, is fixed. Then the enumeration of the String vacua that is obtained

in terms of the Generalised GSO (GGSO) projection coefficients entering the

one-loop partition function is shown. The total scanned models is 1012 GGSO

configurations. Contrary to the previous Free-Fermionic classifications, no exo-

phobic Flipped SU(5) vacua with odd numbers of generations are found. How-

ever, other interesting properties are presented. This chapter contains material

that has appeared in publication [5] presented by the author.

• Chapter 5: The classification is extended to the SU(4) × SU(2) × U(1)

Heterotic-String models. These models are obtained from the SO(10) symme-

try breaking to the Pati-Salam subgroup, where the SU(2)R symmetry breaking

to the U(1)L gauge group takes place. However, it will be shown that in these

class of Free-Fermionic models, three chiral generations cannot be produced.
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This chapter contains material that has appeared in publication [6] presented

by the author.

• Chapter 6: The Free-Fermionic landscape is presented by considering the var-

ious GUT model classifications. These models descend from the E6 symmetry,

broken to the SO(10) gauge group and then its subgroup. Discussion takes

place on the Pati-Salam, the Flipped SU(5), the SU(4) × SU(2) × U(1) and

the Standard-Like models. It will be shown that discrete symmetries emerge,

in addition to there being an abundance of three generation models in the

Free-Fermionic setting. This chapter contains material that has appeared in

publication [7] presented by the author.
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Chapter 2

String Theory

In this chapter, a review is given of the classical and quantum dynamics of the

Superstring. For the classical Superstring, the Superstring action is first introduced

and then followed by a discussion of the symmetries, supersymmetry, equations of

motion, boundary conditions and mode expansions. For the quantum Superstring,

the classical analog is quantized using the canonical quantization. In order to find

the critical values of the normal ordering constants aR and aNS and the dimension D,

the light-cone quantization is then examined. Further to this, the GSO2 projection

of the spectrum is taken and then is used to project out the Tachyon.

String theory [9, 10, 11, 12, 13, 14] is a popular research area in modern theoretical

physics. It has been the leading candidate over the past decades for a theory that

consistently unifies all fundamental forces of nature, including gravity. The theory

predicts gravity and gauge symmetries around flat space. The elementary objects are

one-dimensional Strings whose vibration modes correspond to the usual elementary

particles.

2.1 Classical Superstring Dynamics

In String theory, fundamental particles are no longer seen as point particles, in-

stead they are depicted as Strings that give rise to vibrational modes. The String is

described by the variable Xµ(σ, τ), where µ = 0, 1, ..., D − 1 and Xµ is the position

of a point of the String parametrized by the time-like coordinate τ and the space-like

coordinate σ. As the String propagates, it sweeps out an area called the worldsheet,

that is a surface in two-dimensional space-time. Hence, the String moves in a

D-dimensional Minkowski space-time. The action of the String, namely the Polyakov

2Gliozzi, Scherk and Olive [8]
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action, is given by

S = −T
2

∫
dσdτ

√
−hhαβ∂αXµ∂βX

µ,

where α, β = σ, τ , hαβ is the metric of the worldsheet, h is the determinant of hαβ

and T = 1
2πα′

is the tension of the String. This action is invariant under the following

transformations:

• Poincaré invariance

This is a global symmetry on the worldsheet of the Lorentz transformations

and translations given by

Xµ(σ, τ) = Λµ
νX

ν(σ, τ) + cµ,

where Λµν = −Λνµ and cµ is a constant.

• Reparameterization invariance

This is a gauge symmetry on the worldsheet defined by

σα −→ σ̃α(σ, τ),

where the fields Xµ and the metric hαβ transforms as follows

Xµ(σ, τ) −→ X̃µ(σ̃, τ̃) = Xµ(σ, τ),

hαβ(σ, τ) −→ h̃αβ(σ̃, τ̃) =
∂σγ
∂σ̃α

∂σδ
∂σ̃β

hγδ(σ, τ).

• Weyl invariance

This is a gauge symmetry on the worldsheet defined by

hαβ(σ, τ) −→ e2ω(σ,τ)hαβ(σ̃, τ̃).

Using these invariance properties of the Polyakov action, the action can be rewritten

as

S = −T
2

∫
dσdτ∂αXµ∂

αXµ.

As this action only describes a theory with bosonic fields Xµ, it would be desirable

to incorporate fermionic fields ψµ. This can be achieved by relating the bosons and

the fermions to each other by a supersymmetric transformation, such as

δXµ = iεψµ,

δψµ = ρα∂αX
µε.

9



Here ε is a constant and an infinitesimal Majorana spinor that consists of anti-

commuting Grassmann numbers, ρα for α = 0, 1 are the two-dimensional Dirac

matrices, where for a Majorana representation this is given by:

ρ0 =

(
0 −1

1 0

)
, ρ1 =

(
0 1

1 0

)
and ρ3 = −ρ0ρ1 =

(
1 0

0 −1

)
.

It should be noted that these matrices satisfy the Dirac algebra known as the Clifford

algebra {ρα, ρβ} = 2ηαβ. The symmetry of the worldsheet theory is global, since ε

is independent of the worldsheet coordinates σ and τ . Using these supersymmetric

transformations, the action of the Superstring can be written as

S = − 1

4πα′

∫
d2σ

(
∂αXµ∂

αXµ + iψ
µ
ρα∂αψµ

)
, (2.1.0.1)

where ψµ = ψµ(σ, τ) is the two-dimensional fermionic field represented by a Majorana

spinor

ψµ =

(
ψµ−

ψµ+

)
,

which satisfies the canonical fermionic anti-commutation relations that is in agree-

ment with the spin-statistics given by

{ψµA(τ, σ), ψνB(τ, σ′)} = π δAB δ(σ − σ′) ηµν .

Taking a Majorana basis, it can be deduced that the conjugate fermion spinor is

given as

ψ
µ

=

(
ψµ+

−ψµ−

)
.

2.1.1 Boundary Conditions and Mode Expansions

The boundary conditions for the bosonic fields Xµ, are given by the variation of

the first term in the Superstring action (2.1.0.1) as

δSb = − 1

2πα′

∫
dτ

∫
dσ (∂σX

µδXµ)

= − 1

2πα′

∫
dτ

∫
dσ [∂σX

µδXµ]σ=π
σ=0

= 0.

10



Taking ∂σX
µδXµ = 0 at σ = 0 and σ = π implies

Xµ(τ, σ + π) = Xµ(τ, σ). (2.1.1.1)

This is a periodic boundary condition that describes closed Strings, in the light-cone

gauge it is the tensor product of the left-moving and the right-moving bosons, whereas

the open Strings take the boundary conditions:

δXµ = 0 (Dirichlet),

∂σX
µ = 0 (Neumann).

Similarly, the variation of the second term in the Superstring action (2.1.0.1) in the
light-cone gauge, gives the boundary conditions of the fermionic fields ψµ as

δSf = −T
∫
dτdσ

(
δψµ−∂+ψ−µ + δψµ+∂−ψ+µ

)
− T

2

∫
dτ
[
ψµ+δψ+µ − ψµ−δψ−µ

]σ=π
σ=0

. (2.1.1.2)

Therefore, the equations of motion are

∂+ψ− = 0 and ∂−ψ+ = 0.

These are the Weyl conditions for spinors in two-dimensions. The fields ψ− and ψ+

are thus Majorana-Weyl spinors. These equations imply that

ψµ− = ψµ−(τ − σ) and ψµ+ = ψµ+(τ + σ).

The requirement of the vanishing of the boundary terms when varying the action

from (2.1.1.2) yields

[ψµ+(τ, σ)δψ+µ(τ, σ)− ψµ−(τ, σ)δψ−µ(τ, σ)]σ=π
σ=0 = 0,

leading to two types of boundary conditions for the Superstring.

Closed Superstrings

Considering the closed Superstring, where periodic or anti-periodic boundary condi-

tions can be imposed, the boundary conditions can also be imposed separately for

the left- and right-movers:

ψµ−(τ, σ) = ±ψµ−(τ, σ + π) ,

ψµ+(τ, σ) = ±ψµ+(τ, σ + π) .
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The plus sign corresponds to the Ramond (R) boundary conditions, which are peri-

odic, while the minus sign corresponds to the Neveu-Schwartz (NS) boundary con-

ditions, which are anti-periodic. Therefore, for the closed Superstring, the possible

sectors are: NS-NS, R-R, NS-R and R-NS, where the left-movers are written on the

left. Here the sectors NS-NS and R-R corresponds to states that are space-time

bosons, whereas the sectors NS-R and R-NS corresponds to states that are space-

time fermions. It is important to note here, that the open Strings are just tensor

products of the closed Strings, such that R-NS is R⊗NS. The Fourier modes for the

functions ψµ± are as follows:

• Ramond Boundary Conditions:

ψµ−(τ, σ) =
∑
n∈Z

dµne
−2in(τ−σ) ,

ψµ+(τ, σ) =
∑
n∈Z

d̃µne
−2in(τ+σ) .

• Neveu-Schwartz Boundary Conditions:

ψµ−(τ, σ) =
∑
r∈Z+ 1

2

bµr e
−2ir(τ−σ) ,

ψµ+(τ, σ) =
∑
r∈Z+ 1

2

b̃µr e
−2ir(τ+σ) .

In quantum theory, the coefficients dµn and bµn are called raising operators for n < 0

and lowering operators for n > 0. However, the expansion of Xµ is more complicated,

since Xµ
R and Xµ

L are a priori not periodic, as only their derivatives are periodic and

can be computed as

∂−X
µ
R(τ, σ) = ls

∑
r∈Z α

µ
ne
−2in(τ−σ).

Similarly, this follows for the left-movers. Although, without decoupling Xµ, the

bosonic fields for the closed Strings have the following mode expansion

Xµ(τ, σ) = xµ + α′pµτ
√

α′

2
i
∑

n6=0

(
αµn
n
e−inπσ

+
+ α̃µn

n
e−inπσ

−
)
, (2.1.1.3)

with periodicity from (2.1.1.1).

Open Superstrings

For open Strings, the end-points are given as σ = 0, σ = π. This implies that the

12



boundary terms σ = 0 and σ = π vanish independently. Therefore, this requirement

is satisfied if at each end of the String, the following holds

ψ+ = ±ψ−.

The overall sign between ψ+ and ψ− is a matter of convention. Without loss of

generality, this can be chosen at σ = 0 to be

ψµ+(0, τ) = ψµ−(0, τ).

For the endpoints with σ = π, there are two possibilities:

ψµ+(σ, τ) = +ψµ−(σ, τ) (Ramond (R) Boundary Condition),

ψµ+(σ, τ) = −ψµ−(σ, τ) (Neveu-Schwarz (NS) Boundary Condition).

Looking into the mode expansions, the R-sector is given as

ψµ±(τ, σ) =
1√
2

∑
n∈Z

dµne
−in(τ±σ) .

Similarly, the NS-sector is as follows

ψµ±(τ, σ) =
1√
2

∑
r∈Z+ 1

2

bµr e
−ir(τ±σ) .

Additionally, the Majorana condition requires the fermionic fields to be real and

therefore dµ−n = (dµn)† is taken. For the bosonic fields, the following mode expansion

for the open String is given

xµ(τ, σ) = xµ + 2α′pµτ +
√

2α′i
∑
n6=0

1

n
αµne

inrcosnσ.

This is given with either the Dirichlet or Neumann boundary condition.

2.2 Quantum Superstring Dynamics

In this section, the quantization of the superstrings will be discussed. Recall that

there are two different types of quantization methods from Bosonic String theory; one

being the canonical quantization and the other being the light-cone quantization.

In the canonical approach, Lorentz invariance was evident. However, as equally

observed, there were drawbacks such as having negative-norm states and the inability
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to prove the number of space-time dimensions and the constant a. As to the light-

cone approach, no negative-norm states were observed, in addition, to the derivation

of the space-time dimension value D and the constant a being facilitated. Similarly,

there is also a drawback here, as Lorentz invariance was not evident. Furthermore, as

the two quantization methods are equivalent [10], the canonical method will be used

to quantize the superstrings. Then to get the space-time dimension and the constant

values, the light-cone approach will be used.

2.2.1 Canonical Quantization

In quantum theory, the fields Xµ , ψµ are promoted to the operators X̂µ , ψ̂µ .

These operators are referred to as the boson operator for X̂µ and the fermion opera-

tor for ψ̂µ . The oscillator modes in the mode expansions dµn , d̃
µ
n , b

µ
r , etc, are therefore

also given as operators. However, for future purposes these hats will be dropped. The

fermions and bosons here, are described by a two-dimensional field theory. Since the

fermions are anti-commuting Grassmann variables, an anti-commutation relation is

required for them. Whereas for the bosons, the standard commutation relation is

used, thus the boson operators satisfy:

[X̂µ(τ, σ), P̂ ν(τ, σ′)] = iδ(σ − σ′)ηµν ,

[X̂µ(τ, σ), X̂ν(τ, σ′)] = [P̂ µ(τ, σ), P̂ ν(τ, σ′)] = 0,

where P̂ ν(τ, σ) = 1
2πα′

∂τX̂
µ(τ, σ) . Then using the mode expansions it can be shown

that

[aµn, a
ν
m] = [ãµn, ã

ν
m] = nηµνδn+m,0,

[xµ, pν ] = iηµν ,

where n,m ∈ Z and all other commutators vanish. Moreover, the anti-commutator

relation is given by

{ψ̂µA(τ, σ), ψ̂νB(τ, σ′)} = πδ(σ − σ′)ηµνδA,B, (2.2.1.1)
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where A and B are the spin indices, ±. Then using the mode expansions it can be

shown that

{dµn, dνm} = ηµνδn+m,0,

{bµr , bνs} = ηµνδr+s,0,

{d̃µn, d̃νm} = ηµνδn+m,0,

{b̃µr , b̃νs} = ηµνδr+s,0,

where r, s ∈ Z + 1
2
, n,m ∈ Z and all other anti-commutators vanish.

Fock Space

The spectrum of states in the quantum Superstring theory is defined by a Fock space.

Here, a ground state |0〉 is constructed to be annihilated by all of the annihilation

operator modes given by

aµn|0〉R = dµn|0〉R = 0, ∀n > 0,

aµn|0〉NS = bµr |0〉NS = 0, ∀n, r > 0,

where |0〉R and |0〉NS are the ground states in the R/NS-Sectors respectively. The

zero modes should act on the ground state, in particular the momentum pµ. The

ground state is an eigenstate of pµ

p̂µ|0〉 = pµ|0〉.

To be precise, it should be noted that the ground state |0〉 is |0, p〉 in both sectors. A

Fock space of multi-particle states is constructed by acting on the ground state with

the creation operators: dµ−n, d̃
µ
−n, b

µ
−r, . . . ã

µ
−m, for example

dµ−1d̃
µ
−1|0〉R , aν−2|0〉NS , etc.

When the mode operators act on a state, they raise or lower the energy (mass),

depending on the operator (creation and annihilation respectively). In the NS-sector,

the bµr operator changes the energy by half-integer units, thus bosons have half-integer

spacings; whereas in the R-sector, the fermions are all integer units apart. This

asymmetry between fermions and bosons is removed by the GSO projection, which

will be discussed later. The integer units in the R-sector can take the values 0 or

1, where the zero modes dµ0 gives rise to a degeneracy in the spectrum. However,

for the half-integer units in the NS-sector, there are no zero modes. In fact, the
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ground state |0〉NS is non-degenerate, hence it can be identified as a spin zero state.

Since aµn , b
µ
r are vector operators in space-time, only states with integer spin can be

obtained. Therefore, the NS-sector only describes bosonic integer spin modes. As to

the R-sector, the ground state |0〉R is degenerate, as there is a unique set of operators

dµ0 which satisfy

{dµ0 , dν0} = ηµν .

This is a Clifford algebra (in D-dimensions and with a factor 2 missing), hence dµ0

can be identified as the gamma matrices Γµ , which obey

{Γµ,Γν} = 2ηµν ,

giving

Γµ =
√

2 dµ0 .

The zero mode dµ0 , does not actually raise or lower the energy of a state, leaving M2

invariant, where M2 is the space-time mass-squared of a physical state.

Super-Virasoro Generators and Algebra

Having constructed a Fock space, the constraints are now considered. These are the

super-Virasoro generators that are the mode expansions of the energy-momentum

tensor and the supercurrent that are defined as:

T̂±± = ∂±X̂
µ∂±X̂µ + i

2
ψ̂µ±∂±ψ̂

ν
±ηµν ,

Ĵ± = ψ̂µ±∂±X̂µ.

Considering the left-moving oscillator modes, the energy-momentum tensor can be

written as

T̂++ =
1

4

∑
n,m

ηµνa
µ
na

ν
me
−i(n+m)σ+

+
1

4

∑
n,m

mηµνd
µ
nd

ν
me
−i(n+m)σ+

=
1

2

∑
k

lke
−ikσ+

,

where

ln = l(a)
n + l(d)

n

=
1

2

∑
m

aµn−ma
ν
mη

µν +
1

2

∑
m

mdµn−md
ν
mη

µν .
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Similarly in the NS-sector the following is deduced

ln = l(a)
n + l(b)n ,

where

l(b)n =
1

2

∑
r

rbµn−rb
ν
rη

µν .

For the supercurrent Ĵ+ in the R-sector, the following can be obtained

J+ =
1

4

∑
n,m

ηµνa
µ
n ·dνme−i(n+m)σ+

=
1

4

∑
n

Fne
−inσ+

,

where

Fn =
∑
m

aµm ·dνn−mηµν .

Similarly in the NS-sector, the following is deduced

Gr =
∑
n

aµn ·bνr−nηµν .

Turning to the case of the right-moving oscillator modes, switching the modes to the

tilde modes (i.e F̃n and G̃r) is sufficient. All operators should be normal ordered here,

where the annihilation operators always appear to the right of the creation operators.

It should be noted that Fn =: Fn : and Gr =: Gr : , since ln is defined by

Ln = : ln :

Furthermore, proceeding to the R-sector, the following super-Virasoro algebra can

be obtained:

[Lm, Ln] = (m− n)Lm+n + D
8
m3δm+n,0,

[Lm, Fn] =
(
m
2
− n

)
Fm+n, (2.2.1.2)

{Fm, Fn} = 2Lm+n + D
2
m2δm+n,0 .

17



Similarly, in the NS-sector, the following super-Virasoro algebra is obtained:

[Lm, Ln] = (m− n)Lm+n + D
8
m
(
m2 − 1

)
δm+n,0,

[Lm, Gr] =
(
m
2
− r
)
Gm+r,

{Gr, Gs} = 2Lr+s + D
2

(
r2 − 1

4

)
δr+s,0.

The expressions for the tilde modes L̃n , G̃r , F̃m follow similarly. Looking at the

NS-sector, a physical state |φ〉 is required to satisfy:

Gr|φ〉 = 0 , r > 0,

Ln|φ〉 = 0 , n > 0,

(L0 − aNS) |φ〉 = 0.

Here aNS is a normal ordering constant, arising when normal ordering l0 . This is

regularized, to avoid the constant from being infinite. Similarly, in the R-sector, a

physical state |ψ〉 is required to satisfy:

Ln|ψ〉 = 0 , n > 0,

Fn|ψ〉 = 0 , n > 0,

(L0 − aR) |ψ〉 = 0.

Again aR is a normal ordering constant. There is also a condition involving the zero

mode F0, since normal ordering has no effect on F0, then the following is given

F0|ψ〉 = 0.

From the third super-Virasoro algebra equation in (2.2.1.2), the case n = m = 0 gives

{F0, F0} = 2L0 + 0 ⇒ L0 = F 2
0 .

Thus for a physical state |ψ〉, the following is given

L0|ψ〉 = F0

(
F0|ψ〉

)
= 0

Hence, this implies aR = 0. However, aNS can’t be derived in this way, which will be

discussed in the next section.
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2.2.2 Light-Cone Quantization

In Bosonic String theory, consistency requires that the normal ordering constant

is a = 1. It can also be shown that the space-time dimension is D = 26. More

precisely, by studying certain states and requiring that a = 1, it was shown that

these states are physical and have zero norm. The search for the zero norm states

can be performed in the Superstring theory. It can then be shown that the value of

aNS is 1
2

and the space-time dimension is D = 10. Here, the light-cone gauge is used

to find the critical values of aNS and D. Although, the light-cone gauge is a choice,

Lorentz invariance of the theory is not apparent. It is the requirement of Lorentz

invariance at the quantum level, that gives a restriction on a and D. The same can

be done in Superstrings, therefore, this is the approach that is presented here.

The String can be described by Noether’s theorem from the following conserved

current associated with the Poincare symmetry given by

Mµν
α = − 1

2πα′

(
Xµ∂αX

ν −Xν∂αX
µ − iψµραψν

)
.

This gives the following conserved charges

Mµν =
1

2πα′

∫ π

0

dσMµν
τ = lµν + Eµν +Kµν ,

where the terms correspond to:

• The orbital angular momentum:

lµν = xµpν − xνpµ.

• The spin of the String:

Eµν = −i
∞∑
n=1

1

n

(
aµ−na

ν
n − aν−naµn

)
.

• The contribution from the fermionic modes:

Kµν = −i 1

2πα′

∫ π

0

dσ ψ
µ
ρ0ψ

ν . (2.2.2.1)
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Taking the NS-sector, the following is deduced

ψ
µ
ρ0ψ

ν =
(
ψµ− ψµ+

)( 0 −1

1 0

)(
0 1

−1 0

)(
ψν−

ψν+

)
= ψµ−ψ

ν
− + ψµ+ψ

ν
+.

Plugging in the mode expansions to the contribution from the fermionic modes in

(2.2.2.1), it is computed that

Kµν = −i 1

2πα′

∫ π

0

α′

2

∑
r,s

(
bµr b

ν
se
−i(r+s)(τ−σ) + bµr b

ν
se
−i(r+s)(τ+σ)

)
= −i 1

2π

∑
r,s

bµr b
ν
se
−i(r+s)τ

∫ π

0

cos(r + s)σ dσ

= −i
∞∑
r= 1

2

(
bµ−rb

ν
r − bν−rbµr

)
.

This is sufficient to begin formulating the theory in the light-cone gauge, since the

worldsheet time-coordinate can be chosen to be any of the space-time coordinates

X i, where i = 1, .., D − 1. In fact, there are many choices, however, it is usually

defined as

X± =
1√
2

(
X0 ±XD−1

)
,

where the following can be taken

X+ = x+ +
1

2
p+τ = x+ +

1

4
p+σ+.

Here x+ and p+ are just c-numbers, even after quantization. Additionally, it should be

noted that X+ satisfies the two-dimensional wave equation. However, in Superstring

theory, there are supersymmetric transformations that preserve this gauge choice for

the superpartner ψ+
A , of X+. This implies that

ψ+
A =

(
ψ0
A + ψD−1

A

)
= 0.

To omit the spinor index A, the following is defined

ψµ(τ, σ) =

{
ψµ+(τ, σ) , σ > 0 ,

ψµ−(τ,−σ) , σ < 0 .

This ensures the spinor index is free. Here, ψ+ = 0 would imply δX+ = ε̄ψ+ = 0,

thus, the X+ gauge choice is not altered in the process. Taking the space-time metric
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ηµν , the components are given by

η−+ = η+− = −1 , ηij = δij,

where i, j = 1, ..., D− 2. Using the constraints J± = T±± = 0, the terms X− and ψ−

are given by:

ψ− =
4

p+
ψi∂+X

jδij.

X− = x− + p−τ + i
∑
n6=0

a−n
n
e−inσ

+

,

where

p− = 2a−0 .

As a result of this, quantization can now be carried out. Therefore, normal ordering

b−r , a
−
n , only a−0 is affected as follows

: a−0 : =
1

2p+

(∑
m

:ai−ma
j
m : +

∑
r

r :bi−rb
j
r :

)
δij −

1

2p+
aNS.

Here, Mµν are promoted to hermitian operators, since they implement Lorentz trans-

formations. However, normal ordering also gives rise to the anomaly terms. Thus, in

order for Lorentz covariance to hold, these terms must vanish. Consequently, this is

the restriction needed to compute the values aNS and D. In particular, the following

is demanded

[M i−,M j−] = 0,

where M i− = li− + Ei− +Ki−. Each component here is given by

Ei− = −i
∞∑
n=1

1

n

(
ai−na

−
n − a−−nain

)
,

Ki− = −i
∞∑
r= 1

2

(
bi−rb

−
r − b−−rbir

)
,

li− = xip− − x−pi

= 1
2

(
xip− + p−xi

)
− 1

2
x−pi

(
x−pi + pix−

)
= 1

2

(
xip− − x−pi + p−xi + pix−

)
.
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Further analysis leads to the following

[M i−,M j−] = − 1

(p+)2

∞∑
m=1

∆2
m

(
ai−ma

j
m − a

j
−ma

i
m

)
,

where

∆2
m = ∆1

m −m =
Z(m)

m2
−m.

Here

Z(m) =
D − 2

8
m
(
m2 − 1

)
+ 2maNS.

∆1
m =

Z(m)

m2
=
D − 2

8
m+

(
2aNS −

D − 2

8

)
1

m
.

Therefore, taking [M i−,M j−] = 0, implies ∆2
m = 0 ∀m 6= 0, given by

∆2
m =

(
D − 2

8
− 1

)
m+

(
2aNS −

D − 2

8

)
1

m
= 0.

Thus, D = 10 and aNS = 1
2

is deduced. Similarly in the R-sector, values D = 10 and

aR = 0 can be computed.

2.2.3 String Spectrum

In this section, the spectrum of Superstring theory will be examined. Here the

NS and R-Sectors will be considered independently, where the number operator is

used to determine the mass-squared of a physical state. The number operator N in

the R-sector is given by

N = Na +Nd.

where

Na =
∞∑
n=1

ηµνa
µ
−na

ν
n.

Nd =
∞∑
m=1

mdµ−md
ν
mηµν .

For the NS-sector, similarly, the following can be written

N = Na +N b, (2.2.3.1)
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where

N b =
∞∑
r= 1

2

rbµ−rb
ν
rηµν .

The commutator relations satisfied by these number operators are given as follows:

[Na, aλ−m] = maλ−m , m > 0,

[Nd, dλ−m] = mdλ−m , m > 0,

[N b, bλ−r] = rbλ−r , r > 0.

To recall, a physical state |φ〉 in the NS-sector satisfies the constraint (L0 − aNS) |φ〉 =

0, i.e
(
L0 − 1

2

)
|φ〉 = 0. Expanding the operator L0 − 1

2
in terms of oscillators, it can

be found that

L0 −
1

2
=

1

2

∑
n

: aµ−na
ν
n : ηµν +

1

2

∑
r

r : bµ−rb
ν
r : ηµν −

1

2

=
1

2
aµ0a

ν
0ηµν +

1

2

∞∑
n=1

aµ−na
ν
nηµν +

1

2

∞∑
r= 1

2

rbµ−rb
ν
rηµν −

1

2

= α′pµpµ +N − 1

2
, (2.2.3.2)

where aµ0 =
√

2α′pµ for open Strings. Similarly, for the R-sector with the constraint

(L0 − aR)|φ〉 = 0, i.e L0|φ〉 = 0, the operator L0 expansion, in terms of oscillators

gives

L0 = α′pµpµ +N, (2.2.3.3)

Comparing (2.2.3.2) with the Klein-Gordon equation in the NS-sector, the space-time

mass-squared of a physical state is the eigenvalue of the operator

M2 =
1

α′

(
N − 1

2

)
. (2.2.3.4)

Similarly, for the R-sector using (2.2.3.3), the space-time mass-squared of a physical

state is an eigenvalue of

M2 =
1

α′
N.

As for the case of closed Strings, aµ0 =
√

α′

2
pµ is used, therefore, a factor of 4 is

present in the equations for M2 above. At level zero, the ground states |0〉NS and |0〉R
are given, where N = 0, thus equation (2.2.3.5) shows that the mass-squared of |0〉R
is massless; this can also be seen from the constraint equation F0|0〉R = 0. Inserting
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the mode expansion for F0 gives

ηµνa
µ
0d

ν
0|0〉R = 0, (2.2.3.5)

since aµ0 is proportional to pµ and dµ0 is proportional to the gamma matrices Γµ, this

implies that (2.2.3.5) is just the massless Dirac equation.

However, a major problem is that, the mass-squared of |0〉NS is negative, hence, |0〉NS

is a Tachyon. This can be removed using the GSO projection, as discussed in the

next section.

2.2.4 GSO Projections

In the previous section, it was shown that the Superstring spectrum admits an

imaginary mass, such as, the Tachyon states, indicating that the vacuum is unstable.

However, the Tachyon state is eliminated, by using the GSO projection [8]. The

GSO projection is a truncation (or projection) of the spectrum, which reduces the

number of states in the theory, thus removing potential problems, such as the Tachyon

states. Further to this, two additional major problems arise in the spectrum, one

being that the spectrum is not space-time supersymmetric. There is for example, no

fermion in the spectrum with the same mass as the Tachyon. Alternatively, there

are space-time bosons that corresponds to both worldsheet bosons and fermions; the

same is also true of the space-time fermions. For a sensible theory, these problems

should not arise. Therefore, using the GSO projection these unnecessary states in

the Superstring spectrum can be removed, thus, obtaining a consistent, interacting

Superstring theory.

Taking the NS-sector, the GSO projections are defined by keeping states with

an odd number of fermion oscillator excitations and removing those with an even

number. This is the requirement, when replacing the physical states |ψ〉 according to

|ψ〉 7−→ PGSO|ψ〉,

where the parity operator PGSO is defined as

PGSO = 1
2

(
1− (−1)F

)
,

determining the states in the theory. Here, F is the fermion number operator, that

determines whether a state has an even or odd number of fermion excitations. This
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is defined as

F =
∞∑

r=1/2

ηµνb
µ
−rb

ν
r ,

which also obeys

{(−1)F , bµ} = 0.

Thus, only half-integer values of the level number (2.2.3.1) are possible, therefore the

spectrum of allowed physical masses are integral multiples of 1
α′

given as

M2 = 0, 1
α′
, 2
α′
, . . . .

The spin-0 ground state of the NS-sector therefore, is now massless and the spectrum

no longer contains a Tachyon.
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Chapter 3

Free-Fermionic Construction

In this chapter, the set up of the Free-Fermionic construction [15, 16, 17] in the

Heterotic-String is shown. The partition function at an arbitrary point in the moduli

space is derived, with the description of the Heterotic-String at the self dual point

under T-duality. Then the partition function at the self-dual point is written in

the most general way, enabling the derivation of the constraints on the form of the

partition function. This follows with the derivation of all the necessary constraints

for the construction of the Free-Fermionic models in the Heterotic-String. Having

derived the tools for the construction, a summary of the ABK rules is given. The

chapter then concludes with a simple application of these rules.

3.1 Heterotic Strings

In the Heterotic-String theory [9, 10, 11, 12], N = 1 supersymmetry is obtained

by decoupling the left- and right-moving modes. The supersymmetric charges are

carried by the left-moving currents, where the Superstring fields Xµ
+ and ψµ+ for

µ = 0, . . . , 9 are considered. On the other hand, the right-moving worldsheet fields

are described by the formalism of the Bosonic String, where the ten bosonic right-

movers Xµ
− for µ = 0, . . . , 9 are taken. Since a space-time boson contributes a unit

to the central charge and a free-fermion contributes half a unit, 32 Majorana-Weyl

right-moving free-fermions λi− are needed to cancel the conformal anomaly c = −26

in the Bosonic String. The theory is still ten-dimensional because the space-time

indices µ = 0, . . . , 9 are carried by the coordinates Xµ in both left- and right-moving

sectors, while the internal fermions λi− do not carry a space-time indice. In summary,
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the following fields are considered:

Xµ
+ and ψµ+ in the left-moving sector,

Xµ
− and λi− in the right-moving sector,

where µ = 0, . . . , 9 and i = 1, . . . , 32. The action of the Heterotic-String in the

light-cone gauge with the above fields is given by

S =
1

π

∫
d2σ

(
2∂−Xµ∂+X

µ + iψµ∂−ψµ + i
32∑
i=1

λi∂+λ
i

)
.

3.2 Free-Fermionic Formalism

To construct a four-dimensional space-time theory, the conformal anomaly needs

to be cancelled on both the left- and right-sectors. This is given by the following

equations:

CL = −26 + 11 +D +
D

2
+
NfL

2
= 0,

CR = −26 +D +
NfR

2
= 0,

where for D = 4, the left-sector is cancelled when 18 Majorana-Weyl fermionic left-

moving fields are imposed, whereas for the right-sector 44 Majorana-Weyl fermionic

right-moving fields are imposed. These degrees of freedom can be seen as free fermions

propagating on the String worldsheet. Moreover, the total set of fields is now:

Xµ
+ , ψµ+ and λj+ in the left-moving sector,

Xµ
− and λi− in the right-moving sector,

where µ = 0, . . . , 3, i = 1, . . . , 44 and j = 1, . . . , 18. Adopting complex coordinates

defined by

z = τ + iσ and z̄ = τ − iσ,
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the worldsheet fields can now be defined as functions of z and z̄ given by the following:

Xµ(z, z̄) , µ = 1, 2,

ψµ(z) , µ = 1, 2,

λi(z) , i = 1, . . . , 18,

λ̄j(z̄) , j = 1, . . . , 44.

In the light-cone gauge the space-time bosons and fermions have only two degrees

of freedom, namely the transverse coordinates, where the Heterotic action can now

take the form

S =
1

π

∫
d2z

(
∂zXµ(z, z̄)∂z̄X

µ(z, z̄)− 2iψµ(z)∂zψµ(z)

− 2i
18∑
i=1

λi(z)∂zλ
i(z)− 2i

44∑
j=1

λ̄j(z̄)∂z̄λ̄
j(z̄)

)
,

where ψµ = ψµ(z) and ψ
µ

= ψ
µ
(z) corresponds to the left- and right-moving fermionic

fields respectively. The worldsheet field content is described as follows:

Left-moving: Xµ
L(z) µ = 1, 2 2 transverse coordinates,

ψµL(z) µ = 1, 2 their superpartners,
χI(z), yI(z), wI(z) I = 1 . . . 6 18 internal real fermions.

Right-moving: Xµ
R(z̄) µ = 1, 2 2 transverse coordinates,

λ̄i(z̄) i = 1 . . . 44 44 internal real fermions.

This formalism based on the Heterotic-String theory is the Free-Fermionic con-

struction.

3.3 Partition Function

In the Polyakov picture, String theory is formulated as a perturbative sum over a

path integral on the String worldsheet, a genus-g Riemann surface. The free fermions

propagate around the non-contractible loops on this surface, thus, boundary condi-

tions need to be specified for each worldsheet fermion. In addition, the worldsheet

supersymmetry should be preserved, which imposes that the supercurrent TF must be

uniquely defined up to a sign, under the transformation of the worldsheet fermions.
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The supercurrent is defined as

TF = ψµ∂Xµ + i
6∑
I=1

χIyIwI ,

where χI(z), yI(z) and wI(z) for I = 1, ..., 6 transform as the adjoint representation

of SU(2)6. The transport properties of the left- and right-moving fermions around a

non-contractible loop, show that any configuration of boundary conditions in some

basis consisting of 64 fermions, is realised. These fermions can be real or complex,

where two real fermions with the same boundary conditions in each basis vector can

pair into a complex fermion in the following way:

λij =
1√
2

(λi + iλj), (3.3.0.1)

λ∗ij =
1√
2

(λi − iλj).

In the models considered in this thesis, the following notations for the real and

complex basis fermions will be used:

Real Left Fermions:

{ψ1, ψ2, χ1, y1, w1, χ2, y2, w2, χ3, y3, w3, χ4, y4, w4, χ5, y5, w5, χ6, y6, w6}

Real Right Fermions:

{y1, w1, y2, w2, y3, w3, y4, w4, y5, w5, y6, w6}

Complex Left Fermions:

{ψµ, χ12, χ34, χ56}

Complex Right Fermions:

{ψ1
, ψ

2
, ψ

3
, ψ

4
, ψ

5
, η1, η2, η3,Φ

1
,Φ

2
,Φ

3
,Φ

4
,Φ

5
,Φ

6
,Φ

7
,Φ

8}.

Here, the first 4 complex left and the last 16 complex right fermions are given in

complex form and the remaining fermions y and w are not paired. This is due to the

fact that their boundary conditions do not always allow a pairing.

3.3.1 Torus and Modular Invariance

In String theory, the String amplitude is calculated by the path integral

An =
∞∑
g=0

∫
DhDXµ

∫
d2z1 · · · d2znV1(z1, z̄1) · · ·Vn(zn, z̄n) e−S[h,Xµ],

29



where S is the conformal worldsheet action, h is the metric on the worldsheet, the sum

is over all the physically inequivalent paths and Vi are vertex operators of external

String states on the genus-g Riemann surface that are defined by the worldsheet.

The total String amplitude is a sum over all possible Riemann surfaces, moded out

by conformal invariance, similar to the sum over all Feynman graphs in Quantum

Field Theory. The conformal invariance maps the tree level String topology to the

sphere and the one-loop topology to the torus. At tree level all reparametrizations

are local and quantum corrections are not taken into account, however, at higher

loops further constraints will arise. Hence, it is instructive to look at the one-loop

vacuum to vacuum amplitude, with no external states. This is the one-loop partition

function.

The one-loop String amplitude is a sum over all non-equivalent tori. To determine

what the non-equivalent tori are, the symmetries of a torus need to be investigated.

The torus can be mapped to the complex plane by cutting it along its two non-

Figure 3.1: Two non-contractible loops of the torus.

contractible loops, as shown in the Figure 3.1. It can be characterized by specifying

two finite and non-zero periods in the complex plane λ1, λ2 with a non-real ratio:

z ∼ z + λ1, z ∼ z + λ2.

The torus is then identified with the complex plane modulo, a two-dimensional lattice

Λ(λ1,λ2), where Λ(λ1,λ2) = {mλ1 + nλ2, m, n ∈ Z}. Using the reparametrization z →
z
λ2

, the torus is equivalent to one whose periods are 1 and τ = λ1
λ2

, as shown in Figure

3.2. In other words, the torus is left invariant by the following two transformations:

T : τ → τ + 1 redefines the same torus,

S : τ → −1

τ
swaps the two coordinates and reorientates the torus.
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Figure 3.2: Torus mapped to the complex plane, when the opposite edges of the par-
allelogram are identified.

These transformations span a group of transformations known as the modular group

τ → aτ + b

cτ + d
, a, b, c, d∈Z, ab− cd = 1,

where any function invariant under these transformations is called modular invariant.

The modular group is PSL(2,Z) = SL(2,Z)/Z2, where the division by Z2 takes the

equivalence of an SL(2,Z) matrix and its negative into account. The moduli space

M of the torus or the space of conformally inequivalent tori is

M ∼= C/PSL(2,Z).

The fundamental domain can be taken as

F = {τ ||τ | ≥ 1, |Re τ | ≤ 1/2, Im τ > 0}.

Therefore, the partition function is a sum over this domain in order to integrate

over all conformally inequivalent tori. The SL(2,Z) invariant measure over the fun-

damental domain is given by ∫
d2τ

(Imτ)2
.

Consequently, the modular transformations spanned by T and S are invariant. Addi-

tionally, it is required that the partition function does not depend on the parametriza-

tion of the tori.
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Figure 3.3: The fundamental domain of the modular group of the torus indicated by
the shaded area on the complex plane.

3.3.2 Boundary Conditions

In order to provide predictions in a perturbative theory, the interest lies in the

partition function of a one-loop diagram, which corresponds to the worldsheet being

a torus, the vacuum to vacuum String amplitude. On this worldsheet, two boundary

conditions for the non-contractible loops of the torus for each Free-Fermionic field

needs to be specified. These conditions express the shifts of the phases of the fermionic

fields under parallel transport around a non-contractible loop given by

f → −eiπα(f)f.

where f is the fermionic field, α(f) = 0 or 1 for Neveu-Schwarz and Ramond real

fermions respectively, and α(f) ∈ (−1, 1] for complex fermions. Since there are two

non-contractible loops on a torus, the complete phase assignment for a fermion can

be written as a set of two phases [
α(f)

β(f)

]
.

A set of specified phases for all basis fermions for one non-contractible loop is called

a spin-structure and is expressed as a 64-dimensional vector

α =
{
α(ψ1), . . . , α(Φ

8
)
}
.
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To complete the spin-structure assignment for all the fermions on the torus, two

vectors can then be defined by [
α

β

]
.

3.3.3 One-Loop Partition Function

Looking at the partition function, thinking of the path integral on a torus of

parameter τ = τ1 + iτ2, as formed by a field on a circle that has been evolved for

Euclidean time 2πτ2, translated by 2πτ1, and identified with the initial circle. The

generator of translations in time is the Hamiltonian H = L0 + L̄0 + 1
24

, whereas

the generator of translation in space is the momentum operator P = L0 − L̄0. The

identification of the ends of the cylinder thus formed, is realized by taking the trace

over the Hilbert space of states

Z(τ1, τ2) =
∑
s∈H

〈
s
∣∣e2πiτ1P e−2πiτ2H

∣∣ s〉
= Tr
H
e2πiτ1P e−2πiτ2H ,

which can be rewritten using q ≡ e2πiτ as

Z(τ) = q−1/48q̄−1/48Tr
H
qL0 q̄L̄0 . (3.3.3.1)

As it is known how L0 acts on the states space, this can be calculated for each fermion.

If the time boundary condition is anti-periodic (NS), then the partition function is

just given by the trace with L0 acting on the appropriate R or NS Fock space:

ZNS
NS (τ) = TrNS q

L0−1/48, (3.3.3.2)

ZNS
R (τ) = TrR q

L0−1/48.

When the time boundary condition is periodic (R) the definition of the trace is

modified:

ZR
NS(τ) = TrNS(−1)F qL0−1/48, (3.3.3.3)

ZR
R (τ) = TrR(−1)F qL0−1/48,

where F is the fermion number operator, defined by the relations
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F (f) = +1, if f is a fermionic oscillator,

F (f) = −1, if f is the complex conjugate of a fermionic oscillator,

F |+〉R = 0,

F |−〉R = −1,

where |+〉R = |0〉 is the state of a degenerated vacuum without an oscillator and

|−〉R = f †0 |0〉 is the state of a degenerated vacuum with zero mode oscillator. The

partition function must include all possible combinations of boundary conditions, it

is therefore a sum over all spin-structures. All the previous work now leads to the

complete partition function

Z =

∫
F

dτdτ̄

(Imτ)2
Z2
B

∑
spin

structure

C

(
α

β

) 64∏
f=1

ZF

[
α(f)

β(f)

]
,

where each term is described as follows:

• dτdτ̄
(Imτ)2

is the invariant measure under the modular transformations of the torus.

• ZB is the bosonic contribution

ZB =
1√

|Imτ |η(τ)
,

where

η(τ) = q
1
12

∏
n

(
1− q2n

)
with q = e2πiτ .

• The C
(
α
β

)
are coefficients on the spin-structures that are yet to be determined.

• ZF

[
α(f)

β(f)

]
is the contribution of the fermion f , which depends on its boundary

conditions α(f) and β(f). It can be calculated using (3.3.3.1) to obtain the
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following results:

ZF

[
0

0

]
=

√
ϑ3

η
,

ZF

[
1

0

]
=

√
ϑ2

η
,

ZF

[
0

1

]
=

√
ϑ4

η
,

ZF

[
1

1

]
=

√
ϑ1

η
,

where ϑi are defined as:

ϑ1 = ϑ

[
1

1

]
, ϑ2 = ϑ

[
1

0

]
, ϑ3 = ϑ

[
0

0

]
, ϑ4 = ϑ

[
0

1

]
,

and

ϑ

[
a

b

]
=
∑
n∈Z

q
(n−a/2)

2

2

e2πi(n−b/2)(n−a/2).

These formulae should be complex conjugated for the right moving fermions.

3.3.4 Modular Invariance Constraints

The invariance of the partition function under modular transformations gives

further constraints for model building. Since the measure element and the bosonic

contribution are modular invariant, imposing modular invariance on the remaining

terms in the partition function results in additional constraints. Under τ → τ + 1,

the following transformations are given:

η −→ eiπ/12η,

ϑ1 −→ eiπ/4ϑ1,

ϑ2 −→ eiπ/4ϑ2,

ϑ3 ←→ ϑ4,
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and under τ → − 1
τ
:

η −→ (−iτ)1/2η,

ϑ1

η
−→ e−iπ/2

ϑ1

η
,

ϑ2

η
←→ ϑ4

η
,

ϑ3

η
−→ ϑ3

η
.

Since the partition function is a product of the spin-structures of 64 fermions, the

modular transformations will take the spin-structure from one to another. Modular

invariance requires that both spin-structures related by these transformations need

to be present in the partition function with equal weight. This gives the constraints:

C

(
α

β

)
= ei

π
4

(α·α+1·1) C

(
α

β − α + 1

)
, (3.3.4.1)

C

(
α

β

)
= ei

π
2
α·β C

(
β

α

)∗
, (3.3.4.2)

where 1 is the vector corresponding to periodic boundary conditions for all fermions

and the product α · β is defined by

α · β =

{
1

2

∑
real left

+
∑

complex left

− 1

2

∑
real right

−
∑

complex right

}
α(f)β(f),

where 2 real fermions are equivalent to 1 complex fermion as given in equation

(3.3.0.1). Another constraint arises when considering higher order loops,

C

(
α

β

)
C

(
α′

β′

)
= δαδα′e

−iπ
2
α·α′C

(
α

β + α′

)
C

(
α′

β′ + α

)
, (3.3.4.3)

where δα is the space-time spin statistics index defined as

δα = eiπα(ψµ1,2) =

{
+1, if α(ψµ1,2) = 0,

−1, if α(ψµ1,2) = 1.

These constraints can be used to derive the rules for constructing a model. Using

(3.3.4.2) and (3.3.4.3) with α′ = α and β = 0, implies that

C

(
α

0

)2

= δαC

(
α

0

)
C

(
0

0

)
,
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thus, either C
(
α
0

)
= 0 or C

(
α
0

)
= δα is taken, where C

(
0
0

)
= 1 is normalized. A set of

vectors Ξ is then defined by

Ξ =

{
α

∣∣∣∣ C(α0
)

= δα

}
.

Using (3.3.4.2) and (3.3.4.3), Ξ is taken to be an Abelian additive group, and the

spin-structures contributing to the partition function are pairs of elements in Ξ.

Furthermore, if Ξ is taken to be finite and therefore the boundary conditions to be

rational, it is in fact isomorphic to

Ξ ∼=
k⊕
i=1

ZNi ,

which means that Ξ is generated by a set of basis vectors {b1, . . . , bk}, such that

k∑
i=1

mibi = 0⇔ mi = 0 mod Ni ∀i,

where Ni is the smallest positive integer where Nibi = 0. Taking the three vectors α,

β, γ ∈ Ξ, (3.3.4.3) can be rewritten as

C

(
α

β + γ

)
= δαC

(
α

β

)
C

(
α

γ

)
. (3.3.4.4)

Equation (3.3.4.1) with α = β gives

C

(
α

α

)
= e−i

π
4
α·αC

(
α

1

)
. (3.3.4.5)

Manipulating (3.3.4.2), (3.3.4.3), (3.3.4.4) and using the fact that β generates a finite

group of order Nβ, if Nij is the least common multiple of Ni and Nj, it must satisfy

Nijbi · bj = 0 mod 4.

When i = j, this constraint holds if Ni is odd. However, if Ni is even, then the

following stronger constraint holds

Nib
2
i = 0 mod 8.

When all the constraints derived in this section are satisfied, the modular invariance

condition is also satisfied, and thus, there is no further obstruction to consistently
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assigning coefficients to pairs of elements of Ξ.

3.3.5 Hilbert Space

The equations (3.3.3.2) and (3.3.3.3) can be rewritten in the general case as

ZF

[
α(f)

β(f)

]
= Trα

[
qHαeπiβ·Fα

]
,

where Hα is the Hamiltonian and Fα the fermion number operator in the Hilbert

space sector Hα, defined by the vector α. The partition function can then be written

as a sum over sectors, using the fact that the basis vectors bi are generators of a

discrete group ZNi and applying equation (3.3.4.4),

Z =

∫
F

dτdτ̄

(Imτ)2
Z2
B

∑
α∈Ξ

δαTr

{∏
bi

(
δαC

(
α

bi

)
eiπbi·Fα + · · ·

· · ·+
{
δαC

(
α

bi

)
eiπbi·Fα

}Ni−1

+ 1

)
eiπτHα

}
.

The only states that appear in the partition function are those that realise a gener-

alised GSO projection

eiπbi·Fα |S〉α = δαC

(
α

bi

)∗
|S〉α .

The full Hilbert space is therefore given as

H =
⊕
α∈Ξ

k∏
i=1

{
eiπbi·Fα = δαC

(
α

bi

)∗}
Hα.

3.4 Free-Fermionic Construction Rules

It was shown in the previous section that for each consistent Heterotic Superstring

model, there exists a partition function defined by a set of vectors with boundary

conditions and a set of coefficients associated to each pair of these vectors. Now

that all the constraints are derived for model building, using the Free-Fermionic

construction, it will now be shown that for each set of such vectors and the set

of associated coefficients, a set of general rules can be summarised for any Free-

Fermionic models. These rules were originally derived by Antoniadis, Bachas and

Kounnas in [15, 16], which are known as the ABK rules3. First, these rules are

3These rules were also developed with a different formalism by Kawai, Lewellen and Tye in [17]
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shown and then an example model is given. This will also be the working tool set

for all the classifications carried out in this thesis. For further convenience, the

vectors containing the boundary conditions used to define a model are called the

basis vectors and the coefficients are called the one-loop phases that appear in the

partition function.

3.4.1 ABK Rules

The first requirement is a set of basis vectors that defines Ξ, the space of all

sectors. For each sector β ∈ Ξ there is a Hilbert space of states. Each basis vector bi

consists of a set of boundary conditions for each fermion, written as

bi =
{
α(ψµ1,2), . . . , α(w6)|α(y1), . . . , α(φ̄8)

}
,

where α(f) is defined by

f → −eiπα(f)f.

The bi have to form an additive group and satisfy the constraints derived in the

previous section. If Ni is the smallest positive integer for which Nibi = 0 and Nij is

the least common multiple of Ni and Nj, the following rules must hold:

1.
k∑
i=1

mibi = 0⇔ mi = 0 mod Ni ∀i,

2. 1 ∈ Ξ,

3. Nijbi · bj = 0 mod 4,

4. Nib
2
i = 0 mod 8,

5. Even number of real fermions.

Note, all the above constraints need to be obeyed by the basis vectors in order to

preserve modular invariance.

3.4.2 One-Loop Coefficients Rules

Once the space of states is defined, the phases C
(
bi
bj

)
for all intersection of basis

vectors have to be specified. These coefficients are required to obey the constraints

(3.3.4.2), (3.3.4.4) and (3.3.4.5), which can be rewritten as:
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1. C

(
bi
bj

)
= δbi e

2πi
Nj

n
= δbj e

πi
2
bi·bj e

2πi
Ni

m
,

2. C

(
bi
bi

)
= e−i

π
4
bi·bi C

(
bi
1

)
,

3. C

(
bi
bj

)
= ei

π
2
bi·bj C

(
bj
bi

)∗
,

4. C

(
bi

bj + bk

)
= δbi C

(
bi
bj

)
C

(
bi
bk

)
,

where n and m are natural integers. These are all the coefficients that appear in the

partition function.

3.4.3 GGSO Projections

To complete the Free-Fermionic construction, another condition on the physical

states are imposed, called the generalised GSO projection. This is a consequence of

modular invariance and the partition function as discussed earlier, where a state is

either projected in or out or undergoes a truncation given by the following

eiπbi·Fα |S〉α = δαC

(
α

bi

)∗
|S〉α ∀i, (3.4.3.1)

here |S〉α is a state generated by the Hilbert space in the sector α ∈ Ξ, δα = eiπα(ψµ)

and the scalar product bi · Fα is defined as

bi · Fα =

{ ∑
Left-Movers

−
∑

Right-Movers

}
bi(f)× Fα(f),

for all basis vectors bi and the sum runs for all real and complex fermions.

3.4.4 Massless String Spectrum

Now that these conditions are satisfied, the following formulae can be used to

analyse the complete spectrum. The mass of a state in the sector Hα is given by the

zero-moment Virasoro gauge conditions:

M2
L = −1

2
+
αL · αL

8
+

∑
left-movers

,

M2
R = −1 +

αR · αR
8

+
∑

right-movers

, (3.4.4.1)

M2
L = M2

R,

40



where αL and αR are the boundary conditions defined by the basis vector α for the left

and right moving fermions respectively. The frequencies of the fermionic oscillators

depending on their boundary conditions is taken to be:

f → −eiπα(f)f , f ∗ → −e−iπα(f)f ∗.

The frequency for the fermions is then given by

νf =
1 + α

2
, ν∗f =

1− α
2

.

Each complex fermion f generates a U(1) current, with a charge with respect to the

unbroken Cartan generators of the four-dimensional gauge group given by

Qν(f) = ν − 1

2
,

=
α(f)

2
+ F.

With all the necessary tools for the construction of the Heterotic Free-Fermionic

model building, an example will now be provided.

3.4.5 A Simple Example

To construct a simple model in order to understand how this formalism works, the

basis vector 1, where all boundary conditions are periodic is used, since it is required

to be in Ξ. Then there exists two sectors: Ξ = {1, 2 · 1 = 0}. Here, the notation NS

for the sector 0 is used, which is the Neveu-Schwartz sector. Given 2 ·1 (mod 2) = 0,

then N1 = 2 and 1 · 1 = −12, therefore the rules on the basis vectors are satisfied.

Since the states with a mass at the String scale would have a mass of the order of

the Planck mass, they are not phenomenologically acceptable. Therefore, only the

massless String spectrum is considered, hence M = 0 must be satisfied. Moreover, all

the particle content of the Standard Model should exist in the spectrum. Applying

(3.4.4.1) the simplest model gives:

For the sector 1

M2
L = −1

2
+

10

8
+

∑
left−movers

ν > 0,

Thus, this sector contains no massless states and should be excluded.
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For the NS-sector

M2
L = −1

2
+

0

8
+

∑
left−movers

ν, (3.4.5.1)

M2
R = −1 +

0

8
+

∑
right−movers

ν,

where for the fermions the frequency is given by

νf,f∗ =
1± 0

2
=

1

2
.

Recall, the condition M2
L = M2

R must be satisfied. Thus either a Tachyonic negative

mass−1
2

is given by acting on the NS vacuum with 1 fermionic right-moving oscillator,

or a massless state is given by acting with 1 left-moving fermionic oscillator and either

2 right-moving fermionic oscillators or 1 right-moving bosonic oscillator. The massless

states are then given as follows:

• ψµ1/2∂X̄ν
1 |0〉NS, where ∂X̄ν

1 is the bosonic creation operator. These states cor-

respond to the Graviton, the Dilaton and the antisymmetric tensor.

• ψµ1/2Φ̄a
1/2Φ̄b

1/2 |0〉NS , a, b ∈ {1, . . . , 44}: Gauge bosons in the adjoint represen-

tation of SO(44).

• {χi1/2, yi1/2, wi1/2}∂X̄ν
1 |0〉NS , i ∈ {1, . . . , 6}: Gauge bosons in the adjoint repre-

sentation of SU(2)6.

• {χi1/2, yi1/2, wi1/2}Φ̄a
1/2Φ̄b

1/2 |0〉NS , i ∈ {1, . . . , 6}: Scalars in the adjoint represen-

tation of SU(2)6 × SO(44).

The Tachyonic states are Φ
a

1/2 |0〉NS with a mass M2 = −1
2
. Now the GSO projection

for each state is performed. Thus, the first state is given as

eiπ0·F1ψµ1/2∂X̄
ν
1 |0〉NS = −ψµ1/2∂X̄

ν
1 |0〉NS ,

and using the rules (3.4.3.1), it can be computed that C
(
NS
1

)
= δ1 = −1, therefore

δNSC

(
NS

1

)∗
ψµ1/2∂X̄

ν
1 |0〉NS = −ψµ1/2∂X̄

ν
1 |0〉NS .
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This state survives the GSO projection. Similarly, all other states in this model,

including Tachyons, survive the GSO projection. To eliminate the Tachyon, an ad-

ditional basis vector with appropriate phases is added, in order to project it out of

the spectrum with the corresponding GSO projections. It is also desired to include

the particle content of the Standard Model and reduce the gauge group. This will be

discussed in the next chapter.
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Chapter 4

Classification of the Flipped SU(5)

Heterotic-String Vacua

In this chapter, the Flipped SU(5) classification [5] of the Free-Fermionic Heterotic-

String vacua is presented. Here, the constructed models are given by breaking the

SO(10) GUT symmetry at the String scale to the Flipped SU(5) subgroup [18, 19,

20, 21, 22, 23]. In the classification method, the set of basis vectors defined by the

boundary conditions assigned to the free fermions, is fixed. The enumeration of

the String vacua is obtained in terms of the Generalised GSO (GGSO4) projection

coefficients entering the one-loop partition function. Then algebraic expressions for

the GGSO projections are derived for all the physical states appearing in the sectors

generated by the set of basis vectors. This enables the analysis of the entire String

spectrum to be programmed into a computer code that is used to perform a statistical

sampling in the space of 244 ≈ 1013 Flipped SU(5) vacua. The scan was carried out for

1012 GGSO configurations, for that purpose, two independent codes were developed

based on JAVA and FORTRAN95. All the results presented here are confirmed by the

two independent routines. Contrary to the previous Free-Fermionic classifications,

no exophobic Flipped SU(5) vacua with odd numbers of generations were found.

Therefore, the structure of exotic states appearing in the three generation models

containing a viable Higgs spectrum, are studied.

4.1 Flipped SU(5) Free-Fermionic Models

The Free-Fermionic construction provides an elegant approach to studying phe-

nomenologically viable properties of the String vacua. The matter content arises

from the 27 of the E6 symmetry, which breaks to the SO(10) symmetry at the String

4Note: The abbreviation GGSO will be used for Generalised GSO in this chapter
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scale, decomposing under the 16 spinorial and 10 vectorial representations. The 16

consists of all the left- and right-handed fermions known and predicted whereas the

10 contains the Higgs states. The SO(10) gauge group is further broken at the String

scale to one of its subgroups and therefore the gauge group in the effective low energy

field theory is given to be a subgroup of the SO(10).

4.1.1 Free-Fermionic Construction

Recalling chapter 3, the four-dimensional Free-Fermionic construction in the light-

cone gauge is represented by 20 left-moving and 44 right-moving real worldsheet

fermions. These worldsheet fermions acquire a phase as they are parallel transported

along the non-contractible loops of the vacuum to vacuum amplitude. The usual

light-cone gauge notation of the fermions are given by: ψµ1,2, χ
1,...,6, y1,...,6, ω1,...,6 (left-

movers) and y1,...,6, ω1,...,6, ψ1,...,5, η1,2,3, φ
1,...,8

(right-movers). Under the modular

invariance constraints [15, 16], each model is defined by a particular choice of phases

for the fermions that can be spanned by a set of basis vectors v1, . . . , vN

vi =
{
αi(f1), . . . , αi(f20)|αi(f 1), . . . , αi(f 44)

}
.

The basis vectors generate a space Ξ which produces the String spectrum consisting

of 2N sectors. Each sector here is given as a linear combination of all the basis vectors

ξ =
N∑
i=1

mjvi, mj = 0, 1, . . . , Nj − 1,

where Nj · vj = 0 mod 2. They also describe the transformation properties of each

fermion on the worldsheet, which is given by

fj → −eiπαi(fj) fj, j = 1, . . . , 64.

The basis vectors also induces the generalised GSO projections, with an action on

any given String state |Sξ >. This can be written as

eiπvi·Fξ |Sξ >= δξ C

(
ξ

vi

)∗
|Sξ > (4.1.1.1)

where δξ = ±1 is the index for the space-time spin statistics and Fξ is the

fermion number operator. Varying the different set of GGSO projection coefficients

C
(
ξ
vi

)
= ±1 produces distinct String models. In summary, a Free-Fermionic model

is constructed by a set of basis vectors v1, . . . , vN together with a set of 2N(N−1)/2
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independent GGSO projection coefficients C
(
vi
vj

)
, i > j consistent with modular in-

variance.

4.1.2 SO(10) Models

The SO(10) GUT models are generated by a set of 12 basis vectors, these are

given as follows:

v1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|

y1,...,6, ω1,...,6, η1,2,3, ψ
1,...,5

, φ
1,...,8},

v2 = S = {ψµ, χ1,...,6},

v2+i = ei = {yi, ωi|yi, ωi}, i = 1, . . . , 6,

v9 = b1 = {χ34, χ56, y34, y56|y34, y56, η1, ψ
1,...,5}, (4.1.2.1)

v10 = b2 = {χ12, χ56, y12, y56|y12, y56, η2, ψ
1,...,5},

v11 = z1 = {φ1,...,4},

v12 = z2 = {φ5,...,8}.

The first basis vector 1 above is a requirement of the ABK rules [15, 16] in order to

preserve modular invariance. This generates the SO(44) gauge symmetry together

with Tachyons in the massless String spectrum as discussed in chapter 3. With

the addition of vector S, the SO(44) gauge group is preserved and the Tachyons

are all projected out of the massless spectrum as a N = 4 supersymmetric theory

is constructed. The following six vectors: e1,. . . ,e6 all correspond to the possible

symmetric shifts of the six internal coordinates, therefore, this breaks the SO(44)

group to SO(32) × U(1)6 that preserves N = 4 space-time supersymmetry. The

vectors b1 and b2 break N = 4 to N = 1 space-time supersymmetry. These vectors

also break the U(1)6 symmetry giving rise to the SO(10) × U(1)2 × SO(18) gauge

symmetry. The states coming from the hidden sector are produced by the vectors z1

and z2, which are given by the remaining fermions: φ
1,...,8

, that were not affected by

the action of the previous vectors on the GGSO projection given in equation (4.1.1.1).

These vectors together with the others generate the following adjoint representation

of the gauge symmetry: SO(10) × U(1)3 × SO(8) × SO(8). Here, SO(10) × U(1)3

is the observable gauge group that gives rise to the matter states arising from the

twisted sectors that are charged under the U(1)s, whereas SO(8) × SO(8) is the

hidden gauge group, where all the matter states are neutral under the U(1)s.
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4.1.3 SO(10) Subgroups

The SO(10) GUT models generated by equation (4.1.2.1) can be broken to a

subgroup by the boundary condition assignment on the complex fermions ψ
1,...,5

.

For the Flipped SU(5) and Pati-Salam cases, one additional basis vector is required,

denoted as vN ≡ α, to break the SO(10) symmetry. In these cases, the SO(6)×SO(4)

models, utilises solely periodic and anti-periodic boundary conditions. Whereas in

the Flipped SU(5) case, the boundary conditions includes the 1/2 assignments. In

order to construct the SU(4) × SU(2) × U(1) and Standard-Like models, the Pati-

Salam breaking is required as well as an additional SO(10) breaking basis vector.

These gauge groups can be constructed from the following basis vectors:

Pati-Salam Models:

v13 = α = {ψ4,5
, φ

1,2}. (4.1.3.1)

Flipped SU(5) Models:

v13 = α = {η1,2,3 =
1

2
, ψ

1,...,5
=

1

2
, φ

1,...,4
=

1

2
, φ

5
= 1}. (4.1.3.2)

SU(4) x SU(2) x U(1) Models:

v13 = α = {ψ4,5
, φ

1,2},

v14 = β = {ψ4,5
=

1

2
, φ

1,...,6
=

1

2
}. (4.1.3.3)

Standard-Like Models:

v13 = α = {ψ4,5
, φ

1,2},

v14 = β = {η1,2,3 =
1

2
, ψ

1,...,5
=

1

2
, φ

1,...,4
=

1

2
, φ

5
= 1}. (4.1.3.4)

Hereafter, the study of the Flipped SU(5) models are considered and the classification

methodology is presented using this SO(10) subgroup. The SU(4) × SU(2) × U(1)

models will be discussed in chapter 5, whereas the Pati-Salam and Standard-Like

models are discussed in chapter 6.

4.1.4 Flipped SU(5) Models

The Flipped SU(5) models are achieved from the breaking of the SO(10) GUT

generated by the basis vectors in (4.1.2.1) using the vector α in (4.1.3.2). The rational

boundary condition assignment of the complex right-moving fermions ψ
1,...,5

= ±1
2
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makes this possible. However, the basis vector α in (4.1.3.2), used to assist this

breaking, is in fact not unique. As in the cases of other Free-Fermionic Flipped

SU(5) models constructed to date [21, 23], only the assignment of ψ
1,...,5

to the case

of positive 1/2 boundary conditions are considered here. Furthermore, the assignment

of the 3 complex worldsheet fermions η1,2,3 = 1/2 is fixed by the modular invariance

constraint bj · α = 0 mod 1. Consequently, it follows that the assignment of the

boundary conditions of the eight worldsheet complex fermions ψ
1,...,5

, η1,2,3 is unique

and the variation is in the boundary conditions of the worldsheet fermions φ
1,...,8

.

Modular invariance constraints, restrict the possibilities to assigning 1/2 boundary

conditions of φ
1,...,8

worldsheet fermions to 0, 4 or 8. The null case been given by

α = {ψ1,...,5
= 1

2
, η1,2,3 = 1

2
, φ

1,2
= 1, φ

3,4
= 1, φ

5
= 0, φ

6,7
= 0, φ

8
= 0},

is automatically excluded because the sector x = 2α = {ψ1,...,5
, η1,2,3} enhances the

SU(5)× U(1) gauge group back to the SO(10) symmetry. The condition
z1,2 · α = 0 mod 1, imposes the assignment of 1/2 boundary conditions to 0, 2 or 4 of

each of the groups of worldsheet fermions φ
1,...,4

and φ
5,...,8

. The possible choices of
v13 are then given by

α1 = {ψ1,...,5
= 1

2 , η
1,2,3 = 1

2 , φ
1,2

= 1
2 , φ

3,4
= 1

2 , φ
5

= 1, φ
6,7

= 0, φ
8

= 0 },

α2 = {ψ1,...,5
= 1

2 , η
1,2,3 = 1

2 , φ
1,2

= 1
2 , φ

3,4
= 1

2 , φ
5

= 1
2 , φ

6,7
= 1

2 , φ
8

= 1
2}, (4.1.4.1)

α3 = {ψ1,...,5
= 1

2 , η
1,2,3 = 1

2 , φ
1,2

= 1
2 , φ

3,4
= 0, φ

5
= 1, φ

6,7
= 1

2 , φ
8

= 0}.

These α’s require that the sets of basis vectors are linearly independent. This does

not hold for the cases with α1 and α2, therefore the following equations are obtained:

1 = S +
6∑
i=0

ei + 2α1 + z2,

1 = S +
6∑
i=0

ei + 2α2 .

In order to keep the set of basis vectors in (4.1.2.1), in addition to α1 or

α2 being linearly independent, the basis vector 1 is removed, leaving the set

of 12 vectors {S, e1, e2, e3, e4, e5, e6, b1, b2, z1, z2, αi}, where i = 1 or 2. In

the case with α3, the set in (4.1.2.1) is linearly independent, giving the set

{1, S, e1, e2, e3, e4, e5, e6, b1, b2, z1, z2, α3}.
In the remainder of the chapter, a comprehensive view of the methodology is given

with an insight into the classification of the SU(5)×U(1) models, using the α1 basis.

The classification was carried out by use of two independent codes, the first being

the JAVA and the second being the FORTRAN95 code. The classification for α2 and
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α3 will be reported in a future publication.

4.1.5 GGSO Projections

In order to define the String vacua, the GGSO projection coefficients appearing

in the one-loop partition function c
(
vi
vj

)
need to be specified. Taking the coefficients

to span a 12 × 12 matrix, only the elements i ≥ j are independent. Modular in-

variance dictates that the 66 lower triangle elements of the matrix are fixed by the

corresponding 66 upper triangle elements. Adding the remaining 12 diagonal terms,

78 independent coefficients are left, which corresponds to 278 ≈ 3 × 1023 different

String vacua. Moreover, requiring that the models possess N = 1 space–time super-

symmetry, 11 of the coefficients are fixed. Without loss of generality, the following

associated GGSO projection coefficients are set

C

(
S

S

)
= C

(
S

ei

)
= C

(
S

bk

)
= C

(
S

z1

)
= C

(
S

α

)
= −1, (4.1.5.1)

i = 1, ..., 6, k = 1, 2.

Modular invariance imposes additional constraints on the diagonal terms. In this

case, where the vector 1 is composite, they are given by:

C

(
S

z2

)
= −

6∏
i=1

C

(
S

ei

)
,

C

(
ek
z2

)
=

6∏
i=1
i 6=k

C

(
ek
ei

)
, k = 1 . . . 6,

C

(
bk
bk

)
= −

6∏
i=1

C

(
bk
ei

)
C

(
bk
z2

)
, k = 1, 2, (4.1.5.2)

C

(
z1

z1

)
= −

6∏
i=1

C

(
z1

ei

)
C

(
z1

z2

)
,

C

(
α

α

)
= −

6∏
i=1

C

(
α

ei

)
C

(
α

z2

)
,

where C
(
z2
z2

)
is independent of any term. Further analysis of the GGSO projections

of interest, show that there are additional phases that do not affect the properties of

the String spectrum. As a result, the following coefficients are fixed in the ensuing

analysis
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C

(
ei
ei

)
= C

(
e3

b1

)
= C

(
e4

b1

)
= C

(
e1

b2

)
= C

(
e2

b2

)
= C

(
b1
b2

)
= C

(
z2

z2

)
= 1, (4.1.5.3)

where i = 1, ..., 6. Taking the equations (4.1.5.1), (4.1.5.2) and (4.1.5.3), 44 inde-

pendent coefficients are left, which can take two discrete values ±1, except in the

cases C
(
α
b1

)
, C
(
α
b2

)
and C

(
α
z2

)
, where they take the values ±i since α · b1 = −3 (odd),

α · b2 = −3 (odd) and α · z2 = −1 (odd). Furthermore, a simple counting gives

244 ≈ 1.76× 1013 vacua in this class of Superstring models. It should be noted that

there may still exist some degeneracies in this space of vacua with regard to the char-

acteristics of the low energy effective field theory, and in particular with respect to

the observable massless states. For instance, the 3 twisted sectors of Z2×Z2 toroidal

Orbifolds possess a cyclic permutation symmetry. Nevertheless, some of the vacua

that may seem identical in the low energy effective field theory limit of the observable

sector, differ by other properties such as the massive spectrum, the superpotential

couplings and the hidden sector matter states and are therefore distinct.

4.2 String Spectrum

The vector bosons from the untwisted sector generate the

SU(5)× U(1)× U(1)3 × SU(4)× U(1)× U(1)× SO(6)

gauge symmetry. Depending on the choices of the GGSO projection coefficients,

extra space–time vector bosons may be obtained from the following 12 sectors

G =


z1, z2, z1 + z2, z1 + 2α,

α, z1 + α, z2 + α, z1 + z2 + α,

3α, z1 + 3α, z2 + 3α, z1 + z2 + 3α

 . (4.2.0.1)

The projections on the sectors 3α, z1 + 3α, z2 + 3α, z1 + z2 + 3α can be inferred from

the projections on the sectors α, z1 + α, z2 + α, z1 + z2 + α respectively. Therefore,

the details will not be discussed here. The gauge bosons that are obtained from the

sectors in (4.2.0.1) enhance the untwisted gauge symmetry. Additionally, only the

gauge bosons arising from the untwisted sector are imposed. Now, the gauge groups
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in these models are defined as Observable and Hidden given as follows:

Observable : SU(5)obs × U(1)5 × U(1)1 × U(1)2 × U(1)3

Hidden : SU(4)hid × U(1)4 × U(1)hid × SO(6)hid

The NS-sector matter spectrum is common in these models and consists of 3 pairs

of 5 and 5 representations of the observable SU(5)×U(1)5 gauge group and 12 that

are singlets under the non–Abelian gauge symmetries.

4.2.1 Observable Matter Spectrum

The chiral matter spectrum arises from the twisted sectors. The method of classi-

fication enables a straightforward enumeration of all the twisted sectors that produce

massless states and the GGSO projection that operate on them. Below, the de-

tails of the method in the case of α1 in (4.1.4.1) is provided. The chiral spinorial

representations of the observable SU(5)× U(1)5 arise from the following sectors:

B(1)
pqrs = S + b1 + pe3 + qe4 + re5 + se6

= {ψµ, χ12, (1− p)y3y3, pω3ω3, (1− q)y4y4, qω4ω4,

(1− r)y5y5, rω5ω5, (1− s)y6y6, sω6ω6, η1, ψ
1,...,5}, (4.2.1.1)

B(2)
pqrs = S + b2 + pe1 + qe2 + re5 + se6,

B(3)
pqrs = S + b3 + pe1 + qe2 + re3 + se4,

where p, q, r, s = 0, 1 and b3 = b1 + b2 + 2α+ z1. These 48 sectors give rise to 16 and

16 multiplets of SO(10), decomposed under SU(5)× U(1), which are given by

16 =
(
5,−3

2

)
+
(
10,+1

2

)
+
(
1,+5

2

)
,

16 =
(
5,+3

2

)
+
(
10,−1

2

)
+
(
1,−5

2

)
.

Additionally, vector–like representations of the observable SU(5)×U(1)5 gauge group

arise from the sectors

B(4)
pqrs = B(1)

pqrs + z1 + 2α

= {ψµ, χ12, (1− p)y3y3, pω3ω3, (1− q)y4y4, qω4ω4,

(1− r)y5y5, rω5ω5, (1− s)y6y6, sω6ω6, η2,3},

B(5,6)
pqrs = B(2,3)

pqrs + z1 + 2α.
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These sectors contain four periodic worldsheet right–moving complex fermions. The

massless states are obtained by acting on the vacuum with a Neveu–Schwarz right–

moving fermionic oscillator. Furthermore, if the oscillator is given by {ψ1,...,5} or

{ψ∗1,...,5}, then some of the 48 twisted sectors can give rise to the vectorial 10 repre-

sentation of SO(10), decomposed under SU(5)× U(1), which is given by

10 =
(
5,+1

)
+ (5,−1) .

These states are identified with light Higgs representations that are used to break

the Standard Model gauge symmetry to SU(3) × U(1)e.m.. Additional states which

are singlets under the observable SU(5)× U(1)5 might also arise from any of the 48

sectors in (4.2.1.2), given by the following representations:

• {ηi}|R〉(4,5,6)
pqrs or {η∗i}|R〉(4,5,6)

pqrs , i = 1, 2, 3, where |R〉(4,5,6)
pqrs is the degenerated

Ramond vacuum of the B
(4,5,6)
pqrs sector. These states transform as vector–like

representations under the U(1)i’s.

• {φ1,...,4}|R〉(4,5,6)
pqrs or {φ∗1,...,4}|R〉(4,5,6)

pqrs . These states transform as vector–like rep-

resentations of SU(4)× U(1)4.

• {φ5}|R〉(4,5,6)
pqrs or {φ∗5}|R〉(4,5,6)

pqrs . These states transform as vector–like represen-

tations under the U(1)5’s.

• {φ6,7,8}|R〉(4,5,6)
pqrs or {φ∗6,7,8}|R〉(4,5,6)

pqrs . These states transform as vectorial repre-

sentations of SO(6).

4.2.2 Hidden Matter Spectrum

The sectors which produce states that transform under representations of the

hidden gauge group are singlets of the observable SO(10) GUT gauge group. These

states are hidden matter states that are obtained in the String model, that are not

exotic with respect to the Standard Model gauge charges. The 48 sectors in B1,2,3
pqrs +2α

produce states that transforms under the
(
4,+1

)
, (4,−1), (6, 0), (1,+2) and (1,−2)

representations of the SU(4)× U(1) hidden gauge group and are given by

B(7)
pqrs = B(1)

pqrs + 2α

= {ψµ, χ12, (1− p)y3y3, pω3ω3, (1− q)y4y4, qω4ω4,

(1− r)y5y5, rω5ω5, (1− s)y6y6, sω6ω6, η2,3, φ
1,...,4}, (4.2.2.1)

B(8,9)
pqrs = B(2,3)

pqrs + 2α.
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In addition, there are also the following 48 sectors

B(10)
pqrs = B(1)

pqrs + z1 + z2 + 2α

= {ψµ, χ12, (1− p)y3y3, pω3ω3, (1− q)y4y4, qω4ω4,

(1− r)y5y5, rω5ω5, (1− s)y6y6, sω6ω6, η2,3, φ
5,...,8}, (4.2.2.2)

B(11,12)
pqrs = B(2,3)

pqrs + z1 + z2 + 2α,

which produce states in the 4 and 4 spinorial representations of the hidden SO(6)

gauge group.

4.2.3 Exotic Matter Spectrum

In the String spectrum, additional sectors exist which produce fractionally charged

states under the SU(5) × U(1) symmetry. These sectors arise when massless states

exist, which are produced from a linear combination of basis vectors that include

the vector α, resulting in the breaking of SO(10) symmetry. Moreover, these sectors

produce states that do not fall into representations of the underlying SO(10) GUT

symmetry. Specifically, they possess fractionally charged assignments with respect to

the U(1) symmetry in the decomposition SO(10) −→ SU(5)× U(1). Consequently,

provided that the weak hypercharge has the canonical SO(10) GUT embedding and

the canonical GUT prediction sin2 θw = 3/8, these sectors produce states that carry

fractional electric charges. This is a generic feature of String compactifications [24, 25,

26], that may have interesting phenomenological implications [27, 28, 29], as electric

charge conservation implies that the lightest of those exotic states is necessarily stable.

Many experimental searches for fractionally charged matter have been conducted

[30]. However, no reported observation of any such particles has ever been confirmed

and there are strong upper bounds on their abundance [30]. This implies that such

exotic states in String models should be either confined into integrally charged states

[21], or be sufficiently heavy and diluted in the cosmological evolution of the universe

[27, 28, 29]. The first of these solutions is problematic, due to the effect of the charged

states on the renormalisation group running of the weak–hypercharge and gauge

coupling unification. The preferred solution is therefore, for the fractionally charged

states to become sufficiently massive, i.e. with a mass which is larger than the GUT

scale. In this case the fractionally charged states can be diluted by the inflationary

evolution of the universe. Due to their heavy mass they will not be reproduced

during reheating and the experimental constraints can be evaded. 3 generation Pati–

Salam Heterotic-String models, in which the fractionally charged states arise only in

the massive String spectrum, were constructed in [31, 32], are dubbed as the semi-
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realistic exophobic Pati–Salam String models. A particular question of interest in

the current work, is the existence of semi-realistic Flipped SU(5) Heterotic-String

models. It should also be noted that the sectors appearing in (4.2.2.1) and (4.2.2.2)

contain the combination 2α and do not break the SO(10) symmetry. Therefore, these

sectors do not produce exotic states under the SU(5)× U(1) gauge symmetry.

In the Free-Fermionic construction here, the sectors that produce exotic states are

classified according to the product ξR ·ξR = 4, 6, or 8. In the first case, massless states

are obtained by acting on the vacuum with a Neveu–Schwarz fermion or with two

oscillators with 1/4 frequencies. In the second case, oscillators with 1/4 frequency

are needed to produce massless states. In the third case no oscillators are used to

produce massless states, which are given by the following 96 sectors:

B(13)
pqrs = B(1)

pqrs + z2 + α

= {ψµ, χ12, (1− p)y3y3, pω3ω3, (1− q)y4y4, qω4ω4,

(1− r)y5y5, rω5ω5, (1− s)y6y6, sω6ω6, η1 = −1
2
,

η2,3 = 1
2
, ψ

1,...,5
= −1

2
, φ

1,...,4
= 1

2
, φ

6,7,8},

B(14,15)
pqrs = B(2,3)

pqrs + z2 + α,

B(16)
pqrs = B(1)

pqrs + z1 + z2 + α

= {ψµ, χ12, (1− p)y3y3, pω3ω3, (1− q)y4y4, qω4ω4,

r(1− r)y5y5, ω5ω5, (1− s)y6y6, sω6ω6, η1 = −1
2
,

η2,3 = 1
2
, ψ

1,...,5
= −1

2
, φ

1,...,4
= −1

2
, φ

6,7,8},

B(17,18)
pqrs = B(2,3)

pqrs + z1 + z2 + α.

These produce states that are singlets under the observable SU(5), which are charged

under the U(1)5 and are given by
(
1,−5

4

)
and

(
1,+5

4

)
. The second case that consists

of oscillators with one 1/4 frequency giving rise to additional massless vector–like

states given by the following 48 sectors:

B(19)
pqrs = B(1)

pqrs + α

= {ψµ, χ12, (1− p)y3y3, pω3ω3, (1− q)y4y4, qω4ω4,

r(1− r)y5y5, ω5ω5, (1− s)y6y6, sω6ω6, η1 = −1
2
, (4.2.3.1)

η2,3 = 1
2
, ψ

1,...,5
= −1

2
, φ

1,...,4
= 1

2
, φ

5},

B(20,21)
pqrs = B(2,3)

pqrs + α.
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As an example, the sectors in B
(19)
pqrs produce the following states:

• {η1}|R〉(19)
pqrs, where |R〉(19)

pqrs is the degenerate Ramond vacuum of the B
(19)
pqrs sector.

These states transform as vector–like representations under the U(1)1.

• {η∗2}|R〉(19)
pqrs and {η∗3}|R〉(19)

pqrs. These states transform as vector–like represen-

tations under the U(1)2/3.

• {ψ1,...,5}|R〉(19)
pqrs. These states transform as

(
5,+1

4

)
and

(
5,−1

4

)
representations

of SU(5)× U(1).

• {φ∗1,...,4}|R〉(19)
pqrs. These states transform as vector–like representations of

SU(4)× U(1).

Similarly the sectors in B
(20)
pqrs and B

(21)
pqrs also produce the states as above. What is

more, similar states appear in the following 48 sectors:

B(22)
pqrs = B(1)

pqrs + z1 + α

= {ψµ, χ12, (1− p)y3y3, pω3ω3, (1− q)y4y4, qω4ω4,

r(1− r)y5y5, ω5ω5, (1− s)y6y6, sω6ω6, η1 = −1
2
, (4.2.3.2)

η2,3 = 1
2
, ψ

1,...,5
= −1

2
, φ

1,...,4
= −1

2
, φ

5},

B(23,24)
pqrs = B(2,3)

pqrs + z1 + α.

The only difference between the sectors in (4.2.3.1) and (4.2.3.2) is the sign of the

1/2 boundary condition of the worldsheet fermion φ
1,...,4

. This changes some of the

U(1) charges arising in (4.2.3.1) compared to those arising in (4.2.3.2). The structure

and type of states are similar to those listed above. Finally, the first case of exotic

states arise in the sectors α and z1 +α. These exotic states can be eliminated by the

same conditions that eliminate the space–time vector bosons arising in these sectors

which will be discussed in section 4.4.

4.3 Twisted Matter Spectrum

The counting of spinorial and vector–like representations in the given String vacua

is realised by utilizing the so called projectors. Each sector Bi
pqrs, corresponds to a

projector, P i
pqrs = 0, 1, which is expressed in terms of GGSO coefficients and de-

termines whether a given sector survives the GGSO projections. Therefore, the

computational analysis is facilitated by rewriting the projectors in an analytic form.

These are written as algebraic conditions, for the individual states arising in the

String spectrum, in terms of the GGSO phases of the basis vectors. The algebraic
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expressions are inserted into the computer code, which enables the scan of the large

space of models spanned by the basis GGSO phases.

4.3.1 Observable Spinorial States

In order to get the particle content for the representations for the sectors in

(4.2.1.1), the following normalisations are used for the hypercharge and the electro-

magnetic charge:

Y =
1

3
(Q1 +Q2 +Q3) +

1

2
(Q4 +Q5),

Qem = Y +
1

2
(Q4 −Q5).

Where the Qi charges of a state, arise due to ψi for i = 1, ..., 5. The following table

summarises the charges of the colour SU(3) and electroweak SU(2) × U(1) Cartan

generators, of the states which form the SU(5)× U(1) matter representations

Representation ψ
1,2,3

ψ
4,5

Y Qem

(+,+,+) (+,−) 1/2 1,0(
5 , +3

2

)
(+,+,−) (+,+) 2/3 2/3

(+,−,−) (−,−) -2/3 -2/3(
5 , −3

2

)
(−,−,−) (+,−) -1/2 -1,0

(+,+,+) (−,−) 0 0(
10,+1

2

)
(+,−,−) (+,+) 1/3 1/3

(+,+,−) (+,−) 1/6 -1/3,2/3

(+,+,−) (−,−) -1/3 -1/3(
10,−1

2

)
(+,−,−) (+,−) -1/6 1/3,-2/3

(−,−,−) (+,+) 0 0

( 1 , +5
2

) (+,+,+) (+,+) 1 1

( 1 , −5
2

) (−,−,−) (−,−) -1 -1

Here “ + ”, and “ − ”, label the contribution of an oscillator with fermion number

F = 0, or F = −1, to the degenerate vacuum. For example (+,+,−) under ψ
1,2,3

corresponds to a part of the Ramond vacuum, formed by two oscillators with fermion

number F = 0 and 1 oscillator with fermion numbers F = −1. These states corre-

spond to particles of the Standard Model. More precisely these representations can
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be decomposed under SU(3)× SU(2)× U(1):(
5 ,−3

2

)
=

(
3,1,−2

3

)
uc

+

(
1,2,−1

2

)
L

,(
10,+

1

2

)
=

(
3,2,+

1

6

)
Q

+

(
3,1,+

1

3

)
dc

+ (1,1, 0)νc ,(
1 ,+

5

2

)
= (1,1,+1 )ec ,

where L is the lepton–doublet; Q is the quark–doublet; dc, uc, ec and νc are the

quark and lepton singlets. Due to the α–projection, which projects on incomplete 16

and 16 representations, complete families and anti–families are formed by combining

states from different sectors.

4.3.2 Chirality Operators

A phenomenologically viable model consists of 3 families of chiral 16 representa-

tions of SO(10), decomposed under SU(5)×U(1). Therefore, the number of 16s and

16s are counted. The choice of GGSO coefficients determine the model considered

and therefore the number of families. In order to be able to distinguish between

16 and 16, it is necessary to define operators that determine the representations in

which the states of each observable sector fall into. The operators X
(1,2,3)SO(10)
pqrs = ±1,

defines the SO(10) chirality (16 or 16) for B1
pqrs, B

2
pqrs and B3

pqrs, which are given

by:

X
(1)SO(10)
pqrs = C

(
B

(1)
pqrs

b2 + (1− r)e5 + (1− s)e6

)
,

X
(2)SO(10)
pqrs = C

(
B

(2)
pqrs

b1 + (1− r)e5 + (1− s)e6

)
,

X
(3)SO(10)
pqrs = C

(
B

(3)
pqrs

b1 + (1− r)e3 + (1− s)e4

)
.

The components in the 16 and 16, need to be determined that survive the α projec-

tion from breaking SO(10) to SU(5)×U(1). In this respect, it should be noted that

the α projection operates identically on the 1 ≡ (1,+5/2) and 5 ≡ (5,−3/2) states

and similarly on the conjugate representations 1 ≡ (1,−5/2) and 5 ≡ (5,+3/2). The

surviving components are determined by defining the operators X
(1,2,3)SU(5)
pqrs = ±1,

where X
(i)SU(5)
pqrs = 1 indicates survival of the (1,+5/2) and (5,−3/2) pair and

X
(1,2,3)SU(5)
pqrs = −1 indicates survival of the (10,+1/2) states. The operator X

(i)SU(5)
pqrs
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acts similarly on the 16 of SO(10). These conditions are expressed as

X
(1)SU(5)
pqrs = C

(
B

(1)
pqrs

α

)
,

X
(2)SU(5)
pqrs = C

(
B

(2)
pqrs

α

)
,

X
(3)SU(5)
pqrs = C

(
B

(3)
pqrs

α

)
.

4.3.3 Projectors

The states in the sectors in B
(1)
pqrs, as given in (4.2.1.1), can be projected in or

out of the String spectrum depending on the GGSO projections of the vectors e1, e2,

z1 and z2. Likewise for B
(2)
pqrs and B

(3)
pqrs, a projector P is defined so that the states

survive when P = 1 and are projected out when P = 0, which are given as:

P (1)
pqrs =

1

16

(
1− C

(
e1

B
(1)
pqrs

))
.

(
1− C

(
e2

B
(1)
pqrs

))
.

(
1− C

(
z1

B
(1)
pqrs

))
.

(
1− C

(
z2

B
(1)
pqrs

))
,

P (2)
pqrs =

1

16

(
1− C

(
e3

B
(2)
pqrs

))
.

(
1− C

(
e4

B
(2)
pqrs

))
.

(
1− C

(
z1

B
(2)
pqrs

))
.

(
1− C

(
z2

B
(2)
pqrs

))
,

P (3)
pqrs =

1

16

(
1− C

(
e5

B
(3)
pqrs

))
.

(
1− C

(
e6

B
(3)
pqrs

))
.

(
1− C

(
z1

B
(3)
pqrs

))
.

(
1− C

(
z2

B
(3)
pqrs

))
.

These projectors can be expressed as a system of linear equations with p, q, r and

s as unknowns. The solutions of such a system of equations yield the different com-

binations of p, q, r and s for which sectors survive the GGSO projections. The

analytic expressions for each of the different projectors P 1,2,3
pqrs are given in a matrix

form ∆iW i = Y i, where
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
(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(z2|e3) (z2|e4) (z2|e5) (z2|e6)



p

q

r

s

 =


(e1|b1)

(e2|b1)

(z1|b1)

(z2|b1)

 = Y 1,


(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(z2|e1) (z2|e2) (z2|e5) (z2|e6)



p

q

r

s

 =


(e3|b2)

(e4|b2)

(z1|b2)

(z2|b2)

 = Y 2,


(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(z2|e1) (z2|e2) (z2|e3) (z2|e4)



p

q

r

s

 =


(e5|b3)

(e6|b3)

(z1|b3)

(z2|b3)

 = Y 3.

Here the GGSO phases are defined as

C

(
vi
vj

)
= eiπ(vi|vj) ,

where vi and vj refer to the basis vectors and the GGSO projections are defined as in

(4.1.1.1). The corresponding algebraic expressions, for the states from the remaining

sectors above, are enumerated in the appendix. Furthermore, the projectors presented

in the appendix determine the number of surviving observable, hidden and exotic

states in each model.

4.4 Gauge Group Enhancements

The SU(5)×U(1) gauge symmetry generated by the untwisted space–time vector

bosons, may be enhanced by the vector bosons that arise from the sectors listed in

(4.2.0.1). Here, it is imposed that all the additional space–time vector bosons are

projected out. The gauge symmetry is therefore identical in all the models scanned,

though the occurrence of models with enhancements are approximately about 23.8%

of the total models. The String models in the classification differ by the String

spectrum that arises from the twisted sectors. In the classification method, the

GGSO projections coefficients are transformed in terms of algebraic equations, which

are applied to all the sectors listed in section 4.2.

The gauge bosons of any given sector in (4.2.0.1), transform under a subgroup of
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the Neveu–Schwarz gauge group. If they survive the GGSO projections, then the NS

gauge group is enhanced. The classification here is restricted to the cases without en-

hancement, by identifying when the gauge bosons survive the GGSO projections and

generalizing the formulae to eliminate them. Below, the different types of enhance-

ments are presented that can occur within the String spectrum from the sectors given

in (4.2.0.1). In addition, it is assumed that only one set of conditions are satisfied

from any one given sector in (4.2.0.1).

4.4.1 Observable Gauge Group Enhancements

There is one sector contributing only to the enhancement of the observable gauge

group i.e. SU(5)obs×U(1)5×U(1)1×U(1)2×U(1)3. This is the sector z1 +2α, given

by the conditions:

• z1 + 2α = {ψ1,...,5
, η1,2,3}

Sector Condition

(z1 + 2α|ei) = (z1 + 2α|zk) = 0

Enhancement Condition Resulting Enhancement

(z1 + 2α|α) = (z1 + 2α|b2) SU(5)obs × U(1)5 × U(1)ζ

−−−−→ SU(6)× SU(2)

(z1 + 2α|α) 6= (z1 + 2α|b2) SU(5)obs × U(1)5 × U(1)ζ

−−−−→ SO(10)× U(1)

where i = 1, . . . , 6 and k = 1, 2 and U(1)ζ is a linear combination of U(1)1,

U(1)2 and U(1)3.

4.4.2 Hidden Gauge Group Enhancements

The vector bosons arising from the untwisted sector produce the hidden gauge

symmetry, which is given as SU(4)hid × U(1)4 × SO(6)hid × U(1)hid. Similar to the

observable sector, there is one sector that enhances only the untwisted hidden sector

gauge symmetry and is given by the sector z1 + z2, where the conditions are given

by:
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• z1 + z2 = {φ1,...,8}

Sector Condition

(z1 + z2|ei) = (z1 + z2|bk) = 0

Enhancement Condition Resulting Enhancement

(z1 + z2|z1) = 1 SU(4)hid × U(1)4 × SO(6)hid × U(1)hid

−−−−→ SU(8)× U(1)

where i = 1, . . . , 6 and k = 1, 2.

4.4.3 Mixed Gauge Group Enhancements

The additional sectors in (4.2.0.1), produce vector bosons coming from the mix-

ture of the observable and hidden sector gauge groups. The mixed gauge group

enhancements are formed from the untwisted symmetries of the observable and hid-

den gauge group. These are given from the sectors z1, z2, α, z1 + α, z2 + α and

z1 + z2 + α. The conditions are as follows:

• z2 = {φ5,...,8}

Sector Condition

(z2|ei) = 0

Enhancement Condition Resulting Enhancement

(z2|z1) = 1

(z2|bk) = 0

SU(4)hid × U(1)4 × SO(6)hid × U(1)hid

−−−−→ SU(8)× U(1)

(z2|z1) = 0

(z2|bk) 6= 1

U(1)1/2/3 × SO(6)hid × U(1)hid

−−−−→ SU(5)× U(1)

(z2|z1) = 0

(z2|bk) = 1

SU(5)obs × U(1)5 × SO(6)hid × U(1)5

−−−−→ SU(9)× U(1)

where i = 1, . . . , 6 and k = 1, 2.
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• z1 = {φ1,...,4}

Enhancement Condition Resulting Enhancement

(z1|ei) = (z1|bk) = (z1|z1) = (z1|α) = 0

(z1|z2) = 1

SU(4)hid × U(1)4 × U(1)hid × SO(6)hid

−−−−→ SO(8)× SO(8)

(z1|ei) = (z1|bk) = (z1|z1) = 0

(z1|z2) = (z1|α) = 1

SU(4)hid × U(1)4 × U(1)hid × SO(6)hid

−−−−→ SO(12)× SO(4)

(z1|ei) = (z1|z2) = 0

(z1|bk) 6= 1

(z1|z1) = 1

U(1)1/2/3 × SU(4)hid × U(1)4

−−−−→ SU(5)× U(1)

(z1|ei) = (z1|z2) = 0

(z1|bk) = (z1|z1) = 1

SU(5)obs × U(1)5 × SU(4)hid × U(1)4

−−−−→ SU(9)× U(1)

(z1|ej) = (z1|z1) = (z1|z2) = (z1|α) = 0

(z1|ei) = 1

AND

(z1|b1) = 0, i = 1, 2

or

(z1|b2) = 0, i = 3, 4

or

(z1|b1) = (z1|b2), i = 5, 6

U(1)4 −−−−→ SO(3)

(z1|ej) = (z1|z1) = (z1|z2) = 0

(z1|ei) = (z1|α) = 1

AND

(z1|b1) = 0, i = 1, 2

or

(z1|b2) = 0, i = 3, 4

or

(z1|b1) = (z1|b2), i = 5, 6

SU(4)hid −−−−→ SO(7)

where i, j = 1, . . . , 6, i 6= j and k = 1, 2.
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• α ⊕ 3α = {ψ1,...,5
= 1

2
, η1,2,3 = 1

2
, φ

1,...,4
= 1

2
, φ

5} ⊕ {ψ1,...,5
= −1

2
, η1,2,3 =

−1
2
, φ

1,...,4
= −1

2
, φ

5}

The states that give two 1
4

oscillators are produced from the following condi-

tions:

Sector Condition

(α|ei) = 0

(α|z2) 6= (α|α)

Enhancement Condition Resulting Enhancement

(α|z1) = (α|bk) = 0 SU(5)obs × U(1)5 × SU(4)hid × U(1)4 ×
U(1)hid

−−−−→ SO(10)× SO(8)× U(1)

(α|z1) = 0

(α|bk) 6= 0

SU(5)obs × U(1)5 × U(1)1 × U(1)2 ×
U(1)3 × U(1)hid

−−−−→ SU(6)× SU(2)× U(1)3

(α|z1) = 1

(α|bk) 6= 1

U(1)1/2/3 × SU(4)hid × U(1)4 × U(1)hid

−−−−→ SU(5)× U(1)2

(α|z1) = (α|bk) = 1 SU(5)obs × U(1)5 × SU(4)hid × U(1)4 ×
U(1)hid

−−−−→ SU(9)× U(1)2

where i = 1, . . . , 6 and k = 1, 2. Additionally, the states that give one 1
2

oscillators are produced from the following conditions:
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Sector Condition

(α|z1) = 0

Enhancement Condition Resulting Enhancement

(α|ei) = (α|bk) = 0

(α|z2) 6= (α|α)

SO(6)hid −−−−→ SO(7)

(α|z2) = (α|α)

(α|ej) = 0

(α|ei) = 1

AND

(α|b1) = 0, i = 1, 2

or

(α|b2) = 0, i = 3, 4

or

(α|b1) = (α|b2), i = 5, 6

U(1)hid −−−−→ SO(3)

where i, j = 1, . . . , 6, i 6= j and k = 1, 2.

• z1+α⊕z1+3α = {ψ1,...,5
= 1

2
, η1,2,3 = 1

2
, φ

1,...,4
= −1

2
, φ

5}⊕{ψ1,...,5
= −1

2
, η1,2,3 =

−1
2
, φ

1,...,4
= 1

2
, φ

5}

The states that give two 1
4

oscillators are produced from the following condi-

tions:

Sector Condition

(z1 + α|ei) = 0

Enhancement Condition Resulting Enhancement

(z1 + α|z1) = (z1 + α|bk) = 0

(z1 + α|z2) 6= (z1 + α|α)

SU(5)obs × U(1)5 × SU(4)hid × U(1)4 ×
U(1)hid

−−−−→ SO(10)× SO(8)× U(1)

(z1 + α|z1) = 0

(z1 + α|bk) 6= 0

(z1 + α|z2) 6= (z1 + α|α)

SU(5)obs × U(1)5 × U(1)1 × U(1)2 ×
U(1)3 × U(1)hid

−−−−→ SU(6)× SU(2)× U(1)3

(z1 + α|z1) = 1

(z1 + α|bk) 6= 1

(z1 + α|z2) = (z1 + α|α)

U(1)1/2/3 × SU(4)hid × U(1)4 × U(1)hid

−−−−→ SU(5)× U(1)2

(z1 + α|z1) = (z1 + α|bk) = 1

(z1 + α|z2) = (z1 + α|α)

SU(5)obs × U(1)5 × SU(4)hid × U(1)4 ×
U(1)hid

−−−−→ SU(9)× U(1)2
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where i = 1, . . . , 6 and k = 1, 2. Additionally, the states that give one 1
2

oscillators are produced from the following conditions:

Sector Condition

(z1 + α|z1) = 0

Enhancement Condition Resulting Enhancement

(z1 + α|ei) = (z1 + α|bk) = 0

(z1 + α|z2) 6= (z1 + α|α)

SO(6)hid −−−−→ SO(7)

(z1 + α|z2) = (z1 + α|α)

(z1 + α|ej) = 0

(z1 + α|ei) = 1

AND

(z1 + α|b1) = 0, i = 1, 2

or

(z1 + α|b2) = 0, i = 3, 4

or

(z1 + α|b1) = (z1 + α|b2), i = 5, 6

U(1)hid −−−−→ SO(3)

where i, j = 1, . . . , 6, i 6= j and k = 1, 2.

• z2+α⊕z2+3α = {ψ1,..,5
= 1

2
, η1,2,3 = 1

2
, φ

1,..,4
= 1

2
, φ

6,7,8}⊕{ψ1,..,5
= −1

2
, η1,2,3 =

−1
2
, φ

1,..,4
= −1

2
, φ

6,7,8}

Sector Condition

(z2 + α|ei) = 0

(z2 + α|α) = 1
2

Enhancement Condition Resulting Enhancement

(z2 + α|z1) = 0

(z2 + α|bk) = 1

SU(5)obs × U(1)5 × SO(6)hid

−−−−→ SU(9)

(z2 + α|z1) = 0

(z2 + α|bk) 6= 1

U(1)1/2/3 × SO(6)hid

−−−−→ SU(5)

(z2 + α|bk) = 0

(z2 + α|z1) = 1

SU(4)hid × U(1)4 × SO(6)hid

−−−−→ SU(8)

where i = 1, . . . , 6 and k = 1, 2.
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• z1 +z2 +α⊕z1 +z2 +3α = {ψ1,..,5
= 1

2
, η1,2,3 = 1

2
, φ

1,..,4
= −1

2
, φ

6,7,8}⊕{ψ1,..,5
=

−1
2
, η1,2,3 = −1

2
, φ

1,..,4
= 1

2
, φ

6,7,8}

Sector Condition

(z1 + z2 + α|ei) = 0

Enhancement Condition Resulting Enhancement

(z1 + z2 + α|z1) = 0

(z1 + z2 + α|α) = 1
2

(z1 + z2 + α|bk) = 1

SU(5)obs × U(1)5 × SO(6)hid

−−−−→ SU(9)

(z1 + z2 + α|z1) = 0

(z1 + z2 + α|α) = 1
2

(z1 + z2 + α|bk) 6= 1

U(1)1/2/3 × SO(6)hid

−−−−→ SU(5)

(z1 + z2 + α|bk) = 0

(z1 + z2 + α|α) = −1
2

(z1 + z2 + α|z1) = 1

SU(4)hid × U(1)4 × SO(6)hid

−−−−→ SU(8)

where i = 1, . . . , 6 and k = 1, 2.

Finally, recalling in section 4.2.3, the sectors α, z1 + α, z2 + α and z1 + z2 + α may

also give rise to exotic states, when the left–moving ψµ oscillator is replaced by a

left–moving χi oscillator. Moreover, it should be noted that the GGSO projections

of the basis vectors e1,...,6, z1,2 and α do not distinguish between ψµ and χi, which

can therefore, be used to project both the enhancements, as well as the exotic states

arising from the sectors α, z1 + α, z2 + α and z1 + z2 + α.

4.5 Classification

By use of the algebraic expressions given in the sections previously, as well as in the

appendix, the entire massless spectrum is analysed for a given choice of configuration

of GGSO projection coefficients. These expressions were transformed into matrix

equations which were then programmed into a computer code, that were used to scan

the space of the String vacua. The number of possible configurations is 244 ≈ 1013,

which is very large in order for a classification of the entire String vacua. For this

purpose, a random number generator algorithm was used and the characteristics

of the models for each set of random GGSO projection coefficients were extracted.

From the generated sample, a model with the desired phenomenological criteria can

be attained. This procedure was followed in [31, 32, 33], which produced 3 generation

Pati–Salam Heterotic-String models that did not contain any exotic massless states
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with fractional electric charge. In this thesis, this methodology is used to classify the

Flipped SU(5) Free-Fermionic String models with respect to some phenomenological

criteria. For example, a question of interest is the existence of viable 3 generation

exophobic Flipped SU(5) vacua. The observable sector of a Heterotic-String Flipped

SU(5) model is characterised by 15 integers, which are listed as:

n1 = # of (1,+5
2
),

n1 = # of (1,−5
2
),

n5s = # of (5,+3
2
),

n5s = # of (5,−3
2
),

n10 = # of (10,+1
2
),

n10 = # of (10,−1
2
),

ng = n10 − n10 = n5 − n5 = # of generations,

n10H = n10 + n10 = # of non-chiral heavy Higgs pairs,

n5v = # of (5,+1),

n5v = # of (5,−1),

n5h = n5v + n5v = # of non-chiral light Higgs pairs,

n1e = # of (1,−5
4
) (exotic),

n1e = # of (1,+5
4
) (exotic),

n5e = # of (5,−1
4
) (exotic),

n5e = # of (5,+1
4
) (exotic).

The numbers above are all relevant for the classification of the String vacua. As

recalled in section 4.3.2, the α projection dictates that n1 = n5s and n1 = n5s.

Therefore, the counting of n5 and n5 is sufficient for the number of generations. There

is also a distinction to be made between the 5 and 5 representations arising from the

spinorial 16 representation of SO(10) decomposed under SU(5)× U(1), denoted by

n5s, n5s. Whereas, the 5 and 5 that arise from its vectorial 10 representation are

denoted by n5v, n5v. While the former gives rise to the Standard Model up–type

quark electroweak singlet and lepton–doublet, the latter accommodates the light

electroweak Higgs doublets. In the Flipped SU(5) models they are distinguished by

their charges under the U(1)5 symmetry. Moreover, using the methodology outlined

in section 4.3, analytic formulas were obtained for all these quantities. In order to

extract a String spectrum from the phenomenologically viable models of the Flipped
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SU(5), the following is needed:

ng = 3 3 light chiral of generations,

n10H ≥ 1 At least 1 heavy Higgs pair to break the SU(5)× U(1) symmetry,

n5h ≥ 1 At least 1 pair of light Minimal SM Higgs doublets,

n1e = n1e ≥ 0 Heavy mass can be generated for vector–like exotics,

n5e = n5e ≥ 0 Heavy mass can be generated for vector–like exotics.

Here, it should be noted that the constraints n5h = n5h, n1e = n1e and n5e = n5e were

imposed, in order to sustain anomaly free Flipped SU(5) models.

4.5.1 Minimal Exophilic Models

Compared to the case of the Pati–Salam classification [32], which yielded 3 gener-

ation models that are completely free of massless exotic states, no such models were

found in the scan of the Flipped SU(5) models. It must be emphasised, that this

does not indicate that exophobic Free-Fermionic Flipped SU(5) vacua do not exist,

and that, they did not exist in the space of vacua that were explored. Nevertheless,

it did show that large spaces of vacua may not contain exophobic models, which is in

line with related searches [34]. Further to this, models with minimal number of exotic

states that were found in the scan, had the following properties: ng = 3, n5s = 3,

n5s = 0, n10 = 4, n10 = 1, n10H = 1, n5h = 4, n1e = 2 and n5e = 0. In these particular

minimal models, exotics states still exist in the spectrum consisting of 4 states. For

instance, an example of a minimal model is given by the following GGSO coefficients

matrix:
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(vi|vj) =



S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2 α

S 1 1 1 1 1 1 1 1 1 1 1 1

e1 1 0 0 1 1 1 0 0 0 1 1 1

e2 1 0 0 0 0 1 0 1 0 1 1 1

e3 1 1 0 0 0 0 0 0 0 0 1 0

e4 1 1 0 0 0 0 0 0 0 0 1 1

e5 1 1 1 0 0 0 1 0 1 1 1 1

e6 1 0 0 0 0 1 0 1 1 0 1 1

b1 0 0 1 0 0 0 1 0 0 1 1 1/2

b2 0 0 0 0 0 1 1 0 1 0 0 1/2

z1 1 1 1 0 0 1 0 1 0 1 1 1

z2 1 1 1 1 1 1 1 1 0 1 0 −1/2

α 1 1 1 0 1 1 1 0 0 0 0 1


Further elaboration on the structure of the exotic states in the Flipped SU(5) models

will be discussed in section 4.5.3.

4.5.2 Results and Discussions

Figure 4.1: Logarithm of the number of models in relation to the number of genera-
tions (ng), in a random sample of 1012 Flipped SU(5) configurations.

To accomplish the classification of the Free-Fermionic Flipped SU(5) String vacua,
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n5h/n10H 0 1 2 3
0 281477 28518 0 0
1 3626622 275967 8197 651
2 630727 61910 2092 0
3 23924485 63774 5901 0
4 78959 67900 0 0
5 139642 12380 0 0

Table 4.1: Number of 3 generation models as a function of the Flipped SU(5) breaking
Higgs pairs (n10H) in relation to the SM breaking Higgs pairs (n5h), in a random
sample of 1010 models.

a statistical sampling was carried out in a space of 1012 models out of the 244 pos-

sibilities. For this purpose, it was necessary to develop two independent computer

codes, which were required to cross check the vast data. The results from this are

presented in figures 4.1 - 4.3 and table 4.1 - 4.3.

The number of models in relation to the number of generations is indicated in

figure 4.1. This is in agreement with the results of [32, 35, 36, 37, 38, 39], where

the number of models peaks for the 0 generation and decreases as the number of

generations increases. In this figure also, the absence of models with 7, 9, 11 and

greater than 12 generations can be seen. These results can be understood in light of

the corresponding results in the SO(10) classification [37, 38, 39]. Recalling that the

α projection which breaks the SO(10) symmetry to the Flipped SU(5), truncates

the number of generations by two. Therefore, by examining the corresponding figure

in the SO(10) classification, the absence of the models with double the number of

generations is observed, i.e. no models with 14, 18, 22 and more than 24 generations.

Remark, that this result is applicable to the case in which all gauge group enhance-

ments are projected out, as discussed in section 4.4. Thus, models with the excluded

number of generations may occur, when the hidden gauge group is enhanced. How-

ever, comparing figure 4.1 to the corresponding figure in [32], the existence of models

with 16 generations is noticed, since not all of the hidden gauge group enhancements

where projected out there. Whereas, from section 4.4, this is not the case for the

basis vector α1 used here. Hence, some of these models descend from SO(10) GUTs

with enhanced gauge group. These do not arise in the case of the Flipped SU(5)

models studied here.

The number of 3 generation models in relation to the number of pairs of light and

heavy Higgs representations appearing in the models is shown in table 4.1, with the

light and heavy pairs being 5+5 and 10+10 representations of SU(5), respectively.

The null cases are not viable phenomenologically and the minimal cases are models

with one pair of each. In models with a larger number of light Higgs pairs, it may be
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easier to accommodate the Standard Model fermion mass textures, whereas models

with a larger number of heavy Higgs pairs, may facilitate gauge coupling unification

at the String scale [23, 40, 41].

As seen in section 4.2.3, some of the exotic matter states in the models transform

into vector–like representations of the hidden sector non–Abelian group factors. They

carry fractional electric charge and must be sufficiently massive or confined. These

exotic states may nevertheless have interesting phenomenological implications. In

table 4.2, the structure of the exotic states arising in the models is explored. These

are labelled by the four integers: ne5,n
e
1,n

e
4 and ne4′ , where ne5 = n5e+n5e is the number

of exotic states that transform as 5 and 5 of the observable SU(5); ne1 = n1e + n1e

is the number of exotic states that transform as singlets of all non–Abelian group

factors; ne4 = n4e + n4e is the number of exotic states that transform as 4 and 4 of

the hidden SU(4); ne4′ = n4′e + n4
′
e is the number of exotic states that transform as

4 and 4 of the hidden SO(6) gauge group.

Figure 4.2: Logarithm of the number of exophobic models in relation to the number
of generations (ng), in a random sample of 1012 Flipped SU(5) configurations.

The number of exophobic models in relation to the number of generations is

displayed in figure 4.2. The striking feature in this figure is the absence of models

with 3 chiral generations. This is in contrast to the case of the Pati–Salam models that

yielded numerous 3 generation exophobic models. Figure 4.2 also reveals the absence

of any exophobic odd generation models with 1, 3, 5, 7, 9, 11, whereas exophobic

models arise for the even numbers of generations, up to 12. As a result, exophobic
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models in this class arise in configurations with even numbers of generations and not

in models with odd numbers of generations. It should be emphasized, that these

results hold in the space of models that were explored here and may not indicate

absence of 3 generation exophobic Flipped SU(5) models. In figure 4.3, the number

of 3 generation models in relation to the number of exotic multiplets is displayed,

note that the minimal number of exotic multiplets is 4.

Figure 4.3: Logarithm of the number 3 generation models in relations to the number
of exotic multiplets (n1e, n1e, n5e, n5e), in a random sample of 1012 Flipped SU(5)
configurations.

4.5.3 Structure of Exotic States

One of the main highlights of the classification method in the case of the Pati–

Salam Heterotic-String models, has been the discovery of the exophobic Heterotic-

String models, in which all exotic states are limited to the massive spectrum and

do not appear among the massless states. As shown in figures 4.2 and 4.3, in the

class of 1012 Flipped SU(5) models that were analysed here, there are no exophobic

3 generation vacua with a statistical frequency larger than 1 : 1012. The structure

of the exotic states arising in the models are analysed further in table 4.2. All the

models given in this table contain 3 chiral generations of which at least one–pair is the

light Higgs states and at least one pair is the heavy Higgs states. Thus, in all these

models the gauge symmetry can be broken to the Standard Model in the effective
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field theory limit, which also contains all the fields required for viable Standard Model

phenomenology.

The occurrence of models in which all exotic states transform in representations

of an hidden non–Abelian gauge group, is noted in table 4.2. In this case, the

exotic states are confined into integrally charged states and produce the so–called

Crypton states [42, 43, 44]. As a further note from this table, is the existence of

models with equal numbers of 4 and 4′ states. This suggests the possible existence

of the Free-Fermionic models that admit the Race-Track mechanism to stabilise the

vacuum expectation value of the Dilaton field [45, 46]. Moreover, table 4.2 reveals

interesting observations and directions for future research. The first eleven models

in the table contain only states that transform in non–trivial representations of an

hidden non–Abelian gauge group. Thus, this class of models may give rise to the

so–called Crypton states that are confined into integrally charged states. It was seen

that there is an abundance of such models. There are also numerous models with a

small number of Crypton states that may remain asymptotically free and therefore,

confined at some scale. A well known example of a model that gives rise only to

Crypton like states is given in [21]. The table shows the existence of a large space

of models with similar characteristics. One notable difference between the vacua in

this table and the one of [21], is the fact that the model in [21] uses asymmetric

internal shifts, whereas the models in this table only use symmetric internal shifts.

The models in the six and twelfth rows of the table, with n4 = n4′ = 2 are interesting

to study for implementation of the Race-Track mechanism [45, 46].

In examination of the other types of exotic states. The non–Abelian singlet states

that are counted in the second column, are fractionally charged and must decouple

from the light spectrum or be sufficiently diluted. The fields counted in the first

column transform as 5 and 5 of the observable SU(5) and carry 1/2 of the hypercharge

compared to the standard Flipped SU(5) states. Such states do not arise in the

Flipped SU(5) model studied in [21], however, their colour triplet and electroweak

doublet components arise generically in the Standard–Like Heterotic-String models

[40, 41, 47, 48, 49, 50, 51]. These fields may be instrumental as intermediate matter

states to resolve the conflict between Heterotic-String scale unification and the low

scale gauge coupling experimental data [40, 41]. The models appearing in the 13th and

25th rows in table 4.2, are interesting examples of Flipped SU(5) models admitting

such states. The models in the 25th row with n5 = 2, n1 = 6 , n4 = 2 and n4′ =

2 may accommodate both the intermediate matter thresholds and the Race-Track

mechanism, therefore maybe of particular interest.

The model given in (4.5.3.1) is analysed to illustrate the exotic spectrum ap-

pearing in the Flipped SU(5) models. The twisted sectors of the model given here
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produce: 3 chiral generations; one pair of heavy Higgs states; one pair of light Higgs

representations. Therefore, this model may yield viable Standard Model phenomenol-

ogy.

(vi|vj) =



S e1 e2 e3 e4 e5 e6 b1 b2 z1 z2 α

S 1 1 1 1 1 1 1 1 1 1 1 1

e1 1 0 0 0 0 1 1 1 0 1 0 1

e2 1 0 0 1 1 1 1 1 0 0 0 0

e3 1 0 1 0 0 1 1 0 1 0 1 0

e4 1 0 1 0 0 1 1 0 1 0 1 1

e5 1 1 1 1 1 0 0 1 1 0 0 0

e6 1 1 1 1 1 0 0 1 1 0 0 1

b1 0 1 1 0 0 1 1 1 0 0 0 −1/2

b2 0 0 0 1 1 1 1 0 1 0 0 1/2

z1 1 1 0 0 0 0 0 0 0 1 1 0

z2 1 0 0 1 1 0 0 0 0 1 0 1/2

α 1 1 0 0 1 0 1 1 0 1 1 1



(4.5.3.1)

These model contain the following states that transform under the hidden SU(4)

gauge group: six non–exotic pairs of (4 + 4); one non–exotic state transforming

in the vectorial 6 representation; one pair of exotic states transforming as (4 + 4).

Additionally, these model also contain the following states that transform under the

hidden SU(4)′ gauge group: four non–exotic pairs of (4 + 4); one non–exotic state

transforming in the vectorial 6 representation; one pair of exotic states transforming

as (4 + 4). Thus, the β–functions of the SU(4) and SU(4)′ hidden gauge groups

are β4 = −4 and β4′ = −6, respectively. Depending on the mass scales for the

hidden sector matter states, this model may therefore, provide a workable example

for implementing the Race-Track mechanism. This model also contains one pair of

exotic (5 + 5) states of the observable Flipped SU(5) group that can be used to

mitigate the gauge coupling unification problem.

74



n5 n1 n4 n′4 # n5 n1 n4 n′4 # n5 n1 n4 n′4 #
0 0 0 2 12627 2 10 3 3 9311 4 12 4 3 4889
0 0 0 4 3561 2 10 4 5 668 4 12 4 5 5720
0 0 0 6 1630 2 10 5 1 1614 4 12 4 6 965
0 0 0 8 187 2 10 5 2 4074 4 12 5 2 1479
0 0 2 0 16329 2 10 5 4 906 4 12 5 4 6105
0 0 2 2 18381 2 10 7 2 1745 4 12 6 4 608
0 0 2 4 2409 2 14 2 5 1474 4 12 8 0 153
0 0 4 0 6814 2 14 4 5 873 4 16 1 1 11395
0 0 4 2 3722 2 14 5 2 1412 5 7 2 4 1352
0 0 6 0 2338 2 14 5 4 1040 5 7 4 2 1323
0 0 8 0 356 2 18 1 1 2966 5 11 2 2 9462
0 8 2 2 1166 3 9 2 4 9505 5 11 2 5 2675
1 3 1 1 45575 3 9 3 3 2670 5 11 3 4 2491
1 3 2 8 4343 3 9 4 2 9949 5 11 4 3 2828
1 3 4 6 12465 3 13 2 2 9367 5 11 4 5 5164
1 3 6 4 12858 3 13 3 4 2562 5 11 5 2 2432
1 3 8 2 4287 3 13 4 3 2599 5 11 5 4 5074
1 11 2 4 1135 3 13 4 5 1909 5 15 2 5 4163
1 11 4 2 1336 3 13 5 4 1630 5 15 2 7 1069
2 6 0 0 13014 4 4 2 2 1231 5 15 4 5 1937
2 6 0 2 17622 4 8 1 5 1331 5 15 5 2 2605
2 6 0 4 6164 4 8 2 5 993 5 15 5 4 1170
2 6 0 6 3942 4 8 3 3 7915 5 15 7 2 670
2 6 2 0 14550 4 8 4 5 649 6 14 1 1 9970
2 6 2 2 25235 4 8 5 1 1443 6 18 0 2 2171
2 6 2 4 5864 4 8 5 2 1298 6 18 2 0 1499
2 6 3 5 10824 4 8 5 4 981 6 18 2 2 2272
2 6 4 0 5593 4 12 0 2 3255 6 18 2 4 799
2 6 4 2 4924 4 12 0 4 6986 6 18 4 2 490
2 6 4 4 2712 4 12 0 8 383 7 13 2 5 1311
2 6 4 6 1870 4 12 2 0 1795 7 13 2 7 758
2 6 5 3 10858 4 12 2 2 7064 7 13 5 2 849
2 6 6 0 2699 4 12 2 4 3139 7 13 7 2 428
2 6 6 4 2099 4 12 2 5 1269 8 12 1 1 2755
2 10 1 5 1522 4 12 3 4 5217 8 24 0 4 397
2 10 2 5 2794 4 12 4 0 3237 8 24 4 0 163
2 10 2 7 1199 4 12 4 2 2489 - - - - -

Table 4.2: Number of 3 generation models consisting of n10H ≥ 1 and n5h ≥ 1, in
relation to the exotic multiplets (n5,n1,n4,n′4), in a random sample of 1010.
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Constraints
Total
Models

Probability
Number
of Models

No Constraints 1000000000000 1 1.76× 1013

(1) + No Enhancements 762269298719 7.62× 10−1 1.34× 1013

(2) + Anomaly Free Flipped SU(5) 139544182312 1.40× 10−1 2.45× 1012

(3) + 3 Generations 738045321 7.38× 10−4 1.30× 1010

(4a) + SM Light Higgs 706396035 7.06× 10−4 1.24× 1010

(4b) + Flipped SU(5) Heavy Higgs 46470138 4.65× 10−5 8.18× 108

(5) + SM Light Higgs 43624911 4.36× 10−5 7.67× 108

+ & Heavy Higgs

(6a)
+ Minimal Flipped
SU(5) Heavy Higgs

42310396 4.23× 10−5 7.44× 108

(6b) + Minimal SM Light Higgs 25333216 2.53× 10−5 4.46× 108

(7)
+ Minimal Flipped
SU(5) Heavy Higgs

24636896 2.46× 10−5 4.33× 108

+ & Minimal SM Light Higgs

(8) + Minimal Exotic States 1218684 1.22× 10−6 2.14× 107

Table 4.3: Statistics for the Flipped SU(5) models, with respect to phenomenological
constraints.

4.5.4 Phenomenological Constraints

The number of models with sequential imposition of phenomenological constraints

is displayed in table 4.3 . The total number of models in the sample is 1012. Firstly,

the condition of there being no enhancements of the four-dimensional gauge symme-

try were imposed, which approximated to 76.2% of the total models. Secondly, the

condition that the Flipped SU(5) models are anomaly free with respect to the U(1)5

group factor were imposed, and about 14% of the total models satisfied this criterion.

A further reduction by 3 orders of magnitude, resulted from the restriction to have

3 chiral generation model. Then, imposing the existence of both the heavy and light

Higgs states to break the Flipped SU(5) gauge symmetry, to the Standard Model

gauge group and the electroweak breaking, respectively, leads to a further reduction

of one order of magnitude. Finally, imposing the minimal number of massless ex-

otic states resulted in the reduction of the number of models by a further order of

magnitude. Therefore, the number of String vacua in the space of models scanned,

reduced from 1012 to 106, that satisfies all the constraints that were imposed. This

left a substantial number to accommodate further phenomenological constraints. To

conclude, regarding the results obtained by using α2 and α3 in (4.1.4.1) to break the

SO(10) symmetry. The preliminary results are not that substantially different com-

pared to the classification with α1 and it seems that there are also no 3 generation

exophobic vacua in these cases.
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Chapter 5

Classification of the SU(4) x SU(2)

x U(1) Heterotic-String Vacua

In this chapter, the classification is extended and given for the class of SU(4) ×
SU(2)× U(1) (SU4215) Heterotic-String models [6]. The classification methodology

will be identical to the Flipped SU(5) models, as discussed in chapter 4. However,

here it will be shown that breaking the SO(10) symmetry to the SU(4)×SU(2)×U(1)

subgroup [52] cannot produce 3 chiral generations in the Free-Fermionic construction.

5.1 SU(4) x SU(2) x U(1) Free-Fermionic Models

The SU421 symmetry results from the breaking of the SO(10) gauge group to the

Pati-Salam models, followed by the breaking of the SU(2)R → U(1)L symmetry, all

directly at the String scale. Therefore, the SU421 models, admit the SO(10) embed-

ding with the chiral states, that are obtained from the spinorial 16 representations

of SO(10) that decomposes in the following way:

F i
L = (4, 2, 0) = (3, 2,

1

3
, 0) + (1, 2,−1, 0) =

(
u

d

)i
+

(
ν

e

)i
,

U i
R = (4, 1,−1) = (3, 1,−1

3
,−1

2
) + (1, 1,+1,−1

2
) = uci +N ci, (5.1.0.1)

Di
R = (4, 1,+1) = (3, 1,−1

3
,+

1

2
) + (1, 2,+1,+

1

2
) = dci + eci.

The first and second equalities show the decomposition under SU(4)C × SU(2)L ×
U(1)R and SU(3)C×SU(2)L×U(1)B−L×U(1)R, respectively. It should be noted that

FL produces the quarks and leptons weak doublets, whereas UR and DR produces the

5Note: The abbreviation SU421 for the gauge group SU(4)× SU(2)× U(1) will be used in this
chapter
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right–handed weak singlets. In these models the electroweak U(1)Y current is given

by

U(1)Y =
1

2
U(1)B−L + U(1)R.

As for the two Higgs multiplets of the Minimal Supersymmetric Standard Model, hu

and hd, appearing in the SU421 models are given by the following states:

hd = (1, 2,−1),

hu = (1, 2,+1).

Additionally, the heavy Higgs states that are responsible for breaking the SU(4)C ×
SU(2)L×U(1)L gauge symmetry to the SU(3)C × SU(2)L×U(1)Y Standard Model

gauge groups are given by the following fields:

H = (4, 1,−1),

H = (4, 1,+1).

These SU421 models may also contain states that transform as

(6, 1, 0) = (3, 1,
1

3
, 0) + (3, 1,−1

3
, 0).

Here, these multiplets arise from the vectorial 10 representation of SO(10) and are

the coloured states.

5.1.1 SU(4)× SU(2)× U(1) Construction

In the following, the necessary tools for the classification of the SU421 Free-

Fermionic Heterotic-String models are given. The analysis is similar to the one per-

formed in the classification of the Flipped SU(5) models [5], as discussed in chapter

4. The novelty compared to these cases, is that the SU421 models employ two basis

vectors that break the SO(10) symmetry, whereas the Flipped SU(5) models use

only one. The basis vectors that generate the SU(4)×SU(2)×U(1) Heterotic-String
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models are given by the following 14 basis vectors:

v1 = 1 = {ψµ, χ1,...,6, y1,...,6, ω1,...,6|y1,...,6, ω1,...,6, η1,2,3, ψ
1,...,5

, φ
1,...,8},

v2 = S = {ψµ, χ1,...,6},

v2+i = ei = {yi, ωi|yi, ωi}, i = 1, . . . , 6,

v9 = b1 = {χ34, χ56, y34, y56|y34, y56, η1, ψ
1,...,5}, (5.1.1.1)

v10 = b2 = {χ12, χ56, y12, y56|y12, y56, η2, ψ
1,...,5},

v11 = z1 = {φ1,...,4},

v12 = z2 = {φ5,...,8},

v13 = α = {ψ4,5
, φ

1,2},

v14 = β = {ψ4,5
= 1

2
, φ

1,...,6
= 1

2
}.

The first 12 basis vectors considered here, were discussed in chapter 4 section 4.1.2.

Recall, these gave rise to the SO(10) × U(1)3 × SO(8) × SO(8) gauge group. Fur-

thermore, taking the combined projection of the basis vectors α and β here breaks

the SO(10) GUT symmetry to the SU(4) × SU(2) × U(1) gauge group, where α

is identical to the basis vector used in the classification of the Pati–Salam models,

that breaks the SO(10) symmetry to SO(6) × SO(4). Then using the β basis vec-

tor with fractional boundary conditions reduces the SO(10) gauge symmetry to the

SU(4)× SU(2)× U(1) symmetry.

5.1.2 String Spectrum

The space–time vector bosons that are obtained from the Neveu–Schwarz (NS)

sector, that survive the GGSO projections as defined by the basis vectors in (5.1.1.1),

generate the following observable and hidden gauge groups:

Observable : SU(4)× SU(2)L × U(1)L × U(1)3

Hidden : SU(2)A × U(1)A × SU(2)B × U(1)B × SU(2)C × U(1)C × SO(4)2

All the String states in the spectrum transform under these gauge group factors.

However, additional space–time vector bosons may also arise in the massless String

spectrum. These will enhance the NS observable and/or hidden gauge groups. In

order to preserve the above gauge groups, all these additional space–time vector
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bosons need to be projected out, that are given in the following 36 sectors:

GEnh =



z1, z1 + β, z1 + 2β,

z1 + α, z1 + α+ β, z1 + α+ 2β,

z2, z2 + β, z2 + 2β,

z2 + α, z2 + α+ β, z2 + α+ 2β,

z1 + z2, z1 + z2 + β, z1 + z2 + 2β,

z1 + z2 + α, z1 + z2 + α+ β, z1 + z2 + α+ 2β,

β, 2β, α,

α+ β, α+ 2β, x,

z1 + x+ β, z1 + x+ 2β, z1 + x+ α,

z1 + x+ α+ β, z2 + x+ β, z2 + x+ α+ β,

z1 + z2 + x+ β, z1 + z2 + x+ 2β, z1 + z2 + x+ α+ β,

x+ β, x+ α, x+ α+ β,



,

where x = 1 + S +
∑6

i=1 ei + z1 + z2.

5.1.3 Matter Content

The observable matter states in the Heterotic-String vacuum are embedded in the

27 representation of E6. In the Free-Fermionic construction adopted here and using

the basis vectors in (5.1.1.1), the E6 is first broken to the SO(10)× U(1) symmetry.

The decomposition of the 27 of E6 under the SO(10) gauge group is taken, which is

given as

27 = 16 + 10 + 1,

where, the 16 transforms under the spinorial representation of SO(10) and the 10

transforms in the vectorial representation of the SO(10), and similarly for 27. Further

to this, the spinorial 16 and 16 states of SO(10) in the String spectrum, are produced

in the following 48 sectors:

B(1)
pqrs = S + b1 + pe3 + qe4 + re5 + se6

= {ψµ, χ12, (1− p)y3y3, pω3ω3, (1− q)y4y4, qω4ω4,

(1− r)y5y5, rω5ω5, (1− s)y6y6, sω6ω6, η1, ψ
1,...,5},

B(2)
pqrs = S + b2 + pe1 + qe2 + re5 + se6,

B(3)
pqrs = S + b3 + pe1 + qe2 + re3 + se4,
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where p, q, r, s = 0, 1 and b3 = b1+b2+x. In order to distinguish between the spinorial

16 and 16 representations given in these sectors, the following chirality operators are

needed:

X
(1)SO(10)
pqrs = C

(
B

(1)
pqrs

b2 + (1− r)e5 + (1− s)e6

)
,

X
(2)SO(10)
pqrs = C

(
B

(2)
pqrs

b1 + (1− r)e5 + (1− s)e6

)
,

X
(3)SO(10)
pqrs = C

(
B

(3)
pqrs

b1 + (1− r)e3 + (1− s)e4

)
.

Here the chirality X
(1,2,3)SO(10)
pqrs = 1, indicates that the state is the 16 of SO(10),

similarly, X
(i)SO(10)
pqrs = −1 corresponds to a state giving the 16 of SO(10). Since,

states can be projected in or out depending on the GGSO projections, it should be

noted that the basis vectors e1, ...., e6, z1 and z2 can be used to define projectors

P (1,2,3), so that P (1,2,3) = 1 implies that the states are projected in and P (1,2,3) = 0

implies that the states are projected out. These projectors P (1,2,3) are:

P (1)
pqrs = 1

16

(
1− C

( e1

B
(1)
pqrs

))
.
(

1− C
( e2

B
(1)
pqrs

))
.
(

1− C
( z1

B
(1)
pqrs

))
.
(

1− C
( z2

B
(1)
pqrs

))
,

P (2)
pqrs = 1

16

(
1− C

( e3

B
(2)
pqrs

))
.
(

1− C
( e4

B
(2)
pqrs

))
.
(

1− C
( z1

B
(2)
pqrs

))
.
(

1− C
( z2

B
(2)
pqrs

))
,

P (3)
pqrs = 1

16

(
1− C

( e5

B
(3)
pqrs

))
.
(

1− C
( e6

B
(3)
pqrs

))
.
(

1− C
( z1

B
(3)
pqrs

))
.
(

1− C
( z2

B
(3)
pqrs

))
,

Furthermore, these projectors can be expressed as matrix equations given in the

following form:
(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(z2|e3) (z2|e4) (z2|e5) (z2|e6)



p

q

r

s

 =


(e1|b1)

(e2|b1)

(z1|b1)

(z2|b1)

 ,


(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(z2|e1) (z2|e2) (z2|e5) (z2|e6)



p

q

r

s

 =


(e3|b2)

(e4|b2)

(z1|b2)

(z2|b2)

 , (5.1.3.1)


(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(z2|e1) (z2|e2) (z2|e3) (z2|e4)



p

q

r

s

 =


(e5|b3)

(e6|b3)

(z1|b3)

(z2|b3)

 .
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Expressing these projectors as matrix equations, entail solving systems of linear equa-

tions. These algebraic equations can then be solved using a computerised code, that

can be used to scan a vast space of models. Similar to the spinorial representa-

tions, the singlets and vectorial 10 representations of SO(10) are obtained from the

following 48 sectors:

B(4)
pqrs = B(1)

pqrs + x

= {ψµ, χ12, (1− p)y3y3, pω3ω3, (1− q)y4y4, qω4ω4,

(1− r)y5y5, rω5ω5, (1− s)y6y6, sω6ω6, η2,3}, (5.1.3.2)

B(5,6)
pqrs = B(2,3)

pqrs + x.

The massless states that arise in these sectors are obtained by acting on the vacuum

with the NS oscillator. The type of states, therefore, depend on the type of oscillator,

that may correspond to singlets or the vectorial 10 representations of the SO(10)

symmetry. Here, the vectorial 10 state is needed for electroweak symmetry breaking.

As for the different types of SO(10) singlets, that arises from equation (5.1.3.2) are:

• {ηi}|R〉(4,5,6)
pqrs or {η∗i}|R〉(4,5,6)

pqrs , i = 1, 2, 3, where |R〉(4,5,6)
pqrs is the degenerated

Ramond vacuum of the B
(4,5,6)
pqrs sector. These states transform as vector–like

representations under the U(1)i’s.

• {φ1,2}|R〉(4,5,6)
pqrs or {φ∗1,2}|R〉(4,5,6)

pqrs . These states transform as vector–like repre-

sentations of SU(2)A × U(1)A.

• {φ3,4}|R〉(4,5,6)
pqrs or {φ∗3,4}|R〉(4,5,6)

pqrs . These states transform as vector–like repre-

sentations of SU(2)B × U(1)B.

• {φ5,6}|R〉(4,5,6)
pqrs or {φ∗5,6}|R〉(4,5,6)

pqrs . These states transform as vector–like repre-

sentations of SU(2)C × U(1)C .

• {φ7,8}|R〉(4,5,6)
pqrs or {φ∗7,8}|R〉(4,5,6)

pqrs . These states transform as vector–like repre-

sentations of SO(4).

Similarly, for the matrix equations given in equation (5.1.3.1), algebraic equations

can also be written for the sectors in equation (5.1.3.2) as follows:
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
(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(z2|e3) (z2|e4) (z2|e5) (z2|e6)



p

q

r

s

 =


(e1|b1 + x)

(e2|b1 + x)

(z1|b1 + x)

(z2|b1 + x)

 ,


(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(z2|e1) (z2|e2) (z2|e5) (z2|e6)



p

q

r

s

 =


(e3|b2 + x)

(e4|b2 + x)

(z1|b2 + x)

(z2|b2 + x)

 ,


(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(z2|e1) (z2|e2) (z2|e3) (z2|e4)



p

q

r

s

 =


(e5|b3 + x)

(e6|b3 + x)

(z1|b3 + x)

(z2|b3 + x)

 .

5.2 Observable Matter Spectrum

The basis vectors α and β given in equation (5.1.1.1) are used to break the SO(10)

symmetry to the SU(4)× SU(2)L × U(1)L gauge group. Taking the α and β GGSO

projections, the decomposition of the spinorial 16 and 16 representations of SO(10),

under the SU(4)× SU(2)L × U(1)L gauge group is given as:

16 = (4,2, 0) +
(
4,1,−1

)
+
(
4,1,+1

)
,

16 =
(
4,2, 0

)
+ (4,1,−1) + (4,1,+1) .

To break the SU(4) × SU(2)L × U(1)L gauge group to the Standard Model group,

the heavy Higgs pair is required, where this pair is given by

(
4,1,−1

)
+ (4,1,−1) .

The vectorial representation 10 of the SO(10) symmetry, is also needed for the elec-

troweak breaking as discussed before. These are given by the following decomposition

of the SU(4)× SU(2)L × U(1)L gauge group

10 = (6,1, 0) + (1,2,−1) + (1,2,+1) .
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As for the normalizations of the hypercharge and electromagnetic charge, the follow-

ing is taken:

Y =
1

3
(Q1 +Q2 +Q3) +

1

2
(Q4 +Q5),

Qem = Y +
1

2
(Q4 −Q5),

where the Qi charges of a state arise due to ψi for i = 1, ..., 5. The following table,

summarizes the charges of the colour SU(3) and electroweak SU(2) × U(1) Cartan

generators of the states which form the SU(4)× SU(2)L ×U(1)L matter representa-

tions:

Representation ψ
1,2,3

ψ
4,5

Y Qem

(+,+,−) (+,−) 1/6 2/3

(+,+,−) (−,+) 1/6 -1/3

( 4 ,2, 0 ) (−,−,−) (+,−) -1/2 0

(−,−,−) (−,+) -1/2 -1

(+,−,−) (−,−) -2/3 -2/3(
4 ,1, −1

)
(+,+,+) (−,−) 0 0

(+,−,−) (+,+) 1/3 1/3(
4 ,1, +1

)
(+,+,+) (+,+) 1 1

(+,−,−) (+,−) -1/6 -2/3

(+,−,−) (−,+) -1/6 1/3(
4 ,2, 0

)
(+,+,+) (+,−) 1/2 0

(+,+,+) (−,+) 1/2 1

(+,+,−) (+,+) 2/3 2/3

( 4 ,1, −1 ) (−,−,−) (+,+) 0 0

(+,+,−) (−,−) -1/3 -1/3

( 4 ,1, +1 ) (−,−,−) (−,−) -1 -1

Here “ + ” and “ − ”, label the contribution of an oscillator with fermion number

F = 0 or F = −1, to the degenerate vacuum. These states correspond to particles

of the Standard Model. More precisely these representations are decomposed under
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SU(3)× SU(2)× U(1) as:

(4,2, 0) =

(
3,2,+

1

6

)
Q

+

(
1,2,−1

2

)
L

,

(
4,1,−1

)
=

(
3,1,−2

3

)
uc

+ (1,1, 0)νc ,(
4,1,+1

)
=

(
3,1,+

1

3

)
dc

+ (1,1,+1 )ec ,

where L is the lepton–doublet; Q is the quark–doublet; dc, uc, ec and νc are the quark

and lepton singlets. Due to the α- and β-projections, which projects on incomplete 16

and 16 representations, complete families and anti–families are formed by combining

states from different sectors.

5.3 Nonviability of the SU(4)× SU(2)× U(1) Models

Recall that the matter content comes from the 16 of SO(10). However, with the

addition of the α and β basis vectors from equation (5.1.1.1), the 16 representation

is broken by the GGSO projections that are in general given by

eiπvi·Fξ |Sξ〉 = δξ C

(
ξ

vi

)∗
|Sξ〉. (5.3.0.1)

Here δξ = ±1 is a space-time spin statistics index and Fξ is the fermion number

operator. In the SU421 models spanned by equation (5.1.1.1) the GGSO projection

coefficients C
(
ξ
vi

)
can take the values ±1;±i. Therefore, firstly considering the α

GGSO projection, the 16s are decomposed into the Pati-Salam group representation.

Using the following chirality operators:

X
(1)SO(6)
pqrs = C

(
B

(1)
pqrs

α

)
,

X
(2)SO(6)
pqrs = C

(
B

(2)
pqrs

α

)
,

X
(3)SO(6)
pqrs = C

(
B

(3)
pqrs

α

)
,

the operators X
(i)SO(6)
pqrs = 1 gives rise to the QR ≡ (4,1,2) states under SU(4) ×

SU(2)L × SU(2)R symmetry, whilst the QL ≡ (4,2,1) states correspond to
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X
(i)SO(6)
pqrs = −1. Secondly, considering the β GGSO projection, the operators:

X(1)421
pqrs = C

(
B

(1)
pqrs

β

)
,

X(2)421
pqrs = C

(
B

(2)
pqrs

β

)
,

X(3)421
pqrs = C

(
B

(3)
pqrs

β

)
,

determine the decomposition of the QL and QR states under the SU(4)×SU(2)×U(1)

symmetry. Using the product β · Bpqrs
j = −1 for j = 1, 2, 3, and applying the ABK

rules, the chirality operator must satisfy X
(1,2,3)421
pqrs = ± i. Hence, this implies that

the states cannot be completed to form a family of generation. Since, to complete the

16, the states: (4,2, 0), (4,1,−1) and (4,1,+1) under the SU(4)×SU(2)L×U(1)L

group, all need to survive the GGSO projections. However, the states: (4,1,−1) and

(4,1,+1) can only survive the GGSO projection, when the operator X
(1,2,3)421
pqrs = ± 1

is satisfied. This is forbidden, as modular invariance is preserved. Evidently, using

the combinatorial notation in [53, 54], the decomposition of the 16 representations

is given by

16 ≡
[(

5

0

)
+

(
5

2

)
+

(
5

4

)]
≡

[(
3

0

)
+

(
3

2

)][(
2

0

)
+

(
2

2

)]
+

[(
3

1

)][(
2

1

)]
(5.3.0.2)

≡
[(

3

0

)
+

(
3

2

)][(
2

0

)]
+

[(
3

0

)
+

(
3

2

)][(
2

2

)]
+

[(
3

1

)][(
2

1

)]
.

Here, the combinatorial factor counts the number of periodic fermions in the |−〉
state. The second line in this equation in (5.3.0.2), corresponds to the decomposition

of the 16 under the Pati–Salam subgroup, whereas in the third line it shows its

decomposition under the SU421 subgroup. A crucial point that can be observed

here is the even number of fermions, in the |−〉 vacuum of the QR states. This

results in ±1 projections on the left–hand side of the GGSO projection equation

in (5.3.0.1), whereas the right–hand side is fixed by the product β · Bpqrs
j = −1

to be ±i. Thus, the exclusion arises because the β projection fixes the chirality

of the vacuum of the world–sheet fermions ψ
4,5

that generate the SU(2)L × U(1)L

symmetry. It is to be noted that, the situation here, is different from the case of

the SU421 models in [52], where a similar argument followed projecting out all the

3 generation models. The reason is that the classification method here, only allows

for symmetric boundary conditions for the set of internal fermions {y, ω|y, ω}1,··· ,6,
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whereas the models in [52] introduce additional freedom by allowing asymmetric

boundary conditions. Thus, while the NAHE–based models in [52] did not yield any

model with 3 complete generations, they contained both the QL and QR states in

their spectra. On the other hand, vacua with only symmetric boundary conditions,

with respect to the set {y, ω|y, ω}1,··· ,6, do not contain QR states and are therefore

categorically excluded. Also note that in the case of the Left-Right symmetric models,

the chirality of the QL + LL and QR + LR is similarly affected [55, 56]. However, in

that case it is compensated by the chirality of the ηj worldsheet fermions, leading

to opposite charges under the U(1)j gauge symmetries. Furthermore, the Standard-

Like models [47, 48, 49, 50, 51], which are obtained by combining the Pati-Salam

and Flipped SU(5) breaking vectors, can also produce complete 16 which decompose

under the Standard-Like group with equal U(1)j charges here. The SU421 class

of models is an exception in that it is excluded in vacua with symmetric internal

boundary conditions.
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Chapter 6

Conclusions

The four-dimensional Free-Fermionic construction [15, 16, 17] of the Heterotic-String

provides a worldsheet approach to analysing semi-realistic String vacua. The models

constructed to date, corresponding to symmetric and asymmetric Z2 × Z2 Orbifold

compactifications, represent some of the most realistic String models consisting of

3 generations. The early semi-realistic examples built since the late eighties were

composed of asymmetric Z2 × Z2 Orbifold compactifications. These models corre-

sponded to compactifications with N = (2, 0) super-conformal worldsheet symmetry.

Here, the observable symmetry was taken to be a E8 gauge group and then broken

down to a specific SO(10) symmetry subgroup. The cases consisted of SU(5)×U(1)

(Flipped SU(5)) [21, 23], SU(3)×SU(2)×U(1)2 (Standard-Like) [47, 48, 49, 50, 51],

SU(3) × SU(2)2 × U(1) (Left-Right symmetric) [55, 56, 57], and SO(6) × SO(4)

(Pati-Salam) [58, 59]. Some of these models shared the NAHE-based structure [60],

which was used to develop the contemporary research in the Free-Fermionic model

building; focusing on exploring large classes of String vacua. Towards the end of the

nineties, tools for the classification of the Free-Fermionic symmetric Z2×Z2 Orbifolds

were derived for type II superstrings [61], during the last decade, this was extended

in the Heterotic-String construction [35, 36, 37, 38, 39].

The classification of the Heterotic-String vacua with the unbroken E6 and SO(10)

GUT gauge groups, revealed the existence of a symmetry called the spinor-vector

duality in the space of Z2 and Z2 × Z2 String models. This symmetry under the

SO(10) gauge group, generates the exchange of the spinorial 16 plus anti-spinorial

16 with the vectorial 10 representations [37, 38, 39, 53, 54, 62, 63, 64, 65, 66].

The classification was then extended, where the SO(10) symmetry was broken to

the Pati-Salam subgroup in [31, 32]. This revealed that exophobic String vacua

existed for all the sectors containing the massless states, where the exotic fractionally

charged fermions appeared only in the massive spectrum. A 3 generation Pati-Salam

88



model studied in [33], was shown to be phenomenologically viable. Consequently,

the classification method was employed to enhance the Pati-Salam gauge group in

[33] to the SU(6) × SU(2) [67] models, which is the maximal subgroup of the E6

symmetry. Here, an exophobic model was found that admitted an additional anomaly

free family universal U(1) symmetry beyond the U(1) generators of the SO(10) GUT

gauge group [68, 69, 70, 71]. However, further studies involving the classifications

of the Flipped SU(5) [5] and the SU(4) × SU(2) × U(1) [6] subgroups of SO(10)

were shown to contain no 3 generation exophobic String vacua. The Flipped SU(5)

models here were shown to only produce exophobic models with even generations,

whereas 3 generation models only existed within exophilic vacua. On the other hand,

the SU(4) × SU(2) × U(1) models were shown to produce no 3 generation models,

as all right-handed particles were projected out of the massless spectrum6.

The methodologies developed in the classifications of [5, 6, 32, 35, 36, 37, 38,

39, 61, 66] provided a vital tool to analyse the phenomenological properties of large

classes of String vacua7. In this thesis, the techniques used to classify these large

classes of String vacua were discussed. Firstly, the SO(10) models were constructed

with the required basis vectors consistent with the ABK rules [15, 16], containing only

periodic and anti-periodic fermion boundary conditions. Then, the additional SO(10)

symmetry breaking basis vectors were added to form the subgroups. The Flipped

SU(5) subgroup was discussed in chapter 4, whereas in chapter 5 the SU(4)×SU(2)×
U(1) subgroup was discussed. Finally, to conclusion, in the following, the landscape

of the Free-Fermionic models [7] will be discussed.

Initially, in the Free-Fermionic construction, the SO(10) models were a success,

as it was shown to have an abundance of 3 generation models, as given in Figure 6.1.

When the classification was done for a random sample of 1011 String vacua, discrete

properties began to emerge. Here, it was observed that the odd generations above

5 vanished, whereas the even generations above 12 were incremented by 4 integers.

With the success of the SO(10) models, the Pati-Salam models were investigated, the

classification results are given in Figure 6.2. Here, the Pati-Salam models contained

identical discrete properties as the SO(10) models, with the exclusion of all the 24

generations, since they were all projected out. In this case, as the spinorial 16 repre-

sentation of the SO(10) was broken to the 4 and 4 representations transforming under

the SU(4) of the Pati-Salam, therefore, instead of one, two states were required to

complete family of generations. However, the Pati-Salam models also contained many

3 generations that were exophobic. Further to this, the Flipped SU(5) models were

6Similarly in [52] it was shown that for the SU(4) × SU(2) × U(1) gauge group, 3 generation
models are forbidden in NAHE based basis vectors

7Other groups have also performed analysis of large sets of String vacua [72]
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then explored as discussed in chapter 4. Contrary to the Pati-Salam classification

consisting of exophobic 3 generation models, the Flipped SU(5) models contained

only 3 generation models with fractionally charged exotic states, in a random sample

of 1012 String vacua scanned8, as given in Figure 6.3. An additional property of the

Flipped SU(5) models, is that it was more constrained, as the generations following

a logarithmic distribution together with all the odd generations being projected out.

Finally, the classification of the SU(4) × SU(2) × U(1) models were considered. It

was revealed that these models were even more constrained than the Flipped SU(5)

models. However, this was anticipated, due to there being two SO(10) breaking basis

vectors, which forbid complete generations, as given in Figure 6.4. In actual fact,

this was a rare occurrence in the Free-Fermionic classifications, as the second SO(10)

breaking basis vector was unique and the GGSO projection on the 16 of SO(10)

projected out all the right-handed particles. Thus, whole family of generations were

incomplete. The next stage will be the classification of the Standard-Like models,

which are similar to the SU(4) × SU(2) × U(1) models, as they also require two

SO(10) breaking basis vectors. This GUT model is a working progress, preliminary

scans show interesting results.

To conclude, the current status of the unification of gravity and the gauge inter-

actions are heavily motivated by String derived models and theories, which continue

to provide a viable contemporary framework. Consequently, 3 generation models

need to be obtained for phenomenological purposes, however, a detailed example is

still work in progress. Nevertheless, String theory provides a sea of well established

semi-realistic examples that are explored as toy models for achieving a theory of

everything.

8Note: although this does not prove that in the Free-Fermionic Flipped SU(5) vacua, exophobic
models do not exist, they do not exist in the space of 1012 vacua explored with the given basis vector
in equation (4.1.3.2).
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Figure 6.1: Number of exophobic models in relation to the number of generations, in
a random sample of 1011 SO(10) configurations, as given in Figure 1 in [66].

Figure 6.2: Number of exophobic models in relation to the number of generations, in
a random sample of 1011 Pati-Salam configurations, as given in Figure 3 in [32].
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Figure 6.3: Logarithm of the number of exophobic models in relation to the number
of generations, in a random sample of 1012 SU(5)× U(1) configurations.

Figure 6.4: Number of models in relation to the number of generations, in the SU(4)×
SU(2)× U(1) vacua.
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Appendix A

Projectors and Matrix Formalism

The algebraic expressions corresponding to states in the Flipped SU(5) String spec-

trum are given by: B
(4,5,6)
pqrs from (4.2.1.2), which produce light Higgs and hidden vec-

torial states; B
(7,8,9)
pqrs and B

(10,11,12)
pqrs given in (4.2.2.1) and (4.2.2.2) respectively, which

produce spinorial hidden matter states; B
(13,14,15)
pqrs and B

(16,17,18)
pqrs given in (4.2.3.1) and

(4.2.3.1) respectively, which produce spinorial exotic states; B
(19,20,21)
pqrs and B

(22,23,24)
pqrs

given in (4.2.3.1) and (4.2.3.2) respectively, which produce vectorial exotic states.

Now the enumeration of these projectors with their corresponding algebraic expres-

sions and matrix equations are given as follows.

A.1 Vectorial Representations

The sectors in (4.2.1.2) produce vectorial states in the observable and hidden

sector. These sectors are obtained from the combinations

B(4,5,6)
pqrs = B(1,2,3)

pqrs + z1 + 2α

The following is a list of the states produced in these sectors and the projectors that

act on them:
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• States: {η1,2,3}|R〉, {η∗1,2,3}|R〉, {ψ1,...,5}|R〉 and {ψ∗1,...,5}|R〉

This gives rise to the states that transform under the SU(5)×U(1)5 or U(1)1/2/3

gauge group. The projectors are given by:

P (4)(η1,ψ
1,...,5

)
pqrs =

1

16

(
1− C

(
e1

B
(4)
pqrs

))
·
(

1− C
(

e2

B
(4)
pqrs

))
·
(

1− C
(

z1

B
(4)
pqrs

))
·
(

1− C
(

z2

B
(4)
pqrs

))
P (5)(η2,ψ

1,...,5
)

pqrs =
1

16

(
1− C

(
e3

B
(5)
pqrs

))
·
(

1− C
(

e4

B
(5)
pqrs

))
·
(

1− C
(

z1

B
(5)
pqrs

))
·
(

1− C
(

z2

B
(5)
pqrs

))
P (6)(η3,ψ

1,...,5
)

pqrs =
1

16

(
1− C

(
e5

B
(6)
pqrs

))
·
(

1− C
(

e6

B
(6)
pqrs

))
·
(

1− C
(

z1

B
(6)
pqrs

))
·
(

1− C
(

z2

B
(6)
pqrs

))

The corresponding matrix equations are given as:


(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(z2|e3) (z2|e4) (z2|e5) (z2|e6)



p

q

r

s

 =


(e1|b1 + z1)

(e2|b1 + z1)

(z1|b1 + z1)

(z2|b1 + z1) + 1




(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(z2|e1) (z2|e2) (z2|e5) (z2|e6)



p

q

r

s

 =


(e3|b2 + z1)

(e4|b2 + z1)

(z1|b2 + z1)

(z2|b2 + z1) + 1




(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(z2|e1) (z2|e2) (z2|e3) (z2|e4)



p

q

r

s

 =


(e5|b1 + b2)

(e6|b1 + b2)

(z1|b1 + b2)

(z2|b1 + b2)


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• States: {φ1,...,4}|R〉 and {φ∗1,...,4}|R〉

These states transform under the SU(4) × U(1)4 hidden gauge group. The

projectors are given by:

P (4)(φ
1,...,4

)
pqrs =

1

16

(
1− C

(
e1

B
(4)
pqrs

))
·
(

1− C
(

e2

B
(4)
pqrs

))
·
(

1 + C

(
z1

B
(4)
pqrs

))
·
(

1− C
(

z2

B
(4)
pqrs

))
P (5)(φ

1,...,4
)

pqrs =
1

16

(
1− C

(
e3

B
(5)
pqrs

))
·
(

1− C
(

e4

B
(5)
pqrs

))
·
(

1 + C

(
z1

B
(5)
pqrs

))
·
(

1− C
(

z2

B
(5)
pqrs

))
P (6)(φ

1,...,4
)

pqrs =
1

16

(
1− C

(
e5

B
(6)
pqrs

))
·
(

1− C
(

e6

B
(6)
pqrs

))
·
(

1 + C

(
z1

B
(6)
pqrs

))
·
(

1− C
(

z2

B
(6)
pqrs

))

The corresponding matrix equations are given as:


(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(z2|e3) (z2|e4) (z2|e5) (z2|e6)



p

q

r

s

 =


(e1|b1 + z1)

(e2|b1 + z1)

(z1|b1 + z1) + 1

(z2|b1 + z1) + 1




(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(z2|e1) (z2|e2) (z2|e5) (z2|e6)



p

q

r

s

 =


(e3|b2 + z1)

(e4|b2 + z1)

(z1|b2 + z1) + 1

(z2|b2 + z1) + 1




(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(z2|e1) (z2|e2) (z2|e3) (z2|e4)



p

q

r

s

 =


(e5|b1 + b2)

(e6|b1 + b2)

(z1|b1 + b2) + 1

(z2|b1 + b2)


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• State: {φ5,...,8}|R〉 and {φ∗5,...,8}|R〉

These states transform under the U(1)hid or SO(6) gauge groups. The projec-

tors on these states are given by:

P (4)(φ
5,...,8

)
pqrs =

1

16

(
1− C

(
e1

B
(4)
pqrs

))
·
(

1− C
(

e2

B
(4)
pqrs

))
·
(

1− C
(

z1

B
(4)
pqrs

))
·
(

1 + C

(
z2

B
(4)
pqrs

))
P (5)(φ

5,...,8
)

pqrs =
1

16

(
1− C

(
e3

B
(5)
pqrs

))
·
(

1− C
(

e4

B
(5)
pqrs

))
·
(

1− C
(

z1

B
(5)
pqrs

))
·
(

1 + C

(
z2

B
(5)
pqrs

))
P (6)(φ

5,...,8
)

pqrs =
1

16

(
1− C

(
e5

B
(6)
pqrs

))
·
(

1− C
(

e6

B
(6)
pqrs

))
·
(

1− C
(

z1

B
(6)
pqrs

))
·
(

1 + C

(
z2

B
(6)
pqrs

))

The corresponding matrix equations are given as:


(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(z2|e3) (z2|e4) (z2|e5) (z2|e6)



p

q

r

s

 =


(e1|b1 + z1)

(e2|b1 + z1)

(z1|b1 + z1)

(z2|b1 + z1)




(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(z2|e1) (z2|e2) (z2|e5) (z2|e6)



p

q

r

s

 =


(e3|b2 + z1)

(e4|b2 + z1)

(z1|b2 + z1)

(z2|b2 + z1)




(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(z2|e1) (z2|e2) (z2|e3) (z2|e4)



p

q

r

s

 =


(e5|b1 + b2)

(e6|b1 + b2)

(z1|b1 + b2)

(z2|b1 + b2) + 1


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A.2 Hidden Sector Representations

The sectors B
(1,2,3)
pqrs + 2α and B

(1,2,3)
pqrs + z1 + z2 + 2α give rise to non–exotic states

that transform under the hidden gauge group. The states in these sectors descend

from the 16 vectorial representation of the hidden SO(16) gauge group, decomposed

under the final unbroken hidden sector gauge group. The sectors

B(7,8,9)
pqrs = B(1,2,3)

pqrs + 2α

produce states that transform under the SU(4) × U(1)4 hidden gauge group. The

projectors on states arising in these sectors are given by:

P (7)
pqrs =

1

8

(
1− C

(
e1

B
(7)
pqrs

))
·
(

1− C
(

e2

B
(7)
pqrs

))
·
(

1− C
(

z2

B
(7)
pqrs

))
P (8)
pqrs =

1

8

(
1− C

(
e3

B
(8)
pqrs

))
·
(

1− C
(

e4

B
(8)
pqrs

))
·
(

1− C
(

z2

B
(8)
pqrs

))
P (9)
pqrs =

1

8

(
1− C

(
e5

B
(9)
pqrs

))
·
(

1− C
(

e6

B
(9)
pqrs

))
·
(

1− C
(

z2

B
(9)
pqrs

))
The corresponding matrix equations are given as:

(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z2|e3) (z2|e4) (z2|e5) (z2|e6)



p

q

r

s

 =

 (e1|b1)

(e2|b1)

(z2|b1) + 1


(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z2|e1) (z2|e2) (z2|e5) (z2|e6)



p

q

r

s

 =

 (e3|b2)

(e4|b2)

(z2|b2) + 1


(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z2|e1) (z2|e2) (z2|e3) (z2|e4)



p

q

r

s

 =

(e5|b1 + b2 + z1)

(e6|b1 + b2 + z1)

(z2|b1 + b2 + z1)


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The sectors

B(10,11,12)
pqrs = B(1,2,3)

pqrs + z1 + z2 + 2α

give rise to states that transform under the hidden SO(6) gauge group. The projectors

acting on these states are given by:

P (10)
pqrs =

1

8

(
1− C

(
e1

B
(10)
pqrs

))
·
(

1− C
(

e2

B
(10)
pqrs

))
·
(

1− C
(

z1

B
(10)
pqrs

))
P (11)
pqrs =

1

8

(
1− C

(
e3

B
(11)
pqrs

))
·
(

1− C
(

e4

B
(11)
pqrs

))
·
(

1− C
(

z1

B
(11)
pqrs

))
P (12)
pqrs =

1

8

(
1− C

(
e5

B
(12)
pqrs

))
·
(

1− C
(

e6

B
(12)
pqrs

))
·
(

1− C
(

z1

B
(12)
pqrs

))
The corresponding matrix equations are given as:

(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)



p

q

r

s

 =

(e1|b1 + z1 + z2)

(e2|b1 + z1 + z2)

(z1|b1 + z1 + z2)


(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)



p

q

r

s

 =

(e3|b2 + z1 + z2)

(e4|b2 + z1 + z2)

(z1|b2 + z1 + z2)


(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)



p

q

r

s

 =

(e5|b1 + b2 + z2)

(e6|b1 + b2 + z2)

(z1|b1 + b2 + z2)



98



A.3 Exotics Sector Representations

The exotic states are obtained from sectors containing the SO(10) breaking vector

α. As mentioned in section 4.2.3, the sectors that give rise to exotic states are

classified according to their vacuum in the right–moving sector. For a given sector

ξ with ξR · ξR = 6, a right–moving oscillator of a world–sheet fermion with ±1/4

boundary conditions acting on the vacuum is needed to obtain a massless state.

Sectors with ξR · ξR = 8 produce massless states without an oscillator. The first type

of sectors can therefore produce states that transform as 5 and 5, as well as states

that transform as singlets under the observable SU(5) gauge group. The second type

of sectors gives rise to states that transform as singlets of the observable SU(5) gauge

symmetry. All the exotic states transform into the standard representations under

the observable SU(5) gauge group (including singlets) carrying exotic charges under

the observable U(1)5 gauge group. The sectors

B(13,14,15)
pqrs = B(1,2,3)

pqrs + z2 + α

produce states that transform under the 4 and 4 of the SO(6) hidden gauge group.

The projectors acting on these states are given by:

P (13)
pqrs =

1

16

(
1− C

(
e1

B
(13)
pqrs

))
·
(

1− C
(

e2

B
(13)
pqrs

))
(

1 + C

(
z1

B
(13)
pqrs

))
·
(

1− C
(

α

B
(13)
pqrs

))
P (14)
pqrs =

1

16

(
1− C

(
e3

B
(14)
pqrs

))
·
(

1− C
(

e4

B
(14)
pqrs

))
(

1 + C

(
z1

B
(14)
pqrs

))
·
(

1− C
(

α

B
(14)
pqrs

))
P (15)
pqrs =

1

16

(
1− C

(
e5

B
(15)
pqrs

))
·
(

1− C
(

e6

B
(15)
pqrs

))
(

1 + C

(
z1

B
(15)
pqrs

))
·
(

1− C
(

α

B
(15)
pqrs

))
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The corresponding matrix equations are given as:


(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(α|e3) (α|e4) (α|e5) (α|e6)



p

q

r

s

 =


(e1|b1 + z2 + α)

(e2|b1 + z2 + α)

(z1|b1 + z2 + α) + 1

(α|b1 + z2 + α)




(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(α|e1) (α|e2) (α|e5) (α|e6)



p

q

r

s

 =


(e3|b2 + z2 + α)

(e4|b2 + z2 + α)

(z1|b2 + z2 + α) + 1

(α|b2 + z2 + α)




(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(α|e1) (α|e2) (α|e3) (α|e4)



p

q

r

s

 =


(e5|b3 + z2 + α)

(e6|b3 + z2 + α)

(z1|b3 + z2 + α) + 1

(α|b3 + z2 + α)


Similar exotic states are produced from the sectors:

B(16,17,18)
pqrs = B(1,2,3)

pqrs + z1 + z2 + α

The projectors acting on these states are given by:

P (16)
pqrs =

1

16

(
1− C

(
e1

B
(16)
pqrs

))
·
(

1− C
(

e2

B
(16)
pqrs

))
(

1 + C

(
z1

B
(16)
pqrs

))
·
(

1 + C

(
α

B
(16)
pqrs

))
P (17)
pqrs =

1

16

(
1− C

(
e3

B
(17)
pqrs

))
·
(

1− C
(

e4

B
(17)
pqrs

))
(

1 + C

(
z1

B
(17)
pqrs

))
·
(

1 + C

(
α

B
(17)
pqrs

))
P (18)
pqrs =

1

16

(
1− C

(
e5

B
(18)
pqrs

))
·
(

1− C
(

e6

B
(18)
pqrs

))
(

1 + C

(
z1

B
(18)
pqrs

))
·
(

1 + C

(
α

B
(18)
pqrs

))
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The corresponding matrix equations are given as:


(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(α|e3) (α|e4) (α|e5) (α|e6)



p

q

r

s

 =


(e1|b1 + z1 + z2 + α)

(e2|b1 + z1 + z2 + α)

(z1|b1 + z1 + z2 + α) + 1

(α|b1 + z1 + z2 + α) + 1




(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(α|e1) (α|e2) (α|e5) (α|e6)



p

q

r

s

 =


(e3|b2 + z1 + z2 + α)

(e4|b2 + z1 + z2 + α)

(z1|b2 + z1 + z2 + α) + 1

(α|b2 + z1 + z2 + α) + 1




(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(α|e1) (α|e2) (α|e3) (α|e4)



p

q

r

s

 =


(e5|b1 + b2 + z2 + α)

(e6|b1 + b2 + z2 + α)

(z1|b1 + b2 + z2 + α) + 1

(α|b1 + b2 + z2 + α) + 1


The sectors

B(19,20,21)
pqrs = B(1,2,3)

pqrs + α

produce massless states that are obtained by acting on the vacuum with a fermionic

oscillator. Below is the list of the type of states that are produced and the projectors

that act on them.
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• States: {η1}|R〉 and {ψ1,...,5}|R〉

These transform as either singlets or 5 or 5 under the observable SU(5) gauge

group. The projectors are given by:

P (19)(η1,ψ
1,...,5

)
pqrs =

1

16

(
1− C

(
e1

B
(19)
pqrs

))
·
(

1− C
(

e2

B
(19)
pqrs

))
·
(

1 + C

(
z1

B
(19)
pqrs

))
·
(

1 + C

(
z2 + α

B
(19)
pqrs

))
P (20)(η1,ψ

1,...,5
)

pqrs =
1

16

(
1− C

(
e3

B
(20)
pqrs

))
·
(

1− C
(

e4

B
(20)
pqrs

))
·
(

1 + C

(
z1

B
(20)
pqrs

))
·
(

1 + C

(
z2 + α

B
(20)
pqrs

))
P (21)(η1,ψ

1,...,5
)

pqrs =
1

16

(
1− C

(
e5

B
(21)
pqrs

))
·
(

1− C
(

e6

B
(21)
pqrs

))
·
(

1 + C

(
z1

B
(21)
pqrs

))
·
(

1 + C

(
z2 + α

B
(21)
pqrs

))
The corresponding matrix equations are given as:


(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(δ|e3) (δ|e4) (δ|e5) (δ|e6)



p

q

r

s

 =


(e1|b1 + α)

(e2|b1 + α)

(z1|b1 + α) + 1

(z2|b1) + (α|b1 + z2 + α) + 1




(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(δ|e1) (δ|e2) (δ|e5) (δ|e6)



p

q

r

s

 =


(e3|b2 + α)

(e4|b2 + α)

(z1|b2 + α) + 1

(z2|b2) + (α|b2 + z2 + α) + 1




(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(δ|e1) (δ|e2) (δ|e3) (δ|e4)



p

q

r

s

 =


(e5|b3 + α)

(e6|b3 + α)

(z1|b3 + α) + 1

(z2|b3) + (α|b3 + z2 + α) + 1


where δ = z2 + α.
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• States: {η∗2,3}|R〉

These transform as singlets under the observable SU(5) gauge group and are

charged under U(1)2/3. The projectors are given by:

P (19)(η∗2,3)
pqrs =

1

16

(
1− C

(
e1

B
(19)
pqrs

))
·
(

1− C
(

e2

B
(19)
pqrs

))
·
(

1 + C

(
z1

B
(19)
pqrs

))
·
(

1− C
(
z2 + α

B
(19)
pqrs

))
P (20)(η∗2,3)
pqrs =

1

16

(
1− C

(
e3

B
(20)
pqrs

))
·
(

1− C
(

e4

B
(20)
pqrs

))
·
(

1 + C

(
z1

B
(20)
pqrs

))
·
(

1− C
(
z2 + α

B
(20)
pqrs

))
P (21)(η∗2,3)
pqrs =

1

16

(
1− C

(
e5

B
(21)
pqrs

))
·
(

1− C
(

e6

B
(21)
pqrs

))
·
(

1 + C

(
z1

B
(21)
pqrs

))
·
(

1− C
(
z2 + α

B
(21)
pqrs

))
The corresponding matrix equations are given as:


(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(δ|e3) (δ|e4) (δ|e5) (δ|e6)



p

q

r

s

 =


(e1|b1 + α)

(e2|b1 + α)

(z1|b1 + α) + 1

(z2|b1) + (α|b1 + z2 + α)




(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(δ|e1) (δ|e2) (δ|e5) (δ|e6)



p

q

r

s

 =


(e3|b2 + α)

(e4|b2 + α)

(z1|b2 + α) + 1

(z2|b2) + (α|b2 + z2 + α)




(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(δ|e1) (δ|e2) (δ|e3) (δ|e4)



p

q

r

s

 =


(e5|b3 + α)

(e6|b3 + α)

(z1|b3 + α) + 1

(z2|b3) + (α|b3 + z2 + α)


where δ = z2 + α.
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• States: {φ∗1,...,4}|R〉

These transform as singlets under the observable SU(5) gauge group and trans-

form in non–trivial representation of the hidden SU(4) × U(1)4 gauge group.

The projectors are given by:

P (19)(φ
∗1,...,4

)
pqrs =

1

16

(
1− C

(
e1

B
(19)
pqrs

))
·
(

1− C
(

e2

B
(19)
pqrs

))
·
(

1− C
(

z1

B
(19)
pqrs

))
·
(

1− C
(
z2 + α

B
(19)
pqrs

))
P (20)(φ

∗1,...,4
)

pqrs =
1

16

(
1− C

(
e3

B
(20)
pqrs

))
·
(

1− C
(

e4

B
(20)
pqrs

))
·
(

1− C
(

z1

B
(20)
pqrs

))
·
(

1− C
(
z2 + α

B
(20)
pqrs

))
P (21)(φ

∗1,...,4
)

pqrs =
1

16

(
1− C

(
e5

B
(21)
pqrs

))
·
(

1− C
(

e6

B
(21)
pqrs

))
·
(

1− C
(

z1

B
(21)
pqrs

))
·
(

1− C
(
z2 + α

B
(21)
pqrs

))
The corresponding matrix equations are given as:


(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(δ|e3) (δ|e4) (δ|e5) (δ|e6)



p

q

r

s

 =


(e1|b1 + α)

(e2|b1 + α)

(z1|b1 + α)

(z2|b1) + (α|b1 + z2 + α)




(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(δ|e1) (δ|e2) (δ|e5) (δ|e6)



p

q

r

s

 =


(e3|b2 + α)

(e4|b2 + α)

(z1|b2 + α)

(z2|b2) + (α|b2 + z2 + α)




(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(δ|e1) (δ|e2) (δ|e3) (δ|e4)



p

q

r

s

 =


(e5|b3 + α)

(e6|b3 + α)

(z1|b3 + α)

(z2|b3) + (α|b3 + z2 + α)


where δ = z2 + α.

The remaining sectors

B(22,23,24)
pqrs = B(1,2,3)

pqrs + z1 + α

104



produce the following vector-like states:

• States: {η1}|R〉 and {ψ1,...,5}|R〉

These transform as either singlets or 5 or 5 under the observable SU(5) gauge

group. The projectors are given by:

P (22)(η1,ψ
1,...,5

)
pqrs =

1

16

(
1− C

(
e1

B
(22)
pqrs

))
·
(

1− C
(

e2

B
(22)
pqrs

))
·
(

1 + C

(
z1

B
(22)
pqrs

))
·
(

1− C
(
z2 + α

B
(22)
pqrs

))
P (23)(η1,ψ

1,...,5
)

pqrs =
1

16

(
1− C

(
e3

B
(23)
pqrs

))
·
(

1− C
(

e4

B
(23)
pqrs

))
·
(

1 + C

(
z1

B
(23)
pqrs

))
·
(

1− C
(
z2 + α

B
(23)
pqrs

))
P (24)(η1,ψ

1,...,5
)

pqrs =
1

16

(
1− C

(
e5

B
(24)
pqrs

))
·
(

1− C
(

e6

B
(24)
pqrs

))
·
(

1 + C

(
z1

B
(24)
pqrs

))
·
(

1− C
(
z2 + α

B
(24)
pqrs

))
The corresponding matrix equations are given as:


(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(δ|e3) (δ|e4) (δ|e5) (δ|e6)



p

q

r

s

 =


(e1|b1 + z1 + α)

(e2|b1 + z1 + α)

(z1|b1 + z1 + α) + 1

(z2|b1 + z1) + (α|b1 + z1 + z2 + α)




(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(δ|e1) (δ|e2) (δ|e5) (δ|e6)



p

q

r

s

 =


(e3|b2 + z1 + α)

(e4|b2 + z1 + α)

(z1|b2 + z1 + α) + 1

(z2|b2 + z1) + (α|b2 + z1 + z2 + α)




(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(δ|e1) (δ|e2) (δ|e3) (δ|e4)



p

q

r

s

 =


(e5|b3 + z1 + α)

(e6|b3 + z1 + α)

(z1|b3 + z1 + α) + 1

(z2|b1 + b2) + (α|b1 + b2 + z2 + α) + 1


where δ = z2 + α.
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• States {η∗2,3}|R〉

These transform as singlets under the observable SU(5) gauge group and are

charged under U(1)2/3. The projectors are given by:

P (22)(η∗2,3)
pqrs =

1

16

(
1− C

(
e1

B
(22)
pqrs

))
·
(

1− C
(

e2

B
(22)
pqrs

))
·
(

1 + C

(
z1

B
(22)
pqrs

))
·
(

1 + C

(
z2 + α

B
(22)
pqrs

))
P (23)(η∗2,3)
pqrs =

1

16

(
1− C

(
e3

B
(23)
pqrs

))
·
(

1− C
(

e4

B
(23)
pqrs

))
·
(

1 + C

(
z1

B
(23)
pqrs

))
·
(

1 + C

(
z2 + α

B
(23)
pqrs

))
P (24)(η∗2,3)
pqrs =

1

16

(
1− C

(
e5

B
(24)
pqrs

))
·
(

1− C
(

e6

B
(24)
pqrs

))
·
(

1 + C

(
z1

B
(24)
pqrs

))
·
(

1 + C

(
z2 + α

B
(24)
pqrs

))
The corresponding matrix equations are given as:


(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(δ|e3) (δ|e4) (δ|e5) (δ|e6)



p

q

r

s

 =


(e1|b1 + z1 + α)

(e2|b1 + z1 + α)

(z1|b1 + z1 + α) + 1

(z2|b1 + z1) + (α|b1 + z1 + z2 + α) + 1




(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(δ|e1) (δ|e2) (δ|e5) (δ|e6)



p

q

r

s

 =


(e3|b2 + z1 + α)

(e4|b2 + z1 + α)

(z1|b2 + z1 + α) + 1

(z2|b2 + z1) + (α|b2 + z1 + z2 + α) + 1




(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(δ|e1) (δ|e2) (δ|e3) (δ|e4)



p

q

r

s

 =


(e5|b3 + z1 + α)

(e6|b3 + z1 + α)

(z1|b3 + z1 + α) + 1

(z2|b1 + b2) + (α|b1 + b2 + z2 + α)


where δ = z2 + α.

106



• States: {φ1,...,4}|R〉

These transform as singlets under the observable SU(5) gauge group and trans-

form in non–trivial representations of the the hidden SU(4)×U(1)4 gauge group.

The projectors are given by:

P (22)(φ
1,...,4

)
pqrs =

1

16

(
1− C

(
e1

B
(22)
pqrs

))
·
(

1− C
(

e2

B
(22)
pqrs

))
·
(

1− C
(

z1

B
(22)
pqrs

))
·
(

1 + C

(
z2 + α

B
(22)
pqrs

))
P (23)(φ

1,...,4
)

pqrs =
1

16

(
1− C

(
e3

B
(23)
pqrs

))
·
(

1− C
(

e4

B
(23)
pqrs

))
·
(

1− C
(

z1

B
(23)
pqrs

))
·
(

1 + C

(
z2 + α

B
(23)
pqrs

))
P (24)(φ

1,...,4
)

pqrs =
1

16

(
1− C

(
e5

B
(24)
pqrs

))
·
(

1− C
(

e6

B
(24)
pqrs

))
·
(

1− C
(

z1

B
(24)
pqrs

))
·
(

1 + C

(
z2 + α

B
(24)
pqrs

))
The corresponding matrix equations are given as:


(e1|e3) (e1|e4) (e1|e5) (e1|e6)

(e2|e3) (e2|e4) (e2|e5) (e2|e6)

(z1|e3) (z1|e4) (z1|e5) (z1|e6)

(δ|e3) (δ|e4) (δ|e5) (δ|e6)



p

q

r

s

 =


(e1|b1 + z1 + α)

(e2|b1 + z1 + α)

(z1|b1 + z1 + α)

(z2|b1 + z1) + (α|b1 + z1 + z2 + α)




(e3|e1) (e3|e2) (e3|e5) (e3|e6)

(e4|e1) (e4|e2) (e4|e5) (e4|e6)

(z1|e1) (z1|e2) (z1|e5) (z1|e6)

(δ|e1) (δ|e2) (δ|e5) (δ|e6)



p

q

r

s

 =


(e3|b2 + z1 + α)

(e4|b2 + z1 + α)

(z1|b2 + z1 + α)

(z2|b2 + z1) + (α|b2 + z1 + z2 + α)




(e5|e1) (e5|e2) (e5|e3) (e5|e4)

(e6|e1) (e6|e2) (e6|e3) (e6|e4)

(z1|e1) (z1|e2) (z1|e3) (z1|e4)

(δ|e1) (δ|e2) (δ|e3) (δ|e4)



p

q

r

s

 =


(e5|b3 + z1 + α)

(e6|b3 + z1 + α)

(z1|b3 + z1 + α)

(z2|b1 + b2) + (α|b1 + b2 + z2 + α) + 1


where δ = z2 + α.
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