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Abstract

The goal of image registration is to align two or more images of the same scene obtained

at different times, from different perspectives, or sensors such as MRI, X-ray and CT.

This step is required to facilitate automatic segmentation for tumour detection or to

inform further decisions in treatment planning. It is an important and challenging sub-

ject which usually involves high storage, computational cost and dealing with distorted

and occluded data. The paradigm behind image registration is to find a reasonable

transformation so that the template image becomes similar to the so-called given ref-

erence image. Through such transformation, information from these images can be

compared or combined. This thesis deals with the mathematical modelling of image

registration by way of energy minimisation of a functional.

We propose a new decomposition model for image registration which combines para-

metric transformation and non-parametric deformation. The first category of methods

is based on a small number of parameters and for the second category the transforma-

tion is based on a functional map (or discretely a large number of parameters) with a

regularisation term. We choose one cubic B-spline based model and the linear curva-

ture model for the parametric and non-parametric parts respectively where the overall

deformation consists of both global and local displacement for effective image regis-

tration. Some results for synthetic and real images will be presented to illustrate the

effectiveness of the new model in contrast with the individual models.

We then propose a novel variational model for image registration which employs

Gaussian curvature as a regulariser. The model is motivated by the surface restoration

work in geometric processing [21]. An effective numerical solver is provided for the

model using an augmented Lagrangian method. Numerical experiments show that

the new model outperforms three competing models based on, respectively, the linear

curvature [24], the mean curvature [19] and the diffeomorphic demon models [93] in

terms of robustness and accuracy.

Finally, we present an improved model for joint segmentation and registration based

on active contour without edges. The proposed model is motivated by an earlier model

[58] and the linear curvature model [24]. Numerical results show that the new model

outperforms the existing model for registration and segmentation of one or multiple

objects in the image. The proposed model also leads to improved registration results

when features exist inside the object.

vi



List of Figures

1.1 Illustration of reference and template images for multi-modality image

registration. The same objects in the reference (a) and template images

(b) have different intensity values. . . . . . . . . . . . . . . . . . . . . . 2

1.2 Illustration of reference and template images. The template image (b)

is a rotated version of the reference image (a). . . . . . . . . . . . . . . . 3

2.1 From left to right: the graphs of the functions f(x), g(x) and h(x) where

f(x) and g(x) are of bounded variation for Ω = [0, 1]. The function h(x)

has infinite total variation and is the space nor a bounded variation

function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 On the left is the given grey level image u(x) and on the right some of

its λ-level curves, these are curves where u(x) = λ for some λ = [0, 1]. . 16

2.3 Illustration of (a) cell-centred discretisation and (b) vertex-centred dis-

cretisation on a square mesh. Red crosses show the cell-centred points

and the red boxes show the vertex grid points. . . . . . . . . . . . . . . 20

2.4 Illustration of the ghost points outside the domain using vertex-centred

discretisation. The grid points are represented by the blue circles and

the white circles are the ghost points. . . . . . . . . . . . . . . . . . . . 22

2.5 Illustration of a pyramid of grid with four levels. Red crosses are the

cell-centred discretisation points. . . . . . . . . . . . . . . . . . . . . . . 32

2.6 Illustration of the standard coarsening strategy. The fine grid in (a)

has 9 × 9 discretisation points. An example of semi-coarsening where

the coarse grid in (b) is obtained by doubling the mesh size in the x1-

direction. In (c), we obtained the coarse grid by doubling the mesh size

in the x2-direction. Finally, the coarse grid (d) is constructed using these

standard procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.7 Illustration of the restriction operators. (a) is the injection operator, (b)

is the half weighting operator and (c) is the full weighting operator for

vertex-centred discretisation. The points in circles are the active points

used to obtain the coarse points in black circles for each operator. . . . 35

vii



2.8 Illustration of bilinear operator from the coarse grid to the fine grid.

The coarse point in black circles are used to obtain the nine fine points

surrounding it. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9 Illustration of multigrid cycles with three levels of grid. Left is the V-

cycle and on the right is the W-cycle. The white circles denote the

coarsest grid, \ and / denote the restriction and interpolation steps,

respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Illustration of an image registration problem. Reference and template

images are given in (a) and (b) respectively. The difference before regis-

tration is given in (c) and (d) is the transformed template image using

the transformation in (e). (f) is the difference image after registration

and we can observe that the difference image is reduced after registra-

tion. Notice that the transformed template image looks similar to the

reference image after registration. . . . . . . . . . . . . . . . . . . . . . 42

3.2 Illustration of translation, rotation, scaling, shearing and projective trans-

formation for the image I. . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Illustration of nearest neighbour interpolation in a 1D problem. . . . . . 54

3.4 Illustration of linear interpolation in a 1D problem. . . . . . . . . . . . . 55

3.5 Illustration of Runge phenomenon using higher order polynomial inter-

polation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.6 Illustration of basis functions for k = 1, 2, 3, 4. . . . . . . . . . . . . . . 57

3.7 Illustration of an image segmentation problem. (a) is the image to be

segmented because the image appears dark and the boundaries of the

objects are not clearly visible. (b) shows the binary representation of

the image in (a) where white pixels represent the edges of the object in

(a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.1 Plots of three energy terms to aid choice of γp and γnp. . . . . . . . . . . 75

4.2 Top row and left to right: template, reference and the difference between

the template and reference images. Middle row and left to right: results

of Test 1 using M1, M2, and M3. Bottom row shows the differences of

the transform template images (middle row) and reference images. All

three models are able to register Test 1 but a smaller value of ε is given

by M3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 First to second row and left to right: deformation field applied to the

regular grid for Test 1 using M1,M2,M3 after the parametric part and

M3 after the non-parametric part. Third to fourth row and left to right:

the values of the determinant of the Jacobian matrix for the correspond-

ing deformation on the top row. It is clear that the determinant of the

Jacobian matrix is positive everywhere. . . . . . . . . . . . . . . . . . . 78

viii



4.4 Top row and left to right: template, reference and the difference between

the template and reference images. Middle row and left to right are

the results of Test 2 using M1, M2, and M3. Bottom row shows the

differences of the transform template images (middle row) and reference

image. The best result is given by M3 where we can see that the method

gives the smallest error as depicted on the bottom row. . . . . . . . . . 80

4.5 First to second row and left to right: deformation field applied to the

regular grid for Test 2 using M1,M2,M3 after the parametric part and

M3 after the non-parametric part. Third to fourth row and left to right:

the values of the determinant of the Jacobian matrix for the correspond-

ing deformation on the top row. It is clear that the determinant of the

Jacobian matrix is positive everywhere. . . . . . . . . . . . . . . . . . . 83

4.6 First to second row and left to right: template, reference and the differ-

ence between the template and reference images. Middle row and left to

right, are the results of Test 3 using M1, M2 and M3. Bottom row is the

differences of the transform template images (middle row) and reference

image. The best result is given by M3 where we can see that the method

gives the smallest error as depicted on the bottom row. . . . . . . . . . 84

4.7 Top row and left to right: deformation field applied to the regular grid

for Test 3 using M1,M2,M3 after the parametric part and M3 after the

non-parametric part. Bottom row and left to right: the values of the

determinant of the Jacobian matrix for the corresponding deformation

on the top row. It is clear that the determinant of the Jacobian matrix

is positive everywhere. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.8 Top row and left to right: template, reference and the difference between

the template and reference images. Middle row and left to right: trans-

formed template using M1, M2 and M3. Bottom row: the respective

differences between the transformed template with the reference images.

The corners of the boxes are well captured with M3 compared to M1. . 86

4.9 First to second row and left to right: deformation field applied to the

regular grid for Test 4 using M1,M2,M3 after the parametric part and

M3 after the non-parametric part. Third to fourth row and left to right:

the values of the determinant of the Jacobian matrix for the correspond-

ing deformation on the top row. It is clear that the determinant of the

Jacobian matrix is positive everywhere. . . . . . . . . . . . . . . . . . . 87

5.1 Illustration of the image R and the joint probability density for R. (a)

is the image R, (b) shows that the density is very ‘sharp’ because R = R

and (c) is smeared out because T 6= R. . . . . . . . . . . . . . . . . . . . 93

5.2 Illustration of the spline kernel kσ(x) for σ = 0.5, 1, 2. . . . . . . . . . . 95

ix



5.3 Comparison of two distance measures. (a) is the reference image R,

(b) is mutual information and (c) is normalised gradient field as the

distance measures. We can see that (b) is highly non-convex. Thus, non-

convexity of registration problems increases with mutual information as

the distance measure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Test 1: Results of mutual information as the distance measure with

the decomposition model for multi-modality images. We can see that

the model delivers a good alignment between the transformed template

image in (d) and the reference image in (b). . . . . . . . . . . . . . . . . 104

5.5 Test 1: Results of normalised gradient as the distance measure with the

decomposition model for multi-modality images. The resulting trans-

formed template in (b) is in alignment with the reference image except

at the middle part of the brain. Smaller value of DMI(T (ϕ(x)), R) in

(b) than in Figure 5.4 (d) indicating higher similarity between the trans-

formed template and the reference images. . . . . . . . . . . . . . . . . . 105

5.6 Test 2: Results of mutual information as the distance measure with the

decomposition model for multi-modality images. We can see that the

model fails for the deformed circle in the template image in (a) due to

the existence of the inner square in the reference image (b). . . . . . . 106

5.7 Test 2: Results of normalised gradient as the distance measure with the

decomposition model for multi-modality images. We can see the model is

able to solve this particular problem. Smaller value of DMI(T (ϕ(x)), R)

in (b) than in Figure 5.6 (d) indicating higher similarity between the

transformed template and the reference images. . . . . . . . . . . . . . . 106

5.8 Test 3: Results of mutual information as the distance measure with the

decomposition model for multi-modality images. We can see that the

model fails to register the template with the reference image due to the

strong bias field in (a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.9 Test 3: Results of normalised gradient field as the distance measure with

the decomposition model for multi-modality images. We can see that the

model fails to register the template with the reference image due to the

strong bias field in (a). Smaller value of DMI(T (ϕ(x)), R) in (b) than

in Figure 5.8 (d) indicating higher similarity between the transformed

template and the reference images. . . . . . . . . . . . . . . . . . . . . . 107

6.1 Representation of a surface with GC and MC. (a) shows a surface model

with a tip point. (b) is the negative mean curvature and (c) is the

Gaussian curvature. The highest point in (c) is better localised than in

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

x



6.2 Location of a surface’s saddle point by GC and MC. (a) is the surface

with a saddle point. (b) is the negative mean curvature and (c) is the

negative Gaussian curvature. The highest point in (b) is not at the

saddle point and for (c), the saddle point is better distinguished from its

neighbourhood. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.3 Test 1 (X-ray of hand). Illustration of the effectiveness of Gaussian cur-

vature with smooth problems. On the top row, from left to right: (a)

template, (b) reference and (c) the difference before registration. On

the bottom row, from left to right: (d) the transformation applied to a

regular grid, (e) the transformed template image and (f) the difference

after registration. As can be seen from the result (e) and the small dif-

ference after registration (f), Gaussian curvature is able to solve smooth

problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.4 Test 1 (X-ray of hand). Comparison of Gaussian curvature with com-

peting methods. The transformed template image using (a) Model D,

(b) Model LC, (c) Model MC and (d) Gaussian curvature. Note the

difference of these three images inside the red boxes. . . . . . . . . . . . 123

6.5 Test 1 (X-ray of hand). Comparison of transformed templates in zoomed-

in boxes and their local ε values: (a) Model D, (b) Model LC, (c) Model

MC and (d) Gaussian curvature. Gaussian curvature has the smallest ε

value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.6 Test 2: A pair of Brain MR images. Illustration of the effectiveness of

Gaussian curvature with real medical images. On the top row, from left

to right: (a) template, (b) reference and (c) the difference before regis-

tration. On the bottom row, from left to right: (d) the transformation

applied to a regular grid, (e) the transformed template image and (f) the

difference after registration. As can be seen from the result (e) and the

small difference after registration (f), Gaussian curvature can be applied

to real medical images and is able to obtain good results. . . . . . . . . 125

6.7 Test 2: A pair of Brain MR images. Comparison of Gaussian curvature

with competing methods. The transformed template image using (a)

Model D, (b) Model LC, (c) Model MC, and (d) Gaussian curvature.

Notice the differences of these three images inside the red boxes. Con-

siderably more accurate results are obtained, particularly within these

significant regions, by employment of the Gaussian curvature model. . . 126

6.8 Test 2: A pair of Brain MR images. Comparison of transformed tem-

plates in zoomed-in boxes and their local ε values: (a) Model D, (b)

Model LC, (c) Model MC and (d) Gaussian curvature. Again Gaussian

curvature has the smallest ε value. . . . . . . . . . . . . . . . . . . . . . 127

xi



6.9 The effects on the values of F and ε for various values of γ are shown

in (a) and (b). We obtain these figures using r = 0.02 for Test 1 and it

confirms that γ controls the smoothness of the deformation field. The

iteration history for Test 1 is shown in (c). Since the functional J is

decreasing, the convergence of the proposed model is confirmed. . . . . 127

6.10 The effects on the value of F , n1, n2 and ε for various values of r. In

(a), F decreases with decreasing value of r. We should use the value

of r, such that F > 0, to avoid mesh folding. In (b), we can see that

increasing the value of r will decrease the difference between q1, q2 and

∇u1,∇u2. From (c), with a large value of r, we have smaller residual

indicated by n2. In (d), although small r = 0.002, gives a very small ε,

but since F < 0 for this value of r, we choose the optimal value of r to

be r = 0.02. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.11 Results of Gaussian curvature image registration for multi-modality im-

ages. The model is able to register multi-modality images with mutual

information as the distance measure. . . . . . . . . . . . . . . . . . . . . 129

7.1 Test 1: GV-JSR model. Illustration of the type of images where the

GV-JSR model delivers good results where the object to be segmented

in the template image is relatively large. The results obtained in this

test are for α = β = 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.2 Test 2: GV-JSR model. Illustration of the second class of problems

where the GV-JSR model manages to provide good results where the

deformation of the features inside the object to be segmented pose the

same deformation as the object itself. . . . . . . . . . . . . . . . . . . . 141

7.3 Test 3: GV-JSR model. Illustration of the type of image which has

different deformation for the boundary Γ and the features inside Γ. The

GV-JSR model fails to align the features inside Γ but manages to align

the outer most square in the template image. In this test we are using

α = 5 and β = 25. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.4 Test 3: NJSR model. We have better results using the NJSR model for

Test 3 where the circles in T are deformed to squares as in R. We also

have smaller value of ε = 0.0062 for the NJSR model than ε = 0.0509

which is obtained from the GV-JSR model. . . . . . . . . . . . . . . . . 143

7.5 Test 4: GV-JSR model. The model fails when there is more than one

feature detected in the template image which is indicated by a large

value of ε = 0.3382. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

xii



7.6 Test 4: NJSR model. Our proposed model manages to segment and

register this particular kind of problem where we have more than one

homogeneous object in the template image. We obtain a smaller value

of ε = 0.0239 from the NJSR model than ε = 0.3382 which is obtained

from the GV-JSR model. . . . . . . . . . . . . . . . . . . . . . . . . . . 144

xiii



List of Tables

4.1 Comparison of MSE, and the dice metric for white and grey matter for

segmented images of Test 3 before registration, and after registration

using M1, M2 and M3. Clearly M3 is the best. . . . . . . . . . . . . . . 79

4.2 Comparison of MSE, and the dice metric for white and grey matter for

segmented images of Test 3 for N = N1 = N2 = 129 before registra-

tion, and after registration using M1, M2 and M3. Our method M3

outperforms M1 and M2. . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 MSE, and the dice metric for Test 4 before registration, and after regis-

tration using M1, M2 and M3. MSE is decreasing for all three models

with the lowest value given by M3. The dice metrics are increasing for

all models where the highest value is given by M3. Our method M3

outperforms the individual methods. . . . . . . . . . . . . . . . . . . . . 81

6.1 Quantitative measurements for all models for Test 1. ML and SL stand

for multi and single level respectively. γ is chosen as small as possible

such that F > 0 for all methods. F > 0 indicates the deformation

consists of no folding and cracking of the deformed grid. We can see

that the smallest value of ε is given by Gaussian curvature (GC). . . . 123

6.2 Quantitative measurements for all models for Test 2. ML and SL stand

for multi and single level respectively. γ is chosen to be as small as

possible such that F > 0 for all models. F > 0 indicates the deformation

consists of no folding and cracking of the deformed grid. We can see that

the smallest value of ε is given by Gaussian curvature (GC). . . . . . . 124

xiv



Publications

A Decomposition Model and Its Algorithm Combining Cubic B-spline and

Non-parametric Deformation for Effective Image Registration. Mazlinda

Ibrahim and Ke Chen. In preparation.

A Unifying Framework for Decomposition Models of Parametric and Non-

parametric Image Registration. Mazlinda Ibrahim and Ke Chen. Submitted to

Neurocomputing.

A Novel Variational Model for Image Registration using Gaussian Curva-

ture. Mazlinda Ibrahim, Ke Chen and Carlos Brito-Loeza. Journal of Geometry,

Imaging and Computing. 1(4):417-446, 2014.

An Improved Model for Joint Segmentation and Registration. Mazlinda

Ibrahim, Ke Chen and Lavdie Rada. In preparation.

Presentations

A Decomposition Model Combining Parametric and Non-parametric Defor-

mation Image Registration.

22th International Symposium on Mathematical Programming, 12-17 July 2015, Pitts-

burgh.

A Composition Model Combining Parametric Transformation and Non-

parametric Deformation for Effective Image Registration.

SIAM Conference on Imaging Science, 12-14 May 2014, Hong Kong.

Fourth Order Variational Formulation for Image Registration.

25th Biennial Conference in Numerical Analysis, 25-28 June 2013. Glasgow.

An Improved Model for Joint Segmentation and Registration based on Lin-

ear Curvature Smoother .

3rd International Workshop on Image Processing Techniques and Applications, incor-

porating Mathematical Imaging with Biomedical Application, 6-8 July 2015. Liverpool.

A New Variational Model for Image Registration using Gaussian Curvature.

LMS Inverse Day on Tomographic Reconstruction from Boundary Data, 22 September

2014. Leeds.

Improved Parametric and Non-parametric Image Registration.

LMS Inverse Day on Hybrid and Multi-modal Imaging, 4 July 2014. Manchester.

xv



Chapter 1

Introduction

Image registration, also known as warping, fusion, motion correction or co-registration

is one of the most difficult tasks among medical imaging applications. Another chal-

lenging task is image segmentation. Registration aims to automatically align images

and establish correspondences between features within images which display different

views of the same objects. Such images may be taken from different individuals, at

different times or from different imaging machineries. After successful registration, in-

formation from different images may be compared, combined or fused for further tasks.

There exits a large number of application areas for image registration including compu-

tational anatomy [1], computer aided diagnosis [92], radiation therapy [100], treatment

verification [27], CCTV [76] and remote sensing [61].

For example, in medical imaging, a radiologist may be asked to combine information

from computer tomography (CT) and photon emission tomography (PET) where the

former modality contains patient anatomy information such as bones and organs while

the latter modality is used to scan the functional data such as glucose uptake. The

CT imaging process requires the patient to rest his arms due to space limitation in the

CT tube. For PET scanning, the patient needs to lift his arm to minimise attenuation

of the tracer. Image registration aims to align these two data of data into a unified

spatial alignment. The job becomes harder since there is no motion model for each

patient and internal organs move according to individuals. In [8], the authors mention

that quantification and evaluation of registration results are difficult because there is

not much information about the ground truth for the registration of medical images.

This thesis is about developing mathematical models for image registration. We

restrict ourselves to variational or energy minimisation methods because of their flex-

ibility. Such methods have received a lot of attention in medical imaging. In this

chapter, we present an introduction to image registration with a brief discussion on

how to model the problem as a minimisation problem. We also present an outline of

the chapters of this thesis.
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1.1 Introduction to Image Registration

Image registration is the process of finding geometric transformation between two given

images respectively known as the template (target) and reference (source) images. The

recovered transformation may be applied to the template image so that it becomes

similar in some sense to the reference image. It is assumed that the template image is

a deformed version of the reference image. Image registration has broad applications

ranging from medical image analysis, video surveillance, remote sensing and satellite

imagery. For mono-modality image registration, images are generated from the same

imaging machinery. Thus, the same objects or features in the images are represented

by the same intensity values. In this case, finding the optimal transform which links

the two images remains a challenging subject. Meanwhile, for multi-modality image

registration, images are generated from different imaging machineries. Thus, the same

objects or patterns will have different intensity values as shown in Figure 1.1. Conse-

quently, matching patterns is a challenge.
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(b) Template image, T .

Figure 1.1: Illustration of reference and template images for multi-modality image
registration. The same objects in the reference (a) and template images (b) have
different intensity values.

There are several different ways of classifying intensity based registration methods.

The methods can be divided into physical categories as rigid and non-rigid, mathe-

matical categories as linear and nonlinear or complexity categories as parametric and

non-parametric. We will follow the work done by Modersitzki [67] who classified the

problem into two classes by complexity. The first class of problems is called paramet-

ric image registration, for which transformations are dependent on a finite number of

parameters. As such, rigid and affine registration are parametric models where the for-

mer consists of three parameters and the latter has six parameters for two dimensional

image registration. We are interested in the second class of problems which consists of

the non-parametric image registration models. This class is based on functional min-

imisation or the variational approach. In this particular approach, we are looking for

deformation (displacement) fields for every pixel in the image. It is usually based on

physical processes such as elastic, motion curvature or fluid flow.
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Since the goal of image registration is to transform images such that they become

similar, modelling the problem involves the minimisation of a dissimilarity functional.

The functional can either be a function of the image intensity difference or a distance

between landmarks or markers in the images. In the former case, the registration

process is given implicitly by the whole image and in the latter case, only some parts

of the image are used to identify the deformation field.

In order to illustrate mono-modality image registration, we refer to Figure 1.2 where
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(a) Reference image, R.
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(b) Template image, T .

Figure 1.2: Illustration of reference and template images. The template image (b) is a
rotated version of the reference image (a).

the reference image (a) consists of a rectangle and, in the template image (b), this

rectangle is rotated. In image registration, we are looking for the transformation which

may be applied to the rectangle in T , in order to transfigure it to be similar to the

reference image R. We can use the following dissimilarity or similarity measure which

is the sum of the squared difference (SSD),

DSSD(T,R,ϕ(x1, x2)) =
1

2

∫
Ω

(T (ϕ(x1, x2))−R(x1, x2))2 dΩ (1.1)

where ϕ is the transformation, dΩ = dx1 dx2 and Ω is the image domain. The distance

in equation (1.1) is the L2 norm and it should be noted that minimising (1.1) with

respect to the transformation ϕ is an ill-posed problem. This is because the solution

given by

min
ϕ
DSSD(T,R,ϕ) (1.2)

is not unique. Referring to Figure 1.2, the solution can be either a rotation of π
2 or

−3π
2 about the centre of the image. Thus, we need a priori information about the

transformation so that unwanted solutions may be penalised. Using the well-known

Tikhonov regularisation, we incorporate a regularisation term S(ϕ) into (1.1). The

joint energy minimisation functional corresponding to (1.1) consists of a weighted sum

including fitting and regularisation terms as follows,

min
ϕ

{
J (T,R,ϕ) = DSSD(T,R,ϕ) + γS(ϕ)

}
(1.3)
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where γ is a positive constant parameter which balances the trade-off between the

fitting and regularisation energies. This thesis focuses on mathematical models of

image registration based on this type of variational approach.

1.2 Thesis Outline

The remaining chapters of this thesis are organised as follows.

Chapter 2 - Mathematical Preliminaries

In this chapter, we present some mathematical tools which will be used throughout this

thesis and which the reader may wish to consult while reading subsequent chapters.

A brief review is given of definitions, theorems and examples of some important and

relevant mathematical topics including normed linear spaces, variations of a functional,

functions of bounded variation, inverse problems and regularisation, the discretisation

of partial differential equations using finite differences, and iterative solutions of linear

and nonlinear equations. Finally, we will conclude this chapter with an introduction to

the multigrid method for elliptic PDEs.

Chapter 3 - Mathematical Models for Image Registration and Segmentation

In this chapter, we present a brief review of mathematical models for image registration.

We start with the mathematical setting for an image and the mathematical formula-

tion for image registration. We introduce similarity measures and parametric image

registration models. Then, we cover some existing models for non-parametric image

registration based on the variational formulation such as the linear elastic, nonlinear

elastic and fluid registration techniques. We also introduce and describe a solution

scheme for the minimisation of such models. We finally present some work in image

segmentation which is useful for Chapter 7.

Chapter 4 - A Decomposition Model Combining Parametric and
Non-parametric Deformation

In this chapter, we introduce a decomposition model for mono-modality image registra-

tion which combines parametric transformation and non-parametric deformation. We

choose cubic B-spline and linear curvature to model parametric and non-parametric

transformations respectively. Numerical results are presented at the end which show

that the decomposition model outperforms individual models.

Chapter 5 - Multi-modality Image Registration using the Decomposition
Model

In this chapter, we extend the decomposition model of parametric and non-parametric

transformations introduced in Chapter 4 to multi-modality images. In this case, the
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reference and template images come from different imaging modalities. For example,

the reference image may be a computer tomography (CT) scan which is good for the

quantification of cancerous tissues for determining the dose calculation in treatment

planning and the template image may be a magnetic resonance (MRI) image which is

much better for the visualisation of soft tissues compared to the CT scanner. Given the

very different resulting images, the intensity values are not directly comparable and so

the use of traditional similarity measures such as the sum of the squared difference is

no longer valid. We explore two similarity measures for multi-modality images given

by mutual information and the normalised gradient field in order to build registration

models for such images. We use three data sets in order to test these two similarity

measures with the decomposition model.

Chapter 6 - A Novel Variational Model for Image Registration using Gaus-
sian Curvature

In this chapter, we propose a novel regularisation term for non-parametric image regis-

tration based on the Gaussian curvature of the surface obtained from the displacement

field. Direct solution of the resulting Euler-Lagrange PDEs is difficult due to high

nonlinearity. We provide a numerical solver for the model using the augmented La-

grangian method. Numerical experiments are shown to illustrate the performance of

the proposed model in comparison with the linear curvature, diffeomorphic demon and

mean curvature models. Our new model turns out to be more robust than these three

competing models for the tested images because Gaussian curvature is a more natural

physical quantity for a surface compared to linear and mean curvatures.

Chapter 7 - An Improved Model for Joint Segmentation and Registration

In this chapter, we present an improved model for joint segmentation and registra-

tion using the active contour without edges method for segmentation and the linear

curvature model for image registration. The proposed model improves on the original

Guyader and Vese model [58] for image segmentation and registration. Here we use

the Chan-Vese model for segmentation [12] where the image is modelled as a piecewise

constant function.

Chapter 8 - Conclusion and Future Research

In the final chapter, we present our conclusions and outline possible future research

directions arising from the work presented in this thesis.
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Chapter 2

Mathematical Preliminaries

This chapter covers some basic mathematical tools that will be used throughout the

thesis. We begin with an introduction to normed linear spaces with some useful ex-

amples. Next, we review some relevant theory about calculus of variation. We discuss

inverse problems and regularisation before moving on to the discretisation of partial

differential equations (PDEs) by finite difference methods and define some notation.

Finally, we discuss iterative methods and iterative solutions of nonlinear equations,

finishing with an introduction to multigrid methods.

2.1 Normed Linear Spaces

Definition 2.1.1 Linear Vector Space. Let V be a set with the operations of mul-
tiplication and addition defined. Let u and v be any two elements of V, u,v ∈ V. Let
the sum of these two elements be denoted by u + v and the scalar multiplication of u
with an element c ∈ F of a scalar field F by cu. Then V is called a vector space of a
scalar field F if all of the following ten axioms are satisfied.

1. Closure under addition: u + v ∈ V.

2. Commutativity under addition: u + v = v + u.

3. Associativity under addition: (u + v) + w = u + (v + w) for all w ∈ V.

4. Existence of an identity element of addition: There exists an element 0 ∈ V, such
that 0 + u = u for all u ∈ V.

5. Existence of additive inverse: For all u ∈ V, there exists an element −u ∈ V,
such that u +−u = 0.

6. Closure under scalar multiplication: For c ∈ F, we have cu ∈ V.

7. Distributivity: If u,v ∈ V and c ∈ F, then c(u + v) = cu + cv.

8. Distributivity under scalar multiplication: If c, d ∈ F, then (c+ d)u = cu + du.

9. Associativity under scalar multiplication: If c, d ∈ F, then c(du) = (cd)u.

10. Existence of an identity element of scalar multiplication: There exists an element
1 ∈ F, such that 1u = u for all u ∈ V.
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Example 2.1.2 The linear vector spaces denoted by

• Rd and Cd for all d ∈ N,

• F[x], a polynomial function over a field F,

are normed linear spaces. We can verify these using Definition 2.1.

Theorem 2.1.3 Linear Subspace. A subset W of a vector space V is a linear sub-
space if and only if it satisfies the following three properties:

1. There exists 0 ∈W.

2. W is closed under addition.

3. W is closed under scalar multiplication.

Proof The first property ensures that W is not a null set since there exists at least
one element of W. From the definition of vector space and since an element of W is
also an element of V, the vector space operations are well defined.

Definition 2.1.4 Norm and Seminorm. A norm ‖ · ‖ on a vector space V is a
function ‖ · ‖ : V→ R that satisfies the following properties for all u,v ∈ V and λ ∈ F
where F is a scalar field.

1. Faithfulness: ‖u‖ = 0 if and only if u = 0 and ‖u‖ > 0 if u 6= 0.

2. Homogeneity: ‖λu‖ = |λ|‖u‖.

3. Subadditivity: ‖u + v‖ ≤ ‖u‖+ ‖v‖.

A semi-norm is defined similarly as above but with the first property being replace by
‖u‖ ≥ 0. A normed space is a linear vector space with a norm defined on it. For
a normed linear space, the distance (also known as a metric) between two elements
u,v ∈ V is denoted by d(u,v) = ‖u− v‖.

Example 2.1.5 p-norm. Let x ∈ Rn, then for any real number p ≥ 1 we define the
p-norm of x as

‖x‖p =

(
n∑
i=1

|xi|p
) 1

p

.

For p = 2, we recover the Euclidean norm defined by

‖x‖Rd =
√

x · x =

√√√√ n∑
i=1

x2
i .

The Euclidean scalar product is denoted by x · y and is defined by

x · y = ‖x‖‖y‖ cos θ

where θ is the measure of the angle between x and y.
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Example 2.1.6 Lp-norm or Lp-norm . Let f be a function defined on a domain Ω
and 1 ≤ p ≤ ∞. We define the Lp-norm of f on Ω as

‖f(x)‖p =

(∫
Ω
|f(x)|p dx

) 1
p

.

Note that since f may have arbitrarily many components, this is a generalisation of
Example 2.1.5.

Example 2.1.7 L∞-norm. The special case of the Lp-norm from Example 2.1.5
where p =∞ is defined as

‖f(x)‖∞ = sup
x
|f(x)|. (2.1)

Definition 2.1.8 Inner Product. An inner product on a linear vector space V de-
fined over the scalar field F is a function 〈·, ·〉V defined on V ×V which satisfies the
following properties:

1. Positive definiteness: 〈u,u〉V > 0 for u 6= 0 and u ∈ V.

2. Conjugate symmetry: 〈u,v〉V = 〈v,u〉V for all u,v ∈ V.

3. Linearity under scalar multiplication: 〈λu,v〉V = λ〈u,v〉V for all u,v ∈ V and
λ ∈ F.

4. Linearity under vector addition: 〈u+v,w〉V = 〈u,v〉V+〈v,w〉V for all u,v,w ∈
V.

Example 2.1.9 Examples of inner products are

• The standard inner product

〈x,y〉Rd = y>x =
d∑
i=1

xiyi

for all x,y ∈ Rd.

• If C[a, b] is the vector space of real-valued continuous functions defined on the
interval (a, b), then

〈f, g〉 =

∫ b

a
f(t)g(t) dt

is an inner product on C[a, b].

Definition 2.1.10 Support of a Function. Let Ω be a nonempty open set in Rn,
and let f be a continuous real or complex valued function on Ω. The support of f is
defined as

supp(f) = {x ∈ Ω : f(x) 6= 0}. (2.2)

Definition 2.1.11 Compactly Support. A function f in Ω ⊂ Rn has compact sup-
port in Ω if supp(f) is a compact set in Ω which also implies that supp(f) is a closed
set in Rn.
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Definition 2.1.12 Cauchy Sequence and Completeness. A sequence {xi}i∈N in a
normed vector space V is called a Cauchy sequence if for any real number, ε > 0, there
exists M ∈ Z+ such that for every natural number m,n > M , we have ‖xm − xn‖ < ε.
A normed vector space is said to be complete if every Cauchy sequence converges.

Definition 2.1.13 Banach Space. A Banach space is a complete normed vector
space.

Example 2.1.14 An example of a Banach space is

• C[a, b], the space of continuous, real-valued or complex valued functions with the
norm

〈f, g〉 =

∫ b

a
f(t)g(t) dt.

Definition 2.1.15 Hilbert Space. An inner product space which is complete with
respect to the norm induced by the inner product is called a Hilbert space.

Example 2.1.16 Two relevant examples of Hilbert spaces are the space Rn together
with the Euclidean inner product and the space L2(Ω) together with the inner product
defined by

〈f, g〉L2(Ω) =

∫
Ω
f(x)g(x) dx. (2.3)

Definition 2.1.17 Linear Operator. Take two vector spaces V and W. A mapping
A : V→W is called linear if

A(λ1v1 + λ2v2) = λ1A(v1) + λ2A(v2)

for all v1,v2 ∈ V where λ1, λ2 are scalars.

Example 2.1.18 A linear operator mapping Rn to Rm is defined by a matrix A of
size m× n, then given x ∈ Rn,y = Ax ∈ Rm.

Definition 2.1.19 Convex Set. A set S is convex if, for any λ ∈ [0, 1] and u, v ∈ S,
λu + (1 − λ)v ∈ S. That is, S is a convex set if any convex combination of every two
elements of S is also in S.

Definition 2.1.20 Convex Function. Let S be a convex subset of an n-dimensional
vector space V, that is for any r > 1 vectors x1, . . . ,xr ∈ S and any λ1, . . . , λr ∈ R,
λk ≥ 0, k = 1, . . . , r such that λ1 + . . .+ λr = 1 we have λ1x1 + . . .+ λrxr ∈ S. Then
a function f defined on S is called convex if for all xi,xj ∈ S and α ∈ (0, 1), we have

f(αxi + (1− α)xj) ≤ αf(x1) + (1− α)f(xj). (2.4)

f is called strictly convex if the inequality is strict for xi 6= xj.

Example 2.1.21 Examples of convex functions are

• Affine function, f(x) = Ax + b is a convex function where f : R2 → R.

• The total variation (TV) of a function u defined as

TV (u) =

∫
Ω
|∇u(x)|dx

where u : Ω ⊂ Rn → R, is a convex function.
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2.2 Calculus of Variations

The calculus of variations is about solving extremal problems for a functional via finding

a path such that some integral along the path is extremised. The development of

this area started when Johann Bernoulli (1667 − 1748) posed a challenge problem

known today as the brachistochrone problem, to his colleagues, including Newton. The

problem was to find the shortest path connecting two points in a minimal amount of

time. Today, the calculus of variations plays a vital role in many fundamental and

modern applications of mathematics, physics, and engineering. In this section, we

introduce the tools needed to compute the first variation of a functional using the

Gâteaux derivative in order to arrive at the so-called Euler-Lagrange equation which

characterises the minimiser of a particular minimisation problem.

Definition 2.2.1 Admissible Functions. A function u(x), that is permissible as in-
put to a functional J is called an admissible function. The admissible function satisfies
function smoothness condition and boundary conditions. The full set of all admissible
functions is called the domain of the functional.

2.2.1 Variation of a Functional

Consider a general functional J (u) where J : Ω → R and Ω denotes some normed

linear space consisting of admissible functions (for example, Ω ⊆ Rn, n ≥ 1). Let

J (u) =

∫
Ω
L(x, u(x),∇u(x)) dx. (2.5)

The functional J depends upon the independent variable x = (x1, x2, ..., xn), an un-

known function u(x) of this variable and its gradient ∇u(x) =

(
∂u(x)
∂x1

, . . . , ∂u(x)
∂xn

)
Here dx is the n-differential element defined as dx = dx1 dx2...dxn. The calculus of

variations deals with the problem of solving the following minimisation problem

min
u
J (u). (2.6)

2.2.2 Gâteaux Derivative of a Functional

Definition 2.2.2 Gâteux Derivative. Let J (u) be a functional defined on a Banach
space B such that J : B → R. The Gâteaux derivative of J is defined as

δJ (u(x); v(x)) = lim
ε→0

J (u(x) + εv(x))− J (u(x))

ε
=

d

dε
J (u(x) + εv(x))

∣∣∣
ε=0

.

δJ (u(x); v(x)) is called the first variation of J at u(x) in the direction of v(x) where
v(x) ∈ C∞0 (Ω).

Lemma 2.2.3 Local Minimiser. A function u(x)∗ is a local minimiser of the func-
tional J if there exists a neighbourhood N of u(x)∗ with J (u(x)∗) ≤ J (u(x)) for all
u(x) ∈ N .
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Lemma 2.2.4 Global Minimiser. A function u(x)∗ is a global minimiser of the
functional J if J (u(x)∗) ≤ J (u(x)) for all x ∈ Rn.

Lemma 2.2.5 Stationary Point. At an extremal point x ∈ Rn of a functional J ,
we have

δJ (u(x), v(x)) = 0

for all v(x) in its class of admissible variations. The functional J is said to be sta-
tionary at the extremal point x.

Lemma 2.2.6 Necessary Condition for a Local Minimiser. The most important
necessary condition to be satisfied by any minimiser of a variational integral J (u) is
the vanishing of its first variation δJ defined as

δJ (u) =
d

dε
J (u+ εv)

∣∣∣
ε=0

= 0.

2.2.3 Gauss’s Theorem

The Gauss or divergence theorem relates the flow of a vector field through a surface to

the divergence of the vector inside the surface. Consider a vector field F = F (x) which

is continuously differentiable on a domain Ω where Ω ⊂ Rn is an open and bounded

subset of R with piece-wise smooth boundary ∂Ω. The theorem states that∫
Ω

(∇ · F ) dx =

∫
∂Ω
F · n ds (2.7)

where ∇ · F = ∂F
∂x1

+ ∂F
∂x2

+ ... + ∂F
∂xn

, dx = dx1 dx2 ... dxn, n = (n1, n2, ..., nn) is the

outward unit normal of ∂Ω and ds indicates integration with respect to the surface

area on ∂Ω.

2.2.4 Integration by Parts

An immediate consequence of the divergence theorem is the integration by parts for-

mula. Applying (2.7) to the product of a scalar function g and a vector field F , we

obtain the vectorial representation∫
Ω

(F · ∇g + g∇ · F ) dx =

∫
∂Ω
gF · n ds. (2.8)

For the 1-dimensional case, F = u(x), g = v(x) and the differentials ∇F = u′(x),∇g =

v′(x), the integration by parts formula is in the familiar form∫
Ω
u(x)v′(x) dx = v(x)u(x)−

∫
Ω
v(x)u′(x) dx.

2.2.5 Fundamental Lemma of the Calculus of Variations

As seen before, the first variation of a functional J depends on an arbitrary test function

v(x) and the necessary condition for the minimiser is the vanishing of the first variation
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of J . Thus to derive the Euler-Lagrange equation, we need the so called fundamental

lemma of the calculus of variations (the Du Bois-Reymond lemma) to help us to take

the test function v(x) out. It is stated as follows.

Lemma 2.2.7 The Du Bois-Reymond Lemma. Suppose u is locally integrable
function defined on an open set Ω ⊂ Rn. If∫

Ω
u(x)v(x) dx = 0 for all v(x) ∈ C∞0 (Ω) then u(x) = 0. (2.9)

In order to conclude this section, we present an example of how to compute the first

variation of a functional of interest to us.

Example 2.2.8 Consider the problem of finding the first variation of the functional

J (u) =

∫
Ω
|∇u|2 dx1 dx2

defined on a domain Ω ⊂ R2. We introduce a small variation εv composed of the
parameter ε and a continuously differentiable function v with compact support in Ω.
Then we compute,

d

dε
J (u+ εv)

∣∣∣
ε=0

=
d

dε

∫
Ω
|∇(u+ εv)|2 dx1 dx2

∣∣∣
ε=0

= lim
ε→0

1

ε

∫
Ω
|∇(u+ εv)|2 − |∇u|2 dx1 dx2

= lim
ε→0

1

ε

∫
Ω

(√
(ux + εvx)2 + (uy + εvy)2

)2 − (√u2
x + u2

y

)2
dx1 dx2

= lim
ε→0

1

ε

∫
Ω
u2
x + 2εuxvx + ε2v2

x + u2
y + 2εvyuy + ε2v2

y − u2
x − u2

y dx1 dx2

= lim
ε→0

1

ε

∫
Ω

2ε(uxvx + uuvy) + ε2(v2
y + v2

x) dx1 dx2

= lim
ε→0

∫
Ω

2(uxvx + uyvy) +O(ε) dx1 dx2

= 2

∫
Ω
∇u · ∇v dx1 dx2.

We need Gauss’s theorem (2.8),which gives∫
∂Ω
φω · n ds =

∫
Ω
φ∇ · (ω) +∇φ · ω dx1 dx2.

Then, using φ = v, and ω = ∇u, we have∫
Ω
∇u · ∇v dx1 dx2 =

∫
∂Ω
v∇u · n ds−

∫
Ω
v∇ · (∇u) dx1 dx2.

From the fundamental lemma of calculus of variation (2.9), firstly we have,∫
∂Ω
v∇u · n ds = 0, for all v(x) ∈ C∞0 (Ω)

then, ∇u ·n = 0 which represents the boundary condition of the problem. Secondly, we

12



have

−
∫

Ω
v∇ · (∇u) dx1 dx2 = 0,

and using (2.9), we have
−∇ · (∇u) = −∆u = 0.

In summary, we have the following partial differential equation (PDE) known as the
Euler-Lagrange equation that must be satisfied

−∇ · (∇u) = −∆u = 0 in Ω, ∇u · n = 0 on ∂Ω.

2.2.6 Functions of Bounded Variation

Let Ω be a bounded open subset of Rn and let u ∈ L1(Ω). The definition of the total

variation of u is

TV (u) =

∫
Ω
|Du|(x) dx = sup

ϕ∈V

{∫
Ω
u(x) div ϕ dx

}
where V is the set of test functions

V = {ϕ = (ϕ1, ϕ2, ..., ϕn) ∈ C1
0 (Ω;Rn)n : ‖ϕi‖L∞(Ω) ≤ 1 for i = 1, ..., n, }

and the divergence is given as

div ϕ =
n∑
i=1

∂ϕi
∂xi

,

dx is the Lebesgue measure 1 and C1
0 is the space of continuously differentiable functions

with compact support in Ω. Du represents the distributional or weak gradient of u. In

[30], letting u ∈ C1(Ω) and using integration by parts we have,∫
Ω
u div ϕ dx = −

∫
Ω

n∑
i=1

∂u

∂x1
ϕi dx

for every ϕ ∈ C1
0 (Ω;Rn)n, so that∫

Ω
|Du|dx =

∫
Ω
|∇u| dx

where ∇u =
(
∂u
∂x1

, ∂u∂x2 , ...,
∂u
∂xn

)
. Denote by BV (Ω) the space of all functions in L1(Ω)

with bounded variation.

1In Euclidean spaces, the Lebesgue measure is a standard way to assign a measure (for example:
length, area or volume) to any given subset. Hence, sets with finite Lebesgue measure are called
Lebesgue measureables. This measure is used to define Lebesgue integration.
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Example 2.2.9 Consider the following three functions:

f(x) = (16x− 1)(8x− 1)(4x− 1)(2x− 1)(x− 1), x ∈ Ω = [0, 1]

g(x) = sinx, x ∈ Ω = [0, 1]

h(x) =

{
0, x = 0

x sin
(

1
x

)
, x ∈ (0, 1].

Here, f(x) and g(x) belong to the space of functions of bounded variation BV (Ω). The
total variations (TV) of f(x) and g(x) are given by∫

Ω

∣∣∣∇f(x)
∣∣∣ dx =

∫ 1

0

∣∣∣df
dx

∣∣∣dx
=

∫ 1

0
5120x4 − 7936x3 + 3720x2 − 620x+ 31 dx

= 40.0083

(2.10)

and ∫
Ω

∣∣∣∇g(x)
∣∣∣ dx =

∫ 1

0

∣∣∣dg
dx

∣∣∣dx
=

∫ 1

0
cosx dx

= 0.8415,

(2.11)

respectively. For the function h(x), we have Ω = [0, 1]. The function is plotted on Figure
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Figure 2.1: From left to right: the graphs of the functions f(x), g(x) and h(x) where
f(x) and g(x) are of bounded variation for Ω = [0, 1]. The function h(x) has infinite
total variation and is the space nor a bounded variation function.

2.1 (c). We see that as x→ 0, the frequency of the oscillations of h(x) increases, then
the more x approaches zero the more variations need to be added and the value of the
integral ∫

Ω
|∇h| dx

or total variation of h(x) increases. Therefore, this function has infinite total variation
and does not belong to BV (Ω).
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In order to conclude this section, we state the co-area formula which is a powerful tool

for the analysis of BV functions.

Definition 2.2.10 Lipschitz Continuous Functions. A function J is called Lip-
schitz continuous with Lipschitz constant Lf on Rn if there is a nonnegative constant
Lf such that

‖J(y)− J(x)‖ ≤ Lf‖y − x‖for all x,y ∈ Rn

for any given operator norm.

Definition 2.2.11 Borel Set. Given X, any topological space, we say that E ⊂ X
is a Borel set if E can be obtained by a countable number of operations, starting from
open sets, each operation consisting of taking unions, intersections and complements
[4, 79].

Definition 2.2.12 Perimeter. Let E be a Borel set and Ω an open set in Rn. Define
the perimeter of E in Ω as

Per(E,Ω) =

∫
Ω
|DχE | = sup

{∫
E

div ϕdx : ϕ ∈ C1
0 (Ω,Rn) and |ϕ(x)| ≤ 1

}
(2.12)

where

χE =

{
1, if x ∈ E;
0, if x ∈ Ω− E (2.13)

is the indicator function of E.

Definition 2.2.13 Level Set. A level set of a real function value u of n real variables
is a set of the form

Lcu =
{

(x1, . . . , xn)|u(x1, . . . , xn) = c
}

that is the set where the function takes a given constant c.

Definition 2.2.14 Level Curves. Let u(x1, x2) be a function in two dimension. The
set of pairs x = (x1, x2) such that u(x) = c is called the level curves of u for the value
c.

Definition 2.2.15 Co-area Formula. Let u = u(x) and f = f(x) be two scalar
functions defined on Rn. Assume that u is Lipschitz continuous and that for almost
every λ ∈ R, the level set Lλ = {x ∈ Rn : u(x) = λ} is a smooth (n − 1)-dimensional
hyper-surface in Rn. Suppose also that f is continuous and integrable. Then∫

Rn
|∇u|f dx =

∫ +∞

−∞

(∫
Lλ

f ds

)
dλ. (2.14)

For the particular case when f = 1 and the region of integration is a subset Ω ⊂ Rn,
we have ∫

Ω
|∇u| dx =

∫ +∞

−∞

(∫
Lλ

f ds

)
dλ =

∫ +∞

−∞
Per(Lλ,Ω) dλ. (2.15)
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Figure 2.2: On the left is the given grey level image u(x) and on the right some of its
λ-level curves, these are curves where u(x) = λ for some λ = [0, 1].

Example 2.2.16 Given the following function

u(x1, x2) =

 1−
√

(x1 − 64)2 + (y − 64)2)/128, (x1, x2) ∈ Ω\Ω1 ∪ Ω2;
0.9, (x1, x2) ∈ Ω1;
0.7, (x1, x2) ∈ Ω2

(2.16)

with Ω = [0, 128]2, Ω1 is the ring bounded by two circles (x1 − 64)2 + (x2 − 64)2 = 142

and (x1 − 64)2 + (x2 − 64)2 = 262 and Ω2 the ring bounded by the latter circle and
(x1 − 64)2 + (x2 − 64)2 = 382. Let us select some slice (level set) of u by setting
Lλ = {x ∈ Rn : u(x) = λ} for λ = [0, 1]. The 3D plot in Figure 2.2 (b) shows some of
its level sets. Therefore according to (2.12), the perimeter of each slice of u is given by

Per(Lλ,Ω) =

∫
Ω
|DχLλ

|. (2.17)

Using the co-area formula, we obtain∫
Ω
|∇u|dx =

∫ 1

0
Per(Lλ,Ω) dλ. (2.18)

This result shows that the total variation of a given function u is just the sum of every

length of all its λ-level curves. This automatically takes care of all the discontinuities

of u and therefore the contribution of edges to the total variation integral is enforced.

2.3 Ill-posed Problems and Regularisation

Mathematical problems represent our attempts to model observations made from par-

ticular physical phenomenon. As such, the heat equation comes from modelling an

observation made of the temperature of a certain object at a time interval. A problem

is said to be well-posed or correctly set if it satisfies three conditions (existence, unique-

ness and stability). Problems which violate any of the three conditions are said to be

ill-posed. In this section we look at ill-posed problems and regularisation which is a

common way of overcoming the ill-posedness of problem, thus allowing for the problem

to be solved.
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2.3.1 Inverse Problems

Given the problem

Au = f (2.19)

where A ∈ L(H,F ), u ∈ H, f ∈ F and H,F are Hilbert spaces, we define the idea of

well and ill posed problems below.

Definition 2.3.1 Forward and Inverse Problems. A forward problem is the pro-
cess of calculating the data y from the parameter x using a measurement operator f .
The operator f maps the parameter in a function space X typically a Banach or Hilbert
space to the space of data Y . We write

y = f(x), for x ∈ X and y ∈ Y (2.20)

as the correspondence between the parameter x and the data y. An inverse problem is
the process to find the parameter x ∈ X from the knowledge of the data y ∈ Y such that
(2.20) or an approximation of (2.20) holds.

Definition 2.3.2 Problem (2.19) is well posed in the sense of Hadamard if

1. Existence: for all f ∈ F , (2.19) has solution u∗ ∈ H.

2. Uniqueness: for all f ∈ F , the solution to (2.19) is unique.

3. Stability: the solution, u∗ ∈ H depends continuously on the data.

If any of the three conditions above are not satisfied, then the problem (2.19) is called
an ill-posed problem.

Example 2.3.3 Given

A =

[
2 3
4 6

]
, y =

[
2
4

]
and we need to solve the linear system

Ax = y (2.21)

where x = [x1, x2]T . However, the system is an underdetermined system because it can
be reduced to only one equation which is

2x1 + 3x2 = 2.

Thus, the system has an infinite number of solutions such as (x1, x2) = (0, 2
3) and

(x1, x2) = (1, 0). We say that the problem in (2.21) is an ill-posed problem because the
solution of the system is not unique.

Many problems in real life applications are inverse problems which exhibit ill-

posedness. For example, given two data sets X and Y , we may be asked to calculate the

value of Z = X + Y which is an example of a forward problem. The problem becomes

an inverse problem if we are given Z and we are asked to calculate the values of X and

Y . Ill-posed problems usually result from a lack of precise mathematical formulation

and typically violate the stability condition since small changes in the given data lead

to large changes in the result. To illustrate this, consider the following example.
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Example 2.3.4 Given

A =

[
2 3
2 3 + ε

]
, y =

[
2
0

]
.

The forward problem is to compute T = T (y) = Ay, for ε = 0, which has solution
T = [4, 4]T . Meanwhile, for an associated inverse problem, we need to compute y
given this T . However for ε = 0, A is not invertible, so there is no solution to the
problem. If we change ε = 10−6, then A becomes invertible and has a unique solution
for y = [2, 0]T . Perturbing T slightly, to T̂ = [4, 4 − ε]T , the solution to the inverse
problem is ŷ = [3.5,−1]T which is considerably different from y since |y|2 = 4 and
|ŷ|2 = 13.25. Observe that one of components of ŷ is negative which results in a huge
problem.

2.3.2 Tikhonov Regularisation

Andrey N. Tikhonov introduced the concept of regularisation to solve ill-posed prob-

lems. It can be understood as introducing a constraint to the original problem which

results in the stability of the solution. The constraint is added to the problem based

on prior information about the behaviour of the solution [97].

Example 2.3.5 Given Hilbert spaces U, Y , elements u ∈ U, y ∈ Y and an operator
A : U → Y such that Au = y, the problem of finding the solution u∗ = A−1y is an
ill posed problem if either u∗ is not unique, does not exist or is unstable. A standard
practice is to look for the least squares solution of the following minimisation problem

min ‖Au− y‖22, (2.22)

where the error norm measures how far the solution u is from the true solution u∗.
Tikhonov regularisation replaces the minimisation problem (2.22) by the solution of a
penalised least squared problem

min ‖Au− y‖22 + γ‖Lu‖22 (2.23)

where L is a regularisation operator and γ > 0 is the regularisation parameter deter-
mines how much weight is given to the regularisation term of the joint functional. We
denote the above generalised Tikhonov regularisation model as follows:

min
u∈U
Jγ(u) = D(A, u, y) + γS(u)

where D and S are the fitting and regularisation functional terms respectively.

2.4 Discretisation of PDEs and Notation

A continuous model and its equation are transferred to a discrete problem through

discretisation for subsequent numerical implementation because most equations cannot

be solved analytically. Consider a bounded and open domain Ω in Rd with boundary
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∂Ω. A continuous linear boundary value problem in d dimensions is denoted as

LΩu(x1, x2, ..., xd) = fΩ(x1, x2, ..., xd) for (x1, x2, ..., xd) ∈ Ω

L∂Ωu(x1, x2, ..., xd) = f∂Ω(x1, x2, ..., xd) for (x1, x2, ..., xd) ∈ ∂Ω
(2.24)

where L represent the linear operator of the problem and u(x1, x2, .., xd) is the required

function. For nonlinear boundary value problems we have

NΩ(u(x1, x2, ..., xd)) = fΩ(x1, x2, ..., xd) for (x1, x2, ..., xd) ∈ Ω

N ∂Ω(u(x1, x2, ..., xd)) = f∂Ω(x1, x2, ..., xd) for (x1, x2, ..., xd) ∈ ∂Ω.
(2.25)

where N is the nonlinear operator of the problem.

Definition 2.4.1 Laplace Operator. The Laplace operator or Laplacian is a dif-
ferential operator which is given by the divergence of the gradient of a function on
Euclidean space and it is usually denoted by div · ∇,∇ ·∇,∇2, or ∆. The Laplacian of
a scalar function f(x, y, z) is defined by

∆f(x, y, z) =
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
.

Example 2.4.2 Consider the following 2D Poisson equation:

∆u(x1, x2) = f(x1, x2) (2.26)

with Neumann boundary condition

∇u · n = 0 on ∂Ω. (2.27)

In our work, the domain Ω ∈ Rn is usually rectangular and the values of f known at

uniformly distributed points in the domain. Therefore the most natural discretisation

method to use is the finite difference method. Assuming that Ω = (a, b) × (c, d) is

rectangular we impose a cartesian grid with grid spacing

h1 =
b− a
n1

(2.28)

in the x1 direction and

h2 =
d− c
n2

(2.29)

in the x2 direction. In a vertex-centred discretisation, grid points are placed at the

vertices of the mesh so that, there are (n1 + 1)× (n2 + 1) grid points including points

on the boundary. The grid point (i, j) are located at

(x1,i, x2,j) = (ih1, jh2) for 0 ≤ i ≤ n1 and 0 ≤ j ≤ n2. (2.30)

In a cell-centred discretisation, grid points are located at the centre of the cells so that

there are n1 × n2 grid points and the point (i, j) is located at

(x1,i, x2,j) =
(
a+

2i− 1

2
h1, c+

2j − 1

2
h2

)
for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2. (2.31)
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The interior of the discrete grid is denoted by Ωh and the boundary by ∂Ωh. Figure

2.3 shows examples of vertex and cell-centred discretisation of a square domain. The
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(a) Cell-centred.
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(b) Vertex-centred.

Figure 2.3: Illustration of (a) cell-centred discretisation and (b) vertex-centred discreti-
sation on a square mesh. Red crosses show the cell-centred points and the red boxes
show the vertex grid points.

PDE is approximated locally using the Taylor series expansion

u(x1 + h1, x2) = u(x1, x2) + h1
∂u(x1, x2)

∂x1
+
h1

2

∂2u(x1, x2)

∂x2
1

+O(h3
1)

and

u(x1 − h1, x2) = u(x1, x2)− h1
∂u(x1, x2)

∂x1
+
h1

2

∂2u(x1, x2)

∂x2
1

+O(h3
1)

where O(h3
1) denotes terms containing third and higher powers of h1. The operator

∂u(x1,x2)
∂x1

at the grid point i, j can be approximated as follows

1. First order forward :

δ+
x1ui,j =

ui+1,j − ui,j
h1

≈

(
∂u

∂x1

)
i,j

+O(h1),

2. First order backward :

δ−x1ui,j =
ui,j − ui−1,j

h1
≈

(
∂u

∂x1

)
i,j

+O(h1),

3. Second order central :

δcx1ui,j =
ui+1,j − ui−1,j

2h1
≈

(
∂u

∂x1

)
i,j

+O(h2
1),

where ui,j = u(x1,i, x2,j). Approximations of higher order derivatives can be con-

structed in the similar way. For example, the centred second order difference

δ2
x1x1ui,j =

ui+1,j − 2ui,j + ui−1,j

h2
1

≈

(
∂2u

∂x2
1

)
i,j

+O(h2
1). (2.32)
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For the discrete version of equations (2.24) and (2.25), we denote

Lhuh = fh, and Nh(uh) = fh respectively.

2.4.1 Stencil Notation

We shall use the difference formulations, especially the centred second order difference

given in (2.32) to approximate the Laplace operator in model problem (2.26) at the

interior points of the domain Ωh,

(∆hu)i,j = δ2
x1x1ui,j + δ2

x2x2ui,j

=
ui+1,j − 2ui,j + ui−1,j

h2
1

+
ui,j+1 − 2ui,j + ui,j−1

h2
2

.
(2.33)

It is called a five point stencil since only five points are involved. We finally obtain

(∆hu)i,j =
ui+1,j − 4ui,j + ui−1,j + ui,j+1 + ui,j−1

h1h2
(2.34)

which can be denoted by the following stencil 0 1 0

1 −4 1

0 1 0

 . (2.35)

For the right hand side of model problem (2.26), we simply take the value of f at the

points, i.e. fi,j = f(x1,i, x2,j). The grid function uh is stacked along rows of the grid

starting at the bottom left point and ending at the top right to produce a vector uh.

This type of ordering is called lexicographical ordering. The right hand side vector is

stacked in a similar manner into a vector fh. Thus, the discrete linear equation can be

written as Ahuh = fh. For the nonlinear equation, the discrete version using matrix

notation is A(uh) = fh. For more details on model problem (2.26), refer to [50, 87].

2.4.2 Boundary Conditions

Definition 2.4.3 Ghost Points. In finite difference methods, the points outside the
discretisation domain Ω are called as the ghost points.

There are two types of boundary condition that usually occur in PDEs, namely Dirichlet

and Neumann boundary conditions. Dirichlet boundary conditions specify the value of

the function which needs to be satisfied at the boundary. However, Neumann boundary

conditions specify the normal derivative of the function on a surface. For the model

problem (2.26), we have Neumann boundary condition ∇u ·n = 0 where involves ghost

points outside of the domain after discretisation of the problem,

un1+1,j − un1−1,j

2h1
= 0.

as shown in Figure 2.4 using the white circles.
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Figure 2.4: Illustration of the ghost points outside the domain using vertex-centred
discretisation. The grid points are represented by the blue circles and the white circles
are the ghost points.

Using the stencil notation, we have

(∆h(uh))i,j =
1

h1h2

 0 1 0

1 −3 0

0 1 0

ui,j = f,j

for the right boundary on the square domain Ωh.

2.5 Iterative Methods

Now we briefly review iterative methods for a linear system Ax = b. Iterative methods

are used to compute a sequence of progressively accurate iterates to approximate the

solution of Ax = b where x and b are of dimension n and A is an n × n matrix. The

process starts with an initial approximation x(0) and generates a sequence {x(k)}∞k=1

using the relation

x(k) = Tx(k−1) + c

where the matrix T and the vector c are derived from the matrix A as follows

(M −N)x = Ax = b

⇔Mx = Nx+ b

⇔ x = M−1Nx+M−1b

⇔ x = Tx+ c

where M is a nonsingular matrix and M = diag(A). Iterative methods are needed to

solve large systems where the direct method is too expensive to solve.
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2.5.1 Jacobi Method

The Jacobi method solves the ith equation of Ax = b for xi using

xi =

n∑
j=1,j 6=i

(
−aijxj
aii

)
+
bi
aii
, for i = 1, . . . , n.

For x(k−1), k ≥ 1, we have

x
(k)
i =

N∑
j=1,j 6=i

(
−aijx(k−1)

j

aii

)
+
bi
aii

where aii 6= 0 for i = 1, . . . , N . If one or more aii = 0 and the system is nonsingular

then we can reorder so that no aii is equal to zero. For the Jacobi method, we have

(D − L− U)x = b

⇔ Dx = (L+ U)x+ b

⇔ x = D−1(L+ U)x+D−1b

⇔ x = Tx+ c

where D is a diagonal matrix, −L is the strictly lower triangular matrix and −U is

the strictly upper triangular matrix of the matrix A. The matrix form of the Jacobi

method is given by

x(k) = TJx
(k−1) + cJ

where TJ = D−1(L + U) and cJ = D−1b. The algorithm for solving Ax = b us-

Algorithm 1 Jacobi Method
(x)← Jacobi(A, b,x(0), IMAX, TOL)

1. Let k = 1, N = length b.

2. For k = 1, ..., IMAX,

(a) For i = 1, ..., N ,

i. Set

x
(k)
i =

N∑
j=1,j 6=i

(
−aijx(k−1)

j

aii

)
+
bi
aii
. (2.36)

(b) End for.

(c) If ‖b−Ax(k)‖2 < TOL or ‖x(k) − x(k−1)‖2 < TOL , exit else continue.

3. End for.

ing the Jacobi method is given by Algorithm 1. In the weighted Jacobi method, the
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intermediate values x̂ are computed using

x̂i =
N∑

j=1,j 6=i

(
−aijx(k−1)

j

aii

)
+
bi
aii

(2.37)

and the new approximation for x(k) is given by

x
(k)
i = (1− ω)x

(k−1)
i + ωx̂i

where ω is a weighting factor. In matrix form, the weighted Jacobi method is

x(k) = ((1− ω)I + ωTJ)x(k−1) + ωD−1b

x(k) = Tωx
(k−1) + cω.

2.5.2 Gauss Seidel Method

A better approximation to the Jacobi method is the Gauss Seidel method where the

update value for x
(k)
i is calculated using the recent values of x

(k)
1 , ..., x

(k)
i−1 as follows:

x
(k)
i =

−
∑i−1

j=1 aijx
(k)
j −

∑N
j=i+1 aijx

(k−1)
j + bi

aii
for i = 1, ..., N. (2.38)

Rewriting the above equation as

aiix
(k)
i +

i−1∑
j=1

aijx
(k)
j = −

N∑
j=i+1

aijx
(k−1)
J + bi,

we can see that the matrix form of the Gauss Seidel method is given by M = D − L,

(D − L)x(k) = Ux(k−1) + b

x(k) = (D − L)−1Ux(k−1) + (D − L)−1b

x(k) = TGSx
(k−1) + cGS .

The algorithm for the Gauss Seidel method is the same as the algorithm for the Jacobi

method except that we replace equation (2.36) in Algorithm 1 with equation (2.38).

2.5.3 SOR Method

In the Successive Over Relaxation (SOR) method, the intermediate values x̂i are com-

puted using the Gauss Seidel method and

x(k) = (1− ω)x
(k−1)
i + ωx̂

where ω is positive constant. If ω < 1, this is called under relaxation and is used to

obtain convergence when the Gauss Seidel method does not converge. If ω > 1 it is

called over relaxation and it is used to accelerate convergence of the system when the
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Gauss Seidel method does converge. The SOR method is based on the matrix splitting

ωA = (D − ωL)− (ωU + (1− ω)D)

and can be defined by the recurrence relation

x(k) =
(

(D − ωL)− (ωU + (1− ω)D)
)
x(k−1) + ω(D − ωL)−1b

x(k) = TSORx
(k−1) + cSOR.

2.5.4 Block Methods

In these methods the vector x and b are partitioned into several disjoint sub vectors

x = (xT1 ,x
T
2 , . . . ,x

T
s ), b = (bT1 , b

T
2 , . . . , b

T
s ).

Then the system Ax = b can be written in the block form
A11 A12 · A1s

A21 A22 · A2s

· · · ·
As1 As2 · Ass



x1

x2

·
xs

 =


b1

b2

·
bs


where the block Apq is of size np × nq where np and nq is the size of xp and bq re-

spectively. Assuming that the diagonal blocks are nonsingular, the Jacobi and Gauss

Seidel methods can be easily extended to the block level. In the Block Jacobi method

for i = 1, ..., s, xi is updated as follows:

x
(k)
i = A−1

ii

 s∑
j=1,j 6=i

−Aijx(k−1)
j + bi

 .

For the Block Gauss Seidel method

x
(k)
i = A−1

ii

 i−1∑
j=1,j 6=i

−Aijx(k)
j +

s∑
j=i+1

−Aijx(k−1)
j + bi

 .

We have to invert the matrix Aii in order to update xi and if xi is large then the step

is more expensive. Using matrix notation, we can write

x(k) = D−1
B (UB + LB)x(k−1) +D−1

B b

for the Block Jacobi method and

x(k) = (DB − LB)−1(UB)x(k−1) + (DB − LB)−1b

for the Block Gauss Seidel method.
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2.5.5 Convergence

Definition 2.5.1 Spectral Radius. The spectral radius of a matrix M is defined as

ρ(M) := max |λ|

where λ is the eigenvalues of M .

In this section will show that a sequence {x(k)}∞k=0 converges to the true solution x of

the original system Ax = b where x(k) = Tx(k−1) + c if and only if the spectral radius

of T is less than 1 (ρ(T ) < 1).

Definition 2.5.2 Convergent Matrix. A square matrix A is said to be convergent
if limk→∞A

k = 0.

Theorem 2.5.3 Convergence of a Matrix. A matrix A is convergent if and only
if ρ(A) < 1.

Proof The proof can be found in [84].

Lemma 2.5.4 If the spectral radius ρ(T ) < 1 then (I − T )−1 exists and (I − T )−1 =∑∞
j=0 T

j.

Proof If λ is an eigenvalue of T then (1−λ) is an eigenvalue of (I−T ). Since ρ(T ) < 1,

1 is not an eigenvalue of T . Hence 0 is not an eigenvalue for (I − T ) and (I − T ) is not

singular. Let

Sm = I + T + T 2 + . . .+ Tm

then

(I − T )Sm = (I + T + T 2 + . . .+ Tm)− (T + T 2 + . . .+ Tm+1) = I − Tm+1.

Using Theorem 2.5.3, ρ(T ) < 1 implies that T is convergent and

lim
m→∞

(I − T )Sm = lim
m→∞

(I − Tm+1) = I.

Thus

(I − T )−1 = lim
m→∞

Sm =

∞∑
j=0

T j

and the proof is complete.

Theorem 2.5.5 Convergence of a Sequence. For any x(0) ∈ Rn, the sequence
{x(k)}∞k=0 defined by x(k) = Tx(k−1) + c (for each k > 1) converges to the unique
solution of x = Tx+ c if and only if ρ(T ) < 1.
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Proof Assume that ρ(T ) < 1, we have

x(k) = Tx(k−1) + c

x(k) = T (Tx(k−2) + c) + c

x(k) = T 2x(k−2) + (T + I)c

...

x(k) = Tx(0) + (T k−1 + . . .+ T 2 + T + I)c.

(2.39)

Using (2.39), Theorem (2.5.3) and ρ(T ) < 1, we have

lim
k→∞

x(k) = lim
k→∞

k−1∑
j=0

T jc


which by Lemma (2.5.4) is equal to (I − T )−1c. The sequence {x(k)}∞k=0 therefore

converges to the unique solution of x = (I − T )(−1)c or x = Tx + c. Conversely,

assume that x∗ is the unique solution of x = Tx + c. If c = 0, then x∗ is the unique

solution of x = Tx, now let y ∈ Rn be an arbitrary vector and take initial guess

x(0) = x∗ − y, we have

lim
k→∞

T ky = lim
k→∞

T k(x∗ − x(0))

= lim
k→∞

T k−1(x∗ − x(1))

= lim
k→∞

T k−2(x∗ − Tx(2))

...

= lim
k→∞

(x∗ − x(k)) = 0.

Since y ∈ Rn was arbitrary, the matrix T must be convergent. Theorem (2.5.3) implies

that ρ(T ) < 1.

The general convergence rate for an iterative method is defined as

ρ = lim
k→∞

(
sup
e(0)∈R

‖e(k)‖
‖e(0)‖

) 1
k

,

where e(k) is the error in the approximation x(k) to the system Ax = b given by

e(k) = x∗ − x(k)
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where x∗ is the true solution. We have

e(k) = x∗ − x(k)

= Tx∗ + c− (Tx(k) + c)

= T (x∗ − x(k))

= Te(k−1)

...

= Te(0).

This is equivalent to

ρ = lim
k→∞

(
sup
e(0)∈R

‖e(k)‖
‖e(0)‖

) 1
k

= lim
k→∞

(‖T‖)
1
k = ρ(T )

using the fact that limk→∞(‖A‖)
1
k = ρ(A) for any matrix norm. Therefore the optimal

iterative method is the one whose iteration matrix T has minimal spectral radius.

Theorem 2.5.6 Spectral Radius for the Jacobi and Gauss Seidel Methods. If
a matrix A has positive diagonal entries and all other entries are negative or zero then
only one of the following statements holds

• 0 < ρ(TGS) < ρ(TJ) < 1

• 1 < ρ(TJ) < ρ(TGS)

• ρ(TJ) = ρ(TGS) = 0

• ρ(TJ) = ρ(TGS) = 1

where TGS and TJ are the iteration matrices for Gauss Seidel and Jacobi respectively.

For Theorem (2.5.6), if one of the Jacobi or Gauss Seidel methods converges then so

does the other and if one of them is divergent then so is the other. The Gauss Seidel

method converges faster than the Jacobi method.

Definition 2.5.7 Regular Splitting. A = M −N is called a regular splitting of A if
M is nonsingular and M−1 and N are nonnegative.

The following theorems regarding convergence [51] are stated without proof.

Theorem 2.5.8 If M and N are a regular splitting of A and T = M−1N then ρ(T ) < 1
if and only if A is nonsingular and A−1 is nonnegative.

Theorem 2.5.9 If all of the diagonal elements of A are non-zero then ρ(TSOR) ≥
|ω − 1| and hence SOR converges only when 0 < ω < 2.

Theorem 2.5.10 If A is positive definite i.e xTAx > 0 for any x and 0 < ω < 2 then
the SOR method converges for any initial guess x(0).
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Theorem 2.5.11 If A is positive definite and tridiagonal then ρ(TGS) = ρ(TJ)2 then
the optimal value for ω for SOR is

ω =
2

1 +
√

1− ρ(TJ)2

for which ρ(TSOR) = ω − 1.

Practically there are many problems which do not satisfy these sufficient conditions for

Jacobi and Gauss Seidel convergence. Then we have to consider Krylov type methods

[102] or multigrid methods (in Section 2.7).

2.6 Iterative Solutions of Nonlinear Equations

Let us now say that we want to solve the following nonlinear system
F1(x1, x2, . . . , xn) = 0

F2(x1, x2, . . . , xn) = 0
...

Fn(x1, x2, . . . , xn) = 0,

(2.40)

which may be obtained from discretisation of a nonlinear PDE or onlinear optimisation

minJ (x1, . . . , xn) (2.41)

such as (2.6). We can represent the system as F (x) = 0 where

F = (F1, F2, . . . , Fn)T , x = (x1, x2, . . . , xn)T , (2.42)

and Fi : D ⊂ Rn → R, i = 1, ..., n are nonlinear operators which are continuously

differentiable on Rn. We want to find x∗ ∈ Rn, a solution to the equation (2.40). In

this section, we will start with the Newton method, before introducing the gradient

descent method and the Quasi Newton method. We will then present the line search

method.

2.6.1 Newton Method

Let J denote the Jacobian matrix of F

Jij =
∂Fi(x)

∂xj

and assume that J is Lipschitz continuous with constant Lf in Rn. Newton’s method

attempts to evaluate F (x) = 0 using the following recurrence relation

x(k) = x(k−1) −
(
J(x(k−1))

)−1
F (x(k−1)).
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Let d(k−1) denote the descent direction. Then we can write the Newton recurrence

relation as

Solve d(k−1) = −
(
J(x(k−1))

)−1(
F (x(k−1))

)
,

Update x(k) = x(k−1) + d(k−1).

2.6.2 Gradient Descent Method

Consider a general nonlinear functional F : Rn → R and suppose that we want to solve

for x, where

F (x) = 0 (2.43)

and x ∈ Rn. The gradient descent method, also known as the steepest descent method,

generates a sequence of x(k), k ≥ 1 through the recurrence relation

x(k) = x(k−1) + α(k−1)d(k−1), d(k−1) = −∇F (x(k−1))

where the positive scalar α(k−1) is called the step length and d(k−1) is the taken search

direction. The main characteristic of the gradient descent method is that the iterates

decrease the function value at each step

F (x(k)) ≤ F (x(k−1)). (2.44)

If the step length α(k−1) is fixed to the time step ∆t of a newly introduced time variable

t, the descent method is known as the time marching method. Note this ≤ is not < in

(2.44), i.e. stagnation could happen.

2.6.3 Quasi Newton Method

Suppose that we are given an optimisation problem (as will be seen many times later)

min
x
f(x)

where f is convex, twice differentiable and f : Rn → R. Note that convexity is a strong

requirement in this work. We are given an initial point x(0) and we will use an iterative

method to generate a sequence of the solution x(k) that converges to the minimum point

x∗. Denote the gradient of f at x(k) by ∇f(x(k)) and the Hessian matrix (the matrix

of the second derivative) by H(k) = ∇2f(x(k)). The second order Taylor expansion

around x(k) is given by

f̂(p) = f(x(k)) + (p)T∇f(x(k)) +
1

2
(p)TH(k)(p)

where p = x− x(k). f̂(p) defines a quadratic model of the function near the point x(k).

The gradient of f̂(p) with respect to x is given by

∇f̂(p) = ∇f(x(k)) +H(k)(p).
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The minimal values for ∇f̂(p) occur when p(k) = −(H(k))−1∇f(x(k)). Then, we have

the recurrence relation for the Newton method

x(k+1) = x(k) + α(k)p(k).

To find the value of p(k), one has to solve the linear system H(k)p(k) = −∇f(x(k)) or

find the inverse of the Hessian matrix. Thus, the process of calculating p(k) can be too

expensive for large scale problems. The quasi Newton method attempts to avoid the

computation of the Hessian matrix using an approximation of the Hessian matrix. The

first quasi Newton method is DFP (Davidson, Fletcher and Powell) who discovered it

in 1959. Instead of computing the true Hessian, we will use an approximation which is

based on the change in the gradient between iterations. Another variant of the quasi

Newton method is the BFGS (Broyden, Fletcher, Goldfarb and Shanno). It is actually

the same as the DFP with a single modification whereby instead of approximating the

Hessian H(k), we approximate its inverse (H(k))−1. This is considered to be the most

effective quasi Newton method.

2.6.4 Line Search Method

We will now consider the step length parameter α(k) in the recurrence relation for the

iterative method. It most cases, the initial step size α(0) = 1 will be used. However,

the success of a line search method depends on the effective choice of both the direction

p(k) and the step length α(k). A simple condition which may be imposed on α(k) is to

require a reduction in f , that is

f(x(k) + α(k)p(k)) ≤ f(x(k)).

This requirement is not enough to produce convergence to x∗ [72]. A popular inexact

line search condition stipulates that α(k) should first of all give sufficient decreases in

the objective function as measured by the following inequality:

f(x(k) + α(k)p(k)) ≤ f(x(k)) + c1α
(k)∇f(x(k))T p(k) (2.45)

for some constant c1 ∈ (0, 1). This inequality is called the Armijo condition. The

second useful condition is called the curvature condition which requires α(k) to satisfy

∇f(x(k) + α(k)p(k)) ≥ c2∇f(x(k))T p(k)

for some c2 ∈ (c1, 1) where c1 is the constant in equation (2.45). The Armijo and

curvature conditions are known collectively as the Wolfe conditions.
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2.7 Multigrid Methods

Multigrid methods (MG), also known as multilevel methods, have been shown to be an

efficient solver for linear and nonlinear elliptic PDEs using a hierarchy of discretisation

where there is a pyramid of grids. For example, in Figure 2.5, we have a pyramid of grids

with four levels. The top of the pyramid is denoted as level 1 with 4 cell-centred points

and the bottom of the pyramid is denoted as level 4 with 16 cell-centred discretisation

points. In this section, we will give a brief discussion of the multigrid methods and we

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x
1

x 2

Level 1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x
1

x 2

Level 2

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x
1

x 2

Level 3

0 0.5 1
0

0.2

0.4

0.6

0.8

1

x
1

x 2

Level 4

Figure 2.5: Illustration of a pyramid of grid with four levels. Red crosses are the
cell-centred discretisation points.

will only consider geometric multigrid and not the algebraic multigrid. In the examples

of the grid transfer operator, we assume a vertex discretisation as defined in the previous

section. For a more comprehensive introduction to the multigrid method see [90, 5] for

more details.

Definition 2.7.1 Fourier Mode. Given v(0) = (v0
1, . . . , v

0
n). The fourier mode of v0

i

is given by

v0
i = sin

( ikπ
n

)
where 0 ≤ i ≤ n and 1 ≤ k ≤ n − 1. The integer k represents the wave number of
frequency of v(0). We can observe that a small k yields a vector v(0) with few oscillations
along one dimensional grid while a large k yields a highly oscillatory v(0).

2.7.1 The Basic Principles of Multigrid

These methods are based on two principles, the smoothing principle and the coarsening

principle. The relaxation or iterative methods discussed in the previous section have a

strong smoothing effect on the error. The schemes are effective at removing the high

order oscillatory Fourier modes of the error. That does not mean the error becomes

small, it just become smooth. The coarsening principle states that smooth error terms

have a good approximation on a coarse grid. In the coarse grid, the computation is far

less expensive than a fine grid computation. The Nyquist-Shannon sampling theorem

stated that only low frequency components of fine grid errors are represented properly

on a coarser grid. Consider a linear system

Au = f .
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Let v be an approximation to the solution u, then the error is defined as

e = u− v

and the residual is given by

r = f −Av = Ae.

After a relaxation or smoothing step on the fine grid, the error become smooths and the

residual equation will be approximated on the coarse grid. The matrix A is replaced

by a simpler approximation Â on the coarse grid. So, the basic idea is to smooth the

error on the fine grid, transfer the remaining error to the coarser grid, smooth the error

there and repeat the process again. The components for multigrid methods are

• Smoother or relaxation strategy:

If A is replaced by D − L− U , we have the Jacobi method and if we use v(k) =

(D − L)−1Uv(k−1) + (D − L)−1f , we have the Gauss Seidel method.

• Coarsening strategy:

Consider Ωh with grid spacing (h, k) as the fine grid. We will construct a coarse

grid ΩH with grid spacing (H,K) for the grid Ωh. A typical standard coarsening

is to double the spacing i.e H = 2h,K = 2k. If Ωh has (n + 1) × (m + 1) grid

points including boundary points then ΩH=2h will have (n2 + 1) × (m2 + 1) grid

points including the boundary points. The coarse grid will be a subset of the fine

grid. Figure 2.6 illustrates standard coarsening for vertex-centred discretisation

points.

• Coarse grid operator:

Let Ah be the matrix operator on Ωh. If AH is just the original operator A dis-

cretised on ΩH , then the method is called the discretisation coarse grid approx-

imation (DCA). An alternative would be the Galerkin operator IHh AhI
h
H where

IHh is the restriction operator and IhH is the interpolation operator.

• Restriction operator (transfer operator from the fine to coarse grid):

vH=2h = IH=2h
h vh.

There are three standard restriction operators: injection, half weighting and full

weighting. For the injection operator, we have

vH=2h
i,j = vh2i,2j .

Meanwhile, we have

vH=2h
i,j =

1

8

[
vh2i,2j−1 + vh2i,2j+1 + vh2i−1,2j + vh2i+1,2j + vh2i,2j

]
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(b) Standard coarsening in x1-
direction.
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(c) Standard coarsening in x2-
direction.
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(d) Coarse grid.

Figure 2.6: Illustration of the standard coarsening strategy. The fine grid in (a) has
9 × 9 discretisation points. An example of semi-coarsening where the coarse grid in
(b) is obtained by doubling the mesh size in the x1-direction. In (c), we obtained the
coarse grid by doubling the mesh size in the x2-direction. Finally, the coarse grid (d)
is constructed using these standard procedures.

for the half weighting operator and

vH=2h
i,j =

1

16

[
vh2i−1,2j−1 + vh2i−1,2j+1 + vh2i+1,2j−1 + vh2i+1,2j+1+

2
(
vh2i,2j−1 + vh2i,2j+1 + vh2i−1,2j + vh2i+1,2j

)
+ 4vh2i,2j

]
for the full weighting operator.

• Interpolation operator (transfer operator from the coarse grid to the fine grid):

In multigrid theory, there is a rule that the sum of the orders of the restriction

and interpolation operator should be larger than the order of the differential

operator [90]. An interpolation operator has interpolation order b if it preserves a

polynomial of order b−1. The most commonly used interpolation or prolongation

operator is the bilinear operator

vh = IhH=2hvH=2h
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(c) Full weighting operator.

Figure 2.7: Illustration of the restriction operators. (a) is the injection operator, (b)
is the half weighting operator and (c) is the full weighting operator for vertex-centred
discretisation. The points in circles are the active points used to obtain the coarse
points in black circles for each operator.

where
vh2i,2j = v2h

i,j

vh2i+1,2j =
1

2
(v2h
i,j + v2h

i+1,j)

vh2i,2j+1 =
1

2
(v2h
i,j + v2h

i,j+1)

vh2i+1,2j+1 =
1

4

(
v2h
i,j + v2h

i+1,j + v2h
i,j+1 + v2h

i+1,j+1

)
.

The coarse grid point that coincides with the fine grid point is left unchanged,

and the surrounding fine grid points receive a contribution depending on the

neighbourhood relation. This operator is the adjoint operator to the full weighting

operator. We can also represent the bilinear operator using stencil notation as

follows:

IhH=2h =

] 1
4

1
2

1
4

1
2 1 1

2
1
4

1
2

1
4

[h
2h=H

.
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Figure 2.8: Illustration of bilinear operator from the coarse grid to the fine grid. The
coarse point in black circles are used to obtain the nine fine points surrounding it.

• Cycle types:

The common multigrid cycles are V-cycle and W-cycle shown in Figure 2.9.
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Figure 2.9: Illustration of multigrid cycles with three levels of grid. Left is the V-cycle
and on the right is the W-cycle. The white circles denote the coarsest grid, \ and /
denote the restriction and interpolation steps, respectively.

The components for multigrid are chosen based on the problem to be solved. Each

component can be tailored to the specific need to ensure the convergence of the method.

2.7.2 Two Grid Cycle

Let u
(k)
h be an approximation to the solution uh of the discrete elliptic boundary problem

Ahuh = fh. The error is

e
(k)
h = uh − u

(k)
h

and the defect or residual is given by

r
(k)
h = fh −Ahu

(k)
h .

The defect equation

Ahe
(k)
h = r

(k)
h (2.46)

is equivalent to the original problem. Define an iteration

u
(k+1)
h = u

(k)
h + ê

(k)
h

by replacing Ah in equation (2.46) by Âh and where ê
(k)
h is the solution for Âhê

(k)
h = r̂h.

At the coarse grid, Ah is approximated by AH where H > h. Then the defect becomes

ÂH ê
(k)
H = r

(k)
H .

As mentioned before, we need the restriction and interpolation operator to transfer the

residual using

r
(k)
H = IHh r

(k)
h , and r̂

(k)
h = IhH r̂

(k)
H .

Algorithm 2 outlines all steps in two grid cycles. The multigrid cycle is an application

of the two grid cycle recursively.

2.7.3 Multilevel Framework

One of the variants of the multigrid methods is the multilevel framework where the

procedure starts with restricting the problem to the several levels of the grid until the
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Algorithm 2 Two Grid Cycle

u
(k+1)
h ← TwoGridCycle(Ah, fh, u

(k)
h )

1. Compute the defect r
(k)
h ← fh −Ahu

(k)
h .

2. H ← 2h.

3. Restrict the defect d
(k)
H ← IHh r

(k)
h .

4. Solve on ΩH , ê
(k)
H ← A−1

H r
(k)
H .

5. Interpolate the coarse grid correction ê
(k)
h ← IhH ê

(k)
H .

6. Update the solution u
(k+1)
h = u

(k)
h + ê

(k)
h .

minimum level or the coarsest level is reached. At the coarsest level, the solution is

found using iterative or direct methods. Then the solution is prolonged to the next fine

level until the finest level. The procedure is illustrated in Algorithm 3. The multilevel

approach here is comparable to the full multigrid method (FMG) known from multigrid

applications. See [13, 90] and the references therein for more details.

Algorithm 3 Multilevel Framework

u∗h ← MultilevelFramework(Ah, fh, u
(0)
h , l)

1. If l = minlevel then
solve on the coarsest level u∗hl ← A−1

h fh.

2. Else

(a) h← 2lh.

(b) MultilevelFramework(Ah, fh, uhl−1
, l)

(c) uhl ← Interpolate(uhl−1
)

3. End if.
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Chapter 3

Mathematical Models for Image
Registration and Segmentation

In this chapter, a review of mathematical models for image registration will be pre-

sented. We begin with the general idea of image registration models and two similarity

measures for quantifying the differences between images. We then review several models

for parametric and non-parametric image registration. We also introduce two solution

schemes to solve the minimisation problems arising from image registration. Interpo-

lation methods also play an important role in image registration. Thus, we discuss

several techniques for interpolation. We briefly introduce image segmentation models

which are useful to know for Chapter 7.

3.1 Introduction

Image registration is one of the fundamental tasks of medical imaging. After twenty

years of development in medical image analysis, image registration is the key sanctioning

technology in this particular area [43]. The broad range of imaging modalities such

as Magnetic Resonance Imaging (MRI), Computer Tomography (CT), and Positron

Emission Tomography (PET) is the main reason for the rapid improvement in image

registration allowing for information from different modalities to be compared, analysed

and combined [36].

Image registration is the process of establishing correspondences of the features

between images acquired from the same patient known as intra-subject registration

or from different patients known as inter-subject registration. In the first case, the

same patient will undergo the scanning process before treatment (pre-treatment) and

after treatment (post-treatment) using the same imaging modality (mono-modality) or

different imaging modalities (multi-modality) [81]. Such correspondences can be used

to transform one particular image so that its appearance becomes similar to its pair.

Given this transformation, this pair of images can then be used for further medical

tasks such as automatic segmentation, treatment planning and radiation therapy.

For the second case, several individuals from the same or different populations
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will undergo scanning using a particular imaging machine. The data set obtained

will be used to study anatomical variability across populations where the images of

the different subjects are used to characterise the differences between individuals in

a certain population or the differences between an individual and a reference image

[81]. The most natural application of registration is to correct the patient’s movements

during scanning. For example, in MR mammography for the detection of breast cancer,

patients will undergo scanning before and after injection of a contrast agent that is used

to distinguish between normal and abnormal tissues. However, as mentioned before, it

is not only limited to correcting the patient’s motion.

3.1.1 Image Registration Model

Image registration is the process of finding a geometric transformation between two

images known as the reference R and template T . Two main ingredients are combined

in order to compute a transformation which matches the given images. First, there must

be a measure of the image similarity to calculate how much these two images are equal.

Second, there must be a measure of the regularity of the transformation. The second

term also known as the regularisation or penalty, is used to include prior knowledge of

the transformation and mathematically transforms the registration problem to a well-

posed one. Typically, the problem is modelled as a minimisation problem of an energy

functional which consists of a weighted sum of these two measures. We can write the

problem as

min
ϕ

{
J (T,R,ϕ) = D(T,R,ϕ) + γS(ϕ)

}
(3.1)

where T,R are the given images, D is the similarity measure, S is the smoothness term

and ϕ is the transformation which we are aiming to find. γ > 0 is the regularisation

parameter which measures the trade-off between the similarity and smoothness terms.

A common similarity measure in mono-modal image registration, where the intensity

values of the images T and R are comparable, is the sum of the squared difference

(SSD). This particular distance measure assumes that images are identical at registra-

tion except for noise [20]. It is given by the L2 norm of the difference between T and

R as follows

DSSD(T,R,ϕ(x)) =
1

2

∫
Ω

(T (ϕ(x))−R(x))2 dΩ. (3.2)

The functional D is defined on a function space χ where χ is usually a Hilbert space.

χ is equipped with the scalar product

< ϕ,ψ >χ=

∫
Ω
ϕ ·ψ dΩ =

∫
Ω
< ϕ,ψ >Rd dΩ

where < ·, · >Rd is the Euclidean scalar product.

For multi-modal image registration, where images are acquired from different imag-

ing machines, a well known similarity measure is the mutual information (MI) measure

[96] which assumes only a probabilistic relationship between pixels or voxels in the
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images. The term is given by

DMI(T (ϕ(x)), R) = H(T (ϕ(x))) +H(R)−H(T (ϕ(x)), R) (3.3)

where H(T (ϕ(x))) and H(R) are defined as the individual entropies for T and R

respectively and H(T (ϕ(x)), R) is the joint entropy of T and R.

The transformation model in image registration refers to the way in which the im-

ages are transformed. There exist many image registration methods and different ways

of classifying them. In [65], the authors have suggested a nine dimensional scheme to

categorise them. Following the classification of deformation models given by [45] for

geometric transformation in terms of parameters, registration methods can be cate-

gorised as either parametric or non-parametric [67]. The first type of model consists

of only a few parameters. For example, in rigid registration there are three global

parameters for 2D images which describe translation and rotation. For the second

category, which originate from physical models such as diffusion [88], elastic [6] and

curvature [24] registration, the search space is much larger where the process of finding

the transformation involves every pixel or voxel which is very expensive in terms of the

computational cost. For example, there are 2× 5122 = 524288 unknowns to determine

for a typical CT slice of size 512× 512 pixels which correspond to an element of about

0.5× 0.5mm2 in area and nowadays many images are acquired directly as 3D volumes

[36]. Even though there is still a finite number of parameters, this particular category

aims to find a smooth transformation rather than a set of parameters.

The optimisation procedure is used to find the best possible transformation and

should be quick and reliable. There exist some standard methods of finding the param-

eters in order to have an optimal objective function, for instance the gradient descent

and the conjugate gradient methods. For non-parametric image registration, the min-

imiser is often described in terms of partial differential equations (PDEs). It should be

noted that choosing an optimisation scheme is problem-dependent.

3.1.2 Mathematical Setting

An image I is considered as a compactly supported function which maps a domain

Ω into a set of real numbers V ⊂ R+
0 . The domain Ω is a subset of Rd where d

is the dimensionality of the data with smooth boundary ∂Ω. Practically, in many

real applications, mainly medical imaging, we have d = 3. However, throughout this

chapter, d = 2 but with some extra work it can be extended to d = 3. Usually,

I is a set of measurements obtained by the integration of some density field over a

finite area Ω. In this thesis, images are limited to scalar or grey intensity images.

Digital images are the discrete setting for the continuous image I. The domain Ω is

subdivided into cells with certain height (h2) and width (h1) which are called pixels or

picture elements. For each pixel, an intensity value or grey level is assigned. We use

Ω = (0, 1)2 or Ω = (0, N1) × (0, N2) to denote the spatial domain where N1 and N2
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are coordinates on the x1 and x2 axes respectively. We use the left handed coordinate

system where x = (x1, x2)T and rearrange the 2-dimensional array as long vectors using

lexicographical ordering. In summary,

I : R2 → V,Ω = (0, N1)× (0, N2),x = (x1, x2)T ,

I(x) = R+
0 ∀x ∈ Ω, if x 6∈ Ω, I(x) = 0.

In registration, we are given two images denoted as the reference R and template

T . The image R is kept unchanged in the process and we will transform the image T

so that it appears similar to R. The transformation is denoted by

ϕ = ϕ(x) : Ω→ Rd.

The transformation ϕ can be expressed as

ϕ(x) = x+ u(x) (3.4)

where u(x) denotes the displacement field. The transformed template image is denoted

by

T ◦ϕ(x) = T (ϕ(x)) = T (x+ u(x)).

After the corresponding location ϕ(x) is calculated for each spatial location x ∈ Ω, an

interpolation step is required to assign the intensity values for the transformed template

T (x+ u(x)) at non-grid locations.

We exploit the Eulerian frame for the transformation instead of the Lagrange frame

as is commonly done in image registration [68, 67]. We make the assumption that the

transformation is invertible in the Eulerian frame. Assume the template image T is the

deformed version of the reference image R through the transformation φ

R
φ−→ T.

Then, for any x̃ ∈ R and x̂ ∈ T , x̂ = φ(x̃), or equivalently we can write x̃ = φ−1(x̂).

Letting the transformation ϕ(x) be given as ϕ(x) = φ−1(x), we can write ϕ(x) as

ϕ(x) = x+ u(x) as before and write

ϕ−1(x) = x− u(x) = φ(x).

where ϕ−1(x) is the inverse transformation. In the literature, we can see that the

definition of ϕ(x) is interchangeably used with x+u(x) and x−u(x). An illustration

of the image registration problem is given in Figure 3.1 where we want to register a

square to a circle. The resulting transformation ϕ and the transformed template image

T (ϕ(x)) are the output for the given images R and T .
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(c) Difference before registra-
tion T −R.
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(d) Transformed template
T (ϕ(x)).
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(e) Transformation ϕ(x) is ap-
plied to a regular grid.
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(f) Difference after registration
T (ϕ)−R.

Figure 3.1: Illustration of an image registration problem. Reference and template
images are given in (a) and (b) respectively. The difference before registration is given
in (c) and (d) is the transformed template image using the transformation in (e). (f)
is the difference image after registration and we can observe that the difference image
is reduced after registration. Notice that the transformed template image looks similar
to the reference image after registration.

3.1.3 Variational Formulation of Image Registration

There exist many approaches to tackling issues in image registration, such as statistical

methods, but our concern is with the variational approach which has been shown to

provide good results as well as interesting mathematical problems. Referring to equa-

tion (3.4), the transformation is expressed in terms of the displacement field u(x) where

finding ϕ(x) is equivalent to finding u(x). u(x) is sought over an admissible Hilbert

space χ. The joint functional can be written as in (3.1) or equivalently as

min
u(x)∈χ

{
J (T,R,u(x)) = D(T,R,u(x)) + γS(u(x))

}
. (3.5)

A necessary condition for a minimiser u(x) of J is the vanishing of the Gâteaux

derivative of J for all variational directions v(x) ∈ χ, i.e

δJ (u;v) = lim
ε→0

J (u+ εv)− J (u)

ε
=

d

dε
J (u+ εv)

∣∣∣
ε=0

= 0.
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Since,

δJ (u;v) =< ∇uJ ,v >χ

where ∇uJ is the gradient of the functional J . The necessary condition is given by

∇uJ = 0, (3.6)

also known as the Euler-Lagrange equation for the minimisation problem in (3.5), which

can be computed easily when both terms D and S are known.

For two given mono-modal images T and R, the Gâteaux derivative for the term

DSSD(T,R,u(x)) is given by:

f(u) = (f1(u(x)), f2(u(x)))T = (T (x+ u(x))−R(x))∇uT (x+ u(x)) (3.7)

where

∇uT (x+ u(x)) = [∂u1T (x+ u(x)), ∂u2T (x+ u(x))]T .

f is called the force term throughout this thesis. For the general smoothness term S,

which will be discussed later, we can write the Gâteaux derivative of S

δS(u;v) =

∫
Ω
< A(u),v >Rd dΩ

where A is a partial differential operator associated with the smoothness term S. Using

Gauss’ theorem and the fundamental lemma of the calculus of variations, we have

γA(u) + f = 0, x ∈ Ω. (3.8)

From the derivation of the Gâteaux derivative of S, the boundary conditions for equa-

tion (3.8) come from the vanishing of the line integral on the boundary ∂Ω which

are depending on the regularisation term S. We can see that the tasks of finding a

minimiser u of J and solving the Euler-Lagrange equation in (3.8) are equivalent.

3.2 Similarity Measures

Given images T and R of size N1 ×N2, let

T = {ti, i = 1, ..., N1N2} and R = {ri, i = 1, ..., N1N2}

denote the intensity values for R and T . The similarity or dissimilarity term is a

measure that quantifies the dependency or interdependency between the two sequences

[32]. We will discuss two measures for mono-modality image registration.

3.2.1 Sum of the Squared Difference (SSD)

The SSD is the simplest distance measure for images coming from the same imaging

machine and is given in equation (3.2). It is the optimum measure when two images
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only differ by Gaussian noise [96]. The SSD measure is widely used in MRI and is

very sensitive to a small number of pixels which have very large intensity differences

for images T and R. For example, when patients are scanned before and after injection

of the contrast agent, the intensity values for the same object in R and T are no longer

equal. One of the remedies is to use the sum of the absolute difference (SAD) defined

as follows:

DSAD(T,R,ϕ) =

∫
Ω
|T (ϕ(x))−R(x)| dΩ.

3.2.2 Cross Correlation (CC)

If we assume a linear relationship between the intensity values of R and T such that

λT (ϕ(x)) = µR(x)

where λ and µ are two scalars, the optimum similarity measure is the normalised cross

correlation (NCC)

DNCC(T,R,ϕ) =
< T (ϕ(x)), R(x) >

‖T (ϕ(x))‖‖R(x)‖
where

< T (ϕ(x)), R(x) >=

∫
Ω
T (ϕ(x))R(x) dΩ,

‖T (ϕ(x))‖ =
√
< T (ϕ(x)), T (ϕ(x)) >

and similarly for ‖R(x)‖.

3.3 Parametric Image Registration

There are two ways to introduce regularisation into image registration. First, using a

small number of parameters where the parameters follow a specified model. Second,

using a smoothness or regularisation term S(ϕ(x)). We note that, in the first method,

we still can have a smoothness measure for the parameters. In this section, we will

review three basic parametric models which are the so-called rigid, affine and projective

models. In medical imaging, bones usually undergo rigid deformation and soft tissues

are deformed non-rigidly during the scanning process.

3.3.1 Rigid Transformation

Rigid transformation is the simplest model which allows only rotation and translation.

It can be expressed as:

ϕ(x) =

[
ϕ1(x)

ϕ2(x)

]
=

[
cos θ sin θ

sin θ − cos θ

][
x1

x2

]
+

[
b1

b2

]
= Ax+ b (3.9)

where θ is the rotation angle and b is the translation vector.
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3.3.2 Affine Transformation

The transformation is given by:

ϕ(x) =

[
ϕ1(x)

ϕ2(x)

]
=

[
a11 a12

a21 a22

][
x1

x2

]
+

[
b1

b2

]
= Ax+ b. (3.10)

The model allows for rotation, scaling, shearing and translation. Since there are only

6 parameters for 2D images, the model is much faster than nonlinear variational mod-

els. It is the most popular method for pre-registration in clinical applications. The

coefficient matrix A represents a combination of rotation, scaling and shearing via[
a11 a12

a21 a22

]
=

[
cos θ sin θ

sin θ − cos θ

][
cx1 0

0 cx2

][
sx1 1

1 sx2

]

where θ, cx1 , cx2 , sx1 , and sx2 are the parameters for rotation, scaling and shearing in

x1 and x2 direction respectively. The vector b represents translation in the x1 and x2

directions. See Figure 3.2 for an example of the affine transformation of a given image

I.
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(f) Shearing

Figure 3.2: Illustration of translation, rotation, scaling, shearing and projective trans-
formation for the image I.
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3.3.3 Projective Transformation

Projective transformation maps lines onto lines and does not preserved parallelism

between lines. The transformation consists of eight parameters and is defined by ϕ1(x)

ϕ2(x)

1

 =

 a11 a12 a13

a21 a22 a23

a31 a32 1


 x1

x2

1

 .
3.4 Non-parametric Image Registration

We now introduce the non-parametric image registration models based on variational or

energy minimisation techniques. The non-parametric image registration method takes

the form

min
u(x)

{
Jγ(u(x)) = D(T,R,u(x)) + γS(u(x))

}
, (3.11)

where the choice of regulariser S(u) differentiates different models. γ ∈ R>0 is known

as the regularisation parameter and measures the trade-off between the fitting term D
and regularisation term S. There exists a large amount of literature regarding non-

parametric models such as in elastic [6, 2, 29, 67], fluid flow [15, 14], and diffusion

[23, 88, 74]. To complete the variational formulation (3.11), we now specify the two

terms.

Firstly, given two mono-modal images R, T , the SSD fitting term D is given by equa-

tion (3.2). The gradient of (3.2) with respect to the deformation u is given by equation

(3.7). The force term f(u) is nonlinear. Secondly, adopting different regularisers for the

second term S(u(x)) will lead to different non-parametric image registration models.

In this section, variational models with several regularisation terms are briefly re-

viewed.

3.4.1 Linear Elastic Image Registration

Linear elastic image registration is based on the linearised elastic potential u. It is

the most popular choice due to the physical property of the model. The regularisation

term for linear elastic [6, 2, 29, 67] is

SLE(u) =

∫
Ω

µ

4

2∑
l,m=1

(∂xlum + ∂xmul)
2 +

λ

2
(div u)2 dΩ

where µ and λ are the Lame constants, µ is the shear modulus that refers to the rigidity

that estimates the stiffness of the material and λ is related to the bulk modulus. The

Euler-Lagrange equation for (3.11) with SLE as the regularisation term is the Navier

Lame equation:

−γ(µ∇2u+ (µ+ λ)∇div u) + f(u) = 0
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which is a second order nonlinear PDE with boundary conditions as follows:

∇ · u = 0, (∇ul + ∂xlu) · n = 0, l = 1, 2

where n denotes the outward unit normal vector on the boundary ∂Ω. The boundary

conditions are replaced with Dirichlet or Neumann boundary conditions because images

have a uniform background and objects inside the images are far from the boundary

[67]. This variational model allows small deformation and penalises affine linear trans-

formation.

3.4.2 Nonlinear Elastic Image Registration

The regularisation term for nonlinear elastic image registration [105, 106, 62] is

SNLE(u) =

∫
Ω

λ

8

(
2(divu) +

2∑
k=1

|∇uk|2
)2

+
µ

4

 2∑
i=1

[
2
∂ui
∂xi

+
2∑

k=1

(
∂uk
∂xi

)2
]2

+
2∑

i,j=1,i 6=j

[
∂uj
∂xi

+
∂ui
∂xj

+
2∑

k=1

∂uk
∂xi

∂uk
∂xj

]2
 dΩ

where λ and µ are Lame constants. The model is known to recover large deformation

provided that the re-gridding step in [15] is incorporated.

3.4.3 Hyperelastic Energy for Image Registration

The term is given by

SHyper(u) =

∫
Ω
α1length(u) + α2surface(u) + α3volume(u) dΩ

where αi > 0, i = 1, 2, 3 are some parameters and

length(u) =

((
∂u1

∂x1
− 1

)2

+

(
∂u1

∂x2

)2

+

(
∂u2

∂x1

)2

+

(
∂u2

∂x2
− 1

)2
)
,

surface(u) =

max

{(
∂u2

∂x2

)2

+

(
∂u2

∂x1

)2

+

(
∂u1

∂x1

)2

+

(
∂u1

∂x2

)2

− 3, 0

}2

− 3

2

,

volume(u) =


(
∂u1
∂x1

∂u2
∂x2
− ∂u1

∂x2
∂u2
∂x1
− 1
)2

∂u1
∂x1

∂u2
∂x2
− ∂u1

∂x2
∂u2
∂x1


2

.

See [7] for more details.
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3.4.4 Fluid Registration

The class of deformation models based on motion can be classified into fluid flow and

optical flow. Fluid flow registration is based on the spatial smoothing of the velocity v

where

v(x, t) =
∂u(x, t)

∂t
.

Fluid flow registration is related to linear elastic registration via

Sfluid(v(x, t)) = SLE(v(x, t)).

Thus, the Euler-Lagrange equation for (3.11) with Sfluid as the regularisation term is

given by:

−γ [µ∆v + (µ+ λ)∇ div v] + f(u) = 0.

From the material derivative, we have

v(x, t) =
d

dt
u(x, t)

where d
dt denotes the total derivative. Using the chain rule formula, we have

v(x, t) = ∇u(x, t)
∂u

∂t
+
∂u(x, t)

∂t
.

Thus,

v(x, t) = ∇u(x, t)v(x, t) +
∂u(x, t)

∂t
. (3.12)

In comparison with linear elastic registration, we have an additional Euler step for the

fluid model where we have to solve for u using equation (3.12). The main advantage of

fluid flow registration is its ability to recover large deformation. Other regularisation

terms such as diffusion and linear curvature can exploit this advantage to recover large

deformation. In [67], the authors showed that diffusion registration to a fluid type

formulation is able to improve the original diffusion model.

3.4.5 Demon Registration

Thirion [88], introduced the so-called demon registration where every pixel in the image

acts as the image entities or demons that exert a pulling or pushing action in a similar

way to that which Maxwell used for solving the Gibbs paradox in thermodynamics.

Demon registration is based on the pixel velocities caused by edge based forces which

are inspired from the optical flow equations. However, during this time, the theoretical

basis underlying the demon algorithm is not fully understood. Thus, the method is

somehow based on an ad hoc idea in image registration. Later, several authors [74, 53,

93, 95, 11, 67], provided a strong justification and a better understanding of the demon
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algorithm. The displacement field u(x) for demon registration can be written as

u(x) =
T (x+ u(x))−R(x)

‖∇R(x)‖2R2 + (T (x+ u(x))−R(x))2
∇R(x). (3.13)

In [67], the author provided the variational formulation for the demon algorithm. To

adjust the force strength, the normalisation factor γ is proposed in [9] as follows:

u(x) =
T (x+ u(x))−R(x)

‖∇R(x)‖2R2 + γ(T (x+ u(x))−R(x))2
∇R(x).

As we can see from equation (3.13), the internal forces come from the edges of the

reference image R. To increase the speed of convergence, the image forces from the

transformed template T (x+ u(x)) are added as proposed in [100] as follows:

u(x) =
T (x+ u(x))−R(x)

‖∇R(x)‖2R2 + γ(T (x+ u(x))−R(x))2
∇T (x+ u(x))

+
T (x+ u(x))−R(x)

‖∇R(x)‖2R2 + γ(T (x+ u(x))−R(x))2
∇R(x).

3.4.6 Diffusion Image Registration

Diffusion image registration is the simplest choice of S which is based on the L2 norm

of the gradient of the displacement field u(x). The regularisation term for diffusion

image registration is given by [23, 88, 74]:

Sdiff(u) =
1

2

∫
Ω
|∇u1|2 + |∇u2|2 dΩ.

The Euler-Lagrange equation for (3.11) with Sdiff as the regularisation term is given

by:

−γ∆u+ f(u) = 0

with Neumann boundary conditions ∇ul ·n = 0, l = 1, 2 where n denotes the outward

unit normal vector on the boundary ∂Ω. The model can be solved efficiently using the

additive operator splitting (AOS) method [67]. The model can be seen as a special case

of the linear elastic model when µ = 1 and λ = −1. It is well known as the classical

method of Horn and Schunck [48] for optical flow computation.

3.4.7 Total Variation Image Registration

Total variation image registration is based on the TV semi-norm of ∇ul, l = 1, 2. The

model [47, 78, 28] is given by

STV(u) =
2∑
l=1

∫
Ω

√
u2
lx1

+ u2
lx2

+ β dΩ.
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The Euler-Lagrange equation for (3.11) with STV as the regularisation term is:

−γ∇ · ∇ul
|∇ul|β

+ fl(u) = 0, l = 1, 2,

with Neumann boundary conditions ∇ul ·n = 0, l = 1, 2 and where β is a real number

used to avoid division by zero. The model is useful to preserve discontinuities of the

deformation field via preserving the piecewise constant smoothness of the deformation

field. However, the model is not suitable for registration problems where smoothness

is the main concern.

Elastic, diffusion and total variation regularisation are first order based models

which penalise rigid displacement. Therefore, affine or rigid pre-registration needs to

be included in the pre-registration step before applying the respective image regis-

tration models. Fischer and Modersitzki in [25, 26, 67, 24] proposed a second order

regularisation term to overcome this problem. It was later refined by Henn and Witsch

in [38, 39, 40] and Chumchob, Chen and Brito in [19, 18].

3.4.8 Fischer and Modersitzki’s Linear Curvature

The first second order regularisation term [25, 26, 67, 24] for image registration is

SFMC(u) =

∫
Ω

[
(∆u1)2 + (∆u2)2

]
dΩ. (3.14)

This term is an approximation of the surface curvature κ(ul) where

κ(ul) = ∇ · ∇ul√
|∇ul|2 + 1

.

When |∇ul| ≈ 0, we have κ(ul) = ∆ul. The Euler-Lagrange equation for (3.11) with

SFMC as the regularisation term is given by:

γ∆2u+ f(u) = 0 (3.15)

with boundary conditions ∆ul = 0,∇∆ul · n = 0, l = 1, 2. The boundary conditions

are replaced by the boundary conditions ∇ul · n = ∇∆ul · n = 0, l = 1, 2 for ease

of implementation. Since the model requires smoothness in terms of second order

derivatives, the model leads to smoother deformation compared to the models of first

order. In addition, it does not require affine linear pre-registration since the affine

kernel is included in the model.

3.4.9 Henn and Witsch’s Curvature

The SFMC model was later refined by Henn and Witsch [38, 39, 40] where they proposed:

SHWC(u) =
1

2

2∑
l=1

∫
Ω

[
(∆ul)

2 − 2(ulx1x1ulx2x2 − u
2
lx1x2

)
]

dΩ. (3.16)
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The minimisation problem (3.11) with SHWC as the regularisation term leads to the

same Euler-Lagrange equation (6.14) subject to the boundary conditions

B1(ul) =
∂

∂n
∆ul +

∂

∂s
K(ul) = 0, B2(ul) =

∂2ul
∂n2

= 0

where K(ul) = ∂2ul
∂x1∂x2

(n2
1 − n2

2), and s is the tangential direction of the unit vector of

the outward normal vector n = (n1, n2). The model is based on an approximation to

the sum of the squares of principle curvatures κ1(ul) and κ2(ul). We have,

κ2
1(ul) + κ2

2(ul) = (κ1(ul) + κ2(ul))
2 − 2κ2

1(ul)κ
2
2(ul)

= κ2
MC(ul)− 2κGC(ul)

=

(
∇ ·

(
∇ul√

1 + |∇ul|2

))2

− 2

(
ulx1x1ulx2x2 − u

2
lx1x2

(1 + |∇ul|2)2

) (3.17)

where κMC and κGC are the mean and Gaussian curvatures for surface ul(x). When

∇ul ≈ 0, equation (3.17) can be written as

κ2
1(ul) + κ2

2(ul) ≈ (∆ul)
2 − 2

(
ulx1x1ulx2x2 − u

2
lx1x2

)
.

3.4.10 Mean Curvature

The previous two second order regularisation terms use an approximation to the surface

curvature. Chumchob, Chen and Brito in [19, 18] proposed a full curvature model using:

SMC(u) =

∫
Ω

[
k(κ(u1)) + k(κ(u2))

]
dΩ

where k(s) = 1
2s

2 and

κ(ul) = ∇ · ∇ul
|∇ul|β

= ∇ · ∇ul√
|∇ul|2 + β

.

The Euler-Lagrange equation for (3.11) with SMC as the regularisation term is given

by:

γ∇ ·
( 1

|∇ul|β
∇k′(κ(ul))−

∇ul · ∇k′(κ(ul))

(|∇ul|β)3
∇ul

)
+ fl(u) = 0, l = 1, 2

with boundary conditions ∇ul · n = ∇κ(ul) · n = 0, l = 1, 2.

3.5 General Solution Schemes

There are two ways to solve minimisation problem (3.1) or (3.5). Either we use the

so-called discretise then optimise approach or optimise then discretise. For the first

method, the minimisation problem is discretised in the discretisation domain and then

the problem is solved using any optimisation technique such as steepest descent or the

Newton method. For the second method, the minimisation problem is solved using the
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Euler-Lagrange equations which are computed in the continuous domain. The discrete

version of the Euler-Lagrange equations are solved using a method of our choice such

as parabolic or elliptic schemes.

Image registration problem in (3.1) is solve numerically using finite difference method

with a uniform mesh. However, it is possible to use finite element or finite volume to

solve the problem with a non-uniform mesh. The resulting transformation is highly

dependent on the discretisation of the minimisation problem in (3.1) or the resulting

Euler-Lagrange equations. For a uniform mesh, the grid spacing in x1 direction, h1 is

equal to the grid spacing in x2, h2; i.e. h1 = h2 and will be denoted as h. Larger h,

for example h = 4 will produce a rough alignment between the reference and template

images because only a few points involves. For a smaller h, for example h = 1, we

get a better alignment because we are able to capture locally fine details. However,

for a very small h, for example h = 0.5, the computational cost increases, making the

model less robust. In this thesis, we take h = 1 that balances between robustness and

accuracy of the problem in (3.1).

3.5.1 Discretise then Optimise

Consider the discrete version of equation (3.1)

min
ϕ
J h(T,R,ϕ) = Dh(T,R,ϕ) + γSh(ϕ).

The Taylor expansion of J h around the current approximation ϕ(k), k ∈ N is given by

J h(T,R,ϕ(k) + δϕ(k)) = J h(T,R,ϕ(k)) + J(ϕ(k))δϕ(k)

+
1

2
(δϕ(k))TH(ϕ)δϕ(k)

where J and H are the Jacobian and Hessian of J h(T,R,ϕ) at ϕ(k) respectively. The

updated value for ϕ(k+1) is given by

ϕ(k+1) = ϕ(k) + α(k)δϕ(k)

where α(k) is the line search parameter used to guarantee the reduction of J . For the

Newton type method, the perturbation δϕ(k) is determined by solving the following

normal equation

H(ϕ(k))δϕ(k) = −J(ϕ(k)).

3.5.2 Optimise then Discretise

The main idea is to solve the Euler-Lagrange equation

f(x,ϕ) + γA(ϕ)(x) = 0 for all x ∈ Ω (3.18)
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with the appropriate boundary conditions. As mentioned before, the Euler-Lagrange

equation is the necessary condition for the minimiser of the joint functional J in equa-

tion (3.1). The force term f is the Gateaux derivative for the similarity measure

D(T,R,ϕ) and A(ϕ) is related to the regularisation term S(ϕ). One of the methods of

solving equation (3.18) is to exploit a fixed point iteration or elliptic scheme. Starting

with an initial guess ϕ(0), we define ϕ(k+1) implicitly by

A(ϕ(k+1))(x) = −f(x,ϕ(k)),

where k ∈ N. A parabolic approach for solving equation (3.1) is done by introducing

an artificial time variable t and determining the steady state solution of the following

scheme
ϕ(k+1) −ϕ(k)

τ
+ A(ϕ(k+1))(x) = −f(x,ϕ(k)). (3.19)

One of the drawbacks of using the time variable t is that the time step τ should be small

enough to guarantee the convergence of the iterative scheme. Based on the Courant-

Friedrichs-Lewy (CFL) condition, the time step should satisfy

τ < O

((
1

h

)4
)

where h is the step size in the discretisation of the differential operator using the finite

difference method. An additive operator splitting scheme (AOS) [67, 101] is faster and

more efficient than the implicit scheme (3.19). The basic idea is to replace the inverse

of the sum by a sum of inverses. We replace equation (3.19) by

ϕ(k+1) =
1

2

2∑
l=1

(I − 2τAl)
−1
(
ϕ(k) − τf(x,ϕ(k))

)
where Al denotes the corresponding coefficient matrix for A in the xl direction.

3.6 Interpolation Methods

Image registration aims to find an optimal transformation so that the template image

becomes similar to the given reference image. The reference image is defined before

discretisation of the problem. During the transformation of the template image T (ϕ),

points may fall outside of the discretisation points. Thus, interpolation methods are

required in order to assign the intensity values. Nearest neighbour is the simplest

method of interpolation followed by linear interpolation. Bilinear interpolation gives a

jagged effect to the image. On the other hand, cubic B-splines give better results.
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3.6.1 Nearest Neighbour Interpolation
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Figure 3.3: Illustration of nearest neighbour interpolation in a 1D problem.

Referring to Figure 3.3, we are given the values of the data points in blue where x =

{1, 3, 5, 7, 9, 11, 13} and y = {0, 0, 1, 4, 1, 0, 0} respectively. Based on nearest neighbour

interpolation, the values for y at non-integer points x in [1, 13] are the values of the

nearest integer x.

3.6.2 Linear Interpolation

Interpolation problems arise whenever one tries to construct a function p(x) from a

given function f(x) which approximates f(x). One of the solutions is to use polynomial

interpolation. A polynomial of order n is a function of the form

p(x) = a1 + a2x+ . . .+ anx
n−1 =

n∑
j=1

ajx
j−1.

For linear interpolation, we have n = 1 and

p(x) = a1 + a2x.

For any two given points (x0, y0) and (x1, y1) we have

a1 + a2x = y0 + (y1 − y0)
x− x0

x1 − x0

which approximates the values of p(x) = y for any x between x0 and x1 as illustrated

in Figure 3.4.
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Figure 3.4: Illustration of linear interpolation in a 1D problem.

3.6.3 Polynomial Interpolation
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Figure 3.5: Illustration of Runge phenomenon using higher order polynomial interpo-
lation.

Higher order polynomial interpolation can give us a smooth and higher order continuous

function at the edges of the interval, but it will suffer from Runge’s phenomenon where

oscillation occurs at the edges. This problem highlights that going to a higher degree

of polynomial interpolation does not always improve accuracy. To illustrate Runge’s

phenomenon [83, 89], consider f(x) = 1
1+x2

in the interval [−5, 5] and interpolate using

polynomials of degrees five and ten as shown in Figure 3.5. To ease the computation of

polynomial interpolation, one goes for a low order piecewise polynomial interpolation

such as cubic. We say p(x) is a piecewise polynomial of order n if the degree of p(x)

is less than n on each subintervals. For a given knot sequence, a n-th degree spline

function is a piecewise polynomial of degree n that is (n− 1) continuous at each knot.
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3.6.4 Spline Interpolation

To illustrate how spline interpolation works in function approximation, consider that

we want to construct the piecewise cubic polynomial interpolation as follows:

S(x) =


s1(x), if x1 ≤ x < x2;

s2(x), if x2 ≤ x < x3;
...

...

sn−1(x), if xn−1 ≤ x < xn.

(3.20)

We have to find

si(x) = ai(x− xi)3 + bi(x− xi)2 + ci(x− xi) + di, i = 1, 2, . . . , n− 1

using the following properties:

1. S(x) will be continuous on the interval [x1, xn].

2. S′(x) and S′′(x) will be continuous on the interval [x1, xn].

A similar idea can be extended to 2D using the tensor product but it is easier if we use

basis functions or B-splines. B-splines are built recursively from constant B-splines.

Though we are interpolating at n + 1 knots t0, . . . , tn, in order to derive B-splines we

need extra nodes outside [t0, tn] to build the basis. Thus we add extra knots on either

end as follows

. . . < t−2 < t−1 < t0, . . . < tn < tn+1 < . . . . (3.21)

Given these knots, we can define the constant B-spline

Bj,1 =

{
1, if tj ≤ x < tj+1;

0, otherwise.

For k > 1,

Bj,k = ωj,kBj,k−1 + (1− ωj+1,k)Bj+1,k−1

where

ωj,k(x) =
x− tj

tj+k+1 − tj
.

The basis functions for k = 1, 2, 3, 4 are given in Figure 3.6.
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(a) Constant k = 1 (b) Linear k = 2

(c) Quadratic k = 3 (d) Cubic k = 4

Figure 3.6: Illustration of basis functions for k = 1, 2, 3, 4.

The interpolation conditions give n + 1 equations that constrain the unknown co-

efficient cj,k in the expansion of Sk where

Sk(tj) =

j=∞∑
j=−∞

cj,kBj,k(tj).

The compact support of the B-splines immediately suggests that we set most of the

cj,k coefficients to zero, giving Sk as a finite sum. For k > 1, we are left with n+ k− 1

nontrivial cj,k variables to be determined from n + 1 interpolation conditions. The

coefficients cj,1 in the expansion of

S1(x) =

j=∞∑
j=−∞

cj,1Bj,1(x)

are completely determined by the interpolation requirement

S1(tj) = f(tj), for j = 0, 1, . . . , n.

Therefore we have

S1(x) =

n∑
j=0

fjBj,1(x).

57



The basis function can be used easily in higher order interpolation using the tensor

product.

Definition 3.6.1 Direct Matrix Product (Kronecker Product). Given two ma-
trices A ∈ Rn×m and B ∈ Rp×q, the elements of the direct matrix product C = A⊗B ∈
Rmp×nq are defined by

cα,β = ai,jbk,l where α = p(i− 1) + k, β = q(j − 1) + 1.

Alternatively, we can write

A⊗B =


a1,1B a1,2B . . . a1,nB
a2,1B a2,2B . . . a2,nB

...
...

. . .
...

am,1B am,2B . . . am,nB

 .

For example, if we wish to evaluate the spline w at the point (a, b) using

Bi,h,s(x)Bj,k,t(y),

this can be accomplished by factoring out appropriately,

w(a, b) =
∑
i

(∑
j

ci,jBj,k,t(b)
)
Bi,h,s(a) =

∑
j

(∑
i

ci,jBi,h,s(a)
)
Bj,k,t(b).

For a given knot sequence (σi, τj), i = 1, . . . ,m, j = 1, . . . , n, there is exactly one spline

function which agrees with w(σi, τj) of the given rectangular mesh. This interpolation

can be written in the following form

w(x, y) =
∑
i,j

ci,jBi,h,s(x)⊗Bj,k,t(y)

where

ci,j =
(
Bi,h,s(τj)

)−1
((w(σi, τj)))

(
Bj,k,t(τj)

)−1
.

3.7 Image Segmentation

Image segmentation is the process of dividing or grouping pixels of an image into

regions or categories. Each of the regions belongs to a different object or part of the

image which has the same characteristic based on intensity or texture. Every pixel in

the image is allocated to one of these categories for further processing and analysis.

For example, in a two phase image segmentation model, images are separated into

foreground and background to distinguish homogeneous objects. Image segmentation

has broad applications in medical image processing. As such, radiologists use image

segmentation to quantify size, location and region of the cancerous tissues.

In this section, a brief review of the Mumford-Shah [70] and Chan-Vese [12] models

for image segmentation will be given. These models will be useful to know for Chapter
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7 where we combine the task of registration and segmentation into one framework. For

an illustration of image segmentation we refer to Figure 3.7.
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(b) Binary Representation

Figure 3.7: Illustration of an image segmentation problem. (a) is the image to be
segmented because the image appears dark and the boundaries of the objects are not
clearly visible. (b) shows the binary representation of the image in (a) where white
pixels represent the edges of the object in (a).

3.7.1 Mumford-Shah Segmentation

Image segmentation is an ill-posed problem in the sense of Hadamard. In large number

of images, a unique solution to the segmentation problem does not exist. According

to [3], the solution of image segmentation problem is not unique because it is possible

to find different region or partition of an image at different level of analysis or de-

tail. Hence, the segmentation results depend on the image itself and on the particular

application.

There are two main approaches in image segmentation: the non-variational ap-

proach and the variational (energy based) approach. We are interested in the varia-

tional approach where the problem is formulated as an energy minimisation problem.

This approach is further classified into edge and region based models. In the edge

based model, the edge information is used to guide the active contour towards the ob-

ject boundary. Meanwhile, the region based models use image intensities to guide the

motion of the active contours.

Let Ω be a bounded domain in Rn and z(x) be a bounded measurable function

defined on Ω where z represents the given image. The Mumford and Shah [70] functional

is described by a pair (z,Γ) where Γ is a closed subset and z is a function belonging to

C1(Ω\Γ). The authors of [70] tried to approximate the given image z, by a piecewise

smooth function where they represent the problem as

min
Γ,c1,c2

{
JMS(Γ(x), c1, c2) = µlength(Γ(x)) + λ1

∫
inside(Γ)

|z(x)− c1|2 dx+

λ2

∫
outside(Γ)

|z(x)− c2|2 dx
} (3.22)
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where Γ is the edge set, c1 is the average of the intensities of the pixels inside the shape

defined by the contour Γ and c2 is the average of the intensities of the pixels outside the

shape defined by Γ. µ, λ1, λ2 are positive parameters where the first term in (3.22) aims

to minimise the length of the contour Γ so that the boundaries are as short and smooth

as possible. The second and third terms in (3.22) are the fitting terms to derive c1 and

c2 close to the average intensities of the inside and outside respectively of the shape

defined by Γ. Practically, the functional in (3.22) is not convex and difficult to minimise.

Chan and Vese [12] solved the functional in (3.22) using level set representation where

the image is modelled as a piecewise constant function.

3.7.2 Chan-Vese Segmentation Model

Chan and Vese [12] used the level set method [73] to solve the image segmentation

problem. The given image z is defined on a two dimensional domain Ω ∈ Rn. The

unknown curve Γ can be represented by the zero level set of a Lipschitz function [73]

φ : R2 → R, such that
Γ = ∂Ω1 = {(x, y) ∈ Ω|φ(x, y) = 0},
inside(Γ) = Ω1 = {(x, y) ∈ Ω|φ(x, y) > 0},
outside(Γ) = Ω2 = {(x, y) ∈ Ω|φ(x, y) < 0}.

Using the zero level set to represent Γ and introducing the Heaviside step function,

H(x), the problem in (3.22) is reformulated as

min
φ,c1,c2

{
J CV(φ(x, c1, c2)) = µ

∫
Ω
δ(φ(x))|∇H(φ(x))|dx+ λ1

∫
Ω
|z(x)− c1|2H(φ(x)) dx

+ λ2

∫
Ω
|z(x)− c2|2(1−H(φ(x))) dx

}
.

(3.23)

Once the level set function φ is obtained, the segmented image is given by

u = c1H(φ(x)) + c2(1−H(φ(x))).

The proof for the existence of a minimiser of (3.23) can be found in [12]. Note that the

contour Γ is given by the non-zero elements of the delta function δ(φ) evaluated over

φ which is assumed to be positive inside Γ (corresponding to H(φ) = 1) and negative

outside Γ (corresponding to H(φ) = 0).

The minimiser of (3.23) with respect to c1 and c2 where φ(x, y) is fixed is given by

c1(φ(x)) =

∫
Ω z(x)H(φ(x)) dx∫

ΩH(φ(x)) dx

and

c2(φ(x)) =

∫
Ω z(x)(1−H(φ(x))) dx∫

Ω 1−H(φ(x)) dx
.

To compute the Euler-Lagrange equation for the unknown function φ, they replace
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H(x) and δ(x) with analytic approximations Hε(x) and dHε(x)
dx = δε(x) where

Hε(x) =
1

2

(
1 +

2

π
arctan

(x
ε

))
, δε(x) =

ε

π(ε2 + x2)
.

The Euler-Lagrange equation for φ is given by δε(φ)
[
µ∇ ·

(
∇φ
|∇φ| − λ1(z − c1)2 + λ2(z − c2)2

)]
= 0, in Ω

δε(φ)
|∇φ|

∂φ
∂n = 0, or ∂φ

∂n = 0 on ∂Ω.
(3.24)

The solution of equation (3.24) can be found via introducing an artificial time step t

as considered by the authors of [12].
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Chapter 4

A Decomposition Model
Combining Parametric and
Non-parametric Deformation

We have considered some relevant and useful tools for mathematical preliminaries in

Chapter 2. At the same time, we have reviewed mathematical models for image reg-

istration and image segmentation in Chapter 3. In this chapter, we propose a decom-

position model combining both parametric and non-parametric deformations that have

been discussed in the previous chapter. The proposed decomposition model possesses

advantages of the two categories of models. Parametric models are relatively faster

than non-parametric models, meanwhile non-parametric models are well known to ef-

fectively match local differences. We propose a decomposition model where the overall

deformation consists of both global and pixel level displacement for effective image reg-

istration. The resulting model is robust and fast in comparison with individual models.

We present in Section 4.2 a parametric model based on cubic B-spline. We next present

the linear curvature model in Section 4.3 and the solution scheme for the model. We

present our proposed decomposition model in Section 4.4 and discuss how to choose

the regularisation parameters in Section 4.5. Finally we present the numerical results

that show the advantages of the proposed model in Section 4.6 before we conclude the

chapter in Section 4.7.

4.1 Introduction

Image registration models can be categorised into either parametric or non-parametric

categories. The first category involves only a few parameters; for example, in rigid

registration there are only three parameters that describe global translation and rota-

tion for 2D images. However, non-rigid registration models are expected to give better

results when input images undergo different scaling and consist of local deformations.

Even today, in clinical applications, one of the most commonly applied models is still

affine (which has six parameters [16]) because the automated solution has been proven
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to be accurate and has reached a degree of maturity in comparison with non-rigid im-

age registration [81]. Here ‘affine’ means a linear transform. For more sophisticated

parametric transforms such as cubic splines [82] to be reviewed shortly, the number of

parameters can be larger e.g. 64 parameters. Nevertheless a nonlinear least squares

system with fewer than 1000 unknowns is not a computational challenge; consequently

all parametric registration methods are efficient, though registration accuracy depends

on the input images. Landmark based registration methods also belong to the first

category since parametric transforms are used to match the landmarks [42].

The second category of methods originates from modelling the transformation as

a physical displacement so ideas of physical processes such as diffusion [88], elastic

deformation [6] and curvature motion [24] are used for registration. Although treating a

transformation as a completely unknown function provides flexibility because the search

space is much larger, the process of finding a displacement for every pixel (subject

to an overall smoothness control i.e. regularisation) is very expensive in terms of

computational cost. Hence a fast algorithms are a major issue in the second category

of methods.

Mathematically, both categories of methods involve nonlinear problems to solve. As

far as the numerical solution is concerned, getting a good initial guess for a nonlinear

system is of importance. Practically, there are several methods [16] to initialise an

affine transform in the first category and a method from the second category often

requires assistance of another method (often an affine method) from the first category

by way of providing an initial solution.

We propose a decomposition model combining both the parametric and non-parametric

transformations that possesses advantages of the two categories. In terms of effective-

ness in accurate registration, first, alignment is carried out by the parametric part

of the transformation and, second, alignment or deformation is modelled by the non-

parametric part of the transformation. In terms of efficiency, the new model benefits

from the fast implementation of the parametric part of the transformation and also

from a good initial guess to accelerate the solution of the non-parametric part of the

transformation. We shall choose one cubic spline based model for the parametric trans-

formation and a linear curvature model for non-parametric transformation as the latter

offers the advantage of allowing affine linear transformation. It is a general framework,

other combinations are possible and can be studied later. We present an alternating

minimisation method for solving the coupled transformation. Numerical experiments

are shown to illustrate the superiority of the decomposition model over individual mod-

els.

4.2 Parametric Image Registration: Cubic B-spline

We briefly introduce the free form deformation (FFD) based cubic B-spline model [82],

to be denoted by M1, because it has been shown to be capable of successfully registering
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cardiac [69], breast [82] and brain [55] images. The FFD model was investigated in

[52] and ranked as one of the best methods among fourteen non-rigid methods. It is a

parametric model and, though more complex than an affine model, still efficient. Other

examples of parametric models using basis functions such as wavelet and radial spline

basis functions can be developed [54]. Theoretically any transformation based on a set

of parameters which are fewer than the number of pixels can be potentially explored

to lead to an efficient method.

In FFD, the variational optimisation problem is

min
ϕ1,ϕ2

{
JM1(ϕ1, ϕ2) = D(ϕ(x)) + γS(ϕ(x))

= D(ϕ(x)) + γ

2∑
`=1

STP (ϕ`(x)) (4.1)

=
1

2

∫
Ω

[
T (ϕ(x))−R

]2
dΩ+γ

2∑
`=1

∫
Ω

[(∂2ϕ`
∂x2

1

)2

+ 2

(
∂2ϕ`
∂x1∂x2

)2

+

(
∂2ϕ`
∂x2

2

)2 ]
dΩ
}
.

This particular regularisation term is proposed in [98] to obtain a smooth B-spline

interpolation function. It is zero for any affine transformations and penalises only non

affine transformations [98, 82]. It remains to define the parametric representation for

ϕ.

First, a rectangular grid of nx1 × nx2 uniformly distributed grid points, called the

control point grid, is set up covering the image domain Ω. We shall construct B-splines

on this control point grid. Denote by (δx1 , δx2) the spacings between the nodes in

the control point grid and by (α1,i,j , α2,i,j) the coefficient centre at the (i, j)th con-

trol point. The transformation at every position x is given as ϕ(x) = ϕ(x,α) =

(ϕ1(x, α1), ϕ2(x, α2)) where α = (α1, α2) denotes the collection of all 2nx1nx2 B-spline

coefficients:

α1 =


α1,1,1 α1,1,2 · · · α1,1,nx2

α1,2,1 α1,2,2 · · · α1,2,nx2

· · · · · · . . . · · ·
α1,nx1 ,1

α1,nx1 ,2
· · · α1,nx1 ,nx2

 , α2 =


α2,1,1 α2,1,2 · · · α2,1,nx2

α2,2,1 α2,2,2 · · · α2,2,nx2

· · · · · · . . . · · ·
α2,nx1 ,1

α2,nx1 ,2
· · · α2,nx1 ,nx2

 .

Second, the cubic B-splines are written in the form of global basis functions Bi,j as

follows:

ϕ1(x, α1) =

nx1−2∑
i=−1

nx2−2∑
j=−1

Bi,j(x)α1,i,j , ϕ2(x, α2) =

nx1−2∑
i=−1

nx2−2∑
j=−1

Bi,j(x)α2,i,j ,

where

Bi,j(x) =

{
Bl(µ)Bm(ν), i = ĩ+ l, j = j̃ +m, for l,m = 0, 1, 2, 3;

0, elsewhere,
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and ĩ = b x1δx1 c − 1, j̃ = b x2δx2 c − 1, µ = x1
δx1
− b x1δx1 c, ν = x2

δx2
− b x2δx2 c. Equivalently, the

transformation is given by:

ϕ1(x, α1) =
3∑
l=0

3∑
m=0

Bl(µ)Bm(ν)α1,i+l,j+m, ϕ2(x, α2) =
3∑
l=0

3∑
m=0

Bl(µ)Bm(ν)α2,i+l,j+m

(4.2)

where i = b x1δx1 c−1, j = b x2δx2 c−1, µ = x1
δx1
−b x1δx1 c, ν = x2

δx2
−b x2δx2 c, and Bl(µ) represents

the lth basis function of the cubic B-spline where

B0(µ) = (1− µ)3/6,

B1(µ) = (3µ3 − 6µ2 + 4)/6,

B2(µ) = (−3µ3 + 3µ2 + 3µ+ 1)/6,

B3(µ) = µ3/6.

Third, before we discuss how to solve (4.1) using (4.2), we assume that the reference

image R and the template image T are discrete images of size N1×N2 (without changing

the notation) on a grid of pixels Ωh ⊂ Ω. Through Ωh, we split the domain Ω into

N1 ×N2 cells of size h1 × h2. The grid points can be located at the vertex of the cell

as follows:

Ωh = {xi,j = (x1,i, x2,j) = (ih1, jh2) | 0 ≤ i ≤ N1 − 1, 0 ≤ j ≤ N2 − 1}.

For example, in Test 1 later with N1 = N2 = 129, (δx1 , δx2) = (4, 4), we have

nx1 × nx2 = 36 × 36 and there are 2nx1nx2 = 2592 parameters to determine. Since

Bi,j has a local compact support (i.e zero beyond 4× 4 control points), equation (4.2)

reduces to a simpler form.

Next, the discretised formulation for (4.1) is given by:

min
α1,α2

JM1(α1, α2) =
1

2

N1−1∑
c=0

N2−1∑
d=0

(T (ϕ(xc,d,α))−R(xc,d))
2+

γ

2∑
`=1

N1−1∑
c=0

N2−1∑
d=0

(ϕ`x1x1 (xc,d, αl))
2 + 2(ϕ`x1x2 (xc,d, α`))

2 + (ϕ`x2x2 (xc,d, α`))
2

(4.3)

where control points are labeled as i, j and the pixels are indexed as c, d. Further the

fitting part in (4.3) can be written as

[T (ϕ(xc,d,α))−R(xc,d)]
2 =[

T
( nx1−2∑
i=−1

nx2−2∑
j=−1

Bi,j(xc,d)α1,i,j ,

nx1−2∑
i=−1

nx2−2∑
j=−1

Bi,j(xc,d)α2,i,j

)
−R(xc,d)

]2

where we see that the unknowns are α`,i,j . Here ϕ`x1x1 = ∂2ϕ`
∂x21

and similarly for ϕ`x1x2
and ϕ`x2x2 .
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The regularisation part in (4.3) can also be written as:

STP (ϕ`(xc,d, α`)) =

nx1−2∑
i=−1

nx2−2∑
j=−1

[
1

δ4
x1

C2
i,j(xc,d) +

1

δ2
x1δ

2
x2

2D2
i,j(xc,d) +

1

δ4
x2

E2
i,j(xc,d)

]
(α`,i,j)

2

where

Ci,j(xc,d) =

{
B′′l (µ)Bm(ν), i = ĩ+ l, j = j̃ +m, for l,m = 0, 1, 2, 3;

0, elsewhere,

Di,j(xc,d) =

{
B′l(µ)B′m(ν), i = ĩ+ l, j = j̃ +m, for l,m = 0, 1, 2, 3;

0, elsewhere,

Ei,j(xc,d) =

{
Bl(µ)B′′m(ν), i = ĩ+ l, j = j̃ +m, for l,m = 0, 1, 2, 3;

0, elsewhere,

where ĩ = bx1,cδx1
c − 1, j̃ = bx2,dδx2

c − 1, µ =
x1,c
δx1
− bx1,cδx1

c, ν =
x2,d
δx2
− bx2,dδx2

c, B′′l (µ) = ∂2Bl
∂x21

and B′l(µ) = ∂Bl
∂x1

.

To ease the formulation, we take N = N1 = N2, δx = δx1 = δx2 and the vector α is

given by 2nxnx × 1 where nx = N
δx

+ 4. The first order optimality condition is

G = ∇αJM1(α1, α2) = 0 (4.4)

whereG = [g1, g2]T = [g1,1,1, g1,2,1, g1,3,1, . . . , g1,nx1 ,nx2
, g2,1,1, g2,2,1, g2,3,1, . . . , g2,nx1 ,nx2

]T .

Noting D(ϕ(x,α)) = T (ϕ(x,α))−R(x),

g1,i,j =
∂JM1

∂α1,i,j
=

1

2

∂(D2)

∂α1,i,j
+ γ

∂STP1

∂α1,i,j
= D(ϕ(x,α))∇ϕ1T (ϕ(x,α))Bi,j(x) + γ

∂STP1

∂α1,i,j
,

g2,i,j =
∂JM1

∂α2,i,j
=

1

2

∂(D2)

∂α2,i,j
+ γ

∂STP2

∂α2,i,j
= D(ϕ(x,α))∇ϕ2T (ϕ(x,α))Bi,j(x) + γ

∂STP2

∂α2,i,j
.

Finally, we apply a quasi-Newton method to (4.4) that requires second order infor-

mation from the gradient of the previous step and converges faster than the steepest

descent method. Detailed implementation of the quasi-Newton method [51, 102] is

given in Algorithm 4.

Note that all vectors here are of size 2N1N2 × 1 or 2N2 × 1. We usually take m = 10

while the choice of γ is to be discussed shortly.

Initial guess α(0). The well known multilevel method [35] can be adapted to

image registration for providing a good initial solution. On the finest level (level 1),

we set up L − 1 coarse levels using standard coarsening. The idea is to solve the

minimisation problem (4.1) starting at the coarsest level L. Each coarser solution

is propagated towards the finest level L = 1. With standard coarsening, B-spline

functions from adjacent levels are related [59]. Consider line by line propagation of

spline coefficients. Following [104, 59], starting from a coarse level k’s coefficients

αi,j , αi,j+1, αi,j+2, αi,j+3 over one line of a control box, the finer level k−1 coefficients
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Algorithm 4 Application of LBFGS [51, 102] for solving registration model.
(ϕ(x,α),α)← LBFGS(γ,J ,α(0),m,maxit,TOL)

1. Compute g(0) = ∇J (α(0)), d(0) = −g(0).

2. For k1 = 0, 1, . . . ,maxit:

(a) Compute α(k1+1) = α(k1) + κd(k1)

where κ is the line search parameter, and g(k1+1) = ∇J (α(k1+1)).

(b) Let S(k1) = α(k1+1) −α(k1), y(k1) = g(k1+1) − g(k1), q = g(k1).

(c) For i = k1−1, k1−2, .., k1−m, ρ(i) = 1
(y(i))TS(i) , a

(i) = ρ(i)qTS(i), q =

q − a(i)y(i).

(d) Set p(k1) = (y(k1))TS(k1)

‖y(k1)‖22
and r = p(k1)q.

(e) For i = k1−m, k1−m+ 1, .., k1−1, β = ρ(i)(y(i))T r, r = r+ (a(i)−β)S(i).

(f) The new descent direction is given by d(k1) = −r.
(g) Check the convergence criterion J (α(k1+1))−J (α(k1)) < TOL; if satisfied,

exit else continue.

3. End for. Finish the algorithm with α = α(k1) and compute ϕ(x,α).

at positions (i, j + 1
2), (i, j + 1), (i, j + 3

2), (i, j + 2) are given approximately by


αi,j+ 1

2

αi,j+1

αi,j+ 3
2

αi,j+2


(k−1)

=
1

8


4 4 0 0

1 6 1 0

0 4 4 0

0 1 6 1




αi,j

αi,j+1

αi,j+2

αi,j+3


(k)

(4.5)

and at positions (i, j + 1), (i, j + 3
2), (i, j + 2), (i, j + 5

2) by


αi,j+1

αi,j+ 3
2

αi,j+2

αi,j+ 5
2


(k−1)

=
1

8


1 6 1 0

0 4 4 0

0 1 6 1

0 0 4 4




αi,j

αi,j+1

αi,j+2

αi,j+3


(k)

. (4.6)

Recursively, α(0) on the finest level 1 is obtained by this procedure once α(0) on the

coarsest level is computed first.

Choice of coupling parameter γ. We shall discuss how to choose γ using the

above set up of L levels. In [82], the authors used a fixed parameter γ = 0.01 for

(4.1) which is sufficient for a large class of problems. However a fixed γ can produce

undesired effects for some images (usually involving global rotation). Here we adapt

the parameter continuation approach used in [17] to find a suitable γ for (4.1). The

idea has two steps.
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First, on the coarsest level L, we use a bisection like method to find the best γ (and

the corresponding α). We start with a large value of γ = γ(0) = γ1 > 0 and reduce

γ systematically for subsequent iterations in order to decrease JM1, or precisely use

Algorithm 5 for optimal selection of the regularisation parameter γ for the parametric

model (4.3):

(γ∗,α∗)← Continuation(JM1, γ0, γ1, τ,α
(0),m, c,maxit,TOL)

where c = 1. Here we use the notation γ(m) and α(m) for a solution pair at iteration

m. With γ = γ(m), once we find the solution α(m) to (4.3), we set the new γ as

γ(m+1) = τγ(m) with the ratio τ depending on the consistency of this current solution:

JM1
γ(m)(α

(m)) < JM1
γ(m)(α

(m−1)); (4.7)

if condition (4.7) is satisfied, we take τ = 0.5 and continue, or if not, we restart the

previous step with γ(m) = τγ(m−1) and τ = 0.9.

Algorithm 5 Direct search for the parameter γ on a single level.
(γ∗,α∗)← Continuation(J , γ0, γ1, τ,α

(0),m, c,maxit,TOL)

1. Initialize γ(0) = γ1 and g(0) = −∇J (α(0)), d(0) = −g(0).

2. For k2 = 0, 1, . . . ,maxit:

(a) If c = 1, γ(k2+1) = τγ(k2) else c = 2, γ(k2+1) = γ(k2) − τ .

(b) Solve the registration problem to find α(k2+1) c.f. Algorithm 4 where only
perform step 2(a) until step 2(f).

(c) If J
γ(k2+1)(α

(k2+1)) < J
γ(k2+1)(α

(k2)), then

If c = 1, set τ = 0.5, else c = 2, set τ = 0.01 end if. k2 = k2 + 1 and go to
step 2(e).

(d) Else set τ = 0.9 for c = 1 or τ = 0.001 for c = 2 and go to step 2(e).

(e) If γ(k2+1) ≤ γ0, exit
else go to step 2(a).

3. End for. Finish the algorithm with γ∗ = γ(k2), α∗ = α(k2).

Second, using the ideas of (4.5)-(4.6), we prolongate α to the next finer level until

k = 1. This multilevel image registration procedure for (4.3) is given in Algorithm 6:

(ϕ(x,α), γ)← MLIR(α(0,L), T,R, L,JM1, γ0, γ1, τ,m, c,maxit,TOL)

where c = 1,m = 10.
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Algorithm 6 Multilevel Solution for Image Registration.
(ϕ(x,α), γ)← MLIR(α(0,L), T,R, L,J , γ0, γ1, τ,m, c,maxit,TOL)

1. On the coarsest level k = L, find the best parameter γ = γ∗ and α(∗,L).
(γ∗,α(∗,L))← Continuation(J , γ0, γ1, δ, τ,α

(0,L),m, c,maxit,TOL)

2. Repeatedly, interpolate α to next fine level. α(0,k−1) ← Interpolate(α(∗,k))

3. Solve the registration problem using Algorithm 4 on level k− 1 until level k = 1.
(ϕ(x,α(∗,k)),α(∗,k)))← LBFGS(γ,J ,α(0,k),m,maxit,TOL)

4. Finish with ϕ(x,α) = ϕ(x,α(∗,1)) and γ = γ∗.

4.3 Non-parametric Image Registration: Linear Curva-
ture Model

Below we consider the non-parametric image registration model with regulariser

SFMC(u) =

∫
Ω

[
(∆u1)2 + (∆u2)2

]
dΩ (4.8)

and boundary conditions ∇ul · n = 0, and ∇∆ul · n = 0 for l = 1, 2, i.e. the following

minimisation problem (to be denoted by M2):

min
u1,u2

JM2 =
1

2

∫
Ω

(T (x+ u)−R(x))2 dΩ +
γ

2

2∑
l=1

∫
Ω

(∆ul)
2 dΩ. (4.9)

The solution of (4.9) can be sought by either the optimise-discretise approach (i.e.

the EL equation to be discretised by a numerical method) or the discretise-optimise

approach (i.e. the discretised functional to be optimised). In either case we obtain a

nonlinear system of equations, and solve iteratively to yield the final solution.

Here we take the latter discretise-optimise approach. The discretised form of (4.9),

by a finite difference method, is

min
u1,u2

JM2 =
h1h2

2

N1−1∑
i=0

N2−1∑
j=0

[T (xi,j + u(xi,j))−R(xi,j)]
2 + (4.10)

γ
h1h2

2

2∑
l=1

N1−1∑
i=0

N2−1∑
j=0

[−4ul(xi,j) + ul(xi+1,j) + ul(xi−1,j) + ul(xi,j+1) + ul(xi,j−1)]2 .

Although the notation for xi,j = (x1,i, x2,j) and ui,j = (u1,i,j , u2,i,j) is clear, we need to

re-define the solution vector

u =

[
u1

u2

]
2N1N2×1

, x =

[
x1

x2

]
2N1N2×1
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where

u1 =
[
u1,0,0 u1,1,0 · · · u1,N1−1,0 u1,0,1 · · · u1,N1−1,1 u1,0,2 · · · u1,N1−1,N2−1

]T
,

u2 =
[
u2,0,0 u2,1,0 · · · u2,N1−1,0 u2,0,1 · · · u2,N1−1,1 u2,0,2 · · · u2,N1−1,N2−1

]T
and x1,x2 are similarly defined. Then, the first SSD term in (4.10) is given in vector

notation as

DSSD =
h1h2

2
ΘTΘ with Θ = [T (x+ u)−R(x)]N1N2×1.

Define the matrix G of size N1N2 × 2N1N2 by

G = ∇uT (x+ u) =
∂T (x+ u)

∂u
=
[∂T (x+ u)

∂u1

∣∣∣ ∂T (x+ u)

∂u2

]
i.e.

G =
[∂T (x+ u)

∂u1,0,0

∣∣∣ ∂T (x+ u)

∂u1,1,0

∣∣∣ · · · ∣∣∣ ∂T (x+ u)

∂u1,N1−1,N2−1

∣∣∣ ∂T (x+ u)

∂u2,0,0

∣∣∣ ∂T (x+ u)

∂u2,1,0

∣∣∣ · · · ∣∣∣ ∂T (x+ u)

∂u2,N1−1,N2−1

]
.

To find the minimum of equation (4.10) we need to solve

∇JM2 = 0

which yields a system of nonlinear equations with unknown u. Let

JM2 = DSSD + γSFMC

=
h1h2

2
ΘTΘ + γuTBu,

then,

∇JM2 = ∇DSSD + γ∇SFMC

= ΘTG+ γBu

where B is a constant matrix of size 2N1N2 × 2N1N2 that consist of the coefficients of

u. We can write B as

B =

[
LTL 0N1×N2

0N1×N2 LTL

]
where L is a block tridiagonal matrix from the regularisation term. For example, for
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Ωh = [0, 2]2, then

L =



−2 1 0 1 0 0 0 0 0

1 −3 1 0 1 0 0 0 0

0 1 −2 0 0 1 0 0 0

1 0 0 −3 1 0 1 0 0

0 1 0 1 −4 1 0 1 0

0 0 1 0 1 −3 0 0 1

0 0 0 1 0 0 −2 1 0

0 0 0 0 1 0 1 −3 1

0 0 0 0 0 1 0 1 −2


.

We can solve equation (4.10) iteratively using the LBFGS method by Algorithm 4:

(x+ u(x),u(x))← LBFGS(γ,JM2,u(0),m,maxit,TOL).

Here selecting the regularisation parameter γ and the corresponding initial guess for

(4.10) can be done by the multilevel approach

(u(x), γ)← MLIR(u(0,L), T,R, L,JM2, γ0, γ1, τ,m, 2,maxit,TOL)

as in Algorithm 6 where on the coarsest level one would use

(γ∗,u∗)← Continuation(JM2, γ0, γ1, τ,u
(0),m, 2,maxit,TOL)

in Algorithm 5.

4.4 A Decomposition Model Combining Parametric and
Non-parametric Deformation

In this section, we present our new model based on the above two models, the para-

metric model M1 (4.1) and the non-parametric model M2 (4.9), which is expected

to outperform each individual method. We propose a general framework for image

registration ϕ = ϕ(x) : R2 → R2 in the form

ϕ(x) = up + unp (4.11)

where the final transformation is a decomposition of the parametric and non-parametric

transformations.

Based on [65, 66], the domain of the transformation consists of global and local.

The transformation is called global if it is applied to the entire image and it is called

local if it is applied to a small portion of the image. The parameters for the global

transformation are used to calculate the displacement for all pixels in the image domain.

For the local transformation, the parameters are valid for the small patch in the image
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domain. In the case of the non-parametric image registration models, the parameters

are the pixels’ level. Thus, they are classified as local transformation.

Our proposed idea is that, firstly, the overall deformation consists of both global

and local displacement by means of the decomposition of the parametric and non-

parametric transformation and, secondly, a large proportion of the overall deformation

is captured by the parametric transformation. These three decompositions fulfill this

framework:

Model 3.1 ϕ(x) = uglobal + ulocal, for example, ϕ(x) = uaffine + udiff

Model 3.2 ϕ(x) = ulocal1 + uglobal+local2 , for example, ϕ(x) = ulandmark + uHWC

Model 3.3 ϕ(x) = uglobal1+local1 + uglobal2+local2 .

(4.12)

We recommended this particular choice

ϕ(x) = ucubic B-spline + uFMC (4.13)

because both cubic B-spline or M1 [103, 82, 80] and FMC or M2 [25, 26, 67, 24] are

capable of representing global and local displacement. We shall name this choice (of

Model 3.3) as M3 and the new variation problem takes the particular form

min
α,unp(x)

JM3
γp,γnp(ϕ(x)) =

1

2
‖T (up(x,α) + unp(x))−R‖22 (4.14)

+ γpSp(up(x,α)) +
γnp
2
Snp(unp(x))

where Sp = STP is as defined by (4.1) and Snp = SFMC is as in (4.8). Models 3.1 and

3.2 can also be used if we have some prior knowledge of R and T . Problem (4.14) can

be solved by the alternating minimisation resulting in two subproblems

min
α
J Iγp =

1

2
‖(T (up(x,α) + unp(x))−R)‖22 + γpSp(up(x,α)) (4.15)

and

min
unp(x)

J IIγnp =
1

2
‖(T (up(x,α) + unp(x))−R)‖22 +

γnp
2
Snp(unp). (4.16)

We take the discretise-optimise approach for numerical solutions. At the kth iteration,
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the alternate updates are done as follows:

u(k+1)
p (x,α) ← min

α
J Iγp =

1

2

N−1∑
i=0

N−1∑
j=0

(T (up(xi,j ,α) + unp(xi,j))−R(xi,j))
2

+ γpSp(up,1) + γpSp(up,2) (4.17)

=
1

2

N−1∑
c=0

N−1∑
d=0

(T (up(xc,d,α) + unp(xc,d))−R(xc,d))
2+

γp

2∑
l=1

N−1∑
c=0

N−1∑
d=0

((up,lx1x1 (xc,d, αl)
2) + 2(up,lx1x2 (xc,d, αl))

2

+ (up,lx2x2 (xc,d, αl))
2),

u(k+1)
np (x) ← min

unp(x)
J IIγnp =

1

2

N−1∑
i=0

N−1∑
j=0

(T (up(xi,j ,α) + unp(xi,j))−R(xi,j))
2

+
γnp
2
Snp(unp(xi,j)) (4.18)

=
1

2

N−1∑
c=0

N−1∑
d=0

(T (up(xc,d,α) + unp(xc,d))−R(xc,d))
2

+
γnp
2

2∑
l=1

N−1∑
c=0

N−1∑
d=0

[
− 4unp,l(xc,d) + unp,l(xc+1,d) + unp,l(xc−1,d)

+ unp,l(xc,d+1) + unp,l(xc,d−1)
]2
.

As before, to solve (4.17), the up(x,α) are defined by cubic B-splines with coeffi-

cients α:

up,1(x, α1) =

nx−2∑
i=−1

nx−2∑
j=−1

Bi,j(x)α1,i,j , up,2(x, α2) =

nx−2∑
i=−1

nx−2∑
j=−1

Bi,j(x)α2,i,j

Furthermore, Algorithm 4 can be used to update α and hence up(x,α). To solve

equation (4.18), noting up(x,α) is fixed, we follow the same Algorithm 4.

An alternating minimisation method for model (4.14) is given in Algorithm 7:
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Algorithm 7 Alternating minimisation algorithm for the decomposition model.

(γp, γnp,up(x,α),unp(x))← Decomposition(T,R,u
(0,1)
np ,α(0,1), L, γ0, γ1, τ,m,maxit,TOL)

1. Initialize γ
(0)
p = γp,1, γ

(0)
np = γnp,1. Restrict u

(0,1)
np and α(0,1) to the coarsest grid

L. u
(0,L)
np ← Restrict(u

(0,1)
np ) and α(0,L) ← Restrict(α(0,1)).

2. For k3 = 0, 1, . . . ,maxit : (Outer iteration for alternating minimisation).

(a) Compute α(k3+1,1) and γ
(k3+1)
p using equation (4.15) c.f Algo-

rithm 6 with α(k3,L) as initial guess. (u
(k3+1,1)
p (x,α), γ

(k3+1)
p ) ←

MLIR(α(k3,L), T (u
(k3,1)
np (x)), R, L,J Iγp , γp,0, γp,1, τ,m, 1,maxit,TOL)

(b) Restrict u
(k3+1,1)
p at fine level to level L. u

(k3+1,L)
p ← Restrict(u

(k3+1,1)
p ) and

find the respective α(k3+1,L) from u
(k3+1,L)
p (x,α).

(c) Compute u
(k3+1)
np (x) and γ

(k3+1)
np using equation (4.16) c.f Algo-

rithm 6 with u
(k3,L)
np (x) as initial guess. (u

(k3+1,1)
np (x), γ

(k3+1)
np ) ←

MLIR(u
(k3,L)
np , T (u

(k3+1,1)
p (x,α)), R, L,J IIγnp , γnp,0, γnp,1, τ,m, 2,maxit,TOL)

(d) Restrict u
(k3+1,1)
np (x) to u

(k3+1,L)
np (x). u

(k3+1,L)
np (x)← Restrict(u

(k3+1,1)
np (x)).

(e) If ‖γ(k3+1)
p − γ

(k3)
p ‖ < TOL, ‖γ(k3+1)

np − γ
(k3)
np ‖ <

TOL or JM3

γ
(k3+1)
p ,γ

(k3+1)
np

(u
(k3+1)
p (x,α),u

(k3+1)
np (x)) >

JM3

γ
(k3)
p ,γ

(k3)
np

(u
(k3)
p (x,α),u

(k3)
np (x)) exit, else continue with the next iter-

ation k3.

3. End for. Accept γp = γ
(k3+1)
p , γnp = γ

(k3+1)
np .

4. Compute the final registration algorithm on the finest level only for equation
(4.15) . (up(x,α),α)← LBFGS(γp,J Iγp ,α

(k3+1,1),m,maxit,TOL)

5. Compute the final registration algorithm on the finest level only for equation

(4.16) . (unp(x),unp(x))← LBFGS(γnp,J IIγnp ,u
(k3+1,1)
np ,m,maxit,TOL)

6. Finish the iteration with γp, γnp,up(x,α), and unp(x).

4.5 Optimal Values for the Regularisation Parameters γp
and γnp

An appropriate choice for the regularisation parameters is a crucial aspect in solving

an ill-posed problem. Several methods exist such that generalised cross validation and

detection of the corner of the L-curve, but none of them are directly applicable to image

registration due to the non-linearity of the fidelity term. The L-curve approach involves

a plot using a log-log scale of the norm of the solution and the residual norm where the

optimal regularisation parameter is given at the ‘vertex’ of the ‘L’. Thus, most of the

authors choose the regularisation parameters based on prior information: how much

fitting one requires in the joint objective function between fitting and regularisation
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terms. This is equivalent to the discrepancy principle where the regularisation term is

limited to some upper bound.

Our approach for the decomposition model is based on the continuation of the reg-

ularisation parameters to balance the fitting and regularisation terms. We allow the

parameters to vary within a specified interval [γp,0, γp,1] and [γnp,0, γnp,1] for the para-

metric and non-parametric parts of the decomposition model, respectively. Our idea

is simple: we consider the choice of the two parameters in turn (i.e. fix one and op-

timise the other) and our optimisation is based on the observations that i) the fitting

energy increases and the regularisation energy reduces when the regularisation param-

eter increases; (ii) the underlying deformation (image transformation) has non-physical

folding when the regularisation parameter is extremely small. Since smaller values will

allow larger displacement, the resulting transform does not preserve the topology of

the grid. This phenomenon is indicated by folding and cracking of the deformed grid

and can be observed via the determinant of the Jacobian matrix J(x1,c, x2,d). We aim

for

J(x1,c, x2,d) =

∣∣∣∣∣
∂ϕ1

∂x1,c
∂ϕ1

∂x2,d
∂ϕ2

∂x1,c
∂ϕ2

∂x2,d

∣∣∣∣∣ > 0 (4.19)

to ensure that the transformation is plausible and meaningful. Since the Jacobian

is positive everywhere, by the inverse function theorem, the transformation ϕ(x) is

locally invertible. In other words, ϕ(x) is bijective. In our decomposition method M3,

we find the lower limits of [γp,0, γp,1] and [γnp,0, γnp,1] based on the calculation of (4.19).

That is, it is always possible to start with a small γp,0 (e.g. 10−6) and implement the

model until J(x1,c, x2,d) > 0 is satisfied automatically. Subsequently, we increase the

parameter till both the fitting and the regularisation terms are approximately balanced,

as illustrated in Fig.4.1.
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Figure 4.1: Plots of three energy terms to aid choice of γp and γnp.

The profile plot for JM3 and its two constituents is shown in Figure 4.1 for increasing

values of γp and γnp. We can observe that smaller values of γp and γnp give smaller

values of JM3; however at both beginnings, (4.19) is not satisfied. Therefore using this
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idea for test images in Section 5 we attain [γp,0, γp,1] = [0.0001, 0.1] and [γnp,0, γnp,1] =

[0.1, 0.2].

4.6 Numerical Results

We perform four numerical experiments to show that our decomposition model (Al-

gorithm 7, i.e. M3) has better performance than the individual models, M1 and M2

through comparing their relative reduction of the similarity measure indicated by ε

where

ε =
D(T,R,ϕ(∗))

D(T,R,ϕ(0))
. (4.20)

The current pairwise differences before and after registration are presented as difference

images with a scale bar to highlight the regions of large differences.

The first experiment is to illustrate that M3 gives similar results in visual quality

to M1 and M2 for a smooth problem, although M3 has the smallest error value ε. The

second experiment compares M3 with M1 and M2 for an artificial deformation problem

to show the advantage of M3 over M1 and M2 in both the visual quality and ε value.

The third experiment uses medical MR images of human brain of different individuals

in atlas construction. In all tests, the reference and template images are given before

hand. However, we can interchange these two images because it is a matter of choice

fact.

4.6.1 Test 1: A Pair of Smooth X-ray Images

Here, we take the smooth X-ray images from [68] of size 129 × 129. We obtain the

desirable result by M3 after three outer iterations in Algorithm 7. In this test, all three

models M1, M2 and M3 are able to solve the problem reasonably as shown in Figure

4.2. The lowest value of ε is given by M3 followed by M2 and M1; for this smooth

problem, M3 shows better results than M1 and M2 though M1 and M2 give acceptable

results.
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Figure 4.2: Top row and left to right: template, reference and the difference between
the template and reference images. Middle row and left to right: results of Test 1 using
M1, M2, and M3. Bottom row shows the differences of the transform template images
(middle row) and reference images. All three models are able to register Test 1 but a
smaller value of ε is given by M3.
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Figure 4.3: First to second row and left to right: deformation field applied to the regular
grid for Test 1 using M1,M2,M3 after the parametric part and M3 after the non-
parametric part. Third to fourth row and left to right: the values of the determinant
of the Jacobian matrix for the corresponding deformation on the top row. It is clear
that the determinant of the Jacobian matrix is positive everywhere.
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The deformation field and the determinant of the Jacobian matrix for all methods

are shown in Figure 4.3. We can observe that the transformations are smooth and

the topology of the deformed grid is preserved since we have positive values of the

determinant of the Jacobian matrix.

4.6.2 Test 2: A Pair of Lena Images

This Test 2 is similarly tested in [63] where the Lena image is artificially deformed.

From Fig. 4.4, we see that M1 indeed performs better than M2 and the best result

is given by M3. Our new approach results in a significantly improved registration as

indicated visually by the smaller amount of darker region in the bottom row in Figure

4.4. The deformation field and the determinant of the Jacobian matrix for all methods

are shown in Figure 4.5. We can observe that the determinant of the Jacobian matrix

is positive everywhere.

4.6.3 Test 3: A Pair of Brain MR Images

Our third Test 3 of medical images in size 257 × 257 is taken from the Internet Brain

Segmentation Repository (IBSR) where 20 normal MR brain images and their manual

segmentations are provided. We choose a pair of two individuals with different sizes of

ventricle to illustrate how large deformation is modeled by M1-3. Figure 4.6 shows the

test and the registration results. We can see that all three models are able to register

this Test 3 where the lowest value of ε is given by M3. After registration, we evaluate

the mean squared error (MSE) and the dice metric for white and grey matter where

the original values before and after registration are given in Table 4.1. The dice metric

is defined as

Dice metric =
2(T ∩R)

(|T |+ |R|)
(4.21)

while the MSE is

MSE =
1

N1N2

N1−1∑
i=0

N2−1∑
j=0

(Tij −Rij)2.

Here, for the dice metric, the larger it is the better the registration is while for MSE

the smaller the better. From Table 4.1, we see that M3 performs better than M1 and

M2.

Measure T M1 M2 M3

Mean squared error (MSE) 0.0337 0.0124 0.0118 0.0029

Dice metric white matter 0.5057 0.5673 0.5638 0.5742

Dice metric grey matter 0.5636 0.7241 0.7275 0.7311

Table 4.1: Comparison of MSE, and the dice metric for white and grey matter for
segmented images of Test 3 before registration, and after registration using M1, M2
and M3. Clearly M3 is the best.
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Figure 4.4: Top row and left to right: template, reference and the difference between
the template and reference images. Middle row and left to right are the results of Test
2 using M1, M2, and M3. Bottom row shows the differences of the transform template
images (middle row) and reference image. The best result is given by M3 where we can
see that the method gives the smallest error as depicted on the bottom row.

The deformation field and the determinant of the Jacobian matrix for all methods

are shown in Figure 4.7. Since we have positive values of the determinant of the

Jacobian matrix, the transformation maintains a diffeomorphism.

We also try to register Test 3 (cropped) in size 129×129 using all three models and

we observe the same result where MSE is the least by M3 and the dice metric is the

largest for white and grey matter also by M3 as shown in Table 4.2.
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Measure T M1 M2 M3

Mean squared error (MSE) 0.0293 0.0089 0.0089 0.0083

Dice metric white matter 0.3059 0.4337 0.3855 0.4403

Dice metric grey matter 0.4603 0.5828 0.5930 0.6012

Table 4.2: Comparison of MSE, and the dice metric for white and grey matter for
segmented images of Test 3 for N = N1 = N2 = 129 before registration, and after
registration using M1, M2 and M3. Our method M3 outperforms M1 and M2.

4.6.4 Test 4: A Challenging Example of Large Deformation

Designing a registration model capable of solving both smooth and non-smooth prob-

lems without folding in the deformation field is a difficult task. We present Test 4 as

a hard problem to register even using non-parametric image registration method. To

solve this particular test we change (δx1 , δx2) = (8, 8) instead of using (δx1 , δx2) = (4, 4)

in M1 and M3. It is because a larger spacing of the control points is able to recover

larger deformation compared to a smaller spacing of the control points. Figure 4.8

shows the obtained results: we can observe that the features (corners of the boxes) are

well captured by M3 in comparison to M1 which distorts the features. As somewhat

expected, M2 cannot solve the problem at all. Deformation field given by M2 is a local

minimum since the problem is non-convex due to the sum of squared difference as the

fitting term. Meanwhile, M1 and M3 manage to obtain a global minimiser for this

particular problem due to the large spacing of the control points.

The deformation field and the determinant of the Jacobian matrix for all methods

are shown in Figure 4.9. Clearly, the transformations are smooth and locally plausible.

We also calculate MSE and the dice metric for Test 4 as shown in Table 4.3. Clearly

M3 outperforms the individual methods.

Measure T M1 M2 M3

Mean squared error (MSE) 0.0203 0.0014 0.0108 0.00004

Dice metric 0.6667 0.9588 0.7900 0.9888

Table 4.3: MSE, and the dice metric for Test 4 before registration, and after registration
using M1, M2 and M3. MSE is decreasing for all three models with the lowest value
given by M3. The dice metrics are increasing for all models where the highest value is
given by M3. Our method M3 outperforms the individual methods.

4.7 Conclusion

A pair of given images can be registered using either a parametric image registration

model or a non-parametric image registration model. Both models have advantages

and disadvantages: a parametric model is fast and easy to solve as it only involves a

relatively small number of parameters; but most of the models tend to exclude the fine

details of images. While a non-parametric model is slow and expensive to solve, it is
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able to capture fine details. We propose a decomposition framework consisting of both

parametric and non-parametric components of an optimal transformation that consists

both global and local transformations. In particular, we combine cubic B-spline FFD

method with linear curvature as an example for the general framework. The resulting

decomposition model is robust and relatively fast to implement in comparison with

the individual models. Regularisation parameters are robustly obtained from multi-

resolution ideas. In comparison with a non-parametric model equipped with the FFD

parametric method as pre-registration, our algorithm works by alternating between

these two models and outperforms either method individually.
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Figure 4.5: First to second row and left to right: deformation field applied to the regular
grid for Test 2 using M1,M2,M3 after the parametric part and M3 after the non-
parametric part. Third to fourth row and left to right: the values of the determinant
of the Jacobian matrix for the corresponding deformation on the top row. It is clear
that the determinant of the Jacobian matrix is positive everywhere.
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Figure 4.6: First to second row and left to right: template, reference and the difference
between the template and reference images. Middle row and left to right, are the
results of Test 3 using M1, M2 and M3. Bottom row is the differences of the transform
template images (middle row) and reference image. The best result is given by M3
where we can see that the method gives the smallest error as depicted on the bottom
row.
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Figure 4.7: Top row and left to right: deformation field applied to the regular grid for
Test 3 using M1,M2,M3 after the parametric part and M3 after the non-parametric
part. Bottom row and left to right: the values of the determinant of the Jacobian matrix
for the corresponding deformation on the top row. It is clear that the determinant of
the Jacobian matrix is positive everywhere.
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Figure 4.8: Top row and left to right: template, reference and the difference between
the template and reference images. Middle row and left to right: transformed template
using M1, M2 and M3. Bottom row: the respective differences between the transformed
template with the reference images. The corners of the boxes are well captured with
M3 compared to M1.
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Figure 4.9: First to second row and left to right: deformation field applied to the regular
grid for Test 4 using M1,M2,M3 after the parametric part and M3 after the non-
parametric part. Third to fourth row and left to right: the values of the determinant
of the Jacobian matrix for the corresponding deformation on the top row. It is clear
that the determinant of the Jacobian matrix is positive everywhere.
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Chapter 5

Multi-modality Image
Registration using the
Decomposition Model

So far, we have considered a decomposition model combining parametric and non-

parametric deformation in Chapter 4. Both categories of model have been introduced

in Chapter 3. In this chapter, we extend the decomposition model of parametric and

non-parametric deformation which we developed in Chapter 4 for application to multi-

modality images. In this case, the reference and template images come from different

imaging modalities. For example, the reference image may be a computer tomography

(CT) scan, which is useful for the quantification of cancerous tissues for the dose cal-

culation in treatment planning, and the template image may be a magnetic resonance

(MRI) image which is much better for the visualisation of soft tissues compared to the

CT scanner. Given the very different resulting images, the intensity values are not

directly comparable and so the use of traditional similarity measures such as the sum

of the squared difference is no longer valid. We explore two similarity measures for

multi-modality images given by mutual information and the normalised gradient field

in Section 5.2 and 5.3 respectively. We introduce the decomposition model for multi-

modality images in Section 5.4 and an alternating minimisation method to solve the

model in Section 5.5. We use three sets of experiments in order to evaluate the benefit

of these two similarity measures with the decomposition model to show the advantages

of the normalised gradient field over mutual information with the decomposition model.

5.1 Introduction

The broad range of imaging machinery used in medical applications makes the regis-

tration of images from different modalities a challenging task. It is an open and active

area of research because, despite the visual difference, the alignment of multi-modal

images are complementary to each other. One of the most common applications of

multi-modality image registration is in the process of the detection of breast cancer.
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Several modalities such as MRI, mammography and ultrasound are combined in order

to have an accurate measure of the cancerous tissues. The registration process has to

deal with not only the geometric distortion caused by patients’ movements but with

intensity distortion such as the bias field effect which commonly appears in MRI. In

addition, what makes the task more difficult is that there is no functional relation-

ship between the intensity values of corresponding objects in different images. One

of the remedies is to use the landmark registration method where clinicians identify

several corresponding feature points in images resulting from the different modalities.

However, this particular approach is time consuming, requires an expert to extract the

points and there exists the possibility of mismatching the points which can result in

inaccurate alignment of the images.

One of the commonly used similarity measures for multi-modality images is mutual

information (MI). It was first introduced independently by Maes et al. in [64] and Viola

and Wells in [96] and there is an assumption made based on the image information.

This particular measure aims to find a statistical intensity relationship between the

reference and template images. When two images are aligned, the amount of shared

information is maximised. It has been successfully applied to rigid and affine image

registration tasks. See [75, 77, 86] for more details. For non-rigid image registration,

the best implementation of MI is not trivial because it is a global measure, therefore

its local estimation is difficult and using MI as the distance measure increases the

non-convexity of registration problem [37].

Real images are often distorted by spatially varying intensity inhomogeneities. As

such, MRI images are affected by additive or multiplicative bias fields. Image registra-

tion models based on mutual information are at a disadvantage with the appearance

of the bias field. In [33], the authors propose an alternative measure known as the

normalised gradient field (NGF), a novel similarity measure for multi-modality image

registration which is more reliable and robust than MI. NGF is based on the alignment

of the edges in the reference and template images. In [44], NGF is used to register dy-

namic contrast enhanced (DCE)-MRI using the linear elastic image registration model.

In this chapter, we extend the decomposition model [49] for multi-modality images

using MI and NGF. The decomposition model is based on combining parametric and

non-parametric models where we particularly choose the cubic B-spline and linear cur-

vature models by Fischer and Modersitzki [24, 25]. First, we introduce the mathemat-

ical background for mutual information and the normalised gradient field as distance

measures for image registration. Second, we review the decomposition model of para-

metric and non-parametric image registration using MI and NGF. Third, we present

the numerical algorithm to solve these two models. Then, we present numerical tests

and finally, we conclude the two models.
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5.2 Mutual Information

In this section, we introduce the mathematical background for mutual information as

a distance measure in image registration. We recall the mathematical setting for image

registration followed by the definitions of entropy and mutual information. Then, we

derive the discrete mutual information and the gradient of this particular measure for

optimisation purposes later.

Mathematical Preliminaries for Image Registration: Assume that we are given

two images, the reference R and template T , which are compactly bounded and sup-

ported operators T,R : R2 → R+. The image domain is denoted as Ωh = [0, N1]×[0, N2]

and the pixel location is given by

xi,j = (x1,i, x2,j) ∈ Ωh, 0 ≤ i < N1, 0 ≤ j < N2 (5.1)

where x1,i = ih1, x2,j = jh2, h1 and h2 are the width and height respectively of

each pixel and images R and T are of size N1 × N2. For ease of computation we use

h = h1 = h2 and N = N1 = N2. We aim to align T and R such that the transform

template image T (ϕ) is aligned geometrically with R. The transformation ϕ is a vector

valued function where ϕ : R2 → R2.

Entropy: The mutual information of two images T and R is a measure of how

much information we know about the image T with the knowledge of the second image

R. The probability distribution of T , pT (t) is defined as the number of pixels in image

T that have pixel value t normalised by N2

pT (t) =
1

N2

(
# of ti = t

)
, i = 1, . . . N2, (5.2)

and similarly for image R

pR(r) =
1

N2

(
# of ri = r

)
, i = 1, . . . N2. (5.3)

The ability of images to convey information can be measured in bits using Shannon

entropy. The information content of a single event is proportional to the log of the

inverse of the probability of an event. It is weighted by the probability that the event

occurs and summed over all events to give the total information content known as

entropy. We define entropy as the amount of uncertainty and the Shannon entropy for

a random variable X = {x1, x2, ..., xn} is defined as

H(X) =
∑
i

pi log
1

pi
= −

∑
i

pi log pi = −E [log pi] (5.4)

where pi are the probabilities of the variable xi that occur in X. Similarly for T and

R we have,

H(T ) = −
∑
i

pT (ti) log pT (ti), H(R) = −
∑
i

pR(ri) log pR(ri). (5.5)
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Example 5.2.1 Suppose we have a random variable X such that

X =

{
1, with probability p;
2, with probability 1− p.

(5.6)

Then the entropy for X is given by

H(X) = −p log p− (1− p) log(1− p). (5.7)

We can see that the entropy is not dependent on the value that the random variable
takes (either 1 or 2 in this case), but it only depends on the probability distribution.

Entropy has the following properties:

1. Non-negativity: H(X) ≥ 0, entropy is always non-negative. H(X) = 0 if and

only if X is deterministic.

2. Chain rule: The decomposition of entropy is as follows

H(X1, X2, . . .) =
n∑
i=1

H(Xi|Xi−1), (5.8)

where Xi−1 = {X1, X2, . . . , Xi−1} and H(Xi|Xi−1) is defined as the conditional

entropy.

3. Monotonicity: Conditioning always reduces entropy

H(X|Y ) ≤ H(X). (5.9)

4. Maximum entropy: Let χ be the set from which the random variable X takes its

values, then

H(X) ≤ log |χ|. (5.10)

The above bound is achieved when X is uniformly distributed.

5. Non-increasing under functions: Let X be a random variable and let g(X) be

some deterministic function of X. We have

H(X) ≥ H(g(X)). (5.11)

The joint probability distribution of T and R denoted as pT,R(t, r) is calculated as

the number of times out of N that a pixel in T contains t and the same pixel in R

contains r normalised by the number of pixels,

pT,R(t, r) =
1

N2

(
# of ti = t and ri = r

)
, i = 1, . . . N2. (5.12)

Definition 5.2.2 Differential Entropy of a Continuous Random Variable.
The differential entropy for a continuous random variable X with probability density

91



function (pdf) f(x) is defined as

h(X) = −
∫
f(x) log f(x) dx = −E[log(f(x))]. (5.13)

For a pair of continuous random variables (X,Y ) with joint pdf f(x, y), the joint entropy
is given by

h(X,Y ) = −
∫ ∫

f(x, y) log f(x, y) dx dy, (5.14)

and the conditional entropy is

h(X|Y ) = −
∫ ∫

f(x, y) log f(x|y) dx dy. (5.15)

Mutual Information: The probability distribution of the intensity values for all

pixels in the image can be estimated using the histogram of the image or based on the

Parzen window. We will use the latter approach to calculate the mutual information

of T and R denoted as MI(T,R) where

MI(T,R) =
∑
t,r

pT,R(t, r) log
pT,R(t, r)

pT (t)pR(t)

= H(R)−H(R|T )

(5.16)

whereH(R) is the entropy of the reference image andH(R|T ) is the conditional entropy,

based on the conditional probabilities pT,R(r|t). When T and R are aligned, the amount

of information they contain about each other is maximal. From equations (5.16) and

(5.8) we have,

MI(T,R) = H(R)−H(R|T )

= H(R)− (H(T,R)−H(T ))

= H(R) +H(T )−H(T,R).

(5.17)

It is true that 0 ≤ MI(T,R) ≤ H(R), where MI(T,R) = 0 when R and T have no

features in common and MI(T,R) = H(R) = H(T ) when T = R. Properties of the

mutual information are:

1. Symmetry: MI(T,R) = MI(R, T ).

2. MI(T, T ) = H(T ).

3. MI(T,R) ≤ H(T ), MI(T,R) ≤ H(R). That is, the information which the images

share can never be greater than the information in the images themselves.

4. MI(T,R) ≥ 0, the uncertainty about T cannot be increased by learning about

R.

5. MI(T,R) = 0 if and only if T and R are independent.
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Definition 5.2.3 Mutual Information. The mutual information between two con-
tinuous random variables X,Y with joint pdf f(x, y) is given by

MI(X,Y ) =

∫ ∫
f(x, y) log

f(x, y)

f(x)f(y)
dx dy,

where f(x) and f(y) are the marginal pdf for X and Y respectively.

Definition 5.2.4 Mutual Information Distance Measure. The mutual informa-
tion distance measure DMI is defined by DMI : Rd → R where

DMI(T,R;ϕ) = −
∫
R2

pT (ϕ),R(t, r) log
pT (ϕ),R(t, r)

pT (ϕ)(t)pR(r)
dt dr (5.18)

where ϕ is the transformation ϕ : R2 → R2 for two dimensional images. Mutual
information is a measure of similarity between given images. When T (ϕ) and R are
aligned the information contained is maximal.

Example 5.2.5 Mutual Information for Rotation Image R. We have an image
R from [71] and we find the second image T which is the translated version of R with
a translation of 2 pixels in the x1 direction. We plot the joint probability density of
pR,R(r, r) and pT,R(t, r) which is given in Figures 5.1 (b) and (c) respectively. We can
see that the density, pR,R(r, r) is very ‘sharp’ because R = R and pT,R(t, r) is smeared
out because T 6= R.
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(b) Joint probability distribu-
tion of image R with itself.
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(c) Joint probability distribu-
tion of image R with T where
T is the translated version of R.

Figure 5.1: Illustration of the image R and the joint probability density for R. (a)
is the image R, (b) shows that the density is very ‘sharp’ because R = R and (c) is
smeared out because T 6= R.

Considering non-parametric image registration, we can model the transformation ϕ as

ϕ(x) = x+ u(x). (5.19)

Thus, we will derive the Gâteaux derivative of DMI with perturbation on u,

δDMI(u;η) =< ∇uDMI,η >H (5.20)
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where < ·, · > is the usual scalar product on a Hilbert space H. Recall that

< u,η >H=

∫
Ω
u(x) · η(x) dx =

∫
Ω
< u(x),η(x) >R2 dx. (5.21)

∇uDMI is given by

∇uDMI =
1

|Ω|

[
k ?

∂L(R, T (x+ u(x)))

∂t

]
∇uT (x+ u(x)) (5.22)

where

∂L(R, T (x+ u(x)))

∂t
=

1

pR,T (x+u(x))(r,t)

∂pR,T (x+u(x))(r,t)

∂t
− 1

pT (x+u(x))(t)

∂pT (x+u(x))(t)

∂t
,

(5.23)

and ? denotes the convolution operator

[k1 ? k2](m,n) =

∫
R2

k1(m− r, n− t)k2(r, t) dr dt. (5.24)

|Ω| denotes the area of the image domain Ω ⊂ R2 and k is a smooth bidimensional

density kernel used to estimate the joint probability density function of image R and

T (x + u(x)), given by pR,T (x+u(x))(r, t). Mutual information is not differentiable if

we use the histogram based calculation to estimate the probability density function.

Thus, we approximate the density with a smooth and differentiable approach using the

Parzen window technique.

5.2.1 Parzen Windowing for Probability Estimation

Definition 5.2.6 Parzen Window. Let k be a function of unit integral
(∫∞
−∞ k(τ)dτ = 1

)
.

Let {ti} be a set of M samples of a random variable T with probability density function
pT (t). The Parzen window estimate of pT (t) is given by

pT (t) =
1

M

M∑
i=1

k ((t− ti)/σ)

σ
(5.25)

where σ > 0 is the width of the Parzen window kernel.

Parzen windowing is used to estimate the probability distribution using kernel estima-

tion. k denotes the kernel function and σ is the predefined parameter for the kernel

function. For example, in [67], k is a Gaussian kernel function given by

k(x;σ) =
1√
2πσ

exp
(
− x2

2σ2

)
. (5.26)

We use the cubic spline kernel for estimating the joint probability density function as

was done in [68] since the requirements for the kernel function are that it be a bell-

shaped function, smooth, compactly supported and of integral one. For example, when
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σ = 1, we have

k(x) =



(x+ 2)3, −2 ≤ x < −1;

−x3 − 2(x+ 1)3 + 6(x+ 1), −1 ≤ x < 0;

x3 + 2(x− 1)3 − 6(x− 1), 0 ≤ x < 1;

(2− x)2, 1 ≤ x < 2;

0, elsewhere

(5.27)

and the derivative k′(x) can be easily obtained from equation (5.27). The spline kernels

for σ = 0.5, 1, 2 are illustrated in Figure 5.2. From Figure 5.2, we can see the effect

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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σ=1
σ=0.5
σ=2

Figure 5.2: Illustration of the spline kernel kσ(x) for σ = 0.5, 1, 2.

of different values of σ. It controls the width and height of the spline kernel. From

equation (5.26), if t1 happens to cluster tightly with some sample that their Parzen

windows k((t1− ti)/σ))/σ overlap often, then pT (t1) will have large value. If at t2, the

samples are scattered and happen to be not dense, then only a few overlaps happen.

Thus pT (t2) will have a lower value. For ease of implementation, we will use

kσ(x) =
k(x/σ)

σ
, (5.28)

and we can write equation (5.25) as

pT (t) =
1

M

M∑
i=1

kσT (t− ti). (5.29)

5.2.2 Discretisation of Mutual Information Distance Measure

Given images T and R with ranges [t0, tN ] and [r0, rN ] respectively where usually

t0 = r0 = 0 and tn = rn = 255. Let ht and hr be defined as

ht =
tn − t0
nt

and hr =
rn − r0

nr
(5.30)
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where nt and nr are predefined bin numbers, which are needed to discretise the intensity

values of T and R. We have

ti = t0 + (i− 0.5)ht and rj = r0 + (j − 0.5)hj , i = 0, . . . , nt, j = 0, . . . , nr. (5.31)

The discrete set of intensity values in T and R are denoted by LT and LR respectively.

We define the joint discrete Parzen histogram as

h(t, r) =
1

ntnr

∑
x∈Ωh

kσT (t− ti(x))kσR(r − rj(x)) (5.32)

and the estimation of the joint probability distribution is given by

p(t, r) = pT,R(t, r) =
1∑

t∈LT
∑

r∈LR h(t, r)
h(t, r). (5.33)

We add a small tolerance ε to the argument of the logarithm to handle cases when we

would have 0 log 0. Thus the joint entropy can be calculated as

H(T,R) = ntnr

nt∑
i=1

nr∑
j=1

pi,j log(pi,j + ε), (5.34)

where pi,j = p(ti, rj) and the discretised marginal densities and entropy can be com-

puted as

pT (tk) = nr

nr∑
j=1

pk,j and H(T ) = nt

nt∑
k=1

pT (tk) log(pT (tk) + ε),

pR(rk) = nt

nt∑
i=1

pi,k and H(R) = nr

nr∑
k=1

pR(rk) log(pR(rk) + ε).

(5.35)

5.3 Normalised Gradient Field

The sum of the squared distance measure assumes that the intensity values of R and

the transformed template T (ϕ) are equal. Meanwhile, mutual information makes the

assumption that there is statistical dependency between T (ϕ) and R. A trade-off

between the SSD and MI is given by the normalised gradient field (NGF) distance

measure which is based on the alignment of the edges of R and T (ϕ). The features

in T (ϕ) and R can be identified by the intensity changes which are indicated by the

gradient of T (ϕ) and R. Since we are not interested in the magnitude of the gradient

because there is no intensity relationship, we normalise the gradient with the magnitude

of the gradient

nT (x) =
∇T
‖∇T‖εT

, nR(x) =
∇R
‖∇R‖εR

(5.36)

where

‖∇T‖εT =
√
‖∇T‖22 + ε2T , ‖∇R‖εR =

√
‖∇R‖22 + ε2R, (5.37)
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εT and εR are added into the calculation of NGF to overcome the problem when dividing

by zero. Based on [33, 34], the values are given by

εT =
η

V

∫
Ω
|∇T (x)| dΩ (5.38)

where dΩ = dx1 dx2 and η is the estimated noise level and V is the volume of the domain

Ω and similarly for εR. These parameters act as threshold values for the edges. When

‖∇T (x)‖22 > εT , the feature is considered to be an edge and when ‖∇T (x)‖22 < εT , it

is considered as noise. For two vectors a and b, the dot product is given by

a · b = ‖a‖2‖b‖2 cos θ (5.39)

where ‖a‖2 and ‖b‖2 are the norm of the vectors a and b, and the cross product is

‖a× b‖2 = ‖a‖2‖b‖2 sin θ. (5.40)

where θ is the angle between a and b. Then,

cos θ =
a · b

‖a‖2‖b‖2
and sin θ =

‖a× b‖2
‖a‖2‖b‖2

. (5.41)

Based on the dot and cross products of two vectors, we can defined the NGF similarity

measure as

DNGFc(T,R) =
1

2

∫
Ω
dc(T,R) dΩ, dc(T,R) = ‖nT (x)× nR(x)‖22 (5.42)

and

DNGFd(T,R) = −1

2

∫
Ω
dd(T,R) dΩ, dd(T,R) = (nT (x) · nR(x))2 (5.43)

which are equivalent from an optimisation point of view [33, 34]. In this chapter we

will use

DNGF(T,R) =

∫
Ω

1−
(

(nT (x))TnR(x)
)2

dΩ (5.44)

as the normalised gradient field distance measure for image registration.

Example 5.3.1 Consider that we have an image R as in Figure 5.3 (a). We transform
R so that we have the template image T which is the translated version by 2 pixels in
the x1 direction. Then, we plot the two measures DMI(T,R) and DNGF(T,R) as shown
in Figures 5.3 (b) and (c) respectively. We can see that DMI(T,R) is highly non-convex
since there are local and global minima. In contrast, DNGF(T,R) has only one global
minimum.
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Figure 5.3: Comparison of two distance measures. (a) is the reference image R, (b) is
mutual information and (c) is normalised gradient field as the distance measures. We
can see that (b) is highly non-convex. Thus, non-convexity of registration problems
increases with mutual information as the distance measure.

5.3.1 Discretisation of Normalised Gradient Field

The NGF can be considered as the L2 norm of r, the residual of the alignment of the

normalised gradients of two images at a pixel position x,

rh(x) = 1−
((
nhT (x)

)T
nhR(x)

)2
, (5.45)

for discrete images T and R of size N ×N using finite difference method. The images

are discretised on a uniform mesh using vertex centred discretisation where xi,j denotes

the pixel position. It is also possible to use a non-uniform mesh with finite difference

method. The gradient is calculated using

∂x1T
h(xi,j) =

T h(xi+1,j)− T h(xi−1,j)

2h
, ∂x2T

h(xi,j) =
T h(xi,j+1)− T h(xi,j−1)

2h
(5.46)

where the first order central finite difference scheme is used to approximate the first

order derivatives. We use lexicographical ordering to reorder T and R into a row vector

of size N2 × 1. Then, we have matrices Gx1 and Gx2 of sizes N2 ×N2

Gx1 =
1

2h2



−1 1 0 . . . . . .

−1 0 1 0 . . .
...

. . .
. . .

. . .
...

... . . . −1 0 1

... . . . 0 −1 1


, Gx2 =

1

2h2



−1 −1 0 . . . . . .

1 0 −1 0 . . .
...

. . .
. . .

. . .
...

... . . . 1 0 −1

... . . . 0 1 1


,

(5.47)

that represent the discrete gradient operator in x1 and x2 respectively. We can calculate

ET,i =
√

(Gx1T
h)i + (Gx2T

h)i + ε2, ER,i =
√

(Gx1R
h)i + (Gx2R

h)i + ε2, i = 1, . . . , N2.

(5.48)
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Thus,

ri =

(
(Gx1T

h)i
ETi

)(
(Gx1R

h)i
ERi

)
+

(
(Gx2T

h)i
ETi

)(
(Gx2R

h)i
ERi

)
(5.49)

and

DNGF(T h, Rh) = h2
N2∑
i=1

1− r2
i . (5.50)

5.3.2 Gradient of Normalised Gradient Field

In this subsection, we compute the discrete gradient of NGF.

Definition 5.3.2 The diag operator. Let A = diag[(b0, ..., bl)(d0, ..., dl), N ] ∈ RN×N .
Then the entries of the matrix A take values bi on the diagonals with offset di,i.e

ai,j =

{
bk, if i− j = dk;
0, otherwise.

(5.51)

Example 5.3.3 A tridiagonal matrix of size 5×5 with entries b0 on the lower diagonal,
b1 on the main diagonal and b2 on the upper diagonal is given by

diag[(b0, b1, b2)(−1, 0, 1), 5] =


b1 b2 0 0 0
b0 b1 b2 0 0
0 b0 b1 b2 0
0 0 b0 b1 b2
0 0 0 b0 b1

 . (5.52)

Let

∇T h(ϕ) =
[
diag[(Gx1T

h)(0), N2],diag[(Gx2T
h)(0), N2]

]T
,

∇Rh(ϕ) =
[
diag[(Gx1R

h)(0), N2],diag[(Gx2R
h)(0), N2]

]T
,

r = r1 � r2 = [r1,ir2,i]i =
(
diag[(r1)(0), N2]

)
r2,

r1,i = (Gx1T
h)i(Gx1R

h)i + (Gx2T
h)i(Gx2R

h)i,

r2,i =
1

ET,iER,i
.

(5.53)

Then,

dr1 =
(

diag[(Gx1R
h)(0), N2]

)
Gx1 +

(
diag[(Gx2R

h)(0), N2]
)
Gx2 ,

dr2 =

(
−diag

[(
1

(ET )3(ER)

)
(0), N2

])((
diag[(Gx1T

h)(0), N2]
)
Gx1 ,

+
(

diag[(Gx2T
h)(0), N2]

)
Gx2

)
,

dr = dr1r2 + r1dr2,

(5.54)

and

dDNGF(T h(ϕ), Rh) =
(
2h2rTdr

)
dT (ϕ). (5.55)
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5.4 A Decomposition Model for Multi-modality Image
Registration

A general framework for image registration is given by

min
ϕ(x)
J (T,R,ϕ(x)) = D(T,R,ϕ(x)) + γS(ϕ(x)) (5.56)

where D(T,R,ϕ(x)) is a similarity measure which quantifies the difference between

T and R, S(ϕ(x)) is the smoothness or regularisation term and γ is the regularisa-

tion parameter. The decomposition model of parametric and non-parametric image

registration [49] decomposes the transformation field as

ϕ(x) = up(x) + unp(x) (5.57)

where up(x) and unp(x) are the transformation field from parametric and non-parametric

models respectively. In [49], the authors recommend this particular choice:

ϕ(x) = ucubic B-spline + uFMC (5.58)

where ucubic B-spline is the cubic B-spline based model [82] and uFMC is the Fischer and

Modersitzki linear curvature model [24, 25]. The functional minimisation problem for

the decomposition model is given by

min
ucubic B-spline,uFMC

Jγp,γnp = D(T,R,ucubic B-spline,uFMC)

+ γpSTP(ucubic B-spline) + γnpSFMC(uFMC).
(5.59)

The regularisation terms for equation (5.59) are as follows:

STP(u) =

2∑
l=1

∫
Ω

(ul,x1x1)2 + (2ul,x1x2)2 + (ul,x2x2)2) dΩ

SFMC(u) =

∫
Ω

(∆u1)2 + (∆u2)2 dΩ

(5.60)

where ul,x1x1 = ∂2ul
∂x21

and similarly for ul,x1x2 and ul,x2x2 . For multi-modality images,

we will use two distance measures

DMI(T,R;ϕ) =

∫
Ω
pT (ϕ),R(t, r) log

pT (ϕ),R(t, r)

pT (ϕ)(t)pR(r)
dt dr,

DNGF(T,R;ϕ) =

∫
Ω

1−
(

(nT (ϕ))TnR(x)
)2

dΩ

(5.61)

as discussed in the previous section. Denote ucubic B-spline = up and uFMC = unp for a

more general framework. Since the parametric transformation fields up are dependent

on a certain parameter of α, we will minimise (5.59) with respect to the parameter α.
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5.5 Alternating Minimisation for the Decomposition Model

Problem (5.59) can be solved by alternating minimisation of two subproblems

min
α
J Iγp = D(T,R,up(x,α),unp) + γpSTP(up(x,α)) (5.62)

and

min
u
J IIγp = D(T,R,up(x,α),unp) + γnpSFMC(unp(x)). (5.63)

We use the discretise then optimise scheme for numerical solutions. At the kth itera-

tion, the alternate updates are done as follows:

Fixing u
(k)
np (x), we solve problem (5.62):

u(k+1)
p (x,α)← min

α
J Iγp =

N−1∑
i,j=0

D(T (up(xi,j ,α) + unp(xi,j)), R(xi,j))

+ γpSTP(up(xi,j ,α))

=
N−1∑
i,j=0

D(T (up(xi,j ,α) + unp(xi,j)), R(xi,j))

+ γp

2∑
l=1

N−1∑
i,j=0

(up,l,x1x1(xi,j , α))2 + 2 (up,l,x1x2(xi,j , α))2

+ (up,l,x2x2(xi,j , α))2 .

(5.64)

Fixing u
(k+1)
p (x,α), we solve problem (5.63):

u(k+1)
np (x)← min

unp(x)
J Iγnp =

N−1∑
i,j=0

D(T (up(xi,j ,α) + unp(xi,j)), R(xi,j))

+ γnpSFMC(unp(xi,j))

=
N−1∑
i,j=0

D(T (up(xi,j ,α) + unp(xi,j)), R(xi,j))

+ γnp

2∑
l=1

N−1∑
i,j=0

[
− 4unp,l(xi,j) + unp,l(xi+1,j)

+ unp,l(xi−1,j) + unp,l(xi,j+1) + unp,l(xi,j−1)
]2
.

(5.65)

To solve (5.64), up(x,α) are defined by the cubic B-splines with coefficient α:

up,1(x, α1) =
∑
i,j

Bi,j(x)α1,i,j , up,2(x, α2) =
∑
i,j

Bi,j(x)α2,i,j (5.66)
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where α = (α1, α2)T , is the lattice of control points which are the parameters for the

cubic B-spline model. Bi,j(x) are given by

Bi,j(x) =

{
Bl(µ)Bm(ν), i = ĩ+ l, j = j̃ +m, for l,m = 0, 1, 2, 3;

0, elsewhere,
(5.67)

where Bl(µ) and Bm(ν) are cubic B-spline basis functions as follows:

B0(µ) = (1− µ)3/6,

B1(µ) = (3µ3 − 6µ2 + 4)/6,

B2(µ) = (−3µ3 + 3µ2 + 3µ+ 1)/6,

B3(µ) = µ3/6,

(5.68)

ĩ = b x1δx1 c − 1, j̃ = b x2δx2 c − 1, µ = x1
δx1
− b x1δx1 c and ν = x2

δx2
− b x2δx2 c. The spacing of

the control points δx1 and δx2 are the predefined parameters as illustrated in details

in Chapter 4.

Next is to solve (5.65) iteratively using the LBFGS method. An alternating min-

imisation method for model (5.59) is given in Algorithm 8.
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Algorithm 8 Alternating minimisation algorithm for the decomposition model.

(γp, γnp,up(x,α),unp(x))← Decomposition(T,R,u
(0,1)
np ,α(0,1), L, γ0, γ1, τ,m,maxit,TOL)

1. Initialise γ
(0)
p = γp,1, γ

(0)
np = γnp,1. Restrict u

(0,1)
np and α(0,1) to the coarsest grid

L. u
(0,L)
np ← Restrict(u

(0,1)
np ) and α(0,L) ← Restrict(α(0,1)).

2. For k3 = 0, 1, . . . ,maxit : (Outer iteration for alternating minimisation).

(a) Compute α(k3+1,1) and γ
(k3+1)
p using equation (5.64) with

α(k3,L) as initial guess. (u
(k3+1,1)
p (x,α), γ

(k3+1)
p ) ←

MLIR(α(k3,L), T (u
(k3,1)
np (x)), R, L,J Iγp , γp,0, γp,1, τ,m, 1,maxit,TOL).

(b) Restrict u
(k3+1,1)
p at fine level to level L. u

(k3+1,L)
p ← Restrict(u

(k3+1,1)
p ) and

find the respective α(k3+1,L) from u
(k3+1,L)
p (x,α).

(c) Compute u
(k3+1)
np (x) and γ

(k3+1)
np using equation (5.65)

with u
(k3,L)
np (x) as initial guess. (u

(k3+1,1)
np (x), γ

(k3+1)
np ) ←

MLIR(u
(k3,L)
np , T (u

(k3+1,1)
p (x,α)), R, L,J IIγnp , γnp,0, γnp,1, τ,m, 2,maxit,TOL).

(d) Restrict u
(k3+1,1)
np (x) to u

(k3+1,L)
np (x). u

(k3+1,L)
np (x)← Restrict(u

(k3+1,1)
np (x)).

(e) If ‖γ(k3+1)
p − γ

(k3)
p ‖ < TOL, ‖γ(k3+1)

np − γ
(k3)
np ‖ <

TOL or JM3

γ
(k3+1)
p ,γ

(k3+1)
np

(u
(k3+1)
p (x,α),u

(k3+1)
np (x)) >

JM3

γ
(k3)
p ,γ

(k3)
np

(u
(k3)
p (x,α),u

(k3)
np (x)) exit, else continue with the next iter-

ation k3.

3. End for. Accept γp = γ
(k3+1)
p , γnp = γ

(k3+1)
np .

4. Compute the final registration algorithm on the finest level only. (up(x,α),α)←
LBFGS(γp,J Iγp ,α

(k3+1,1),m,maxit,TOL).

5. Compute the final registration algorithm on the finest level only.

(unp(x),unp(x))← LBFGS(γnp,J IIγnp ,u
(k3+1,1)
np ,m,maxit,TOL).

6. Finish the iteration with γp, γnp,up(x,α), and unp(x).

We use the same algorithms as in Chapter 4 to solve model problems (5.62) and

(5.63).

5.6 Numerical Results

We use three sets of tests to show the performance of the decomposition model for

multi-modality images. In Test 1, we have a reference image from photon density

weighted MRI and a template image which comes from T2-MRI. For Test 2, we have

synthetic images from [18] to illustrate the type of images where the mutual information

and decomposition models are at a disadvantage. We obtain a good result using the

normalised gradient field and the decomposition model for Test 2. Meanwhile, for Test
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3, we use images from [71] to illustrate the case where both models fail to deliver good

registration results. Such images therefore require an alternative registration which we

may provide.

5.6.1 Test 1: Photon Density Weighted MRI and T2-MRI

The results of the mutual information and decomposition models for Test 1 are shown

in Figure 5.4. In Figure 5.4, we can observe that the decomposition model with mutual
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(d) T (ϕ(x)) with
DMI(T (ϕ(x)), R) = −0.8013

Figure 5.4: Test 1: Results of mutual information as the distance measure with the
decomposition model for multi-modality images. We can see that the model delivers
a good alignment between the transformed template image in (d) and the reference
image in (b).

information as the distance measure is able to solve the problem of real medical image

registration where the reference and template images are from photon density weighted

MRI and T2-MRI respectively. We show the results for Test 1 using the normalised gra-

dient field in Figure 5.5. The transformed template image for the normalised gradient

field and the decomposition model is shown in Figure 5.5 (b). We have an acceptable

level of the transformed template image where it appears to be similar to the reference

image except at the middle right part of the brain.
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DMI(T (ϕ(x)), R) = −0.9709

Figure 5.5: Test 1: Results of normalised gradient as the distance measure with the
decomposition model for multi-modality images. The resulting transformed template
in (b) is in alignment with the reference image except at the middle part of the brain.
Smaller value of DMI(T (ϕ(x)), R) in (b) than in Figure 5.4 (d) indicating higher simi-
larity between the transformed template and the reference images.

5.6.2 Test 2: Synthetic Images

In Test 2, we aim to illustrate the type of images where mutual information and the

decomposition model fail to deliver good registration results. Since mutual information

uses the statistical dependency of the intensity values between the reference and tem-

plate images, the model fails to register this type of problem because only the reference

image has the square object inside the circle. However, we have a good result using

normalised gradient field as shown in Figure 5.7.

5.6.3 Test 3: Bias Field Registration

Bias fields or intensity inhomogeneities are common problems in medical image analysis

where some part of the same object in the image appears to become darker than the

rest of the object. It is a very common problem in MRI. In Figure 5.8, we show the

results of mutual information with a strong bias field in the template image.

The normalised gradient field and the decomposition model also fail to register Test

3 as depicted in Figure 5.9. We can see that in the figure, the outermost boundary of

the brain in the transformed template image is not aligned with the one in the reference

image.

5.7 Conclusion

We have shown the extension of the decomposition model to multi-modality images

using mutual information and the normalised gradient field as the distance measures.

From the numerical tests, we can observe that the normalised gradient field and de-

composition model work better than mutual information. However both models are at

a disadvantage when there is a strong bias field in the images. We will address this in
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DMI(T (ϕ(x)), R) = −0.3777

Figure 5.6: Test 2: Results of mutual information as the distance measure with the
decomposition model for multi-modality images. We can see that the model fails for
the deformed circle in the template image in (a) due to the existence of the inner square
in the reference image (b).
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Figure 5.7: Test 2: Results of normalised gradient as the distance measure with the
decomposition model for multi-modality images. We can see the model is able to solve
this particular problem. Smaller value of DMI(T (ϕ(x)), R) in (b) than in Figure 5.6
(d) indicating higher similarity between the transformed template and the reference
images.

the future work.
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DMI(T (ϕ(x)), R) = −0.5742

Figure 5.8: Test 3: Results of mutual information as the distance measure with the
decomposition model for multi-modality images. We can see that the model fails to
register the template with the reference image due to the strong bias field in (a).
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Figure 5.9: Test 3: Results of normalised gradient field as the distance measure with
the decomposition model for multi-modality images. We can see that the model fails to
register the template with the reference image due to the strong bias field in (a). Smaller
value of DMI(T (ϕ(x)), R) in (b) than in Figure 5.8 (d) indicating higher similarity
between the transformed template and the reference images.
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Chapter 6

A Novel Variational Model for
Image Registration using
Gaussian Curvature

We have presented the first part of our main work which was the decomposition model

for mono and multi modality image registration. We now present the second part of

our main work which is a vital part of this project. In this chapter, we propose a novel

variational model for image registration using Gaussian curvature as a regulariser. The

model is motivated by the surface restoration work in geometric processing. An effective

numerical solver is provided for the model using an augmented Lagrangian method.

Numerical experiments show that the new model outperforms three competing models

which are based on, respectively, the linear curvature, the mean curvature and the

diffeomorphic demon models, in terms of robustness and accuracy.

6.1 Introduction

In previous work on non-parametric image registration, higher order regularisation

models [26, 19] were found to be the most robust while the diffeomorphic demon model

[93] offers the most physical transform in terms of (nearly) bijective mapping. Diffusion

and total variation regularisation models based on first order derivatives are less compli-

cated to implement but are at a disadvantage compared to higher order regularisation

models based on second order derivatives due to two reasons. First, the former methods

penalise rigid displacement. They cannot properly deal with transformations involving

translation and rotation. Second, low order regularisation is less effective than high

order regularisation in producing smooth transformations, which are important in sev-

eral applications including medical imaging. The work of [24, 25, 26] proposed a high

order regularisation model called as linear curvature, which is an approximation of the

surface (mean) curvature and the model is invariant to affine registration. This work

was later refined in [41, 39, 40] where a related approximation to the sum of the squares

of the principal curvatures was suggested and higher order boundary conditions were
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recommended. Without any approximation to the mean curvature, the work in [19, 18]

developed useful numerical algorithms for models based on nonlinear mean curvature

regularisation and observed advantages over the linear curvature models for image reg-

istration. However the effect of mesh folding (bijective maps) was not considered. The

diffeomorphic demon model [94] is widely used due to its use of bijective maps; but the

bijection is not precisely imposed. Another useful idea of enforcing bijection, beyond

the framework we consider, is via minimising the Beltrami coefficient which measures

the distortion of the quasi-conformal map of registration transforms [56].

In this chapter, we propose a high order registration model based on Gaussian

curvature and hope to achieve large and smooth deformation without mesh folding.

Although the Gaussian curvature is closely related to the mean curvature, it turns out

that our new model based on the Gaussian curvature is much better. The motivation

of the proposed model comes from two sources. Firstly, we are inspired by the work

of Elsey and Esedoglu [21] in geometry processing where the Gaussian curvature of

the image surface is used in a variational formulation. The authors proposed the

Gaussian curvature as a natural analogue of the total variation of the Rudin, Osher

and Fatemi (ROF) model [78] for geometry processing. Aiming to generalise the ROF

model to surface fairing, where the convex shapes in 3D have similar interpretation to

the monotone functions in 1D problems for the ROF model, they showed that, based on

the Gauss Bonnet theorem, the complete analogue of the total variation regularisation

for surface fairing is the energy functional of the Gaussian curvature. Secondly, a very

important fact pointed out in [21] is that the mean curvature of the surface is not

a suitable choice for surface fairing because the model is not effective for preserving

important features such as creases and corners on the surface (although the model is still

effective for removing noise). Their claims are also supported by the work of [60] where

the authors illustrated several advantages of Gaussian curvature over mean curvature

and total variation in removing noise in 2D images. First, Gaussian curvature preserves

important structures such as edges and corners. Second, only Gaussian curvature can

preserve structures with low gradient. Third, the model is effective in removing noise

on small scale features. Thus, we believe that Gaussian curvature is a more natural

physical quantity of the surface than mean curvature. Here we investigate the potential

of using Gaussian curvature to construct a high order regularisation model for non-

parametric image registration of mono-modal images.

Below, we list three popular models selected for tests and comparisons.

Model LC. The first is the linear curvature model considered in [25, 26, 67, 24],

where

SLC(u) =

∫
Ω

[
(∆u1)2 + (∆u2)2

]
dΩ. (6.1)

This term is an approximation of the surface curvature ι(ul) through the mapping
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(x, y)→ (x, y, ul(x, y)), l = 1, 2, where

ι(ul) = ∇ · ∇ul√
|∇ul|2 + 1

≈ ∆ul (6.2)

when |∇ul| ≈ 0. The Euler-Lagrange equation with SLC as the regularisation term is

given by a fourth order PDE

γ∆2u+ f(u) = 0 (6.3)

with boundary conditions ∆ul = 0,∇∆ul · n = 0, l = 1, 2 and n the unit outward

normal vector. The model consists of the second order derivative information of the

displacement field and results in smoother deformations compared to those obtained

using first order derivative models based on elastic and diffusion energies. It is refined

in [41, 39, 40] with nonlinear boundary conditions. The affine linear transformation

belongs to the kernel SLC(u) which is not the case in elastic or diffusion registration.

Model MC. Next is the mean curvature model [19, 18]

SMC(u) =

∫
Ω

[
k(ι(u1)) + k(ι(u2))

]
dΩ,

where k(s) = 1
2s

2 and ι is as defined in (6.2). The Euler-Lagrange equation with SMC

as the regularisation term is given by:

γ∇ ·
( 1√
|∇ul|2 + 1

∇k′(ι(ul))−
∇ul · ∇k′(ι(ul))
(
√
|∇ul|2 + 1)3

∇ul
)

+ fl(u) = 0, l = 1, 2 (6.4)

with boundary condition ∇ul · n = ∇ι(ul) · n = 0, l = 1, 2. One can use the multigrid

method to solve equation (6.4) as in [19]; refer also to [18] for multi-modality image

registration work.

Model D. Finally, the so-called demon registration method of Thirion [88] where

pixels in the image act as demons that force pulling and pushing actions in a similar

approach to Maxwell’s for solving the Gibbs paradox in thermodynamics. The original

demon registration model is a special case of diffusion registration but it has been much

studied and improved since 1998; see [74, 67, 100, 63]. The energy functional for the

basic demon method is given by

S(u) = ‖R(x)− T (x+ ũ+ u)‖2 +
σ2
i

σ2
x

‖u‖2 (6.5)

where ũ is the current displacement field, while σ2
i and σ2

x account for noise in the image

intensity and the spatial uncertainty respectively. Equation (6.5) can be linearised using

first order Taylor expansion,

J (u) = ‖R(x)− T (x+ ũ) + Ju‖2 +
σ2
i

σ2
x

‖u‖2 (6.6)
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where J is given by

J = −∇R+∇T (x+ ũ)

2

for an efficient second order minimisation. The first order condition of (6.6) leads to

the new update for ũ

u = −R(x)− T (x+ ũ)

‖J‖2 +
σ2
i
σ2
x

J.

The additional use of v for ϕ = exp(v) helps to achieve a nearly diffeormorphic trans-

formation (mapping), where v is the stationary velocity field of the displacement field

u; see [95]. It should be remarked that the three main steps of the model cannot be

combined into a single energy functional.

In a discrete setting, since the image domain Ω is a square, all variational models

are discretised by finite differences on a uniform grid. Refer to [67]. The vertex grid is

defined by

Ωh =
{
xi,j = (xi, yj)

∣∣ 0 ≤ i ≤ N1 − 1, 0 ≤ j ≤ N2 − 1
}

where we shall re-use the notation T and R for discrete images of size N1 ×N2.

6.2 Mathematical Background of the Gaussian Curvature

In differential geometry, the Gaussian curvature problem seeks to identify a hypersur-

face of Rd+1 as a graph z = u(x) over x ∈ Ω ⊂ Rd so that, at each point of the surface,

the Gaussian curvature is prescribed. Let κ(x) denote the Gaussian curvature which is

a real valued function in Ω ⊂ Rd. The problem is modelled by the following equation

det(D2u)− κ(x)(1 + |Du|2)(d+2)/2 = 0 (6.7)

where D is the first order derivative operator. Equation (6.7) is one of the Monge-

Ampere equations. For d = 2, we have

κ(x) ≡ −κGC =
uxxuyy − uxyuyx
(1 + u2

x + u2
y)

2
. (6.8)

In [21], the authors define a regularisation term using the Gaussian curvature of a

closed surface based on the Gauss-Bonnet theorem.

Theorem 6.2.1 Gauss-Bonnet Theorem. For a compact C2 surface ∂Σ, we have∫
∂Σ
κGC dσ = 2πχ

where dσ is the length element to the surface and χ is the Euler characteristic of the
surface.

Using this Theorem, it was shown in [21] that the complete analogy of the total variation

regularisation for surface fairing is the energy functional of the Gaussian curvature. The
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analogous term S, to the total variation of a function, that appears in the ROF model

[78], is given by

S =

∫
∂Σ
|κ(x)|dσ

where dσ is the length element to the surface ∂Σ.

Gaussian curvature is one of the fundamental second order geometric properties of a

surface. According to the Gauss’s Theorema Egregium, Gaussian curvature is intrinsic.

For a local isometric mapping f : ∂Σ→ ∂Σ′ between two surfaces, Gaussian curvature

remains invariant i.e. if p ∈ ∂Σ and p′ ∈ ∂Σ′, then κGC(p) = κGC(p′) and the mapping

f is smooth and diffeomorphic.

We can also use a level set function to define the Gaussian curvature. Denote by φ

the zero level set of the surface generated through the mapping (x, y) :→ (x, y, u(x, y)).

Then, let φ = u(x, y) − z and ∇φ = (ux, uy,−1)T , where ux = ∂u
∂x and uy = ∂u

∂y . The

Gaussian curvature of the level set is given by

κGC =
∇φH∗(φ)∇φT

|∇φ|4
, (6.9)

where ∇φ = (φx, φy, φz)
T , |∇φ| =

√
φ2
x + φ2

y + φ2
z, H(φ) is the Hessian matrix and

H∗(φ) is the adjoint matrix for H(φ). We have

H(φ) =

 uxx uxy 0

uyx uyy 0

0 0 0

 , H∗(φ) =

 0 0 0

0 0 0

0 0 uxxuyy − uyxuxy

 .
Thus,

κGC =
uyxuxy − uxxuyy
(u2
x + u2

y + 1)2
.

This is why we set κGC = −κ(x) in equation (6.8). We shall use |κGC | to measure

the Gaussian curvature as in [21] for a monotonically increasing function (since the

functional should be nonnegative).

6.3 Image Registration based on Gaussian Curvature

Before introducing our new image registration model, we first state some facts which

support the use of Gaussian curvature.

6.3.1 Advantages of Gaussian Curvature

The total variation and Gaussian curvature. We use the volume-based analysis

introduced in [60] to compare two denoising models, based respectively on Gaussian

curvature and total variation:

∂u

∂t
= ∇ ·

(
κ
(∣∣∣ u2

xy − uxxuyy
(u2
x + u2

y + 1)2

∣∣∣)∇u), (6.10)
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∂u

∂t
= ∇ · ∇u

|∇u|
. (6.11)

Consider, for each α > 0, the time change of the volume vt,α = {(x, y, z) | 0 < z <

|u(x, y, t) − α|} which is enclosed by the surface z = u(x, y, t) and the plane z = α.

Assume |u(x, y, t)−α| = (u(x, y, t)−α)s with s either positive (s = 1) or negative (s =

−1) at all points. Denote by ct,α the closed curve defined by the level set u(x, y, t) = α

and by dt,α the 2D region enclosed by ct,α. The volume change of vt,α in time is given

by

V =
∂

∂t

∫
vt,α

dz dA =
∂

∂t

∫
vt,α

∫ |u(x,y,t)−α|

0
dz dA =

∂

∂t

∫
dt,α

|u(x, y, t)− α| dA

where dA is the area element. We now consider how V changes from evolving (6.10)

or (6.11).

If u is the solution of equation (6.11), then from Gauss’ theorem

V =
∂

∂t

∫
dt,α

|u(x, y, t)− α|dA = s

∫
dt,α

∂u

∂t
dA = s

∫
dt,α

∇ · ∇u
|∇u|

dA = s

∫
ct,α

∇u
|∇u|

· ndσ

where dσ is the length element and n is the unit normal vector to the curve ct,α which

is represented as n = s ∇u|∇u| . Then

V = s2

∫
ct,α

∇u
|∇u|

· ∇u
|∇u|

dσ =

∫
ct,α

dσ = |ct,α|

where |ct,α| is the length of the curve ct,α. Furthermore, the volume variation in time

is ∫
dt+δt,α

|u(x, y, t+ δt)− α| dA ≈
∫
dt,α

|u− α| dA+ sδt

∫
dt,α

∂u

∂t
dA

=

∫
dt,α

[
|u− α|+ sδt

|ct,α|
|dt,α|

]
dA

where |dt,α| denotes the area of the region dt,α. We can see that the change in u from

t to t + δt is proportional to the ratio
|ct,α|
|dt,α| . So, when this ratio is large (indicating

possibly a noise presence), the total variation model reduces it and hence removes noise.

However, important features of u which have a large level set ratio are removed also

and are not preserved by the total variation model (6.11).

Using similar calculations as before for the Gaussian curvature scheme (6.10), we

have

V =
∂

∂t

∫
dt,α

|u(x, y, t)− α| dA = s

∫
dt,α

∇ ·
(
κ
(∣∣∣ u2

xy − uxxuyy
(u2
x + u2

y + 1)2

∣∣∣)∇u)dA

= s

∫
ct,α

(
κ
(∣∣∣ u2

xy − uxxuyy
(u2
x + u2

y + 1)2

∣∣∣)∇u) · ndσ =

∫
ct,α

(
κ
(∣∣∣ u2

xy − uxxuyy
(u2
x + u2

y + 1)2

∣∣∣))|∇u| dσ.
(6.12)

From here, we observe that the quantity V for the subdomain vt,α is dependent on the
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product of the variation and the Gaussian curvature on the level curve. The function

κ in (6.12) controls and scales the speed of the volume change in contrast to the total

variation scheme where V depends only on the variation of the level curve. Consider a

point p = (x0, y0, α) where α = u(x0, y0). The Gaussian curvature κ = κ1κ2 is based on

two principal curvatures κ1 and κ2 where κ1 is the curvature of the level curve passing

the point p, and κ2 is the curvature of the path which passes through the point p and

which is orthogonal to the level curve. If the Gaussian curvature on one level curve is

zero then there is no change in V regardless of variation on the level curves. In contrast,

with total variation, if there is a variation in the level curve, then there is a change in

V . Based on this observation, we believe that the Gaussian curvature model is better

than the total variation model for preserving features on surfaces.

The mean curvature and Gaussian curvature. The mean curvature (MC)

ι = (κ1 + κ2)/2 is also widely used. Next, we show that, though closely related,

Gaussian curvature (GC) is better than mean curvature for surfaces in three ways.

First, Gaussian curvature is invariant under rigid and isometric transformations. In

contrast, mean curvature is invariant under rigid transformations but not under isomet-

ric transformations. Rigid transformations preserve distance between two points while

isometric transformations preserve length along surfaces and preserve angles between

curves on surfaces. To illustrate invariance, consider a surface

z1(x, y) = ax2 + by2,

whose Gaussian curvature and mean curvature are respectively

κ =
0− (2a)(2b)

(1 + 4a2x2 + 4b2y2)2
, ι =

(1 + 4b2y2)(2a) + (1 + 4a2x2)(2b)

(1 + 4a2x2 + ab2y2)3/2
.

If we flip the surface upside down (isometric transformation) where z′1(x, y) = −ax2 −
by2, we will have the same value for the Gaussian curvature and a different value for the

mean curvature. Thus, Gaussian curvature is invariant under isometric transformation.

Second, Gaussian curvature can be used to localise the tip of a surface better than

mean curvature. Consider

z2(x, y) = −1

2
(x2 + y2)

as shown in Figure 6.1 (a). Then, we compute the mean and Gaussian curvature for

the surface as depicted in Figures 6.1 (b) and (c) respectively. For Figure 6.1 (b), we

display the negative of the mean curvature for better assessment and visualisation. For

both figures, the maximal values are given at the centre of the tip. The value given by

the Gaussian curvature is sharper than that of the mean curvature. The highest point

of the Gaussian curvature is better distinguished from its neighbourhood compared to

the highest point of the mean curvature.

Third, Gaussian curvature can locate saddle points better than mean curvature.
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Figure 6.1: Representation of a surface with GC and MC. (a) shows a surface model
with a tip point. (b) is the negative mean curvature and (c) is the Gaussian curvature.
The highest point in (c) is better localised than in (b).

Take

z3(x, y) = −1

2
(x2 − y2)

as one example. The surface along with its mean and Gaussian curvatures are given in

Figures 6.2 (a), (b) and (c) respectively. The mean curvature for this surface appears
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(c) Negative Gaussian curvature

Figure 6.2: Location of a surface’s saddle point by GC and MC. (a) is the surface with
a saddle point. (b) is the negative mean curvature and (c) is the negative Gaussian
curvature. The highest point in (b) is not at the saddle point and for (c), the saddle
point is better distinguished from its neighbourhood.

complex where the largest value is not at the saddle point and the saddle point cannot

be easily located. However, Gaussian curvature gets its highest value at the saddle point

and is therefore able to accurately identify the saddle point within its neighbourhood.

In addition to these three examples and observations, a very important fact pointed

out in [21] is that the mean curvature of the surface is not a suitable choice for sur-

face fairing because the model is not effective for preserving important features such

as creases and corners on the surface (although the model is effective for removing

noise). This is true when we are referring to surface fairing (surface denoising) but not

necessarily true for 2D image denoising. From the recent work done in image denoising

[21, 60], we observed several advantages of Gaussian curvature over total variation and
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mean curvature. Therefore, we might conjecture that Gaussian curvature may outper-

form existing models in image registration. To our knowledge there exists no previous

work on this topic.

6.3.2 The Proposed Registration Model

Now we return to the problem of how to align or register two image functions T (x), R(x).

Let the desired and unknown displacement fields between T and R be the surface map

(x, y) :→ (x, y, ul(x, y)) where l = 1, 2 and with u = (u1, u2). We propose our Gaussian

curvature based image registration model as

min
u∈C2(Ω)

Jγ(u(x)) =
1

2

∫
Ω

(T (x+ u)−R(x))2 dΩ + γSGC(u(x)) (6.13)

where

SGC(u(x)) =

2∑
l=1

SGC(ul), SGC(ul) =

∫
Ω

∣∣∣∣∣ul,xyul,yx − ul,xxul,yy(u2
l,x + u2

l,y + 1)2

∣∣∣∣∣ dΩ.

The above model (6.13) leads to two Euler Lagrange equations:
γ∇ ·

(
4|u1,xyu1,yx − u1,xxu1,yy|

N 3
1

∇u1

)
+ γ∇ ·B1,1 + γ∇ ·B1,2 + f1 = 0

γ∇ ·
(

4|u2,xyu2,yx − u2,xxu2,yy|
N 3

2

∇u2

)
+ γ∇ ·B2,1 + γ∇ ·B2,2 + f2 = 0

(6.14)

where

N l = u2
l,x + u2

l,y + 1, Bl,1 =

((
−
Slul,yy
N l

)
x

,

(
Slul,xy
N l

)
x

)
Bl,2 =

((
Slul,yx
N l

)
y

,

(
−
Slul,xx
N l

)
y

)
, Sl = sign(ul,xyul,yx − ul,xxul,yy)

f = (f1, f2)T = (T (x+ u)−R(x))∇uT (x+ u), l = 1, 2.

The original boundary conditions for (6.14) which is obtain from the derivation of the

Euler-Lagrange equations are(Sl(ul,y)y
N 2

l

,
Sl(ul,y)x

N 2
l

)
· n = 0,

(Sl(ul,x)y

N 2
l

,
Sl(ul,x)x

N 2
l

)
· n = 0 (6.15)

for l = 1, 2 and n is the normal vector at the boundary ∂Ω.

6.3.3 Derivation of the Euler-Lagrange Equations (6.14)

Let q1 = ux and q2 = uy, then we can write the Gaussian curvature regularisation term

as

SGC(q1, q2) =

∫
Ω

∣∣∣q1,xq2,y − q1,yq2,x

(1 + q2
1 + q2

2)2

∣∣∣ dx dy.
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From the optimality condition

dSGC(q1, q2)

dq1
= 0 and

dSGC(q1, q2)

dq2
= 0, (6.16)

then,
d

dε1
SGC(q1 + ε1ϕ1, q2)

∣∣∣
ε1=0

= 0 (6.17)

and
d

dε2
SGC(q1, q2 + ε2ϕ2)

∣∣∣
ε2=0

= 0. (6.18)

We have,
d

dε1

∫
Ω

∣∣∣(q1 + ε1ϕ1)xq2,y − (q1 + ε1ϕ1)yq2,x

(1 + (q1 + ε1ϕ1)2 + q2
2)2

∣∣∣ dx dy
∣∣∣
ε=0

=

∫
Ω
S
d

dε1

[
(q1 + ε1ϕ1)xq2,y − (q1 + ε1ϕ1)yq2,x

(1 + (q1 + ε1ϕ1)2 + q2
2)2

]
dx dy

∣∣∣
ε=0

= 0

(6.19)

where S = sign
(
q1,xq2,y−q1,yq2,x

(1+q21+q22)2

)
. From (6.19),∫

Ω
S

[
ϕ1,xq2,y − ϕ1,yq2,x

(1 + q2
1 + q2

2)2
+ (q1,xq2,y − q1,yq2,x)(−4ϕ1q1(1 + q2

1 + q2
2)−3)

]
dx dy

=

∫
Ω

Sϕ1,xq2,y

Γ2
− Sϕ1,yq2,x

Γ2
− 4SDq1ϕ1

Γ3
dx dy

= 0.

where Γ = 1 + q2
1 + q2

2, D = q1,xq2,y − q1,yq2,x.

Using the Green’s theorem∫
∂Ω
φω · nds−

∫
Ω
φdiv(ω) dx dy =

∫
Ω
∇φ · ω dx dy (6.20)

then,∫
Ω

Sϕ1,xq2,y

Γ2
− Sϕ1,yq2,x

Γ2
dx dy =

∫
∂Ω
ϕ1

(
Sq2,y

Γ2
,
Sq2,x

Γ2

)
· nds−

∫
Ω
ϕ1div

(
Sq2,y

Γ2
,
Sq2,x

Γ2

)
= 0

where φ = ϕ1,ω =
(
Sq2,y

Γ2 ,
Sq2,x

Γ2

)
. Setting the boundary integral to zero, then we have∫

Ω
ϕ1div

(
Sq2,y

Γ2
,
Sq2,x

Γ2

)
dx dy = 0.

Finally, we use the fundamental lemma of the calculus of variation:

∇ ·
(
Sq2,y

Γ2
,
Sq2,x

Γ2

)
− 4SDq1

Γ3
= 0.

Similarly, for d
dε2
SGC(q1, q2 + ε2ϕ2)

∣∣∣
ε2=0

= 0, we finally obtain equation (6.14).
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From the derivation of the Euler-Lagrange equation we obtain the following bound-

ary conditions (Sq2,y

Γ2
,
Sq2,x

Γ2

)
· n = 0

and (Sq1,y

Γ2
,
Sq1,x

Γ2

)
· n = 0.

Since q1 = ux and q2 = uy, we have

(uy)y = 0, (uy)x = 0, (ux)y = 0, and (ux)x = 0. (6.21)

However, later in Section 6.3.4 we choose two Neumann boundary conditions for solving

the Euler-Lagrange equations in (6.14) which satisfied the original boundary conditions

in (6.21).

6.3.4 Augmented Lagrangian Method

The augmented Lagrangian method (ALM) is often used for solving constraint minimi-

sation problems by replacing the original problem with an unconstrained problem. The

method is similar to the penalty method where the constraints are incorporated in the

objective functional and the problem is solved using alternating minimisation of each

of the sub-problems. However, in ALM, there are additional terms in the objective

functional, known as Lagrange multiplier terms, which arise when incorporating the

constraints. Similar work on the augmented Lagrangian method in image restoration

can be found in [109, 110].

To proceed, we introduce two new dual variables q1 and q2 where q1 = ∇u1(x) and

q2 = ∇u2(x). Consequently we obtain a system of second order PDEs which are more

amenable to effective solution.

We obtain the following refined model for Gaussian curvature image registration

min
u1,u2,q1,q2

J (u1, u2, q1, q2) = D(T,R,u(x)) + γSGC(q1) + γSGC(q2)

s.t q1 = ∇u1(x), q2 = ∇u2(x)

and further reformulate J (u1, u2, q1, q2) to get the augmented Lagrangian functional

LGC(u1, u2, q1, q2;µ1,µ2) =
1

2
‖T (x+ u(x))−R(x)‖22 + γSGC(q1) + γSGC(q2)

+ 〈µ1, q1 −∇u1〉+ 〈µ2, q2 −∇u2〉

+
r

2
‖q1 −∇u1‖22 +

r

2
‖q2 −∇u2‖22

(6.22)

where µ1,µ2 are the Lagrange multipliers, the inner products are defined via the usual

integration in Ω and r is a positive constant. We use an alternating minimisation

procedure to find the optimal values of u1, u2, q1, q2 and µ1,µ2 where the process

involves only two main steps.
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Step 1. For the first step we need to update q1, q2 for any given u1, u2,µ1,µ2. The

objective functional is given by

min
q1,q2

γSGC(q1) + γSGC(q2) + 〈µ1, q1〉+ 〈µ2, q2〉+
r

2
‖q1 −∇u1‖2 +

r

2
‖q2 −∇u2‖2.

This sub-problem can be solved using the following Euler Lagrange equations:
− γ
(((−q1,1)y

Γ2
1

)
x

+
(−(q1,1)x

Γ2
1

)
y

)
− γ 4S1D1q1,2

Γ3
1

+ µ1,2 + r(q1,2 − (u1)y) = 0,

− γ
(((q1,2)y

Γ2
1

)
x

+
(−(q1,2)x

Γ2
1

)
y

)
− γ 4S1D1q1,1

Γ3
1

+ µ1,1 + r(q1,1 − (u1)x) = 0

(6.23)

where D1 = det(∇q1) = (q1,1)x(q1,2)y − (q1,1)y(q1,2)x, Γ1 = 1 + u2
1,x + u2

1,y and S1 =

sign
(

D1
(‖∇u1‖2+1)2

)
. We have a closed form solution for this step, if solving alternatingly,

where

q1,1 =
Γ3

1

(
− γ
((

(q1,2)y
Γ2
1

)
x

+
(
−(q1,2)x

Γ2
1

)
y

)
+ µ1,1 − r(u1)x

)
−rΓ3

1 + γ4S1D1
,

q1,2 =
Γ3

1

(
− γ
((

(q1,1)y
Γ2
1

)
x

+
(
−(q1,1)x

Γ2
1

)
y

)
+ µ1,2 − r(u1)y

)
−rΓ3

1 + γ4S1D1
.

Similarly, we solve q2,1, q2,2 from
− γ
(((−q2,1)y

Γ2
2

)
x

+
(−(q2,1)x

Γ2
2

)
y

)
− γ 4S2D2q2,2

Γ3
2

+ µ2,1 + r(q2,2 − (u2)y) = 0,

− γ
(((q2,2)y

Γ2
2

)
x

+
(−(q2,2)x

Γ2
2

)
y

)
− γ 4S2D2q2,1

Γ3
2

+ µ2,1 + r(q2,1 − (u2)x) = 0

(6.24)

where D2 = det(∇q2) = (q2,1)x(q2,2)y − (q2,1)y(q2,2)x, Γ2 = 1 + u2
2,x + u2

2,y and S2 =

sign
(

D2
(‖∇u2‖2+1)2

)
.

Step 2. For the second step we need to update u1, u2 for any given q1, q2 and

µ1,µ2 with the following functional

min
u1,u2

1

2
‖T (x+ u)−R(x)‖22 − 〈µ1,∇u1〉 − 〈µ2,∇u2〉+

r

2
‖q1 −∇u1‖2 +

r

2
‖q2 −∇u2‖2.

Thus, we have the following Euler Lagrange equations:{
− r∆u1 + f1 +∇ · µ1 + r∇ · q1 = 0

− r∆u2 + f2 +∇ · µ2 + r∇ · q2 = 0
(6.25)

with Neumann boundary conditions ∇ul · n = 0, l = 1, 2. To solve equation (6.25),

first, we linearise the force term f using the Taylor expansion

fl(u
(k+1)
1 , u

(k+1)
2 ) = fl(u

(k)
1 , u

(k)
2 ) + ∂u1fl(u

(k)
1 , u

(k)
2 )δu

(k)
l + ∂u2f1(u

(k)
1 , u

(k)
2 )δu

(k)
2 + . . .

≈ fl(u
(k)
1 , u

(k)
2 ) + σ

(k)
l,1 δu

(k)
1 + σl,2δu

(k)
2

(6.26)
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where

σ
(k)
l,1 = ∂u1fl(u

(k)
1 , u

(k)
2 ), σl,2 = ∂u2fl(u

(k)
1 , u

(k)
2 ), δu

(k)
1 = u

(k+1)
1 − u(k)

1 , δu
(k)
2 = u

(k+1)
2 − u(k)

2 .

Second, we approximate σ
(k)
l,1 and σ

(k)
l,2 with

σ
(k)
l,1 =

(
∂ulT (x+ u(k))

)(
∂u1T (x+ u(k))

)
σ

(k)
l,2 =

(
∂ulT (x+ u(k))

)(
∂u2T (x+ u(k))

)
.

The discrete version of equation (6.25) is as follows

Nh(uh,(k))uh,(k+1) = Bh(uh,(k)) (6.27)

where

Nh(u(k)) =

[
−rL+ σh11(uh,(k)) σh12(uh,(k))

σh21(uh,(k)) −rL+ σh22(uh,(k))

]
,

Bh(u(k)) =

[
−Gh1 + fh1 (u

(k)
1 , u

(k)
2 ) + σh11(u(k))u

h,(k)
1 + σh12(uh,(k))u

h,(k)
2

−Gh2 + fh2 (u
(k)
1 , u

(k)
2 ) + σh21(u(k))u

h,(k)
1 + σh22(uh,(k))u

h,(k)
2

]
,

L is the discrete version of the Laplace operator ∆ and Ghl is the discrete version of

∇ · µl + r∇ · ql, l = 1, 2.

Third, we solve the system of equations (6.27) using a weighted pointwise Gauss Seidel

method

uh,(k+1) = (1− ω)uh,(k) + ω
(
Nh(u(k))

)(−1)
Bh(u(k))

where ω ∈ (0, 2) and we choose ω = 0.9725.

The iterative algorithm to solve (6.22) is now summarised as follows. We linearise

Algorithm 9 Augmented Lagrangian Method for Gaussian Curvature Image Regis-
tration.

1. Initialise µ1 = µ2 = 0,u(x) = 0, γ, r.

2. For k = 0, 1, ..., IMAX

(a) Step 1: Solve (6.23-6.24) for (q
(k+1)
1 , q

(k+1)
2 ) with (u1, u2) = (u

(k)
1 , u

(k)
2 ).

(b) Step 2: Solve (6.25) for (u
(k+1)
1 , u

(k+1)
2 ) with (q1, q2) = (q

(k+1)
1 , q

(k+1)
2 ).

(c) Step 3: Update Lagrange multipliers.

µ
(k+1)
1 = µ

(k)
1 + r(q

(k+1)
1 −∇u(k+1)

1 ), µ
(k+1)
2 = µ

(k)
2 + r(q

(k+1)
2 −∇u(k+1)

2 )

3. End for.

the force term f using a first order approximation from Taylor expansion in (6.26) to
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have a simple and stable numerical scheme. Noted that

σ
(k)
l,1 = ∂u1fl(u

(k)
1 , u

(k)
2 )

= ∂u1

[(
T (x+ u(k))−R(x)

)
∂ulT (x+ u(k))

]
= ∂u1T (x+ u(k))∂ulT (x+ u(k)) +

(
T (x+ u(k))−R(x)

)
∂u1

(
∂ulT (x+ u(k))

)
≈ ∂u1T (x+ u(k))∂ulT (x+ u(k))

because the image difference T (x + u(k)) − R(x) becomes small for well registered

images. The second order derivative of T (x+u(k)) represented by ∂u1

(
∂ulT (x+u(k))

)
is a problematic and difficult part of σ

(k)
l,1 . The term is very sensitive to noise and it

requires high computational cost to estimate properly. If the discrete image gradient

∂ulT (x+ u(k)) does not vanish at one point, the matrix system in (6.27) is strictly or

irreducibly diagonally dominant. This guarantee the existence of a unique solution of

each linearised system and global convergence of Gauss Seidel iteration [17].

6.4 Numerical Results

We use two numerical experiments to examine the efficiency and robustness of Algo-

rithm 9 on a variety of deformations. To judge the quality of the alignment we calculate

the relative reduction of the similarity measure

ε =
D(T,R,u(∗))

D(T,R,u(0))

and the minimum value of the determinant of the Jacobian matrix J of the transfor-

mation, denoted by F

J =

[
1 + u1,x u1,y

u2,x 1 + u2,y

]
, F = min (det(J)) . (6.28)

We can observe that when F > 0, the deformed grid is free from folding and cracking.

All experiments were run on a single level. Experimentally, we found that r ∈
[0.02, 2] works well for several types of image. As for the stopping criterion, we use

tol = 0.001 for the residual of the Euler-Lagrange equations (6.23)-(6.25) and the

maximum number of iterations is 30. Experiments were carried out using Matlab

R2014b with Intel(R) core (TM) i7-2600 processor and 16G RAM.

6.4.1 Test 1: A Pair of Smooth X-ray Images

Images for Test 1 are taken from [68] where X-ray images of two hands of different

individuals need to be aligned. The size of the images is 128 × 128 and the recovered

transformation is expected to be smooth. The scaled version of the transformation

and the transformed template image are given in Figures 6.3 (d) and (e) respectively.
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The transformation is smooth and the model is able to solve such a problem. For
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Figure 6.3: Test 1 (X-ray of hand). Illustration of the effectiveness of Gaussian cur-
vature with smooth problems. On the top row, from left to right: (a) template, (b)
reference and (c) the difference before registration. On the bottom row, from left to
right: (d) the transformation applied to a regular grid, (e) the transformed template
image and (f) the difference after registration. As can be seen from the result (e) and
the small difference after registration (f), Gaussian curvature is able to solve smooth
problems.

comparison, the transformed template images for the diffeormorphic demon method,

linear, mean and Gaussian curvatures are shown in Figures 6.4 (a), (b), (c) and (d)

respectively. We can observe that there are some differences of these images inside the

red boxes where only Gaussian curvature delivers the best result of the features inside

the boxes. Enlargements of the red boxes in Figure 6.4 are shown in Figure 6.5 for

all models, with the best result given by the Gaussian curvature for both parts of the

hand.

We summarise the results for Test 1 in Table 6.1 where ML and SL stand for multi

and single level respectively. For all models, γ is chosen as small as possible such that

F > 0;, here for Model D, γ =
σ2
i
σ2
x
. We can see that the fastest model is the diffeor-

morphic demon, followed by linear and mean curvature. The current implementation

for Gaussian curvature is on single level and the model uses the augmented Lagrangian

method which has four dual variables and four Lagrange multipliers terms. Thus, it

requires more computational time than the other models.
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Figure 6.4: Test 1 (X-ray of hand). Comparison of Gaussian curvature with competing
methods. The transformed template image using (a) Model D, (b) Model LC, (c) Model
MC and (d) Gaussian curvature. Note the difference of these three images inside the
red boxes.

Measure Model D Model LC Model MC GC

ML SL ML SL SL SL

γ 1.6 1.6 0.1 0.5 0.0001 0.0001

Time (s) 15.19 186.48 84.33 12.98 275.3 953.15

ε 0.1389 0.1229 0.0720 0.3780 0.0964 0.0582

F 0.0600 0.1082 0.3894 0.1973 0.6390 0.3264

Table 6.1: Quantitative measurements for all models for Test 1. ML and SL stand for
multi and single level respectively. γ is chosen as small as possible such that F > 0 for
all methods. F > 0 indicates the deformation consists of no folding and cracking of the
deformed grid. We can see that the smallest value of ε is given by Gaussian curvature
(GC).

6.4.2 Test 2: A Pair of Brain MR Images

We take as Test 2 a pair of medical images of size 256 × 256 from the Internet Brain

Segmentation Repository (IBSR) https://www.nitrc.org/project/ibsr where 20

normal MR brain images and their manual segmentations are provided. We choose

a particular pair of individuals with different sizes of ventricle to illustrate a large

deformation problem. Figure 6.6 shows the test images and the registration results
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Figure 6.5: Test 1 (X-ray of hand). Comparison of transformed templates in zoomed-
in boxes and their local ε values: (a) Model D, (b) Model LC, (c) Model MC and (d)
Gaussian curvature. Gaussian curvature has the smallest ε value.

using the Gaussian curvature model. We can see that the model is able to solve real

medical problems involving large deformations, which is particularly important for

atlas construction in medical applications. Figure 6.7 shows the transformed template

images for all four methods. We can see that Gaussian curvature gives the best result

inside the red boxes in comparison with the diffeomorphic demon, the linear and mean

curvature models as depicted in Figure 6.7 (d). Enlargements of the red boxes in Figure

6.7 are shown in Figure 6.8 where we can observe that Gaussian curvature gives better

alignment for both parts of the brain.

Measure Model D Model LC Model MC GC

ML SL ML SL SL SL

γ 1.2 1.4 0.16 2.0 0.0001 0.0001

Time (s) 23.89 209.00 275.04 35.70 830.22 1053.7

ε 0.2004 0.7580 0.1128 0.4283 0.1998 0.1062

F 0.0277 0.0387 0.3157 0.0148 0.8240 0.0138

Table 6.2: Quantitative measurements for all models for Test 2. ML and SL stand for
multi and single level respectively. γ is chosen to be as small as possible such that
F > 0 for all models. F > 0 indicates the deformation consists of no folding and
cracking of the deformed grid. We can see that the smallest value of ε is given by
Gaussian curvature (GC).
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Figure 6.6: Test 2: A pair of Brain MR images. Illustration of the effectiveness of
Gaussian curvature with real medical images. On the top row, from left to right: (a)
template, (b) reference and (c) the difference before registration. On the bottom row,
from left to right: (d) the transformation applied to a regular grid, (e) the transformed
template image and (f) the difference after registration. As can be seen from the result
(e) and the small difference after registration (f), Gaussian curvature can be applied to
real medical images and is able to obtain good results.

The values of the quantitative measurements for Test 2 are recorded in Table 6.2

where the lowest values of ε are given by the Gaussian curvature model, indicating

higher similarity between the transformed template result and the reference image.

However, our propose model required more time than the other models since our model

consists of more variables than the others.

6.5 Discussion

Gaussian curvature is proposed as a novel regularisation term for variational formula-

tion based image registration. We have presented an efficient numerical scheme using

the augmented Lagrangian method to solve the model. All of the experimental results

indicate that Gaussian curvature obtains improved results over the mean curvature, lin-

ear curvature and demon methods for mono-modal image registration. The model can

be extended to multi-modality image registration by changing the distance measure.

γ is the regularisation parameter and it controls the smoothness of the deformation

field. We run experiments with various values of γ and fixing r = 0.02 for Test 1
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Figure 6.7: Test 2: A pair of Brain MR images. Comparison of Gaussian curvature
with competing methods. The transformed template image using (a) Model D, (b)
Model LC, (c) Model MC, and (d) Gaussian curvature. Notice the differences of these
three images inside the red boxes. Considerably more accurate results are obtained,
particularly within these significant regions, by employment of the Gaussian curvature
model.

as shown in Figure 6.9. From the figure, with an optimal value of r, decreasing γ

will decrease the value of F and ε until a value γ = γ∗ (in Figure 6.9, γ∗ = 0.0001).

Decreasing γ, γ < γ∗ has no affect on F and ε. We also observe how the functional J
in equation (6.13) evolves during the iterations. The result is shown in Figure 6.9 (c)

for Test 1 using γ = 0.0001 and r = 0.02. The functional J and the fitting term D are

decreasing and the regularisation term SGC is increasing, indicating the convergence of

the model.

One of the main aspects in solving the Gaussian curvature model using ALM is

the parameter r. The parameter stabilises the minimisation problem by introducing a

quadratic energy on the distance between ∇ul and ql. A bigger value of r will bring

∇ul and ql close together and produce a higher value of dissimilarity between R and

T , as shown in Figure 6.10. It also controls the smoothness of the deformation field.

In Figure 6.10, we use Test 1, fix γ = 0.008 and vary the value of r, r ∈ [0.002, 2].

Define

n1 =
1

|Ω|
mean (q1 −∇u1, q2 −∇u2) (6.29)

and n2 as the average residual of equations (6.23), (6.24) and (6.25). We can observe
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Figure 6.8: Test 2: A pair of Brain MR images. Comparison of transformed templates
in zoomed-in boxes and their local ε values: (a) Model D, (b) Model LC, (c) Model
MC and (d) Gaussian curvature. Again Gaussian curvature has the smallest ε value.
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Figure 6.9: The effects on the values of F and ε for various values of γ are shown in
(a) and (b). We obtain these figures using r = 0.02 for Test 1 and it confirms that
γ controls the smoothness of the deformation field. The iteration history for Test 1 is
shown in (c). Since the functional J is decreasing, the convergence of the proposed
model is confirmed.

that with a very small r, the residual increases and produces mesh folding even when

the value of ε is small. Thus, we required an optimal value of r such that ε is small and

F > 0. We start with a large value of r, for example r = 2, and check n2. If n2 is close

to zero we reduce r by a factor of 10. Otherwise we increase r. This procedure was done

on a coarse grid (16× 16), with a small number of iterations. Thus, the computational
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Figure 6.10: The effects on the value of F , n1, n2 and ε for various values of r. In (a),
F decreases with decreasing value of r. We should use the value of r, such that F > 0,
to avoid mesh folding. In (b), we can see that increasing the value of r will decrease
the difference between q1, q2 and ∇u1,∇u2. From (c), with a large value of r, we have
smaller residual indicated by n2. In (d), although small r = 0.002, gives a very small
ε, but since F < 0 for this value of r, we choose the optimal value of r to be r = 0.02.

cost is low. For Tests 1 and 2, we obtain r = 0.02 through this procedure.

The linear curvature model is based on the approximation of the mean curvature.

The mean curvature model for image registration is highly nonlinear making the model

difficult to solve. In contrast, we use the Gaussian curvature term without any approx-

imation with an efficient numerical solver for the model. The diffeormorphic demon

model is equivalent to the second order gradient descent on the SSD as shown in [74].

The model is limited to mono-modality images and it is not directly applicable to

multi-modality images. The proposed model however can be easily modified to work

with multi-modality images by changing the distance measure D(T,R,ϕ) from the

SSD with mutual information or the normalised gradient field. We show results for

multi-modality images in Figure 6.11 for the Gaussian curvature model with mutual

information as the distance measure.

6.6 Conclusion

We have introduced a novel regularisation term for non-parametric image registration

based on the Gaussian curvature of the surface induced by the displacement field.
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Figure 6.11: Results of Gaussian curvature image registration for multi-modality im-
ages. The model is able to register multi-modality images with mutual information as
the distance measure.

The model can be effectively solved using the augmented Lagrangian and alternating

minimisation methods. For comparison, we used three models: the linear curvature

[25], the mean curvature [19] and the demon algorithm [95] for mono-modality images.

Numerical experiments show that the proposed model delivers better results than the

competing models.
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Chapter 7

An Improved Model for Joint
Segmentation and Registration

We have so far presented a decomposition model combining parametric and non-

parametric image registration in Chapters 4 and 5, as the first part of our work. For

the second part, we proposed a novel non-parametric image registration model based

on Gaussian curvature in Chapter 6. Image segmentation and registration are two of

the most challenging tasks in medical imaging. They are closely related because reg-

istration results will be affected by segmentation and vice versa. In this chapter, we

present the third part of our main work which makes use of image registration and

image segmentation. We present an improved model for joint segmentation and regis-

tration based on active contour without edges. The proposed model is motivated by

[58] and linear curvature [24]. Numerical results show that the new model outperform

s the existing model for the registration and segmentation of one or multiple objects

in the image. The proposed model also improves registration results when the features

inside the object are to be segmented, posing different kinds of deformations to the

object itself.

7.1 Introduction

Image segmentation aims to separate objects or features in the image that have similar

characteristics into different classes or sub-regions, via detection and visualisation of

the contours of the objects in the images. Meanwhile, image registration is the process

of finding a geometric transformation between images such that the template (target)

images are aligned with the reference (source) images. In some fields, such as medical

image processing, these two depend on each other and should be treated simultaneously

in a joint framework. One important application of such combinations can be found in

[31] and similar papers where atlases are constructed from magnetic resonance (MR)

scans to analyse and understand brain tumour development The task of constructing

the atlases requires alignment of the brain tumour MR scans to a common coordi-

nate system and the automatic segmentation of the scans. According to [22], 25% of
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published work in medical imaging literature are joint segmentation and registration

methods. In this chapter, we describe a new model for simultaneous segmentation and

registration based on variational formulations. The idea of joining the tasks of seg-

mentation and registration has been utilised by Guyader and Vese in [58] using a level

set representation which aligns the contour of the template image and simultaneously

segments the reference image. The method relates both problems using a segmentation

model based on the active contour model without edges which is solved in terms of the

displacement field. This chapter describes an improved segmentation and registration

approach related to the model in [58].

The first work on variational model for joint region based segmentation and regis-

tration was proposed for rigid registration by Yezzi and his colleagues in [108]. Later,

the work on segmentation and rigid registration was extended to non-rigid deformation

in [91] where the model improves segmentation and registration for CT and MR images.

The authors pointed out that the success of the model is dependent on how well the

segmentation results manage to represent the images. Thus, the model is highly depen-

dent on the segmentation results. These two works [108, 91] produce segmented images

for both the reference and template images and the mapping from the template image

to the reference image. In [99], the authors proposed a registration and segmentation

model for multi-modality images using cross cumulative residual entropy as a distance

measure for registration. To model the deformation, the authors [99] used a parametric

model based on cubic B-spline and for segmentation, the piecewise constant Chan-Vese

(CV) model [12]. However the model requires segmentation of the reference image and

the work can be considered as registration driven by segmentation.

The Guyader and Vese (GV-JSR) model [58] that has coupled segmentation and

registration uses the nonlinear elastic model to register the segmented template and

reference images. The model manages to produce topology-preserving segmentation

where the initial contour from the template image is deformed to the contour of the

reference image without merging or breaking which is difficult to achieve by other

segmentation methods. However, the model is limited to well-defined objects or features

that have clear boundaries but without fine details. Another limitation of the model

is that it cannot cope with multiple objects detected in one image. Here, our proposal

is to improve the model for overcoming these two drawbacks. We will describe in the

following an improved segmentation and registration approach related to the model in

[58].

The contribution of this chapter is twofold. First, to improve the GV-JSR model for

cases where the objects are with fine details, we add a weighted Heaviside sum of the

squared difference (SSD) term in the GV-JSR model. Second, for better registration,

invariant to the affine registration and which allows large deformation, we use the

linear curvature model [25, 24] to replace the nonlinear elastic term in the GV-JSR

model. In this way, there is no need for a pre-registration step to cater for affine linear

131



transformation [25]. Beside the ability to recover affine linear transformation, the

linear curvature model for registration also produces more smooth transformation than

a nonlinear elastic model. It is well known that low order regularisation terms, such

as nonlinear elasticity are less effective than high order ones such as linear curvature

in producing smooth transformations [68, 67]. To the best of our knowledge, only

diffusion, linear and nonlinear elastic models for non-parametric image registration

have been used in the task of joining segmentation and registration.

The outline of this chapter is as follows. In Section 7.2 we review the task of

joining segmentation and registration. In Section 7.3, we introduce our proposed new

joint segmentation and registration (NJSR) model which improves the original GV-JSR

model. We show in Section 7.4 some numerical tests including comparisons. Finally,

we present our conclusion in Section 7.5.

7.2 Review of Joint Segmentation and Registration

Variational models for image processing have received lots of attention in the medical

imaging community due to the robustness and accuracy of the models. This includes

joining the tasks of segmentation and registration. In this section, we provide a brief

review of variational formulation models for joint segmentation and registration. Before

we proceed, we introduce the same notation as in Chapters 2 and 3. Let the reference

and template images, R, T : Ω ⊂ R2 → R, as given compactly support functions and de-

note by ϕ = ϕ(x) : Ω→ R2, the unknown transformation aiming for T (ϕ(x)) ≈ R(x)

with x = (x1, x2). In the non-parametric (variational approach) image registration,

the transformation is written as ϕ(x) = x + u(x). This transformation enables us

to focus on the unknown displacement vector u(x) = (u1(x), u2(x)). Here u(x) is

searched over admissible functions in the set U , a linear subspace of a Hilbert space

with Euclidean scalar product. Let Γ be a closed curve which distinguishes foreground

and background for a two phase segmentation model. We use the level set of a Lipschitz

function φ0 : Ω→ R to represent Γ as its zero level set such that
Γ = ∂Ω1 = {(x1, x2) ∈ Ω|φ0(x1, x2) = 0},
inside(Γ) = Ω1 = {(x1, x2) ∈ Ω|φ0(x1, x2) > 0},
outside(Γ) = Ω2 = {(x1, x2) ∈ Ω|φ0(x1, x2) < 0}.

(7.1)

Introducing a regularised Heaviside function Hε,

Hε(z) =
1

2

(
1 +

2

π
arctan

z

ε

)
and its corresponding Delta function

δε(z) =
dHε(z)

dz
=

ε

π(ε2 + z2)
.
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7.2.1 The Unal-Slabaugh Model [91]

The region based energy functional for joint segmentation and registration [91] can be

written as

min
φ0(x),u(x)

J (φ0(x),u(x)) =

∫
Ω

(T (x)− a1)2Hε(φ0(x)) dx+

∫
Ω

(T (x)− a2)2(1−Hε(φ0(x))) dx

+

∫
Ω
δε(φ0(x))|∇φ0(x)| dx

+

∫
Ω

(R(x)− c1)2Hε(φ0(x+ u(x))) dx

+

∫
Ω

(R(x)− c2)2(1−Hε(φ0(x+ u(x)))) dx+ γ

∫
Ω
|∇u(x)|2 dx

(7.2)

where φ0(x) is the level set function as in equation (7.1) and u(x) is the displacement

field. a1 and a2 are the average intensities inside and outside the zero level set φ0(x)

for the template image, and similarly for c1 and c2. Unal and Slabaugh used the H1

seminorm to regularise the displacement field

Sdiff(u(x)) =

∫
Ω
|∇u(x)|2 dx =

∫
Ω
|∇u1(x)|2 + |∇u2(x)|2 dx (7.3)

in (7.2) which is a diffusion regularisation term for non-parametric image registration.

The model in (7.2) is solved using an explicit numerical scheme and will produce the

displacement field and segmented images for both the template and reference.

7.2.2 The Schumacher et al. Model [85]

In the previous section, we reviewed the task of joining segmentation and registration

using the diffusion model to regularise the displacement field u(x). In this section,

we will review the task which uses the linear elastic model to control the smoothness

of the displacement field u(x). Schumacher et al. [85] presents improved work in

image registration using manual segmentation where the segmentation of the template

images are given. Even though the author did not clearly mention that their work

is joint segmentation and registration, their presented model uses active contours to

generate the segmented image (mask) of the reference image and the displacement field

by solving the problem

min
u(x)
DSSDmix

(R, T,MR,MT ,u(x)) + γSLE(u(x)) (7.4)

where

DSSDmix

(R, T,MR,MT ,u) =
1

2

∫
Ω

[T (x+ u(x))−R(x)]

· [MT (x+ u(x))−MR(x)] · [MA(x)]2 dx.

(7.5)
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MT and MR are the masks for the template and reference images, respectively. MA is

the third mask for suppressing an unwanted area. The definition of the MT , MR and

MA are as follows. Let B
(i)
T , B

(i)
R ∈ Ω, i = 1, 2, ...,m where m is the number of regions.

It is assumed that B
(i)
T ∩ B

(j)
R = ∅ for i 6= j. Let bi ∈ R+ denote the weighting factor

for B
(i)
T and B

(i)
R , respectively. Define

MT (x) =

{
bi, x ∈ B(i)

T ;

1, otherwise
,

MR(x) =

{
bi + 1, x ∈ B(i)

R ;

1, otherwise
,

MA(x) =

{
0, x ∈ B(i)

R ∧ bi = 0;

1, otherwise
.

(7.6)

Thus, T (x+ u(x))−R(x) is multiplied by
−1, x ∈ B(i)

T ∧ x ∈ B
(i)
R ;

bi, x 6∈ B(i)
T ∧ x ∈ B

(i)
R ;

−bi, x ∈ B(i)
T ∧ x 6∈ B

(i)
R .

(7.7)

The authors use a linear elastic model for the regularisation term in (7.4) which is given

by

SLE(u(x)) =

∫
Ω

µ

4

2∑
l,m=1

(
∂xlum + ∂xmul

)2
+
λ

2

(
div u

)2
dx (7.8)

where µ and λ are the Lame constants. The mask of the reference image can be

generated automatically using the mask of the template image and a snake based seg-

mentation scheme. See [85] for more details.

7.2.3 The GV-JSR Model [57]

A nonlinear elastic model for image registration was introduced in [107] to model large

and smooth transformation for image registration. This motivates the authors in [58]

to use it in the GV-JSR model. The GV-JSR model uses the initial given segmentation

of the template image to find the geometric transformation of the template image

and the segmentation of the reference image. In this section, we will review it before

highlighting the disadvantages of the model. The segmentation of the template image

is represented by the zero level line of φ0(x). The target contour Γ which separates

the foreground and background in the reference image is represented as the zero level

line of φ0(x + u(x)) where u(x) is the displacement field. The joint functional for
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segmentation and registration in [57] is given by

min
c1,c2,u(x)

J (c1, c2,u(x)) = λ1

∫
Ω
|R(x)− c1|2Hε(φ0(x+ u(x))) dx

+ λ2

∫
Ω
|R(x)− c2|2(1−Hε(φ0(x+ u(x)))) dx

+ αSNLE(p) + αβ‖p−∇u(x)‖2

(7.9)

where c1 and c2 are the average intensities inside and outside the curve Γ in the reference

image which is represented by the zero level line as in equation (7.1). The variable p

is the dual variable for ∇u(x) for simplicity and to reduce the nonlinearity in the

regularisation term. It is given by

p =

(
p11 p12

p21 p22

)
≈ ∇u(x) =

(
∂u1
∂x1

∂u1
∂x2

∂u2
∂x1

∂u2
∂x2

)
. (7.10)

The regularisation term in (7.9), denoted by SNLE, is the nonlinear elastic regularisation

term for image registration based on Yanovsky et al. [107, 105, 62] which is given by

SNLE(p) =

∫
Ω

λ

8

(
2(p11 + p22) + p2

11 + p2
12 + p2

21 + p2
22

)2
+
µ

4

(
(2p11 + p2

11 + p2
21)2

+ (2p22 + p2
12 + p2

22)2 + 2(p12 + p21 + p11p22 + p21p22)2
)

dx

(7.11)

where µ and λ are the Lame constants and the model uses the Dirichlet boundary

condition.

The GV-JSR model [57, 58] is incorporated with the regridding step, thus it manages

to recover large deformation. The idea of regridding was proposed by Christensen et al.

[15] to model large deformation. The regridding step is as follows. The determinant of

the Jacobian matrix of the transformation is calculated during the registration process

to make sure there is no folding or cracking in the deformation field. If the minimum

value of the determinant falls below a certain threshold, the last displacement field is

stored and the template image is initialised using the last displacement field. Then, the

displacement field is set to zero and the process continues until convergence. In [10],

the authors extend the regridding concept and show how the method can be applied

in the case of other regularisation terms such as diffusion, linear curvature and linear

elastic with several types of boundary conditions. For example, to solve the famous

large deformation problem where we want to align a letter C with a dot (refer to [67]

for more details) the model requires two regridding steps. So, it is natural for any

regularisation based models to recover large deformation as long as the regridding step

is incorporated in the model.

One of the main advantages of the GV-JSR model is the ability to produce topology-

preserving segmentation where the initial contour from the template image is deformed
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to the contour of the reference image without merging or breaking. The contour of

the reference image is the deformed version of the contour of the template image using

the found smooth transformation. It is deformed without separation of the initial

contour from the template image which is difficult to achieve with the standard level

set implementation of the active contour [58].

Topology preservation is important for several applications in medical imaging such

as in computational brain anatomy. The GV-JSR model manages to preserve the

topology of the initial contour without incorporation of soft or hard constraints in the

model. Based on our tests however, we found that the model is only suitable for single

objects in a well defined image with relatively large structures. The registration process

is only driven by the forces on the boundary of the outer structures of the objects and

does produce an incomplete deformation field for the inner structures of the objects. We

also found that the GV-JSR model is unable to deliver good results when the template

image consists of more than one object as shown using Test 4 in §4 where the template

image consists of two homogeneous objects and both of them pose different kinds of

deformation where one of them has larger deformation compared to the other.

7.3 The Proposed New Joint Segmentation and Registra-
tion (NJSR) Model

To deal with the two cases where the GV-JSR model fails to register, we propose to

include two new terms in the functional (7.9). The first term is a SSD term of the form

DSSD(T,R,u(x)) =
1

2

∫
Ω

(T (x+ u(x))−R(x))2 dx (7.12)

which is weighted by the parameter λ3 and the term Hε(φ0(x+u(x))) and the second

term is the linear curvature term to regularise the deformation field in the NJSR model.

The sum of the squared difference in (7.12) is the optimal similarity measure of mono-

modality images where the intensity values of the same objects in the reference and

template images are equal. Thus our new NJSR model is the following

min
c1,c2,u(x)

J (c1, c2,u(x)) = λ1

∫
Ω
|R(x)− c1|2Hε(φ0(x+ u(x))) dx

+ λ2

∫
Ω
|R(x)− c2|2(1−Hε(φ0(x+ u(x)))) dx

+DSSDH(T,R, φ0(x),u(x)) + αSLC(u)

(7.13)

where

DSSDH(T,R, φ0(x),u(x)) = λ3

∫
Ω

(T ((x+u(x))−R(x)))2Hε(φ0(x+u(x))) dx (7.14)

and

SLC(u) =

∫
Ω

(∆u1)2 + (∆u2)2 dx. (7.15)
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Now, we adopt the level set formulation, φ0(x) to find the boundary Γ. c1 and c2

in (7.13) are the average intensity values inside and outside the boundary Γ in the

reference image. To update c1 and c2, minimise equation (7.13) to obtain,

c1 =

∫
R(x)Hε(φ0(x+ u(x))) dx∫
Hε(φ0(x+ u(x))) dx

,

c2 =

∫
R(x)(1−Hε(φ0(x+ u(x)))) dx∫

1−Hε(φ0(x+ u(x))) dx
.

(7.16)

To update u(x), we can solve the functional in (7.13) by either the optimise then dis-

cretise approach (i.e. the Euler Lagrange equation to be discretised by a numerical

method) or the discretise then optimise approach (i.e. the discretised functional to be

optimised). From either of these approaches, we obtain a nonlinear system of equa-

tions, which we solve iteratively to yield the final solution. Below, we adopt the latter

approach i.e. the functional in (7.13) is solved with respect to the displacement field

u(x) using a discretise then optimise approach based on the quasi-Newton method in

a multilevel framework for faster implementation.

Similarly to Chapter 2, the grid points are located at the centre of the cell

Ωh = {xi,j = (x1,i, x2,j) = ((i− 0.5)h, (j − 0.5)h)|1 ≤ i, j ≤ N} , (7.17)

where the domain Ωh is split into N×N cells of size h×h. We shall re-use the notation

T,R for discrete images of size N ×N . We re-define the solution vector

U =

[
u1

u2

]
2N2×1

,x =

[
x1

x2

]
2N2×1

, (7.18)

where

u1 =
[
u1,1,1 u1,2,1 · · · u1,N,1 u1,1,1 · · · u1,N,1 u1,1,2 · · · u1,N,N

]T
,

u2 =
[
u2,1,1 u2,2,1 · · · u2,N,1 u2,1,1 · · · u2,N,1 u2,1,2 · · · u2,N,N

]T
and x1,x2 are similarly defined.
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The discretised form of the functional in (7.13), by a finite difference method is

min
c1,c2,U

J h(c1, c2,U) = λ1

N∑
i,j=1

|R(xi,j)− c1|2Hε(φ0(xi,j + u(xi,j)))

+ λ2

N∑
i,j=1

|R(xi,j)− c2|2(1−Hε(φ0(xi,j + u(xi,j))))

+ λ3

N∑
i,j=1

(T ((xi,j + u(xi,j))−R(xi,j)))
2Hε(φ0(xi,j + u(xi,j)))

+
α

2

2∑
l=1

N∑
i,j=1

(
− 4ul(xi,j) + ul(xi+1,j) + ul(xi−1,j) + ul(xi,j+1) + ul(xi,j−1)

)2
.

(7.19)

Here, we are using homogeneous Neumann boundary conditions approximated by one

side differences

ul(xi,1) = ul(xi,2), ul(x1,j) = ul(x2,j), ul(xi,N−1) = ul(xi,N ), ul(xN−1,j) = ul(xN,j), l = 1, 2.

(7.20)

Starting with a zero initial guess,

U = 0, (7.21)

we solve

HδU = −G (7.22)

for δU and update U ← U +τδU with τ as the Armijo line search parameter [102]. H

andG are the Hessian and gradient matrix for the functional J h in equation (7.19) with

respect to the displacement vector U . The algorithm for the proposed model is given in

Algorithm 10 where we obtain multilevel representation of the reference and template

Algorithm 10 The NJSR model for joint segmentation and registration.

1. Initialisation:
R, T, α, λ1, λ2, λ3,U = 0, φ0(x).

2. For level = Minlevel, ...,Maxlevel

(a) Solve registration problem on this level using quasi-Newton method,

U level ← Register(T level, Rlevel, φlevel
0 ,U level,0). (7.23)

(b) If level < Maxlevel, interpolate U level to the next finer level.

3. End for.

images denoted by T level, Rlevel using standard coarsening in the implementation. We

also obtain multilevel representation of the surface φ0(x) which represents the contour Γ

of the template image. The coarsest and finest levels of images are denoted by Minlevel
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and Maxlevel respectively. We start with zero initial guess for the displacement field on

the Minlevel. After registration on each level, the deformation fieldU level is interpolated

to the next finer level (level = level + 1) using bilinear interpolation. These recursive

procedures are perform iteratively until we reach level = Maxlevel.

7.4 Numerical Results

We use four sets of images for testing the GV-JSR model and the NJSR model (Al-

gorithm 10) on a variety of images and deformations. To judge the quality of the

registration we calculate the relative reduction of the similarity measure

ε =
DSSD(T,R,u(x)(∗))

DSSD(T,R,u(x)(0))
. (7.24)

In all of the tests, we do not use the regridding step for fair comparison and the

value of the regularisation parameters are chosen such that the minimum value of the

determinant of the Jacobian matrix J of the transformation, denoted as F

J =

[
1 + ∂u1

∂x1
∂u1
∂x2

∂u2
∂x1

1 + ∂u1
∂x2

]
, F = min(det(J)), (7.25)

is greater than zero. This indicates that the deformed grid obtained from the displace-

ment field is free from folding and cracking. Details of the tests are:

• Test 1( One Feature with GV-JSR Model). Test 1 consists of two X-ray images

of a human hand from [68] to illustrate the type of images where the GV-JSR

model is able to segment and register. The images in Test 1 consist of one object

with relatively large structure.

• Test 2 (Global Deformation with GV-JSR Model). The images for Test 2 come

from [46] where the GV-JSR model manages to deliver good results because the

features inside the objects in the template image pose the same deformation with

the boundary of the object to be segmented.

• Test 3 (Local Deformation with GV-JSR and NJSR Models). Test 3 is used to

illustrate images where the GV-JSR model fails to provide the deformation field

between the reference and template images where the data set is from [40]. In this

test, the features inside the contour pose different kinds of deformation with the

contour. Since the GV-JSR model is based on the boundary mapping, we obtain

no alignment for the features inside the contour Γ. Note that the outer structure

is nicely registered whereas the inner structure is poorly registered. We show that

our proposed model, NJSR, is able to solve Test 3 which involves different kinds

of deformation for the boundary (contour) of the object and the features inside

the contour.
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• Test 4 (Case of More than One Object). The second class of problems where the

GV-JSR model fails to deliver good results is shown in Test 4 where two objects

are detected in the template image. These two objects have different kinds of

deformations where one of them has larger deformation compared to other one.

In all tests we use λ1 = λ2 = 250, λ = 0.5, µ = 0.005 for the GV-JSR model in a single

level implementation which are the best parameters value for the model. We solve the

GV-JSR model based on the numerical solver provided in [57] without the regridding

step. Meanwhile, for the NJSR model, we use λ1 = λ2 = λ3 = 1 and α = 0.25 and

α = 1 for Tests 3 and 4, respectively.

7.4.1 Test 1: One Feature with GV-JSR Model
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(f) T (x+ u(x)), ε = 0.2343

Figure 7.1: Test 1: GV-JSR model. Illustration of the type of images where the GV-
JSR model delivers good results where the object to be segmented in the template
image is relatively large. The results obtained in this test are for α = β = 25.

Images for Test 1 are the same as [68] where X-ray images of two hands of different

individuals need to be aligned. The size of the images is 128 × 128 and the recovered

transformation is expected to be smooth. For this test we take α = β = 25. We show

the results of Test 1 obtained by the GV-JSR model in Figure 7.1. The template image

and the zero level set of Γ are shown in red in Figure 7.1 (a). The resulting deformation

field is shown in Figure 7.1 (d) with the value of F = 0.4790. The zero level of φ0(x+u)

is shown in red with the reference image in Figure 7.1 (e). The model uses Dirichlet

boundary conditions which explains why the lower part of the hand is not aligned as
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shown in Figure 7.1 (f) with the value of ε = 0.2343. In this test, the object inside

Γ exhibits the same deformation as Γ, so the GV-JSR model manages to deliver an

acceptable level of results.

7.4.2 Test 2: Global Deformation with GV-JSR Model
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Figure 7.2: Test 2: GV-JSR model. Illustration of the second class of problems where
the GV-JSR model manages to provide good results where the deformation of the
features inside the object to be segmented pose the same deformation as the object
itself.

Synthetic images for Test 2 from [46] are used to illustrate cases where the features

inside the object have the same deformation as the boundary of the object. The results

of Test 2 using the GV-JSR model with α = β = 25, are shown in Figure 7.2. The

template image and the zero level set of Γ in red are shown in Figure 7.2 (a). The

resulting deformation field is shown in Figure 7.2 (d) with F = 0.7424. The zero level

set of φ0(x+u) is shown in red with the reference image in Figure 7.2 (e). The resulting

transformed template image using the deformation in (d) is shown in Figure 7.2 (f) with

ε = 0.0518. In this problem, the object inside Γ exhibits the same deformation as Γ,

thus the GV-JSR model manages to deliver an acceptable level of results.

7.4.3 Test 3: Local Deformation with GV-JSR and NJSR Models

In Test 3, we use the images in Figure 7.3 to illustrate where the GV-JSR model with

α = 5 and β = 25 fails to deliver good results. In the figure, we can observe that
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Figure 7.3: Test 3: GV-JSR model. Illustration of the type of image which has different
deformation for the boundary Γ and the features inside Γ. The GV-JSR model fails to
align the features inside Γ but manages to align the outer most square in the template
image. In this test we are using α = 5 and β = 25.

the deformation inside Γ is different from the deformation of Γ. We can see in Figure

7.3 (f), the resulting transformed template image contains a huge difference with the

reference image in (b) for the inner squares. However, the model manages to align the

outermost square. In the figure, we have F = 0.3319 and ε = 0.0509.

We resolve the issues in Test 3 by using the NJSR model, and the resulting images

are depicted in Figure 7.4. In this figure, we obtain the segmentation of the reference

image as shown in Figure 7.4 (b). Since the NJSR model uses the linear curvature

model for registration which contains an affine linear transformation, it manages to

recover the rotation part of the deformation without affine pre-registration step as

shown in Figure 7.4 (a) with F = 0.3004. The resulting transformed template image,

shown in Figure 7.4 (c), has better alignment with the reference image in Figure 7.3 (b)

compared to the one obtained by the GV-JSR model in Figure 7.3 (f). In this test, we

have ε = 0.0062 which is lower than the one obtain from the GV-JSR model in Figure

7.3 (f).

7.4.4 Test 4: Case of More than One Object

In Test 4, we have two objects in the template image, as shown in Figure 7.5 (a), and

they have different kinds of deformation where the big one at the left hand side has
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Figure 7.4: Test 3: NJSR model. We have better results using the NJSR model for
Test 3 where the circles in T are deformed to squares as in R. We also have smaller
value of ε = 0.0062 for the NJSR model than ε = 0.0509 which is obtained from the
GV-JSR model.

scaling and translation. Meanwhile, the smaller object at the top right only requires

translation. The reference image for this particular test is shown in Figure 7.5 (b) and
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Figure 7.5: Test 4: GV-JSR model. The model fails when there is more than one feature
detected in the template image which is indicated by a large value of ε = 0.3382.

it was chosen before discretisation of the problem. We can also interchange between

the template and reference images. The results using the GV-JSR model with α = 5

and β = 25 are shown in Figures 7.5 (d), (e) and (f). We can observe that the model

did not manage to deliver good alignment between the transformed template shown in

(f) and the reference image shown in (b). The deformation field applied on the regular
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grid is shown in Figure 7.5 (d) with F = 0.0100 and ε = 0.3382.

We resolve the issues in Test 4 using the NJSR model and the resulting images are

depicted in Figure 7.6. In this figure, we obtained better segmentation of the reference
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Figure 7.6: Test 4: NJSR model. Our proposed model manages to segment and register
this particular kind of problem where we have more than one homogeneous object in
the template image. We obtain a smaller value of ε = 0.0239 from the NJSR model
than ε = 0.3382 which is obtained from the GV-JSR model.

image as shown in Figure 7.6 (e). Since the NJSR model uses the linear curvature

model for registration and Neumann boundary conditions, it manages to recover large

deformation without regridding as shown in Figure 7.6 (d). The resulting transformed

template image, shown in Figure 7.6 (f), has better alignment with the reference image

in Figure 7.6 (c) compared to the one obtained by the GV-JSR model in Figure 7.5 (f).

In this test we have F = 0.1330 and ε = 0.0797. The small value of ε obtained from

the NJSR model indicates higher similarity between the reference and the transformed

template image compare to the one obtained from GV-JSR model in Figure 7.5 (f).

7.5 Conclusion

We have presented an improved model for joint segmentation and registration in a

variational formulation. The proposed model consists of two new terms which extend

the original Guyader and Vese (GV-JSR) model’s applicability. The first term is a

weighted SSD with a regularised Heaviside of the zero level set function to quantify the

different deformations exhibited by the features inside of the contour of the template

image. The second term is the linear curvature term to control the smoothness of the

deformation field which is superior to the non-linear elastic term in the old GV-JSR

model. The new NJSR model is particularly effective when more than one object is

detected in the image.
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Chapter 8

Conclusion and Future Research

This thesis has showed the author’s work on the mathematical modelling of three

effective models for image registration. Numerical methods for solving these models

are also presented in this thesis to show the effectiveness of the proposed models. The

first model given is the decomposition model combining parametric and non-parametric

deformation for mono and multi-modalities images. The second model demonstrated

in this thesis is the Gaussian curvature model for non-parametric image registration,

in Chapter 6. The presented model is a novel approach using Gaussian curvature for

mono-modality images. We demonstrated an augmented Lagrangian method to solve

the model. The third model given in this thesis is an improved model for the task of

joint segmentation and registration, in Chapter 7.

8.1 Conclusion

First, in Chapter 4, we have proposed a decomposition model combining parametric

and non-parametric image registration models. As such, we choose cubic B-spline and

linear curvature models for the parametric and non-parametric parts respectively. To

choose the regularisation parameter, we proposed a continuation approach based on the

determinant of the Jacobian matrix of the transformation. As a result, we found that

the decomposition model performs better than the individual models for mono-modality

images.

Second, in Chapter 5, we extended the decomposition model, in Chapter 4, to

multi-modality images where images come from different imaging machines. Thus, the

sum of squared difference of the intensity values is no longer valid in the minimisation

problem. We test mutual information and the normalised gradient field as the new

similarity measures with the decomposition model. We found that the normalised

gradient field works better than mutual information in some cases. However, both

models are at a disadvantage for cases where there is a strong bias field in the images.

Third, we present a novel method for non-parametric image registration using Gaus-

sian curvature. A new effective numerical solver for the model is presented which is

based on the augmented Lagrangian method. From our numerical experiments, we
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concluded that Gaussian curvature outperforms three competing models, which are

linear and mean curvature and diffeomorphic demon models, in terms of robustness

and accuracy.

Finally, in Chapter 7, we combine the tasks of segmentation and registration in a

joint framework. We present an improved model for joint segmentation and registra-

tion based on an active contour without edges and linear curvature model for image

registration. Numerical results showed that the new model outperforms the existing

model for joint segmentation and registration of one and multiple objects in the image.

The model also improves registration results when the features inside the object pose

different kinds of deformations of the object itself.

8.2 Future Directions

There are many different future directions that can be taken from the work presented

in this thesis. We mention some of them here:

• In Chapter 4 we proposed a decomposition model using cubic B-spline and linear

curvature. We may extend the model to include landmark registration based

models.

• We extended the decomposition model in Chapter 5 to multi-modality images.

Possible future research would be to apply the model using different distance

measures and incorporating soft or hard constraints to deal with bias field images.

• We proposed a novel regularisation term for image registration using Gaussian

curvature. Although we are able to obtain good results, it would interesting

to solve registration with image denoising using Gaussian curvature for both

problems.

• The model presented in Chapter 6 may be easily extended to three dimensional

images. At the same time, there are possibilities for developing other novel nu-

merical methods to solve the model.

• A possible future direction for Chapter 7 may be to develop a selective segmen-

tation based model for joint segmentation and registration.
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