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SUMMARY

A dataset of bacterial diversity found in mites was compiled from 193 publications (from 1964 to January 2015). A total of
143 mite species belonging to the 3 orders (Mesostigmata, Sarcoptiformes and Trombidiformes) were recorded and found
to be associated with approximately 150 bacteria species (in 85 genera, 51 families, 25 orders and 7 phyla). From the lit-
erature, the intracellular symbiont Cardinium, the scrub typhus agent Orientia, and Wolbachia (the most prevalent sym-
biont of arthropods) were the dominant mite-associated bacteria, with approximately 30 mite species infected each.
Moreover, a number of bacteria of medical and veterinary importance were also reported from mites, including species
from the genera Rickettsia, Anaplasma, Bartonella, Francisella, Coxiella, Borrelia, Salmonella, Erysipelothrix and
Serratia. Significant differences in bacterial infection patterns among mite taxa were identified. These data will not
only be useful for raising awareness of the potential for mites to transmit disease, but also enable a deeper understanding
of the relationship of symbionts with their arthropod hosts, and may facilitate the development of intervention tools for
disease vector control. This review provides a comprehensive overview of mite-associated bacteria and is a valuable refer-
ence database for future research on mites of agricultural, veterinary and/or medical importance.
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INTRODUCTION

Mites are classified in the subclass Acari (class
Arachnida) of the phylum Arthropoda. Although
approximately 48 200 species have been described
(Halliday et al. 2000), a further half-million species
are believed to exist worldwide (Kettle, 1984).
More so than any other arthropod group, mites are
found in highly diverse habitats: terrestrial,
marine, freshwater and even in the upper atmos-
phere due to dispersal through aerial currents
(Krantz and Walter, 2009). Whereas most mite
species live freely in the environment, some species
have evolved to be parasitic on other animals or on
plants and are therefore of great agricultural and vet-
erinary importance, although their medical impact is
generally more modest. Some species are significant
destructive pests of stored food products; while
others (such as house dust mites) produce faecal
allergens, inducing asthma. Mites can also produce
serious skin conditions by feeding on the skin of do-
mestic animals (mange) and can cause dermatitis in
humans. Finally, some species act as important
vectors of pathogenic microorganisms of medical
and veterinary importance (Arlian et al. 2003;

Brouqui and Raoult, 2006; Valiente-Moro et al.
2009a).
The relationship between bacteria and arthropods

can be divided into 2 main aspects, which are not
mutually exclusive: (1) bacteria recognized as patho-
gens transmitted by an arthropod vector, and (2)
bacteria residing as symbionts within their arthro-
pod host. The study of the first aspect usually con-
cerns surveillance for emerging or re-emerging
diseases and interactions between the arthropod
vector, environment, wildlife, domestic animals
and humans. In contrast, the second research area
concerns other bacteria that may influence the phys-
ical, ecological and evolutionary traits of their
arthropod host, usually without transmission of
these organisms to a second host in which disease
may occur. These studies are often designed to char-
acterize and define symbiont–arthropod interac-
tions. For example, the nutritional mutualist,
Buchnera aphidicola, synthesizes essential amino
acids for its aphid host (Acyrthosiphon pisum) that
feeds on plant phloem, which has a very low essential
amino-acid content (Gunduz and Douglas, 2009).
Pea aphids also harbour defensive mutualists such
as Regiella insecticola, which protects the host popu-
lation from a natural enemy (the pathogenic fungus,
Pandora neoaphidis) by reducing the sporulation rate
in aphid cadavers, thus reducing the probability of
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pathogen transmission to other aphids (Scarborough
et al. 2005). Other bacterial genera are capable of ma-
nipulating their hosts’ reproduction: Wolbachia,
Cardinium, Spiroplasma and Rickettsia induce detri-
mental phenotypes in their arthropod hosts such as
cytoplasmic incompatibility, parthenogenesis induc-
tion, feminization and male killing (Stouthamer
et al. 1999; Tinsley and Majerus 2006; Enigl and
Schausberger, 2007; Giorgini et al. 2009). These
findings may be utilized to enhance prospects for
biological control since there is the potential to ma-
nipulate arthropod populations of agricultural,
medical or veterinary importance.
Recently, the number of publications on arthro-

pod-associated bacteria has substantially increased,
particularly for the Diptera, Hemiptera and
Hymenoptera (Baumann, 2005; Crotti et al. 2010;
Martinson et al. 2011; Taylor et al. 2011; Martin
et al. 2012; Zucchi et al. 2012; Skaljac et al. 2013).
In parallel, studies on mite-bacterial relationships
have also increased, but to a lesser extent compared
with the insect orders above. Moreover, sources of in-
formation with respect to mites and their pathogens
and symbionts are widely distributed in the literature,
and the compilation of data in terms of review publi-
cations is still very limited. Accordingly, the aims of
this literature review are (1) to obtain an overview
of bacterial diversity in mites and its potential appli-
cations, and (2) to provide comparative data for
mite-associated bacteria of agricultural, veterinary
and medical importance to stimulate hypothesis-
driven research.

MATERIALS AND METHODS

Literature search

This review focuses on reports of bacteria found in
mites across the world. The publications were
extracted by searching from 2 major scientific litera-
ture databases, PubMed (www.ncbi.nlm.nih.gov/
pubmed) and Web of Knowledge (www.webofknow
ledge.com). Three main mite orders (Mesostigmata,
Sarcoptiformes, Trombidiformes), some common
names of mites (e.g. gamasid mite, dust mite, itch
mite, spider mite, harvest mite, free-living mite,
chigger etc.) or scientific names (e.g. Dermanyssus,
Dermatophagoides, Leptotrombidium or Tyrophagus),
were used in combination with the term ‘bacteria’
or ‘bacterium’ as the keywords and applied to the
title field or abstracts in those databases. From the
obtained literature, the number of bacterial taxa
(genus and species level) was recorded for each mite
species. Only the publications reporting a minimum
of genus-level identifications of bacteria were
included in the database for statistical analyses.
Bacterial scientific names obtained from the literature
were checked for taxonomic assignment following the
NCBI Taxonomy Browser (http://www.ncbi.nlm.

nih.gov/Taxonomy/Browser/wwwtax.cgi), while for
the latest mite taxonomic classifications, Krantz and
Walter (2009) was consulted.

Mite classification

Taxonomically, the mites were classified into 3
orders and 14 superfamilies. In addition, for the pur-
poses of the present investigation, mites were also
grouped into 4 types based on life history (Krantz
and Walter, 2009): (1) ‘Vertebrate parasite’ was
defined as a mite species which at some lifecycle
stage feeds on vertebrate animals or are confirmed
as disease vectors; (2) ‘Invertebrate predator’ was
defined as a mite species which at some lifecycle
stage hunts or feeds upon other invertebrates
(some of which are used as biological pest control
in agricultural practice); (3) ‘Plant parasite’ was
defined as a mite species that feeds on live plant
tissues (with some species responsible for economic
losses in agricultural products); and (4) ‘House
pest and allergen’ are those mites which spoil
stored foodstuffs or contain powerful allergens that
induce detrimental immune responses in humans
and/or animals (Table S1).

Bacterial classification

For bacteria, apart from taxonomic classification, 4
bacterial groups were categorized due to their bio-
logical characteristics. Following the scheme of
Valiente-Moro et al. (2009b), the different categories
were defined as: (1) ‘Saprophyte’ – examples are bac-
teria which have not been described as being patho-
genic; (2) ‘Opportunistic pathogen’ – species in this
category cause disease in compromised vertebrate
hosts but not in healthy hosts; (3) ‘Pathogen’ –
most species in the genus are pathogens of verte-
brates; and (4) ‘Symbiont’ – bacteria that strictly
live in association with an arthropod host.

Statistical analysis

In order to visualize the distribution of the bacteria
found in eachmite superfamily, a principal component
analysis (PCA) was performed using R freeware (R
Development Core Team, 2008) with the ade4
package (Dray andDufour, 2007).ThePCAwas calcu-
lated by counting the number of bacterial genera posi-
tively reported in each mite taxa. Before starting the
analysis, data from 4 mite superfamilies (Oppioidea,
Rhodacaroidea, Erythraeoidea and Eviphidoidea)
were removed due to only one record of bacteria each
that could cause analysis bias (outliers).
To investigate the difference of the 4 biological

types of mite on bacterial diversity, the species
number of bacteria (species richness) in each order
was recorded across the 4 mite categories. This was
analysed using the non-parametric Kruskal–Wallis
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test, and multiple pairwise comparison tests were
performed with SPSS version 21.0 software (IBM
Corporation, Armonk, NY, USA), applying 95%
confidence intervals. P-values were adjusted for
multiple comparisons.

RESULTS & DISCUSSION

Methodological approaches to the identification of
bacteria in mites

A total of 193 publications were included in this sys-
tematic review from 1964 until January 2015. The
number of publications reporting mite-associated bac-
teria was found to increase gradually over this period
(Fig. 1). However, we estimated that the total volume
of literature describing mite-bacteria associations is 5
times smaller than that for ticks and 20 times smaller
than that for insects (datanot shown).The eligiblepub-
lications covered 143mite species belonging to 3 orders
and 14 superfamilies (Table S1). The most studied
mite taxon was Dermanyssoidea (46 species), followed
by Trombiculoidea (34 species), Tetranychoidea (23
species) and Phytoseioidea (10 species).
Clearly, prior to the early 1990s (Fig. 1), analyses of

bacteria in mites were restricted to non-molecular
methods such as conventional bacterial cultures with
biochemical characterization, inoculations of labora-
tory animals and serological tests. For example,
Mycoplasma spp. were isolated from goats’ ear mites,
Psoroptes cuniculi and Raillietia caprae, by culturing
the crushed mites in PPLO agar supplemented with
pig serum, and then the bacteria were identified by
biochemical characteristics (Cottew and Yeats, 1982).
Similarly, the red poultry mite, Dermanyssus gallinae,
was studied for its potential vectorial role for

Salmonella gallinarum and Erysipelothrix rhusiopathiae
transmission in the poultry industry by culturing
mite extracts in selective enrichment media, selenite
broth (Zeman et al. 1982) and crystal-violet sodium-
azide broth (Chirico et al. 2003), respectively. In the
scrub typhus research field, a number of studies have
used mouse passages to amplifyOrientia tsutsugamushi
from wild chigger mites fed on the rodents, and
different strains of the bacterium were indirectly
detected by various serological methods (e.g. fluores-
cence antibody assays, immunoperoxidase staining
and complement fixation tests; Kitaoka et al. 1974;
Roberts et al. 1977; Dohany et al. 1978; Shirai
et al. 1982; Ree et al. 1992; Frances et al. 2001;
Lerdthusnee et al. 2002; Phasomkusolsil et al. 2009).
Of course, such specific methods allow the identifica-
tion of the target organism only, and unculturable bac-
teria would not be detected.
With the advent of the molecular era, the develop-

ment of specific PCR assays and conventional and
next-generation sequencing techniques revealed a
significantly higher microbial diversity than was pre-
viously estimated by culture-dependent approaches
(Hugenholtz et al. 1998; Hubert et al. 2014; Yun
et al. 2014). In particular, use of 16S rDNA PCR
with bacterial species-specific primers has been
widely used for bacterial taxonomic studies in
mites (Fig. 1). Additionally, several publications
used specific PCR to amplify other bacterial genes
of interest. For example, the protein-coding genes:
ftsZ, groEL, wsp and citrate synthase (gltA) were
used in Wolbachia studies (Hong et al. 2002;
Gotoh et al. 2005; Yu et al. 2011; Lu et al. 2012;
Ros et al. 2012; Suh et al. 2014; Glowska et al.
2015; Zhang et al. 2015); outer membrane protein
B gene, 17 kD antigenic gene and gltA were used

Fig. 1. The number of publications reporting mite-associated bacteria. Numbers within bars refer to a breakdown of
publications by methodology. Curve represents an exponential line of best fit.
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for Rickettsia spp. (Reeves et al. 2006, 2007; Choi
et al. 2007; Tsui et al. 2007); the 16S–23S intergenic
spacer (ITS) and gltA were used for Bartonella spp.
(Kabeya et al. 2010; Kamani et al. 2013); gyrB was
used for Cardinium (Ros et al. 2012; Zhu et al.
2012); the 5S–23S ITS was used for Borrelia spp.
(Literak et al. 2008); the epank1 gene was used for
Anaplasma phagocytophilum (Literak et al. 2008);
and the 56-kD type-specific antigen gene was used
extensively for O. tsutsugamushi (Tamura et al.
2000; Pham et al. 2001; Khuntirat et al. 2003; Lee
et al. 2011; Liu et al. 2013; Seto et al. 2013; Shin
et al. 2014; Takhampunya et al. 2014).
An alternative approach has been the use of con-

served primers to amplify 16S rRNA products in
an unbiased fashion (Fig. 1), followed by cloning
and sequencing of selected clones for taxonomic as-
signment (Hogg and Lehane, 1999, 2001; Hoy and
Jeyaprakash, 2005; Hubert et al. 2012, 2014; Tang
et al. 2013; Murillo et al. 2014). However, to the
best of our knowledge, only one publication has
used the Roche 454 pyrosequencing platform target-
ing 16S rRNA amplicons to reveal the bacterial com-
munity of a mite species (in this case, the bulb mite,
Rhizoglyphus robini; Zindel et al. 2013). In a more
recent study, bacterial genomic sequences from 100
species (predominantly enterobacteria) were iden-
tified during assembly of the Dermatophagoides
farinae (dust mite) genome (Chan et al. 2015).

Bacterial diversity in mites

Mite species were found to be associated with 85 bac-
terial genera (approximately 150 identified species)
belong to 7 phyla (plus 3 classes of Proteobacteria)
and 25 orders (Table S2 and S3). Cardinium (in 31
mite species), Wolbachia (31 hosts) and Orientia
(32 hosts) were the most prevalent bacteria; followed
by Bartonella, Anaplasma and Rickettsia, with 16, 14
and 11 mite species reported, respectively (Fig. 2).
Among the 7 bacterial phyla and the 3 classes of
Proteobacteria (α, β and γ), Bacteriodetes, Firmicutes,
Tenericutes and Actinobacteria were reported in all 3
mite orders (Fig. 3). However, Chlamydiae were
reported only in mites from the order Mesostigmata,
and Spirochaetes were found in the Mesostigmata
and Trombidiformes, but not in the Sarcoptiformes
(Fig. 3).
Symbionts can be obligatory or facultative, live

inside or outside host cells, and can affect their
host negatively, positively, or have no discernible
phenotype. Some symbiotic bacteria may provide
benefits to the host in particular environments, but
can be disadvantageous under different circum-
stances (Hoy and Jeyaprakash, 2008). A number of
bacteria were reported as potential mite symbionts
in this literature survey, including Wolbachia,
Cardinium, Acaricomes, Spiroplasma, Snodgrassella,
Serratia, Rickettsiella and Schineria. Wolbachia and

Cardinium have been relatively well studied in
terms of effects on their mite hosts, which manifest
as reproductive alterations. However, the pheno-
types (if any) induced by the other potential sym-
bionts remain unknown. Wolbachia and Cardinium
manipulate mite reproduction by inducing cytoplas-
mic incompatibility, parthenogenesis, sex-ratio
distortion (e.g. male-killing and feminization), and
an increase in female fecundity (Breeuwer and
Jacobs, 1996; Weeks and Breeuwer, 2001; Chigira
and Miura, 2005; Gotoh et al. 2005; Groot and
Breeuwer, 2006; Gotoh et al. 2007; Novelli et al.
2008; Zhu et al. 2012; Zhao et al. 2013a; Suh et al.
2014; Zhang et al. 2015). These reproductive ma-
nipulation strategies facilitate vertical transmission
through the female line and drive the spread of the
symbionts into mite populations (Zhao et al. 2013b).
Wolbachia is the most prevalent arthropod sym-

biont (infecting approximately 40% of terrestrial
species; Zug & Hammerstein, 2012) and is also
found in some species of filarial nematodes (Ferri
et al. 2011). In mites, although 31 species were posi-
tively reported for Wolbachia infection, the bacteria
occurred only in 5 of 14 studied superfamilies: the
Dermanyssoidea (various parasitic mites of verte-
brates), Phytoseioidea (fungivorous, pollenophagous
and predatory mites), Oppioidea (in an oribatid
free-living mite, Oppiella nova), Cheyletoidea (para-
sitic mites of birds, but not in Demodex spp.), and
Tetranychoidea (phytophagous mites). Interestingly,
Cardinium was also found in 31 mite species but
these were distributed across 8 superfamilies, repre-
senting a much broader host range than Wolbachia
(Table S2). According to these findings, Cardinium
appears to be a more important symbiont for mites
than it is for other arthropods (Zug & Hammerstein,
2012).

Fig. 2. The top-ranked 15 bacterial genera detected in
mites.
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Apart from these reproductive symbionts, another
symbiotic bacterium, Acaricomes phytoseiuli, has
been isolated from the predatory species, Phytoseilus
persimilis, which is widely used for biological
control of spider mites (major agricultural pests)
(Pukall et al. 2006). Plants damaged by feeding
spider mites release volatiles to attract predacious
mites when hunting their prey. Schütte et al. (2008)
reported that A. phytoseiuli caused P. persimilis to
become refractory to plant volatile attraction,
leading to a high tendency to miss their prey (the
so-called ‘non-responding syndrome’). Moreover,
infected mites developed symptoms such as body
shrinkage, cessation of oviposition and even death.
Accordingly, the bacterium was realized as a potential
pathogen of predatory mites (Schütte and Dicke,
2008; Schütte et al. 2008).
Mites are often overlooked as vectors of diseases

when compared with ticks or haematophagous
insects, but a number of pathogenic bacteria have
been reported in the vertebrate-parasitic mite super-
families Dermanyssoidea, Acaroidea, Cheyletoidea
and Trombiculoidea. In terms of veterinary import-
ance, mites have been reported as potential vectors
and reservoirs of several pathogenic bacteria of live-
stock. E. rhusiopathiae, the causative agent of erysip-
elas, and S. gallinarum, causing fowl typhoid, were
reported in the poultry red mite, D. gallinae
(Zeman et al. 1982; Chirico et al. 2003; Wales et al.
2010; Brännström et al. 2010; Valiente-Moro et al.
2011). These diseases rapidly spread in infected
flocks with moderate to high morbidity, resulting
in significant economic damage (Takahashi et al.
2000; Shah et al. 2005). With respect to mammalian
livestock, Anaplasma spp., such as A. phagocytophi-
lum (causing tick-borne fever in ruminants) were

found in various mite species of the superfamily
Dermanyssoidea (Fernandez-Soto et al. 2001;
Reeves et al. 2006); whereas the opportunistic patho-
gen Serratia marcescens was found in the scab mites,
Psoroptes ovis and P. cuniculi, although a role for this
bacterium in the pathogenesis of psoroptic mange
has not been demonstrated (Mathieson and
Lehane, 1996; Hogg and Lehane, 1999; Perrucci
et al. 2005).
For human public health, the most researched

mite-associated bacterium is the scrub typhus
agent, O. tsutsugamushi. This Rickettsia-like bacter-
ium has been mainly found in chiggers (the larval
stage of trombiculid mites), with more than 30
species reported as hosts (Kitaoka et al. 1974;
Shirai et al. 1982; Ree et al. 1992; Kelly et al.
1994; Urakami et al. 1999; Frances et al. 2001;
Jensenius et al. 2004; Tilak et al. 2011;
Phasomkusolsil et al. 2012; Seto et al. 2013). Thus,
in contrast with Cardinium and Wolbachia (Zug
and Hammerstein, 2012), Orientia appears to be a
highly specialized symbiont of a single mite super-
family. Three genera of chiggers, Leptotrombidium,
Schoengastia and Blankaartia, were also implicated
in having a vectorial role for Bartonella tamiae, one
of several Bartonella spp. that cause illness in
Asian populations (Kosoy et al. 2008; Kabeya et al.
2010). Moreover, Bartonella spp. have been detected
in other mite taxa, the Dermanyssoidea, Acaroidea,
Glycyphagoidea and Cheyletoidea (Reeves et al.
2006; Kopecky et al. 2014; Murillo et al. 2014), sug-
gesting that several mites could play an important
role as vectors or reservoirs of human bartonellosis.
In addition to the poultry pest D. gallinae,

members of the superfamily Dermanyssoidea that
may feed on humans have been found to be infected

Fig. 3. Proportions (%) of the most abundant bacterial groups in the 3 principal mite orders.
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with pathogenic bacteria of medical importance. For
example, the intracellular pathogens, Rickettsia
akari (causing rickettsialpox) was isolated from the
mouse and rat mites, Liponyssoides sanguineus and
Ornithonyssus bacoti (Jensenius et al. 2004; Brouqui
and Raoult, 2006; Reeves et al. 2007); Rickettsia
typhi (causing murine typhus) was also found in
O. bacoti (Grabarev et al. 2009); and Rickettsia pro-
wazekii (the causative agent of epidemic typhus)
was isolated from Androlaelaps fahrenholzi and
Haemogamasus reidi in addition to the main louse
vector of the disease (Kettle, 1984; Jensenius et al.
2004; Bitam, 2012). Moreover, another intracellular
pathogen, Coxiella burnetii (the causative agent of
Q-fever) was detected in L. sanguineus, O. bacoti,
D. gallinae, Eulaelaps stabularis, Androlaelaps spp.
and Haemogamasus spp. (Zemskaya and Pchelnika,
1968; Kettle, 1984; Kocianova, 1989; Reeves et al.
2007); the spirochete, Borrelia burgdorferi (a causa-
tive agent of Lyme disease) was found in O. bacoti,
Myonyssus gigas, Laelaps agilis, E. stabularis,
Euryparasitus emarginatus, Eugamasus sp. and
Haemogamasus spp. (Lopatina et al. 1999; Netusil
et al. 2005, 2013); and a further highly-virulent patho-
genic bacterium in humans and other mammals,
Francisella tularensis (causative agent of tularaemia),
was isolated from O. bacoti, Hirstionyssus spp.,
Haemogamasus spp. and Laelaps spp. (Timofeeva,
1964; Petrov, 1971; Zuevskii, 1976; Lysy et al. 1979).

Patterns of mite-bacterial association

The PCA revealed well-separated associations
between themite taxa (10 superfamilies) and bacterial
types, with the first and second dimensions
explaining 96% of the total variance (Fig. 4).
Trombiculoidea were reported to be strongly asso-
ciated with pathogenic bacteria, whereas symbiotic

bacteria were clustered with mites from the
Phytoseioidea and Tetranychoidea. However, the re-
mainder of mite taxa (Dermanyssoidea, Acaroidea,
Analgoidea, Glycyphagoidea, Hemisarcoptoidea,
Sarcoptoidea and Cheyletoidea) were less strongly
associated with opportunistic pathogens and sapro-
phytes. Undoubtedly, in part these data reflect im-
portant biases related to bacteria-specific studies,
such as the exclusive focus on the Trombiculoidea
as vectors of O. tsutsugamushi; or the fact that the
relationship between symbiotic bacteria and mites
has been better studied in the Phytoseioidea and
Tetranychoidea than in the other mite taxa.
Of 25 bacterial orders, only 7 taxa showed signifi-

cant differences in bacterial species richness among
the 4 biological mite groups: Actinomycetales (χ2 =
24·97, p < 0·0001), Bacillales (χ2 = 30·64, p <
0·0001), Cytophagales (χ2 = 79·21, p < 0·0001),
Entomoplasmatales (χ2 = 19·33, p < 0·0001),
Pseudomonadales (χ2 = 24·77, p< 0·0001), Rhizobiales
(χ2 = 17·69, p = 0·001) and Rickettsiales (χ2 = 21·82,
p < 0·0001) (Fig. 5). However, there were no signifi-
cant differences in total bacterial species richness
among the 4 mite groups (χ2 = 5·72, p = 0·126).
Mites in the ‘pest and allergen’ group showed
higher total bacterial richness than mites in the
other groups (significantly so for Actinomycetales,
Bacillales, Cytophagales, Pseudomonadales and
Rhizobiales); however, Rickettsiales were completely
absent therein (Fig. 5H). Mite species in this cat-
egory are well recognized as generators of allergens
and carriers of some pathogenic fungi in human
stored food products (Franzolin et al. 1999; Hubert
et al. 2004, 2012). Invertebrate-predator mites har-
boured a highnumber ofEntomoplasmatales (Fig. 5E),
although these were exclusively derived from the
genus Spiroplasma. The bacteria in this genus
are known as reproductive manipulators of insect

Fig. 4. Principal Component Analysis of 10 mite superfamilies (Acar, Acaroidea; Anal, Analgoidea; Chey, Cheyletoidea;
Derm, Dermanyssoidea; Glyc, Glycyphagoidea; Phyt, Phytoseioidea; Hemi, Hemisarcoptoidea; Sarc, Sarcoptoidea; Tetr,
Tetranychoidea and Trom, Trombiculoidea) associated with the categorized bacterial groups (Sap, Saprophytes; OpPath,
Opportunistic Pathogens; Path, Pathogens; Symb, Symbionts).
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Fig. 5. Analysis of differences in bacterial species richness among mite taxa with multiple pairwise comparisons after
Kruskal–Wallis test (*p < 0·05, **p < 0·01, ***p < 0·001) for all bacterial species combined (A), Actinomycetales (B),
Bacillales (C), Cytophagales (D), Entomoplasmatales (E), Pseudomonadales (F), Rhizobiales (G) and Rickettsiales (H).

1158K. Chaisiri and others



predators and plant pests (Enigl and Schausberger,
2007; Di Blasi et al. 2011; Rivera et al. 2013), dem-
onstrating that predacious and phytophagous mites
and their plant hosts form an important habitat for
maintaining Spiroplasma in nature.

Outcomes and perspectives

This systematic review of the literature suggests that
important differences in bacterial flora may exist
between mites with different lifestyles, since ‘house
pests and allergens’ displayed a particularly diverse
bacteriome enriched for several of the bacterial orders
included in the analysis (with the notable exceptions
of the Entomoplasmatales andRickettsiales). A key pri-
ority for allergy research will be to determine whether
these apparent associations are confirmed by further
unbiased, high-throughput sequencing methods; and
if so, the extent to which the bacterial flora of mite
pests may modulate conditions such as atopic derma-
titis (Sonesson et al. 2013). It would also be interesting
to investigate the putative absence ofRickettsiales from
this group of mites to reveal any potential barriers to
colonization, especially as the Rickettsiales are clearly
widespread in other mite categories.
On the basis of the mite literature published to

date, very few bacterial species have become unique-
ly adapted to mites, with onlyOrientia spp., R. akari
and A. phytoseiuli contending as mite-specific sym-
bionts. For the former 2 species, the possibility
that they are not restricted to mites with a verte-
brate-parasite lifestyle should be considered.
Indeed, other arthropod-transmitted human patho-
gens, such as Rickettsia felis, have been detected in
non-biting arthropods (Thepparit et al. 2011). Our
review of the literature also raises the hypothesis
that Cardinium is so widely distributed in mites
(Weeks et al. 2003) that it may be better adapted to
this taxon [and perhaps other arachnids, Duron
et al. (2008)] than it is to insects.
In conclusion, this review provides useful ref-

erence data of mite-associated bacteria for further
research, with the intention to increase awareness
of the potential for mites to transmit disease. A
deeper understanding of the impact of symbionts
on their arthropod hosts may also facilitate the de-
velopment of intervention tools for vector and pest
control, for which precedents for insects already
exist (Jeffery et al. 2009; Iturbe-Ormaetxe et al.
2011). Manipulation of the bacteriome could lead
to future opportunities to decrease the medical, vet-
erinary and agricultural impact of mites, although
major challenges in the handling and colonization
of many species lay ahead.
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