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Abstract

Online, sample-based planning algorithms for POMDPs have
shown great promise in scaling to problems with large state
spaces, but they become intractable for large action and ob-
servation spaces. This is particularly problematic in multia-
gent POMDPs where the action and observation space grows
exponentially with the number of agents. To combat this in-
tractability, we propose a novel scalable approach based on
sample-based planning and factored value functions that ex-
ploits structure present in many multiagent settings. This ap-
proach applies not only in the planning case, but also in the
Bayesian reinforcement learning setting. Experimental re-
sults show that we are able to provide high quality solutions
to large multiagent planning and learning problems.

1 Introduction
Online planning methods for POMDPs have demonstrated
impressive performance (Ross et al. 2008) on large problems
by interleaving planning with action selection. The lead-
ing such method, partially observable Monte Carlo planning
(POMCP) (Silver and Veness 2010), achieves performance
gains by extending sample-based methods based on Monte
Carlo tree search (MCTS) to solve POMDPs.

While online, sample-based methods show promise in
solving POMDPs with large state spaces, they become in-
tractable as the number of actions or observations grow.
This is particularly problematic in the case of multiagent
systems. Specifically, we consider multiagent partially ob-
servable Markov decision processes (MPOMDPs), which
assume all agents share the same partially observable view
of the world and can coordinate their actions. Because the
MPOMDP model is centralized, POMDP methods apply,
but the fact that the number of joint actions and observa-
tions scales exponentially in the number of agents renders
current POMDP methods intractable.

To combat this intractability, we provide a novel sample-
based online planning algorithm that exploits multiagent
structure. Our method, called factored-value partially ob-
servable Monte Carlo planning (FV-POMCP), is based on
POMCP and is the first MCTS method that exploits local-
ity of interaction: in many MASs, agents interact directly
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with a subset of other agents. This structure enables a de-
composition of the value function into a set of overlapping
factors, which can be used to produce high quality solutions
(Guestrin, Koller, and Parr 2001; Nair et al. 2005; Kok and
Vlassis 2006). But unlike these previous approaches, we
will not assume a factored model, but only that the value
function can be approximately factored. We present two
variants of FV-POMCP that use different amounts of fac-
torization of the value function to scale to large action and
observation spaces.

Not only is our FV-POMCP approach applicable to
large MPOMDPs, but it is potentially even more impor-
tant for Bayesian learning where the agents have uncertainty
about the underlying model as modeled by Bayes-Adaptive
POMDPs (BA-POMDPs) (Ross et al. 2011). These mod-
els translate the learning problem to a planning problem, but
since the resulting planning problems have an infinite num-
ber of states, scalable sample-based planning approaches are
critical to their solution.

We show experimentally that our approach allows both
planning and learning to be significantly more efficient
in multiagent POMDPs. This evaluation shows that our
approach significantly outperforms regular (non-factored)
POMCP, indicating that FV-POMCP is able to effectively
exploit locality of interaction in both settings.

2 Background
We first discuss multiagent POMDPs and previous work on
Monte Carlo tree search and Bayesian reinforcement learn-
ing (BRL) for POMDPs.

2.1 Multiagent POMDPs
An MPOMDP (Messias, Spaan, and Lima 2011) is a multi-
agent planning model that unfolds over a number of steps.
At every stage, agents take individual actions and receive
individual observations. However, in an MPOMDP, all indi-
vidual observations are shared via communication, allowing
the team of agents to act in a ‘centralized manner’. We will
restrict ourselves to the setting where such communication
is free of noise, costs and delays.

An MPOMDP is a tuple 〈I, S, {Ai}, T,R, {Zi}, O,H〉
with: I , a set of agents; S, a set of states with designated ini-
tial state distribution b0; A = ×iAi, the set of joint actions,
using action sets for each agent, i; T , a set of state transition

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Liverpool Repository

https://core.ac.uk/display/80774005?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


probabilities: T s~as
′
= Pr(s′|s,~a), the probability of tran-

sitioning from state s to s′ when actions ~a are taken by the
agents; R, a reward function: R(s,~a), the immediate reward
for being in state s and taking actions ~a; Z = ×iZi, the set
of joint observations, using observation sets for each agent,
i; O, a set of observation probabilities: O~as

′~z = Pr(~z|~a, s′),
the probability of seeing observations ~o given actions ~awere
taken and resulting state s′; H , the horizon.

An MPOMDP can be reduced to a POMDP with a single
centralized controller that takes joint actions and receives
joint observations (Pynadath and Tambe 2002). Therefore,
MPOMDPs can be solved with POMDP solution methods,
some of which will be described in the remainder of this sec-
tion. However, such approaches do not exploit the particular
structure inherent to many MASs. In Sec. 4, we present a
first online planning method that overcomes this deficiency.

2.2 Monte Carlo Tree Search for (M)POMDPs
Most research for (mutliagent) POMDPs has focused on
planning: given a full specification of the model, determine
an optimal policy, π, mapping past observation histories
(which can be summarized by distributions b(s) over states
called beliefs) to actions. An optimal policy can be extracted
from an optimal Q-value function, Q(b, a) =

∑
sR(s, a) +∑

z P (z|b, a)maxa′ Q(b′, a′), by acting greedily. Comput-
ing Q(b, a), however, is complicated by the fact that the
space of beliefs is continuous.

POMCP (Silver and Veness 2010), is a scalable method
which extends Monte Carlo tree search (MCTS) to solve
POMDPs. At every stage, the algorithm performs online
planning, given the current belief, by incrementally build-
ing a lookahead tree that contains (statistics that represent)
Q(b, a). The algorithm, however, avoids expensive belief
updates by creating nodes not for each belief, but simply
for each action-observation history h. In particular, it sam-
ples hidden states s only at the root node (called ‘root sam-
pling’) and uses that state to sample a trajectory that first tra-
verses the lookahead tree and then performs a (random) roll-
out. The return of this trajectory is used to update the statis-
tics for all visited nodes. Because this search tree can be
enormous, the search is directed to the relevant parts by se-
lecting actions to maximize the ‘upper confidence bounds’:
U(h, a) = Q(h, a)+c

√
log(N + 1)/n.Here,N is the num-

ber of times the history has been reached and n is the number
of times that action a has been taken in that history. POMCP
can be shown to converge to an ε-optimal value function.
Moreover, the method has demonstrated good performance
in large domains with a limited number of simulations.

2.3 Bayesian RL for (M)POMDPs
Reinforcement learning (RL) considers the more realistic
case where the model is not (perfectly) known in advance.
Unfortunately, effective RL in POMDPs is very difficult.
Ross et al. (2011) introduced a framework, called the Bayes-
Adaptive POMDP (BA-POMDP), that reduces the learning
problem to a planning problem, thus enabling advances in
planning methods to be used in the learning problem.

In particular, the BA-POMDP utilizes Dirichlet distribu-
tions to model uncertainty over transitions and observations.
Intuitively, if the agent could observe states and observa-
tions, it could maintain vectors φ and ψ of counts for tran-
sitions and observations respectively. Let φass′ be the transi-
tion count of the number times state s′ resulted from taking
action a in state s and ψas′z be the observation count rep-
resenting the number of times observation z was seen after
taking action a and transitioning to state s′. These counts
induce a probability distribution over the possible transi-
tion and observation models. Even though the agent can-
not observe the states and has uncertainty about the actual
count vectors, this uncertainty can be represented using
the POMDP formalism — by including the count vectors
as part of the hidden state of a special POMDP, called a BA-
POMDP.

The BA-POMDP can be extended to the multiagent
setting (Amato and Oliehoek 2013), yielding the Bayes-
Adaptive multiagent POMDP (BA-MPOMDP) framework.
BA-MPOMDPs are POMDPs, but with an infinite state
space since there can be infinitely many count vectors.
While a quality-bounded reduction to a finite state space is
possible (Ross et al. 2011), the problem is still intractable;
sample-based planning is needed to provide solutions. Un-
fortunately, current methods, such as POMCP, do not scale
well to multiple agents.

3 Exploiting Graphical Structure
POMCP is not directly suitable for multiagent problems (in
either the planning or learning setting) due to the fact that the
number of joint actions and observations are exponential in
the number of agents. We first elaborate on these problems,
and then sketch an approach to mitigate them by exploiting
locality between agents.

3.1 POMCP for MPOMDPs: Bottlenecks
The large number of joint observations is problematic since
it leads to a lookahead tree with very high branching fac-
tor. Even though this is theoretically not a problem in MDPs
(Kearns, Mansour, and Ng 2002), in partially observable set-
tings that use particle filters it leads to severe problems. In
particular, in order to have a good particle representation at
the next time step, the actual joint observation received must
be sampled often enough during planning for the previous
stage. If the actual joint observation had not been sampled
frequently enough (or not at all), the particle filter will be
a bad approximation (or collapse). This results in sampling
starting from the initial belief again, or alternatively, to fall
back to acting using a separate (history independent) policy
such as a random one.

The issue of large numbers of joint actions is also prob-
lematic: the standard POMCP algorithm will, at each node,
maintain separate statistics, and thus separate upper confi-
dence bounds, for each of the exponentially many joint ac-
tions. Each of the exponentially many joint actions will have
to be selected at least a few times to reduce their confidence
bounds (i.e., exploration bonus). This is a principled prob-
lem: in cases where each combination of individual actions
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Figure 1: (a) Illustration of ‘fire fighting’ (b) Coordination
graph with 4 houses and 3 agents (c) Illustration of a sensor
network problem on a grid that is used in the experiments.

may lead to completely different effects, it may be necessary
to try all of them at least a few times. In many cases, how-
ever, the effect of a joint action is factorizable as the effects
of the action of individual agents or small groups of agents.
For instance, consider a team of agents that is fighting fires at
a number of burning houses, as illustrated in Fig. 1(a). The
rewards depend only on the amount of water deposited on
each house rather than the exact joint action taken (Oliehoek
et al. 2008). While this problem lends itself to a natural fac-
torization, other problems may also be factorized to permit
approximation.

3.2 Coordination Graphs
In certain multiagent settings, coordination (hyper) graphs
(CGs) (Guestrin, Koller, and Parr 2001; Nair et al. 2005)
have been used to compactly represents interactions between
subsets of agents. In this paper we extend this approach to
MPOMDPs. We first introduce the framework of CGs in the
single shot setting.

A CG specifies a set of payoff components E = {Qe},
and each component e is associated with a subset of agents.
These subsets (which we also denote using e) can be in-
terpreted as (hyper)-edges in a graph where the nodes are
agents. The goal in a CG is to select a joint action that
maximizes the sum of the local payoff components Q(�a) =∑

e Qe(�ae).1 A CG for the fire fighting problem is shown
in Fig. 1(b). We follow the cited literature in assuming that
a suitable factorization is easily identifiable by the designer,
but it may also be learnable. Even if a payoff function Q(�a)
does not factor exactly, it can be approximated by a CG. For
the moment assuming a stateless problem (we will consider
the case where histories are included in the next section), an
action-value function can be approximated by

Q(�a) ≈
∑
e

Qe(�ae), (1)

We refer to this as the linear approximation of Q, since one
can show that this corresponds to an instance of linear re-
gression (See Sec. 5).

Using a factored representation, the maximization
max�a

∑
e Qe(�ae) can be performed efficiently via variable

elimination (VE) (Guestrin, Koller, and Parr 2001), or max-
sum (Kok and Vlassis 2006; Farinelli et al. 2008). These

1Since we focus on the one-shot setting here, the Q-values in
the remainder of this section should be interpreted as those for one
specific joint history h, i.e.: Q(�a) ≡ Q(h,�a).

algorithms are not exponential in the number of agents, and
therefore enable significant speed-ups for larger number of
agents. The VE algorithm (which we use in the experiments)
is exponential in the induced width w of the coordination
graph.

3.3 Mixture of Experts Optimization
VE can be applied if the CG is given in advance. When
we try to exploit these techniques in the context of POMCP,
however, this is not the case. As such, the task we consider
here is to find the maximum of an estimated factored func-
tion Q̂(�a) =

∑
e Q̂e(�ae). Note that we do not necessarily

require the best approximation to the entire Q, as in (1). In-
stead, we seek an estimation Q̂ for which the maximizing
joint action �aM is close to the maximum of the actual (but
unknown) Q-value: Q(�aM ) ≈ Q(�a∗).

For this purpose, we introduce a technique called mix-
ture of experts optimization. In contrast to methods based
on linear approximation (1), we do not try to learn a best-fit
factored Q function, but directly try to estimate the max-
imizing joint action. The main idea is that for each lo-
cal action �ae we introduce an expert that predicts the total
value Q̂(�ae) = E[Q(�a) | �ae]. For a joint action, these
responses—one of each payoff component e—are put in a
mixture with weights αe and used to predict the maximiza-
tion joint action: argmax�a

∑
e αeQ̂(�ae). This equation is

the sum of restricted-scope functions, which is identical to
the case of linear approximation (1), so VE can be used to
perform this maximization effectively. In the remainder of
this paper, we will integrate the weights and simply write
Q̂e(�ae) = αeQ̂(�ae).

The experts themselves are implemented as maximum-
likelihood estimators of the total value. That is, each ex-
pert (associated with a particular�ae) keeps track of the mean
payoff received when �ae was performed, which can be done
very efficiently. An additional benefit of this approach is
that it allows for efficient estimation of upper confidence
bounds by also keeping track of how often this local action
was performed, which in turns facilitates easy integration in
POMCP, as we describe next.

4 Factored-Value POMCP
This section presents our main algorithmic contribution:
Factored-Value POMCP, which is an online planning
method for POMDPs that can exploit approximate structure
in the value function by applying mixture of experts opti-
mization in the POMCP lookahead search tree. We intro-
duce two variants of FV-POMCP. The first technique, fac-
tored statistics, only addresses the complexity introduced by
joint actions. The second technique, factored trees, addi-
tionally addresses the problem of many joint observations.
FV-POMCP is the first MCTS method to exploit structure
in MASs, achieving better sample complexity by using fac-
torization to generalize the value function over joint actions
and histories. While this method was developed to scale
POMCP to larger MPOMDPs in terms of number of agents,
the techniques may be beneficial in other multiagent models
and other factored POMDPs.
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Figure 2: Factored Statistics: joint histories are maintained
(for specific joint actions and observations specified by ~a j
and ~o k), but action statistics are factored at each node.

4.1 Factored Statistics
We first introduce Factored Statistics which directly applies
mixture of experts optimization to each node in the POMCP
search tree. As shown in Fig. 2, the tree of joint histories
remains the same, but the statistics retained at for each his-
tory is now different. That is, rather than maintaining one
set of statistics in each node (i.e, joint history ~h) for the ex-
pected value of each joint action Q(~h,~a), we maintain a set
of statistic for each component e that estimates the values
Qe(~h,~ae) and corresponding upper confidence bounds.

Joint actions are selected according to the maximum (fac-
tored) upper confidence bound: max~a

∑
e Ue(

~h,~ae),Where
Ue(~h,~ae) , Qe(~h,~ae)+ c

√
log(N~h + 1)/n~ae using the Q-

value and the exploration bonus added for that factor. For
implementation, at each node for a joint history ~h, we store
the count for the full historyN~h as well as the Q-values, Qe,
and the counts for actions, n~ae , separately for each compo-
nent e.

Since this method retains fewer statistics and performs
joint action selection more efficiently via VE, we expect that
it will be more efficient than plain application of POMCP to
the BA-MPOMDP. However, the complexity due to joint ob-
servations is not directly addressed: because joint histories
are used, reuse of nodes and creation of new nodes for all
possible histories (including the one that will be realized)
may be limited if the number of joint observations is large.

4.2 Factored Trees
The second technique, called Factored Trees, additionally
tries to overcome the large number of joint observations. It
further decomposes the localQe’s by splitting joint histories
into local histories and distributing them over the factors.
That is, in this case, we introduce an expert for each local
~he,~ae pair. During simulations, the agents know ~h and ac-
tion selection is conducted by maximizing over the sum of
the upper confidence bounds: max~a

∑
e Ue(

~he,~ae), where

Ue(~he,~ae) = Qe(~he,~ae) + c
√
log(N~he

+ 1)/n~ae . We as-
sume that the set of agents with relevant actions and histo-
ries for component Qe are the same, but this can be general-
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Figure 3: Factored Trees: local histories for are main-
tained for each factor (resulting in factored history and ac-
tion statistics). Actions and observations for component i
are represented as ~a ji and ~o ki )

ized. This approach further reduces the number of statistics
maintained and increases the reuse of nodes in MCTS and
the chance that nodes in the trees will exist for observations
that are seen during execution. As such, it can increase per-
formance by increasing generalization as well as producing
more robust particle filters.

This type of factorization has a major effect on the im-
plementation: rather than constructing a single tree, we now
construct a number of trees in parallel, one for each factor e
as shown in Fig. 3. A node of the tree for component e now
stores the required statistics: N~he

, the count for the local his-
tory, n~ae , the counts for actions taken in the local tree andQe
for the tree. Finally, we point out that this decentralization
of statistics has the potential to reduce communication since
the components statistics in a decentralized fashion could be
updated without knowledge of all observation histories.

5 Theoretical Analysis
Here, we investigate the approximation quality induced by
our factorization techniques.2 The most desirable quality
bounds would express the performance relative to ‘optimal’,
i.e., relative to flat POMCP, which converges in probability
an ε-optimal value function. Even for the one-shot case, this
is extremely difficult for any method employing factoriza-
tion based on linear approximation of Q, because Equation
(1) corresponds to a special case of linear regression. In
this case, we can write (1) in terms of basis functions and
weights as:

∑
eQe(~ae) =

∑
e,~ae

we,~aehe,~ae(~a), where the
he,~ae are the basis functions: he,~ae(~a) = 1 iff ~a specifies ~ae
for component e (and 0 otherwise). As such, providing guar-
antees with respect to the optimal Q(~a)-value would require
developing a priori bounds for the approximation quality of
(a particular type of) basis functions. This is a very difficult
problem for which there is no good solution, even though
these methods are widely studied in machine learning.

However, we do not expect our methods to perform well
on arbitrary Q. Instead, we expect them to perform well
when Q is nearly factored, such that (1) approximately

2Proofs can be found in the extended version of this paper.



holds, since then the local actions contain enough informa-
tion to make good predictions. As such, we analyze the be-
havior of our methods when the samples of Q come from
a factored function (i.e., as in (1) ) contaminated with zero-
mean noise. In such cases, we can show the following.

Theorem 1. The estimate Q̂ of Q made by a mixture of ex-
perts converges in probability to the true value plus a sample
policy dependent bias term: Q̂(~a)

p→ Q(~a) + B~π(~a). The
bias is given by a sum of biases induced by pairs e, e′:

B~π(~a) ,
∑
e

∑
e′ 6=e

∑
~ae′\e

~π(~ae′\e|~ae)Qe′(~ae′\e,~ae′∩e).

Here, ~ae′∩e is the action of the agents that participate both
in e and e′ (specified by~a) and~ae′\e are the actions of agents
in e′ that are not in e.

Because we observe the global reward for a given set of
actions, the bias is caused by correlations in the sampling
policy and the fact that we are overcounting value from
other components. When there is no overlap, and the sam-
pling policy we use is ‘component-wise’: ~π(~ae′\e|~ae) =
~π(~ae′\e|~a′e) = ~π(~ae′\e), this over counting is the same for
all local actions ~ae:

Theorem 2. When value components do not overlap and a
component-wise sampling policy is used, mixture of experts
optimization recovers the maximizing joint action.

Similar reasoning can be used to establish bounds on the
performance in the case of overlapping components, subject
to assumptions about properties of the true value function.

Theorem 3. If for all overlapping components e, e′, and any
two ‘intersection action profiles’ ~ae′∩e,~a′e′∩e for their inter-
section, the true value function satisfies

∀~ae′\e Qe′(~ae′\e,~ae′∩e)−Qe′(~ae′\e,~a′e′∩e)

≤ ε/(|E| · |N (e)| · | ~Ae′\e| · ~π(~ae′\e)), (2)

with | ~Ae′\e| the number of intersection action profiles, then
mixture of experts optimization, in the limit, will return a
joint action whose value lies within ε of the optimal solution.

The analysis shows that a sufficiently local Q-function can
be effectively optimized when using a sufficiently local sam-
pling policy. Under the same assumptions, we can also de-
rive guarantees for the sequential case. It is not directly pos-
sible to derive bounds for FV-POMCP itself (since it is not
possible to demonstrate that the UCB exploration policy is
component-wise), but it seems likely that UCB exploration
leads to an effective policy that nearly satisfies this prop-
erty. Moreover, since bias is introduced by the interaction
between action correlations and differences in ‘non-local’
components, even when using a policy with correlations, the
bias may be limited if the Q-function is sufficiently struc-
tured.

In the factored tree case, we can introduce a strong re-
sult. Because histories for other agents outside the factor
are not included and we do not assume independence be-
tween factors, the approximation quality may suffer: where

~h is Markov, this is not the case for the local history ~he. As
such, the expected return for such a local history depends on
the future policy as well as the past one (via the distribution
over histories of agents not included in e). This implies that
convergence is no longer guaranteed:
Proposition 1. Factored-Trees FV-POMCP may diverge.

Proof. FT-FV-POMCP (with c = 0) corresponds to a gen-
eral case of Monte Carlo control (i.e., SARSA(1)) with lin-
ear function approximation that is greedy w.r.t. the current
value function. Such settings may result in divergence (Fair-
bank and Alonso 2012).

Even though this is a negative result, and there is no
guarantee of convergence for FT-FV-POMCP, in practice
this need not be a problem; many reinforcement learning
techniques that can diverge (e.g., neural networks) can pro-
duce high-quality results in practice, e.g., (Tesauro 1995;
Stone and Sutton 2001). Therefore, we expect that if the
problem exhibits enough locality, the factored trees approx-
imation may allow good quality policies to be found very
quickly.

Finally, we analyze the computational complexity. FV-
POMCP is implemented by modifying POMCP’s SIMU-
LATE function (as described in the extended version). The
maximization is performed by variable elimination, which
has complexity O(n|Amax|w) with w the induced width
and |Amax| the size of the largest action set. In addi-
tion, the algorithm updates each of the |E| components,
bringing the total complexity of one call of simulate to
O(|E|+ n|Amax|w).

6 Experimental Results
Here, we empirically investigate the effectiveness of our
factorization methods by comparing them to non-factored
methods in the planning and learning settings.
Experimental Setup. We test our methods on versions of
the firefighting problem from Section 4 and on sensor net-
work problems. In the firefighting problems, fires are sup-
pressed more quickly if a larger number of agents choose
that particular house. Fires also spread to neighbor’s houses
and can start at any house with a small probability. In the
sensor network problems (as shown by Fig. 1(c)), sensors
were aligned along discrete intervals on two axes with re-
wards for tracking a target that moves in a grid. Two types of
sensing could be employed by each agent (one more power-
ful than the other, but using more energy) or the agent could
do nothing. A higher reward was given for two agents cor-
rectly sensing a target at the same time. The firefighting
problems were broken up into n−1 overlapping factors with
2 agents in each (representing the agents on the two sides of
a house) and the sensor grid problems were broken into n/2
factors with n/2 + 1 agents in each (representing all agents
along the y axis and one agent along the x axis). For the
firefighting problem with 4 agents, |S| = 243, |A| = 81 and
|Z| = 16 and with 10 agents, |S| = 177147, |A| = 59049 and
|Z| = 1024. For the sensor network problems with 4 agents,
|S| = 4, |A| = 81 and |Z| = 16 and with 8 agents, |S| = 16,
|A| = 6561 and |Z| = 256.



Each experiment was run for a given number of simula-
tions, the number of samples used at each step to choose an
action, and averaged over a number of episodes. We report
undiscounted return with the standard error. Experiments
were run on a single core of a 2.5 GHz machine with 8GB of
memory. In both cases, we compare our factored representa-
tions to the flat version using POMCP. This comparison uses
the same code base so it directly shows the difference when
using factorization. POMCP and similar sample-based plan-
ning methods have already been shown to be state-of-the-art
methods in both POMDP planning (Silver and Veness 2010)
and learning (Ross et al. 2011).

MPOMDPs. We start by comparing the factored statistics
(FS) and factored tree (FT) versions of FV-POMCP in mul-
tiagent planning problems. Here, the agents are given the
true MPOMDP model (in the form of a simulator) and use it
to plan. For this setting, we compare to two baseline meth-
ods: POMCP: regular POMCP applied to the MPOMDP,
and random: uniform random action selection. Note that
while POMCP will converge to an ε-optional solution, the
solution quality may be poor when using small number of
simulations.

The results for 4-agent and 10-agent firefighting problems
with horizon 10 are shown in Figure 4(a). For the 4-agent
problem, POMCP performs poorly with a few simulations,
but as the number of simulations increases it outperforms the
other methods (presumably converging to an optimal solu-
tion). FT provides a high-quality solution with a very small
number of simulations, but the resulting value plateaus due
to approximation error. FS also provides a high-quality solu-
tion with a very small number of simulations, but is then able
to converge to a solution that is near POMCP. In the 10-agent
problem, POMCP is only able to generate a solution that is
slightly better than random while the FV-POMCP methods
are able to perform much better. In fact, FT performs very
well with a small number of samples and FS continues to
improve until it reaches solution that is similar to FT.

Similar results are seen in the sensor grid problem.
POMCP outperforms a random policy as the number of sim-
ulations grows, but FS and FT produce much higher val-
ues with the available simulations. FT seems to converge to
a low quality solution (in both planning and learning) due
to the loss of information about the target’s previous posi-
tion that is no longer known to local factors. In this prob-
lem, POMCP requires over 10 minutes for an episode of
10000 simulations, making reducing the number of simu-
lations crucial in problems of this size. These results clearly
illustrate the benefit of FV-POMCP by exploiting structure
for planning in MASs.

BA-MPOMDPs. We also investigate the learning set-
ting (i.e., when the agents are only given the BA-POMDP
model). Here, at the end of each episode, both the state and
count vectors are reset to their initial values. Learning in par-
tially observable environments is extremely hard, and there
may be many equivalence classes of transition and observa-
tion models that are indistinguishable when learning. There-
fore, we assume a reasonably good model of the transitions
(e.g., because the designer may have a good idea of the dy-

namics), but only a poor estimate of the observation model
(because the sensors may be harder to model).

For the BRL setting, we compare to the following base-
line methods: POMCP: regular POMCP applied to the true
model using 100,000 simulations (this is the best proxy
for, and we expect this to be very close to, the optimal
value), and BA-POMCP: regular POMCP applied to the BA-
POMDP.

Results for a four agent instance of the fire fighting prob-
lem are shown in Fig. 4(b), for H = 10, 50. In both cases,
the FS and FT variants approach the POMCP value. For a
small number of simulations FT learns very quickly, pro-
viding significantly better values than the flat methods and
better than FS for the increased horizon. FS learns more
slowly, but the value is better as the number of simulations
increases (as seen in the horizon 10 case) due to the use of
the full history. After more simulations in the horizon 10
problem, the performance of the flat model (BA-MPOMDP)
improves, but the factored methods still outperform it and
this increase is less visible for the longer horizon problem.

Similar results are again seen in the four agent sensor grid
problem. FT performs the best with a small number of sim-
ulations, but as the number increases, FS outperforms other
methods. Again, for these problems, BA-POMCP requires
over 10 minutes for each episode for the largest number of
simulations, showing the need for more efficient methods.
These experiments show that even in challenging multiagent
settings with state uncertainty, BRL methods can learn by
effectively exploiting structure.

7 Related Work
MCTS methods have become very popular in games, a type
of multiagent setting, but no action factorization has been
exploited so far (Browne et al. 2012). Progressive widening
(Coulom 2007) and double progressive widening (Couëtoux
et al. 2011) have had some success in games with large (or
continuous) action spaces. The progressive widening meth-
ods do not use the structure of the coordination graph in or-
der to generalize value over actions, but instead must find
the correct joint action out of the exponentially many that
are available (which may require many trajectories). They
are also designed for fully observable scenarios, so they do
not address the large observation space in MPOMDPs.

The factorization of the history in FTs is not unlike the use
of linear function approximation for the state components
in TD-Search (Silver, Sutton, and Müller 2012). However,
in contrast to that method, due to our particular factoriza-
tion, we can still apply UCT to aggressively search down the
most promising branches of the tree. While other methods
based on Q-learning (Guestrin, Lagoudakis, and Parr 2002;
Kok and Vlassis 2006) exploit action factorization, they
assume agents observe individual rewards (rather than the
global reward that we consider) and it is not clear how these
could be incorporated in a UCT-style algorithm.

Locality of interaction has also been considered previ-
ously in decentralized POMDP methods (Oliehoek 2012;
Amato et al. 2013) in the form of factored Dec-POMDPs
(Oliehoek, Whiteson, and Spaan 2013; Pajarinen and Pel-
tonen 2011) and networked distributed POMDPs (ND-
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(a) MPOMDP results
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Figure 4: Results for (a) the planning (MPOMDP) case (log scale x-axis) and (b) the learning (BA-MPOMDP) case for the
firefighting and sensor grid problems.

POMDPs) (Nair et al. 2005; Kumar and Zilberstein 2009;
Dibangoye et al. 2014). These models make strict assump-
tions about the information that the agents can use to choose
actions (only the past history of individual actions and obser-
vations), thereby significantly lowering the resulting value
(Oliehoek, Spaan, and Vlassis 2008). ND-POMDPs also
impose additional assumptions on the model (transition and
observation independence and a factored reward function).
The MPOMDP model, in contrast, does not impose these
restrictions. Instead, in MPOMDPs, each agent knows the
joint action-observation history, so there are not different
perspectives by different agents. Therefore, 1) factored
Dec-POMDP and ND-POMDP methods do not apply to
MPOMDPs; they specify mappings from individual histo-
ries to actions (rather than joint histories to joint actions),
2) ND-POMDP methods assume that the value function is
exactly factored as the sum of local values (‘perfect locality
of interaction’) while in an MPOMDP, the value is only ap-
proximately factored (since different components can corre-
late due to conditioning the actions on central information).
While perfect locality of interaction allows a natural factor-
ization of the MPOMDP value function, but our method can
be applied to any MPOMDP (i.e., given any factorization
of the value function). Furthermore, current factored Dec-
POMDP and ND-POMDP models generate solutions given
the model in an offline fashion, while we consider online
methods using a simulator in this paper.

Our approach builds upon coordination-graphs (Guestrin,
Koller, and Parr 2001), to perform the joint action optimiza-
tion efficiently, but factorization in one-shot problems has
been considered in other settings too. Amin, Kearns, and
Syed (2011) present a method to optimize graphical ban-
dits, which relates to our optimization approach. Since their
approach replaced the UCB functionality, it is not obvious
how their approach could be integrated in POMCP. More-
over, their work, focuses on minimizing regret (which is not
an issue in our case), and does not apply when the factoriza-
tion does not hold. Oliehoek, Whiteson, and Spaan (2012)
present an factored-payoff approach that extends coordina-
tion graphs to imperfect information settings where each
agent has its own knowledge. This is not relevant for our cur-
rent algorithm, which assumes that joint observations will
be received by a centralized decision maker, but could po-
tentially be useful to relax this assumption.

8 Conclusions
We presented the first method to exploit multiagent structure
to produce a scalable method for Monte Carlo tree search for
POMDPs. This approach formalizes a team of agents as a
multiagent POMDP, allowing planning and BRL techniques
from the POMDP literature to be applied. However, since
the number of joint actions and observations grows expo-
nentially with the number of agents, naı̈ve extensions of sin-



gle agent methods will not scale well. To combat this prob-
lem, we introduced FV-POMCP, an online planner based on
POMCP (Silver and Veness 2010) that exploits multiagent
structure using two novel techniques—factored statistics and
factored trees— to reduce 1) the number of joint actions and
2) the number of joint histories considered. Our empirical
results demonstrate that FV-POMCP greatly increases scal-
ability of online planning for MPOMDPs, solving problems
with 10 agents. Further investigation also shows scalabil-
ity to the much more complex learning problem with four
agents. Our methods could also be used to solve POMDPs
and BA-POMDPs with large action and observation spaces
as well the recent Bayes-Adaptive extension (Ng et al. 2012)
of the self interested I-POMDP model (Gmytrasiewicz and
Doshi 2005).
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