
Journal of Artificial Intelligence Research 52 (2015) 399–443 Submitted 08/14; published 03/15

Computing Convex Coverage Sets
for Faster Multi-objective Coordination

Diederik M. Roijers d.m.roijers@uva.nl

Shimon Whiteson s.a.whiteson@uva.nl

Frans A. Oliehoek f.a.oliehoek@uva.nl

Informatics Institute

University of Amsterdam

Amsterdam, The Netherlands

Abstract

In this article, we propose new algorithms for multi-objective coordination graphs (MO-
CoGs). Key to the efficiency of these algorithms is that they compute a convex coverage
set (CCS) instead of a Pareto coverage set (PCS). Not only is a CCS a sufficient solution
set for a large class of problems, it also has important characteristics that facilitate more
efficient solutions. We propose two main algorithms for computing a CCS in MO-CoGs.
Convex multi-objective variable elimination (CMOVE) computes a CCS by performing a
series of agent eliminations, which can be seen as solving a series of local multi-objective
subproblems. Variable elimination linear support (VELS) iteratively identifies the single
weight vector w that can lead to the maximal possible improvement on a partial CCS
and calls variable elimination to solve a scalarized instance of the problem for w. VELS
is faster than CMOVE for small and medium numbers of objectives and can compute
an ε-approximate CCS in a fraction of the runtime. In addition, we propose variants of
these methods that employ AND/OR tree search instead of variable elimination to achieve
memory efficiency. We analyze the runtime and space complexities of these methods, prove
their correctness, and compare them empirically against a naive baseline and an existing
PCS method, both in terms of memory-usage and runtime. Our results show that, by
focusing on the CCS, these methods achieve much better scalability in the number of
agents than the current state of the art.

1. Introduction

In many real-world problem domains, such as maintenance planning (Scharpff, Spaan,
Volker, & De Weerdt, 2013) and traffic light control (Pham et al., 2013), multiple agents
need to coordinate their actions in order to maximize a common utility. Key to coordinating
efficiently in these domains is exploiting loose couplings between agents (Guestrin, Koller,
& Parr, 2002; Kok & Vlassis, 2004): each agent’s actions directly affect only a subset of the
other agents.

Multi-agent coordination is complicated by the fact that, in many domains, agents need
to balance multiple objectives (Roijers, Vamplew, Whiteson, & Dazeley, 2013a). For exam-
ple, agents might have to maximize the performance of a computer network while minimizing
power consumption (Tesauro, Das, Chan, Kephart, Lefurgy, Levine, & Rawson, 2007), or
maximize the cost efficiency of maintenance tasks on a road network while minimizing traffic
delays (Roijers, Scharpff, Spaan, Oliehoek, de Weerdt, & Whiteson, 2014).

c©2015 AI Access Foundation. All rights reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80774019?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Roijers, Whiteson, & Oliehoek

�������

����

Figure 1: Mining company example.

However, the presence of multiple objectives does not per se necessitate the use of
specialized multi-objective solution methods. If the problem can be scalarized, i.e., the
utility function can be converted to a scalar utility function, the problem may be solvable
with existing single-objective methods. Such a conversion involves two steps (Roijers et al.,
2013a). The first step is to specify a scalarization function.

Definition 1. A scalarization function f , is a function that maps a multi-objective utility
of a solution a of a decision problem, u(a), to a scalar utility uw(a):

uw(a) = f(u(a),w),

where w is a weight vector that parameterizes f .

The second step is to define a single-objective version of the decision problem such that the
utility of each solution a equals the scalarized utility of the original problem uw(a).

Unfortunately, scalarizing the problem before solving it is not always possible because
w may not be known in advance. For example, consider a company that mines different
resources. In Figure 1, we depict the problem this company faces: in the morning one van
per village needs to transport workers from that village to a nearby mine, where various
resources will be mined. Different mines yield different quantities of resource per worker.
The market prices per resource vary through a stochastic process and every price change
can alter the optimal assignment of vans. The expected price variation increases with
the passage of time. To maximize performance, it is thus critical to act based on the latest
possible price information. Since computing the optimal van assignment takes time, redoing
this computation for every price change is highly undesirable.

In such settings, we need a multi-objective method that computes, in advance, an op-
timal solution for all possible prices, w. We call such a set a coverage set (CS). In many
cases, w is revealed before a solution must be executed, in which case that solution can
be automatically selected from the CS given w. In other cases, w is never made explicit
but instead a human is involved in the decision making and selects one solution from the
CS, perhaps on the basis of constraints or preferences that were too difficult to formalize in
the objectives themselves (Roijers et al., 2013a). In both cases, because the CS is typically
much smaller than the complete set of solutions, selecting the optimal joint action from the
CS is typically much easier than selecting it directly from the complete set of solutions.

400

Computing CCSs for Faster Multi-objective Coordination

In this article, we consider how multi-objective methods can be made efficient for prob-
lems that require the coordination of multiple, loosely coupled agents. In particular, we ad-
dress multi-objective coordination graphs (MO-CoGs): one-shot multi-agent decision prob-
lems in which loose couplings are expressed using a graphical model. MO-CoGs form an
important class of decision problems. Not only can they be used to model a variety of real-
world problems (Delle Fave, Stranders, Rogers, & Jennings, 2011; Marinescu, 2011; Rollón,
2008), but many sequential decision problems can be modeled as a series of MO-CoGs, as is
common in single-objective problems (Guestrin et al., 2002; Kok & Vlassis, 2004; Oliehoek,
Spaan, Dibangoye, & Amato, 2010).

Key to the efficiency of the MO-CoG methods we propose is that they compute a convex
coverage set (CCS) instead of a Pareto coverage set (PCS). The CCS is a subset of the
PCS that is a sufficient solution for any multi-objective problem with a linear scalarization
function. For example, in the mining company example of Figure 1, f is linear, since the
total revenue is simply the sum of the quantity of each resource mined times its price per
unit. However, even if f is nonlinear, if stochastic solutions are allowed, then a CCS is
again sufficient.1

The CCS has not previously been considered as a solution concept for MO-CoGs because
computing a CCS requires running linear programs, whilst computing a PCS requires only
pairwise comparisons of solutions. However, a key insight of this article2 is that, in loosely
coupled systems, CCSs are easier to compute than PCSs, for two reasons. First, the CCS is
a (typically much smaller) subset of the PCS. In loosely coupled settings, efficient methods
work by solving a series of local subproblems; focusing on the CCS can greatly reduce the size
of these subproblems. Second, focusing on the CCS makes solving a MO-CoG equivalent to
finding an optimal piecewise-linear and convex (PWLC) scalarized value function, for which
efficient techniques can be adapted. For these reasons, we argue that the CCS is often the
concept of choice for MO-CoGs.

We propose two approaches that exploit these insights to solve MO-CoGs more efficiently
than existing methods (Delle Fave et al., 2011; Dubus, Gonzales, & Perny, 2009; Marinescu,
Razak, & Wilson, 2012; Rollón & Larrosa, 2006). The first approach deals with the multiple
objectives on the level of individual agents, while the second deals with them on a global
level.

The first approach extends an algorithm by Rollón and Larrosa (2006) which we refer
to as Pareto multi-objective variable elimination (PMOVE)3, that computes local Pareto
sets at each agent elimination, to compute a CCS instead. We call the resulting algorithm
convex multi-objective variable elimination (CMOVE).

The second approach is a new abstract algorithm that we call optimistic linear support
(OLS) and is much faster for small and medium numbers of objectives. Furthermore, OLS

1. To be precise, in the case of stochastic strategies a CCS of deterministic strategies is always sufficient
(Vamplew, Dazeley, Barker, & Kelarev, 2009); in the case of deterministic strategies, linearity of the
scalarization function makes the CCS sufficient (Roijers et al., 2013a).

2. This article synthesizes and extends research already reported in two conference papers. Specifically,
the CMOVE algorithm (Section 4) was previously published at ADT (Roijers, Whiteson, & Oliehoek,
2013b) and the VELS algorithm (Section 5) at AAMAS (Roijers, Whiteson, & Oliehoek, 2014). The
memory-efficient methods for computing CCSs (Section 6) are a novel contribution of this article.

3. In the original article, this algorithm is called multi-objective bucket elimination (MOBE). However, we
use PMOVE to be consistent with the names of the other algorithms mentioned in this article.

401

Roijers, Whiteson, & Oliehoek

can be used to produce a bounded approximation of the CCS, an ε-CCS, if there is not
enough time to compute a full CCS. OLS is a generic method that employs single-objective
solvers as a subroutine. In this article, we consider two implementations of this subroutine.
Using variable elimination (VE) as a subroutine yields variable elimination linear support
(VELS), which is particularly fast for small and moderate numbers of objectives and is more
memory-efficient than CMOVE. However, when memory is highly limited, this reduction
in memory usage may not be enough. In such cases, using AND/OR search (Mateescu &
Dechter, 2005) instead of VE yields AND/OR tree search linear support (TSLS), which is
slower than VELS but much more memory efficient.

We prove the correctness of both CMOVE and OLS. We analyze the runtime and space
complexities of both methods and show that our methods have better guarantees than
PCS methods. We show CMOVE and OLS are complementary, i.e., various trade-offs exist
between them and their variants.

Furthermore, we demonstrate empirically, on both randomized and more realistic prob-
lems, that CMOVE and VELS scale much better than previous algorithms. We also empir-
ically confirm the trade-offs between CMOVE and OLS. We show that OLS, when used as
a bounded approximation algorithm, can save additional orders of magnitude of runtime,
even for small ε. Finally, we show that, even when memory is highly limited, TSLS can
still solve large problems.

The rest of this article is structured as follows. First, we provide a formal definition
of our model, as well as an overview of existing solution methods in Section 2. After
presenting a naive approach in Section 3, in Sections 4, 5 and 6, we analyze the runtime
and space complexities of each algorithm, and compare them empirically, against each other
and existing algorithms, at the end of each section. Finally, we conclude in Section 7 with
an overview of our contributions and findings, and suggestions for future research.

2. Background

In this section, we formalize the multi-objective coordination graph (MO-CoG). Before doing
so however, we describe the single-objective version of this problem, the coordination graph
(CoG), of which the MO-CoG is an extension, and the variable elimination (VE) algorithm
for solving CoGs. The methods we present in Section 4 and 5 build on VE in different ways.

2.1 (Single-Objective) Coordination Graphs

A coordination graph (CoG) (Guestrin et al., 2002; Kok & Vlassis, 2004) is a tuple 〈D,A,U〉,
where

• D = {1, ..., n} is the set of n agents,

• A = Ai × ...×An is the joint action space: the Cartesian product of the finite action
spaces of all agents. A joint action is thus a tuple containing an action for each agent
a = 〈a1, ..., an〉, and

• U =
{
u1, ..., uρ

}
is the set of ρ scalar local payoff functions, each of which has limited

scope, i.e., it depends on only a subset of the agents. The total team payoff is the sum
of the local payoffs: u(a) =

∑ρ
e=1 u

e(ae).

402

Computing CCSs for Faster Multi-objective Coordination

���

��������������������
��������������������������������

�� �������� �

�����

��

��	����������������

�����

������

������

�����

������

������

����
�����

������

������

Figure 2: (a) A CoG with 3 agents and 2 local payoff functions (b) after eliminating agent 3 by
adding u3 (c) after eliminating agent 2 by adding u4.

ȧ2 ā2

ȧ1 3.25 0

ā1 1.25 3.75

ȧ3 ā3

ȧ2 2.5 1.5

ā2 0 1

Table 1: The payoff matrices for u1(a1, a2) (left) and u2(a2, a3) (right). There are two possible
actions per agent, denoted by a dot (ȧ1) and a bar (ā1).

All agents share the payoff function u(a). We abuse the notation e to both index a local
payoff function ue and to denote the subset of agents in its scope; ae is thus a local joint
action, i.e., a joint action of this subset of agents.

The decomposition of u(a) into local payoff functions can be represented as a factor
graph (Bishop, 2006), a bipartite graph containing two types of vertices: agents (variables)
and local payoff functions (factors), with edges connecting local payoff functions to the
agents in their scope.

Figure 2a shows the factor graph of an example CoG in which the team payoff function
decomposes into two local payoff functions, each with two agents in scope:

u(a) =

ρ∑
e=1

ue(ae) = u1(a1, a2) + u2(a2, a3).

The local payoff functions are defined in Table 1. The factor graph illustrates the loose
couplings that result from the decomposition into local payoff functions. In particular, each
agent’s choice of action directly depends only on those of its immediate neighbors, e.g., once
agent 1 knows agent 2’s action, it can choose its own action without considering agent 3.

2.2 Variable Elimination

We now discuss the variable elimination (VE) algorithm, on which several multi-objective
extensions (Rollón & Larrosa, 2006; Rollón, 2008) build, including our own CMOVE algo-
rithm (Section 4). We also use VE as a subroutine in the OLS algorithm (Section 5).

VE exploits the loose couplings expressed by the local payoff functions to efficiently
compute the optimal joint action, i.e., the joint action maximizing u(a). First, in the forward

403

Roijers, Whiteson, & Oliehoek

pass, VE eliminates each of the agents in turn by computing the value of that agent’s best
response to every possible joint action of its neighbors. These values are used to construct a
new local payoff function that encodes the value of the best response and replaces the agent
and the payoff functions in which it participated. In the original algorithm, once all agents
are eliminated, a backward pass assembles the optimal joint action using the constructed
payoff functions. Here, we present a slight variant in which each payoff is ‘tagged’ with the
action that generates it, obviating the need for a backwards pass. While the two algorithms
are equivalent, this variant is more amenable to the multi-objective extension we present in
Section 4.

VE eliminates agents from the graph in a predetermined order. Algorithm 1 shows
pseudocode for the elimination of a single agent i. First, VE determines the set of local
payoff functions connected to i, Ui, and the neighboring agents of i, ni (lines 1-2).

Definition 2. The set of neighboring local payoff functions Ui of i is the set of all local
payoff functions that have agent i in scope.

Definition 3. The set of neighboring agents of i, ni, is the set of all agents that are in
scope of one or more of the local payoff functions in Ui.

Then, it constructs a new payoff function by computing the value of agent i’s best
response to each possible joint action ani of the agents in ni (lines 3-12). To do so, it
loops over all these joint actions Ani (line 4). For each ani , it loops over all the actions Ai
available to agent i (line 6). For each ai ∈ Ai, it computes the local payoff when agent i
responds to ani with ai (line 7). VE tags the total payoff with ai, the action that generates
it (line 8) in order to be able to retrieve the optimal joint action later. If there are already
tags present, VE appends ai to them; in this way, the entire joint action is incrementally
constructed. VE maintains the value of the best response by taking the maximum of these
payoffs (line 11). Finally, it eliminates the agent and all payoff functions in Ui and replaces
them with the newly constructed local payoff function (line 13).

Algorithm 1: elimVE(U , i)
Input: A CoG U , and an agent i

1 Ui ← set of local payoff functions involving i
2 ni ← set of neighboring agents of i
3 unew ← a new factor taking joint actions of ni, ani

, as input
4 foreach ani

∈ Ani
do

5 S ← ∅
6 foreach ai ∈ Ai do

7 v ←
∑

uj∈Ui

uj(ani
, ai)

8 tag v with ai
9 S ← S ∪ {v}

10 end
11 unew(ani

)← max(S)

12 end
13 return (U \ Ui) ∪ {unew}

404

Computing CCSs for Faster Multi-objective Coordination

Consider the example in Figure 2a and Table 1. The optimal payoff maximizes the sum
of the two payoff functions:

max
a

u(a) = max
a1,a2,a3

u1(a1, a2) + u2(a2, a3).

If VE eliminates agent 3 first, then it pushes the maximization over a3 inward such that
goes only over the local payoff functions involving agent 3, in this case just u2:

max
a

u(a) = max
a1,a2

(
u1(a1, a2) + max

a3
u2(a2, a3)

)
.

VE solves the inner maximization and replaces it with a new local payoff function u3 that
depends only on agent 3’s neighbors, thereby eliminating agent 1:

max
a

u(a) = max
a1,a2

(
u1(a1, a2) + u3(a2)

)
,

which leads to the new factor graph depicted in Figure 2b. The values of u3(a2) are u3(ȧ2) =
2.5, using ȧ3, and u3(ā2) = 1 using ā3, as these are the optimal payoffs for the actions of
agent 2, given the payoffs shown in Table 1. Because we ultimately want the optimal joint
action, not just the optimal payoff, VE tags each payoff of u3 with the action of agent 3
that generates it, i.e., we can think of u3(a2) as a (value, tag) pair. We denote such a pair
with parentheses and a subscript: u3(ȧ2) = (2.5)ȧ3 , and u3(ā2) = (1)ā3 .

VE next eliminates agent 2, yielding the factor graph shown in Figure 2c:

max
a

u(a) = max
a1

(
max
a2

u1(a1, a2) + u3(a2)

)
= max

a1
u4(a1).

VE appends the new tags for agent 2 to the existing tags for agent 3, yielding the following
tagged payoff values: u4(ȧ1) = maxa2 u

1(ȧ1, a2) + u3(a2) =(3.25)ȧ2 + (2.5)ȧ2ȧ3 = (5.75)ȧ2ȧ3
and u4(ā1) = (3.75)ā2 + (1)ā2ā3 = (4.75)ā2ā3 . Finally, maximizing over a1 yields the optimal
payoff of (5.75)ȧ1ȧ2ȧ3 , with the optimal action contained in the tags.

The runtime complexity of VE is exponential, not in the number of agents, but only in
the induced width, which is often much less than the number of agents.

Theorem 1. The computational complexity of VE is O(n|Amax|w) where |Amax| is the
maximal number of actions for a single agent and w is the induced width, i.e., the maximal
number of neighboring agents of an agent plus one (the agent itself), at the moment when
it is eliminated (Guestrin et al., 2002).

Theorem 2. The space complexity of VE is O(n |Amax|w).

This space complexity arises because, for every agent elimination, a new local payoff
function is created with O(|Amax|w) fields (possible input actions). Since it is impossible
to tell a priori how many of these new local payoff functions exist at any given time during
the execution of VE, this need to be multiplied by the total number of new local payoff
functions created during a VE execution, which is n.

While VE is designed to minimize runtime4 other methods focus on memory efficiency
instead (Mateescu & Dechter, 2005). We discuss memory efficiency further in Section 6.1.

4. In fact, VE is proven to have the best runtime guarantees within a large class of algorithms (Rosenthal,
1977).

405

Roijers, Whiteson, & Oliehoek

ȧ2 ā2

ȧ1 (4,1) (0,0)

ā1 (1,2) (3,6)

ȧ3 ā3

ȧ2 (3,1) (1,3)

ā2 (0,0) (1,1)

Table 2: The two-dimensional payoff matrices for u1(a1, a2) (left) and u2(a2, a3) (right).

2.3 Multi-objective Coordination Graphs

A multi-objective coordination graph (MO-CoG) is a tuple 〈D,A,U〉 in which D and A are
as before but, U =

{
u1, ...,uρ

}
is now a set of ρ, d-dimensional local payoff functions. The

total team payoff is the sum of local vector-valued payoffs: u(a) =
∑ρ

e=1 ue(ae). We use
ui to indicate the value of the i-th objective. We denote the set of all possible joint action
values as V. Table 2 shows a two-dimensional MO-CoG with the same structure as the
single-objective example in Section 2.1, but with multi-objective payoffs.

The solution to a MO-CoG is a coverage set (CS) of joint actions a and associated values
u(a) that contains at least one optimal joint action for each possible parameter vector w
of the scalarization function f (Definition 1). A CS is a subset of the undominated set :

Definition 4. The undominated set (U) of a MO-CoG, is the set of all joint actions and
associated payoff values that are optimal for some w of the scalarization function f .

U(V) =
{
u(a) : u(a)∈V ∧ ∃w∀a′ uw(a) ≥ uw(a′)

}
.

Because we care about having at least one optimal joint action for every w, rather than all
optimal joint actions, a lossless subset of U suffices:

Definition 5. A coverage set (CS), CS(V), is a subset of U , such that for each possible w,
there is at least one optimal solution in the CS, i.e.,

∀w∃a
(
u(a) ∈ CS(V) ∧ ∀a′ uw(a) ≥ uw(a′)

)
.

Note that the CS is not necessarily unique. Typically we seek the smallest possible CS. For
convenience, we assume that payoff vectors in the CS contain both the values and associated
joint actions, as suggested by the tagging scheme described in Section 2.2.

Which payoff vectors from V should be in the CS depends on what we know about the
scalarization function f . A minimal assumption is that f is monotonically increasing, i.e.,
if the value for one objective ui, increases while all uj 6=i stay constant, the scalarized value
u(a) cannot decrease. This assumption ensures that objectives are desirable, i.e., all else
being equal, having more of them is always better.

Definition 6. The Pareto front is the undominated set for arbitrary strictly monotonically
increasing scalarization functions f .

PF (V) =
{
u(a) : u(a)∈V ∧ ¬∃a′ u(a′) �P u(a)

}
,

where �P indicates Pareto dominance (P-dominance): greater or equal in all objectives and
strictly greater in at least one objective.

406

Computing CCSs for Faster Multi-objective Coordination

In order to have all optimal scalarized values, it is not necessary to compute the entire
PF. E.g., if two joint actions have equal payoffs we need to retain only one of those.

Definition 7. A Pareto coverage set (PCS), PCS(V) ⊆ PF (V), is a coverage set for
arbitrary strictly monotonically increasing scalarization functions f , i.e.,

∀a′∃a
(
u(a) ∈ PCS(V) ∧ (u(a) �P u(a′) ∨ u(a)=u(a′))

)
.

Computing P-dominance requires only pairwise comparison of payoff vectors (Feng &
Zilberstein, 2004).5

A highly prevalent scenario is that, in addition to f being monotonically increasing,
we also know that it is linear, that is, the parameter vectors w are weights by which the
values of the individual objectives are multiplied, f = w ·u(a). In the mining example from
Figure 1, resources are traded on an open market and all resources have a positive unit
price. In this case, the scalarization is a linear combination of the amount of each resource
mined, where the weights correspond to the price per unit of each resource. Many more
examples of linear scalarization functions exist in the literature, e.g., (Lizotte, Bowling, &
Murphy, 2010). Because we assume the linear scalarization is monotonically increasing, we
can represent it without loss of generality as a convex combination of the objectives: i.e.,
the weights are positive and sum to 1. In this case, only a convex coverage set (CCS) is
needed, which is a subset of the convex hull (CH)6:

Definition 8. The convex hull (CH) is the undominated set for linear non-decreasing
scalarizations f(u(a),w) = w · u(a):

CH(V) =
{
u(a) : u(a)∈V ∧ ∃w∀a′ w · u(a) ≥ w · u(a′)

}
.

That is, the CH contains all solutions that attain the optimal value for at least one weight.
Vectors not in the CH are C-dominated. In contrast to P-domination, C-domination cannot
be tested for with pairwise comparisons because it can take two or more payoff vectors to
C-dominate a payoff vector. Note that the CH contains more solutions than needed to guar-
antee an optimal scalarized value value: it can contain multiple solutions that are optimal
for one specific weight. A lossless subset of the CH with respect to linear scalarizations is
called a convex coverage set (CCS), i.e., a CCS retains at least one u(a) that maximizes
the scalarized payoff, w · u(a), for every w:

Definition 9. A convex coverage set (CCS), CCS(V) ⊆ CH(V), is a CS for linear non-
decreasing scalarizations, i.e.,

∀w∃a
(
u(a) ∈ CCS(V) ∧ ∀a′ w · u(a) ≥ w · u(a′)

)
.

Since linear non-decreasing functions are a specific type of monotonically increasing func-
tion, there is always a CCS that is a subset of the smallest possible PCS.

As previously mentioned, CSs like the PCS and CCS, may not be unique. For example,
if there are two joint actions with equal payoff vectors, we need at most one of them to
make a PCS or CCS.

5. P-dominance is often called pairwise dominance in the POMDP literature.
6. Note that the term convex hull is overloaded. In graphics, the convex hull is a superset of what we mean

by the convex hull in this article.

407

Roijers, Whiteson, & Oliehoek

Figure 3: The CCS (filled circles at left, and solid black lines at right) versus the PCS (filled circles
and squares at left, and both dashed and solid black lines at right) for twelve random
2-dimensional payoff vectors.

In practice, the PCS and the CCS are often equal to the PF and CH. However, the
algorithms proposed in this article are guaranteed to produce a PCS or a CCS, and not
necessarily the entire PF or the CH. Because PCSs and the CCSs are sufficient solutions in
terms of scalarized value, we say that these algorithms solve the MO-CoGs.

In Figure 3 (left) the values of joint actions, u(a), are represented as points in value-
space, for a two-objective MO-CoG. The joint action value A is in both the CCS and the
PCS. B, however, is in the PCS, but not the CCS, because there is no weight for which a
linear scalarization of B’s value would be optimal, as shown in Figure 3 (right), where the
scalarized value of the strategies are plotted as a function of the weight on the first objective
(w2 = 1− w1). C is in neither the CCS nor the PCS: it is Pareto-dominated by A.

Many multi-objective methods, e.g., (Delle Fave et al., 2011; Dubus et al., 2009; Mari-
nescu et al., 2012; Rollón, 2008) simply assume that the PCS is the appropriate solution
concept. However, we argue that the choice of CS depends on what one can assume about
how utility is defined with respect to the multiple objectives, i.e., which scalarization func-
tion is used to scalarize the vector-valued payoffs. We argue that in many situations the
scalarization function is linear, and that in such cases one should use the CCS.

In addition to the shape of f , the choice of solution concept depends on whether only
deterministic joint actions are considered or whether stochastic strategies are also permit-
ted. A stochastic strategy π assigns a probability to each joint action A → [0, 1]. The
probabilities for all joint actions together sum to 1,

∑
a∈A π(a) = 1. The value of a stochas-

tic strategy is a linear combination of the value vectors of the joint actions of which it is
a mixture: uπ =

∑
a∈A π(a)u(a). Therefore, the optimal values, for any monotonically

increasing f , lie on the convex upper surface spanned by the strategies in the CCS, as
indicated by the lines in Figure 3 (left). Therefore, all optimal values for monotonically
increasing f , including nonlinear ones, can be constructed by taking mixture policies from
the CCS (Vamplew et al., 2009).

This article considers methods for computing CCSs, which, as we show in Sections 4
and 5, can be computed more efficiently than PCSs. Furthermore, CCSs are typically much

408

Computing CCSs for Faster Multi-objective Coordination

smaller. This is particularly important when the final selection of the joint is done by (a
group of) humans, who have to compare all possible alternatives in the solution set.

The methods presented in this article are based on variable elimination (VE) (Sections
4 and 5) and AND/OR tree search (TS) (Section 6). These algorithms are exact solution
methods for CoGs.

The CMOVE algorithm we propose in Section 5 is based on VE. It differs from another
multi-objective algorithm based on VE, which we refer to as PMOVE (Rollón & Larrosa,
2006), in that it produces a CCS rather than a PCS. An alternative to VE are message-
passing algorithms, like max-plus (Pearl, 1988; Kok & Vlassis, 2006a). However, these are
guaranteed to be exact only for tree-structured CoGs. Multi-objective methods that build
on max-plus such as that of Delle Fave et al. (2011), have this same limitation, unless
they preprocess the CoG to form a clique-tree or GAI network (Dubus et al., 2009). On
tree structured graphs, both message-passing algorithms and VE produce optimal solutions
with similar runtime guarantees. Note that, like PMOVE, existing multi-objective methods
based on message passing produce a PCS rather than a CCS.

In Section 5, we take a different approach to multi-objective coordination based on an
outer loop approach. As we explain, this approach is applicable only for computing a CCS,
not a PCS, but has considerable advantages in terms of runtime and memory usage.

3. Non-graphical Approach

A naive way to compute a CCS is to ignore the graphical structure, calculate the set of all
possible payoffs for all joint actions V, and prune away the C-dominated joint actions. We
first translate the problem to a set of value set factors (VSFs), F . Each VSF f is a function
mapping local joint actions to sets of payoff vectors. The initial VSFs are constructed from
the local payoff functions such that

fe(ae) = {ue(ae)},

i.e., each VSF maps a local joint action to the singleton set containing only that action’s
local payoff. We can now define V in terms of F using the cross-sum operator over all VSFs
in F for each joint action a:

V(F) =
⋃
a

⊕
fe∈F

fe(ae),

where the cross-sum of two sets A and B contains all possible vectors that can be made by
summing one payoff vector from each set:

A⊕B = {a + b : a ∈ A ∧ b ∈ B} .

The CCS can now be calculated by applying a pruning operator CPrune (described below)
that removes all C-dominated vectors from a set of value vectors, to V:

CCS(V(F)) = CPrune(V(F)) = CPrune(
⋃
a

⊕
fe∈F

fe(ae)). (1)

The non-graphical CCS algorithm simply computes the righthand side of Equation 1, i.e.,
it computes V(F) explicitly by looping over all actions, and for each action looping over all
local VSFs, and then pruning that set down to a CCS.

409

Roijers, Whiteson, & Oliehoek

A CCS contains at least one payoff vector that maximizes the scalarized value for every
w:

∀w
(
a = arg max

a∈A
w ·u(a)

)
=⇒ ∃a′ u(a′) ∈ CCS(V(F)) ∧ w ·u(a) = w ·u(a′). (2)

That is, for every w there is an solution a′ that is part of the CCS and that achieves the
same value as a maximizing solution a. Moreover the value of such solutions is given by the
dot product. Thus, finding the CCS is analogous to the problem faced in partially observable
Markov decision processes (POMDPs) (Feng & Zilberstein, 2004), where optimal α-vectors
(corresponding to the value vectors u(a)) for all beliefs (corresponding to the weight vectors
w) must be found. Therefore, we can employ pruning operators from POMDP literature.

Algorithm 2 describes our implementation of CPrune, which is based on that of Feng and
Zilberstein (2004) with one modification. In order to improve runtime guarantees, CPrune
first pre-prunes the candidate solutions U to a PCS using the PPrune (Algorithm 3) at line
1. PPrune computes a PCS in O(d|U||PCS|) by running pairwise comparisons. Next, a
partial CCS, U∗, is constructed as follows: a random vector u from U is selected at line 4.
For u the algorithm tries to find a weight vector w for which u is better than the vectors
in U∗ (line 5), by solving the linear program in Algorithm 4. If there is such a w, CPrune
finds the best vector v for w in U and moves it to U∗ (line 11–13). If there is no weight for
which u is better it is C-dominated and thus removed u from U (line 8).

Algorithm 2: CPrune(U)

Input: A set of payoff vectors U
1 U ← PPrune(U)
2 U∗ ← ∅
3 while notEmpty(U) do
4 select random u from U
5 w← findWeight(u,U∗)
6 if w=null then
7 //did not find a weight where u is optimal
8 remove u from U
9 end

10 else
11 v← arg maxu∈U w · u
12 U ← U \ {v}
13 U∗ ← U∗ ∪ {v}
14 end

15 end
16 return U∗

The runtime of CPrune as defined by Algorithm 2 is

O(d|U||PCS|+ |PCS|P (d|CCS|)), (3)

where P (d|CCS|) is a polynomial in the size of the CCS and the number of objectives d,
which is the runtime of the linear program that tests for C-domination (Algorithm 4).

410

Computing CCSs for Faster Multi-objective Coordination

Algorithm 3: PPrune(U)

Input: A set of payoff vectors U
1 U∗ ← ∅
2 while U 6= ∅ do
3 u← the first element of U
4 foreach v ∈ U do
5 if v �P u then
6 u← v // Continue with v instead of u
7 end

8 end
9 Remove u, and all vectors P-dominated by u, from U

10 Add u to U∗
11 end
12 return U∗

Algorithm 4: findWeight(u,U)

max
x,w

x

subject to w · (u− u′)− x ≥ 0,∀u′ ∈ U
d∑
i=1

wi = 1

if x > 0 return w else return null

The key downside of the non-graphical approach is that it requires explicitly enumerating
all possible joint actions and calculating the payoffs associated with each one. Consequently,
it is intractable for all but small numbers of agents, as the number of joint actions grows
exponentially in the number of agents.

Theorem 3. The time complexity of computing a CCS of a MO-CoG containing ρ local
payoff functions, following the non-graphical approach (Equation 1) is:

O(dρ|Amax|n + d|Amax|n|PCS|+ |PCS|P (d|CCS|)

Proof. First, V is computed by looping over all ρ VSFs for each joint action a, summing
vectors of length d. If the maximum size of the action space of an agent is Amax there are
O(|Amax|n) joint actions. V contains one payoff vector for each joint action. V is the input
of CPrune.

In the next two sections, we present two approaches to compute CCSs more efficiently.
The first approach pushed the CPrune operator in Equation 1 into the cross-sum and
union, just as the max-operator is pushed into the summation in VE. We call this the
inner loop approach, as it uses pruning operators during agent eliminations, which is the
inner loop of the VE algorithm. The second approach is inspired by linear support (Cheng,

411

Roijers, Whiteson, & Oliehoek

1988), a POMDP pruning operator that only requires finding the optimal solution for cer-
tain w. Instead of performing maximization over the entire set V, as in the original linear
support algorithm, we show that we can use VE on a finite number of scalarized instances
of the MO-CoG, avoiding explicit calculation of V. We call this approach the outer loop
approach, as this it creates an outer loop around a single objective method (like VE), which
it calls as a subroutine.

4. Convex Variable Elimination for MO-CoGs

In this section we show how to exploit loose couplings and calculate a CCS using an in-
ner loop approach, i.e., by pushing the pruning operators into the cross-sum and union
operators of Equation 1. The result is CMOVE, an extension to Rollón and Larrosa’s
Pareto-based extension of VE, which we refer to as PMOVE (Rollón & Larrosa, 2006).
By analyzing CMOVE’s complexity in terms of local convex coverage sets, we show that
this approach yields much better runtime complexity guarantees than the non-graphical
approach to computing CCSs that was presented in Section 3.

4.1 Exploiting Loose Couplings in the Inner Loop

In the non-graphical approach, computing a CCS is more expensive than computing a PCS,
as we have shown in Section 3. We now show that, in MO-CoGs, we can compute a CCS
much more efficiently by exploiting the MO-CoG’s graphical structure. In particular, like in
VE, we can solve the MO-CoG as a series of local subproblems, by eliminating agents and
manipulating the set of VSFs F which describe the MO-CoG. The key idea is to compute
local CCSs (LCCSs) when eliminating an agent instead of a single best response (as in VE).
When computing an LCCS, the algorithm prunes away as many vectors as possible. This
minimizes the number of payoff vectors that are calculated at the global level, which can
greatly reduce computation time. Here we describe the elim operator for eliminating agents
used by CMOVE in Section 4.2.

We first need to update our definition of neighboring local payoff functions (Definition
2), to neighboring VSFs.

Definition 10. The set of neighboring VSFs Fi of i is the set of all local payoff functions
that have agent i in scope.

The neighboring agents ni of an agent i are now the agents in the scope of a VSF in
Fi, except for i itself, corresponding to Definition 3. For each possible local joint action of
ni, we now compute an LCCS that contains the payoffs of the C-undominated responses of
agent i, as the best response values of i. In other words, it is the CCS of the subproblem that
arises when considering only Fi and fixing a specific local joint action ani . To compute the
LCCS, we must consider all payoff vectors of the subproblem, Vi, and prune the dominated
ones.

Definition 11. If we fix all actions in ani, but not ai, the set of all payoff vectors for
this subproblem is: Vi(Fi,ani) =

⋃
ai

⊕
fe∈Fi

fe(ae), where ae is formed from ai and the
appropriate part of ani.

Using Definition 11, we can now define the LCCS as the CCS of Vi.

412

Computing CCSs for Faster Multi-objective Coordination

Definition 12. A local CCS, an LCCS, is the C-undominated subset of Vi(Fi,ani):

LCCSi(Fi,ani) = CCS(Vi(Fi,ani)).

Using these LCCSs, we can create a new VSF, fnew, conditioned on the actions of the
agents in ni:

∀ani f
new(ani) = LCCSi(Fi,ani).

The elim operator replaces the VSFs in Fi in F by this new factor:

elim(F , i) = (F \ Fi) ∪ {fnew(ani)}.

Theorem 4. elim preserves the CCS: ∀i ∀F CCS(V(F)) = CCS(V(elim(F , i))).

Proof. We show this by using the implication of Equation 2, i.e., for all joint actions a for
which there is a w at which the scalarized value of a is maximal, a vector-valued payoff
u(a′) for which w · u(a′) = w · u(a′) is in the CCS. We show that the maximal scalarized
payoff cannot be lost as a result of elim.

The linear scalarization function distributes over the local payoff functions: w · u(a) =
w ·
∑

e ue(ae) =
∑

e w · ue(ae). Thus, when eliminating agent i, we divide the set of VSFs
into non-neighbors (nn), in which agent i does not participate, and neighbors (ni) such
that:

w · u(a) =
∑
e∈nn

w · ue(ae) +
∑
e∈ni

w · ue(ae).

Now, following Equation 2, the CCS contains maxa∈Aw · u(a) for all w. elim pushes this
maximization in:

max
a∈A

w · u(a) = max
a−i∈A−i

∑
e∈nn

w · ue(ae) + max
ai∈Ai

∑
e∈ni

w · ue(ae).

elim replaces the agent-i factors by a term fnew(ani) that satisfies w · fnew(ani) = maxai∑
e∈ni

w ·ue(ae) per definition, thus preserving the maximum scalarized value for all w and
thereby preserving the CCS.

Instead of an LCCS, we could compute a local PCS (LPCS), that is, using a PCS
computation on Vi instead of a CCS computation. Note that, since LCCS ⊆ LPCS ⊆ Vi,
elim not only reduces the problem size with respect to Vi, it can do so more than would
be possible if we only considered P-dominance. Therefore, focusing on the CCS can greatly
reduce the sizes of local subproblems. Since the solution of a local subproblem is the input
for the next agent elimination, the size of subsequent local subproblems is also reduced,
which can lead to considerable speed-ups.

413

Roijers, Whiteson, & Oliehoek

4.2 Convex Multi-objective Variable Elimination

We now present the convex multi-objective variable elimination (CMOVE) algorithm, which
implements elim using CPrune. Like VE, CMOVE iteratively eliminates agents until none
are left. However, our implementation of elim computes a CCS and outputs the correct
joint actions for each payoff vector in this CCS, rather than a single joint action. CMOVE
is an extension to Rollón and Larrosa’s Pareto-based extension of VE, which we refer to as
PMOVE (Rollón & Larrosa, 2006).

The most important difference between CMOVE and PMOVE is that CMOVE com-
putes a CCS, which typically leads to much smaller subproblems and thus much better
computational efficiency. In addition, we identify three places where pruning can take
place, yielding a more flexible algorithm with different trade-offs. Finally, we use the tag-
ging scheme instead of the backwards pass, as in Section 2.2.

Algorithm 5 presents an abstract version of CMOVE that leaves the pruning operators
unspecified. As in Section 3, CMOVE first translates the problem into a set of vector-set
factors (VSFs), F on line 1. Next, CMOVE iteratively eliminates agents using elim (line
2–5). The elimination order can be determined using techniques devised for single-objective
VE (Koller & Friedman, 2009).

Algorithm 5: CMOVE(U , prune1, prune2, prune3, q)

Input: A set of local payoff functions U and an elimination order q (a queue containing all
agents)

1 F ← create one VSF for every local payoff function in U
2 while ani ∈ Ani do
3 i← q.dequeue()
4 F ← elim(F , i, prune1, prune2)

5 end
6 f ← retrieve final factor from F
7 S ← f(a∅)
8 return prune3(S)

Algorithm 6 shows our implementation of elim, parameterized with two pruning op-
erators, prune1 and prune2, corresponding to two different pruning locations inside the
operator that computes LCCSi: ComputeLCCSi(Fi,ani , prune1, prune2).

Algorithm 6: elim(F , i, prune1, prune2)

Input: A set of VSFs F , and an agent i
1 ni ← the set of neighboring agents of i
2 Fi ← the subset of VSF that have i in scope
3 fnew(ani

) ← a new VSF
4 foreach ani

∈ Ani
do

5 fnew(ani
)← ComputeLCCSi(Fi,ani

, prune1, prune2)
6 end
7 F ← F \ Fi ∪ {fnew}
8 return F

414

Computing CCSs for Faster Multi-objective Coordination

ComputeLCCSi is implemented as follows: first we define a new cross-sum-and-prune
operator A⊕̂B = prune1(A⊕B). LCCSi applies this operator sequentially:

ComputeLCCSi(Fi,ani , prune1, prune2) = prune2(
⋃
ai

⊕̂
fe∈Fi

fe(ae)). (4)

prune1 is applied to each cross-sum of two sets, via the ⊕̂ operator, leading to incremental
pruning (Cassandra, Littman, & Zhang, 1997). prune2 is applied at a coarser level, after
the union. CMOVE applies elim iteratively until no agents remain, resulting in a CCS.
Note that, when there are no agents left, fnew on line 3 has no agents to condition on. In
this case, we consider the “actions of the neighbors” to be a single empty action: a∅.

Pruning can also be applied at the very end, after all agents have been eliminated,
which we call prune3. In increasing level of coarseness, we thus have three pruning opera-
tors: incremental pruning (prune1), pruning after the union over actions of the eliminated
agent (prune2), and pruning after all agents have been eliminated (prune3), as reflected in
Algorithm 5. After all agents have been eliminated, the final factor is taken from the set
of factors (line 6), and the single set, S contained in that factor is retrieved (line 7). Note
that we use the empty action a∅ to denote the field in the final factor, as it has no agents
in scope. Finally prune3 is called on S.

Consider the example in Figure 2a, using the payoffs defined by Table 2, and apply
CMOVE. First, CMOVE creates the VSFs f1 and f2 from u1 and u2. To eliminate agent 3,
it creates a new VSF f3(a2) by computing the LCCSs for every a2 and tagging each element
of each set with the action of agent 3 that generates it. For ȧ2, CMOVE first generates
the set {(3, 1)ȧ3 , (1, 3)ā3}. Since both of these vectors are optimal for some w, neither is
removed by pruning and thus f3(ȧ2) = {(3, 1)ȧ3 , (1, 3)ā3}. For ā2, CMOVE first generates
{(0, 0)ȧ3 , (1, 1)ā3}. CPrune determines that (0, 0)ȧ3 is dominated and consequently removes
it, yielding f3(ā2) = {(1, 1)ā3}. CMOVE then adds f3 to the graph and removes f2 and
agent 3, yielding the factor graph shown in Figure 2b.

CMOVE then eliminates agent 2 by combining f1 and f3 to create f4. For f4(ȧ1),
CMOVE must calculate the LCCS of:

(f1(ȧ1, ȧ2)⊕ f3(ȧ2)) ∪ (f1(ȧ1, ā2)⊕ f3(ā2)).

The first cross sum yields {(7, 2)ȧ2ȧ3 , (5, 4)ȧ2ā3} and the second yields {(1, 1)ā2ā3}. Pruning
their union yields f4(ȧ1) = {(7, 2)ȧ2ȧ3 , (5, 4)ȧ2ā3}. Similarly, for ā1 taking the union yields
{(4, 3)ȧ2ȧ3 , (2, 5)ȧ2ā3 , (4, 7)ā2ā3}, of which the LCCS is f4(ā1) = {(4, 7)ā2ā3}. Adding f4

results in the graph in Figure 2c.
Finally, CMOVE eliminates agent 1. Since there are no neighboring agents left, Ai

contains only the empty action. CMOVE takes the union of f4(ȧ1) and f4(ā1). Since
(7, 2){ȧ1ȧ2ȧ3} and (4, 7){ā1ā2ā3} dominate (5, 4){ȧ1ȧ2ā3}, the latter is pruned, leaving CCS =
{(7, 2){ȧ1ȧ2ȧ3}, (4, 7){ā1ā2ā3}}.

4.3 CMOVE Variants

There are several ways to implement the pruning operators that lead to correct instantia-
tions of CMOVE. Both PPrune (Algorithm 2) and CPrune (Algorithm 1) can be used, as
long as either prune2 or prune3 is CPrune. Note that if prune2 computes the CCS, prune3
is not necessary.

415

Roijers, Whiteson, & Oliehoek

In this article, we consider Basic CMOVE, which does not use prune1 and prune3 and
only prunes at prune2 using CPrune, as well as Incremental CMOVE, which uses CPrune at
both prune1 and prune2. The latter invests more effort in intermediate pruning, which can
result in smaller cross-sums, and a resulting speedup. However, when only a few vectors
can be pruned in these intermediate steps, this additional speedup may not occur, and
the algorithm creates unnecessary overhead.7 We empirically investigate these variants in
Section 4.5

One could also consider using pruning operators that contain prior knowledge about
the range of possible weight vectors. If such information is available, it could be easily
incorporated by changing the pruning operators accordingly, leading to even smaller LCCSs,
and thus a faster algorithm. In this article however, we focus on the case in which such
prior knowledge is not available.

4.4 Analysis

We now analyze the correctness and complexity of CMOVE.

Theorem 5. MOVE correctly computes a CCS.

Proof. The proof works by induction on the number of agents. The base case is the original
MO-CoG, where each fe(ae) from F is a singleton set. Then, since elim preserves the CCS
(see Theorem 1), no necessary vectors are lost. When the last agent is eliminated, only
one factor remains; since it is not conditioned on any agent actions and is the result of an
LCCS computation, it must contain one set: the CCS.

Theorem 6. The computational complexity of CMOVE is

O(n |Amax|wa (wf R1 +R2) +R3), (5)

where wa is the induced agent width, i.e., the maximum number of neighboring agents (con-
nected via factors) of an agent when eliminated, wf is the induced factor width, i.e., the
maximum number of neighboring factors of an agent when eliminated, and R1, R2 and R3

are the cost of applying the prune1, prune2 and prune3 operators.

Proof. CMOVE eliminates n agents and for each one computes an LCCS for each joint
action of the eliminated agent’s neighbors, in a field in a new VSF. CMOVE computes
O(|Amax|wa) fields per iteration, calling prune1 (Equation 4) for each adjacent factor, and
prune2 once after taking the union over actions of the eliminated agent. prune3 is called
exactly once, after eliminating all agents (line 8 of Algorithm 5).

Unlike the non-graphical approach, CMOVE is exponential only in wa, not the number
of agents. In this respect, our results are similar to those for PMOVE (Rollón, 2008).
However, those earlier complexity results do not make the effect of pruning explicit. Instead,
the complexity bound makes use of additional problem constraints, which limit the total
number of possible different value vectors. Specifically, in the analysis of PMOVE, the
payoff vectors are integer-valued, with a maximum value for all objectives. In practice,

7. We can also compute a PCS first, using prune1 and prune2, and then compute the CCS with prune3.
However, this is useful only for small problems for which a PCS is cheaper to compute than a CCS.

416

Computing CCSs for Faster Multi-objective Coordination

such bounds can be very loose or even impossible to define (e.g., when the payoff values
are real-valued in one or more objectives). Therefore, we instead give a description of
the computational complexity that makes explicit the dependence on the effectiveness of
pruning. Even though such complexity bounds are not better in the worst case (i.e., when
no pruning is possible), they allow greater insight into the runtimes of the algorithms we
evaluate, as is apparent in our analysis of the experimental results in Section 4.5.

Theorem 6 demonstrates that the complexity of CMOVE depends heavily on the runtime
of its pruning operators, which in turn depends on the sizes of the input sets. The input
set of prune2 is the union of what is returned by a series of applications of prune1, while
prune3 uses the output of the last application of prune2. We therefore need to balance
the effort of the lower-level pruning with that of the higher-level pruning, which occurs less
often but is dependent on the output of the lower level. The bigger the LCCSs, the more
can be gained from lower-level pruning.

Theorem 7. The space complexity of CMOVE is

O(d n |Amax|wa |LCCSmax|+ d ρ |Amax||emax|),

where |LCCSmax| is maximum size of a local CCS, ρ is the original number of VSFs, and
|emax| is the maximum scope size of the original VSFs.

Proof. CMOVE computes a local CCS for each new VSF for each joint action of the elim-
inated agent’s neighbors. There are maximally wa neighbors. There are maximally n new
factors. Each payoff vector stores d real numbers.

There are ρ VSFs created during the initialization of CMOVE. All of these VSFs have
exactly one payoff vector containing d real numbers, per joint action of the agents in scope.
There are maximally |Amax||emax| such joint actions.

For PMOVE, the space complexity is the same but with |PCCSmax| instead of |LCCSmax|.
Because the LCCS is a subset of the corresponding LPCS, CMOVE is thus strictly more
memory efficient than PMOVE.

Note that Theorem 7 is a rather loose upper bound on the space complexity, as not all
VSFs, original or new, exist at the same time. However, it is not possible to to predict
a priori how many of these VSFs exist at the same time, resulting in a space complexity
bound on the basis of all VSFs that exist at some point during the execution of CMOVE.

4.5 Empirical Evaluation

To test the efficiency of CMOVE, we now compare its runtimes to those of PMOVE8 and
the non-graphical approach for problems with varying numbers of agents and objectives.
We also analyze how these runtimes correspond to the sizes of the PCS and CCS.

We use two types of experiments. The first experiments are done with random MO-
CoGs in which we can directly control all variables. In the second experiment, we use
Mining Day, a more realistic benchmark, that is more structured than random MO-CoGs
but still randomized.

8. We compare to PMOVE using only prune2 = PPrune, rather than prune1 = prune2 = PPrune, as was
proposed in the original article (Rollón & Larrosa, 2006) because we found the former option slightly
but consistently faster.

417

Roijers, Whiteson, & Oliehoek

(a) (b) (c)

Figure 4: (a) Runtimes (ms) in log-scale for the nongraphical method, PMOVE and CMOVE with
standard deviation of mean (error bars), (b) the corresponding number of vectors in the
PCS and CCS, and (c) the corresponding spread of the induced width.

4.5.1 Random Graphs

To generate random MO-CoGs, we employ a procedure that takes as input: n, the number
of agents; d, the number of payoff dimensions; ρ the number of local payoff functions; and
|Ai|, the action space size of the agents, which is the same for all agents. The procedure
then starts with a fully connected graph with local payoff functions connecting to two agents
each. Then, local payoff functions are randomly removed, while ensuring that the graph
remains connected, until only ρ local payoff functions remain. The values for the different
objectives in each local payoff function are real numbers that are drawn independently and
uniformly from the interval [0, 10]. We compare algorithms on the same set of randomly
generated MO-CoGs for each separate value of n, d, ρ, and |Ai|.

To compare basic CMOVE, incremental CMOVE, PMOVE, and the non-graphical
method, we test them on random MO-CoGs with the number of agents ranging between
10 and 85, the average number of factors per agent held at ρ = 1.5n, and the number of
objectives d = 2. This experiment was run on a 2.4 GHz Intel Core i5 computer, with 4 GB
memory. Figure 4 shows the results, averaged over 20 MO-CoGs for each number of agents.
The runtime (Figure 4a) of the non-graphical method quickly explodes. Both CMOVE
variants are slower than PMOVE for small numbers of agents, but the runtime grows much
more slowly than that of PMOVE. At 70 agents, both CMOVE variants are faster than
PMOVE on average. For 75 agents, one of the MO-CoGs generated caused PMOVE to
time out at 5000s, while basic CMOVE had a maximum runtime of 132s, and incremental
CMOVE 136s. This can be explained by the differences in the size of the solutions, i.e.,
the PCS and the CCS (Figure 4b). The PCS grows much more quickly with the number of
agents than the CCS does. For two-objective problems, incremental CMOVE seems to be
consistently slower than basic CMOVE.

While CMOVE’s runtime grows much more slowly than that of the nongraphical method,
it is still exponential in the number of agents, a counterintuitive result since the worst-case
complexity is linear in the number of agents. This can be explained by the induced width
of the MO-CoGs, in which the runtime of CMOVE is exponential. In Figure 4c, we see that
the induced width increases linearly with the number of agents for random graphs.

418

Computing CCSs for Faster Multi-objective Coordination

Figure 5: Runtimes (ms) for the non-graphical method, PMOVE and CMOVE in log-scale with the
standard deviation of mean (error bars) (left) and the corresponding number of vectors
in the PCS and CCS (right), for increasing numbers of agents and 5 objectives.

We therefore conclude that, in two-objective MO-CoGs, the non-graphical method is
intractable, even for small numbers of agents, and that the runtime of CMOVE increases
much less with the number of agents than PMOVE does.

To test how the runtime behavior changes with a higher number of objectives, we run
the same experiment with the average number of factors per agent held at ρ = 1.5n and
increasing numbers of agents again, but now for d = 5. This and all remaining experiments
described in this section were executed on a Xeon L5520 2.26 GHz computer with 24 GB
memory. Figure 5 (left) shows the results of this experiment, averaged over 85 MO-CoGs
for each number of agents. Note that we do not plot the induced widths, as this does not
change with the number of objectives. These results demonstrate that, as the number of
agents grows, using CMOVE becomes key to containing the computational cost of solving
the MO-CoG. CMOVE outperforms the nongraphical method from 12 agents onwards. At
25 agents, basic CMOVE is 38 times faster. CMOVE also does significantly better than
PMOVE. Though it is one order of magnitude slower with 10 agents (238ms (basic) and
416ms (incremental) versus 33ms on average), its runtime grows much more slowly than
that of PMOVE. At 20 agents, both CMOVE variants are faster than PMOVE and at
28 agents, Basic CMOVE is almost one order of magnitude faster (228s versus 1, 650s on
average), and the difference increases with every agent.

As before, the runtime of CMOVE is exponential in the induced width, which increases
with the number of agents, from 3.1 at n = 10 to 6.0 at n = 30 on average, as a result of
the random MO-CoG generation procedure. However, CMOVE’s runtime is polynomial in
the size of the CCS, and this size grows exponentially, as shown in Figure 5 (right). The
fact that CMOVE is much faster than PMOVE can be explained by the sizes of the PCS
and CCS, as the former grows much faster than the latter. At 10 agents, the average PCS
size is 230 and the average CCS size is 65. At 30 agents, the average PCS size has risen to
51, 745 while the average CCS size is only 1, 575.

Figure 6 (left) compares the scalability of the algorithms in the number of objectives,
on random MO-CoGs with n = 20 and ρ = 30, averaged over 100 MO-CoGs. CMOVE
always outperforms the nongraphical method. Interestingly, the nongraphical method is

419

Roijers, Whiteson, & Oliehoek

Figure 6: Runtimes (ms) for the non-graphical method, PMOVE and CMOVE in logscale with the
standard deviation of mean (error bars) (left) and the corresponding number of vectors
in the PCS and CCS (right), for increasing numbers of objectives.

several orders of magnitude slower at d = 2, grows slowly until d = 5, and then starts to
grow with about the same exponent as PMOVE. This can be explained by the fact that the
time it takes to enumerate of all joint actions and payoffs remains approximately constant,
while the time it takes to prune increases exponentially with the number of objectives.
When d = 2, CMOVE is an order of magnitude slower than PMOVE (163ms (basic) and
377 (incremental) versus 30ms). However, when d = 5, both CMOVE variants are already
faster than PMOVE and at 8 dimensions they are respectively 3.2 and 2.4 times faster.
This happens because the CCS grows much more slowly than the PCS, as shown in Figure
6 (right). The difference between incremental and basic CMOVE decreases as the number
of dimensions increases, from a factor 2.3 at d = 2 to 1.3 at d = 8. This trend indicates
that pruning after every cross-sum, i.e., at prune1, becomes (relatively) better for higher
numbers of objectives. Although we were unable to solve problem instances with many more
objectives within reasonable time, we expect this trend to continue and that incremental
CMOVE would be faster than basic CMOVE for problems with very many objectives.

Overall, we conclude that, for random graphs, CMOVE is key to solving MO-CoGs
within reasonable time, especially when the problem size increases in either the number of
agents, the number of objectives, or both.

4.5.2 Mining Day

In Mining Day, a mining company mines gold and silver (objectives) from a set of mines
(local payoff functions) located in the mountains (see Figure 1). The mine workers live in
villages at the foot of the mountains. The company has one van in each village (agents)
for transporting workers and must determine every morning to which mine each van should
go (actions). However, vans can only travel to nearby mines (graph connectivity). Workers
are more efficient if there are more workers at the mine: there is a 3% efficiency bonus per
worker such that the amount of each resource mined per worker is x · 1.03w, where x is
the base rate per worker and w is the number of workers at the mine. The base rate of
gold and silver are properties of a mine. Since the company aims to maximize revenue, the
best strategy depends on the fluctuating prices of gold and silver. To maximize revenue,

420

Computing CCSs for Faster Multi-objective Coordination

Figure 7: Runtimes (ms) for basic and incremental CMOVE, and PMOVE, in log-scale with the
standard deviation of mean (error bars) (left) and the corresponding number of vectors
in the PCS and CCS (right), for increasing numbers of agents.

the mining company wants to use the latest possible price information, and not lose time
recomputing the optimal strategy with every price change. Therefore, we must calculate a
CCS.

To generate a Mining Day instance with v villages (agents), we randomly assign 2-5
workers to each village and connect it to 2-4 mines. Each village is only connected to mines
with a greater or equal index, i.e., if village i is connected to m mines, it is connected to
mines i to i+m− 1. The last village is connected to 4 mines and thus the number of mines
is v+ 3. The base rates per worker for each resource at each mine are drawn uniformly and
independently from the interval [0, 10].

In order to compare the runtimes of basic and incremental CMOVE against PMOVE
on a more realistic benchmark, we generate Mining Day instances with varying numbers
of agents. Note that we do not include the non-graphical method, as its runtime mainly
depends on the number of agents, and is thus not considerably faster for this problem
than for random graphs. The runtime results are shown in Figure 7 (left). Both CMOVE
and PMOVE are able to tackle problems with over 100 agents. However, the runtime of
PMOVE grows much more quickly than that of CMOVE. In this two-objective setting,
basic CMOVE is better than incremental CMOVE. Basic CMOVE and PMOVE both have
runtimes of around 2.8s at 60 agents, but at 100 agents, basic CMOVE runs in about 5.9s
and PMOVE in 21s. Even though incremental CMOVE is worse than basic CMOVE, its
runtime still grows much more slowly than that of PMOVE, and it beats PMOVE when
there are many agents.

The difference between PMOVE and CMOVE results from the relationship between the
number of agents and the sizes of the CCS, which grows linearly, and the PCS, which grows
polynomially, as shown in Figure 7 (right). The induced width remains around 4 regardless
of the number of agents. These results demonstrate that, as the CCS grows more slowly
than the PCS with the number of agents, CMOVE can solve MO-CoGs more efficiently
than PMOVE as the number of agents increases.

421

Roijers, Whiteson, & Oliehoek

5. Linear Support for MO-CoGs

In this section, we present variable elimination linear support (VELS). VELS is a new
method for computing the CCS in MO-CoGs that has several advantages over CMOVE:
for moderate numbers of objectives, its runtime complexity is better; it is an anytime
algorithm, i.e., over time, VELS produces intermediate results which become better and
better approximations of the CCS and therefore, when provided with a maximum scalarized
error ε, VELS can compute an ε-optimal CCS.

Rather than dealing with the multiple objectives in the inner loop (like CMOVE), VELS
deals with them in the outer loop and employs VE as a subroutine. VELS thus builds the
CCS incrementally. With each iteration of its outer loop, VELS adds at most one new
vector to a partial CCS. To find this vector, VELS selects a single w (the one that offers
the maximal possible improvement), and passes that w to the inner loop. In the inner loop,
VELS uses VE (Section 2.2) to solve the single-objective coordination graph (CoG) that
results from scalarizing the MO-CoG using the w selected by the outer loop. The joint
action that is optimal for this CoG and its multi-objective payoff are then added to the
partial CCS.

The departure point for creating VELS is Cheng’s linear support (Cheng, 1988). Cheng’s
linear support was originally designed as a pruning algorithm for POMDPs. Unfortunately,
this algorithm is rarely used for POMDPs in practice, as its runtime is exponential in the
number of states. However, the number of states in a POMDP corresponds to the number
of objectives in a MO-CoG, and while realistic POMDPs typically have many states, many
MO-CoGs have only a handful of objectives. Therefore, for MO-CoGs, the scalability in the
number of agents is more important, making Cheng’s linear support an attractive starting
point for developing an efficient MO-CoG solution method.

Building on Cheng’s linear support, in Section 5.1 we create an abstract algorithm that
we call optimistic linear support (OLS), which builds up the CCS incrementally. Because
OLS takes an arbitrary single-objective problem solver as input, it can be seen as a generic
multi-objective method. We show that OLS chooses a w at each iteration such that, after
a finite number of iterations, no further improvements to the partial CCS can be made
and OLS can terminate. Furthermore, we bound the maximum scalarized error of the
intermediate results, so that they can be used as bounded approximations of the CCS.
Then, in Section 5.2, we instantiate OLS by using VE as its single-objective problem solver,
yielding VELS, an effective MO-CoG algorithm.

5.1 Optimistic Linear Support

OLS constructs the CCS incrementally, by adding vectors to an initially empty partial CCS :

Definition 13. A partial CCS, S, is a subset of the CCS, which is in turn a subset of V:
S ⊆ CCS ⊆ V.

We define the scalarized value function over S, corresponding to the convex upper surface
(shown in bold) in Figure 8b-d:

Definition 14. A scalarized value function over a partial CCS, S, is a function that takes
a weight vector w as input, and returns the maximal attainable scalarized value with any

422

Computing CCSs for Faster Multi-objective Coordination

(a) (b) (c) (d)

Figure 8: (a) All possible payoff vectors for a 2-objective MO-CoG. (b) OLS finds two payoff
vectors at the extrema (red vertical lines), a new corner weight wc = (0.5, 0.5) is
found, with maximal possible improvement ∆. CCS is shown as the dotted line.
(c) OLS finds a new vector at (0.5, 0.5), and adds two new corner weights to Q.
(d) OLS calls SolveCoG for both corner weights (in two iterations), and finds no
new vectors, ensuring S = CCS = CCS.

payoff vector in S:
u∗S(w) = max

u(a)∈S
w · u(a).

Similarly, we define the set of maximizing joint actions:

Definition 15. The optimal joint action set function with respect to S is a function that
gives the joint actions that maximize the scalarized value:

AS(w) = arg max
u(a)∈S

w · u(a).

Note that AS(w) is a set because for some w there can be multiple joint actions that provide
the same scalarized value.

Using these definitions, we can describe optimistic linear support (OLS). OLS adds
vectors to a partial CCS, S, finding new vectors for so-called corner weights. These corner
weights are the weights where u∗S(w) (Definition 14) changes slope in all directions. These
must thus be weights where AS(w) (Definition 15) consists of multiple payoff vectors. Every
corner weight is prioritized by the maximal possible improvement of finding a new payoff
vector at that corner weight. When the maximal possible improvement is 0, OLS knows
that the partial CCS is complete. An example of this process is given in Figure 8, where
the (corner) weights where the algorithm has searched for new payoff vectors are indicated
by red vertical lines.

OLS is shown in Algorithm 7. To find the optimal payoff for a corner weight, OLS
assumes access to a function called SolveCoG that computes the best payoff vector for a
given w. For now, we leave the implementation of SolveCoG abstract. In Section 5.2, we
discuss how to implement SolveCoG. OLS also takes as input m, the MO-CoG to be solved,
and ε, the maximal tolerable error in the result.

We first describe how OLS is initialized (Section 5.1.1). Then, we define corner weights
formally and describe how OLS identifies them (Section 5.1.2). Finally, we describe how

423

Roijers, Whiteson, & Oliehoek

Algorithm 7: OLS(m, SolveCoG, ε)

Input: A CoGG and an agent i to eliminate.
1 S ← ∅//partial CCS,
2 W ← ∅ //set of checked weights
3 Q← an empty priority queue
4 foreach extremum of the weight simplex we do
5 Q.add(we, ∞) // add extrema with infinite priority
6 end
7 while ¬Q.isEmpty() ∧ ¬timeOut do
8 w← Q.pop()
9 u← SolveCoG(m,w)

10 if u 6∈ S then
11 Wdel ← remove the corner weights made obsolete by u from Q, and store them
12 Wdel ← {w} ∪Wdel //corner weights which are removed because of adding u
13 Wu ← newCornerWeights(u,Wdel, S)
14 S ← S ∪ {u}
15 foreach w ∈Wu do
16 ∆r(w)← calculate improvement using maxValueLP(w, S,W)
17 if ∆r(w) > ε then
18 Q.add(w, ∆r(w))
19 end

20 end

21 end
22 W ←W ∪ {w}
23 end
24 return S and the highest ∆r(w) left in Q

OLS prioritizes corner weights and how this can also be used to bound the error when
stopping OLS before it is done finding a full CCS (Section 5.1.3).

5.1.1 Initialization

OLS starts by initializing the partial CCS, S, which will contain the payoff vectors in the
CCS discovered so far (line 1 of Algorithm 7), as well as the set of visited weights W (line
2). Then, it adds the extrema of the weight simplex, i.e., those points where all of the
weight is on one objective, to a priority queue Q, with infinite priority (line 5).

These extrema are popped off the priority queue when OLS enters the main loop (line
7), in which the w with the highest priority is selected (line 8). SolveCoG is then called
with w (line 9) to find u, the best payoff vector for that w.

For example, Figure 8b shows S after two payoff vectors of a 2-dimensional MO-
CoG have been found by applying SolveCoG to the extrema of the weight simplex: S =
{(1, 8), (7, 2)}. Each of these vectors must be part of the CCS because it is optimal for
at least one w: the one for which SolveCoG returned it as a solution (the extrema of the
weight simplex). The set of weights W that OLS has tested so far are marked with vertical
red line segments.

424

Computing CCSs for Faster Multi-objective Coordination

5.1.2 Corner Weights

After having evaluated the extrema, S consists of d (the number of objectives) payoff vectors
and associated joint actions. However, for many weights on the simplex, it does not yet
contain the optimal payoff vector. Therefore, after identifying a new vector u to add to S
(line 9), OLS must determine what new weights to add to Q. Like Cheng’s linear support,
OLS does so by identifying the corner weights: the weights at the corners of the convex
upper surface, i.e., the points where the PWLC surface u∗S(w) changes slope. To define
the corner weights precisely, we must first define P , the polyhedral subspace of the weight
simplex that is above u∗S(w) (Bertsimas & Tsitsiklis, 1997). The corner weights are the
vertices of P, which can be defined by a set of linear inequalities:

Definition 16. If S is the set of known payoff vectors, we define a polyhedron

P = {x ∈ <d+1 : S+x ≥ ~0,∀i, wi > 0,
∑
i

wi = 1},

where S+ is a matrix with the elements of S as row vectors, augmented by a column vector
of −1’s. The set of linear inequalities S+x ≥ ~0, is supplemented by the simplex constraints:
∀i wi > 0 and

∑
iwi = 1. The vector x = (w1, ..., wd, u) consists of a weight vector and

a scalarized value at those weights. The corner weights are the weights contained in the
vertices of P , which are also of the form (w1, ..., wd, u).

Note that, due to the simplex constraints, P is only d-dimensional. Furthermore, the
extrema of the weight simplex are special cases of corner weights.

After identifying u, OLS identifies which corner weights change in the polyhedron P by
adding u to S. Fortunately, this does not require recomputation of all the corner weights,
but can be done incrementally: first, the corner weights in Q for which u yields a better
value than currently known are deleted from the queue (line 11) and then the function
newCornerWeights(u,Wdel, S) at line 13 calculates the new corner weights that involve u
by solving a system of linear equations to see where u intersects with the boundaries and
the relevant subset of the present vectors in S.

newCornerWeights(u,Wdel, S) (line 13) first calculates the set of all relevant payoff
vectors, Arel, by taking the union of all the maximizing vectors of the weights in Wdel

9:

Arel =
⋃

w∈Wdel

AS(w).

If any AS(w) contains fewer than d payoff vectors, then a boundary of the weight simplex
is involved. These boundaries are also stored. All possible subsets of size d− 1 (of vectors
and boundaries) are taken. For each subset the weight where these d − 1 payoff vectors
(and/or boundaries) intersect with each other and u is computed by solving a system of
linear equations. The intersection weights for all subsets together form the set of candidate
corner weights: Wcan. newCornerWeights(u,Wdel, S) returns the subset of Wcan which are
inside of the weight simplex and for which u has a higher scalarized value than any payoff

9. In fact, in our implementation, we optimize this step by caching AS(w) for all w in Q.

425

Roijers, Whiteson, & Oliehoek

vector already in S. Figure 8b shows one new corner weight labelled wc = (0.5, 0.5). In
practice, |Arel| is very small, so only a few systems of linear equations need to be solved.10

After calculating the new corner weights Wu at line 13, u is added to S at line 14.
Cheng showed that finding the best payoff vector for each corner weight and adding it to
the partial CCS, i.e., S ← S ∪ {SolveCoG(w)}, guarantees the best improvement to S:

Theorem 8. (Cheng 1988) The maximum value of:

max
w,u∈CCS

min
v∈S

w · u−w · v,

i.e., the maximal improvement to S by adding a vector to it, is at one of the corner weights
(Cheng, 1988).

Theorem 8 guarantees the correctness of OLS: after all corner weights are checked, there
are no new payoff vectors; thus the maximal improvement must be 0 and OLS has found
the full CCS.

5.1.3 Prioritization

Cheng’s linear support assumes that all corner weights can be checked inexpensively, which
is a reasonable assumption in a POMDP setting. However, since SolveCoG is an expensive
operation, testing all corner weights may not be feasible in MO-CoGs. Therefore, unlike
Cheng’s linear support, OLS pops only one w off Q to be tested per iteration. Making
OLS efficient thus critically depends on giving each w a suitable priority when adding it
to Q. To this end, OLS prioritizes each corner weight w according to its maximal possible
improvement, an upper bound on the improvement in u∗S(w). This upper bound is computed
with respect to CCS, the optimistic hypothetical CCS, i.e., the best-case scenario for the
final CCS given that S is the current partial CCS and W is the set of weights already
tested with SolveCoG. The key advantage of OLS over Cheng’s linear support is that these
priorities can be computed without calling SolveCoG, obviating the need to run SolveCoG

on all corner weights.

Definition 17. An optimistic hypothetical CCS, CCS is a set of payoff vectors that yields
the highest possible scalarized value for all possible w consistent with finding the vectors S
at the weights in W.

Figure 8b denotes the CCS = {(1, 8), (7, 2), (7, 8)} with a dotted line. Note that CCS is a
superset of S and the value of u∗

CCS
(w) is the same as u∗S(w) at all the weights in W. For

a given w, maxValueLP finds the the scalarized value of u∗
CCS

(w) by solving:

max w · v
subject to W v ≤ u∗S,W ,

10. However, in theory it is possible to construct a partial CCS, S that has a corner weight for which all
payoff vectors in S are in Adel.

426

Computing CCSs for Faster Multi-objective Coordination

where u∗S,W is a vector containing u∗S(w′) for all w′ ∈ W. Note that we abuse the notation
W, which in this case is a matrix whose rows consist of all the weight vectors in the set
W.11

Using CCS, we can define the maximal possible improvement:

∆(w) = u∗
CCS

(w)− u∗S(w).

Figure 8b shows ∆(wc) with a dashed line. We use the maximal relative possible improve-
ment, ∆r(w) = ∆(w)/u∗

CCS
(w), as the priority of each new corner weight w ∈ Wu. In

Figure 8b, ∆r(wc)=
(0.5,0.5)·((7,8)−(1,8))

7.5 =0.4. When a corner weight w is identified (line 13),
it is added to Q with priority ∆r(w) as long as ∆r(w) > ε (lines 16-18).

After wc in Figure 8b is added to Q, it is popped off again (as it is the only element
of Q). SolveCoG(wc) generates a new vector (5, 6), yielding S = {(1, 8), (7, 2), (5, 6)}, as
illustrated in Figure 8c. The new corner weights (0.667, 0.333) and (0.333, 0.667) are the
points at which (5, 6) intersects with (7, 2) and (1, 8). Testing these weights, as illustrated in
Figure 8d, does not result in new payoff vectors, causing OLS to terminate. The maximal
improvement at these corner weights is 0 and thus, due to Theorem 8, S = CCS upon
termination. OLS called solveCoG for only 5 weights resulting exactly in the 3 payoff
vectors of the CCS. The other 7 payoff vectors in V (displayed as grey and dashed black
lines in Figure 8a) were never generated.

5.2 Variable Elimination Linear Support

Any exact CoG algorithm can be used to implement SolveCoG. A naive approach is to
explicitly compute the values of all joint actions V and select the joint action that maximizes
this value:

SolveCoG(m,w) = arg max
u(a)∈V

w · u(a).

This implementation of SolveCoG in combination with OLS yields an algorithm that we
refer to as non-graphical linear support (NGLS), because it ignores the graphical structure,
flattening the CoG into a standard multi-objective cooperative normal form game. The
main downside is that the computational complexity of SolveCoG is linear in |V| (which
is equal to |A|), which is exponential in the number of agents, making it feasible only for
MO-CoGs with very few agents.

By contrast, if we use VE (Section 2.2) to implement SolveCoG, we can do better. We
call the resulting algorithm variable elimination linear support (VELS). Having dealt with
the multiple objectives in the outer loop of OLS, VELS relies on VE to exploit the graphical
structure in the inner loop, yielding a much more efficient method than NGLS.

5.3 Analysis

We now analyze the computational complexity of VELS.

11. Our implementation of OLS reduces the size of the LP by using only the subset of weights in W for
which the joint actions involved in w, AS(w), have been found to be optimal. This can lead to a slight
overestimation of u∗

CCS
(w).

427

Roijers, Whiteson, & Oliehoek

Theorem 9. The runtime of VELS with ε = 0 is

O((|CCS|+ |WCCS |)(n|Amax|w + Cnw + Cheur)),

where w is the induced width when running VE, |CCS| is the size of the CCS, |WCCS | is
the number of corner weights of u∗CCS(w), Cnw the time it costs to run newCornerWeights,
and Cheur the cost of the computation of the value of the optimistic CCS using maxValueLP.

Proof. Since n|Amax|w is the runtime of VE (Theorem 1), the runtime of VELS is this
quantity (plus the overhead per corner weight Cnw + Cheur) multiplied by the number of
calls to VE. To count these calls, we consider two cases: calls to VE that result in adding
a new vector to S and those that do not result in a new vector but instead confirm the
optimality of the scalarized value at that weight. The former is the size of the final CCS,
|CCS|, while the latter is the number of corner weights for the final CCS, |WCCS |.

The overhead of OLS itself, i.e., computing new corner weights, Cnw, and calculating
the maximal relative improvement, Cheur, is very small compared to the SolveCoG calls.
In practice, newCornerWeights(u, Wdel, S) computes the solutions to only a small set of
linear equations (of d equations each). maxValueLP(w, S, W) computes the solutions to
linear programs, which is polynomial in the size of its inputs.12

For d = 2, the number of corner weights is smaller than |CCS| and the runtime of
VELS is thus O(n|Amax|w|CCS|). For d = 3, the number of corner weights is twice |CCS|
(minus a constant) because, when SolveCoG finds a new payoff vector, one corner weight is
removed and three new corner weights are added. For d > 3, a loose bound on |WCCS | is

the total number of possible combinations of d payoff vectors or boundaries: O(
(|CCS|+d

d

)
).

However, we can obtain a tighter bound by observing that counting the number of corner
weights given a CCS is equivalent to vertex enumeration, which is the dual problem of
facet enumeration, i.e., counting the number of vertices given the corner weights (Kaibel &
Pfetsch, 2003).

Theorem 10. For arbitrary d, |WCCS | is bounded by O(
(|CCS|−b d+1

2
c

|CCS|−d
)

+
(|CCS|−b d+2

2
c

|CCS|−d
)
)

(Avis & Devroye, 2000).

Proof. This result follows directly from McMullen’s upper bound theorem for facet enumer-
ation (Henk, Richter-Gebert, & Ziegler, 1997; McMullen, 1970).

The same reasoning used to prove Theorems 9 can also be used to establish the following:

Corollary 1. The runtime of VELS with ε ≥ 0 is
O((|ε-CCS|+ |Wε–CCS |)(n|Amax|w+Cnw+Cheur), where |ε-CCS| is the size of the ε-CCS,
and |Wε–CCS | is the number of corner weights of u∗ε–CCS(w).

In practice, VELS will often not test all the corner weights of the polyhedron spanned
by the ε-CCS, but this cannot be guaranteed in general. In Section 5.4, we show empirically
that |ε-CCS| decreases rapidly as ε increases.

12. When the reduction in Footnote 11 is used, only a very small subset of W is used, making it even smaller.

428

Computing CCSs for Faster Multi-objective Coordination

Figure 9: (left) The runtimes of PMOVE, CMOVE and VELS with different values of ε,
for varying numbers of agents, n, and ρ = 1.5n factors, 2 actions per agent, and
2 objectives and (right) the corresponding sizes of the ε-CCSs.

Theorem 11. The space complexity of VELS is O(d|ε-CCS|+d|Wε–CCS |+n|Amax|w) with
ε ≥ 0.

Proof. OLS needs to store every corner weight (a vector of length d) in the queue, which
is at most |Wε–CCS |. OLS also needs to store every vector in S (also vectors of length d).
Furthermore, when SolveCoG is called, the memory usage of VE is added to the memory
usage of the outer loop of OLS. The memory usage of VE is n|Amax|w (Theorem 2).

Because OLS adds few memory requirements to that of VE, VELS is almost as memory
efficient as VE and thus considerably more memory efficient than CMOVE (Theorem 7).

5.4 Empirical Evaluation

We now empirically evaluate VELS, in comparison to CMOVE and PMOVE. We no longer
compare against the non-graphical method as this is clearly dominated by CMOVE and
PMOVE. Where we refer to CMOVE in this section, we mean basic CMOVE, as this was
fastest for the tested scenarios. Like before, we use both random graphs and the Mining Day
benchmark. All experiments in this section were run on a 2.4 GHx Intel Core i5 computer,
with 4 GB memory.

5.4.1 Random Graphs

To test VELS on randomly generated MO-CoGs, we use the same MO-CoG generation
procedure as in Section 4. To determine how the scalability of exact and approximate
VELS compares to that of PMOVE and CMOVE, we tested them on random MO-CoGs
with increasing numbers of agents. The average number of factors per agent was held at
ρ = 1.5n and the number of objectives at d = 2. Figure 9 shows the results, which are
averaged over 30 MO-CoGs for each number of agents. Note that the runtimes on the left,
on the y-axis, are in log-scale but the set sizes on the right are not.

These results demonstrate that VELS is more efficient than CMOVE for two-objective
random MO-CoGs. The runtime of exact VELS (ε = 0) is on average 16 times less than

429

Roijers, Whiteson, & Oliehoek

that of CMOVE. CMOVE solves random MO-CoGs with 85 agents in 74s on average, whilst
exact VELS can handle 110 agents in 71s.

While this is already a large gain, we can achieve an even lower growth rate by permitting
a small ε. For 110 agents, permitting a 0.001 error margin yields a gain of more than an
order of magnitude, reducing the runtime to 5.7s. Permitting a 0.01 error reduces the
runtime to only 1.3s. We can thus reduce the runtime of VELS by a factor of 57, while
retaining 99% accuracy. Compared to CMOVE at 85 agents, VELS with ε = 0.01 is 109
times faster.

These speedups can be explained by the slower growth of the ε-CCS (Figure 9 (right)).
For small numbers of agents, the size of the ε-CCS grows only slightly more slowly than
the size of the full CCS. However, from a certain number of agents onwards, the size of the
ε-CCS grows only marginally while the size of the full CCS keeps on growing. For ε = 0.01,
the ε-CCS grew from 2.95 payoff vectors to 5.45 payoff vectors between 5 and 20 agents,
and then only marginally to 5.50 at 110 agents. By contrast, the full CCS grew from 3.00
to 9.90 vectors between 5 and 20 agents, but then keeps on growing to 44.50 at 110 agents.
A similar picture holds for the 0.001-CCS, which grows rapidly from 3.00 vectors at 5 to
14.75 vectors at 50 agents, then grows slowly to 16.00 at 90 agents, and then stabilizes, to
reach 16.30 vectors at 120 agents. Between 90 and 120 agents, the full CCS grows from
35.07 vectors to 45.40 vectors, making it almost 3 times as large as the 0.001-CCS and 9
times larger than the 0.01-CCS .

To test the scalability of VELS with respect to the number of objectives, we tested it
on random MO-CoGs with a constant number of agents and factors n = 25 and ρ = 1.5n,
but increased the number of objectives, for ε = 0 and ε = 0.1. We compare this to the
scalability of CMOVE. We kept the number of agents (n = 25) and the number of local
payoff functions (ρ = 37) small in order to test the limits of scalability in the number of
objectives. The number of actions per agent was 2. Figure 10 (left) plots the number of
objectives against the runtime (in log scale). Because the CCS grows exponentially with
the number of objectives (Figure 10 (right)), the runtime of CMOVE is also exponential in
the number of objectives. VELS however is linear in the number of corner weights, which is
exponential in the size of the CCS, making VELS doubly exponential. Exact VELS (ε = 0)
is faster than CMOVE for d = 2 and d = 3, and for d = 4 approximate VELS with ε = 0.1
is more than 20 times faster. However for d = 5 even approximate VELS with ε = 0.1 is
slower than CMOVE.

Unlike when the number of agents grows, the size of the ε-CCS (Figure 10 (right)) does
not stabilize when the number of objectives grows, as can be seen in the following table:

|ε–CCS| ε = 0 ε = 0.001 ε = 0.01 ε = 0.1
d = 2 10.6 7.3 5.6 3.0
d = 3 68.8 64.6 41.0 34.8
d = 4 295.1 286.1 242.6 221.7

We therefore conclude that VELS can compute a CCS faster than CMOVE for 3 objectives
or less, but that CMOVE scales better in the number of objectives. VELS however, scales
better in the number of agents.

430

Computing CCSs for Faster Multi-objective Coordination

Figure 10: (left) the runtimes of CMOVE and VELS (ε = 0 and ε = 0.1), for varying num-
bers of objectives (right) the size of the ε-CCS for varying numbers of objectives.

Figure 11: (left) plot of the runtimes of CMOVE and VELS with different values of ε, for
varying n (up to 500). (right) loglogplot of the runtime of VELS on 250, 500,
and 1000 agent mining day instances, for varying values of ε.

5.4.2 Mining Day

We now compare CMOVE and VELS on the Mining Day benchmark using the same gener-
ation procedure as in Section 4.5.2. We generated 30 Mining Day instances for increasing n
and averaged the runtimes (Figure 11 (left)). At 160 agents, CMOVE has reached a runtime
of 22s. Exact VELS (ε = 0) can compute the complete CCS for a MO-CoG with 420 agents
in the same time. This indicates that VELS greatly outperforms CMOVE on this structured
2-objective MO-CoG. Moreover, when we allow only 0.1% error (ε = 0.001), it takes only
1.1s to compute an ε-CCS for 420 agents, a speedup of over an order of magnitude.

To measure the additional speedups obtainable by further increasing ε, and to test VELS
on very large problems, we generated Mining Day instances with n ∈ {250, 500, 1000}. We
averaged over 25 instances per value of ε. On these instances, exact VELS runs in 4.2s
for n = 250, 30s for n = 500 and 218s for n = 1000 on average. As expected, increasing
ε leads to greater speedups (Figure 11 (right)). However, when ε is close to 0, i.e., the

431

Roijers, Whiteson, & Oliehoek

ε-CCS is close to the full CCS, the speedup is small. After ε has increased beyond a certain
value (dependent on n), the decline becomes steady, shown as a line in the log-log plot. If
ε increases by a factor 10, the runtime decreases by about a factor 1.6.

Thus, these results show that VELS can compute an exact CCS for unprecedented
numbers of agents (1000) in well-structured problems. In addition, they show that small
values of ε enable large speedups, and that increasing ε leads to even bigger improvements
in scalability.

6. Memory-Efficient Methods

Both CMOVE and VELS are designed to minimize the runtime required to compute a CCS.
However, in some cases, the bottleneck may be memory instead. Memory-efficient methods
for CoGs and related problems have recently received considerable attention (Dechter &
Mateescu, 2007; Marinescu, 2008, 2009; Mateescu & Dechter, 2005). In this section, we
show that, because it is an outer loop method, VELS is naturally memory efficient and
can therefore solve much larger MO-CoGs than an inner loop method like CMOVE when
memory is restricted. In addition, we show how both CMOVE and VELS can be modified
to produce even more memory-efficient variants.

6.1 And/Or Tree Search

We begin with some background on AND/OR tree search (Dechter & Mateescu, 2007;
Marinescu, 2008; Mateescu & Dechter, 2005; Yeoh, Felner, & Koenig, 2010), a class of
algorithms for solving single-objective CoGs that can be tuned to provide better space
complexity guarantees than VE. However, the improvement in space complexity comes at
a price, i.e., the runtime complexity is worse (Mateescu & Dechter, 2005). The background
we provide is brief; for a broader overview of AND/OR tree search for CoGs and related
models please see the work of Dechter (2013) and Marinescu (2008), and for multi-objective
versions the work of Marinescu (2009, 2011).

AND/OR tree search algorithms work by converting the graph to a pseudo tree (PT)
such that each agent need only know which actions its ancestors and descendants in the PT
take in order to select its own action. For example, if an agent i (a node) in the PT has two
subtrees (T1 and T2) under it, all the agents in T1 are conditionally independent of all the
agents in T2 given i and the ancestors of i. Figure 12a shows the PT for the coordination
graph in Figure 2a.

Next, AND/OR tree search algorithms perform a tree search that results in an AND/OR
search tree (AOST). Each agent i in an AOST is an OR-node. Its children are AND-nodes,
each corresponding to one of agent i’s actions. In turn, the children of these AND-nodes are
OR-nodes corresponding to agent i’s children in the PT. Because each action (AND-nodes)
of agent i has the same agents under it as OR-nodes, the agents and actions can appear in
the tree multiple times. Figure 12b shows an AOST for the graph of Figure 2a.

A specific joint action can be constructed by traversing the tree, starting at the root and
selecting one alternative from the childen of each OR-node, i.e., one action for each agent,
and continuing down all children of each AND-node. For example, in Figure 12b, the joint
action < ā1, ȧ2, ȧ3 > is indicated in grey. To retrieve the value of a joint action, we must
first define the value of AND-nodes.

432

Computing CCSs for Faster Multi-objective Coordination

������������������������������������

�

���

�� �

����

������������������������������

�

� �

��������������������������������������

� � � � � � � �

���������������������������������������

���

Figure 12: (a) a pseudo tree, (b) a corresponding AND/OR search tree.

Definition 18. The value of an AND-node vai, representing an action ai of an agent i is
the sum of the local payoff functions that have i in scope; ai, together with its AND-node
ancestors’ actions, specifies an action for each agent in scope of these local payoff functions.

For example, in Figure 12b, the total payoff of the CoG is u(a1, a2, a3) = u1(a1, a2) +
u2(a2, a3). The value of the grey AND-node ȧ3 is u2(ȧ2, ȧ3), as u3 is the only payoff function
that has agent 3 in scope and, together with its ancestral AND-nodes, the grey ȧ2-node, ȧ3

completes a joint local action for u2.

To retrieve the optimal action, we must define the value of a subtree in the AOST:

Definition 19. The value of a subtree v(Ti) rooted by an OR-node i in an AOST is the
maximum of the value of the subtrees rooted by the (AND-node) children of i. The value of
a subtree v(Tai) rooted by an AND-node ai in an AOST is the value of ai itself (Definition
18) plus the sum of the value of the subtrees rooted by the (OR-node) children of ai.

The most memory-efficient way to retrieve the optimal joint action using an AOST
is Euler-touring it, i.e., performing a depth-first search and computing the values of the
subtrees. By generating nodes on the fly and deleting them after they are evaluated, memory
usage is minimized. We refer to this algorithm simply as AND/OR tree search (TS). As
in earlier sections, our implementation employs a tagging scheme, tagging the value of a
subtree with the actions that maximize it.

While TS is a single-objective method, it has been extended to compute the PCS,
yielding an algorithm we call Pareto TS (PTS) (Marinescu, 2009). To define PTS, we must
update Definition 19 to be a set of Pareto-optimal payoffs. We refer to such a subtree value
set as an intermediate PCS (IPCS).

Definition 20. The intermediate PCS of a subtree, IPCS(Ti) rooted by an OR-node i is
the PCS of the union of the intermediate PCSs of the children, ch(i), of i:

IPCS(Ti) = PPrune(
⋃

aj∈ch(i)

IPCS(Taj)).

433

Roijers, Whiteson, & Oliehoek

The intermediate PCS of a subtree, IPCS(Tai) rooted by an AND-node ai is the PCS of the
value of ai itself (Definition 18) plus the cross-sum of the intermediate PCSs of the subtrees
rooted by the (OR-node) children of ai:

IPCS(Tai) = PPrune(

 ⊕
j∈ch(ai)

IPCS(Tj)

⊕ {vai}).
Thus, PTS replaces the max operator in TS by a pruning operator, just as PMOVE replaces
the max operator in VE by a pruning operator.

6.2 Memory-Efficient CCS Algorithms

We now propose two memory-efficient algorithms for computing a CCS. Both are straight-
forward variants of CMOVE and VELS.

The first algorithm, which we call Convex TS (CTS), simply replaces PPrune by CPrune

in Definition 20. Thus, CTS is like PTS but with a different pruning operator. It can
also be seen as CMOVE but with VE replaced with TS. The advantage of CTS over PTS
is analogous to that of CMOVE over PMOVE: it is highly beneficial to compute local
CCSs instead of local PCSs because the intermediate coverage sets are input to the next
subproblem in a sequential search scheme, regardless of whether that scheme is VE or TS.
While CTS is more memory efficient than CMOVE, it still requires computing intermediate
coverage sets that take up space. While these are typically only about as large as the CCS,
their size is bounded only by the total number of joint actions.

The second algorithm addresses this problem by employing OLS with TS as the single-
objective solver subroutine, SolveCoG, yielding tree search linear support (TSLS). Thus,
TSLS is like VELS but with VE replaced by TS. Because TSLS is an outer-loop method, it
runs TS in sequence, requiring only the memory used by TS itself and the overhead of the
outer loop, which consists only of the partial CCS (Definition 13) and the priority queue.
Consequently, TSLS is even more memory efficient than CTS.

6.3 Analysis

TS has much better space complexity than VE, i.e., only linear in the number of agents n:

Theorem 12. The time complexity of TS is O(n|Amax|m), where n is the number of agents,
|Amax| is the maximal number of actions of a single agent and m is the depth of the pseudo
tree, and uses linear space, O(n).

Proof. The number of nodes in an AOST is bounded by O(n|Amax|m). The tree creates
maximally |Amax| children at each OR-node. If every AND-node had exactly one child, the
number of nodes would be bounded by O(|Amax|m), as the PT is m deep. However, if there
is branching in the PT, an AND-node can have multiple children. Each branch increases
the size of the AOST by at most O(|Amax|m) nodes. Because there are exactly n agents in
the PT, this can happen at most n times. At each node in the AOST, TS performs either
a summation of scalars, or a maximization over scalars. Because TS performs depth-first
search, at most O(n) nodes need to exist at any point during execution.

434

Computing CCSs for Faster Multi-objective Coordination

TS’s memory usage is usually lower than that required to store the original (single-
objective) problem in memory: O(ρ|Amax|emax), where ρ is the number of local payoff
functions in the problem, |Amax| is the maximal size of the action space of a single agent,
and emax is the maximal size of the scope of a single local payoff function.

The PT-depth m is a different constant than the induced width w, and is typically
larger. However, m can be bounded in w.

Theorem 13. Given a MO-CoG with induced width w, there there exists a pseudo tree for
which the depth m ≤ w log n (Dechter & Mateescu, 2007).

Thus, combining Theorems 12 and 13 shows that, when there are few agents, TS can
be much more memory efficient than VE with a relatively small runtime penalty.

Using the time and space complexity results for TS, we can establish the following
corollaries about the time and space complexity of CTS and TSLS.

Corollary 2. The time complexity of CTS is O(n|Amax|mR), where R is the runtime of
CPrune.

Proof. O(n|Amax|m) bounds the number of nodes in the AOST. For each node in the AOST
CPrune is called.

The runtime of CPrune in terms of the size of its input is given in Equation 3. Note
that the size of the input of CPrune depends on the size of the intermediate CCSs of
the children of a node. In the case of an AND-node, this input size is O(|ICCSmax|c),
where c is the maximum number of children of an AND-node.13 For OR-nodes this is
O(|Amax||ICCSmax|).

Corollary 3. The space complexity of CTS is O(n|ICCSmax|), where |ICCSmax| is the
maximum size of an intermediate CCS during the execution of CTS.

Proof. Like in TS, only O(n) nodes of the AOST need to exist during any point during
execution, and each node contains an intermediate CCS.

CTS is thus much more memory efficient than CMOVE, which has a space complexity
that is exponential in the induced width (Theorem 7).

Corollary 4. The time complexity of TSLS is O((|ε-CCS|+ |Wε-CCS |) (n |Amax|m+Cnw+
Cheur)), where m ≤ w log n and ε ≥ 0.

Proof. The proof is the same as that of Theorem 9 but with the time complexity of VE
replaced by that of TS.

In terms of memory usage, the outer loop approach (OLS) has a large advantage over
the inner loop approach, because the overhead of the outer loop consists only of the partial
CCS (Definition 13) and the priority queue. VELS (Theorem 11) thus has much better
space complexity than CMOVE (Theorem 7). TSLS has the same advantage over CTS as
VELS over CMOVE. Therefore, TSLS has very low memory usage, since it requires only
the memory used by TS itself plus the overhead of the outer loop.

13. Note that c is in turn upper bounded by n but this is a very loose bound.

435

Roijers, Whiteson, & Oliehoek

Corollary 5. The space complexity of TSLS is O(d|ε-CCS| + d|Wε-CCS | + n)), where
m ≤ w log n and ε ≥ 0.

Proof. The proof is the same as that of Theorem 11 but with the space complexity of VE
replaced by that of TS.

As mentioned in Section 6.1, TS is the most memory-efficient member of the class of
AND/OR tree search algorithms. Other members of this class offer different trade-offs
between time and space complexity. It is possible to create inner loop algorithms and
corresponding outer loop algorithms on the basis of these other algorithms. The time
and space complexity analyses of these algorithms can be performed in a similar manner to
Corollaries 2–5. The advantages of the outer loop methods compared to their corresponding
inner loop methods will however remain the same as for TSLS and CTS. Therefore, in this
article we focus on comparing the most memory-efficient inner loop method against the
most memory-efficient outer loop method.

6.4 Empirical Evaluation

In this section, we compare CTS and TSLS to CMOVE and VELS. As before, we use both
random graphs and the Mining Day benchmark. To obtain the PTs for CTS and TSLS,
we use the same heuristic as CMOVE and VELS to generate an elimination order and
then transform it into a PT for which m ≤ w log n holds (whose existence is guaranteed by
Theorem 13), using the procedure suggested by Bayardo and Miranker (1995).

6.4.1 Random Graphs

First, we test our algorithms on random graphs, employing the same generation procedure
as in Section 4.5.1. Because connections between agents in these graphs are generated
randomly, the induced width varies between different problems. On average, the induced
width increases with the number of local payoff functions, even when the ratio between
local payoff factors and the number of agents remains constant.

In order to test the sizes of problems that the different MO-CoG solution methods can
handle within limited memory, we generate random graphs with two objectives, a varying
number of agents n, and with ρ = 1.5n local payoff functions, as in previous sections. We
limited the maximal available memory to 1kB and imposed a timeout of 1800s.

Figure 13a shows that VELS can scale to more agents within the given memory con-
straints than the other non-memory efficient methods. In particular, PMOVE and CMOVE
can handle only 30 and 40 agents, respectively, because, for a given induced width w, they
must store O(|Amax|w) local CSs. At 30 agents, the induced width (Figure 13c) is at most
6, while at 40 agents the induced width is at most 8. VELS can handle 65 agents, with an
induced width of at most 11, because most of its memory demands come from running VE
in the inner loop, while the outer loop adds little overhead. VE need only store one payoff
in each new local payoff function that results from an agent elimination, whereas PMOVE
and CMOVE must store local coverage sets. Thus, using an outer loop approach (VELS)
instead of the inner loop approach (CMOVE) already yields a significant improvement in
the problem sizes that can be tackled with limited memory.

436

Computing CCSs for Faster Multi-objective Coordination

(a) (b) (c)

Figure 13: (a) Runtimes in ms of TSLS, VELS, CTS, CMOVE and PMOVE on random 2-
objective MO-CoGs with varying numbers of agents n and ρ = 1.5n local payoff
factors. (b) Runtimes of approximate TSLS for varying amounts of allowed error
ε, compared to (Exact) VELS, for the same problem parameters as in (a). (c)
The corresponding induced widths of the MO-CoGs in (b).

However, scaling beyond 65 agents requires a memory-efficient approach. Figure 13a
also shows that, while CTS and TSLS require more runtime, they can handle more agents
within the memory constraints. In fact, we were unable to generate a MO-CoG with enough
agents to cause these methods to run out of memory. TSLS is faster than CTS, in this case
4.2 times faster, for the same reasons that VELS is faster than CMOVE.

However, speed is not the only advantage of the outer loop approach. When we allow
a bit of error in scalarized value, ε, we can trade accuracy for runtime (Figure 13b). At 65
agents, exact TSLS (ε = 0), had an average runtime of 106s, which is 51 times slower than
VELS. However, for ε = 0.0001, the runtime was only 70s (33 times slower). For ε = 0.01 it
is 11s (5.4 times slower), and for ε = 0.1 it is only 6s (2.9 times slower). Furthermore, the
relative increase in runtime as the number of agents increases is less for higher ε. Thus, an
approximate version of TSLS is a highly attractive method for cases in which both memory
and runtime are limited.

6.4.2 Mining Field

We compare the performance of CMOVE and VELS against TSLS on a variation of Mining
Day that we call Mining Field. We no longer consider CLS because it has consistently higher
runtime than TSLS and worse space complexity. We use Mining Field in order to ensure
an interesting problem for the memory-restricted setting. In Mining Day (see Section 4),
the induced width depends only on the parameter specifying the connectivity of the villages
and does not increase with the number of agents and factors. Therefore, whether or not
VELS is memory-efficient enough to handle a particular instance depends primarily on this
parameter and not on the number of agents.

In Mining Field, the villages are not situated along a mountain ridge but are placed on
an s × s grid. The number of agents is thus n = s2. We use random placement of mines,
while ensuring that the graph is connected. Because the induced width of a connected grid
is s and we generate grid-like graphs, larger instances have a higher induced width. The

437

Roijers, Whiteson, & Oliehoek

��

 village mine

(a) (b) (c)

Figure 14: (a) An example of a 4 by 4 Mining Field instance. The additional mines m are
marked with a ‘+’. (b) Runtimes in ms of TSLS (for varying amounts of allowed
error ε), VELS (ε = 0), and CMOVE on 2-objective Mining Field instances with
varying numbers of additional mines m ∈ [2..14] and a grid size of s = 7. (c)
The corresponding induced widths of the Mining Field instances.

induced width thus no longer depends only on the connectivity parameter but also increases
with the number of agents and factors in the graph.

An example Mining Field instance is provided in Figure 14a. We choose the distance
between adjacent villages on the grid to be unit length. On this map, we then place the
mines (local payoff functions). We connect all agents using an arbitrary tree using 2-agent
local payoff functions (mines). In the figures, the mines that span this tree are unmarked
and connected to the mines with black edges. We require s2 − 1 factors to build the tree.
Then we add m additional mines, by (independently) placing them on a random point on
the map inside the grid. When a mine is placed, we connect it to the villages that are within
a r = 1√

2
+ η radius of that mine on the map. We chose η = 0.2. Therefore, the maximum

connectivity of a factor (mine) created in this fashion is 4. In the figure, these mines are
marked with a ‘+’. The rewards per mine per worker, as well as the number of workers per
village, are generated in the same way as in Mining Day.

To compare the runtimes and memory requirements of CMOVE, VELS, and TSLS on
Mining Field, we tested them on a 7× 7 instance (49 agents), with 1MB available memory.
For TSLS, we use three different values of ε: 0 (exact), 0.01 and 0.1. We use a time limit of
1.8× 106s (30 minutes). We increase the number of additional mines m from 2 (50 factors
in total) onwards, by steps of 2.

Using this setup, it was not possible to solve any of the problem instances using PMOVE,
which ran out of memory for all problems. In fact, PMOVE succeeded only a tree-shaped
problem. i.e., one without any additional factors. Figures 14b and 14c) show the results for
the remaining methods. CMOVE runs out of memory at 6 additional factors (54 factors in
total). By contrast, VELS runs out of memory only at 16 additional factors, at an induced
width of 6.

Compared to the random-graph results in Section 6.4.1, the induced widths of the
problems that CMOVE and VELS can handle are lower in Mining Field. We suspect that

438

Computing CCSs for Faster Multi-objective Coordination

this is because, on a grid-shaped problem, the number of factors with the highest induced
width that need to exist in parallel during the execution of the algorithms is higher.

TSLS does not run out of memory on any of the tested instances. In face, we were
unable to generate instances for which TSLS does run out of memory. However, it does
run out of time. For ε = 0, TSLS first exceeds the time limit at m = 10 additional mines.
For ε = 0.01, this happens at m = 14. For ε = 0.1, TSLS ran out of time at m = 16.
The differences in runtime between TSLS and VELS are larger than for random graphs
and therefore it is more difficult to compensate for the slower runtime of TSLS by choosing
a higher ε. How much slower TSLS is compared to VELS thus seems to depend on the
structure of the MO-CoG.

These Mining Field results confirm the conclusion of the random-graph experiments that
using an outer loop approach (VELS) instead of the inner loop approach (CMOVE) yields
a significant improvement in the problem sizes that can be tackled with limited memory.
Futhermore, TSLS can be used to solve problem sizes beyond those that VELS can handle
within limited memory. An approximate version of TSLS is an appealing choice for cases
in which both memory and runtime are limited.

7. Conclusions and Future Work

In this article, we proposed new algorithms that exploit loose couplings to compute a CCS
for multi-objective coordination graphs. We showed that exploiting these loose couplings
is key to solving MO-CoGs with many agents. In particular, we showed, both theoretically
and empirically, that computing a CCS has considerable advantages over computing a PCS
in terms of both runtime and memory usage. Our experiments have consistently shown
that the runtime of PCS methods grows a lot faster than that of our CCS methods.

CMOVE deals with multiple objectives in the inner loop, i.e., it computes local CCSs
while looping over the agents. By contrast, VELS deals with multiple objectives in the
outer loop, i.e., it identifies weights where the maximal improvement upon a partial CCS
can be made and solves scalarized (single-objective) problems using these weights, yielding
an anytime approach. In addition, CTS and TSLS are memory-efficient variants of these
methods. We proved the correctness of these algorithms and analyzed their complexity.

CMOVE and VELS are complementary methods. CMOVE scales better in the number
of objectives, while VELS scales better in the number of agents and can compute an ε-
CCS, leading to large additional speedups. Furthermore, VELS is more memory-efficient
than CMOVE. In fact, VELS uses little more memory than single-objective VE.

However, if memory is very restricted and VELS cannot be applied, TSLS provides a
memory-efficient alternative. While TSLS is considerably slower than VELS, some of this
loss can be compensated by allowing some error (ε).

There are numerous possibilities for future work. As mentioned in Section 5, OLS is a
generic method that can also be applied to other multi-objective problems. In fact, (together
with other authors) we already applied OLS to large multi-objective MDPs and showed that
OLS can be extended to permit non-exact single-objective solvers (Roijers et al., 2014). In
future work, we intend to investigate ε-approximate methods for MO-CoGs, by using ζ-
approximate single-objective solvers for CoGs, using, e.g., LP-relaxation methods (Sontag,
Globerson, & Jaakkola, 2011). We will attempt to find the optimal balance between the

439

Roijers, Whiteson, & Oliehoek

levels of approximation in the inner and outer loop, with respect to runtime guarantees and
empirical runtimes.

Many methods exist for single-objective coordination graphs in which a single parameter
controls the trade-off between memory usage and runtime (Furcy & Koenig, 2005; Rollón,
2008). For some of these algorithms, a corresponding multi-objective inner-loop version
that computes a PCS (Marinescu, 2009, 2011) has been devised. It would be interesting
to create inner and outer loop methods based on these methods that compute a CCS
instead and compare performance. In particular, we have shown that OLS requires very
little extra memory usage compared to single-objective solvers. It would be interesting to
investigate how much extra memory could be used by a single-objective solver inside OLS,
in comparison to the corresponding inner-loop method.

In addition to further work on MO-CoGs, we also aim to extend our work to sequential
settings. In particular, we will look at developing an efficient planning method for multi-
agent multi-objective MDPs by better exploiting loosely couplings. First, we will try to
develop an ε-approximate planning version of sparse-cooperative Q-learning (Kok & Vlassis,
2006b). However, this may not be possible in general because the effects of an agent on
other agents via the state is impossible to bound in general. Therefore, we hope to identify a
broadly applicable subclass of multi-agent MOMDPs for which an ε-approximate planning
method yields a substantial speed-up compared to exact planning methods.

Acknowledgements

We thank Rina Dechter for introducing us to memory-efficient methods for CoGs and
MO-CoGs, and Radu Marinescu for his tips on memory-efficient methods and their im-
plementation. Also, we would like to thank Maarten Inja, as well as the anonymous re-
viewers, for their valuable feedback. This research is supported by the NWO DTC-NCAP
(#612.001.109) and NWO CATCH (#640.005.003) projects and NWO Innovational Re-
search Incentives Scheme Veni (#639.021.336). Frans Oliehoek is affiliated with both the
University of Amsterdam and the University of Liverpool.

References

Avis, D., & Devroye, L. (2000). Estimating the number of vertices of a polyhedron. Infor-
mation processing letters, 73 (3), 137–143.

Bayardo, R. J. J., & Miranker, D. P. (1995). On the space-time trade-off in solving constraint
satisfaction problems. In IJCAI 1995: Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence.

Bertsimas, D., & Tsitsiklis, J. (1997). Introduction to Linear Optimization. Athena Scien-
tific.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.

Cassandra, A., Littman, M., & Zhang, N. (1997). Incremental pruning: A simple, fast, exact
method for partially observable markov decision processes. In UAI 1997: Proceedings
of the Thirteenth Conference on Uncertainty in Artificial Intelligence, pp. 54–61.

440

Computing CCSs for Faster Multi-objective Coordination

Cheng, H.-T. (1988). Algorithms for partially observable Markov decision processes. Ph.D.
thesis, University of British Columbia, Vancouver.

Dechter, R. (2013). Reasoning with Probabilistic and Deterministic Graphical Models: Ex-
act Algorithms, Vol. 7 of Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool Publishers.

Dechter, R., & Mateescu, R. (2007). And/or search spaces for graphical models. Artificial
intelligence, 171 (2), 73–106.

Delle Fave, F., Stranders, R., Rogers, A., & Jennings, N. (2011). Bounded decentralised
coordination over multiple objectives. In Proceedings of the Tenth International Joint
Conference on Autonomous Agents and Multiagent Systems, pp. 371–378.

Dubus, J., Gonzales, C., & Perny, P. (2009). Choquet optimization using gai networks
for multiagent/multicriteria decision-making. In ADT 2009: Proceedings of the First
International Conference on Algorithmic Decision Theory, pp. 377–389.

Feng, Z., & Zilberstein, S. (2004). Region-based incremental pruning for POMDPs. In UAI
2004: Proceedings of the Twentieth Conference on Uncertainty in Artificial Intelli-
gence, pp. 146–153.

Furcy, D., & Koenig, S. (2005). Limited discrepancy beam search. In IJCAI 2005: Proceed-
ings of the Nineteenth International Joint Conference on Artificial Intelligence, pp.
125–131.

Guestrin, C., Koller, D., & Parr, R. (2002). Multiagent planning with factored MDPs. In
Advances in Neural Information Processing Systems 15 (NIPS’02).

Henk, M., Richter-Gebert, J., & Ziegler, G. M. (1997). Basic properties of convex polytopes.
In Handbook of Discrete and Computational Geometry, Ch.13, pp. 243–270. CRC
Press, Boca.

Kaibel, V., & Pfetsch, M. E. (2003). Some algorithmic problems in polytope theory. In
Algebra, Geometry and Software Systems, pp. 23–47. Springer.

Kok, J. R., & Vlassis, N. (2004). Sparse cooperative Q-learning. In Proceedings of the
twenty-first international conference on Machine learning, ICML ’04, New York, NY,
USA. ACM.

Kok, J. R., & Vlassis, N. (2006a). Using the max-plus algorithm for multiagent decision
making in coordination graphs. In RoboCup 2005: Robot Soccer World Cup IX, pp.
1–12.

Kok, J., & Vlassis, N. (2006b). Collaborative multiagent reinforcement learning by payoff
propagation. Journal of Machine Learning Research, 7, 1789–1828.

Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press.

Lizotte, D., Bowling, M., & Murphy, S. (2010). Efficient reinforcement learning with multiple
reward functions for randomized clinical trial analysis. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10), pp. 695–702.

441

Roijers, Whiteson, & Oliehoek

Marinescu, R., Razak, A., & Wilson, N. (2012). Multi-objective influence diagrams. In
UAI 2012: Proceedings of the Twenty-Eighth Conference on Uncertainty in Artificial
Intelligence.

Marinescu, R. (2008). AND/OR Search Strategies for Combinatorial Optimization in Graph-
ical Models. Ph.D. thesis, University of California, Irvine.

Marinescu, R. (2009). Exploiting problem decomposition in multi-objective constraint op-
timization. In Principles and Practice of Constraint Programming-CP 2009, pp. 592–
607. Springer.

Marinescu, R. (2011). Efficient approximation algorithms for multi-objective constraint
optimization. In ADT 2011: Proceedings of the Second International Conference on
Algorithmic Decision Theory, pp. 150–164. Springer.

Mateescu, R., & Dechter, R. (2005). The relationship between AND/OR search and variable
elimination. In UAI 2005: Proceedings of the Twenty-First Conference on Uncertainty
in Artificial Intelligence, pp. 380–387.

McMullen, P. (1970). The maximum numbers of faces of a convex polytope. Mathematika,
17 (2), 179–184.

Oliehoek, F. A., Spaan, M. T. J., Dibangoye, J. S., & Amato, C. (2010). Heuristic search
for identical payoff bayesian games. In AAMAS 2010: Proceedings of the Ninth In-
ternational Joint Conference on Autonomous Agents and Multiagent Systems, pp.
1115–1122.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan Kaufmann.

Pham, T. T., Brys, T., Taylor, M. E., Brys, T., Drugan, M. M., Bosman, P. A., Cock,
M.-D., Lazar, C., Demarchi, L., Steenhoff, D., et al. (2013). Learning coordinated
traffic light control. In Proceedings of the Adaptive and Learning Agents workshop (at
AAMAS-13), Vol. 10, pp. 1196–1201.

Roijers, D. M., Scharpff, J., Spaan, M. T. J., Oliehoek, F. A., de Weerdt, M., & Whiteson,
S. (2014). Bounded approximations for linear multi-objective planning under uncer-
tainty. In ICAPS 2014: Proceedings of the Twenty-Fourth International Conference
on Automated Planning and Scheduling, pp. 262–270.

Roijers, D. M., Vamplew, P., Whiteson, S., & Dazeley, R. (2013a). A survey of multi-
objective sequential decision-making. Journal of Artificial Intelligence Research, 47,
67–113.

Roijers, D. M., Whiteson, S., & Oliehoek, F. (2013b). Computing convex coverage sets for
multi-objective coordination graphs. In ADT 2013: Proceedings of the Third Interna-
tional Conference on Algorithmic Decision Theory, pp. 309–323.

Roijers, D. M., Whiteson, S., & Oliehoek, F. A. (2014). Linear support for multi-objective
coordination graphs. In AAMAS 2014: Proceedings of the Thirteenth International
Joint Conference on Autonomous Agents and Multi-Agent Systems, pp. 1297–1304.

Rollón, E. (2008). Multi-Objective Optimization for Graphical Models. Ph.D. thesis, Uni-
versitat Politècnica de Catalunya, Barcelona.

442

Computing CCSs for Faster Multi-objective Coordination

Rollón, E., & Larrosa, J. (2006). Bucket elimination for multiobjective optimization prob-
lems. Journal of Heuristics, 12, 307–328.

Rosenthal, A. (1977). Nonserial dynamic programming is optimal. In Proceedings of the
Ninth Annual ACM Symposium on Theory of Computing, pp. 98–105. ACM.

Scharpff, J., Spaan, M. T. J., Volker, L., & De Weerdt, M. (2013). Planning under uncer-
tainty for coordinating infrastructural maintenance. In Proceedings of the 8th annual
workshop on Multiagent Sequencial Decision Making Under Certainty.

Sontag, D., Globerson, A., & Jaakkola, T. (2011). Introduction to dual decomposition for
inference. Optimization for Machine Learning, 1, 219–254.

Tesauro, G., Das, R., Chan, H., Kephart, J. O., Lefurgy, C., Levine, D. W., & Rawson, F.
(2007). Managing power consumption and performance of computing systems using
reinforcement learning. In Advances in Neural Information Processing Systems 20
(NIPS’07).

Vamplew, P., Dazeley, R., Barker, E., & Kelarev, A. (2009). Constructing stochastic mix-
ture policies for episodic multiobjective reinforcement learning tasks. In Advances in
Artificial Intelligence, pp. 340–349.

Yeoh, W., Felner, A., & Koenig, S. (2010). BnB-ADOPT: An asynchronous branch-and-
bound DCOP algorithm. Journal of Artificial Intelligence Research, 38, 85–133.

443

