Accepted Manuscript

Detection of the NS3 Q80K polymorphism by Sanger and deep sequencing in hepatitis C virus (HCV) genotype 1a strains in the United Kingdom

Apostolos Beloukas, Simon King, Kate Childs, Athanasios Papadimitropoulos, Mark Hopkins, Mark Atkins, Kosh Agarwal, Mark Nelson, Prof Anna Maria Geretti, MD, PhD

PII: S1198-743X(15)00734-X

DOI: 10.1016/j.cmi.2015.07.017

Reference: CMI 345

To appear in: Clinical Microbiology and Infection

Received Date: 9 April 2015

Revised Date: 14 July 2015

Accepted Date: 19 July 2015

Please cite this article as: Beloukas A, King S, Childs K, Papadimitropoulos A, Hopkins M, Atkins M, Agarwal K, Nelson M, Geretti AM, Detection of the NS3 Q80K polymorphism by Sanger and deep sequencing in hepatitis C virus (HCV) genotype 1a strains in the United Kingdom, *Clinical Microbiology and Infection* (2015), doi: 10.1016/j.cmi.2015.07.017.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Detection of the NS3 Q80K polymorphism by Sanger and deep sequencing in hepatitis C
2	virus (HCV) genotype 1a strains in the United Kingdom
3	
4	Apostolos Beloukas ^{1*} , Simon King ^{1*} , Kate Childs ² , Athanasios Papadimitropoulos ¹ , Mark
5	Hopkins ³ , Mark Atkins ⁴ , Kosh Agarwal ⁵ , Mark Nelson ⁶ , Anna Maria Geretti ¹
6	
7	*The two authors contributed equally to this work.
8	
9	¹ Institute of Infection & Global Health, University of Liverpool, Liverpool; ² Dept. of Sexual
10	Health, King's College Hospital NHS Foundation Trust, London; ³ Liverpool Specialist
11	Virology Centre, Royal Liverpool University Hospital, Liverpool; ⁴ Dept. of Microbiology,
12	Frimley Park Hospital NHS Foundation Trust, Frimley, Surrey; ⁵ Institute of Liver Studies,
13	King's College Hospital NHS Foundation Trust, London; ⁶ HIV and Sexual Health Services,
14	Chelsea and Westminster Hospital, London, United Kingdom.
15	
16	Keywords: NS3, Q80K, lineage, simeprevir, protease inhibitors
17	Running title: Prevalence of Q80K in HCV-1a carriers in the UK
18	Word count: 2500
19	Abstract: 250
20	
21	Corresponding author
22	Prof Anna Maria Geretti, MD, PhD
23	Institute of Infection & Global Health, University of Liverpool,

- 24 8 West Derby Street, L69 7BE, United Kingdom
- 25 +44 151 795 9665; geretti@liverpool.ac.uk

26 ABSTRACT

The Q80K polymorphism in the HCV NS3 enzyme reduces susceptibility to simeprevir and 27 other novel protease inhibitors. The study aimed to determine the prevalence of Q80K in 28 treatment-naïve HCV-1a carriers in the North-West (NW) and South-East (SE) of England, 29 30 investigate occurrence of Q80K as a minority variant, and characterise viral phylogeny. Plasma samples from subjects that were naïve to anti-HCV therapy underwent conventional (Sanger) 31 32 and deep (Illumina-Miseq, 1% interpretative cut-off) sequencing of NS3. Q80K occurred in 44/238 subjects (18.5%, 95% confidence interval 13.6%-23.4%), including 19/70 (27.1%) in 33 the NW and 25/168 (14.9%) in the SE (p=0.0425), with no difference by HCV RNA load or 34 HIV status. Q80K frequencies in reads of samples that underwent Illumina sequencing 35 were >40% in all cases. Among subjects with Q80K, 5/44 (11.4%) showed one additional 36 major resistance-associated mutation in NS3 detected at mutant frequency above (V36L, 37 V55A) or below (V36M) 10%. Phylogenetic analyses identified the two recognised HCV-1a 38 lineages with (clade I) and without (clade II) Q80K. Overall, 148/238 (62.2%) sequences 39 occurred within regional or inter-regional clusters, each comprising 3-20 sequences. There 40 was no unique clustering of English sequences relative to strains from continental Europe and 41 North America. In conclusion, Q80K was found at high prevalence among treatment-naïve 42 HCV-1a carriers in England, and was reliably detected by conventional sequencing, with no 43 increased detection by deep sequencing. English sequences were highly interspersed with 44 sequences from elsewhere in Europe (clade II) and North America (clade I), and their 45 phylogeny was consistent with multiple introductions from different areas. 46

47

48 INTRODUCTION

The HCV NS3 protease enzyme exhibits a high degree of genetic variability and only 47% of 49 its amino acids are conserved among circulating HCV genotypes.[1] NS3 genetic heterogeneity 50 and the associated molecular and structural differences influence HCV susceptibility to 51 52 protease inhibitors (PIs), including licensed first-generation (telaprevir, boceprevir) and second-generation (simeprevir) compounds. HCV variants with reduced PI susceptibility have 53 54 been observed in treatment-naive patients.[1-10] Among these, the glutamine to lysine substitution at codon 80 (Q80K) reduces susceptibility to simeprevir in vitro [2, 4, 11] and was 55 also seen to reduce virological responses to simeprevir plus pegylated interferon alpha and 56 ribavirin (P/R) in clinical studies.[12-14] Screening for Q80K is therefore recommended before 57 starting simeprevir.[15] 58

59

The prevalence of Q80K among PI-naïve subjects varies by HCV genotype and subtype. An 60 analysis of global NS3 sequences deposited in GenBank reported O80K in 42% of HCV-1a 61 strains, and also detected a high prevalence in HCV-5 and HCV-6 strains.[1] Among HCV-1a 62 strains, prevalence of Q80K ranges between 3% and 47% by geographical location, exceeding 63 40% in North America.[2, 4] Reported prevalence is 20% overall across Europe, although 64 differing markedly by country.[7-9] Most studies to date have produced prevalence estimates 65 using conventional (Sanger) sequencing, which allows detection of virus variants present at a 66 frequency $\geq 20\%$ within a patient's sample. 67

68

This study had three aims. Firstly, to determine the prevalence of Q80K in NS3 sequences 69 obtained from HCV-1a carriers attending for care in two regions of England in the United 70 Kingdom(UK). A further aim was to investigate the occurrence of Q80K as a low frequency 71 variant by deep sequencing, and thereby both gain insights into the viral quasispecies and 72 determine whether conventional sequencing offers sufficient sensitivity for screening 73 simeprevir candidates for the presence of Q80K. The third aim was to determine the phylogeny 74 of NS3 sequences in relation to publically available sequences from the rest of Europe and 75 76 North America.

77 **METHODS**

78 *Study population*

The study was performed retrospectively using stored plasma samples from consecutive adults 79 that in 2006-2014 attended for care at the Royal Liverpool University Hospital in Liverpool 80 (North-West region) and at King's College Hospital, Chelsea & Westminster Hospital, and 81 Charing Cross Hospital in London (South-East region). Eligible patients were infected with 82 83 HCV-1a based on the genotyping method available at the local National Health System diagnostic laboratory; the assignment was confirmed by analysis of the NS3 sequences 84 produced in this study. Patients were naïve to all anti-HCV therapy. HIV status and HCV 85 RNA load were retrieved from the clinics' databases. Ethics permission was granted by the 86 South Berkshire Regional Ethics Committee to conduct the study after removing personal 87 identifiers from the samples. 88

89

90 Sanger sequencing

HCV RNA was extracted with Nuclisens easyMAG (bioMérieux, Netherlands) and cDNA 91 synthesis was performed with the Qiagen OneStep RT-PCR Kit (Hilden, Germany) with 92 forward primer 3278 [GGAGACCAAGMTCATCACSTGG] and reverse primer 4032 93 [GCTCTTRCCGCTGCCRGTGGG]. The first-round amplicon was subjected to nested PCR 94 using the Qiagen HotStarTaq Kit with forward primer 3307 95 96 [ACACCGCSGCGTGYGGKGACAT] and reverse primer 4014 [GGRGCRTGYAGRTGGGCCAC]. The second-round 727bp amplicon (aa180 of NS2 to 97 98 aa204 of NS3) was purified with the Qiagen QIAquick PCR Purification Kit and sequenced using the BigDye Terminator Cycle Sequencing Kit v3.1 on the ABI Prism 3730 Genetic 99 Analyser (Applied Biosystems[®], USA). Consensus sequences were assembled using SeqScape 100 (v2.7) and analysed with the geno2pheno system (http://hcv.geno2pheno.org/index.php; March 101 2015 version) for the presence of HCV resistance-associated mutations (RAMs). 102

103

104 Deep sequencing

QiasymphonySP 105 HCV RNA extracted with (Qiagen) using the Qiagen was DSPVirus/Pathogen Midi Kit and the CellFree_500_V4 protocol; cDNA was produced using 106 the ImProm II Reverse Transcription System (Promega, USA) and random primers. NS3 was 107 amplified using Q5 High-Fidelity DNA Polymerase (New England Biolabs, USA) and the 108 above primers. PCR products were purified using AMPure XP Beads (Beckman Coulter, USA) 109 before quantification with the Quant-iT dsDNA High Sensitivity Kit (Life Technologies, USA) 110

111 on a Qubit 2.0 Fluorometer (Life Technologies). The Nextera XT Sample Preparation Kit (Illumina, USA) was used for library preparation and pooled amplicon libraries were 112 sequenced on Illumina MiSeq using v2 reagents. Data generation and initial analysis were 113 114 carried out at the Centre for Genomic Research at the University of Liverpool. Adapter 115 sequences were trimmed from the Illumina reads using Cutadapt v1.2.1[16]; further trimming was done using Sickle v1.2 (http://github.com/najoshi/sickle) applying a minimum window 116 117 quality score of 20. BAMStats (http://sourceforge.net/projects/bamstats/files/) was used to calculate the read statistics. Variants were analysed using the VirVarSeq pipeline,[17] which 118 utilises the quality of the run and individual bases to filter poor quality bases and reduce false 119 positive rates. A 727bp region of a HCV-1a molecular clone encoding full-length NS3 was 120 amplified and sequenced in four replicates in order to estimate the assay error rate. The plasmid 121 control yielded an average of 174,799 reads, with a mean coverage of 46,268 reads per 122 nucleotide. The error rate, calculated by counting **false substitution reads** at the codon level of 123 the molecular clone [18], was mean 0.6% (SD 0.2%) over NS3 amino acids 1-181. 124

125

126 Phylogenetic analysis

Reference HCV-1a sequences and all available HCV-1a NS3 sequences from North America 127 and Europe with confirmed genotype assignment and country of origin were retrieved from the 128 Los Alamos HCV database (hcv.lanl.gov/content/sequence/HCV/ToolsOutline.html; accessed 129 on 8 March 2015) (supplementary file). All sequences, including those produced in this 130 study (Sanger sequences and NGS consensus sequences with 1% interpretative cut-off), 131 132 were aligned pairwise against the HCV-1a reference genome H77 (accession no. NC_004102) using MEGA v.6. The alignment was trimmed to codon positions 1-194 of NS3 (nucleotides 133 3421-4014 of H77). Sequences with gaps or ambiguous nucleotides affecting \geq 50% of the 134 targeted region or where codon 80 was missing or ambiguous were removed (n=3), yielding a 135 total of 1162 NS3 sequences for analysis. Two maximum-likelihood (ML) phylogenies were 136 137 estimated with and without the 80 codon, using a general-time reversible nucleotide substitution model with gamma-distributed among-site rate variation and the ML method as 138 implemented in PHYML v.3.0.[19, 20] Phylogenetic support was evaluated using a bootstrap 139 approach and a total of 1000 bootstrap replicates were generated using the FastTree v.2.1.7 140 software;[21] local branch support was calculated by the Shimodaira–Hasegawa-like (SH-like) 141 test. Phylogenies were visualized and annotated in FigTree (http://tree.bio.ed.ac.uk). Clusters 142 $(\geq 3 \text{ sequences})$ were identified by a bootstrap support >75% and were defined as regional if 143

144 comprising sequences unique to either the NW or the SE, and inter-regional if including145 sequences from both regions.

146

147 *Statistical analysis*

Descriptive statistics were used to analyse the prevalence of mutants in the study population (as the proportion of subjects showing the mutation) and the frequency of mutants in each patient's sample (as the proportion of deep sequencing reads showing the mutation). Proportion of subjects with Q80K by geographic location and HIV status were compared by Fisher's exact test. The Mann-Whitney U test was used to compare the HCV RNA load of patients with and without Q80K. The analysis was performed using SPSS v.21.

154

155 **RESULTS**

156 *Study population*

Overall 238 adults (median age 44 years, with no difference by region) infected with HCV-1a were studied, including 70/238 (29.4%) in the North-West (NW) and 168/238 (70.6%) in the South-East (SE). At the time of testing, HCV RNA load was median 6.3 log_{10} IU/ml (interquartile range,IQR 5.8-6.8), without differences between the two regions. Subjects were naïve to all anti-HCV therapy. A total of 61/238 (25.6%) subjects, all from the SE, were coinfected with HIV.

163

164 *Q80K prevalence by Sanger sequencing*

Overall, Q80K was detected in 44/238 subjects, yielding a prevalence of 18.5% (95% confidence interval, CI 13.6%-23.4%)(Table 1). Samples from two of the 44 subjects had a mixed first base at codon 80 (Q80Q/K). The median HCV RNA load was 6.4 (IQR 5.8-6.7) vs. 6.3 (IQR 5.8-6.8) log₁₀ IU/ml in samples with vs. samples without Q80K, respectively (p=0.63). The prevalence of Q80K was 19/70 (27.1%) in the NW and 25/168 (14.9%) in the SE (p=0.043). When comparing results by HIV status in the SE, Q80K prevalence was 18/107 (16.8.%) in HCV mono-infected subjects and 7/61 (11.5%) in HCV/HIV co-infected subjects

- 172 (p=0.379). Table 1 shows other major and minor NS3 RAMs detected by Sanger sequencing.
- 173
- 174 *Q80K prevalence by deep sequencing*
- 175 A total of 178/238 (74.8%) samples underwent deep sequencing, comprising 28/178 (15.7%)
- with and 150/178 (84.3%) without Q80K by Sanger sequencing. An average of 58,585 reads
- per sample was obtained (median 53,413; IQR 40,740-70,255) with an average coverage per

nucleotide of 16,107. Prevalence of Q80K was 27/178 (15.2% 95% CI 9.9%-20.5%). All 28 178 samples showing Q80K by Sanger sequencing also showed the mutation by deep sequencing, 179 180 usually (26/28 samples) with mutant frequencies of \geq 98%. Of the two samples showing Q80Q/K by Sanger sequencing, one had a Q:K ratio of 54:46, and the other showed O, K and L 181 182 at a ratio of 57:41:2. Of 150 samples lacking Q80K by Sanger sequencing, none showed the mutation by deep sequencing when applying an interpretative cut-off of >1% for the frequency 183 184 of mutants within the reads, as usually recommended.[22] Prevalence of Q80K increased when the interpretative cut-off was lowered, and was 3/150 (2%) for Q80K occurring at a frequency 185 between $\geq 0.5\%$ and <1%, and 15/150 (10%) at a frequency $\geq 0.2\%$ and <0.5%. These cut-offs 186 however fell within the estimated error rate of the assay (0.6%, SD 0.2%). 187

188

Deep sequencing (interpretative cut-off ≥1%) identified additional NS3 RAMs that had not
been observed by Sanger sequencing and which occurred at frequencies between 1% and 6%
(Table 1). Among the 44 subjects with Q80K, 4/44 (9.1%) had one additional major NS3
RAM at frequency >10% including V36L in 3/44 (6.8%) and V55A in 1/44 (2.3%). In
addition 1/44 (2.3%) subjects had V36M detected only by Illumina at a frequency of 3%.

194

195 *Phylogeny of NS3 sequences*

HCV-1a strains separated into the two recognised distinct lineages with and without Q80K.[23, 196 24] The sequences harbouring Q80K at frequency <1% did not align with the Q80K lineage 197 (data not shown). There was no unique clustering of the study English sequences (Figure 1), 198 199 rather the sequences were interspersed with sequences from the rest of Europe and North America, and the phylogeny was consistent with multiple introductions from different areas. 200 With the English sequences, four NW, eight SE, and 11 inter-regional clusters were identified, 201 each consisting of 3-20 sequences (Figure 2). In total, 148/238 (62.2%) sequences (49/70, 202 70.0% in the NW and 99/168, 58.9% in the SE) were circulating as regional or inter-regional 203 204 clusters.

205

206 DISCUSSION

This study detected the NS3 polymorphism Q80K at high prevalence among treatment-naïve HCV-1a carriers attending for care in England, particularly in the North-West where prevalence reached 27.1%. Previously published data from the UK include a small cohort of 38 HIV-positive patients with acute HCV-1a infection, of which 16% had Q80K.[6] A larger study analysed 159 subjects with HCV-1a that were enrolled in Phase II/III studies of

telaprevir and simeprevir, of which 23% showed Q80K[8]; these sequences are not available
for analysis however, as to date they have not been deposited in the GenBank or the Los
Alamos database. These data indicate that HCV-1a strains circulating in the UK have the
highest prevalence of Q80K observed in Europe.

216

In this study the prevalence of Q80K varied by geographical region, while showing no 217 218 difference by HIV status. Prevalence rates also show marked geographical variability in the rest of Europe.[7-9] The variable prevalence has not been linked to race or ethnicity [8], but 219 rather is consistent with the circulation of two distinct HCV-1a lineages with and without 220 Q80K.[23, 24] The Q80K-carrying lineage is believed to have originated in the United States 221 in the 1940s.[23] In this study, the maximum likelihood phylogenetic analysis confirmed the 222 two HCV-1a lineages, and detected multiple introductions of the two lineages in the UK, with 223 wide interspersing of the English strains with other European and North American strains. 224 Most HCV-1a sequences occurred as regional or mixed regional clusters, however, suggesting 225 that for this cohort the majority of transmission events occurred within the UK. 226

227

The deep sequencing analysis showed that Q80K mutants occurred at high frequency (>40%) 228 in the patients' samples, allowing detection by conventional sequencing in all cases. This 229 finding is consistent with the observation that Q80K mutants have replication capacity similar 230 to that of wild-type virus, which allows transmissibility and persistence at high frequency 231 within the viral quasispecies despite the absence of drug selective pressure. There were no 232 233 samples showing Q80K at a frequency below the detection threshold of Sanger sequencing $(\geq 10-20\%)$ and above the typical $\geq 1\%$ interpretative cut-off for deep sequencing, which is 234 recommended to differentiate biologically meaningful mutations from those caused by 235 methodological errors.[22] When applying less stringent cut-offs (0.5% or 0.2%) the 236 proportion of samples showing O80K by deep sequencing increased. A previous study 237 similarly found that among 21 subjects with Q80K detected by deep sequencing, four showed 238 the mutation at a frequency <1%.[10] The estimated error rate of the assay (0.6%) and the 239 240 observation that sequences showing Q80K at a frequency <1% did not align within the Q80K lineage suggest that the detection of Q80K at frequency <1% was spurious. Furthermore, it 241 remains to be determined whether any Q80K variant occurring at low frequency has 242 clinical relevance. 243

Q80K reduces HCV-1a susceptibility to simeprevir by 8-11 fold in vitro.[4, 8, 11] In HCV-1a 244 infection, sustained virological responses (SVR) to combination therapy with simeprevir plus 245 246 P/R are reduced by the presence of baseline Q80K in both treatment-naïve subjects (from 84% to 58%) and prior relapsers (from 79% to 47%).[11-13] The impact of Q80K on the 247 248 combination of simeprevir plus sofosbuvir was not immediately apparent in some reported studies.[25] However, a phase III, open-label, single-arm study with simeprevir plus 249 250 sofosbuvir in cirrhotic patients with HCV-1 recently reported that SVR rates were higher in subjects without Q80K (92%) versus those with the mutation (74%).[26] Q80K has no 251 effects on susceptibility to telaprevir and boceprevir [4], but may have an effect on responses to 252 asunaprevir.[27] Q80K also confers small reductions (~3-fold) in susceptibility to faldaprevir 253 and paritaprevir in vitro, without necessarily affecting response rates.[28] The Q80L and Q80R 254 mutations were detected in some subjects, usually at low frequency. Their significance is 255 unclear. In vitro, the mutations confer 2-fold and 7-fold reductions in susceptibility to 256 simeprevir, respectively.[11] Q80R has also been observed in a small number of patients 257 experiencing failure of simeprevir therapy, when it occurred alongside major resistance 258 mutations at position 155 and/or position 168.[29] Other major NS3 RAMs occurred at codons 259 36, 54, 55, 168, and 170, which is consistent with previous observations.[1-6, 9, 30]. A small 260 subset of five subjects had Q80K plus one other major RAM in NS3. 261

262

In summary, we found a high prevalence of Q80K in HCV-1a carriers with and without HIV 263 accessing care in two regions of the UK, thus complementing estimates from elsewhere in 264 Europe. While deep sequencing increased detection of Q80K, mutants missed by Sanger 265 sequencing occurred at frequency $\leq 0.5\%$ and detection seemed a likely technical artefact. 266 There was evidence of a high degree of interspersing of UK sequences with sequences from 267 elsewhere in Europe and North America, although the phylogeny indicated that most 268 transmission events occurred in the UK. Investigation of full viral genomes will elucidate 269 270 HCV-1a transmission networks and gain data to inform control strategies.

- 271 Table 1. Prevalence of NS3 resistance-associated mutations (RAMs) in treatment-naïve HCV-
- 272 1a carriers according to modality of detection (Sanger or Illumina) and frequency of the
- 273 mutant as determined by Illumina^a

RAMs	Sanger/Illumina >10%	Illumina 1-10%
	n (%)	n (%)
Total tested	238 (100)	178 (100)
36 M	1 (0.4)	2 (1.1)
36 L	5 (2.1)	0 (0)
54 S	9 (3.8)	0 (0)
55 A	10 (4.2)	0 (0)
80 K	44 (18.5)	0 (0)
80 L	1 (0.4)	4 (2.2)
80 R	0 (0)	3 (1.7)
117 H	0 (0)	1 (0.6)
168 E	1 (0.4)	0 (0)
170 A	1 (0.4)	0 (0)
170 T	0 (0)	2 (1.1)
174 S	97 (40.8)	10 (5.6)

- ^aRAMs were classified according to the geno2pheno mutation list (March 2015 version) with
- the addition of Q80L (reference 11). Bold indicates major mutations for genotype 1/1a.

276

Figure 1. Phylogenetic analysis of HCV-1a NS3 sequences from the United Kingdom, where
green indicates sequences from the North-West and yellow indicates sequences from the
South-East of England. The global reference dataset was derived from Los Alamos HCV
database (March 2015; see supplementary file for accession numbers) and comprises
sequences from the rest of Europe (in red) and North America (in blue). Nodes with bootstrap
support values ≥90% are indicated with an asterisk.

Figure 2. A HCV transmission cluster in the South-East of England, comprising 20 HCV-1a
NS3 sequences (in yellow). Sequences from the rest of Europe and North America are shown
in red and blue respectively. Nodes with bootstrap support values ≥90% are indicated with an
asterisk.

290 Acknowledgements

- 291 The work was supported by research awards from the British HIV Association and the
- 292 Rosetrees Trust in the United Kingdom.
- 293 Part of this work was presented at the 13th European Meeting on HIV & Hepatitis
- 294 (Barcelona, Spain; June 2015) and at the 11th International Workshop on HIV &
- 295 Hepatitis Co-infection (London, UK; June 2015)
- 296

297 **References**

- Cento V, Mirabelli C, Salpini R, et al. Hcv genotypes are differently prone to the development of resistance to linear and macrocyclic protease inhibitors. *PloS one*.
 2012; 7: e39652.
- Bae A, Sun SC, Qi X, et al. Susceptibility of treatment-naive hepatitis c virus (HCV)
 clinical isolates to hcv protease inhibitors. *Antimicrobial Agents and Chemotherapy*.
 2010; 54: 5288-5297.
- Bartels DJ, Sullivan JC, Zhang EZ, et al. Hepatitis c virus variants with decreased
 sensitivity to direct-acting antivirals (daas) were rarely observed in daa-naive patients
 prior to treatment. *Journal of Virology*. 2013; 87: 1544-1553.
- Berger KL, Triki I, Cartier M, et al. Baseline hepatitis c virus (hcv) ns3 polymorphisms
 and their impact on treatment response in clinical studies of the hcv ns3 protease
 inhibitor faldaprevir. *Antimicrobial Agents and Chemotherapy*. 2014; **58**: 698-705.
- Kuntzen T, Timm J, Berical A, et al. Naturally occurring dominant resistance mutations
 to hepatitis c virus protease and polymerase inhibitors in treatment-naive patients. *Hepatology*. 2008; 48: 1769-1778.
- Leggewie M, Sreenu VB, Abdelrahman T, et al. Natural ns3 resistance polymorphisms
 occur frequently prior to treatment in hiv-positive patients with acute hepatitis c. *AIDS*.
 2013; 27: 2485-2488.
- Morel V, Duverlie G, Brochot E. Patients eligible for treatment with simeprevir in a
 french center. *Journal of Clinical Virology*. 2014; 61: 149-151.
- Sarrazin C, Lathouwers E, Peeters M, et al. Prevalence of the hepatitis c virus ns3
 polymorphism q80k in genotype 1 patients in the european region. *Antiviral Research*.
 2015; **116C**: 10-16.
- Vicenti I, Rosi A, Saladini F, et al. Naturally occurring hepatitis c virus (HCV) ns3/4a
 protease inhibitor resistance-related mutations in HCV genotype 1-infected subjects in
 italy. *Journal of Antimicrobial Chemotherapy*. 2012; 67: 984-987.
- Jabara CB, Hu F, Mollan KR, et al. Hepatitis c virus (HCV) NS3 sequence diversity
 and antiviral resistance-associated variant frequency in HCV/HIV coinfection.
 Antimicrobial Agents and Chemotherapy. 2014; 58: 6079-6092.
- Lenz O, Verbinnen T, Lin TI, et al. In vitro resistance profile of the hepatitis c virus
 ns3/4a protease inhibitor tmc435. *Antimicrobial Agents and Chemotherapy*. 2010; 54:
 1878-1887.
- Forns X, Lawitz E, Zeuzem S, et al. Simeprevir with peginterferon and ribavirin leads
 to high rates of svr in patients with hcv genotype 1 who relapsed after previous therapy:
 A phase 3 trial. *Gastroenterology*. 2014; **146**: 1669-1679 e1663.
- Jacobson IM, Dore GJ, Foster GR, et al. Simeprevir with pegylated interferon alfa 2a
 plus ribavirin in treatment-naive patients with chronic hepatitis c virus genotype 1

335		infection (quest-1): A phase 3, randomised, double-blind, placebo-controlled trial.
336		Lancet. 2014; 384 : 403-413.
337	14	Manns M, Marcellin P, Poordad F, et al. Simeprevir with pegylated interferon alfa 2a or
338		2b plus ribavirin in treatment-naive patients with chronic hepatitis c virus genotype 1
339		infection (quest-2): A randomised, double-blind, placebo-controlled phase 3 trial.
340		Lancet. 2014; 384 : 414-426.
341	15	Simeprevir summary of product characteristics. Available at:
342		Http://www.Ema.Europa.Eu/docs/en_gb/document_library/epar
343		_product_information/human/002777/wc500167867.Pdf. (accessed 3 march 2015).
344	16	M. M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
345		<i>EMBnet J</i> 2011; 17 : 10-12.
346	17	Verbist BM, Thys K, Reumers J, et al. Virvarseq: A low-frequency virus variant
347		detection pipeline for illumina sequencing using adaptive base-calling accuracy
348		filtering. <i>Bioinformatics</i> . 2015; 31 : 94-101.
349	18	Dierynck I, Thys K, Ghys A, et al. Deep-sequencing analysis of the gene encoding the
350		hepatitis c virus nonstructural 3-4a protease confirms a low prevalence of telaprevir-
351		resistant variants at baseline and the end of the realize study. Journal of Infectious
352		Diseases. 2014; 210 : 1871-1880.
353	19	Beloukas A, Magiorkinis E, Magiorkinis G, et al. Assessment of phylogenetic
354		sensitivity for reconstructing hiv-1 epidemiological relationships. Virus Res. 2012; 166:
355		54-60.
356	20	Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New
357		algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the
358		performance of phyml 3.0. Systematic Biology. 2010; 59: 307-321.
359	21	Price MN, Dehal PS, Arkin AP. Fasttree 2approximately maximum-likelihood trees
360		for large alignments. PloS One. 2010; 5: e9490.
361	22	Gianella S, Delport W, Pacold ME, et al. Detection of minority resistance during early
362		hiv-1 infection: Natural variation and spurious detection rather than transmission and
363		evolution of multiple viral variants. Journal of Virology. 2011; 85: 8359-8367.
364	23	McCloskey RM, Liang RH, Joy JB, et al. Global origin and transmission of hepatitis c
365		virus nonstructural protein 3 q80k polymorphism. Journal of Infectious Diseases. 2014.
366	24	Pickett BE, Striker R, Lefkowitz EJ. Evidence for separation of hcv subtype 1a into two
367		distinct clades. Journal of Viral Hepatitis. 2011; 18: 608-618.
368	25	Lawitz E, Sulkowski MS, Ghalib R, et al. Simeprevir plus sofosbuvir, with or
369		without ribavirin, to treat chronic infection with hepatitis c virus genotype 1 in
370		non-responders to pegylated interferon and ribavirin and treatment-naive
371		patients: The cosmos randomised study. Lancet. 2014; 384: 1756-1765.
372	26	Lawitz E, Matusow G, DeJesus E. A phase 3, open-label, single-arm study to
373		evaluate the efficacy and safety of 12 weeks of simeprevir (smv) plus sofosbuvir
374		(sof) in treatment-naive or experienced patients with chronic HCV genotype 1
375		(HCV-1) infection and cirrhosis: Optimist-2. 50th Annual Meeting of the
376		European Association for the Study of the Liver. Vienna, Austria - April 22-26,
377		2015.
378	27	McPhee F, Friborg J, Levine S, et al. Resistance analysis of the hepatitis c virus NS3
379		protease inhibitor asunaprevir. Antimicrobial Agents and Chemotherapy. 2012; 56:
380		3670-3681.
381	28	Pilot-Matias T, Tripathi R, Cohen D, et al. In vitro and in vivo antiviral activity and
382		resistance profile of the hepatitis c virus NS3/4a protease inhibitor abt-450.
383		Antimicrobial Agents and Chemotherapy. 2015; 59: 988-997.

- Lenz O, Verbinnen T, Fevery B, et al. Virology analyses of HCV isolates from
 genotype 1-infected patients treated with simeprevir plus peginterferon/ribavirin in
 phase iib/iii studies. *Journal of Hepatology*. 2014.
- 387 30 Akuta N, Suzuki F, Sezaki H, et al. Evolution of simeprevir-resistant variants over time
 388 by ultra-deep sequencing in hcv genotype 1b. *Journal of Medical Virology*. 2014; 86:
 389 1314-1322.
- 390

45000606	ACCEPTED MANUSCRIPT
AF009606	
A1095450	
AF011751	
AF011752	
AFU11753	
AY615798	
AY056437	
A1950403	
A1950404	
A1950405	
A1930400	
A1930408	
DO068178	
DQ008178	
DQ008175	
DQ008180	
DQ008181	
DO068183	
DO068184	
DO068185	
DO068186	
DQ068187	
DQ068188	
DQ068189	
DQ068190	
DQ068191	
DQ068192	
DQ068193	
DQ068194	
DQ068195	
DQ068196	
DQ068197	
DQ068198	
DQ068199	
DQ068200	
DQ068201	
DQ068202	
DQ068203	
DQ068204	
DQ068205	
DQ068206	
DQ068207	
DQ430811	
DQ430812	
DQ430813	
DQ430814	
DQ838739	
DQ838740	
DQ838741	

0000742	ACCEPTED MANUSCRIPT
DQ838742	
DQ838743	
DQ838744	
DQ838745	
DQ889251	
DQ889252	
DQ889253	
DQ889254	
DQ889255	
DQ889256	
DQ889257	
DQ889258	
DO889259	
DO889260	
DO889261	
DO889262	
DO889263	
DO889264	
DO889265	
DO889266	
DO889267	
DO889268	
DO889269	
DO889270	
DO889271	
DO889272	
DO889273	
DO889274	
DO889275	
DO889276	
DO889277	
DO889278	
DO889279	
DO889280	
DO889281	
DO889282	
DO889283	
DO889284	
DO889286	
DO889287	
DO889288	
DO889289	
DQ889290	
DO889290	
DU880303	
00880303	
00880301	
DU002734	
DU880302 DU880302	
D0003730	
DQ889297	

	ACCEPTED MANUSCRIPT
DQ889298	
DQ889299	
DQ889300	
DQ889301	
DQ889302	
DQ889303	
DQ889304	
DQ889305	
DQ889306	
DQ889307	
DQ889308	
DQ889309	
DQ889310	
DQ889311	
DQ889312	
DQ889313	
DQ889314	
DO889315	
DO889316	
DO889317	
DO889318	
DO889319	
D0889320	
DO889321	
FF032883	
FF032884	
FF032885	
FF139707	
EF139710	
FF139715	
FF139719	
FF139723	
FF139725	
FF139728	
FF139729	
FF139730	
FF139735	
FF139736	
FF139740	
FF139741	
FF139741	
FF139748	
EF130740	
FF13075/	
EF172677	
FF172622	
EE172620	
LF1/3029	
LF1/3030	
EF173031	
LL13037	

	ACCEPTED MANUSCRIPT
EF1/3633	
EF173634	
EF173635	
EF173636	
EF173637	
EF173638	
EF173639	
EF173640	
EF173641	
EF173642	
EF173643	
EF173644	
EF173645	
EF173646	
EF173647	
EF173648	
EF173649	
EF173650	
EF173651	
EF173652	
EF173653	
EF173654	
EF407411	
EF407412	
EF407413	
EF407414	
EF407415	
EF407416	
EF407417	
EF407418	
EF407419	
EF407420	
EF407421	
EF407422	
EF407423	
EF407424	
EF407425	
EF407426	
EF407427	
EF407428	
EF407429	
EF407430	
EF407431	
EF407432	
EF407433	
EF407434	
EF407435	
EF407436	
EF407437	
EF407438	

EE407420	ACCEPTED MANUSCRIPT
EF407459	
EF407440	
EF407441	
EF407442	
EF407443	
EF407443	
EF407440	
EF407447	
EF407448	
EF407450	
EF407451	
EF407452	
EF407453	
EF407453	
EF407455	
EF407455	
EF407457	
EF621/189	
FI1155213	
EU155215	
EU155215	
EU155216	
EU155233	
FU155236	
FU155237	
EU155238	
EU155239	
EU155240	
EU155241	
EU155242	
EU155243	
EU155244	
EU155245	
EU155246	
EU155247	
EU155248	
EU155249	
EU155250	
EU155251	
EU155252	
EU155265	
EU155266	
EU155267	
EU155268	
EU155269	
EU155270	
EU155271	
EU155272	

	ACCEPTED MANUSCRIPT
EU155273	
EU155274	
EU155275	
EU155276	
EU155277	
EU155278	
EU155282	
EU155283	
EU155284	
EU155285	
EU155288	
EU155289	
EU155290	
EU155291	
EU155292	
EU155295 EU155204	
EU155294	
EU155295	
EU133290 EU155207	
EU155298	
EU155299	
EU155209	
EU155310	
EU155311	
EU155312	
EU155313	
EU155314	
EU155319	
EU155320	
EU155321	
EU155322	
EU155323	
EU155338	
EU155339	
EU155340	
EU155341	
EU155342	
EU155343	
EU155344	
EU155345	
EU155346	
EU155347	
EU155348	
EU155349	
EU155350	
EU155351	
EU155352	

FU155353	ACCEPTED MANUSCRIPT
EU155354	
EU155355	
EU155378	
EU133360	
EU234003	
EU234064	
EU234005	
EU239713	
EU239715	
EU239/10	
EU250017	
EU255927	
EU255928	
EU255929	
EU255930	
EU255931	
EU255932	
EU255933	
EU255934	
EU255935	
EU255936	
EU255937	
EU255938	
EU255939	
EU255940	
EU255941	
EU255942	
EU255943	
EU255944	
EU255945	
EU255946	
EU255947	
EU255948	
EU255949	
EU255950	
EU255951	
EU255952	
EU255953	
EU255954	
EU255955	
EU255956	
EU255957	
EU255958	
EU255959	
EU255963	
EU255964	
EU255965	
EU255966	

	ACCEPTED MANUSCRIPT
EU255967	ACCLI ILD MANODERII I
EU255968	
EU255969	
EU255970	
EU255971	
FU255973	
EU255978	
EU255075	
EU255970	
EU255977	
EU255578	
EU255975	
EU255980	
EU255581	
EU255984	
EU255985	
EU255986	
EU255987	
EU255988	
EU255989	
EU255990	
EU255991	
EU255992	
EU255993	
EU255994	
EU255995	
EU255996	
EU255997	
EU255998	
EU255999	
EU256002	
EU256003	
EU256004	
EU256005	
EU256006	
EU256007	
EU256008	
EU256009	
EU256010	
EU256011	
EU256012	
EU256013	
EU256014	
EU256015	
EU256016	
EU256017	
EU256018	
EU256019	

511256020	ACCEPTED MANUSCRIPT
EU256020	
EU256021	
EU256022	
EU256023	
EU256024	
EU256025	
EU256026	
EU256027	
EU256028	
EU256029	
EU256030	
EU256031	
EU256032	
EU256033	
EU256034	
EU256035	
EU256036	
EU256037	
EU256038	
EU256039	
EU256040	
EU256041	
EU256042	
EU256043	
EU256044	
EU256046	
EU256047	
EU256048	
EU256049	
EU256050	
EU256051	
EU256052	
EU256053	
EU256055	
EU256056	
EU256057	
EU256058	
EU256060	
EU256067	
EU256068	
EU256069	
EU256070	
EU256071	
EU256072	
EU256073	
EU256074	
EU256086	
EU256087	
EU256094	
EU256095	

	ACCEPTED MANUSCRIPT
EU256096	
EU256097	
EU256104	
EU256105	
EU256106	
EU256107	
EU260395	
EU260396	
EU362876	
EU362877	
EU362878	
EU362879	
EU362880	
EU362881	
EU362882	
EU362883	
EU362884	
EU362885	
EU362886	
EU362887	
EU362888	
EU362889	
EU362890	
EU362891	
EU362892	
EU362893	
EU362894	
EU362895	
EU362896	
EU362897	
EU362898	
EU362899	
EU362900	
EU362901	
EU362902	
EU362903	
EU362904	
EU362905	
EU362906	
EU362907	
EU362908	
EU362909	
EU362910	
EU362911	
EU482831	
EU482832	
EU482834	
EU482835	
EU482836	
EU482837	

EU482838	ACCEPTED MANUSCRIPT
EU482840	
EU482841	
EU482842	
EU482843	
EU482845	
EU482846	
EU482847	
EU482848	
EU482850	
EU482852	
EU482853	
EU482854	
EU482855	
EU482856	
EU482857	
FU482858	
FU482861	
FU482862	
FU482863	
FU482864	
EU482865	
FU482866	
EU482867	
EU482868	
FU482869	
FU482870	
FU482870	
FU482872	
FU482873	
FU482876	
FU482878	
FU482882	
EU482884	
EU482887	
EU482889	
EU529676	
EU529677	
EU529678	
FU529679	
FU529680	
FU529681	
EU569722	
FU569723	
EU595697	
FU595698	
FU595699	
FU622930	
FU660383	
FU660384	

	ACCEPTED MANUSCRIPT
EU660385	
EU660387	
EU677247	
EU677248	
EU677249	
EU677250	
EU677251	
EU677252	
EU677253	
EU677254	
EU677255	
EU677256	
EU677257	
EU677258	
EU687193	
EU687194	
EU687195	
EU781746	
EU781747	
EU781748	
EU781749	
EU781750	
EU781751	
EU781752	
EU781753	
EU781754	
EU781755	
EU781756	
EU781757	
EU781758	
EU781759	
EU781760	
EU781761	
EU781762	
EU781763	
EU781764	
EU781765	
EU781766	
EU781767	
EU781768	
EU781769	
EU781770	
EU781771	
EU781772	
EU781773	
EU781774	
EU781775	
EU781776	
EU781777	
EU781778	

EU781779	ACCEPTED MANUSCRIPT
EU781781	
EU781782	
EU781783	
EU781784	
EU781785	
EU781786	
EU781787	
EU781788	
EU781789	
EU781790	
EU781791	
EU781792	
EU781793	
EU781794	
EU781795	
EU781796	
EU781797	
EU781798	
EU781799	
EU781800	
EU781801	
EU781802	
EU781803	
EU781804	
EU862823	
EU862824	
EU862826	
EU862827	
EU862828	
EU862829	
EU862830	
EU862831	
EU862832	
EU862833	
EU862834	
EU862836	
EU862838	
EU862839	
EU802840	
EU002041	7
E1024087	
FIN24274	
FIN2/276	
FIN2/278	
FIN2/280	
FIN24280	
FJ024282	
FJ181999	

F1182000	ACCEPTED MANUSCRIPT
FJ182000	
FJ182001	
FJ205867	
FJ205868	
FJ205869	
FJ390394	
FJ390395	
FJ390399	
FJ410172	
GQ149768	
HM568417	
HM568418	
HM568419	
HM568420	
HM568421	
HM568422	
HM568423	
HM568424	
HM568425	
HM746870	
HM746873	
HM746876	
HM746877	
HM746878	
HM746879	
HM746880	
HM746882	
JN704193	
JN704194	
JN704198	
JN704199	
JN704202	
JN704203	
JN704204	
JN704206	
JN704208	
JN704210	
JN704218	
JN704219	
JN704220	
JN704224	
JN704229	
JN704230	
JN704231	
JN704232	
JN704233	
JN704234	
JN704235	
JN704236	
JN704237	

JN704238	ACCEPTED MANUSCRIPT
JN704239	
JN704240	
JN704241	
JN704242	
JN704243	
JN704244	
JN704245	
JN704246	
JN704247	
JN704248	
JN704249	
JN704250	
JN704251	
JN704252	
JN704253	
JN704254	
JN704255	
JN704256	
JN704257	
JN704260	
JN704261	
JN704262	
JN704263	
JN704264	
JN704266	
JN704267	
JN704268	
JN704269	
JN704270	
JN704273	
JN704274	
JN704275	
JN704276	
JN704277	
JN704278	
JN704280	
JN704281	
JN704282	
JN704283	
JN704284	
JN704285	
JN704290	
JN704291	
JN704293	
JN704294	
JN704295	
JQ061779	
JQ061780	
JQ061781	

10061782	ACCEPTED MANUSCRIPT
10061783	
10061784	
10061785	
10061786	
10061787	
1091/1271	
1091/273	
1091/127/	
12/14274	
18463525	
1X463520	
18/163528	
12403328	
1X463530	
IX463530	
1X463531	
1X463532	
1X463537	
1X463535	
1X463536	
IX463537	
1X463538	
1X463539	
IX463540	
JX463541	
JX463542	
JX463543	
JX463544	
JX463545	
JX463546	
JX463547	
JX463548	
JX463549	
JX463550	
JX463551	
JX463552	
JX463553	
JX463554	
JX463555	
JX463556	
JX463557	
JX463558	
JX463559	
JX463560	
JX463561	
JX463562	
JX463563	
JX463564	
JX463565	

NACOFCC	ACCEPTED MANUSCRIPT
JX463566	
JX463567	
JX463568	
JX463569	
JX463570	
JX463571	
JX463572	
JX463573	
JX463574	
JX463575	
JX463576	
JX463577	
JX463578	
JX463579	
JX463580	
JX463581	
JX463582	
JX463583	
JX463584	
JX463585	
JX463586	
JX463587	
JX463588	
JX463589	
JX463590	
JX463591	
JX463592	
JX463593	
JX463594	
JX463595	
JX463596	
JX463597	
JX463598	
JX463599	
JX463600	
JX463601	
JX463602	
JX463603	
JX463604	
JX463605	
JX463606	
JX463607	
JX463608	
JX463609	
JX463610	
JX463611	
JX463612	
JX463613	
JX463614	
JX463615	

1X463616	ACCEPTED MANUSCRIPT
1X463617	
JX463618	
JX463619	
JX463620	
JX463621	
JX463622	
JX463623	
JX463624	
JX463625	
JX463626	
JX463627	
JX463628	
JX463629	
JX463630	
JX463631	
JX463632	
JX463633	
12463635	
1X463636	
JX463637	
JX463638	
JX463639	
JX463640	
JX463641	
KC155254	
M62321	
M67463	
NC_004102	
	0