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Abstract 

Digital Image Correlation (DIC) is a widely used full-field measurement technique 

in the field of experimental mechanics because of its simplicity and ease of 

implementation. However, owing to the inherent complexity of DIC error sources, 

the problem of DIC error reduction and uncertainty quantification is still unsolved 

and has received considerable attention in recent years. The existing work on DIC 

error reduction is usually focused on specific error sources, e.g. local smoothing 

techniques are normally applied to reduce errors due to image acquisition noise. 

Moreover, DIC uncertainty quantification methods are usually derived from a 

subset-based DIC framework with an assumption of Gaussian image noise. 

Established methods are normally subject to an ad-hoc choice of parameterisation 

and might only be able to achieve a local optimum. On the other hand, originally 

developed in geo-statistics, Kriging is known as optimal interpolation to predict 

interpolated values using random variables as a realization of a Gaussian process. 

The Kriging technique has the excellent capability in global optimisation and 

uncertainty quantification. It is advisable to make an attempt to introduce the 

Kriging method to DIC to facilitate the solution of error and uncertainty issue.  
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The main purpose of this thesis is to offer a generic and global method that can 

reduce general DIC errors and quantify measurement uncertainty for displacement 

and strain results based on Kriging regression from Gaussian Process (GP) and 

Bayesian perspective. 

Firstly, a new global DIC approach known as Kriging-DIC was developed through 

incorporating the Kriging regression model into the classical global DIC algorithm 

as a full-field shape function. The displacement field of the Region of Interest (RoI) 

is formulated as a best linear unbiased realisation that contains correlations between 

all the samples. The measurement errors of control points are accounted for through 

a global regularisation technique using a global error factor. With the aid of the 

Mean Squared Error (MSE) determined from the Kriging model, a self-adaptive 

updating strategy was developed to achieve an optimal control grid without artificial 

supervision. The developed Kriging DIC method was compared with subset-based 

DIC, FE-DIC and B-Spline DIC by using synthetic images and open-access 

experimental data. The effectiveness and robustness of Kriging DIC was verified by 

numerical examples and an experimental I-section beam test. 

Secondly, a Kriging-based DIC uncertainty quantification method was proposed to 

quantify uncertainty of displacement and strain results of the subset-based DIC 

through a post-processing analysis based on Kriging regression. The subset-by-

subset uncertainty was estimated through the subset-based DIC framework and 

derived as a function of the inverse of the Hessian matrix and residual of Sum of 

Squared Difference (SSD). This local subset-based uncertainty was then integrated 

into Kriging regression formula allowing uncertainty quantification of displacement 

field from a global sense. Based on Cholesky decomposition and covariance matrix 

solved by the Kriging formula, a multivariate normal sampling process was used to 
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quantify the strain uncertainty whereas displacement gradients were calculated by a 

Finite Difference technique. Both numerical case studies and an experimental 

cantilever beam test were employed to test the method, which was found to be able 

to improve the accuracy of displacement and strain results and quantify 

corresponding uncertainties. Furthermore, a new approach was developed to 

calculate strain results by means of Kriging gradients, which was also compared 

with a state-of-the-art PLS local fitting algorithm. 

In summary, the main contribution of this thesis is the development of a global DIC 

algorithm (i.e. Kriging-DIC) and a Kriging-based DIC uncertainty quantification 

approach. These two methods provide great potential to globally improve DIC 

measurement accuracy and quantify uncertainties of displacement and strain results.  
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1 

1  Introduction 

In this chapter, the problem of DIC measurement error and uncertainty is considered 

in terms of DIC algorithms, DIC error sources and DIC uncertainty estimation 

methods. Then the characteristics of Kriging regression are introduced to highlight 

the advantage of applying this technique for DIC error reduction and uncertainty 

quantification. Finally, the outline and principal contributions of this thesis are 

presented.  

In the field of experimental mechanics, full-field measurement techniques have been 

increasing in popularity during the past 30 years, for example, geometrical methods 

such as Digital Image Correlation (DIC) and interferometric methods such as 

holographic interferometry and speckle-pattern interferometry. Among these 

methods, DIC technique has become the most popular full-field measurement 

technique due to its simplicity in principle and implementation. The early 

development of DIC can be traced back to the work by researchers at the University 

of South Carolina in the early 1980s [1-4]. DIC principle was derived based on the 
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optical-flow theory [5] which enables the tracking of speckle patterns and image 

registration for quantitative measurements of the shape, displacement, and strain of 

test objects. Nowadays, DIC has been extended and widely applied in many areas of 

science and engineering thanks to the development of computer technology, digital 

cameras and white-light optics. 

Even though DIC is a widely used measurement method, the problem of 

measurement error and uncertainty is still unsolved and needs further investigations. 

In the following sections, it is briefly addressed in the consideration of DIC 

algorithms, DIC measurement errors and DIC uncertainty estimation. 

1.1 DIC algorithms 

In general, DIC consists in maximising a correlation coefficient that is determined 

by the grey-intensity difference between reference and deformed images, which 

achieves a measurement of displacement field that is normally formulated by a 

deformation mapping function known as shape function. Depending on the type of 

shape function, DIC algorithms can be mainly classified into two categories [6]:  

i. Local DIC algorithm: namely subset-based DIC [5], for which the shape 

function is only applied within a subset in the Region of Interest (RoI). The 

local approach is the most commonly used DIC algorithm with advantages of 

simplicity [5], flexibility, suitability for parallel computation [7] and so on. 

However, without inter-subset continuity, it is sensitive to grey-intensity 

noise and may yield large uncertainties in measurement results [8]. Further, 

its performance highly depends on the parameters input by the user, which 

also limits its efficiency. 
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ii.  Global DIC algorithm [9-17]: known as full-field DIC, which applies the 

shape function to the entire RoI and the displacement field is solved at once. 

By imposing continuous constraints, the global approach is able to yield a 

smooth displacement field with good sub-pixel accuracy. However, the 

computational complexity can become significant when a large number of 

Degrees of Freedom (DoF) is considered. The performance can degrade at 

low spatial resolutions due to the smooth effect introduced by continuous 

constraints. Moreover, the measurement accuracy still relies on the user’s 

choice for parameters in most global DIC algorithms. 

Thus, both the local and global DIC algorithms have advantages and disadvantages. 

Generally for any DIC algorithm, a compromise has to be made between resolution 

(precision) that indicates the capability of measuring a minimum change in the 

measured quantity (e.g. displacement) and spatial resolution that represents the 

capability of measuring at closely-spaced locations. An ideal DIC algorithm is 

expected to be able to achieve an excellent resolution and an excellent spatial 

resolution at the same time [18, 19]. 

1.2 DIC error sources 

Though the DIC principle and experimental setup are relatively simple compared to 

other techniques, DIC measurement results are not any less vulnerable to various 

kinds of error sources in the measurement process, which inevitably contain a 

certain level of uncertainty. Under ideal experimental conditions and using state-of-

the-art DIC algorithm, DIC measurement is reported as having an accuracy of a 

hundredth of a pixel [20]. However, this kind of accuracy normally cannot be 

guaranteed in a practical DIC test and the actual measurement accuracy varies a lot 
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for different DIC setups. The error sources can be generally classified into two 

groups:  

i. Experimental errors:  The error sources occur in the image acquisition 

process, normally related to experimental setups. The experimental error 

sources consist of speckle-pattern quality [21-25], optical distortion [26-28] 

and focus error [29], image acquisition noise [30-32] and so on, which are 

fully contained in acquired digital images and will be propagated to final 

measurement results through DIC algorithms.  

ii.  Algorithmic errors:  The error sources are introduced in the process of 

parameters measurement by applying DIC algorithms based on acquired 

digital images. The algorithmic error sources include DIC correlation 

criterion [20, 32-35], grey-intensity interpolation scheme [36, 37], shape-

function reconstruction error [38, 39] and so on. Algorithmic errors can be 

significantly reduced by utilising a superior or more suitable DIC algorithm 

with respect to a specific application. 

In addition, DIC error sources can also be briefly classified into systematic errors 

and random errors. Based on the investigation of DIC error sources, the works 

related to DIC error analysis lead in two directions: one is to estimate measurement 

uncertainty by quantifying the influence of error sources and the other is to increase 

measurement accuracy by improving DIC algorithms or experimental setups. For 

instance, local smoothing [32, 33, 40-42] techniques are normally applied in DIC 

algorithms to reduce measurement errors due to various kinds of random error 

sources. Generally these methods work effectively and are beneficial in terms of 

simplicity of implementation. However, they probably can only achieve a local 

optimum rather than a global optimum for the full-field measurement. Also they are 
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subject to the ad-hoc choice of parameterisation which results in inconvenience and 

time-consuming problems in practical applications. 

1.3 DIC uncertainty estimation 

On the other hand, as a measuring technique, DIC should not be limited to obtaining 

the measurement result but should also provide an estimate of measurement 

uncertainty to show how good the result is, which is crucial for DIC applications and 

still remains as an ongoing research topic. Because of intrinsic complexity of DIC 

error sources [43], a reliable uncertainty quantification (UQ) of DIC results under 

various experimental conditions is considered to be challenging. However, some 

advances have already been made on UQ of DIC measurement in the recent years, 

which can be briefly summarised as follows: 

i. For systematic errors: For example, systematic error due to the use of 

under-fitting shape function can be conveniently estimated by approximating 

the shape function as a Savitzky-Golay low-pass filter based on the work of 

Schreier et al. [39]. As presented in [44], the uncertainty of the 

measurements (systematic and random errors) was predicted by using the 

numerically generated deformed synthetic images, whereas the confidence 

intervals of the identified material parameters were also simulated. A general 

procedure to numerically simulate the unnotched Iosipescu test was proposed 

in order to investigate the influence of DIC error factors such as spatial 

resolution, noise and interpolation on the identification results with virtual 

field method, Pierron et al. [45].  

ii.  For random errors:  The measurement uncertainty caused by the most 

common random error i.e. image acquisition noise (e.g. read-out noise, 
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photon noise) was analysed by several researchers using self-correlated 

images with uncorrelated Gaussian intensity noise [5, 23, 46]. The results 

demonstrate that the measurement uncertainty is proportional to the standard 

deviation of image noise and inversely proportional to the average of the 

squared grey level gradients and the subset size.  

iii.  Experimental analysis: Influence of hardware, acquisition system, 

experimental condition and setup on DIC measurement uncertainty was 

experimentally studied by using tensile loading tests [47], translation 

experiments [48], the rigid-body-motion test [49] and so on.  

iv. Theoretical analysis: Some efforts have also been made to theoretically 

analyse DIC measurement uncertainty. For instance, a theoretical model was 

derived by Pan et al [50] to indicate that the standard deviation error of 

displacement measurement is closely related to the quality of speckle 

patterns. Moreover, the effect of speckle size and density on the DIC 

measurement uncertainty was also investigated based on numerical 

experiments [21].  

So far most studies that have been performed at DIC UQ consist in comparing DIC 

measurement results with known displacements (e.g. using synthetic images) or 

strains (e.g. obtained by strain gauges) and lead to very positive results [43], but 

those results only apply to specific DIC setups. Concerning the quantification of 

uncertainty due to various error sources under different DIC setups, a generic UQ 

method should be developed to evaluate the reliability and accuracy of DIC 

measurement results. 

In an attempt to estimate measurement uncertainties in DIC in a general sense, an 

expression for uncertainty in the presence of Gaussian image noise was derived 
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analytically based on the framework of subset-based DIC and the sum of squared 

difference (SSD) DIC criterion [5, 23, 51]. Though this method is still restricted to 

Gaussian image noise, a potential possibility is provided to extend the method to 

handle uncertainty due to general DIC errors. In addition, there are also other 

attempts of trying to achieve a generic expression for DIC UQ, for example, a post-

processing UQ method was proposed on the basis of the expected asymmetry of 

correlation peak [35] in the correlation map of matched subsets. However, all the 

above methods are derived from the subset-based DIC, which leads to a local 

uncertainty estimate. On the contrary, it is more preferable to develop an UQ method 

for DIC full-field measurement. 

Inspired by existing approaches and related concerns, attempts were made to 

introduce Kriging regression to DIC in order to effectively reduce DIC measurement 

error and quantify the uncertainty for the full-field measurement. 

1.4 Characteristics of Kriging regression 

As widely used in the fields of spatial analysis and computer experiments [52, 53], 

Kriging is a method that provides a best linear unbiased prediction (BLUP) for a RoI 

based on observed values at design sites, which yields the most likely intermediate 

values as opposed to the most ‘smooth’ intermediate values optimised by a 

piecewise-polynomial spline. Moreover, if interpreted from a Bayesian framework 

[53, 54], Kriging is modelled by a Gaussian process governed by a prior covariance 

which straightforwardly provides the uncertainty estimate for predicted values. In 

addition, thanks to the estimated uncertainty across the RoI, a self-adaptive infill 

criterion can be employed to select new design locations required to achieve a 

realization of the true-value field with reasonable accuracy. The introduction of error 
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factors to the diagonal of Kriging correlation matrix [55, 56] enables the Kriging 

regression method to regularise the measurement errors at the design sites which 

further improves the accuracy of predicted values towards the ‘true’ values. 

In light of potential applications in DIC for error reduction and uncertainty analysis, 

the main features of Kriging regression technique can be summarised as follows:  

i. Global: Kriging method aims to optimise full-field prediction model based 

on observed data to achieve a best linear unbiased prediction, which is 

different from most other DIC techniques that only consider the local 

information or result in a local optimum. 

ii.  Flexible: Compared with shape functions used in other global DIC methods, 

Kriging model is capable of adapting to an irregular distribution of control 

points (as opposed to regular or uniform distributions) which provides the 

flexibility for global DIC analysis. 

iii.  Automatic:  Instead of using the ad-hoc choice of parameterisation in 

classical DIC methods, the Kriging method can be used to achieve the 

parameter values through a global optimisation algorithm which is 

implemented automatically without user intervention. Furthermore, in the 

proposed Kriging DIC method, the optimal number of control points is also 

achieved automatically through a self-adaptive updating process. 

iv. Consideration of errors: As aforementioned, measurement error of 

observed data can be considered and incorporated into the Kriging regression 

model, which significantly improves the accuracy of DIC results.  

v. Uncertainty quantification:  As a Gaussian process emulator, the Kriging 

method is conveniently used to quantify the uncertainty of estimated 

displacement field. Moreover, the uncertainty of the strain field can be 
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obtained through a multivariate normal sampling process based on the 

Kriging model.  

1.5 Outline of the thesis 

In the scope of applying the Kriging regression method to DIC for error reduction 

and uncertainty analysis, two promising methods were carried out, they are, (1) a 

new global DIC method named Kriging-DIC was developed by incorporating the 

Kriging regression model into global DIC algorithm to formulate the displacement 

field of the RoI as a global shape function with consideration of measurement error; 

(2) a post-processing technique based on Kriging regression with error estimate (in 

both global and local senses) was proposed to regularise the measurement error of 

subset-based DIC (to improve measurement accuracy) and quantify the 

measurement uncertainty of both displacement and strain results. The overall 

structure of the thesis is presented in Figure 1–1. 

Chapter 2: This chapter reviews DIC local and global algorithms to identify the 

advantages and limitations of different kinds of DIC approaches. DIC objective 

functions, solution strategies and displacement resolution and spatial resolution are 

also considered. 

Chapter 3: DIC errors and uncertainties are extensively reviewed. Concerning DIC 

uncertainty analysis, the standard uncertainty analysis approach is briefly introduced. 

Also a brief review of the Kriging regression method and Kriging-based uncertainty 

analysis is provided. 

Chapter 4: The significance of error reduction and uncertainty quantification in 

DIC applications is briefly discussed first. A generic uncertainty estimation is 
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derived based on the subset-based DIC algorithm (SSD criterion) by considering an 

equivalent error variance due to common DIC error sources. Also the bias error in 

DIC sub-pixel registration caused by Gaussian image noise under uniform 

translation is estimated in the same framework. An error reduction method is 

proposed in regard to the bias errors in DIC sub-pixel registration. 

 

Figure 1–1. Outline of the thesis 
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Chapter 5: Kriging regression theory is briefly addressed in this chapter. The 

derivations of Kriging interpolation method are presented from both the framework 

of best linear unbiased prediction (BLUP) and the framework of Bayesian inference. 

Concerning measurement error of observed data, Kriging regression method is 

presented by regularising measurement error from both global and local senses. 

Furthermore, uncertainty analysis based on the Kriging regression method is also 

addressed. 

Chapter 6: In this chapter, a global (full-field) DIC algorithm with integrated 

Kriging regression is proposed. Kriging regression model is employed as a full-field 

shape function to formulate the displacement field of RoI. The displacement errors 

of control points are quantified by introducing an error factor to the Kriging model. 

In addition, a self-adaptive control grid updating strategy is developed on the basis 

of the Mean Squared Error (MSE), which enables the proposed Kriging-DIC method 

to achieve the optimal control grid automatically. Both numerical and experimental 

case studies are used to verify the performance of Kriging-DIC method.  

Chapter 7: The measurement uncertainty of subset-based DIC results is expressed 

as a function of inverse Hessian matrix and SSD residual. The Kriging regression 

method is developed as a post-processing technique including local error estimation, 

which is able to improve the accuracy of measured subset-based DIC displacement 

results and strain results. Uncertainty of the estimated displacement field is 

illustrated in terms of the root mean square error (RMSE). Furthermore, strain 

uncertainty is determined in terms of standard deviation (STD) by a multivariate 

normal sampling process based on Kriging regression model. Both numerical and 

experimental case studies are used to test the method. 
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Chapter 8: A review of key components of the research and main conclusions of 

this thesis are presented. The important contributions of this study are highlighted 

with suggestions for the future research which could be proceeded to extend current 

investigations.  

1.6 Contribution by the author 

This thesis addresses the error reduction and uncertainty quantification problem in 

Digital Image Correlation (DIC), which is crucial for DIC applications and remains 

unsolved. The principal contribution of this thesis is introducing the Kriging 

technique to DIC to deal with the measurement error and uncertainty from a new 

perspective i.e. in the sense of a Gaussian-process. A new global DIC method 

known as Kriging-DIC is developed to accurately measure the full-field 

displacement in DIC. Further, a post-processing technique based on the Kriging 

regression method with error estimation is also proposed to reduce the measurement 

error and quantify the measurement uncertainty. 

The author has summarised the above research findings into two journal papers on 

Kriging-DIC method (J1) and Kriging-based DIC uncertainty quantification method 

(J2) respectively. Also there are two conference papers presented at international 

conferences. Paper C1 offers a good understanding of DIC error sources in the 

testing of composite materials and Paper C2 covers the study of how to integrate the 

estimated uncertainty of subset-based DIC into the Kriging regression model. 

J1: D.Z. Wang, F.A. DiazDelaO, W.Z. Wang and J.E. Mottershead, ‘Full-field 

digital image correlation with Kriging regression’. Optics and Lasers in Engineering, 

67(2015) 105-115, doi: 10.1016/j.optlaseng.2014.11.004 
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J2: D.Z. Wang, F.A. DiazDelaO, W.Z. Wang, X.S. Lin, E.A. Patterson and J.E. 

Mottershead, ‘Uncertainty Quantification in DIC with Kriging Regression’. Optics 

and Lasers in Engineering, doi: 10.1016/j.optlaseng.2015.09.006, In Press 

C1: W.Z. Wang, D.Z. Wang, J.E. Mottershead and G. Lampeas, ‘Identification of 

Composite Delamination Using the Krawtchouk Moment Descriptor’, Key 

Engineering Materials, 569-570(2013) 33-40, doi: 10.4028/www.scientific.net-

/KEM.569-570.33, (10th International Conference on Damage Assessment of 

Structures (DAMAS 2013), July 8-10, 2013, Dublin, Ireland) 

C2: D.Z. Wang, J.E. Mottershead, F.A. DiazDelaO and W.Z. Wang, ‘Kriging 

Regression in Full-field Digital Image Correlation based on the Global and Local 

Error Estimate’, the 16th International Conference on Experimental Mechanics, July 

7-11, 2014, Cambridge, UK 

Equation Chapter 1 Section 1 
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2 

2 Literature Review     

Part 1 – DIC Algorithms 

DIC local and global algorithms are reviewed in this chapter. It aims to identify the 

advantages and disadvantages of these two types of DIC approaches. In addition, 

DIC objective functions and solution strategies are briefly considered while a 

discussion on DIC displacement resolution and spatial resolution is also presented. 

Equation Chapter 2 Section 1 

2.1 Objective functions  

Digital Image Correlation is a full-field, non-contact measurement technique which 

employs algorithms based on optical flow (which relates to the classic Lucas-

Kanade tracker) to determine underlying deformation between images [57]. Since it 

is normally impossible to match individual pixels in different images, the area match 

is actually used to achieve a displacement field that consists of displacements of all 
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the pixels within the area. The Region of Interest (RoI) in the image may be divided 

into a large number of small areas so called ‘subsets’ normally with overlapping 

[18]. On the other hand, the whole RoI could also be treated as a large ‘subset’ for 

analysis. On that basis, algorithms in DIC could be categorized as either local 

methods (subset-based) or global methods. 

The matching criterion is normally interpreted in two forms, they are, minimization 

of Sum of Squared Differences (SSD) [58] of grey intensities between an image pair 

and maximization of Cross-correlation Coefficient (CC) [58] between two images. 

Assuming intensity functions are continuous for the reason of simplicity, these two 

criteria can be written as: 

 
( )( ) ( )( )

( )( ) ( )( )

2
arg min ( , ), , , d

arg max ( , ), , , d

g x u x y y v x y f x y

g x u x y y v x y f x y

Θ

Θ

= + + − Θ

= + + × Θ

∫

∫

SSD

CC

C

C

 (2-1) 

where Θ  denotes the RoI in the first image. The displacement ( )( )( , ), ,u x y v x y  

may also be understood as the optical flow of the speckle-pattern intensity from a 

reference image ( , )f x y  to its corresponding deformed image ( , )g x y . It is 

noteworthy that there are also other types of DIC criteria applied including Sum of 

Absolute Difference (SAD) [59], Parametric Sum of Squared Difference (PSSD) [60] 

with additional unknown parameters and extended SSD and CC criteria [33, 61] e.g. 

Normalized Sum of Squared Differences (NSSD), Normalized Cross-correlation 

Coefficient (NCC), Zero-Normalized Sum of Squared Differences (ZNSSD) and 

Zero-Normalized Cross-Correlation Coefficient (ZNCC). Though the mathematical 

expressions of the correlation criteria are different, original and extended CC criteria 

are actually equivalent to and can also be deduced from the SSD criteria [33].  
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2.2 Solution strategies 

In order to find a solution for the DIC correlation criterion, the displacement field of 

a subset or RoI should be formulated by a shape function with finite unknown 

parameters to be determined. These parameters act as Degrees of Freedom (DoF) 

and are used to allow images to distort. Generally the DIC solution is related to the 

framework of ill-posed inverse problems [62]. For both global and local DIC 

approaches, the displacement field ( )( , ), ( , )u x y v x y  can be approximated as a linear 

combination of chosen basis functions of unknown parameters [8, 18, 63] with finite 

dimension n , expressed as 

 
1

1

( , ) ( , )

( , ) ( , )

j

j

n

j u
j

n

j v
j

u x y x y p

v x y x y p

µ

µ

=

=

≈

≈

∑

∑
 (2-2) 

where ( , ); 1, 2, ,j x y j nµ = …  are kernel functions and , ; 1,2, ,
j ju vp p j n= …  are 

combination coefficients. Since ( )( , ), ( , )g x u x y y v x y+ +  is an implicit function of 

( )( , ), ( , )u x y v x y , an iterative process is usually applied to solve the minimisation 

problem in Equation (2-1) (SSD criterion). Different types of algorithms e.g. genetic 

algorithms [64-66], Levenberg–Marquardt algorithm [17, 39], Newton–Raphson 

iteration [2, 36, 67-69], and multi-grid solver [10] may be used to solve the 

minimization problem. However among the above algorithms, a detailed 

examination [70] has shown that the spatial-domain Newton-Raphson algorithm 

provides the highest accuracy and the implementation of the NR algorithm is 

relatively simple as well.  
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Therefore, an approximate solution of the full-field displacement, ( )( , ), ( , )u x y v x y , 

may be obtained by the NR iteration [10, 11, 71, 72]: (considered as the governing 

equation in thi  iteration) 

 ( )1i i i i+ − =M p p b  (2-3) 

where 
1 1 2 2

T

n n

i i i i i i i
u v u v u vp p p p p p =  p ⋯  is a 2 1n×  vector, iM  are 2 2n n×  

matrices and ib  are 2 1n×  vectors, with components given by 

 ( ) d
i i i

jk j kM
Θ

= Ξ ×Ξ Θ∫  (2-4) 

and 

 ( ) ( )( , ) ( , ) d
i i i i
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Θ

= Ξ × − + + Θ∫  (2-5) 
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Ξ ⋮ and , 1,2, , 2j k n= …  (2-6) 

The gradients 
( , )i ig x u y v

x

∂ + +
∂

 and 
( , )i ig x u y v

y

∂ + +
∂

 in equations (2-4) and (2-5) 

are in principle updated at each iteration. However, as proposed by Sutton [57, 73], 

the grey-level gradients may be calculated from the reference image rather than the 

deformed image without loss of accuracy.  
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Since the sub-pixel accuracy is normally required for DIC measurement, the 

objective function (correlation criterion) should be evaluated at non-integer locations. 

Therefore, an interpolation method has to be employed to approximate the grey 

values among pixels. A comprehensive catalogue of interpolation methods used in 

the field of image processing was presented [37], which also provides a general 

comparison and valuable comments for different interpolation approaches. The 

interpolation bias was studied through the analytical phase error of interpolation 

filters [36] and experimental validation [74] while high-number-tap interpolation 

filters were recommended for related applications in DIC [57]. Aiming to enhance 

the accuracy of B-spline interpolation used in DIC, a technique was proposed by 

employing a family of recursive interpolation schemes and its inverse gradient 

weighting form [75].  

Besides spatial-domain iterative methods (like Newton iteration), there are also 

some other strategies which have been employed in order to achieve the 

displacement field with sub-pixel accuracy [20], including correlation coefficient 

curve-fitting [76, 77] or interpolation methods [78, 79] (so-called peak finding 

algorithms [29]), gradient-based methods [80-83], artificial neural network methods 

[84, 85] and so on. However, these methods can hardly be used to achieve more 

accurate measurement than the NR iteration method and are normally subject to the 

intrinsic lack of deformational DoF of the subset, namely the application of shape 

functions [29].  

2.3 Displacement resolution and spatial resolution  

The displacement resolution is defined as the smallest change of the displacement 

field that can be reliably measured and reflected in the measured displacement [18, 



 
 

20 | P a g e 
 

86]. In practice, it is quantified by the noise level of the measured displacement in 

terms of standard deviation and depends on various error sources and on the 

sampling resolution of the imaging system. In contrast to the displacement 

resolution, the spatial resolution is defined as the smallest distance between two 

independent data points [18, 86]. In practice, a more reasonable definition for the 

spatial resolution is one-half of the period of the highest frequency component 

contained in the frequency band of the displacement data [87]. The spatial resolution 

of subset-based DIC can be approximately considered as the subset size while the 

spatial resolution of global DIC depends on the number of measurements obtained 

within the RoI. It is desirable to have small values for both the displacement 

resolution and the spatial resolution, which indicates a more favourable 

measurement [19]. Fundamentally a compromise is generally made between the 

displacement and spatial resolutions for a DIC algorithm [57]. In [19], the spatial 

resolution was re-defined for both local and global DIC algorithms and evaluated 

with the help of deformed images with a unidirectional in-plane sinusoidal 

deformation field, which enables a fair comparison between different DIC 

algorithms by plotting displacement resolution versus spatial resolution in the same 

figure.  

2.4 Local vs global DIC algorithms 

There are the different ways applying DIC algorithms to the RoI, which belong to 

two general classes: local (subset-based) methods and global (full-field) methods, 

both of which have been well developed. The local approach is perhaps the better 

established of the two because of its simplicity [5], flexibility, and suitability to 

parallel computation [7]. However the lack of inter-subset continuity results in the 
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local method being more sensitive to measurement noise than the global approach 

and yields relatively larger uncertainties in the measured displacement [8]. 

Consequently, measured displacement field of the local method is unsmooth with 

discontinuities, for example, as shown in Figure 2–1. Thus a smoothing technique is 

normally applied as a post-processing operation especially for calculating strain 

results [88].  

 

Figure 2–1. Discontinuities in the measured displacement field from a test of 

composite material based on a commercial DIC system (Dantec Q400) 

Alternatively, the global approach imposes continuous constraints and treats the RoI 

as a whole, thereby enabling smooth displacement fields to be achieved together 

with good sub-pixel accuracy. However, there are also challenges for global method. 

Firstly, apart from the limited number of DoF involved in the local methods, the 

number of DoF that needs to be solved simultaneously increases quickly in global 

methods as the spatial resolution decreases. The associated computational 

complexity becomes significant [8, 72], which may result in failure to solve the 

inverse of the Hessian matrix during NR iteration. Secondly, the continuous 

constraint of global methods can become a disadvantage by degrading the spatial 
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resolution when localized phenomena occur (e.g. cracks, sliding and shear-bands) 

since discontinuities may be smoothed out or lead to non-convergence of the 

optimisation [10, 89]. 

2.5 Local DIC algorithms  

By meshing the RoI with a set of evenly spaced grid points in the reference image, a 

local method may be applied on each of the subsets with the centres located at the 

grid points in order to find matched subsets in the deformed image as shown in 

Figure 2–2. According to the objective function shown in Equation (2-1), unknown 

parameters for each subset are solved by the aforementioned NR iteration. Normally 

the displacement field of one subset is formulated by a shape function (up to a 

second-order) around the centre point. For instance, a second-order Taylor 

expansion around the centre node at 0 0( , )x y  is applied for the coordinate 

transformation as: 

 
2 21 1

0 2 2
2 21 1

0 2 2

( , ) u
 

( , )
i j x y xx yy xy

i j x y xx yy x y

u x y u x u y u x u y u x y

v x y v v x v y v x v y v x y

= + ∆ + ∆ + ∆ + ∆ + ∆ ∆
= + ∆ + ∆ + ∆ + ∆ + ∆ ∆

  (2-7) 

where 0 0 and i jx x x y y y∆ = − ∆ = − . 0 0,u v  are the x- and y-directional 

displacement components of the centre node at 0 0( , )x y , , , ,x x y yu v u v  are the 

components of the first-order displacement gradient and , , , , ,xx xx yy yy xy xyu v u v u v  are 

the components of the second-order displacement gradient. Meanwhile, some of the 

typical deformations described by a second-order shape function are demonstrated in 

Figure 2–3. In general, the subsets are artificially designated as squares in the 

reference image for reasons of simplicity. However, instead of square subsets, 
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Gaussian weighted windows [90, 91] are also successfully applied in order to 

achieve an optimal compromise between the systematic errors and random errors.  

Under the assumption of only pure translations existing in sufficiently small subset 

regions, displacement field could be approximated by a zero-order shape function 

which only contains the first term in Equation (2-7). This approximation was 

developed and applied in both physical space [4, 92] and Fourier space [76, 93] in 

the 1980s and 90s. Based on the requirement of detecting a complex spatial 

deformation, the first- and second-order shape functions [2, 94] are employed in 

local methods with a higher computational cost. Furthermore, a simplified form of 

Hessian matrix is also derived by ignoring the second-order partial derivatives 

without loss of accuracy [67, 94]. The initial values used to start the NR iteration 

can be calculated based on a fast cross-correlation technique using the zero-order 

shape function [67, 94].  

 

Figure 2–2. The illustration of subset-based DIC method (without overlapping 

subsets), the uniformly distributed square subsets (centre nodes marked in ‘+’) are 

initialized in the reference image (left) while the matched deformed subsets (centre 

nodes marked in ‘*’) are shown in the deformed image (right) 

 



 
 

24 | P a g e 
 

 

Figure 2–3. Deformations formulated by the 2nd-order shape function depending on 

different shape parameters 

In addition, a so-called analytic propagation function was developed to produce 

accurate initialization for the NR iteration [95]. A method used with the multiple 

growing cracks is implemented by modifying the local method to allow the crack 

areas can be automatically identified and excluded from the analysis [96]. Another 
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improved local method was proposed in order to tackle discontinuities of the 

displacement field through splitting the subset into two sections where each of the 

sections is matched using independent deformation parameters [97]. On account of 

the possible error propagation of the general subset-based DIC method, a reliability-

guided technique [98-101] was developed to optimise the calculation path of subsets 

to enhance the robustness in discontinuous and large-deformation areas. 

2.6 Global DIC algorithms 

Instead of calculating the displacement field of RoI based on a large number of 

independent subsets, a global framework was proposed to solve the minimization 

problem at once for the whole RoI. In the global approach, displacement field is 

formulated by a sophisticated shape function with a large number of DoF which is 

able to capture detailed deformation. The iteration process as shown in Equation 

(2-3) is essentially the same as in the local methods but works over the whole RoI. 

Various different types of full-field shape functions were studied. The full-field DIC 

methods are summarized in the following sections:  

2.6.1 FE based DIC  

Due to extensive DIC applications in experimental mechanics, Finite Element (FE) 

shape functions naturally became a popular choice to formulate the displacement 

field, which satisfies the requirement of displacement continuity among elements. 

For example, the bilinear rectangular elements (Q4-FE) introduced in [9-11] are 

used to mesh the RoI globally. The basic idea is shown as follows: ( , )x y  represents 

any single point in the RoI and ep  is the nodal displacement vector of the element 

where ( , )x y  is located. p  denotes the global nodal displacement vector including 



 
 

26 | P a g e 
 

displacements of all the nodes on the meshed grid in the RoI. In order to assemble 

all the subsets together for a global analysis, eG  is employed as the nodal assembly 

matrix [9, 102] for the aforementioned element. Thus the displacements of the point 

( , )x y  in terms of the Q4-FE [102] shape function are described as: 
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where ( , ); 1, 2, , 4j x y jΦ = …  are the Q4-FE kernel functions. A new solution 

strategy known as the non-linear multi-grid solver [10] is integrated into the Newton 

iterative procedure to efficiently find the global minima of the correlation criteria. 

Apart from the Q4-FE elements, linear triangular (T3-FE) [103], higher-order FE 

shape functions like beam elements [104] and planar iso-parametric elements (with 

24 DoF) [105] are also used through the same framework. Based on standard FE 

basis functions, a new method called PGD-DIC [72] employs a proper generalized 

decomposition technique to transform the 2D or 3D DIC problem into two 1D 

problem only involving 1D mesh. This method is able to significantly reduce the 

computational cost of traditional FE-DIC but is subject to separability of the 

displacement fields. On account of the connections between FE-DIC and the 

mechanical properties identification using FE Model Updating (FEMU), the nodal 

displacements measured by FE-DIC are easily integrated into the FEMU framework 

[106]. Furthermore, the introduction of parallel computation and the incorporation of 

a mixed optical/mechanical cost function [107] further improve the application of 

FE-DIC in mechanical properties identified by FEMU.  
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2.6.2 Extended FE-DIC 

In the presence of discontinuities like cracks and shear bands, the aforementioned 

FE-DIC methods may become inappropriate for the application. A feasible approach 

is implemented to exclude the discontinuities from the RoI by using refined meshes 

in the vicinity [13]. However, the refined meshes are normally unfavourable on 

account of the accuracy and computational cost. In contrast to mesh refinements, 

eXtended FE method (XFEM) [10, 12] was introduced to the FE-DIC to add extra 

DoF with enriched elements and allow to measure irregular displacements due to 

various kinds of discontinuities [89]. Also a strategy of optimising the crack path 

configuration was proposed in [89]. An extended correlation technique by 

introducing discontinuous enrichment to FE shape functions was also proposed to 

allow the partition of FE elements when detecting shear-band like discontinuities 

[10]. Furthermore, an additional penalization is incorporated into the extended FE-

DIC [108] to reduce measurement uncertainty, estimate crack tip locations and 

evaluate stress intensity factors [109]. 

2.6.3 P-DIC 

In order to reduce the dependency of DIC measurement results on the user’s choice 

of parameters and accurately measure high heterogeneous deformations, a new 

global DIC algorithm with a self-adaptive higher-order mesh was proposed based on 

p-adaptive finite element analysis [110], known as p-DIC [19]. When a p-adaptive 

mesh was used, degrees of freedom of the elements in the mesh could be adjusted to 

sufficiently represent the real deformation field. The mesh refinement was carried 

out according to a posterior residual error estimation based on an approach using 

multiple passes algorithms [111]. In contrast to the shape functions used in 

traditional finite element analysis, the shape functions of higher orders used in the p-
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refinement will not influence lower-order shape functions. This independent 

property of shape functions leads to the characteristic that the calculated lower-order 

shape function parameters keep constant when introducing the higher orders. The 

performance of p-DIC was validated by plotting the measurand resolution against 

the spatial resolution [19].  

2.6.4 Spectral DIC 

In the sense of reconciling spatial flexibility and computational efficiency, the 

Fourier decomposition was also used in the approximation of displacement field 

[14], which shows high reconstruction capacities and relatively low computational 

costs benefiting from the FFT algorithm. However, this approach highly relied on 

the periodic nature of displacement fields and images which rarely occurs in the 

experimental situations [18]. In contrast to the original spectral DIC methods, an 

improved approach using a prior correction strategy to account for non-periodic 

displacement fields was developed [15, 16] and applied in the field of high-

resolution strain measurement particularly in the composites tests at micro-scale [18]. 

In particular, the displacement field is expressed in terms of its inverse discrete 

Fourier transform (IDFT) as follows: 
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where ll  denotes the half-width of RoI and * * * *( , ), ( , )u vff r s ff r s  denote the Fourier 

transforms of ( , ),  ( , )u x y v x y  respectively. Only Fourier coefficients within a 

rectangle of size 2 2M N×  were used to approximate the displacement field, which 
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requires ,M N ll≤ . However, the displacement field is impossible to be exactly 

reconstructed in the extreme case when ,M N ll=  due to the ill-posed problem. 

Consequently ,M N ll≪  is normally needed for the accurate measurement [14]. 

Furthermore, on the basis of the spectral formulations, the components of governing 

equation shown in Equation (2-4) and (2-5) become the expressions in terms of 

Fourier transform [15, 16]. In addition, the forward and backward FFT was applied 

to improve the computational efficiency of the spectral based DIC [15]. 

2.6.5 B-Spline based DIC 

B-Spline basis functions were firstly introduced to global DIC in [17] to formulate 

the entire displacement field with implicitly continuous positions and derivatives up 

to a specified order. Apart from the FE shape functions, B-Spline functions consist 

of piece-wise polynomials and are capable of efficiently representing smooth 

surfaces depending on displacements of the control points that are similar to the 

nodal points in EF-DIC. The B-Spline DIC can be referred to [17, 71] and 

interpreted as follows: firstly any pixel point in the RoI of the reference image can 

be linearly mapped into a unit square, with * *0 , 1α β≤ ≤ . The mapping is written in 

the following form ( 1 2 and n n  are the number of pixels in x- and y-directions 

respectively). 

 * *

1 2

   
1 1

x y

n n
α β= =

− −
 (2-10) 

With this parameterization scheme, the B-Spline shape functions are written below 

to represent the displacements of any pixel point in the RoI: 
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where ,
ij iju vp p  have the similar meanings as in Q4-FE DIC denoting the 

displacements of the control points. 1 2 and m m  are the numbers of control points in 

the RoI in x- and y-directions respectively. In addition, , ,( ) and ( )i s j tϕ ϕ⋅ ⋅  denote the 

B-spline basis functions for a given order  and  s t  (for cubic spline 3s t= = ). Also 

they are defined recursively in the parametric space based on a knot vector shown as 

the following recursive formula [112]: 
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It is noted that the Levenberg-Marquardt approach [39] was employed to iteratively 

optimize the control-point variables and minimize the SSD criterion.  A further 

development was published in [71] where the Non-Uniform Rational B-Spline 

(NURBS) functions were applied in DIC to improve the conditioning of the problem 

and reduce the uncertainty and noise levels. Moreover, in [71] a similar multi-scale 

strategy as demonstrated in [10] is used in the optimisation process.  

2.7 Closure 

A review of various kinds of DIC local and global algorithms has been presented. It 

sets the basis for research on the development of a new global DIC algorithm (i.e. 



 
 

31 | P a g e  
 

Kriging DIC) in Chapter 6. In the next chapter, DIC errors and uncertainties are 

reviewed in order to highlight the unsolved problems and the applicability of the 

Kriging technique to the problem of addressing DIC uncertainty.  
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3 

3 Literature Review                             

Part 2 – DIC Uncertainties & Kriging 

In this chapter, an extensive review of DIC error and uncertainty sources is 

presented first. A standard uncertainty analysis technique on image processing is 

briefly considered in relation to the DIC uncertainty analysis. Finally, a general 

review of the Kriging regression method and Kriging-based uncertainty analysis is 

provided.  

Although DIC technique has been extensively used in various fields, the uncertainty 

quantification of DIC measurement is still an on-going research topic and is crucial 

for the wide acceptance of DIC as a standard measurement technology. In this sense, 

the main error sources in DIC technique are discussed and summarised in the 

following sections.  

As an image-based measurement process, DIC consists of three main components 

[113], they are, (a) image acquisition; (b) image pre-processing; (c) parameters 
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measurement. Since the image pre-processing (e.g. filtering, edge detection) is 

normally not necessary in DIC, DIC uncertainty factors generally fall into two 

categories, namely, experimental factors in the image acquisition (including quality 

of speckle patterns) and algorithmic factors in the parameters measurement shown in 

Table 3–1. Furthermore, the main error sources are also briefly classified into the 

systematic errors and random errors as shown in Table 3-2. 

 

Table 3–1: DIC error sources 

Experimental 

(image acquisition) 

  

I. Texture pattern  

o Pattern Characterisation e.g. pattern shape, 

size and density 

II. Image acquisition  

o Optics distortion, camera focus 

o Out-of-plane motions (2D only) 

o Image noise e.g. digitization, read-out noise, 

black current noise and photon noise 

o Illumination variation 

o 2D/3D Calibration 

o Environment e.g. light reflections, air 

temperature, vibrations 

Algorithmic 

(parameters 

measurement) 

 

o Correlation criterion 

o Sub-pixel interpolation  

o Shape function (reconstruction error) 

o Conservation of optical flow (speckle patterns 

may be changed by large deformation) 

o Optimisation techniques 

 

Equation Chapter 3 Section 1 
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Table 3–2: DIC error classification 

Systematic error 

sources  

o Image noise  

o Texture pattern 

o 2D/3D Calibration 

o Sub-pixel interpolation  

o Shape function (reconstruction error) 

o Optics distortion 

o Out-of-plane motions 

o Illumination variation 

Random error sources 

o Image noise  

o Illumination variation 

o Camera vibration 

 

3.1 Basic concepts 

As a measuring technique, the DIC result generally should be expressed as a 

measurement quantity value together with a measurement uncertainty. The 

underlying concepts are clarified herein firstly in order to eliminate the ambiguity of 

the related usage in this thesis. The definitions shown below (in italic) are taken 

from [114-118] and Figure 3–1 [119] is used to illustrate the basic relationship 

among the concepts.  

i. True value: ‘True’ in the sense that it is the value of a quantity that is 

believed fully compatible with the definition of the measurand [117, 118]. 

Since the true value cannot be absolutely determined, in practice an 

accepted reference value is usually established by repeatedly measuring 
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NIST or ISO traceable reference standards. It is worthwhile to note that true 

value is not the reference value that has errors associated with it and may 

not be totally representative of the specific sample being measured. 

ii. Error: The difference between a measurement and the true value of the 

measurand. Error does not include mistakes that should be explained and 

excluded from the data set. Although it is not possible to completely 

eliminate error in a measurement, it can be controlled and characterized. 

The total error is usually a combination of systematic error and random 

error.  

iii.  Systematic error: The mean error resulting from an infinite number of 

measurements of the same measurand under repeatability conditions, 

systematic error represents the component of measurement error that 

consistently deviates from the true value of the measurand by a constant 

amount or varying in a predictable manner [117, 118]. It is not determined 

by chance but is introduced by an inaccuracy (known or unknown) inherent 

in the system, which is not reduced when observations are averaged. 

Systematic error can be corrected only when the true value is known. 

iv. Random error: Random error is defined as the difference between a 

measurement and the mean resulting from an infinite number of 

measurements of the same measurand under repeatability conditions [117, 

118]. It is also a component of the measurement error which varies in an 

inherently unpredictable way. Random errors can occur for a variety of 

reasons such as noise in the measurement and are impossible to be corrected. 

v. Uncertainty: Uncertainty of a measurement reflects the lack of exact 

knowledge of the value of the measurand [118]. Uncertainty characterizes 

http://en.wikipedia.org/wiki/System
http://en.wikipedia.org/wiki/Observations
http://en.wikipedia.org/wiki/Averaged
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the range of values within which the true value is asserted to lie. All possible 

error effects (both systematic and random) should be addressed by an 

uncertainty estimate that is the most appropriate means of expressing the 

accuracy of results and is consistent with ISO guidelines. In spite of this, the 

systematic error cannot be estimated in many measurement situations and 

only random error is included in the uncertainty estimate. When only 

random error is included, the uncertainty is actually a reflection of the 

precision [117] of the measurement.  

vi. Bias: It is the difference between the average value of a large series of 

measurements and the accepted true value. Bias is an estimate of the total 

systematic error in the measurement and a correction can be made by 

adjusting for the bias in order to reduce the systematic error. 

vii. Accuracy, precision and trueness: Measurement accuracy means the 

closeness of agreement between a measured value and the true value and is 

not a quantity [117]. A measurement is said to be more accurate when its 

measurement error is smaller. Measurement precision refers to the closeness 

of agreement between different measured values obtained by replicate 

measurements and is normally regarded as the estimate of random error 

[119]. Measurement trueness is defined as closeness of agreement between 

the expectation of measured values and a reference true value and is 

normally treated as the estimate of systematic error [119].  

viii. Standard uncertainty: According to the definition in the expression of 

uncertainty in measurement (GUM) [113, 117, 120], the standard 

uncertainty is the estimate of the standard deviation of measurement results 

once the correction of systematic effects has been applied including the 
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uncertainty of correction. Standard uncertainty defines a confidence level of 

the corrected measurement results for the measurand.  

 

Figure 3–1. Relationship between different types of errors, qualitative and 

quantitative performances (taken from [119]) 

3.2 Experimental error sources 

The error sources included in the experimental process can be generally classified 

into two procedures: speckle pattern preparation and image acquisition which are 

listed as follows. 

3.2.1 Errors arising from speckle patterns  

In DIC, random speckle patterns are applied to the surface of measuring object 

(specimen) to provide stochastic grey-value variations. The quality of speckle 

patterns is fundamental to the accuracy of DIC measurement. The variations of grey-

intensity gradients (related to the image contrast) are found having a strong 

influence on the accuracy and reliability of DIC measurements (gradient-based), as 

noted in several speckle pattern assessment criteria [21], for example, the sum of 

squared subset intensity gradients [22, 23] and mean intensity gradient [24]. Apart 
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from the intensity gradients, concepts of subset entropy [121] and mean subset 

fluctuation [122] were also utilized to assess the quality of speckle patterns. In order 

to balance the measurement uncertainty (displacement resolution) and spatial 

resolution before a test, a method of texture evaluation was proposed, which consists 

of two a-priori criteria: the minimum grey-level standard deviation and 

representative speckle size [123]. 

 

 

Figure 3–2. Grey level histograms (x-axis: grey scale, y-axis: number of pixels) of 

different types of speckle patterns, from left to right: airbrush, spray can, synthetic 

(Gaussian speckles) 

Pattern Characteristics 

Morphological approaches [21, 124, 125] have been introduced and used to analyse 

the pattern quality on account of the physical properties of speckle patterns like 

pattern size, shape, density and frequency components. Owing to the study in [21], it 

is shown that the way speckle patterns are made as shown in Figure 3–2, e.g. using a 

spray paint or an airbrush, making black speckles on a white background or making 

white speckles on a black background, has a non-trivial effect on the measurement 
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error. For the purpose of well controlling the quality of speckle patterns, a new 

technique called ‘toner transfer’ was proposed on the basis of  a thermo-mechanical 

procedure by transferring melted toner from a printed paper to the surface of 

specimen [29]. An effective method was developed to generate stochastic patterns 

from metallic thin films at a sub-micron scale [126].  

Rigid/deformable patterns 

In general, there are two different types of pattern degradation: deformable patterns 

and rigid patterns. It was studied and presented in [25] involving the high tension 

rates and fatigue. It was shown that rigid patterns have an extra influence on the DIC 

uncertainty compared to deformable patterns and this effect is equivalent to an 

image noise imposed on deformable patterns. However, similar results were 

obtained on rigid and deformable patterns under large strains since the effect of 

pattern deformation becomes predominant [25]. Nevertheless, it should be noted that 

a relationship between the spatial scale and the size of rigid or deformable pattern 

was studied and an estimation method for the pattern size was also proposed on the 

basis of a 3-point 1D Gaussian fitting [35].  

Synthetic (numerical) speckle patterns 

Except natural speckle patterns used in tests, synthetic speckle patterns are often 

generated and applied to assess the performance of DIC algorithms due to the well-

controlled speckle features and deformation information. Based on numerically-

produced Gaussian speckles with uniformly distributed means, an efficient approach 

[20, 81, 95] was developed to simulate the real speckle patterns on the CCD target. 

Furthermore, an interpolation-based method was proposed to generate the deformed 

image by numerically deforming a piece of real speckle pattern using FE 

displacement fields [127]. With the purpose of producing realistic speckle patterns, a 



 
 

41 | P a g e  
 

framework was proposed consisting in using successive transformations of Perlin 

coherent noise functions [128].  

3.2.2 Errors arising from image acquisition  

Main error sources related to the image acquisition are introduced below, of which 

errors are also propagated through the process of parameters measurement to the 

final results.  

Optics distortion and focus 

In a practical DIC application, non-linearity is introduced to the image projection 

plane due to the lens distortion particularly the radial distortion [29] as shown in 

Figure 3–3. Radial lens distortion was modelled by considering the first two radial 

terms and model parameters were solved through the maximum likelihood 

estimation [26]. Alternatively a more complex lens-distortion model [27, 28] based 

on cubic and quantic radial terms of the camera was applied and solved by a 

Levenberg-Marquardt technique [129]. Once the distortion model is obtained, the 

effect of distortion can be easily compensated and removed. It is worth noting that 

the camera focus algorithm was studied in [29] for the purpose of acquiring the 

highest achievable focus, which can also be  found in [130, 131].  

 

Figure 3–3. Positive and negative camera distortions (taken from [132]) 
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Out-of-plane motion 

The out-of-plane motion (or deformation) is normally unavoidable in the practical 

applications. The errors like fictitious strains [29] due to out-of-plane motion (rigid 

translation, rotation etc.) in 2D-DIC analysis were compensated by several different 

approaches [29, 57, 133-136]: for instance, directly measuring the out-of-plane 

strain error from a function of measured distance between the camera and the 

specimen based on a single-camera vision system [136], significantly increasing the 

imaging distance between the camera and the specimen by using a tele-centric lens 

[5], doing the correction using a knowledge of the specimen material properties 

[133]. However, based on analytical and experimental studies, it was shown that the 

in-plane displacement errors and strain errors are not introduced by the out-of-plane 

translation and rotation in a 3D-DIC measurement [136]. Three interesting 

compensation methods for the out-of-plane motions in 2D DIC measurements were 

presented in [137]: (1) misalignments of the camera and out-of-plane motions were 

avoided by a mechanical camera positioning tool; (2) the camera was aligned on the 

basis of the camera pinhole model and numerically deformed images; (3) A 

reference region method was applied for the related compensation.  

3D calibration  

For 2D-DIC, it is assumed that the motions of a planar object occur within the object 

plane, which requires the camera sensor to be nominally parallel to the object plane 

[5], e.g. with the help of a laser [139]. As 2D-DIC is normally vulnerable to the 

errors due to out-of-plane motions [136], 3D-DIC is highly recommended and 

extensively applied in practice. The accuracy of stereo-based DIC measurement 

strongly depends on the calibration process.  
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Figure 3–4. The 3D calibration procedure, a spatial point P is projected onto the 

image plane of the camera (pinhole model) 

On the basis of error propagation equations [27, 140] and camera calibration 

technique [26], an analytical framework was developed for quantifying the 

measurement errors stemming from a stereo-vision calibration procedure [129]. In 

particular, by using a pinhole camera model, the errors of camera intrinsic and 

extrinsic parameters [129] under known distributions [141] are analysed during the 

calibration process and combined into a general formulae for assessing the 

expectation and variance of 3D measurement results. According to the developed 

formulae, experiments were also performed to validate biases and variances of 3D 

displacements and strains based on the theoretical predictions [51]. Moreover, a 

Monte Carlo approach was applied to obtain uncertainties of the calibration 

parameters by using experimental images [142].  
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As shown in Figure 3–4, the principal point is the mapping of the intersection of 

optical axis with the image plane. The principal point is ideally located in the centre 

of the image but is not always the case in practice due to tangential distortion and 

other manufacturing defects. The mapping between image coordinates and physical 

world coordinates is represented by a 3×3 camera intrinsic matrix, which is normally 

used to correct the deviation of principal point. 

Image acquisition noise  

Noises are inevitable in the image acquisition (e.g., digitization noise, read-out noise, 

photon noise [30]). For the sake of simplicity, the noise-induced errors are normally 

assessed by assuming the model of image noise as Gaussian, additive, independent 

at each pixel and independent of the grey intensity, which is generally consistent 

with the characteristics of real noise under a well-controlled experimental condition 

[31, 32]. On the basis of Gaussian assumption, analytical expressions of noise-

induced bias and variance for planar translations were derived according to SSD 

criterion using error propagation principles [23, 31, 51, 57, 143]. It is shown that 

variance error is proportional to the variance of the Gaussian noise (zero mean) and 

inversely proportional to the sum of intensity gradients [5, 23]. If the sum of squared 

intensity gradients is interpreted as the information contained in the image, the 

variance error can be understood as the noise-to-signal ratio (NSR) [35, 46].  

On the other hand, the error reduction methods were also developed in order to 

reduce or compensate the noise-induced uncertainties. Pan et al. proposed to employ 

a 5 5×  pixels Gaussian low-pass filter to pre-smooth the speckle images before 

applying correlation analysis [32], which showed an appealing effectiveness and was 

further experimentally validated in [31]. Unlike the noise sensitivity was analysed 

locally based on subset DIC, noise-induced errors could be also quantified in global 
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approaches. In particular, based on Q4 FE-DIC method, an analytical expression 

was derived and illustrated for the sensitivity of the displacement measurement to 

noise [11]. The sensitivities to acquisition noise were compared for both local and 

global DIC methods by using 4-noded zones and 4-noded elements respectively and 

demonstrated in terms of the uncertainty levels of nodal displacements, mean 

displacements and mean strains [8].  

Illumination variations 

Even given ideal experimental conditions, illumination change is still an 

unavoidable error source which makes a contribution to intensity differences of 

images taken only at different times. In particular, these changes may have a 

localized and uneven effect on the whole image. The photometric transformations [5] 

were discussed for the offset and scale changes in the lighting and led to the 

optimization of DIC criterion, namely the ZNSSD criterion [32, 34, 144]. In practice, 

setting adequate illumination to minimize the camera gain was presented as a simple 

way to decrease the noise level, which was validated by a test using identical speckle 

patterns but with different illumination qualities [43]. In view of the normalized 

spatial cross-correlation approach used when illumination conditions change, a 

gradient-based sub-pixel registration method was proposed to yield the correlation 

coefficients which are only sensitive to the variations of illumination and noise [145].  

3.3 Algorithmic error sources 

3.3.1 Correlation criteria 

Due to the fact that experimental conditions like illumination and noise may have 

significant influence on the intensity noise of acquired images, a robust and reliable 
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correlation criterion is required to be able to minimise or even eliminate the resulting 

displacement or strain errors [34]. In that case, the zero-mean normalized criteria are 

highly recommended [20, 32-35] for the sake of insensitivity to the linear scale and 

offset changes of intensities. Assuming a square reference RoI of 

(2 1) (2 1)M M+ × +  pixels is chosen, the ZNSSD and ZNCC criteria could be 

written in the following discrete expressions:  

( )( ) ( )

( )( ) ( )

2

( , ), , ,
arg min

( , ), , ,
arg max

M M
i i j j i j m i j m
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M M
i i j i j m i j m

i M j M std std

g x u x y y v x y g f x y f

g f

g x u x y y v x y g f x y f

g f

=− =−

=− =−

 + + − −
 = −
 
 

 + + − −
 = ×
 
 

∑ ∑

∑ ∑

ZNSSD

ZNCC

C

C

 (3-1) 

where 

( ) ( )( , ), ( , ) ,  ,i i j j i j i jg g x u x y y v x y f f x y= + + =

( )

( )

2

2

1
( , ), ( , ) , 

(2 1)

1
, ,

(2 1)

M M

m i i j j i j
i M j M

M M

m i j
i M j M

g g x u x y y v x y
M

f f x y
M

=− =−

=− =−

= + +
+

=
+

∑ ∑

∑ ∑

( ) ( )2 2
g ,  

M M M M

std m std m
i M j M i M j M

g g f f f
=− =− =− =−

= − = −∑ ∑ ∑ ∑  

,  m mg f  and ,  std stdg f  are the means and standard deviations of subset intensities in 

deformed and reference images respectively. It is a remarkable fact that the ZNSSD 

and ZNCC criteria are applicable not only in the local (subset-based) algorithms but 

also in the global algorithms.  

3.3.2 Sub-pixel interpolation 

As the correlation criterion must be evaluated at non-integer positions, a systematic 

bias is generated owing to the application of sub-pixel interpolation schemes [36]. A 
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comprehensive catalogue of interpolation methods used in the field of image 

processing was presented in [37], which also provides a general comparison and 

valuable comments for different interpolation approaches. The interpolation bias 

was studied through analytical phase error of interpolation filters [36] and 

experimental validation [74]. It was shown that the systematic bias in displacement 

measurement stems from the phase-shift error and depends on the sub-pixel 

displacement [5, 36].  

 

Figure 3–5. A region of interest (in blue square) is chosen from an experimental 

speckle image, 11×11 samples (in red plus) are uniformly selected and designed as 

the centres of subsets with a size of 11×11 pixels 

Based on an experimental speckle image shown in Figure 3–5, typical bias errors 

and standard deviations on the usage of a 6 6×  bi-cubic intensity interpolation 

scheme are presented as illustrated in Figure 3–6 on the basis of an experimental 

image applied by a sub-pixel translation from 0 to 1 pixel with an increment of 0.05 

pixels in both x- and y-directions at the same time. High-order interpolation schemes 

were recommended in DIC [36, 57]. Aiming to enhance the accuracy of B-spline 

interpolation used in DIC, a technique was proposed by employing a family of 

recursive interpolation schemes and its inverse gradient weighting form [75]. 
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Interpolation schemes may be used not only in interpolating the grey intensities to 

provide grey values for non-integer positions but also in interpolating the correlation 

coefficients in the neighbourhood of the correlation peak to solve the peak location 

with sub-pixel accuracy [20, 146]. 

 

 

Figure 3–6. The distributions of mean errors and standard deviations of the samples 

with respect to the 2D sub-pixel translations 

3.3.3 Iterative initial values 

The iterative spatial correlation methods generally require a proper guess of initial 

values to guarantee the convergence of optimisation. Vendroux and Knauss [67] 

showed that the NR iteration method has a convergence radius of 7 pixels for initial 

values in DIC applications. In the case of small deformation between reference and 
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deformed images, a fast cross-correlation technique using the zero-order shape 

function [67, 94] is normally used to obtain the initial values with 1 pixel accuracy. 

Additionally, the coarse-fine search scheme [147] and frequency-domain technique 

[148] are applied to improve the accuracy and efficiency for the initialization. On 

the other hand, the modified coarse-fine search scheme [149], propagation function 

[95], genetic algorithm [150] or even manual initialization have to be employed 

when discontinuities or critical situations occur in the test.  

3.3.4 Reconstruction error 

As shown in Equation (2-7), the displacement field is normally formulated and 

approximated by shape functions in order to solve the inverse problem. Various 

kinds of shape functions are applied in both local and global DIC approaches, which 

is also the fundamental part to classify DIC methods into the local and global 

algorithms. It is generally not possible to design a shape function that perfectly 

matches the actual displacement field in a particular application. Meanwhile, a 

higher-order or more complex shape function generally does not guarantee a more 

accurate measurement as errors could be introduced with the extra DoF of shape 

functions and the computational cost could be raised as well. Given a certain spatial 

resolution, a shape function with higher DoF is necessarily applied in order to 

capture the detail of a complex deformation. However, the error due to imperfect 

(under-fitting or over-fitting) shape functions cannot be eliminated by decreasing the 

spatial resolution through e.g. choosing smaller subsets (subset-based DIC) and 

elements (FE-based DIC) and can only be quantified when the kinematic field is 

known a-priori [38, 39]. The proper parameters of shape function could be 

determined for DIC analysis in the case that a-priori knowledge about the 
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complexity of actual displacement field is obtained by means of simulated 

experiments such as FE analysis [151].  

3.3.5 Spatial resolution  

For a local approach, it is desirable to improve the spatial resolution by decreasing 

the size of subsets in the RoI [18]. However, it was shown that the chosen subset 

size must be large enough in the subset-based DIC for precise displacement 

measurement when subset shape functions match underlying deformation [121]. On 

account of the influence of image noise in actual applications, there is also a lower 

limit for the subset size in order to reduce the errors due to noise [5, 11, 38, 121, 

123]. Since a compromise always needs to be determined between the spatial 

resolution and the measurement precision (resolution), a criterion based on the 

variance of image noise and Sum of Square of Subset Intensity Gradients (SSSIG) 

was deduced from the SSD cost function for the selection of subset size [22]. A 

concept of subset entropy is created to normalize the subset size in [121] and the 

influences of subset size were studied on both homogeneous and heterogeneous 

displacement fields. On the other hand, the number of control points is subject to the 

computational cost [72, 152] and ill-posed problem [72] in regard to improving the 

spatial resolution in global DIC approaches.  

3.3.6 Discontinuities 

Discontinuities such as cracks are the main error sources that can lead to DIC 

mismatch. The essential reason comes from the failure of shape function to capture 

the local discontinuities as shape functions are normally applied on an assumption of 

a continuous and smooth displacement field. There are normally two procedures for 

tackling the effects of discontinuities, namely identification and correction. The 
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identification consists in developing a penalty function (e.g. on the distance between 

the estimated displacement field and its projection [108] or using an equivalent 

strain [10] or directly using the poor correlation coefficients [97]) to detect the 

discontinuities once they occur. Secondly, the correction mainly lies in excluding 

the large-deformed or discontinuous areas from the RoI [96], adding extra DoF or 

independences to the shape function [108], splitting the related subset [97] or zone 

of interest [10] and so on.  

3.3.7 Optimisation techniques 

Given the correlation criterion used in both local and global DIC approaches, the 

minimisation problem in terms of least square solution is generally implemented by 

spatial-domain iterative strategies such as gradient descent method like Newton–

Raphson (NR) iteration [2, 36, 67-69], damped least-squares method like 

Levenberg–Marquardt algorithm [17, 39], genetic algorithms [64-66] and multi-grid 

solver [10]. Among these methods the NR iteration is considered to be the most 

accurate and commonly used method [70]. Due to the fact that DIC problem is 

actually an inverse problem, the ill-posed problem and computational cost become 

significant as the increasing complexity of shape functions and increasing number of 

control points (or finer control grid). In this sense, various procedures may have to 

be chosen for regularization (e.g. dealing with the noise) such as Fourier filtering 

[10], a frequency filter based on Laplacian operator [72], a regularization term based 

on Dirichlet Energy functional [18] and so on. From a Bayesian point of view, many 

regularization techniques actually correspond to imposing certain prior distributions 

on model parameters.  
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3.4 Standard uncertainty estimation in DIC 

Most work has been done on investigating the errors and uncertainties due to a 

specific source, e.g. imperfect sub-pixel interpolation algorithm, Gaussian image 

noise and so on. However, little work has been carried out to develop a generic 

method in order to quantify the uncertainties from different error sources in DIC. A 

general framework [113, 153] of uncertainty quantification in an image-based 

measuring system shown in Figure 3–7 may be employed to illustrate the basic UQ 

approaches in regard to uncertainties introduced to different parts of DIC. It is 

shown that the standard uncertainty (defined in Section 3.1) of DIC measurement 

results may be quantified through an evaluation process which consists of three steps.  

 

Figure 3–7. Standard uncertainty estimation in an image-based measuring system 

3.4.1 Influence factors 

The uncertainty of DIC measurement depends on a number of influence factors, e.g. 

the error factors shown in Table 3–1. The experimental errors in the image 

acquisition process result in intensity uncertainties in acquired images that can be 

propagated to the final DIC measurement result through DIC algorithms. Meanwhile 

the algorithmic errors also make a contribution to the uncertainty of the final DIC 

result.  
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3.4.2 Uncertainty modelling 

In order to quantify the standard uncertainty of DIC measurement results, 

deterministic error effects (different from systematic errors) normally need to be 

estimated and corrected firstly [113, 120]. Once the correction ce  has been 

estimated and applied, the standard uncertainty se of the measurement results is 

expressed as the combination of uncertainty of random errors sse  and uncertainty of 

the correction tse as follows: 

 2 2 2
s tse se se= +   (3-2) 

In general, there are two ways to evaluate the standard uncertainty, they are, black-

box model (by statistical methods) and analytical model (white box) [154].  

Black-box model 

The black-box model is used to evaluate the standard uncertainty without the 

necessity of knowing the analytical relationship between the standard uncertainty 

and influence factors and is normally implemented through statistical methods (in a 

Monte Carlo manner). As shown in Figure 3–8, the deterministic errors may be 

experimentally evaluated through a comparison with a reference object or system 

yielding a correction ce  and its corresponding uncertainty sse  [155]. In the 

meantime the standard deviation of measurement results tse is obtained on the basis 

of a set of measurements keeping the measurand constant. However, the application 

of black-box method is subject to the number of influence factors and whether the 

measurand itself is controllable or not [155]. Based on a reference system of 

synthetic speckle images with spatially fluctuating sinusoidal displacement fields, 

the uncertainty of DIC measured displacements in terms of root-mean-square (RMS) 
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error was evaluated depending on a group of influence factors such as subset size, 

speckle size, shape function and sub-pixel interpolation scheme [38]. As discussed 

in [156], a calibration specimen called as reference material [157] was used to 

calibrate a DIC system to an acceptable uncertainty level according to the 

Standardisation Project for Optical Techniques of Strain measurement (SPOTS) 

[158] guideline. 

 

Figure 3–8. Estimation of deterministic errors by a black-box model (taken from  

[155]) 

White-box model 

Apart from the black-box model, the analytical method works as an indirect 

approach to determine an analytical model for the uncertainty estimation, which 

requires the deterministic error and standard uncertainty to be known and 

analytically modelled. 

Exact analytical model 

The exact analytical model is normally expressed in an algebraic form for the 

measurement uncertainty (e.g. in terms of probability distribution) which can be 

, tce se

, tce se
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obtained without introducing any approximation. However it can be applied only in 

relatively simple cases. For example, a typical DIC systematic error due to intensity 

interpolation in a 1-D translation test was modelled by an analytical function of the 

phase error based on a Fourier shift theorem [36]. As shown in [23], the analytical 

expressions for DIC error expectation and variance due to Guassian image noise 

were derived according to DIC algorithm under uniform 1D and 2D translations.  

Approximate model 

In contrast to the accurate analytical model, approximation normally has to be 

employed to simplify the complex dependence relationship between influence 

factors and measurement uncertainty. A generic so-called GUM uncertainty 

framework [118, 153, 155, 159] may be applied to evaluate the standard uncertainty 

of DIC measurement results due to a number of influence factors under the 

assumption of linear dependence relationship and symmetric probability distribution 

of input and output quantities. By means of basic equations of stereo-vision, an 

analytical model for 3D DIC measurement was developed to estimate the 3D 

position bias and variability caused by stereo-vision parameters and image-plane 

matching procedures [129]. As opposed to these uncertainty models relying on DIC 

algorithms, a general post-processing uncertainty estimation model is presented in 

[35] by deriving the relationship between the standard deviation of intensity 

differences over a pair of matched subsets and the expected asymmetry of the 

correlation peak. Furthermore, the distribution of standard displacement uncertainty 

over a RoI induced by Gaussian image noise was analytically derived for the global 

FE DIC [8]. 
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3.5 Uncertainty propagation 

3.5.1 Uncertainty propagation law 

Once an analytical expression for the standard uncertainty of DIC measurement is 

obtained, the uncertainty propagation law is applied to integrate the uncertainties of 

influence factors into the standard uncertainty of final measurement result. As 

presented in [23], the uncertainty due to Gaussian image noise in terms of intensity 

standard deviations was propagated to the uncertainty of measured displacement 

through DIC algorithm based on the uncertainty propagation law. The similar 

application of uncertainty propagation law is also observed in estimating the 

theoretical uncertainty of measured 3D positions in a 3D DIC system [129].  

The application of uncertainty propagation law is generally developed for 3 types of 

uncertainty models including explicit model, implicit model and model involving 

complex quantities [159]. Taking an explicit multivariate model for example, a 

relationship specified between an output quantity T
1( , )sh h=h ɶ ɶɶ ⋯�  and an input 

quantity T
1( , )td d=d ɶ ɶɶ ⋯  is expressed as [159]: 

 T
1( ),    ( , , )s= ϒ ϒ = ϒ ϒh dɶ ɶ ⋯   (3-3) 

Given an estimate d  of dɶ  and an estimate h  of hɶ , it is obtained ( )≈ ϒh d . 

According to the propagation law, the uncertainty covariance matrix related to h  is 

given by (for random errors): 
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where 2cov( , ) ( )j j jh h se h=  denotes the standard uncertainty of the output 

component jh , dD  is the sensitivity matrix in the propagation and has the form:   
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d d

d d
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  (3-5) 

3.5.2 Uncertainty propagation based on the Monte Carlo 

method 

When an analytical model is not available (e.g. black-box model) or it is impossible 

to apply the uncertainty propagation law, Monte Carlo method (MCM) is a feasible 

way to approximate the distribution function (uncertainty) for the output quantities 

and is established numerically by making random draws from the probability 

distributions of input quantities [153]. Both a boot-strap Monte Carlo approach and 

a traditional Monte Carlo approach [142] were used to propagate the image 

correlation error and the calibration parameter variation through a triangulation 

process to the uncertainty of 3D-DIC measurement result. Along with an analytical 

uncertainty model, the Monte Carlo approach was also used to estimate the 

expectation and variance of 3D positions in DIC measurement in order to validate 

the theoretical results given by the analytical model [129].  

3.6 Kriging regression method 

Originally developed in geo-statistics [160], Kriging is also widely used in the fields 

of spatial analysis and computer experiments. The word "Kriging" is synonymous 
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with "optimal prediction" [161]. It is a method of interpolation which predicts 

unknown values from data observed at known locations. This method uses 

variogram to express the spatial variation and minimizes the error of predicted 

values which are estimated by spatial distribution of the predicted values. The 

development and applications of Kriging method was extensively overviewed in the 

work of Cressie [52, 53]. Different from a piecewise-polynomial spline that 

optimizes smoothness of the observed data, Kriging provides the best linear 

unbiased prediction (BLUP) [53] of intermediate values. Based on a Bayesian 

perspective [53, 54], Kriging models the intermediate values by using a Gaussian 

process governed by prior covariance, which further delivers uncertainty 

quantification (UQ) on the best linear unbiased prediction of the measurement.   

Since the sample data is not measured with perfect accuracy and normally subject to 

measurement noise, an error factor can be introduced to the Kriging interpolation 

model to account for the measurement imprecision and allow the regression instead 

of interpolation on the sample points. The introduction of a regularization factor for 

the treatment of biased estimates in multiple regression was originally proposed in 

the work of Hoerl and Kennard [55] in 1970, who termed the technique ‘ridge 

regression’. Aiming to filter out numerical noise, the same approach was applied to 

the design and analysis of ‘noisy’ computer experiments in the field of computer 

simulations by Forrester et al. [56]. If only a single regularization factor is 

introduced, it is deemed as a global approach by which the uniform uncertainty 

across the domain of interest [162] can be treated. In contrast, a local error estimate 

technique in the field of particle image velocimetry (PIV) was proposed by Jouke et 

al. [163] by means of developing an uncertainty model based on peak ratios [164] in 
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the cross-correlation map, which actually extended the error estimate from the 

global to the local sense.  

3.7 Uncertainty analysis based on Kriging regression 

The Monte Carlo Method (MCM) is a feasible way to analyse the uncertainty for 

output quantities, it can be computationally expensive and time consuming. In 

contrast, Kriging can be used as a surrogate model [165] to simulate the true output 

quantities with minimizing the computational cost and maximizing model accuracy, 

which further makes a contribution to the uncertainty quantification. The Kriging 

surrogate modelling strategy is also known as Gaussian process emulation based on 

the concepts of Bayesian statistics [166] and the analysis and design of computer 

experiments [167, 168]. Oakley [169] applied the Gaussian process emulation to 

analyse the uncertainty for computationally expensive computer models based on an 

inference about the observed sample data from a Bayesian perspective. Apart from 

the Monte Carlo analysis, an alternative general theory for uncertainty analysis with 

uncertain inputs was developed in the thesis of Haylock [170] by using the 

stochastic process models from a Bayesian context. Furthermore, F.A. DiazDelaO et 

al. [171] employed Bayesian emulator (Kriging) for the uncertainty analysis of the 

frequency response in a stochastic structural dynamic analysis.  

3.8 Closure 

A detailed survey of DIC error sources and standard uncertainty analysis in image 

processing is presented first in this chapter. In addition, a brief review is provided on 

the Kriging regression and the uncertainty quantification. It will be discussed in 

detail in Chapter 5. In the next chapter, the significance of and existing problems 
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concerning DIC error reduction and uncertainty quantification are addressed. The 

idea of applying the Kriging regression method to DIC is also introduced.  
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4 

4 DIC Error Reduction and  

Uncertainty Quantification  

This chapter outlines the significance of error reduction and uncertainty 

quantification in DIC applications. The commonly used methods in DIC error 

reduction and uncertainty quantification are briefly reviewed first. A generic 

uncertainty quantification technique for the subset-based DIC is then derived 

according to the DIC SSD criterion. The bias error induced by Gaussian image noise 

under uniform translation is estimated for the application in DIC sub-pixel 

registration. Furthermore, a simple but effective error reduction approach is 

proposed with respect to the bias due to the grey-level interpolation and image noise. 

The Kriging regression method is applied to DIC, which aims at developing a 

superior and reliable technique to deal with DIC measurement errors and 

uncertainties from a global sense. Equation Chapter 4 Section 1 
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4.1 Introduction 

4.1.1 DIC error reduction 

The basic principle and implementation of DIC is relatively simple, but the effective 

reduction of the measurement error due to various error sources remains an unsolved 

problem. As discussed in Chapter 2, DIC error sources can be generally classified 

into two main categories: experimental and algorithmic errors. Each category 

includes a series of specific error sources, for example, the quality of experimental 

images is inevitably influenced by experimental setups like illumination, vibration 

and so on. In the existing work, some methods are proposed focusing on dealing 

with specific error sources, e.g. the imperfect grey-interpolation schemes [5, 36] and 

the limitation of shape functions (under- or over-fitting problems) [38, 39]. In 

contrast to the error reduction methods focusing on a certain error source, local 

smoothing [32, 33, 40-42] techniques are applied as a kind of generic method to 

reduce measurement errors due to various kinds of image acquisition noise. These 

methods have the advantage of simplicity and work well for most DIC applications 

but are subject to an ad-hoc choice of parameterisation, which probably only lead to 

a local optimum. In order to overcome such limitations, the Kriging regression 

techniques can be introduced to deal with these error sources in a global sense for a 

global improvement in the measurement accuracy, thanks to the excellent capability 

of Kriging in global optimisation. This is discussed in detail in Chapter 6 and 7.  

In Section 4.3, a simple but effective error reduction approach developed by the 

author is presented. The method is proposed to tackle the sub-pixel registration bias 

in an algorithmic sense.  
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4.1.2 DIC uncertainty quantification 

Along with increasing applications of DIC in various fields, there has been a 

growing interest in a reliable quantification for DIC measurement uncertainty, which 

is particularly important since DIC is extensively used as a full-field measurement 

technique and the measurement uncertainty will always be present whatever the 

level of precision. However, due to the intrinsic complexity of DIC error sources as 

discussed in Chapter 3, it is very difficult to analytically quantify the measurement 

uncertainty by means of a rigorous mathematical derivation especially when 

considering all the possible error sources. Aiming to quantify uncertainties due to 

various error sources, a generic UQ method should be developed. Very little work 

has been done in this field except for the following methods: 

(i) An uncertainty quantification method derived based on Gaussian image noise and 

the DIC SSD criterion [5, 23, 51]: This method was originally developed by Sutton 

et al. [5] whereas the uncertainty estimation of a 1D DIC case with uniform 

translations was developed as a function of the variance of Gaussian image noise 

and sum of the grey-level intensity gradients. Furthermore, this method was 

extended to a 2D DIC case and the sum of grey-gradients was changed to the inverse 

of Hessian matrix [51]. However, this method only provides an approximate 

uncertainty estimation without considering the subset deformation and is limited to 

the presence of Gaussian image noise rather than various kinds of error sources.  

(ii) A post-processing uncertainty quantification method developed based on the 

expected asymmetry of a correlation peak [35]: This post-processing uncertainty 

quantification method developed by Wieneke et al. [35] derived a relationship 

between the standard deviation of intensity differences of matched subsets and the 
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expected asymmetry of correlation peak in a post-processing correlation map. In fact, 

this kind of method was developed based on a second-order polynomial fitting for 

the expected correlation peak, which might not hold all the time. Also the subset 

deformation is still not taken into consideration for uncertainty quantification 

properly. 

(iii) The temporal and spatial random errors in subset-based DIC measurement 

investigated by Wang [172]: The temporal and spatial random errors were defined to 

describe the repeatability of the DIC measurements due to the time varying image 

noise and the differences between subsets when they were subject to the same 

displacement respectively. Basically, these two types of errors focused on the 

repeatability of measurement rather than a specific measurement which is actually 

studied in this thesis. However, the derivation of the spatial random error was 

limited to the self-correlated or rigid-motion test, where the subset displacements 

were the same from location to location. Also the derivation of temporal random 

error was very similar to Sutton’s work [5] except for considering the intensity-

interpolation errors in a very complicated way. In addition, the intensity-

interpolation error may be considered in a simple way by using SSD residual. 

According to the above studies, a more general form of the DIC uncertainty 

estimation is derived in the sequel by considering an equivalent variance based on 

the SSD residual and the subset deformation in terms of a second-order shape 

function. This generic subset-based uncertainty estimation is also incorporated into a 

post-processing Kriging regression technique for a global uncertainty quantification, 

which is discussed in detail in Chapter 7. 
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4.2 Generic uncertainty estimation for subset-based 

DIC  

In this section, a generic analysis for measurement error of the subset-based DIC is 

presented in order to obtain a mathematical expression for the measurement error 

due to various error sources. For simplicity, derivations start from a 2-dimensional 

case in the presence of Gaussian random additive noise with grey-intensity 

interpolation schemes [5, 23], which are also the most common error sources in DIC 

measurement. A point at coordinate : ( , )c c cx yx  defines the central pixel of a 

reference grey-level image ( ),f x y , which for convenience takes the form of a 

square subset consisting of N N×  pixels. The central-node coordinate of the 

deformed grey-level image ( ),g x yɶ ɶ  is given by : ( , )c c cx yxɶ ɶ ɶ . 

The grey-level images ( ),f x y  and ( ),g x yɶ ɶ  consist of the true images, ( ),f x y  and 

( ),g x yɶ ɶ , plus the grey-intensity error defined by ( ),f x yζ  and ( ),g x yζ ɶ ɶ  

respectively, 

 ( ) ( ) ( ), , ,ff x y f x y x yζ= +
 (4-1) 

 ( ) ( ) ( ), , ,gg x y g x y x yζ= +ɶ ɶ ɶ ɶ ɶ ɶ  (4-2) 

where ( ),f x yζ  and ( ),g x yζ ɶ ɶ , to be estimated experimentally, are assumed to be 

Gaussian ( )20, ζσN , independent and identically distributed across the subset. 

Moreover, there is measurement error in the difference between the deformed- and 

the reference-image coordinates denoted by eεɶ . Then the measured coordinate 
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( ): ,s s sx yxɶ ɶ ɶ  takes the form of s s e= +x τ εɶ ɶ  and sτ  denotes the true coordinate of the 

deformed image.  

The true coordinate, and therefore the displacement error is unknown. However, it is 

reasonable to assume that the error across each subset can be modelled using a shape 

function. This leads to the formulation of weighting terms that account for different 

levels of error in different regions of the full image. In this study the displacements 

error ( )e sε xɶ  at an arbitrarily chosen pixel with coordinates ( , )s sx y  is modelled 

using a second-order shape function model, 

 ( ) ( )T
e s s e=ε x µ x ρɶ  (4-3) 

where ( )sµ x  denotes the shape function coefficients,   

 ( ) ( ) ( )2 2 T1 1
2 2[1 ]s s s s s s sx y x y x y= ∆ ∆ ∆ ∆ ∆ ∆µ x   (4-4) 

and eρ  is the matrix of variables in the two directions ,x y , 

 [ ]
T

0

0

u u u u u ux y xx yy xy

e u v
x y xx yy xyv v v v v v

 
= =  

 
ρ ρ ρ   (4-5) 

where sx∆  and sy∆  are the distances between the pixel point sx  and the centre node 

of the subset at cx . Alternative shape function models may also be used, for 

example, the first-order shape function, depending upon the shape function applied 

in the subset-based DIC algorithm.  

The form of local error estimate is developed according to the most commonly used 

DIC criterion [33, 34] i.e. the SSD, 
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2

1

( ) ( )
N N

s s
s

g f
×

=

 = − ∑ x xɶ
SSD
C   (4-6) 

or, by equations (4-1), (4-2), (4-3) and (4-6), 

 ( )( ) ( )( ) ( ) ( )( )( )2
T T

1

N N

s s e g s s e s f s
s

g fζ ζ
×

=

= + + + − +∑ τ µ x ρ τ µ x ρ x x
SSD
C (4-7) 

Newton iteration is generally applied in the DIC calculation to determine the 

displacement error eρ  that minimises 
SSD
C , so that at the ( )1

th
t +  step [94], 

 ( )( ) ( )1t e t e t e t e+∇∇ − = −∇ρ ρ ρ ρ
SSD SSD
C C   (4-8) 

∇∇
SSD
C  is the second-order gradient of the correlation coefficient, also known as 

the Hessian matrix [2, 57, 94].  

Alternatives to the SSD criterion include the normalized sum of squared differences 

(NSSD), zero-normalized sum of squared differences (ZNSSD) etc. The Cross 

Correlation (CC), which is related to and can also be deduced from the SSD 

criterion [33, 34], may also be used. 

4.2.1 The Hessian matrix and determination of error variables 

In Equation (4-7) the coordinate error ( )T
s eµ x ρ  may be considered to be small, in 

which case the first-order Taylor expansion with respect to ( )g i  and ( )gζ i  leads to, 

 
( ) ( ) ( ) ( )(

( ) ( ) ( ) ( ))

T

1

2T

( )

     

N N

e s s s e g s
s

g s s e s f s

g g

f

ζ

ζ ζ

×

=

= + ∇ ⋅ +

+ ∇ ⋅ − −

∑ρ τ τ µ x ρ τ

τ µ x ρ x x

SSD
C

  (4-9) 
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where ( )sg∇ τ  represents the grey-level gradient. It is known that ( ) ( )s sg f=τ x  

and ( ) ( ) ( ) ( )( ) ( )s g s s g s sg g gζ ζ∇ + ∇ = ∇ + = ∇τ τ τ τ τ , so that equation (4-9) 

may be simplified as, 

 ( ) ( ) ( ) ( )( )2T

1

( )
N N

e s s e g s f s
s

g ζ ζ
×

=

= ∇ ⋅ + −∑ρ τ µ x ρ τ x
SSD
C  (4-10) 

If the gradient terms in x- and y-directions are separated out, then 

 
( ) ( ) ( ) ( )(

( ) ( ))

T T

1

2

( )
N N

e x s s u y s s v
s

g s f s

g g

ζ ζ

×

=
= ∇ ⋅ + ∇ ⋅

+ −

∑ρ τ µ x ρ τ µ x ρ

τ x

SSD
C

 (4-11) 

Minimisation of the SSD requires that, 0u vd d d d= =ρ ρ
SSD SSD
C C  which leads to 

the following expression for the determination of ( )T T
u vρ ρ ,  

 u

v

 
= 

 

ρ
H b
ρ

  (4-12) 

where, 

( ) ( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2

1 1 6 1 1 6 1

2 2

1 6 6 1 6 6 6

2 2

1 1 6 1 1 1 6

2 2

1 6 6 6 1 6 6

x x y x y x

x x y x y x

x y x y y y

x y x y y y

g g g g g g

g g g g g g

g g g g g g

g g g g g g

µ µ µ µ µ µ µ

µ µ µ µ µ µ µ

µ µ µ µ µ µ µ

µ µ µ µ µ µ µ

 ∇ ⋅ ∇ ∇ ⋅ ∇ ⋅ ∇ ⋅ ∇ ⋅




∇ ∇ ⋅ ∇ ⋅ ∇ ⋅ ∇ ⋅ ∇ ⋅
= 
 ∇ ⋅ ∇ ⋅ ∇ ⋅ ∇ ⋅ ∇ ⋅ ∇



∇ ⋅ ∇ ⋅ ∇ ⋅ ∇ ⋅ ∇ ∇ ⋅

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

H

⋯ ⋯

⋮ ⋮ ⋮ ⋮

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮

⋯ ⋯











 
 

  (4-13) 

is an approximation to the Hessian matrix when the second-order partial derivatives 

are considered to be negligible [57, 94]. The terms ( )x sg∇ τ , ( )y sg∇ τ  and ( )i sµ x  
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are abbreviated to xg∇ , yg∇  and iµ . The vector b  in Equation (4-12) may be 

written as, 

 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

1
1

6
1

1
1

6
1

N N

x s s g s f s
s

N N

x s s g s f s
s

N N

y s s g s f s
s

N N

y s s g s f s
s

g

g

g

g

µ ζ ζ

µ ζ ζ

µ ζ ζ

µ ζ ζ

×

=

×

=

×

=

×

=

 ∇ ⋅ − 
 
 
 
 ∇ ⋅ −
 

= − 
 ∇ ⋅ −
 
 
 
 

∇ ⋅ − 
 

∑

∑

∑

∑

τ x τ x

τ x τ x

b

τ x τ x

τ x τ x

⋮

⋮

 (4-14) 

The vector of uncertainties is then given by, 

 1u

v

− 
= 

 

ρ
H b

ρ
  (4-15) 

4.2.2 Estimation of error variance in a general form 

The grey-level error was defined as independent and identically distributed, 

satisfying a Gaussian distribution ( )20, ζσN , at each pixel. Therefore, by 

linearisation 

 2 TCov u

v
ζσ 

≅ ⋅ ⋅ 
 

ρ
J J

ρ
  (4-16) 

where J  is the Jacobian matrix, which from Equation (4-15) is given by 

 1− ′=J H b  (4-17) 

where, 
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( ) ( ) ( ) ( )11 11g g NN f f NNζ ζ ζ ζ

 ∂ ∂ ∂ ∂′ =  ∂ ∂ ∂ ∂  

b b b b
b

τ τ τ τ
⋯ ⋯   (4-18) 

and, 

 ( )T
2′ ′ =b b H   (4-19) 

Finally, from equations (4-16), (4-17) and (4-19) it is found that, 

 2 1Cov 2u

v
ζσ − 

≅ ⋅ 
 

ρ
H

ρ
  (4-20) 

The error at the centre node of the subset is the first term in each row of eρ  as 

defined in Equation (4-5). The displacement variance at the centre node in one 

subset may then be approximated [5, 23] as,  

  
( ) ( )
( ) ( )

2 1
0 11

2 1
0 77

Var 2

Var 2

u

v

ζ

ζ

σ

σ

−

−

 ≅ ⋅


≅ ⋅

H

H
 (4-21) 

The above derivations are subject to the assumption of Gaussian errors and therefore 

provides only a lower-bound error estimate. A more general case may be derived 

from the residual 
SSD
C  of the SSD criterion [35, 51] such that the 22 ζσ  in Equation 

(4-21) is replaced by, 

 
[ ]2

1
2

( ) ( )
N N

s s
s

g f

N N N

×

=

−
=

×

∑ x xɶ

SSD
C

  (4-22) 

Since ideally the SSD criterion can be minimised close to zero under a perfect match 

of two subsets based on the optical flow theory, the non-zero SSD residual is 

actually caused by the combined effect of various error sources. Thus the 
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replacement of the 22 ζσ  in Equation (4-21) by the Equation (4-22) enables the 

estimation of DIC measurement error due to different kinds of errors and results in a 

generic uncertainty quantification of DIC measurement. 

4.2.3 Estimation of bias under the uniform translation 

In practical applications, digital images are inevitably contaminated by noise. The 

influence of the noise-induced bias may become significant when high sub-pixel 

accuracy is demanded in the application such as DIC sub-pixel registration. Also the 

noise-induced bias is normally combined with the bias caused by the grey-intensity 

interpolation. The study in this section is limited to the Gaussian image noise and 

the uniform translation over a subset (or a RoI).  

Depending on the error propagation theory [23] and the assumption of uniform 

translation, the bias error due to Gaussian image noise and imperfect grey-intensity 

interpolation may be expressed as: 

 1E E( )u

v

− 
≈ 

 

ρ
H b

ρ
  (4-23) 

Considering ( ) ( ) ( )x s x s x g sg g ζ∇ = ∇ + ∇τ τ τ  and ( ) ( ) ( )f s s sf gζ = −x x τ , the term 

of E( )b  can be simplified by combining Equation (4-14) and (4-23) as: 
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1 1 1
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g f g g

µ µ ζ ζ µ ζ

µ µ ζ ζ µ ζ

µ µ ζ ζ µ ζ

µ µ ζ ζ µ ζ

 ∇ ⋅ ⋅ − − ∇ ⋅ ⋅ − ∇ ⋅ ⋅
 
 
 

∇ ⋅ ⋅ − − ∇ ⋅ ⋅ − ∇ ⋅ ⋅ 
=  

∇ ⋅ ⋅ − − ∇ ⋅ ⋅ − ∇ ⋅ ⋅ 
 
 
 ∇ ⋅ ⋅ − − ∇ ⋅ ⋅ − ∇ ⋅ ⋅ 

∑

∑

∑

∑

b

⋮

⋮

  (4-24) 
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The terms ( )x sg∇ τ , ( )y sg∇ τ , ( )x sg∇ τ , ( )y sg∇ τ , ( )i sµ x , ( )g sζ τ , ( )x g sζ∇ τ , 

( )y g sζ∇ τ , ( )sg τ , ( )sf x  are abbreviated as xg∇ , yg∇ , xg∇ , yg∇ , iµ , gζ , 

x gζ∇ , y gζ∇ , g , f . In addition, the subscripts and superscripts on the summation 

are removed for simplicity. Since gζ , ( ){ , }g x yΩ∇ Ω∈  and ( )1, ,6i iµ = ⋯  are 

independent by definition, it is straightforward to find that: 

( ) ( ) ( ) ( )E E E E 0i g i gg gµ ζ µ ζΩ Ω∇ ⋅ ⋅ = ∇ ⋅ ⋅ = . Thus the mathematical expectation 

can be simplified as:  
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1 1

6 6

1 1

6 6
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µ ζ µ ζ

 ∇ ⋅ ⋅ − − ∇ ⋅ ⋅
 
 
 

∇ ⋅ ⋅ − − ∇ ⋅ ⋅ 
=  

∇ ⋅ ⋅ − − ∇ ⋅ ⋅ 
 
 
 ∇ ⋅ ⋅ − − ∇ ⋅ ⋅ 

∑

∑

∑

∑

b

⋮

⋮

  (4-25) 

Equation (4-25) can then be rearranged by incorporating an interpolation scheme 

(e.g. a 4×4 bi-cubic interpolation as discussed in Appendix A). According to the 

related derivations shown in Appendix A, the following equations are obtained: 

( ) ( )1 2( )s s sg = ⋅τ ψ τ g τ , ( ) ( )1 2ˆ( )g s s sζ = ⋅ gτ ψ τ ζ τ , ( ) ( )1 2ˆ( )x g s x s sζ ′∇ = ⋅ gτ ψ τ ζ τ , and 

( ) ( )1 2ˆ( )y g s y s sζ ′∇ = ⋅ gτ ψ τ ζ τ , where 1
sτ  and 2

sτ  are the fractional parts and integer 

parts of sτ  respectively, ( )⋅ψ  denotes the vector of interpolation kernel functions 

while ( )x
′ ⋅ψ  and ( )y′ ⋅ψ  denote the vectors of corresponding derivative kernel 

functions of the grey-interpolation scheme. Thus Equation (4-25) may then be re-

written as: 
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 
∑ g gg τ ψ τ ζ τ ψ τ ζ τ

(4-26) 

Under the assumption of uniform translation, 1
sτ  and 2

sτ  are constant from pixel to 

pixel across the region of interest, which further leads to the simplification of 

Equation (4-26),  
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
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

  (4-27) 

where 2 2N ζσ  represents the summation of Gaussian image noise (zero mean) while 

2
ζσ  represents the variance of the Gaussian image noise. 1( )x sη τ  and 1( )y sη τ  are 

interpolation coefficients. The terms 1 2 2( )x s N ζη σ⋅τ  and 1 2 2( )y s N ζη σ⋅τ  are obtained 

from Equation (A-7) in Appendix A. It should be noted that the derivation of 

Equation (4-27) is subject to the assumption of uniform translation. It may be only 

applicable in DIC sub-pixel registration where all the pixels within a subset are 

assumed to have the same displacement, namely under a uniform translation. 
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Depending on Equation (4-27) the expectation of the bias error E( )b  has two terms 

for each component. The first term depends on the grey-intensity difference between 

the matched subsets, which indicates a portion of bias due to interpolation errors 

[57]. The second term describes the other portion of bias due to Gaussian image 

noise.  

Thus under the assumption of uniform translation, the bias error of variables may be 

finally expressed as shown in Equation (4-28) which formulates the bias error of 

DIC sub-pixel registration. In Section, 4.3, a simple but effective approach is 

developed in order to significantly reduce this bias error.  
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

  (4-28) 

4.3 Error Reduction based on an anti-symmetric 

feature of the sub-pixel registration bias 

In this section an effective error reduction method is developed in an algorithmic 

sense based on the anti-symmetry feature of the bias in DIC sub-pixel registration 

due to the combined effect of the grey-intensity interpolation and random additive 

noise. The performance of the proposed method is verified by the statistical analysis 

of a numerical case with synthetic images.  
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As discussed in Section 4.2.3, the derivations of the bias due to the grey-intensity 

interpolation and Gaussian random noise under a uniform translation is actually 

applicable to the DIC sub-pixel registration bias since all the pixels within a subset 

can be assumed to be under a uniform translation in sub-pixel registration. Normally 

the DIC sub-pixel registration bias can be significantly reduced by using higher-

order interpolation schemes [23, 36, 94, 173], specially designed noise filters [174], 

e.g. the Gaussian pre-filter [32] and images with low spatial frequencies [175]. In 

this section, an effective method is proposed based on an anti-symmetric feature of 

the DIC sub-pixel registration bias. Different types of interpolation schemes and 

different levels of Gaussian additive noise are investigated to test the performance of 

the proposed method. 

A common anti-symmetric feature of DIC sub-pixel registration bias has been 

observed in the results of different researchers [5, 23, 32, 36, 176]. Figure 4–1 

illustrates this anti-symmetric feature with different interpolation schemes [37] and 

Gaussian noise levels. It is shown to be in accordance with other published results [5, 

36].  

Specifically, the speckle patterns are obtained from an open-access DIC data set 

namely DIC challenge database [177]. The sub-pixel shift is implemented by 

applying the Fourier shift theorem [5, 36] to the reference speckle image (300×500 

pixels) to generate a series of 10 translated speckle images with a shift of 0.1 pixels 

between successive images. Totally five sets of images are generated whereas the 

first two sets of images are generated by using the high-contrast speckle patterns as 

shown in Figure 4–1(a) and low-contrast speckle patterns as shown in Figure 4–1(b) 

respectively. The remaining three image sets are generated by using high-contrast 

speckles and adding three levels of Gaussian noise to each image set, as shown in 



 
 

76 | P a g e 
 

Figure 4–1(c). The added noise levels are 1.96%, 2.94% and 3.92% of the full 256 

grayscales in terms of the standard deviation. In each image set, the displacements of 

each translated speckle pattern are computed using the subset-based DIC with a 

first-order shape function at regularly distributed 900 points with a subset size of 

31×31 pixels. The calculated sub-pixel displacement error is the mean bias error. 

Also four different interpolation algorithms, i.e. 4×4 bi-cubic, 4×4 cubic-Spline, 4×4 

Lagrange and 6×6 bi-cubic [37] are applied for bias evaluation.  

According to Figure 4–1, the registration bias at a certain sub-pixel displacement 

(shift) is able to be counteracted by using the registration bias at the corresponding 

anti-symmetric sub-pixel displacement (shift). The detailed procedures are 

introduced in the following sections.  

 

 

(a) high-contrast speckles with different interpolation schemes i.e. 4×4 Bi-cubic, 

4×4 Cubic-Spline, 4×4 Lagrange and 6×6 Bi-cubic 
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(b) low-contrast speckles with different interpolation schemes i.e. 4×4 Bi-cubic, 4×4 

Cubic-Spline, 4×4 Lagrange and 6×6 Bi-cubic 

 

(c) high-contrast speckles with 6×6 Bi-cubic interpolation scheme under different 

levels of noise 

Figure 4–1. The anti-symmetric feature of sub-pixel registration bias due to 

imperfect grey-intensity interpolation and additive Gaussian image noise 
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4.3.1 Method 

According to the anti-symmetric feature of DIC sub-pixel registration bias, a simple 

but effective technique can be proposed to reduce or even eliminate the bias. As 

shown in Figure 4–1, the compensation of the bias at a certain sub-pixel 

displacement may be carried out by using the bias at the corresponding anti-

symmetric sub-pixel displacement, since these two biases have the same amplitude 

but different signs. In practice, the true sub-pixel displacement shown on the x-axis 

of Figure 4–1 is unknown and may be approximated by the measured sub-pixel 

displacement with bias error. Thus the bias compensation method is actually 

implemented based on the measured displacement rather than the true displacement.  

As illustrated in Figure 4–2 for a 1-D translation case, assuming α  is the true sub-

pixel displacement between the reference image Ref  and deformed image Def , 

( )ϖ α  denotes the sub-pixel registration bias (considering both the interpolation and 

noise-induced bias) with respect to the true displacement α . ( )ϖ α  has anti-

symmetric and periodic features, which may be expressed as ( ) (1 )ϖ α ϖ α= − −  

(anti-symmetric) and ( ) (1 )ϖ α ϖ α= +  (one period). If the measured displacement 

(between Ref  and Def ) is aΓ ( ( )a α ϖ αΓ = + ) including the bias error ( )ϖ α , the 

corresponding anti-symmetric displacement 1 a−Γ  contains a bias approximation to 

( )ϖ α− . Thus the bias included in aΓ  may be approximately compensated by using 

the bias contained in 1 a−Γ .  

In order to obtain the displacement measurement 1 a−Γ , an extra deformed image 

Def ′  may be generated by applying 1 2 a− Γ  translation to the original deformed 

image Def  by using Fourier shift theorem. Then a new measurement bΓ  can be 
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carried out between the reference image Ref  and the extra deformed image Def ′ . 

Since no bias error is introduced by the Fourier shift, it actually gives 

1 2 1b a aαΓ = + − Γ ≈ − Γ  where the approximation is due to the bias error.  

Thus the bias may be approximately eliminated by summing aΓ  and bΓ . Also the 

exact shift displacement 1 2 a− Γ  should be subtracted in order to calculate the 

improved displacement as shown in Figure 4–2. Then the displacement 

measurement between Ref  and Def  with reduced bias may be achieved as 

( )1
2 1

2c a b aΓ = × Γ + Γ + Γ − . The above discussion is exemplified in the following 

analysis: 

The measured displacement aΓ  may be expressed as: 

 ( )a α ϖ αΓ = +  (4-29) 

Then the displacement bΓ  can be obtained as: 

 
( )

( ) ( )( )
1 2 1 2

  1 2 1 2

b a aα ϖ α

α ϖ α ϖ α ϖ α

Γ = + − Γ + + − Γ

= − − + − −
  (4-30) 

The displacement cΓ  with reduced bias becomes: 

 

( )

( ) ( )( )( )
( ) ( )( )( )

1
2 1

2
1

  1 2
2
1

  2
2

c a b a

α ϖ α ϖ α ϖ α

α ϖ α ϖ α ϖ α

Γ = Γ + Γ + Γ −

= + + − −

= + − +

  (4-31) 
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Since ( )2ϖ α  is a very small quantity by definition, normally it gives

( ) ( )( ) ( )2ϖ α ϖ α ϖ α ϖ α− + ≪ . Thus c αΓ ≈  is obtained, which indicates the 

registration bias has been reduced.  

In some circumstances, applying the Fourier shift only once might not be good 

enough to approximate the true displacement when the image noise is relatively 

significant. In that case, the procedure can be repeated by applying a second Fourier 

shift to reduce the bias even further. 

 

 

Figure 4–2. Bias reduction method based on the anti-symmetric feature of sub-pixel 

registration bias 

aΓ

1 2

FFT Shift
a− Γ

bΓ

( )0.5 2 1c a b aΓ = × Γ + Γ + Γ −

cΓ

aΓ

1 2

FFT Shift
c− Γ

dΓ

( )0.5 2 1e a d cΓ = × Γ + Γ + Γ −

eΓ
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An extra deformed image is generated through shifting the reference image by 

1 2 c− Γ  (denoted as Def ′′ ) and the final result will become 

( )1
2 1

2e a d cΓ = × Γ + Γ + Γ − . For the second Fourier shift, displacement dΓ  is 

calculated by: 

 
( )

( ) ( )( ) ( ) ( )( )( )
1 2 1 2

  1 2 1 2

d c cα ϖ α

α ϖ α ϖ α ϖ α ϖ α ϖ α ϖ α ϖ α

Γ = + − Γ + + − Γ

= − − + + + − − + +
 (4-32) 

Finally the measurement after a further bias reduction becomes: 

 

( )

( ) ( ) ( )( )( )( )

1
2 1

2
1

  2
2

  

e a d c

α ϖ α ϖ α ϖ α ϖ α ϖ α

α

Γ = Γ + Γ + Γ −

 = + − + − +
 

≈

  (4-33) 

Compared with the term ( ) ( )( )2ϖ α ϖ α ϖ α− +  in the Equation (4-31), the error 

term ( ) ( ) ( )( )( )( )2ϖ α ϖ α ϖ α ϖ α ϖ α− + − +  in the above equation is much 

smaller. Thus it is found that the bias error has been further significantly reduced. 

 

Figure 4–3. The distribution of sample points (centre points of subsets) shown in red 

crosses, subset size is illustrated by a green square 
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4.3.2 Case study 

The performance of the proposed bias reduction method is verified by a numerical 

case study. Specifically, open-access speckle patterns from the DIC Challenge 

database [177] are applied to carry out the calculation for the purpose of isolating 

the errors due to imperfect imaging [178], loading [136] and so on. The image set 

consists of a reference image and 11 numerically translated counterparts according 

to Fourier shift theorem. The reference image is shown in Figure 4–3.  

A shift increment of 0.1 pixels is used to generate the successive image counterparts 

from the reference image with a range from 0 to 1.0 pixels. Four different levels of 

white Gaussian noise are added to the original image set to generate other 4 sets of 

noisy images. The proposed method is applied to all the 5 sets of images in order to 

synthetically test its performance. The noise levels are 0%, 0.98%, 1.96%, 2.94% 

and 3.92% of full 255 greyscales respectively in terms of the standard deviation.  

As shown in Figure 4–3, displacements between every two successive images are 

computed based on uniformly distributed 1024 points (centres of subsets) with a 

subset size of 31×31 pixels by using the subset-based DIC algorithm with a first-

order shape function. The mean bias errors against sub-pixel shifts for various noise 

levels are demonstrated in Figure 4–4. It is observed that after the first bias 

reduction the bias of all noise levels are significantly reduced and after the second 

bias reduction all the bias are confined within a very narrow range from -0.004 to 

0.004 pixels. The statistics of the registration bias in terms of standard deviation 

(STD) before and after the corrections are given in detail in Table 4-1. 
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Figure 4–4. The reduction of sub-pixel registration bias based on its anti-symmetric 

feature, the x-axis denotes the sub-pixel increments while the y-axis denotes the 

mean bias based on 1024 samples. 
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Table 4–1: Statistics of the numerical results in terms of standard deviation STD   

(in pixels) 

Noise  No Correction - STD 1st Correction - STD 2nd Correction - STD 

Original 0% noise 0.0057 0.0001 3e-5 

0.98% noise 0.0073 0.0007 0.0005 

1.96% noise 0.0151 0.0015 0.0006 

2.94% noise 0.0305 0.0022 0.0016 

3.98% noise 0.0565 0.0083 0.0019 
 

4.4 Closure 

Considering the limitations in existing uncertainty quantification methods, a generic 

subset-based uncertainty estimation is derived by using an equivalent error variance 

due to common DIC error sources. This local uncertainty estimation can be 

incorporated into the Kriging regression method to develop a post-processing 

technique to quantify the uncertainties of measured displacement and strain results, 

which is discussed in Chapter 7. Also the estimation of the bias error in DIC sub-

pixel registration is derived under an assumption of Gaussian image noise and 

uniform translation. In addition, a simple but effective bias reduction method is 

developed from the algorithmic sense i.e. the reduction of DIC sub-pixel registration 

bias based on its anti-symmetric feature. Since most error reduction methods are 

normally proposed with respect to specific DIC error sources and generally lead to a 

local optimum, which highlights the significance of introducing the Kriging 

regression technique to improve the global accuracy of the measurement results, 

which is discussed in the Chapter 6 and 7. 
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5 

5 Kriging Regression Theory 

In this chapter, a brief introduction of Kriging regression theory is addressed with a 

view to potential applications in the field of DIC. A classical Kriging interpolation 

method is derived first through the framework of best linear unbiased prediction 

(BLUP). In regard to the measurement error of observed data, an error factor is 

introduced to Kriging interpolation in both global and local senses for the error 

regularisation, which actually enables the Kriging regression. As opposed to Kriging 

interpolation, Kriging regression accounts for the measurement errors of samples by 

regularising the Kriging correlation matrix. This allows regression instead of exact 

interpolation of the samples. Furthermore, the Kriging formula can also be derived 

and interpreted based on the Bayesian inference and it provides a practical way for 

uncertainty quantification. 

Equation Chapter 5 Section 1 
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5.1 Introduction 

Originally developed in geo-statistics [160], Kriging is also known as a Gaussian 

process regression or Kolmogorov Wiener prediction, which is widely used in the 

fields of spatial analysis and computer experiments [168]. The complete history and 

extensive overview on the development of Kriging can be found in the work of 

Cressie [52, 53]. In the literature, Kriging is described as an interpolation (prediction) 

method to approximate unsampled points using random variables as a realization of 

a stochastic process. As opposed to a piecewise-polynomial spline that optimizes 

smoothness of the fitted data and is motivated by a minimum norm interpolation in 

Hilbert space, Kriging is a method that gives the best linear unbiased prediction 

(BLUP) [53] of intermediate values and is motivated by an expected squared error 

based on a stochastic model. Also Kriging can be interpreted from a Bayesian 

framework [53, 54], that is, the interpolated values are modelled by a Gaussian 

process governed by a prior covariance. Starting from a prior distribution over 

functions in terms of a Gaussian process, a value is predicted at any unsampled 

location by combining the prior with a Gaussian likelihood function and the 

resulting posterior distribution that is also Gaussian with a mean and covariance 

computed from the observed values.  

Different types of Kriging [179] can be deducted on account of the stochastic 

properties of the random field and the various degrees of stationarity assumed, such 

as Simple Kriging with an assumption of a first-moment stationarity over the entire 

domain with a known mean, Ordinary Kriging assuming a constant unknown mean 

over the search neighbourhood of observed points, Universal Kriging (regression 

Kriging) formulating the unknown mean with a general polynomial trend model. 
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5.2 Kriging interpolation 

The method applied in this study is the Universal Kriging, also known as 

‘Regression Kriging’ or ‘Kriging with External Drift’ [180]. Specifically in DIC 

application, the true displacement field ( ),w x y  is modelled using Kriging as a 

realisation of a random function ( )ˆ ,w x y , which combines a deterministic regression 

model with a zero-mean stochastic field used to fit the residuals [168, 181] as, 

 
1

ˆ ( , ) ( , ) ( , )
m

w x y c x y Z x yβ
=

= +∑ ℓ ℓ

ℓ

  (5-1) 

where ( ), , 1, , ,c x y m=
ℓ

ℓ …  are regression functions, β
ℓ
 denotes the thℓ  regression 

parameter and ( , )Z x y  in the DIC algorithm will be modelled as a Gaussian 

stochastic field with zero mean and covariance between two arbitrary sample points 

j and k, assumed to take the form 

 ( ) ( ) ( ) ( )T T2cov ( ), ( ) , , , ; , ; ,j k jk j k x y j j j k k kz z r x y x yσ ϑ ϑ= = =x x x x x x   (5-2) 

where ( ) ( ), , , corr , ;  ( );  ( )jk j k x y j k j j k kr z z z z z zϑ ϑ = = =x x x x  is determined by the 

proximity of points j and k. The correlation parameters ,x yϑ ϑ  and field variance 2σ  

are described in detail in Section 5.3.3. 

For the sake of convenience, only one-directional displacement response is 

considered and Kriging formula works exactly the same for the other directional 

displacement in DIC. If denoting [ ]T

0 1, , nw w=w ⋯  as the vector of displacements 

calculated by DIC for a set of sample points ( , ), 1, 2, , ,j jx y j n= … , the matrix R of 

stochastic-process correlations between sample points may be defined as: 
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11 1 1 1 1

1 1

( , , , ) ( , , , )

( , , , ) ( , , , )

x y n n x y

n n x y nn n n x y n n

r r

r r

ϑ ϑ ϑ ϑ

ϑ ϑ ϑ ϑ
×

 
 =  
 
 

x x x x

R

x x x x

⋯

⋮ ⋱ ⋮

⋯
 (5-3) 

where ( , , , ),   , 1, ,jk j k x yr i j nϑ ϑ =x x ⋯  is the correlation function, the details of 

which are described in Section 5.2.5. For a untried point, ( , )x yr  is defined as the 

vector of stochastic-process correlations between the untried point ( , )x y  and each of 

the sample points ( , ), 1, 2, , ,j jx y j n= … :  

T T T
1 1

( , ) ( , , , ) ( , , , ) ;  ( , ) ; ( , )x y n x y j j jn
x y r r x y x yr x x x x x xϑ ϑ ϑ ϑ

×
 = = =  ⋯  (5-4) 

Furthermore, C is defined as a matrix consisting of regression functions evaluated at 

the sample points:  

 
1 1 1 2 1 1 1 1

1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

m

n n n n m n n n m

c x y c x y c x y

c x y c x y c x y
×

 
 =  
  

C

⋯

⋮ ⋮ ⋱ ⋮

⋯

  (5-5) 

and ( , )x yc  is the vector of regression functions for the untried point ( , )x y : 

 [ ]T

1 1
( , ) ( , ) ( , )m m
x y c x y c x y

×
=c ⋯   (5-6) 

5.2.1 Derivation of Kriging parameters 

Based on the formulation of Kriging predictor, Kriging parameters can be derived 

through a framework of the best linear unbiased prediction, where ‘best’ means the 

Kriging predictor has a minimum mean square error; ‘linear’ indicates the Kriging 

predictor can be realised in linear mixed models for the estimation of random effects; 

‘unbiased’ requires the expectation of the Kriging predicted values is equal to the 

true value under certain assumptions made, such as normality of the Gaussian 
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process. Basically, the Kriging predictor for an untried location ( , )x y  may be 

expressed in terms of a linear combination of the observed values as: 

 T
0

1

ˆ ( , ) ( , ) ( , )
n

j j
j

w x y x y w x yκ
=

= =∑ κ w  (5-7) 

where ( )T

1 2( , ) nx y κ κ κ=κ ⋯  is a vector of linear coefficients. The 

prediction error can then be obtained: 

 ( ) ( )
( )

T
0

T T

TT T

ˆ ( , ) ( , ) ( , ) ( , )

                           ( , ) ( , ) ( , )

                           ( , ) ( , ) ( , ) ( , )

w x y w x y x y w x y

x y Z x y z x y

x y Z z x y x y x y

− = ⋅ −

= + − +

= − + −

κ w

κ Cβ c β

κ C κ c β

  (5-8) 

where [ ]T

1 nZ z z= ⋯  include the random errors at all the sample locations 

(design sites) and ( , )z x y  represents the random error at the untried point ( , )x y . The 

Kriging model is obtained by the minimisation of mean squared error (MSE) subject 

to an unbiasedness condition, 

 
( ){ }

[ ]

2
ˆarg min. E ( , ) ( , )

subjec ˆE ( , ) ( , ) 0t to

w x y w x y

w x y w x y
κ

 −
 

− =
  (5-9) 

where [ ]E i  denotes the mathematical expectation. The unbiasedness of Kriging 

predictor leads to:  

 T ( , ) ( , ) 0x y x y− =C κ c   (5-10) 

Thus under the unbiasedness condition, the mean squared error (MSE) of Kriging 

predictor is derived as:  
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( )

( )

( )

2

2T

2 T T T

2 T T

ˆMSE( , ) E ( , ) ( , )

           E ( , ) ( , )

           E ( , ) ( , ) ( , ) 2 ( , ) ( , )

           1 ( , ) ( , ) 2 ( , ) ( , )

x y w x y w x y

x y Z z x y

z x y x y ZZ x y x y Zz x y

x y x y x y x yσ

 = −
 

 = −  

 = + − 

= + −

κ

κ κ κ

κ Rκ κ r

  (5-11) 

The minimisation of the mean squared error (MSE) is achieved using a Lagrange 

multiplier function to enforce the constraint of unbiasedness: 

 
( )2 T T

T T

( ( , ), ) 1 ( , ) ( , ) 2 ( , ) ( , )

                           ( ( , ) ( , ))

L x y x y x y x y x y

x y x y

σ= + −

− −

κ λ κ Rκ κ r

λ C κ c
  (5-12) 

The gradient of above function with respect to κ  is: 

 ( )2( ( , ), ) 2 ( , ) ( , )L x y x y x yσ′ = − −κ λ Rκ r Cλ   (5-13) 

Concerning the necessary condition for the first-order optimality [182, 183], the 

Lagrangian function can be transformed to the solution of the following system of 

equations: 

 T 2

( , ) ( , )
;  

0 ( , ) 2

x y x y

x y σ
     

= = −     
     

R C κ r λ
λ

C λ c
ɶ

ɶ
  (5-14) 

Finally, the Lagrange multiplier is obtained as: 

      T 1 1 T 1( ) ( ( , ) ( , ))x y x y− − −= −λ C R C C R r cɶ  with 1( , ) ( ( , ) )x y x y−= −κ R r C λɶ   (5-15) 

Thus, the Kriging predictor is solved and expressed as: 

 
( )
( )

T 1
0

T 1 T 1 T T 1 1 T 1
0

ˆ ( , ) ( ( , ) )

           ( , ) ( ( , ) ( , )) ( )

w x y x y

x y x y x y

−

− − − − −

= −

= − −

r Cλ R w

r R C R r c C R C C R w

ɶ

  (5-16) 
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The estimated regression parameters β̂  may be estimated from the sample data by 

using the generalized least squares (GLS) method [53, 182], expressed as [182], 

 ( ) 1T 1 T 1
0

ˆ −− −=β C R C C R w   (5-17) 

Thus, a Best Linear Unbiased Prediction (BLUP) ˆ ( , )w x y  for arbitrary location 

( ),x y  may be determined by Kriging interpolation as [182] (inserting Equation 

(5-17) to Equation (5-16)), 

 ( )T T 1
0

ˆ ˆˆ ( , ) ( , ) ( , )w x y x y x y −= + −c β r R w Cβ   (5-18) 

5.2.2 Kriging weights 

Since Kriging is derived as a Best Linear Unbiased Prediction (BLUP) for the true 

displacement field [160], the displacement response ˆ ( , )w x y  at an arbitrary untried 

location ( , )x y  can be formulated by the Kriging model in terms of a linear 

combination of the sample values and corresponding weights (as shown in Equation 

(5-7)): 

 T
0

1

ˆ ( , ) ( , )
n

j j
j

w x y x y wκ
=

= =∑ κ w ( , )x y   (5-19) 

where ( )T

1 2( , ) nx y κ κ κ=κ ⋯  and ( ), , 1,2, , ,j x y j nκ = …  are actually the 

Kriging weights [184] obtained by the previously defined unbiasedness and 

minimisation of mean squared error (MSE). The Kriging weights may then be 

extracted from Equation (5-16) and written as [160], 

 ( ) ( )( )11 T 1 T 1( , ) ( , ) ( , ) ( , )x y x y x y x y
−− − −= − −κ R r C C R C C R r c  (5-20) 
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It can be easily verified that the sample-point displacements are exactly reproduced 

by the Kriging model based on (5-19) and (5-20). Let ( )ˆ , jw x y w= , then 

:,( , ) jx y =r R  so that ( )1 , jx y− =R r e . Also ( ) T, jx y =c C e  which causes the term 

( )T 1 ( , ) ( , )x y x y− −C R r c  to vanish. Then it is seen that ( , ) jx y =κ e . In addition, 

according to the unbiased requirement and the stationary assumption, it requires that 

the sum of weights needs to be one: 

 
1

( , ) 1
n

j
j

x yκ
=

=∑   (5-21) 

5.2.3 Kriging gradients 

With reference to strain calculation in DIC, how to accurately solve the gradients of 

displacement field becomes an important issue. In regard to Kriging application in 

DIC, it is appropriate to discuss the solution of gradients from the Kriging formula. 

According to Equation (5-18), the gradients at an arbitrary location in the region of 

interest formulated by Kriging model may be expressed as (only considering the 

displacement in one dimension): 

( )
T

T T 1
0

ˆ ˆ( , ) ( , )ˆ ˆˆ ˆ( , ) ( , ) ( , ) ;  ( , )
w x y w x y

x y x y x y x y
x y

−  ∂ ∂′ ′= + − =  ∂ ∂ 
c rw J β J R w Cβ w  (5-22) 

where ( , )x ycJ  and ( , )x yrJ  are the Jacobians of ( , )x yc  and ( , )x yr  respectively.  

( )
T

( , ) ( , )
( , ) i i

i

c x y c x y
x y

x y

 ∂ ∂=  ∂ ∂ 
cJ  and 

 ( )
T

( , , , ) ( , , , )
( , ) i i x y i i x y

i

r r
x y

x y

ϑ ϑ ϑ ϑ∂ ∂ 
=  ∂ ∂ 

r

x x x x
J   (5-23) 
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Furthermore, if the displacement responses in both x- and y-directions are 

considered, the gradient matrix is expanded as ({ , }x yΩ∈ )  

 

ˆ ( , )ˆ ( , )

ˆ ˆ ˆ( , ) ( , ) ( , )
ˆ ( , )ˆ ( , )

yx

x y
yx

w x yw x y

x x
x y x y x y

w x yw x y

y y

Ω

∂ ∂
 ∂ ∂ ′ ′ ′ = =  ∂∂ 
 ∂ ∂ 

w w w   (5-24) 

5.2.4 Mean square error and infill criterion 

The estimated Mean Squared Error (MSE) is easily obtained based on the optimised 

Kriging model, which normally provides a convenient infill criterion to determine 

the locations for new sample points to improve the Kriging model. 

If substituting Equation (5-15) into Equation (5-11), the MSE at any location ( , )x y  

may be derived and expressed as [182], 

 ( )( )12 T T 1 T 1ˆMSE( , ) 1 ( , ) ( , )x y x y x yυ C R C υ r R rσ
−− −= + −  (5-25) 

where T 1 ( ) ( )υ C R r x c x−= − , and 2
σ̂  is given by Equation (5-35). Adding the new 

sample point at the location where the Maximum Mean Square Error (MMSE) exists 

is a very commonly used infill criterion. However, it should be noted that adding 

new points imposes a compromise between accuracy and numerical stability. Even if 

the estimation improves due to the presence of more information carried by the data, 

having too many points may cause the columns of R to become numerically close 

and therefore linearly dependent for practical purposes. 

Apart from the normally used MMSE criterion, Sacks et al. [168] introduced two 

other types of simple infill criteria in their study, they are, Integrated Mean Squared 

Error (IMSE) and Entropy [185]. In addition, other more sophisticated infill 
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strategies were also proposed based on placing the new sample point where the 

maximum likelihood of the predicted objective function value is highest and placing 

the new sample point where the expectation of the improvement of the objective 

function is highest. For example, an alternative infill criterion was proposed by 

Forrester et al. [56, 162, 186], in which the objective function is the Kriging output 

with a minimum at an unknown coordinate. This enables added control point to be 

chosen that have the greatest effect on reducing the objective function.  

5.2.5 Regression and correlation functions 

Referring to Equation (5-6), there are usually three types of regression functions 

applied in Kriging formula using 0, 1st and 2nd order polynomials respectively. The 

detailed expressions of regression functions are given as follows:  

Constant, 1m = : 

 1( , ) 1c x y =   (5-26) 

Linear, 3m = : 

 1 2 3( , ) 1,  ( , ) ,  ( , )c x y c x y x c x y y= = =   (5-27) 

Quadratic, 6m = :  

 
2

1 2 3 4

2
5 6

( , ) 1,  ( , ) ,  ( , ) ,  ( , ) ,  

( , ) ,  ( , )

c x y c x y x c x y y c x y x

c x y y c x y xy

= = = =

= =
  (5-28) 

The corresponding Jacobians are (Ο  denotes the null matrix and I  is the identity 

matrix):  

Constant: [ ]2 1( , ) ,x y ×= ΟcJ  
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Linear: [ ]2 1 2 2( , ) ,x y I× ×= ΟcJ  

Quadratic: [ ]2 1 2 2( , ) ,x y I H× ×= ΟcJ  where 
2 0

0 2

x y
H

x y

 
=  
 

. 

On the other hand, the correlation function is normally assumed exponential (also 

called Gaussian), expressed in the form, 

 
2 2exp( ( ) ( ) )jk x j k y j kr x x y yϑ ϑ= − − − −

  (5-29) 

The choice of this correlation function relies on the assumption of the response 

surface inferred by the Kriging regression to be smooth. This means that points close 

to each other have a higher correlation. The terms xϑ  and yϑ  determine how far 

apart both jx  and kx  and jy  and ky  need to be before differences in the estimate 

given by equation (5-29) become significant. Apart from the normally applied 

Gaussian correlation function, there are some other types of correlation functions 

shown in Table 5–1,which can be found in the literature [182]. 

 

Table 5–1: Correlation functions (only considering x- and y- directions) 

Exponential 
(absolute) 

exp( )jk x j k y j kr x x y yϑ ϑ= − − − −  

Generalized 
Exponential 

exp( ),  0 2
e e

jk x j k y j k er x x y y
ϑ ϑ

ϑ ϑ ϑ= − − − − < ≤  

Linear { } { }max 0, 1 max 0, 1jk x j k y j kr x x y yϑ ϑ= − − ⋅ − −  
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5.3 Kriging regression 

In practical applications, the sample data are not measured with perfect accuracy, 

but are subject to measurement noise and imprecision. Kriging interpolation is 

incapable of tackling this measurement error. However, this limitation can be 

overcome by allowing the Kriging model to regress instead of exactly interpolating 

the sample data. Specifically, sample-data error can be accounted for by regularizing 

the diagonal elements of the Kriging correlation matrix R [55, 56, 163], which 

actually allows the Kriging model to pass through the small neighbourhoods of the 

samples rather than exactly through the samples themselves. This modified 

formulation introduces an additional parameter to be determined and is known as 

Kriging regression [162]. 

5.3.1 Kriging regression in a global sense 

In a global sense, the measurement error is assumed independent and identically 

distributed across the entire RoI. Then the diagonal elements of the correlation 

matrix R  can be modified by applying an unknown constant factor ξ  [56, 63, 163]. 

It is implemented by perturbing the correlation matrix R , which then becomes 

ξ+R I  where ξ  predominantly represents measurement error (but also error 

induced by other sources such as numerical error) and the identity matrix in the 

added term ξI  corresponds to the independent and identically distributed error at 

each sample point. 

5.3.2 Kriging regression in a local sense 

However, the DIC error normally is not distributed uniformly over the RoI but 

varies from subset to subset and may be separately considered independent and 

identically distributed over a subset. If the local variations in the measurement 
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uncertainty can be quantified or estimated, then different error factors (rather than a 

constant factor) should be applied to the diagonal elements of R  [54]. The modified 

diagonal elements of correlation matrix R  can be expressed as: 

 diag( )= iςR   (5-30) 

where iς  represents local measurement uncertainty. In order to reduce the 

computational complexity, only an unknown error parameter ξ  is used and 

introduced to the optimisation process of Kriging model. Thus the element iς  in the 

error vector can be formulated with the help of uncertainty ratios as: 

 
1

i
i

e

e
ς ξ=
ɶ

ɶ
  (5-31) 

where ieɶ  and 1eɶ  denote the original local uncertainty estimates for the thi  and 1st  

subset. 1eɶ  is used as a normalising constant. In addition, the estimation for local 

measurement uncertainty of the subset-based DIC is given in detail in Section 4.2, 

and is further discussed in Chapter 7.  

Compared with the Kriging interpolation model, the Kriging regression model 

introduces one more error parameter ξ  to be determined in both global and local 

senses. Thus the Kriging interpolation prediction shown in Equation (5-18) is 

extended to the Kriging regression prediction by incorporating the error parameter 

ξ  into the R matrix, as: 

 ( )T T 1
0

ˆ ˆˆ ( , ) ( , ) ( , )w x y x y x y ξ
−= + −c β r R w Cβ   (5-32) 
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5.3.3 Solution of unknown parameters 

The parameters of the Kriging regression model { }2, , , ,x yσ ϑ ϑ ξβ  can be solved by 

maximizing the log likelihood of the observed data 0w  under an assumed Gaussian 

distribution [187, 188], as given: 

( ) ( ) ( )T 1
0 0

21
22 2 2

( , , )1
, , exp

2
(2 ) ( ) ( , , )

x y
x y n n

x y

ϑ ϑ ξ
ϑ ϑ ξ

σπ σ ϑ ϑ ξ

− − − −
 =
 
 

w Cβ R w Cβ

R
L  (5-33) 

By taking the natural logarithm and ignoring constant terms, it may be expressed as,  

( ) ( ) ( )
( ) ( )

T 1
0 02

2

( , , )1
ln , , ln ln ( , , )

2 2 2
                         constant terms

x y
x y x y

n w Cβ R w Cβ
R

ϑ ϑ ξ
ϑ ϑ ξ σ ϑ ϑ ξ

σ

−− −
=− − −

+

L  (5-34) 

The estimate 2
σ̂  is obtained by setting the first derivative with respect to 2

σ  to zero 

and then expressed by, 

 ( ) ( )( )
T

2 1
0 0

1 ˆ ˆˆ , ,x yn
w Cβ R w Cβσ ϑ ϑ ξ

−= − −  (5-35) 

with regression coefficient β̂  is updated from Equation (5-17) by incorporating the 

error factor ξ :  

 ( )( ) ( )1
T 1 T 1

0
ˆ , , , ,x y x yϑ ϑ ξ ϑ ϑ ξ

−− −=β C R C C R w  (5-36) 

Substituting Equation (5-36) and (5-35) into Equation (5-34), the concentrated log 

likelihood function [187] is obtained and used in practice, given by, 

 2 1
ˆln( ) ln( ( , , ) )

2 2 x y

n
Rσ ϑ ϑ ξ+  (5-37) 
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The log likelihood function (5-37) is complex and generally multimodal. Thus, the 

computation of optimal values for , ,x yϑ ϑ ξ  usually requires specialised optimisation 

algorithms and heuristics like genetic algorithms [168, 189] or gradient-free 

methods such as the Hooke and Jeeve's algorithm [67], and the Nelder-Mead [190] 

simplex algorithm. 

In the case of a large number of sample points Q, the computational cost of a 

conventional maximum likelihood estimate (MLE) could become significant. Two 

fast methods for estimating the unknown parameters of Kriging model were 

proposed in [191], they are, the frequency-domain maximum likelihood estimate 

(FMLE) for uniformly sampled data and the frequency-domain sample variogram 

(FSV) for non-uniformly sampled data. It is shown that a significant reduction in the 

computational complexity (related to the number of floating-point operations) from 

3( )QΟ  (MLE) to (  ln )Q QΟ  is achieved while preserving the accuracy of the 

Kriging model.  

In addition, it is necessary in above equations to invert the correlation matrix, which 

may be ill-conditioned while the introduction of ξ  has the benefit of acting as a 

regularisation parameter [162] against ill-conditioning, which tends to prevail when 

large numbers of control points are introduced. Ranjan et al. [192] considered the 

classical Tikhonov regularisation of the form ( )δ+R I  where δ  is the regularisation 

parameter or nugget. The optimised parameter ξ  in Equation (5-31) has the same 

effect, though in a slightly different form. Regularisation introduces the smoothing 

required in DIC post-processing and results in a regressing, rather than an 

interpolating random function represented by the Kriging model. It is however 

necessary to test the condition of correlation matrix R , which can be done by 
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simply determining the condition number. Ranjan et al. [192] developed a formula 

for the lower bound on delta, given by 

 
( )( )

( ) ( )
* *

*
max ,0

1

a
n

lb a

e

e

λ κ
δ

κ

 − =  
−  

R

R
  (5-38) 

where ( )*κ i  denotes the condition number, *
nλ  is the highest eigenvalue of R  and 

25a ≈  (an empirical term obtained by a large number of numerical simulations). 

This point is further discussed in Chapter 7. 

In the examples presented in this thesis the term 
( )( )

( ) ( )
* *

* 1

a
n

a

e

e

λ κ
κ

 −
 
 − 

R

R
 was found in 

every case to be negative, so that the optimised ξ  was able to reduce the 

measurement error without encountering problems in inverting the correlation 

matrix, R . 

5.4 Kriging formula based on Bayesian inference 

In general, the Kriging formula may be derived in two equivalent ways: (i) based on 

the framework of best linear unbiased prediction (BLUP) [56, 182] as shown in 

Section 5.2; (ii) based on Bayesian inference [54, 169, 193]. In this section, the 

Kriging formula is derived from a Bayesian perspective whereas the uncertainty is 

also interpreted as a posterior covariance instead of the MSE. In order to keep 

consistent, the same notations shown in above sections are used in the following 

derivations. According to Equation (5-1), Kriging predictor ( )ˆ ,w x y  is formulated as 

a combination of a regression model with regression parameters β and a zero-mean 

stochastic field with field variance 2σ .  
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Interpreted from the Bayesian framework, the Universal Kriging applied in this 

study is actually a Gaussian process with the prior assumption of constant variance 

2σ , constant hyper parameters { }, ,x yϑ ϑ ξ  and non-informative prior distribution of 

regression parameters β [194]. Thus the prior distribution of the Kriging predictor 

depends on the observations 0w  at a number of design locations 

( , ), 1, 2, , ,j jx y j n= …  is chosen as the following Gaussian process distribution for 

the sake of analytical convenience [171]. For the observations: 

 ( )2
0 | ,  ξσw β Cβ R∼ N   (5-39) 

where C  is defined in Equation (5-5) and ξR  denotes the correlation matrix at the 

sample points including the error factor ξ .  

If ŵ  is used to denote Kriging prediction at a number of predicted locations 

* *( , ), 1,2, , ,j jx y j m= … , new notations X  and *X  are employed herein for the 

reason of simplicity to respectively represent all the design locations and predicted 

locations in the RoI, where ( )T

1 2[ ],  ,j n j j jX x y= =x x x x x⋯ ⋯  and 

( )T* * * * * * * *
1 2[ ],  ,j m j j jX x y= =x x x x x⋯ ⋯ . 

Then the joint Bayesian prior distribution for the combination of Kriging prediction 

ŵ  at a number of predicted locations *X  and observations 0w  can be expressed as 

[195]:  

 
* * *

2
*

0

ˆ ( , ) ( , )
  ,  

( , )

X X X X

X X ξ

σ
     
            

w R Rw
β

w R RCβ
∼N   (5-40) 
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where *( )X=w C β , * *( , )X XR  denotes the correlation matrix of the predicted 

points while *( , )X XR  and *( , )X XR  denote the correlation matrix between the 

predicted locations and design locations, *( )XC  is the matrix including the 

regression functions evaluated at the predicted points *X . 

The above prior distribution is actually a multivariate normal distribution. In order 

to obtain the posterior distribution with the restriction that the observations must be 

retained, the theorem of conditional multivariate normal distribution is adopted 

based on the proof shown in books [196, 197]. The theorem can be briefly 

introduced as follows: Let 1zɺ  and 2zɺ  be jointly normal random vectors, 

 1 1 11 12

2 2 21 22

,  
 Σ Σ     
      Σ Σ      

z ω

z ω

ɺ

ɺ
∼N  (5-41) 

The conditional distribution of 1zɺ  given 2zɺ  is then derived as: 

 ( )1 1
1 2 1 12 22 2 2 11 12 22 21| ( ),  − −+ − −z z ω Σ Σ z ω Σ Σ Σ Σɺ ɺ ɺ∼N   (5-42) 

Thus, the conditional posterior distribution of ŵ  (for Simple Kriging [194]) can be 

obtained as, 

 ( )* 2 *
0ˆ | , (.),  (.,.)σw β w w V∼ N   (5-43) 

where  

 * * * * 1
0( ) ( ) ( , ) ( )X X X X ξ

−= + −w C β R R w Cβ   (5-44) 

 * * * * * * 1 *( , ) ( , ) ( , ) ( , )X X X X X X X Xξ
−= −V R R R R   (5-45) 
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Due to the conjugate prior assumption [169, 193, 194], it is found that the 

conditional distribution of β  given 0w  was derived as a Gaussian distribution: 

 ( )2 T 1 1
0

ˆ ˆ| ,  ( )ξσ − −
β w β C R CN∼   (5-46) 

where the 2σ̂  and β̂  are evaluated from maximizing the likelihood function [194] 

and have the same expressions as shown in Equation (5-35) and (5-36) respectively 

The posterior distribution shown in (5-43) can be updated by eliminating the 

conditioning on β  based on a standard integration technique [171, 198]: 

 ( )** 2 **
0ˆ ˆ| (.),  (., .)σw w w VN∼   (5-47) 

where  

 ** * * * 1
0

ˆ ˆ( ) ( ) ( , ) ( )X X X X ξ
−= + −w C β R R w Cβ   (5-48) 

( ) ( )
** * * * * *

T* * 1 T 1 1 * * 1

( , ) ( , )

                      ( ) ( , ) ( ) ( ) ( , )

X X X X

X X X X X Xξ ξ ξ
− − − −

= +

− −

V V

C R R C C R C C R R C
  (5-49) 

It is found that the posterior distribution of Kriging prediction ŵ  given the observed 

data 0w  is subject to a multivariate Gaussian distribution. The predicted mean of 

Kriging regression model shown in Equation (5-48) is exactly the same as the 

Kriging regression prediction shown in Equation (5-32), except the latter only 

provides the prediction for a location ( ),x y  rather than all the locations. Further, the 

MSE of the Kriging regression model, incorporating the error factor ξ  to Equation 

(5-25), actually stems from the diagonal elements of the covariance matrix 

** * *( , )X XV  shown in Equation (5-49). This point is further discussed in Chapter 7. 
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5.5 Uncertainty quantification based on Kriging 

According to the Bayesian inference, Kriging can be utilized as an efficient 

surrogate model to analyse the uncertainty of DIC measurement results, which is 

specifically implemented through Gaussian process emulation. The displacement 

uncertainty of DIC measurement can be directly estimated by the MSE (variance 

terms of Equation (5-49)) provided by Kriging regression model. However, it is 

difficult to propagate the displacement uncertainty to the strain estimate for 

uncertainty quantification, since the strain results are actually computed from the 

displacement gradients. As the posterior distribution of Kriging model is indeed the 

multivariate Gaussian, it is possible to employ a sampling process of the 

displacement field to generate a large number of samples to estimate the strain 

uncertainty. A sampling from the multivariate Gaussian distribution is carried out 

based on the mean values (5-48) and corresponding covariance matrix (5-49) of the 

Kriging regression model. In order to generate samples ˆ sw  from Kriging model, a 

scalar Gaussian generator is adopted and the whole process can be proceeded as 

follows: 

Firstly, Cholesky decomposition is carried out for the covariance matrix (positive 

definite symmetric), i.e. ** T=V ΛΛ , where Λ  is a lower triangular matrix. 

Secondly, the scalar Gaussian generator is used to generate a standard Gaussian 

scalar, ( )0,  sn I∼ N . 

Thirdly, random sample from the multivariate Gaussian distribution with desired 

mean and covariance can be computed as:  

 **ˆ s s= +w Λn w   (5-50) 
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Based on the random displacement samples, the uncertainties of strain results can be 

computed in terms of the standard deviation (STD) or the 95% confidence interval 

(CI) [199]. 

5.6 Closure 

The Kriging regression theory is presented concisely in this chapter in view of the 

related applications in DIC in order to reduce measurement errors and quantify 

uncertainties. Based on the formulation of Kriging interpolation, Kriging regression 

method is introduced in terms of regularising the measurement error from both 

global and local senses. Additionally, the uncertainty analysis based on the Kriging 

regression method is addressed from the perspective of Bayesian inference. Two 

applications of Kriging regression in both a full-field DIC framework and a subset-

based DIC framework are discussed respectively in Chapter 6 and Chapter 7. 
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6 
6 Full-field DIC with Kriging Regression 

A global DIC algorithm with integrated Kriging regression is presented in this 

chapter. The displacement field is formulated as a best linear unbiased model that 

includes the correlations between all the locations in the RoI. A global error factor is 

employed to extend conventional Kriging interpolation to Kriging regression to 

quantify displacement errors of the control points. An updating strategy for the self-

adaptive control grid is developed on the basis of the Mean Squared Error (MSE) 

determined from the Kriging model. The performance of Kriging DIC is validated in 

terms of resolution and spatial resolution, compared to the classical subset-based 

DIC. In addition, Kriging DIC is shown to outperform several other full-field DIC 

methods when using open-access experimental data. Numerical examples are used to 

demonstrate the robustness of Kriging DIC to different choices of initial control 

points and to speckle pattern variability. Finally Kriging DIC is tested on an 

experimental example. 

Equation Chapter 6 Section 1 
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6.1 Problem overview 

Over the past three decades different methods have been developed and successfully 

applied in DIC. These methods belong to two general classes: local (subset-based) 

methods and global (full-field) techniques, both of which have been used 

extensively in different applications. The local approach is perhaps the better 

established of the two because of its simplicity and suitability to parallel 

computation [7], but lacks inter-subset continuity and is more sensitive to 

measurement noise than the global approach. Consequently it is necessary to apply 

smoothing as a post-processing operation to measured displacements before 

computing strain results [88]. Alternatively, the global approach imposes certain 

constraints and treats the RoI as a whole, thereby enabling smooth displacement 

fields to be achieved together with good sub-pixel accuracy. The same level of sub-

pixel accuracy is achievable by the global approach, more efficiently than the local 

approach, which requires subset overlapping [18] with multiple processing of the 

same data and increased computational cost. 

As summarised in literature review, full-field DIC methods include: Finite Element 

(FE) based methods [9, 11, 72, 103, 105, 106]; the Extended FE method, known as 

XFEM, [12, 13, 89, 109]; p-DIC method [19]; B-Spline methods (NURBS) [17, 71] 

and Spectral methods based on spatial Fourier transforms [14-16]. DIC techniques 

aim to produce an accurate and reliable displacement field through the computed 

correlation of deformed speckle patterns with a reference image. This process 

requires the use of shape functions to describe the displacement field in terms of 

grey-scale values determined in terms of individual pixel intensities within a subset 

or RoI. Of course, it is generally not possible to design a shape function that 

perfectly matches the actual displacement field in a particular application. However, 
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the Kriging prediction has the advantage that is based not only upon regressing 

certain parameters on discrete measurements, but also on the correlation of 

neighbouring samples. The fitting residual is represented by a Gaussian random 

process resulting in a best linear unbiased prediction. This represents lack of 

knowledge of the true displacement field and is not related to measurement error. 

The choice of a Gaussian random process is analogous to the choice of a Gaussian 

random variable in statistics: it is analytically tractable, flexible and frequently 

correct.  

In this chapter Kriging regression is integrated into the classical full-field DIC 

algorithm. The full-field displacement estimate is obtained by training the Kriging 

model using increasing numbers of sample (or control) points at each step until the 

MSE at untried sites (between the control points) is deemed to be acceptably small. 

At the end of this process the displacements at the untried sites are found in terms of 

the complete system of control-point displacements. Figure 6–1 illustrates the 

dependency relationship of an inner point on control points based on the shape 

function. In Figure 6–1(a), it is seen that the inner-point displacement is determined 

by only 4 nodal displacements when using the Q4-FE shape function [102], possibly 

resulting in abrupt ridges at the element boundaries. When using the B-spline 

method, the inner-point displacement, shown in Figure 6–1(b), is given in terms of a 

greater number of nodal displacements, but shape-function remains local to the inner 

point. The Kriging shape function is genuinely global, as shown in Figure 6–1(c) 

where the inner-point displacement is given in terms of control points distributed 

over the entire RoI. 



 
 

110 | P a g e 
 

(a)                                        (b)                                           (c) 

Figure 6–1. Dependency relationship of one inner point (green square): (a) Q4-FE, 

(b) Cubic Spline, (c) Kriging - control points shown as blue circles. 

6.1.1 Review of the global DIC approach 

Global DIC is considered for the case of a two-dimensional image where the 

unknown displacement field ( )( )( , ), ,u x y v x y  is to be determined at spatial 

coordinate ( , )x y . The displacement ( )( )( , ), ,u x y v x y  may also be understood as the 

optical flow from a reference image ( , )f x y  of speckle-pattern intensity to its 

corresponding deformed image ( , )g x y . Then the displacement field may be 

estimated by minimising the objective function, 

 ( ) ( )( )2
, ( , ), ( , ) ( , ) d  u v g x u x y y v x y f x y

Θ
= + + − Θ∫SSD

C   (6-1) 

where Θ  denotes the region of interest (RoI) in the reference image.  

In practice, the continuous displacement field ( )( )( , ), ,u x y v x y  may be 

approximated by a linear combination of basis functions of finite dimension n , 

expressed as 
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1

1

( , ) ( , )

( , ) ( , )

j

j

n

j u
j

n

j v
j

u x y x y p

v x y x y p

µ

µ

=

=

≈

≈

∑

∑
  (6-2) 

where ( , ); 1, 2, ,j x y j nµ = …  are the kernel functions and , ; 1,2, ,
j ju vp p j n= …  are 

the combination coefficients. Since ( )( , ), ( , )g x u x y y v x y+ +  is an implicit function 

of ( )( )( , ), ,u x y v x y , the Newton method may be applied to solve the minimisation 

problem. Therefore, an approximate solution of the full-field displacement, 

( )( )( , ), ,u x y v x y , may be obtained by iteration [10, 11, 71, 72] 

 ( ) { }1 ; ,i i i i u v+
Ω Ω Ω Ω− = Ω ∈M p p b   (6-3) 

where ,i i
u vM M  are n n×  matrices and ,i i

u vb b  are 1n×  vectors, with components 

given by 

 

( ) ( , )
( , )

( , )
( , ) d

i i
i

jk j

i i

k

g x u y v
M x y

z

g x u y v
x y

z

µ

µ

Ω Θ

 ∂ + +=  ∂ 

 ∂ + +× Θ ∂ 

∫
  (6-4) 

and  

 
( )

( )

( , )
( , )

( , ) ( , ) d

i i
i

j j

i i

g x u y v
b x y

z

f x y g x u y v

µ
Ω Θ

∂ + +=
∂

× − + + Θ

∫
  (6-5) 

where { } { }, when , respectively and , 1,2, ,z x y w u v j k n∈ ∈ = … . 
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The gradient 
( , )i ig x u y v

z

∂ + +

∂
 in equations (6-4) and (6-5) is in principle updated 

at each iteration. However, as proposed by Sutton [57, 73], the grey-level gradients 

may be calculated from the reference image rather than the deformed image without 

loss of accuracy i.e. 
( , ) ( , )i ig x u y v f x y

z z

∂ + + ∂≈
∂ ∂

.  

The interpolation functions in Equation (6-2) are generally local piecewise functions 

[17, 184], e.g. cubic spline or finite element shape functions. The combination 

coefficients then represent the displacements of a set of control points (or nodes). In 

this study, a different linear modelling approach for the displacement field is 

investigated, known as Kriging regression. 

6.1.2 Kriging model 

As discussed in Chapter 5, Kriging has originally been developed in the field of geo-

statistics [200] as a technique of interpolation which provides the Best Linear 

Unbiased Prediction (BLUP) of intermediate values under suitable assumptions on 

the priors. A Gaussian process governed by assumed prior variances is used to 

model the interpolated field in Kriging formula. If interpreted from Bayesian view, 

Kriging model can provide both mean values and estimated errors at the same time 

for an arbitrary point in the RoI. This advantage enables Kriging to adaptively 

achieve an optimal global model by infilling new sample points automatically. In 

this proposal, Kriging model is integrated into a global DIC algorithm as a full-field 

shape function for a more accurate full-field measurement.  
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6.2 Kriging-DIC 

6.2.1 Algorithm 

According to the derivations in Section 5.2, Kriging method can be utilized to obtain 

a BLUP for the true displacement field [160] ( , )w x y  which then is modelled as a 

realisation of a random function which combines a deterministic regression model 

and a zero-mean stochastic field [168]. Denoting [ ]T

0 1, , nw w=w ⋯  as displacements 

of a set of control points ( ), , 1, 2, , ,j jx y j n= … , the displacement response ˆ( , )w x y  

at an arbitrary untried location ( , )x y  can be formulated by the Kriging model in 

terms of a linear combination of the sample values 0w  and corresponding weights κ : 

 T
0

1

ˆ ( , ) ( , )
n

j j
j

w x y x y wκ
=

= =∑ κ w   (6-6) 

As shown in Equation (5-20), the expression of Kriging weights can be written as 

[160], 

 ( ) ( )( )11 T 1 T 1( , ) ( , ) ( , ) ( , )x y x y x y x y
−− − −= − −κ R r C C R C C R r c  (6-7) 

where ( )T

1 2( , ) nx y κ κ κ=κ ⋯  are the Kriging weights [184] obtained by the 

unbiasedness and minimisation of mean squared error (MSE). R , ( , )x yr , C  and 

( , )x yc  are defined in Section 5.2. Thus under the framework of global DIC 

algorithm, Kriging DIC is actually implemented by applying Kriging shape function 

as shown in Equation (6-6) to replace the general form of global shape function 

shown in Equation (6-2). 
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6.2.2 Imprecise sample data 

Generally DIC data is not measured with perfect accuracy, but is subject to 

measurement noise and imprecision [55, 56, 162, 201], the effect of which might be 

reduced by pre-filtering [32, 202]. However, in this study it can be accounted for in 

a global sense by perturbing the correlation matrix R  which is replaced in Equation 

(6-7) (and in subsequent equations) by ξ+R I  (as shown in Equation (5-30)). ξ  

predominantly represents measurement error (but also error induced by other 

sources such as numerical error), considered to be independent and identically 

distributed at each sample point, hence the identity matrix in the added term ξI . 

This modified formulation is known as Kriging regression [162] (as opposed to 

Kriging interpolation, which is the conventional formulation that predicts the sample 

points exactly) and introduces an additional parameter ξ  to be determined.  

According to the discussion in Section 5.3.3, the parameters { }2, , , ,x yσ ϑ ϑ ξβ  can be 

optimised by maximizing the log likelihood of the observed data 0w  by a Nelder-

Mead [190] simplex algorithm. In addition, the introduction of ξ  has the benefit of 

acting as a regularisation parameter [162] against ill-conditioning of the correlation 

matrix. In this study, a first-order regression function is chosen as shown in 

Equation (5-27). Also the exponential (also called Gaussian) correlation function is 

used, of which the expression is shown in Equation (5-29). 

6.2.3 Implementation of Kriging-DIC 

The Kriging-DIC can be implemented through the following procedures:  

i. Firstly, the displacement field of the RoI is formulated by a Kriging model 

using a certain number of randomly selected control points in the reference 
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image. A fast DIC subset method [57] was adopted to obtain approximate 

displacements for the control points. This fast DIC method employs square 

subsets of identical size in the reference and deformed images respectively to 

maximise correlation coefficients between them. The selected control points 

are assigned as centre points of the subsets in the reference image. When 

matched subsets (having maximum correlation) are found, initial 

displacements of control points are achieved as differences between subset 

centre points. This method generally obtains integer-pixel displacements with 

accuracy within 3 pixels, based on empirical evidence, which is close enough 

for initial values of Kriging-DIC method. Vendroux and Knauss [67] proved 

that the Newton iteration method has a convergence radius of 7 pixels for 

initial values. Zhao et al. [203] introduced a number of strategies to improve 

the robustness of DIC solutions to variability in initial estimates of 

displacements, especially for cases of large deformation. 

ii.  Secondly, an updating procedure was applied to add more control points to 

refine the initial Kriging model. This updating procedure will be introduced in 

the following section. However, it should be noted that this updating 

procedure is not necessary if sufficient control points are already artificially 

selected through a fixed control grid. 

iii.  Finally, on achieving an optimised Kriging model, Newton iteration is applied 

to calculate the final displacement field with a sub-pixel accuracy. Moreover, 

as grey values of non-integer pixels are required in this process, a 6 6×  bi-

cubic interpolation scheme (shown in Appendix A) was chosen in the 

examples presented in this chapter for reasons of simplicity. 
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6.3 Self-adaptive control grid updating 

For DIC problems, it is desirable to have an algorithm that determines an optimal 

control grid. Generally, a finer control grid does not guarantee a more accurate 

measurement. However, a fine control grid is necessarily applied in the case of a 

complex deformation, when a coarse control grid would fail to capture the detail of 

local deformations. 

Kriging provides the error estimations over the whole RoI and therefore it is 

possible to improve the control grid by adding new sample points. The estimated 

Mean Squared Error (MSE) of the Kriging model provides a criterion for achieving 

such an improvement. According to (5-25), the MSE at any location ( ),x y  may be 

expressed as [182], 

 ( )( )12 T T 1 T 1ˆMSE( , ) 1 ( , ) ( , )x y x y x yσ
−− −= + −υ C R C υ r R r  (6-8) 

where T 1 ( ) ( )υ C R r x c x−= − , and 2σ̂  is given from Equation (5-35). It should be 

noted that adding new points imposes a compromise between resolution and spatial 

resolution. Even if the estimation improves due to the presence of more information 

carried by the data, having too many points may cause the columns of correlation 

matrix R  to become numerically close and therefore linearly dependent for practical 

purposes. 

As has been already stated, Kriging regression allows for the effect of measurement 

error at the sample points, determined according to the optimised term ξ . Of course 

this error is fully justified and has nothing to do with the lack of knowledge 

represented by the Gaussian process present in the Kriging model, which we seek to 
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reduce by adding new sample points at candidate locations where the MSE is 

greatest. The problem is that Equation (6-8) does not discriminate between the 

measurement error and lack of knowledge, and this inevitably leads to dense clusters 

of added points very close to the original control points and to the stalling of 

progress towards the desired Kriging model [56, 162]. This can be overcome by 

reformulation of the Kriging model as an interpolator (rather than a regressor) with 

the control-point error added to the coordinates of each control point. 

Thus the infill criterion in the present study is the Maximum Mean Square Error 

(MMSE). An alternative infill criterion was proposed by Forrester et al. [56, 162, 

186] in which the objective function is the Kriging output with a minimum at an 

unknown coordinate. This enables added control point to be chosen that have the 

greatest effect on reducing the objective function. In the present case, a constrained 

global objective function is defined by equation (6-1) and Forrester’s criterion is 

therefore not applicable. This means that selecting a new control point based on the 

local MMSE does not necessarily lead to a reduction of the objective function. The 

Global Mean Square Error (GMSE), defined as the mean of the calculated MSE 

function over the region of interest, is used as the stopping criterion for control-grid 

updating.  

The updating process can be briefly summarised as follows  

i. Control points are selected on the edges of the RoI of the reference image, 

the threshold GMSE value, tolGMSE , is set (user dependent) and the fast DIC 

algorithm (discussed previously) is used to obtain an approximate 

measurement of the control-point displacements (The choice of the points on 

the edges of the RoI is made due to a well-known property of Kriging: whilst 
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it delivers reliable interpolation given observed data, and such interpolation 

improves as more observations become available, it can perform poorly 

when extrapolating for training runs which are not in the neighbourhood of 

the available data samples). 

ii.  The Kriging regression model in Equation (6-7) is constructed (including 

optimised ξ ) and displacements determined using Equation (6-6).  

iii.  Construct a new Kriging model with the measurement error ξ  from (ii) 

added to the control point coordinates. Then set 0ξ =  and the new model 

becomes a Kriging interpolator. Compute the MSE and GMSE.  

iv. G M SE to l ?G M SE<  If not, add new control points at coordinates of greatest 

MSE (i.e. two new control points for x- and y-directions respectively) and 

return to step (ii). If so, the Kriging model is complete. 

The self-adaptive control grid updating process is also illustrated in Figure 6–2. 
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Figure 6–2. The self-adaptive control grid updating  

tolGMSE

ξ

0ξ =

GMSE < tol ?GMSE
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6.4 Applications 

Four case studies are included to illustrate the performance of Kriging-DIC. In the 

first of these, performance of the Kriging-DIC algorithm, in terms of resolution and 

spatial resolution, is verified through a comparison with the classical subset-based 

DIC algorithm. In the second case, experimental speckle-pattern images from the 

DIC Challenge 2D Dataset [177] are translated by 2.2 and 3.3 pixels in the x- and y-

directions respectively. Kriging-DIC results are compared to those obtained by Q4-

FE DIC and Cubic-Spline DIC methods. The third case study concerns a 

numerically-produced complex displacement field using grey-scale images 

generated by (a) interpolation from the FE model and (b) Gaussian speckles on the 

reference and deformed images. Finally, application of Kriging-DIC is demonstrated 

in an experimental example. 

6.4.1 Case study 1: displacement resolution and spatial resolu-

tion of Kriging DIC 

In order to validate the performance of different DIC algorithms, resolution is 

plotted against spatial resolution in one graph. This method was originally 

introduced by Wittevrongel et al. [19] and performance of DIC algorithms is 

indicated by a combination of the two quantities. Basically, a superior DIC 

algorithm should be able to achieve a lower value in both the resolution and the 

spatial resolution.  

A series of sinusoidal surface deformation generated with various spatial frequencies 

and amplitudes [38] is used to assess the resolution and the spatial resolution. In this 

sense, different from the original definition given in Section 2.3, the spatial 

resolution is evaluated as the lowest period (i.e. the highest frequency) of a 
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sinusoidal deformation that can be reproduced by the algorithm while the loss of 

measured amplitude does not exceed a certain percentage of total amplitude. The 

displacement resolution may be understood as measurement precision. It can be 

defined as the change in displacement that causes a change in the corresponding 

measurement greater than one standard deviation of the measurement noise. 

 

Figure 6–3. A deformed image with a sinusoidal displacement field with a period of 

25 pixels 

Obtained from the authors of the work in [19], a series of images with different 

sinusoidal deformation fields as shown in Figure 6–3 are used to calculate the 

displacement resolution and amplitude loss of both the subset-based DIC and the 

Kriging DIC at a series of spatial resolutions (in terms of sinusoidal periods). The 

reference image comes from an original speckle pattern, while the deformed images 

are generated by imposing a Gaussian noise and unidirectional sinusoidal 

displacement field on the original pattern. The related parameters of the deformed 

images and the DIC algorithms used are shown in Table 6–1 and Table 6–2 

respectively.  

At first, a region of interest was selected from the image which contains at least one 

period of the sinusoidal displacement field. Then the subset-based DIC with a 

subset-size of 21×21 pixels (with a second-order shape function and a 6×6 bi-cubic 

intensity interpolation scheme) is used to compute the displacement field of the 

region of interest (pixel by pixel) in order to find peak locations. In addition, 
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uniformly distributed sample points (centres of subsets) are further designed on the 

region of interest, which includes the identified peak locations. Both the subset-

based DIC and Kriging DIC were applied to calculate the displacements of sample 

points and evaluate the amplitude loss. At the same time, the displacement 

resolution was quantified in terms of standard deviation of the measured 

displacement field [38]. The amplitude loss ∆D  is defined as [19], 

 
3

100a aa

a

µ σ− +
∆ = ⋅ɶ ɶ

ɶ

ɶ
D   (6-9) 

where aɶ  is the amplitude of imposed sinusoidal displacement, aµ
ɶ  and aσ

ɶ  are 

average mean and standard deviation of the measured peak displacements. 3 aσ
ɶ  

indicates a 99.8% confidence interval on amplitude determination. It should be 

noted that for a fair comparison the self-adaptive grid updating of Kriging-DIC is 

deactivated, which enables the displacement data to be measured based on the 

exactly same sample points for both the subset-based DIC and Kriging-DIC. 

Figure 6–4 and Figure 6–5 illustrate the curves of the amplitude loss and 

displacement resolution against the period of the deformation sine wave (indicating 

spatial resolution) for both the subset-based DIC and Kriging-DIC. As expected, the 

amplitude loss and displacement resolution decrease as the period of the 

deformation sine wave increases. The influence of noise and spatial frequency of the 

deformation on the measurement precision (displacement resolution) is reduced as 

the spatial resolution increases (deformation becomes more flat). Moreover, Figure 

6–6 and Figure 6–7 demonstrate characteristics of the subset-based DIC and 

Kriging-DIC in terms of the displacement resolution against the spatial resolution 

under a 5% and a 1% amplitude loss respectively. When smaller subsets and higher 
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order regression models are chosen, the spatial resolution decreases and it enables a 

better deformation measurement (with high spatial frequency content). However, a 

cost is paid since the displacement resolution increases in the meantime.  

As a global DIC algorithm, the Kriging-DIC method is observed as having an 

excellent displacement resolution compared with the subset-based DIC at the same 

spatial resolution. This is shown in Figure 6–5, where the Kriging-DIC curves are 

generally lower than the curves of the subset-based DIC. However, Kriging-DIC 

introduces relatively larger amplitude loss at smaller periods of the deformation sine 

wave (smaller spatial resolution) compared with the subset-based DIC. This is 

shown in Figure 6–4. The larger amplitude loss in Kriging DIC may be caused by a 

compromise between regularization and spatial resolution, i.e. the regularization 

normally reduces the high spatial frequency content. 

Thus under the criterion of amplitude loss (5% or 1%), it is observed that the 

performance of Kiging-DIC in terms of displacement resolution is superior to that of 

the subset-based DIC at the same spatial resolutions. However, no result is shown at 

lower spatial resolutions because the amplitude loss has risen above the threshold 

(e.g. 5% or 1%). In general, it can be concluded that the Kriging-DIC method is 

capable of achieving excellent robustness to noise. It is best applied in applications 

with low spatial frequency content (high spatial resolution) for a better displacement 

resolution (precision). On the other hand, for applications with high spatial 

frequency content, the subset-based DIC is probably a compromise choice though its 

displacement resolution is not as good as that of Kriging-DIC. In practice, when 

there is a requirement to measure the high spatial frequency deformation with an 

excellent displacement resolution, Kriging-DIC is still a good choice and the 
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disadvantage related to the low spatial resolution may be overcome by increasing the 

resolution of imaging system (e.g. choosing high-resolution CCD cameras). 

Table 6–1: Deformation parameters of the images 

Parameter value 

Amplitude 5 pixels 

Period 2525 250→  pixels 

Gaussian noise (standard deviation) 1% (2 grey values) 

 

Table 6–2: Parameters of DIC algorithms 

 Subset-based DIC Kriging DIC 

Criterion NSSD NSSD 

Sample (control) points  31×10 31×10 

Subset size 1021 61→  (pixels)  

Regression order  0, 1st and 2nd 

Shape function 2nd-order  

Intensity interpolation 6×6 bi-cubic 6×6 bi-cubic 

 

 

Figure 6–4. Amplitude loss vs period of the deformation sine wave for subset-based 

DIC and Kriging-DIC 
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Figure 6–5. Displacement resolution vs period of the deformation sine wave for 

subset-based DIC and Kriging-DIC 

 

 

Figure 6–6. Displacement resolution vs spatial resolution under the criterion of 5% 

amplitude loss, a decrease in subset size and a increase in the order of regression 

function are adopted (from right to left) respectively in the subset-based DIC and 

Kriging DIC  
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Figure 6–7. Displacement resolution vs spatial resolution under the criterion of 1% 

amplitude loss, a decrease in subset size and a increase in the order of regression 

function are adopted (from right to left) respectively in the subset-based DIC and 

Kriging DIC 

6.4.2 Case study 2: DIC challenge data - rigid body displacement. 

In this case study, the performance of three different global DIC algorithms is 

compared in terms of a full-field displacement measurement that provides more 

measurement details for comparison. Experimental speckle pattern images from DIC 

Challenge 2D Dataset [177] were translated by 2.2 and 3.3 pixels in the x- and y-

directions respectively by Fourier transformation [36, 57], achieved by phase shifts 

without change of amplitude. The RoI, spanning 101×101 pixels, is uniformly 

meshed by 5×5 square elements, each of 21×21 pixels. This grid provides 6×6 

control points (nodes) so that the full-field displacement is determined by the 

displacement of 36 control points, as shown in Figure 6–8. 
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The displacement field is calculated by three different global DIC methods, Kriging-

DIC, Q4-FE DIC [9-11] and Cubic-spline DIC [17, 71] using B-spline basis 

functions. To ensure comparability, the number and location of the control points are 

fixed so that control-grid updating is not applied in the Kriging-DIC approach. 

Kriging regression was applied, but in this particular example it was found that 

0ξ = , identical to the case of Kriging interpolation. This is to be expected since the 

true displacements of all the control points are the same (2.2 in x-direction, 3.3 in y-

direction) and the initial displacements of all the control points calculated by the fast 

method are the same as well (2 in x-direction, 3 in y-direction). The number of 

degrees of freedom is the same for each of the three approaches. 

It should be noted that due to the fixed regular grid, there is actually no grid 

updating process for this case. The Q4-FE DIC method [102] and Cubic-spline DIC 

method [17, 71] are briefly introduced in Section 2.6 and the corresponding shape 

functions are shown in Equation (2-8) and Equation (2-11) respectively, meanwhile 

Kriging DIC method can be referred to the Section 6.2. 

Table 6–3: Details of the 3 DIC methods 

 Control points Shape Function Chosen Parameters 

Kriging 
DIC 

uniformly distributed 
36 nodes shown in 

Figure 6–8 
Equation (6-6) 

1st order regression model and 
Gaussian correlation error model 

Q4-FE 
DIC 

The same as above Equation (2-8) 
4-node quadrangle FE shape 

function 

Cubic-
spline 
DIC 

The same as above Equation (2-11) 

Uniformly spaced knot vector
[0 0 0 0.25 0.5 0.75 1 1 1]

and 3rd order B-spline basis 
functions 

 

 



 
 

128 | P a g e 
 

 

 

Figure 6–8. Reference and deformed grids shown as red and blue squares 

respectively. 

 

 

   

   

Figure 6–9. Calculated displacement fields in x-direction (real displacement 2.2 

pixels), from left to right: Kriging DIC, Q4-FE DIC and Cubic Spline DIC, and ‘--’ 

indicates the Mean while ‘-.’ indicates the Standard Deviation. 
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Figure 6–10. Calculated displacement fields in y-direction (real displacement 3.3 

pixels), from left to right: Kriging DIC, Q4-FE DIC and Cubic Spline DIC, and ‘--’ 

indicates the Mean while ‘-.’ indicates the Standard Deviation 

 

Table 6–4: Errors comparison (in pixels) 

 Kriging Q4-FE Cubic Spline 

X 
Mean Error 5.44e-3 8.10e-3 5.72e-3 

STD 1.23e-3 1.57e-3 1.33e-3 

Y 
Mean Error 3.34e-3 4.98e-3 3.74e-3 

STD 1.04e-3 1.46e-3 1.50e-3 

*Mean Error here is the difference between actual Mean and the theoritical values i.e. 2.2 &3.3 pixels 

The chosen parameters for 3 methods are listed respectively in Table 6–3. The initial 

displacements of the 36 control points were obtained by the fast DIC method based 

on integer pixels and Newton iterations were subsequently carried out using 6x6 
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point bi-cubic interpolation [37] for sub-pixel grey values. Results are summarised 

in Table 6–4 and Figure 6–9 and Figure 6–10 where it can be seen that the 

displacement field produced by Kriging DIC is smoother than that produced by Q4-

FE DIC, which shows some significant ridges at the element boundaries. The 

Kriging results are also better than those produced by Cubic Spline DIC, which 

shows some abrupt peaks and greater deviations than Kriging DIC. In this particular 

case, Kriging is seen to produce a full-field measurement with lower mean error and 

standard deviation (STD) than the other two methods. The small biases shown in 

Figure 6–9 and Figure 6–10 are due to the effect of bi-cubic grey-scale interpolation 

[23, 36, 57]. 

6.4.3 Case study 3: non-uniform displacement field with num-

erically produced speckles. 

In this case study, two examples having same displacement field but using 

numerically-produced grey-scale images generated by different methods are 

presented. The displacement field is calculated from a FE model and used to test the 

performance of the Kriging-DIC method with control grid updating. 

In the first approach, displacements at integer pixel locations are determined by FE 

shape-function interpolation. The deformed image is then generated by displacing 

the speckle pattern shown in Figure 6–13 (DIC Challenge 2D Dataset [177]) of the 

reference image pixel-by-pixel by the corresponding FE displacement. The second 

approach is based on numerically-produced Gaussian speckles [81, 95] (not directly 

related to the Gaussian process that forms part of the Kriging model) with means 

uniformly distributed over the RoI. In both cases, bi-cubic intensity interpolation is 

applied to determine the grey-scale images.  
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Finite Element model 

In order to generate a displacement field to test the performance of the proposed 

Kriging-DIC method, a finite element model was built in MSC Patran. The FE 

model of the square plate (100×100×10 mm) in standard steel, with a central hole of 

radius of 20 mm, is composed of a very fine mesh of CQUAD4 elements with a total 

of 10,400 nodes. A 2-D shell structure (i.e. 2D plane stress element) is assigned to 

the FE model for the simplicity of analysis. The meshed FE grid and corresponding 

deformation of the model are shown in Figure 6–11, where the left hand side of the 

plate is clamped and a uniformly distributed tensile load on the right-hand edge 

produces an elastic extension of approximately 14 mm. The RoI consists of 250×250 

pixels and the FE displacement field of RoI in the x- and y-directions are shown in 

Figure 6–12.  

  

Figure 6–11. The mesh grid of FE model (left plot) and the deformation under 

tensile loading (right plot) 
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Figure 6–12. The interpolated FE displacement fields (in pixels) in x-direction (left) 

and y-direction (right) 

Approach 1: using experimental speckles 

The same speckle pattern used in the second case study (from DIC Challenge 2D 

Dataset [177]) is employed to as the source image from which the reference image is 

selected as indicated by the red square shown in Figure 6–13. The deformed image 

is achieved by interpolating grey intensities at integer positions after applying the FE 

displacements to pixels in the reference image. In regard to DIC, both the reference 

and deformed images are trimmed out along the outer edges and around the edge of 

the hole to avoid edge effects.  

 

Figure 6–13. The selected region of interest (marked as a red rectangle) from a real 

experimental image (DIC Challenge 2D Dataset) 
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Figure 6–14. The distribution of 78 chosen control points (Approach 1, 28 initial 

points) on the reference image (left) and the deformed image (right). 

 

 

Figure 6–15. Evolution of GMSE: Approach 1 with 28 & 16 initial control points; 

Approach 2 with 28 initial points. 

28 initial control points were firstly selected uniformly close to the outer and inner 

edges of the RoI denoted by the red ‘+’ signs as shown in Figure 6–14. The control 

grid was updated adaptively as described in Section 6.3 using the fast DIC method 

(described previously). At each grid updating step two new control points were 

added having the greatest MSE in the x- and y-directions. Figure 6–14 shows the 
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added control points as blue ‘×’ signs for the case of the first approach. Updating 

was continued until the GMSE was deemed sufficiently small according to a pre-set 

tolerance. Finally total 78 control points were used to formulate the Kriging model. 

It should be noted that this number was chosen as a compromise between the 

accuracy of the control grid and the efficiency of the computation. 

 

 

Figure 6–16. Evolution of optimization parameters with increasing numbers of 

control points. 

Figure 6–18 illustrates the displacement errors (in pixels) in X and Y directions 

before the Newton iterative optimisation which are the absolute difference between 

the FE displacement field and the displacement field based on Kriging regression 
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model. Correspondingly Figure 6–19 shows the displacement residuals after the 

Newton interation. It can be seen that the displacement errors were significantly 

reduced. 

On the other hand, with the purpose of testing the robustness of Kriging-DIC 

method, the calculation was repeated but using a different initial condition where 16 

control points are arranged irregularly around the boundary shown in Figure 6–20. 

Also totally 78 control points were employed to build the Kriging model after the 

control-grid updating. Figure 6–21 and Figure 6–22 show displacement residual 

errors of the RoI before and after the iterative optimization respectively. According 

to the results, it can be seen that the measurement errors are hardly affected by the 

different settings of initial control points, which demonstrates the robustness and 

flexibility of Kriging DIC method. Moreover, a specific comparison can be found in 

Table 6–5.  

The evolution of GMSE is shown in Figure 6–15 and optimisation parameters xϑ , 

yϑ  and ξ  in Figure 6–16. The fully converged Kriging model has 78 control points 

(approach 1, both 28 and 16 initial points) after adaptive control-grid updating. The 

objective function in Figure 6–17 is normalised by the sum of all the grey intensities 

in the reference image and is therefore unit-less. The evolution of the mean error and 

standard deviation is given in Figure 6–23. 
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Figure 6–17. Convergence of the objective function – Newton iteration. 

Approach 2: using Gaussian speckles 

According to the work of Peng Zhou etc. [20, 81], speckle patterns on the CCD 

target before and after the deformation may be assumed to be the sum of individual 

Gaussian speckles. The Gaussian speckles are formulated as, 

 

2 2

2
1

2 2

2
1

( ) ( )
( , ) exp( )

( ( , )) ( ( , ))
( , ) exp( )

M
k k

k
k

M
k k

k
k

x x y y
I x y A

x x u x y y y v x y
I x y A

γ

γ

=

=

− + −= −

− − + − −= −

∑

∑ɶ

  (6-10) 

where I  and Iɶ  represent the reference- and deformed-image speckle patterns 

respectively. M  denotes the total number of speckle granules, γ  is the size and kA  

the peak intensity of each speckle granule and ( ),k kx y  represents the position of 

each speckle granule uniformly distributed over the RoI. In addition 

( , ) and ( , )u x y v x y  denote the required displacement fields in x- and y-directions 

respectively which may be extracted from FE results. 
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Figure 6–18. The displacement errors in pixels (Approach 1, 28 initial points) before 

Newton iteration (difference with the FE displacement fields) in x-direction (left) 

and y-direction (right) 

 

 

 

Figure 6–19. Displacement errors in pixels (Approach 1, 28 initial points) after 

Newton iteration in x-direction (left) and y-direction (right) 
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Figure 6–20. The distribution of 78 chosen control points (Approach 1, 16 initial 

points) on the reference image (left) and the deformed image (right), plus marks in 

red indicates initial control points while x-marks in blue are added control points 

through grid updating 

 

 

Figure 6–21. The displacement errors in pixels (Approach 1, 16 initial points) before 

Newton iteration (difference with the FE displacement fields) in x-direction (left) 

and y-direction (right) 
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Figure 6–22. The displacement errors in pixels (Approach 1, 16 initial points) after 

Newton iteration (difference with the FE displacement fields) in x-direction (left) 

and y-direction (right) 

The raw speckle images are generated using the numerical method based on 

Gaussian speckles. In the present case 7000 independent and identically distributed 

speckles are superimposed on the raw image of 250×300 pixels, each Gaussian 

speckle having a standard deviation of 2.5 pixels. The speckles of the deformed 

image are obtained by shifting the means (of the reference-image speckles) by the 

displacements determined from the FE model. The reference and deformed images 

are digitised using an 8-bit processor. Similar as the Approach 1, both the reference 

and deformed images are trimmed out from the raw speckle images shown in Figure 

6–24.  

The same 28 initial control points used in the first example of Approach 1 were 

arranged in the reference image indicated by the red ‘+’ signs as shown in Figure 6–

25. After the control grid was adaptively updated, the Kriging model finally reaches 

convergence when 88 control points were taken into consideration with 62 new 

added control points shown as blue ‘×’ signs in Figure 6–25. Due to the fact that 
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measurement accuracy could be significantly improved through Newton iterative 

optimisation, the improvement was observed from the comparison between the 

residual displacement errors before and after the iteration, as shown in Figure 6–26 

and Figure 6–27 respectively. 

 

 

 

Figure 6–23. Evolution of Kriging-DIC measurement error statistics 
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Figure 6–24. Trimmed speckle patterns, the reference image (left) and the deformed 

image (right) 

 

  

Figure 6–25. The distribution of 88 chosen control points (Approach 2, 28 initial 

points) on the reference image (left) and the deformed image (right), plus marks in 

red indicates initial control points while x-marks in blue are added control points 

through grid updating 
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Figure 6–26. The displacement errors in pixels (Approach 2, 28 initial points) before 

Newton iteration (difference with the interpolated FE displacement fields) in x-

direction (left) and y-direction (right)  

 

 

Figure 6–27. Displacement errors in pixels (Approach 2, 28 initial points) after 

Newton iteration in x-direction (left) and y-direction (right) 
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presented in Figure 6–17. Further, the evolution of the mean error and standard 

deviation for the two approaches is given in Figure 6–23.  

The optimisation parameters xϑ  and yϑ  from the two approaches were found to be 

similar, although there were differences in the values of ξ , presumably due to the 

different speckle patterns produced by the two methods. Convergence of the 

objective function was somewhat slower by the second approach, but the final 

estimated displacement fields were found to be almost identical from visual 

inspection of Figure 6–19, Figure 6–22 and Figure 6–27. The statistics of 

displacement fields are given in Table 6–5. The displacement fields from approach 1 

were found to converge to almost identical statistics regardless of the number and 

location of the initial control points. 

Table 6–5: Measurement error statistics (in pixels) 

 
Approach 1 

(28 initial points & 
78 in total) 

Approach 1 
(16 initial points & 

78 in total) 

Approach 2 
(28 initial points & 

88 in total) 

X 
Mean 
Error 

0.00135 0.00134 2.60e-4 

STD 0.0244 0.0228 0.0209 

Y 
Mean 
Error 

-1.51e-5 -2.25e-4 -4.93e-4 

STD 0.0157 0.0166 0.0151 
 

6.4.4 Case study 4: experimental I-beam test 

Application of the Kriging-DIC method is demonstrated on an experimental I-

section beam with circular holes arranged symmetrically along the beam about its 

centre as shown in Figure 6–28. The overall dimensions of the cross section are 42 

mm × 65 mm with 2.5 mm wall thickness. The distance between the supports is 450 

mm. The test arrangement shown in the figure is designed to apply a mid-span 
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transverse point load, in the present case 2 kN. The experimental setup is described 

in detail by Labeas et al. [204]. 

The speckle-pattern reference image for a square RoI of 700×700 pixels is shown in 

Figure 6–29 with 12 initial control points denoted by red ‘+’ signs and 30 added 

control points shown by blue ‘×’ signs. The estimated displacement field determined 

by Newton iteration is shown in Figure 6–30 and for purpose of comparison results 

from a commercial DIC system (Dantec Q-400) using a local, subset-based DIC 

approach (41×41 pixel subsets and 30 pixel grid spacing) is provided in Figure 6–31. 

Figure 6–32 shows the absolute difference between the Kriging-DIC result and that 

produced by the commercial system, with the statistics of the difference summarised 

in Table 6–6. Results from the two systems appear to be similar although the 

displacement field produced by Kriging DIC seems smoother than that produced by 

the commercial system, which shows unexpected oscillations in the y-direction 

displacement field (Figure 6–31).  

 

Figure 6–28. The experimental setup. 
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Figure 6–29. The distribution of initial control points (red ‘+’ signs) and added 

control points (blue ‘×’ signs) superimposed on the reference image. 

  

Figure 6–30. Displacement fields (mm) calculated by Kriging DIC method in x-

direction (left) and y-direction (right). 

  

Figure 6–31. Displacement fields (mm) calculated by the commercial system in the 

x-direction (left) and y-direction (right) 
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Figure 6–32. The absolute difference between the displacement fields (mm) 

calculated by Kriging DIC and the commercial system in the x-direction (left) and y-

direction (right). 

Table 6–6: Mean values and standard deviations of the absolute difference 

Residual Disp Unit: mm Unit: pixel* 

x 
Mean 1.3472e-3 0.0182 

STD 9.1654e-4 0.0124 

y 
Mean 6.0095e-4 0.0081 

STD 7.3189e-4 0.0099 

*1 pixel length ≈  0.074 mm 

6.5 Closure 

A global DIC method based on Kriging regression with self-adaptive control grid 

updating is developed. The Kriging approach consists of two parts based on a 

regression model and the correlation between displacements at control points. The 

result is a minimum variance estimator with the error represented by a Gaussian 

process. Unlike FE DIC and Spline DIC, Kriging DIC is based on control points that 

are distributed fully throughout the region of interest. Since the control points are 

not measured with perfect accuracy, a regularization technique is employed to 
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extend Kriging interpolation model to a regression form to reduce the error effect. A 

self-adaptive updating technique is developed to optimise the control grid of Kriging 

model automatically.  

The method is supported by four case studies, the first of which compares the 

performance of Kriging DIC and the classical subset-based DIC in terms of 

resolution and spatial resolution. It is found that Kriging DIC is able to achieve 

excellent displacement resolutions at high spatial resolutions and is very robust to 

image noise. However, it may need further adjustments for applications with high 

spatial frequency content. The second uses experimental data from the DIC 

Challenge 2D database. Using this data Kriging-DIC is shown to outperform Q4-FE 

DIC and Cubic Spline DIC. In the third case study Kriging DIC is shown to be 

robust to the number and location of initially-chosen control points and to speckle-

pattern variations. The fourth case study is an experimental example where Kriging 

DIC is shown to perform favourably against a commercial subset-based DIC system. 
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7 

7 Uncertainty Quantification in DIC 

with Kriging Regression 

A Kriging regression model is developed as a post-processing technique for the 

treatment of measurement uncertainty in the classical subset-based Digital Image 

Correlation (DIC). Regression is achieved by regularising the sample-point 

correlation matrix using a local, subset-based, assessment of the measurement error 

with assumed statistical normality and based on the Sum of Squared Difference 

(SSD) criterion. This leads to a Kriging-regression model in the form of a Gaussian 

process representing uncertainty on the Kriging estimate of the measured 

displacement field. The method is demonstrated using numerical and experimental 

examples. Kriging estimates of displacement fields are shown to be in excellent 

agreement with ‘true’ values for the numerical cases and in the experimental 

example uncertainty quantification is carried out using the Gaussian random process 

that forms part of the Kriging model. The root mean square error (RMSE) on the 
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estimated displacements is produced and standard deviations on local strain 

estimates are determined.  

Equation Chapter 7 Section 1 

7.1 Problem overview 

DIC is a well-developed and extensively applied technique in experimental 

mechanics while the subset-based DIC is probably the most commonly used 

approach because of its simplicity [5]. Inaccuracy, typically caused by camera noise, 

illumination variability, grey-scale interpolation and other sources, will always be 

present regardless of the level of precision of the DIC measurement. The resulting 

error in the measured data affects the accuracy of strain estimates [88] based on 

displacement data. A common way of dealing with this problem is to apply local 

smoothing [32, 33, 40], which has the advantage of simplicity but is subject to ad-

hoc choice of order and parameterisation, possibly leading only to a local optimum. 

In the present study, a global improvement in measurement accuracy is sought by 

post-processing with a Kriging model that incorporates knowledge of error estimates 

determined from the classical subset-based DIC. Specifically, the measured data is 

regressed by utilizing an estimate of the measurement error built into the leading 

diagonal of the Kriging correlation matrix [55, 56, 163, 187].  

Jouke et al. [163] proposed a local error estimate technique in particle image 

velocimetry (PIV) by using an uncertainty model based on peak ratios [164] in the 

cross-correlation map. This technique is not transferrable to DIC because of 

significant differences in the cross-correlation map of DIC data compared with PIV. 

Also DIC algorithms are usually based on the Sum of Squared Difference (SSD) 
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criterion and Newton iteration. Sutton et al. [23, 57] derived an estimate of 

displacement error due to the presence of Gaussian image noise, which is a function 

of the standard deviation of Gaussian noise and the sum of squared intensity 

gradients [24]. By considering the various error sources existing in the experiments, 

a more general form of error estimate was derived to approximate DIC error bounds 

as a function of the SSD residual and the inverse of Hessian matrix [35, 51], as 

discussed in Section 4.2.2. It is advantageous that the error estimate can be 

determined in the DIC process simultaneously with the displacement data without 

increasing the computational cost. 

As discussed in Chapter 6, Kriging DIC considers the measurement uncertainty to 

be independent and identically distributed across the entire Region of Interest (RoI). 

Whilst this approach offers excellent error reduction properties, the resulting 

Gaussian-process estimate is limited by the assumption of measurement error that, 

within the RoI, remains the same from location to location. This limitation is 

addressed in this chapter whereby a local error estimate based on the inverse Hessian 

matrix and the residual of the SSD criterion is incorporated in Kriging regression. In 

Chapter 6, the Kriging model is used as a shape function in the full-field DIC 

Newton iteration, in this study Kriging regression is used as a post-processing 

technique to improve the accuracy of classical subset-based DIC measurement by 

including a local error estimate determined subset-by-subset. Numerical and 

experimental examples are used to test the performance of the proposed approach. 

One of the advantages of Kriging is that it provides not only a best linear unbiased 

prediction of the measurement, but also a Gaussian random process that delivers 

uncertainty quantification (UQ) on the prediction itself. Results show that Kriging 

regression with local error estimation is able to reduce the effect of measurement 



 
 

152 | P a g e 
 

errors and improve the accuracy of the estimated displacement field rather than just 

smoothing it. In an experimental example, the RMSE on the estimated displacement 

field and the standard deviations on locally estimated strains are presented. Post-

processing with the Kriging model leads to a significant improvement in strain 

results obtained using an extensively used local linear fitting algorithm with a strain 

calculation window of various sizes [40]. The strain results determined directly from 

the gradients of the Kriging displacement field are also presented for comparison. 

7.2 Uncertainty in the subset-based DIC 

In order to obtain a mathematical expression for the local error estimate to be 

incorporated in the Kriging regression, a generic analysis for the measurement 

uncertainty of subset-based DIC is introduced first with the assumption of 

deformation continuity of a solid object and for reasons of simplicity a 2-

dimensional case is considered. Detailed derivations for a general expression of the 

measurement uncertainty are given in Section 4.2.2. 

The Kriging regression with local error estimate, described in the following section, 

is applied in the form of a non-parametric regression model and by including certain 

weighting terms, uncertainty in different parts of the full image may be represented 

probabilistically to develop an estimate of the true displacement field. Numerical 

and experimental examples show that the proposed approach is able to improve the 

measurement results of the classical subset-based method [63]. 
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7.3 Kriging regression with local error estimate 

Typically, DIC data are not measured with perfect accuracy, but are subject to 

measurement noise and imprecision [43, 55, 56, 162, 201], which might be reduced 

by pre-filtering [32, 41, 42]. However, in this study the Kriging regression approach 

accounts for measurement error in an overall way by regularizing the diagonal 

elements of the Kriging correlation matrix R. This means that the training points (or 

sample points) are not reproduced exactly but allow for error in the measured DIC 

image, thereby enabling the determination of an optimised displacement field 

represented by the Kriging model that represents the true displacement in the sense 

of a best linear unbiased prediction. 

The method applied in this study is Kriging regression, also known as ‘Universal 

Kriging’ or ‘Kriging with External Drift’ [180]. Following the derivations of 

Kriging interpolation in Section 5.2, specifically in this study, Kriging is used to 

model the true displacement field ( ),w x y  as a realisation of a random function 

( )ˆ ,w x y , which consists of a deterministic regression model and a zero-mean 

stochastic model [168, 181] as, 

 
1

ˆ ( , ) ( , ) ( , )
m

w x y c x y Z x yβ
=

= +∑ ℓ ℓ

ℓ

  (7-1) 

where β
ℓ
 represents the thℓ  regression coefficient based on regression functions 

( ), , 1, , ,c x y m=
ℓ

ℓ …  and The zero-mean Gaussian stochastic field is denoted by 

( , )Z x y , of which covariance between two arbitrary sample points j and k is 

formulated by, 
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 ( ) ( ) ( ) ( )T T2cov ( ), ( ) , , , , ; , ; ,j k jk j k x y j j j k k kZ Z r x y x yσ ϑ ϑ ξ= = =x x x x x x (7-2) 

where ( ) ( ), , , corr ( ), ( )jk j k x y j kr Z Zϑ ϑ =x x x x  depends on the proximity of points j 

and k. Based on an optimisation procedure, the correlation parameters , ,x yϑ ϑ ξ  and 

field variance 2σ  are determined, as described in Section 5.2. 

The regression parameters β
ℓ
 may be estimated from the sample by using the 

generalized least squares (GLS) method [53, 182]. Denoting [ ]T

0 1, , nw w=w ⋯  as 

the vector of displacements calculated by the subset-based DIC at a set of sample 

points ( ), , 1, 2, , ,j jx y j n= … , the estimated regression parameters β̂  are then 

expressed by [182] (as shown in Equation (5-36)): 

 ( ) 1T 1 T 1
0

ˆ −− −=β C R C C R w   (7-3) 

where the correlation matrix R  is a function of the parameters , ,x yϑ ϑ ξ , i.e. 

( ), ,x yϑ ϑ ξR . Then, by minimising the mean-square prediction error under an 

unbiasedness constraint [182], the Kriging model at an arbitrarily chosen point 

( ),p p px y=x  is obtained as,  

 ( ) ( )( )2ˆ ,  ( )p p pw w Sσx x x∼ N  (7-4) 

where, 

 ( )T T 1
0

ˆ ˆ( ) ( ) ( )p p pw −= + −x c x β r x R w Cβ   (7-5) 

is the Best Linear Unbiased Prediction (BLUP) with the variance given by, 
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( ) ( ( )

( ) ( ) )
2 2 T 1 T T 1

1 TT 1 T T 1

ˆ ˆ 1 ( ) ( ) ( ) ( )

( ) ( )

p p p p p

p p

Vσ σ − −

−− −

= − + −

× −

x r x R r x c x r x R C

C R C c x r x R C
  (7-6) 

Covariance terms between two arbitrary locations ,p qx x  may be expressed as, 

 
( ) ( )( ( )

( ) ( ) )
2 2 T 1 T T 1

1 TT 1 T T 1

ˆ ˆ, , ( ) ( ) ( ) ( )

( ) ( )

p q pq p q p q p p

q q

V rσ σ − −

−− −

= − + −

× −

x x x x r x R r x c x r x R C

C R C c x r x R C
  (7-7) 

where ,p qx x  may be either sampled or unsampled points and ( )î  denotes an 

estimate while 2σ̂  is given by Equation (5-35). The variance and covariance terms 

given in Equation (7-6) and (7-7) respectively are equivalent to the corresponding 

diagonal and non-diagonal terms in the covariance matrix shown in Equation (5-49). 

In the above expressions, R  is the matrix of sample-point displacement correlation 

functions with terms ( , , , , )jk j k x yr ϑ ϑ ξx x  described above; ( )( , , )x yp q ϑ ϑr x  is the 

vector of displacement correlation functions between an arbitrarily chosen location 

( )( )p qx  and each of the sample points ( ), 1,2, ,j j n=x … ; and ( ), , ,pq p q x yr ϑ ϑx x

denotes the correlation between two arbitrarily chosen points ( ),p qx x . C  is a matrix 

consisting of regression functions evaluated at the sample points, ( )j jC c= x
ℓ ℓ

; and 

( )( )p qc x  is the vector of regression functions for an arbitrary location ( )p qx , i.e. 

( )( )p qc c= x
ℓ ℓ

. 

The correlation functions are generally assumed to be Gaussian [187] (as shown in 

Equation (5-29)), which relies on assuming the response surface inferred by Kriging 

regression is smooth. It can be expressed in the form: 
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 2 2( , , , ) exp( ( ) ( ) )pq p q x y x p q y p qr x x y yϑ ϑ ϑ ϑ= − − − −x x   (7-8) 

where the terms xϑ  and yϑ  determine how significantly the distances between both 

px  and qx  and py  and qy  affect the correlation given by equation (7-8). It is seen 

that points close to each other have a higher correlation than those that are far away.  

When measurement error is considered the diagonal elements of the correlation 

matrix R  in the Kriging formula should be adjusted by the introduction of an error 

term (multiplicatively in the present work). This allows for regression instead of 

exact interpolation of the data samples. According to the correlation function (7-8), 

all the diagonal elements of matrix R  are unity for Kriging interpolation which 

means that the Kriging model passes through all the samples exactly. In contrast, 

measurement error is taken into account by regularizing the diagonal elements of the 

correlation matrix R , which allows regression of the Kriging model on the data 

samples. This modified formulation is known as Kriging regression [162] and 

introduces an additional parameter ξ . 

7.3.1 Global error estimate 

If the error is assumed independent and identically distributed across the entire 

region of interest then an unknown constant factor ξ  may be applied [56, 63, 163] to 

modify the diagonal elements of the correlation matrix R  according to Equation 

(7-8),  

 * exp( ); 1,2, ,jjr j nξ= = …   (7-9) 

where n denotes the number of sample points. 
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7.3.2 Local error estimate 

In many cases, the error is not constant over the entire domain but may separately be 

considered independent and identically distributed over a subset of the reference 

image. An estimate of displacement error for each subset due to the presence of 

Gaussian image noise was derived [23, 57] as a function of the standard deviation of 

Gaussian noise and the sum of squared intensity gradients [24]. As discussed in 

Section 4.2.2, a more general form of error estimate is derived to approximate the 

DIC error bound for each subset as a function of the SSD residual and the inverse of 

Hessian matrix [35, 51]. The multiple error sources in DIC measurement are 

included in a general way. By combining the Equation (4-21) and Equation (4-22), 

this general form of error estimate for each subset may be expressed as, 

 
( )

( )

* 1
2 11

* 1
2 77

j
xj

j
yj

m
N

m
N

−

−

= ⋅

= ⋅

H

H

SSD

SSD

C

C
  (7-10) 

where *
xjm  and *

yjm  are approximations to the error variances associated with x- and 

y-direction displacements for the thj  subset of N N×  pixels, having a single sample 

point at its centre. jSSD
C  denotes the SSD residual for the thj  subset. H  is the 

calculated Hessian matrix while subscripts 11 and 77 indicate the diagonal elements 

of 1−H  that corresponds to the x- and y-direction displacements of the subset centre 

point.  

If the different error for each subset is taken into account, equation (7-9) then may 

be expressed in modified form, 
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* *

*

* 2 * 2
1 1

exp
( ) ( )

x xj y yj
jj

x y

m m
r

m m

ϑ ϑ
ξ
  − −  =
  +  

  (7-11) 

where the term * 2 * 2
1 1( ) ( )x ym m+  is a normalising constant. 

The derivation of *
xjm  and *

yjm , given in Equation (7-10), is achieved under the 

following conditions on the measurement error: 

i. Assumed to be Gaussian with zero mean, independent and identically distributed 

over a subset of N N×  pixels. 

ii.  Approximated using shape functions based on a second-order Taylor series 

expansion (may be first- or higher-order) about a sample point at a subset centre. 

iii.  Linearised at N N×  pixels to relate field uncertainties to shape function 

variables.  

iv. Pixel grey-intensity variances approximated using the SSD between the deformed 

and reference images. 

As discussed in Section 5.3.3, the solution of unknown Kriging parameters 

{ }2, , ,x yϑ ϑ ξ σ  is carried out based on the maximum likelihood estimation by using a 

Nelder-Mead optimisation algorithm with a first-order regression function chosen 

for ( , )x yc  [182]. 

7.3.3 Strain calculation  

Two different methods were applied to determine the strains. Firstly, a local fitting 

technique [40] based on the point-wise least squares algorithm (PLS), within a 

chosen strain calculation window, was utilized to estimate the strain result from the 

measured displacement data. Linear functions are fitted to approximate the gradients 
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at the centre point of each local strain window. It is known [40] that there might be 

an insufficient number of valid data points within the strain calculation window at 

the boundaries or where there are discontinuities. In order to solve this problem, a 

displacement continuity assumption may be used to extend the displacement field 

[78] or alternatively the invalid points may be identified and excluded from the local 

PLS fitting [40]. The latter was applied in this study, as was post-processing by the 

Kriging local method, which has a similar effect. 

Secondly, the strain results were calculated directly from the gradients of the 

Kriging displacement model. This second approach is applied in an experimental 

case study, where estimated strains are compared to those produced by the PLS 

method. The Kriging gradients are calculated from the Jacobian of the vector of 

regression functions ( )pc x  and the vector of correlation functions ( )pr x  as 

discussed in Section 5.2.3.  

Although the displacement field is Gaussian, the strain field is generally non-

Gaussian. According to Section 5.5, a sampling method based on Cholesky 

decomposition was employed to sample the displacement field from the multivariate 

Gaussian distribution [195, 205] with the purpose of quantifying the uncertainty on 

the estimated strain field. Given the Cholesky decomposition of the correlation 

matrix T=V ΛΛ  (equations (7-6) and (7-7)) where Λ  is a lower triangular matrix, 

samples of the displacement field, across the region of interest, were generated from, 

 ˆ s= +w Λn w  (7-12) 

by sampling from ( )0,  sn IN∼  which is subject to a multivariate standard normal 

distribution. Classical finite differences may then be applied to calculate the 
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gradients and generate the strain results. This requires dense sampling of 

displacement field (local sampling) to determine the uncertainty on the estimated 

strains. 

7.4 Case studies 

Numerical and experimental case studies are presented to illustrate the application of 

Kriging regression with local error estimation. Two sets of numerical simulation 

examples were carried out first so that possible errors introduced by the image 

acquisition system were excluded. In the first numerical example, the effectiveness 

of the proposed Kriging method in displacement estimation is investigated using 

numerically generated Gaussian speckles with uniform translations, affine 

deformation and Gaussian image noise. The second numerical example has the same 

numerically generated Gaussian speckles but a uniaxial tensile deformation with a 

constant strain. Gaussian image noise is employed to verify the performance of 

proposed Kriging method in strain measurement. In the experimental example, a 

cantilever beam test is chosen to investigate the performance of Kriging method in a 

practical DIC application, since it has a simple analytical solution for comparison 

with DIC results.  

7.4.1 Numerical case study 1: verification of the Kriging method 

for displacement measurement 

A 2-dimensional numerical example is illustrated, using numerically-produced 

Gaussian speckles [81, 95] with means uniformly distributed over the RoI. Gaussian 

speckles are formulated as shown in Equation (6-10) but the displacements 

( , ) and ( , )u x y v x y  are represented in the form of first-order shape functions as: 
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0

0

( , )

( , )
x y

x y

u x y u u x u y

v x y v v x v y

= + +

= + +
  (7-13) 

In the present case, 8000 independent and identically distributed speckles were 

superimposed on an image consisting of 500×500 pixels, each Gaussian speckle 

having a size of 3 pixels and a peak intensity of 60. In order to test the proposed 

method, several deformed images were produced with a combination of (a) rigid-

body translation in x- and y-directions, (b) affine deformation, and (c) Gaussian 

image noise. The reference and deformed images were digitised using an 8-bit 

processor. As the grey values of non-integer locations are required in the DIC 

process, a grey-value interpolation scheme is needed and for reasons of simplicity a 

cubic spline intensity interpolation scheme was chosen. 

 

Figure 7–1. Numerically generated speckles and the distribution of sample points 

(red crosses) - 3 subsets are shown in green squares 

The RoI was divided into 100 uniformly distributed sample points, each of which 

was defined as the centre node of a subset of 41 × 41 pixels, as shown in Figure 7–1. 

The subset-based DIC, based on a Newton-Raphson scheme, was applied to assess 
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the measurement error at all the sample points. Since only a linear deformation 

(affine transformation) was applied, a first-order Taylor-expansion shape function 

was chosen in order to avoid possible over-fitting. On the basis of this measurement, 

both Kriging regression with global and local error estimation were employed to 

regularize the measured data and achieve an estimate of the displacement at each 

centre node.  

As the true displacements of the sample points are easily derivable, the residual 

errors of subset-based DIC, Kriging global and Kriging local methods are shown 

and may be compared in Figure 7–2 to Figure 7–5. The results shown for Kriging 

are the mean values of the Gaussian Process that represents the Kriging model. It is 

observed that the residual errors are significantly reduced after the application of 

Kriging regression with local error estimation. There is a very tiny difference in the 

residual errors of Figure 7–2 between the Kriging global and local methods, which is 

to be expected because uniform translation was applied to the whole RoI. The 

Kriging global method performs less well in the case of an affine deformation as 

shown in Figure 7–3, because the local deformations differ from subset to subset. 

Both the Kriging global and local methods demonstrate effective reduction of 

measurement errors due to Gaussian image noise as shown in Figure 7–4. In Figure 

7–5 under the effect of combined error sources, the Kriging local method 

considerably out-performs the Kriging global method. 
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x-direction                                     (b) y-direction 

Figure 7–2. Numerical case study 1: residual error comparison for a rigid-body 

translation 0 00.2,  0.3u v= =  pixels. 

 

(a) x-direction                                     (b) y-direction 

Figure 7–3. Numerical case study 1: residual error comparison for an affine 

deformation 0.005,  0.005,  0.005,  0.005x y x yu u v v= = = =  pixels. 

 

(a) x-direction                                     (b) y-direction 

Figure 7–4. Numerical case study 1: residual error comparison for Gaussian image 

noise, zero mean, 5σ =  grey-levels.  
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(a) x-direction                                    (b) y-direction 

Figure 7–5. Numerical case study 1: residual error comparison for the combination 

of translation 0 00.2,  0.3u v= =  pixels, affine deformation 

0.005, 0.005, 0.005, 0.005x y x yu u v v= = = =  pixels and Gaussian image noise, zero 

mean, 5σ =  grey-levels. 

7.4.2 Numerical case study 2: verification of the Kriging method 

for strain measurement. 

A uniaxial tensile deformation was applied to investigate the performance of 

proposed Kriging method in strain measurement. The pre-assigned homogenous 

strain was 5000 µε  in the x-direction i.e. 0.005, 0, 0, 0x y x yu u v v= = = = . The same 

numerically generated Gaussian speckles as in Case Study 1 were used. Gaussian 

image noise with zero mean and 3σ =  grey-levels was added to the numerical 

images to simulate a practical noise condition. A central-area uniform grid 33 × 33 

with a grid spacing of 13 pixels was superimposed upon the simulated image of 500 

× 500 pixels. The displacement at the 1089 grid points was computed by the subset-

based DIC using a Newton-Raphson scheme and a first-order Taylor-expansion 

shape function using subsets of 41 × 41 pixels.  
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(a)                                                                   (b) 

Figure 7–6. Numerical case study 2: calculated displacement fields, (a) by subset-

based DIC using Newton-Raphson scheme, (b) by Kriging regression with local 

error estimate 

Figure 7–6 (a) shows the displacement field calculated by the subset-based DIC 

where small fluctuations due to the Gaussian image noise can be observed. The 

regularized displacement field obtained by the Kriging local method is demonstrated 

in Figure 7–6 (b), where the error in the displacement field, due to Gaussian noise, 

has been significantly reduced. The strain results calculated by the PLS algorithm 

for different methods are illustrated in Figure 7–7. For this simple example, it is 

shown that based on the same size of strain calculation window, the Kriging local 

method is able to achieve superior strain results especially in the vicinity of the 

boundaries. The Kriging global and local methods were not significantly affected by 

the deficiency of valid data points at the boundaries of the strain window, since the 

displacement noise had already been substantially removed by the Kriging method. 

The boundary effect could also be reduced by extending of displacement field 

outside the calculation area boundaries [78], but might not be reliable in the case of 

complex deformations when additional errors might be introduced inadvertently.  



 
 

166 | P a g e 
 

 

(a)                                                                (b) 

 

(c)                                                                 (d) 

Figure 7–7. Numerical case study 2: calculated strain fields, (a) by subset-based DIC 

using 7×7 strain window, (b) by subset-based DIC using 15×15 strain window (c) by 

Kriging global method using 15×15 strain window (d) by Kriging local method 

using 15×15 strain window. 

7.4.3 Experimental case study: cantilever beam test with UQ 

The proposed Kriging regression technique was validated by using experimental 

data from an aluminium cantilever beam of dimensions 160 mm × 40mm × 4 mm 

thick. A thin coat of quick-drying white paint (Matt Super White 1107, Plasti-kote, 

UK) was sprayed onto the surfaces of the cantilever beam using an aerosol can, on 

top of which speckles were sprayed using black paint (Matt Super Black 1102, 
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Plastikote, UK). The beam was securely clamped to an optical table as shown in 

Figure 7–8 and, in order to avoid errors caused by relative motions, the DIC system 

was also clamped to the table with the camera perpendicular to the face-plane of the 

cantilever. Perpendicularity was checked in the present case by using a protractor, 

though more sophisticated techniques are available [137, 206]. A vertical load, 

generated by a dead-weight of 51 kg was applied at the tip, also shown in Figure 7–8. 

Two experiments (Test 1 and Test 2) were carried out using two different cantilever 

beams. The illumination intensity was slightly higher in Test 2 than in Test 1 as 

shown in Figure 7–9, while the speckles used in two tests were applied at different 

times and by different operatives. The CCD camera (Allied, Model F-125B/C) has a 

resolution of 1292 pixels × 964 pixels with a Schneider Xenoplan lens of f-number 

1.4 and 12 mm focal length. This combination provides resultant scales of 7.298 

pixels/mm for Test 1 and 7.326 pixels/mm for Test 2. The average speckle diameter 

in both Test 1 and 2 was estimated to be 5 pixels. The experimental setup is also 

described in detail in [207]. 

 

Figure 7–8. Experimental setup 
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A uniform grid of sample points (16×64) was selected as indicated by the red ‘+’ 

signs shown in the reference images of Figure 7–9. The subset-based DIC method 

based on a Newton-Raphson scheme, a shape function in the form of a second-order 

Taylor expansion (subset size: 41 × 41 pixels, grid spacing: 15 pixels) and a 6×6 

intensity interpolation scheme was then employed to calculate the displacements of 

the subset centre nodes while the PLS algorithm was applied to calculate the strain 

results. Analytical displacement and strain results were calculated based on the 

Timoshenko’s beam theory according to [208] and shown in Figure 7–10. The 

diagonal elements of the optimised correlation matrix R may be used to indicate the 

relative magnitude of quantified DIC measurement error, which differs from subset 

to subset. The fractional part of the diagonal element represents the extent to which 

the regularized sample point deviates from the original sample point. It is seen in 

Figure 7–11 that the measurement error generally increases towards to free end of 

the cantilever where the loading is applied. The diagonal element of matrix R (same 

for each subset) by using the Kriging global method is presented in Table 7–1.  

 

(a)                                                        (b) 

Figure 7–9. Distribution of sample points (16×64) in the reference image of the 

cantilever beam for Test 1 (a) and Test 2 (b) 
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Figure 7–10. Analytical displacement fields (mm): (a) x- and (b) y-directions                

and strain distributions: (c) x-x  and (d) y-y strains. 

Table 7–1: Optimized diagonal elements with global error estimate  

Test 1 Test 2 

1.0035 1.0092 

 

Figure 7–12 shows the RMSE on the y-direction mean Kriging estimate. Similar 

results were found for the x-direction, though the displacements are of course greater 

in the y-direction. The tiny error is an indicator of very significant confidence in the 

estimate. The increase in the RMSE at the boundaries is inherent to the Kriging 

method since there is less data available. The Gaussian process deals well with 

interpolation (in the sense of predicting values within the convex hull of the training 

runs), but, as with most other meta models, it suffers with extrapolation. The reason 

is that there is no information outside the bounds so the covariance function does not 

have a way to interpret the relationship between the outermost point and the nearest 

neighbors.  
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For reasons of simplicity and to avoid an excessive number of figures, only the x-x 

strain results for different methods applied to both the specimens are shown for 

comparison in Figure 7–13 and Figure 7–14, i.e. (1) subset-based DIC using 21×21 

strain window, (2) Kriging global method using 21×21 strain window, (3) Kriging 

local method using 21×21 strain window and (4) Kriging local method using the 

gradients from Kriging model, calculated from the Jacobian of the vector of 

regression functions( , )x yc  and the vector of correlation functions ( , )x yr  as 

discussed in [182]. It should be noted that the strain fields shown in Figure 7–13 and 

Figure 7–14 are linearly interpolated from the original discrete strain data (16×64) 

only for the purpose of visualisation. In order to quantify the similarity between 

post-processing results and analytical results, an image decomposition technique 

based on Tchebichef polynomials [209, 210] was used to represent each dataset and 

the concordance correlation coefficient [211] employed to compare the resultant 

moments. Specifically, 400 Tchebichef moments were used and the corresponding 

concordance correlation coefficients are listed in Table 7-2 where it is seen that 

Kriging regression with error estimation shows superior correlation with the 

analytical solution than does the subset-based DIC method. From the results in 

Figure 7–13 and Figure 7–14 and Table 7-2, it can be seen that superior results are 

achieved using Kriging regression with local error estimation, reducing the 

difference between the estimated strain field and the analytical solution. The DIC 

measurement error is reduced by post-processing with local Kriging regression. 
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(a) Test 1  

 

(b) Test 2 

Figure 7–11. Diagonal elements of the optimized R matrix (16×64 centre nodes) in 

(a) Test 1, (b) Test 2 

In order to quantify the uncertainty on strain results, a multivariate Gaussian 

sampling technique [212] described in Section 5.5 can be applied based on the 

Kriging mean values and covariance matrix [182] to generate a series of random 

samples of the displacement field. For reasons of reducing the computational cost, 3 

local regions were selected on the cantilever beam labelled A, B and C in Figure 7–

15. Each region contains 6×6 sample point and a further 1030 uniformly distributed 

new untried points. 10,000 displacement fields were generated and the 

corresponding strain fields calculated by the finite difference method which was also 

used to compute the gradients of the densely sampled displacement field. Finally the 
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strain field uncertainty in the local region was determined in terms of the standard 

deviation. 

Figure 7–16 illustrates the standard deviation of the strain results of the 3 chosen 

local regions. In Figure 7–17 the estimated probability densities and the 

corresponding 95% confidence intervals of the strains are illustrated at 3 chosen 

points (labelled a, b and c, one each in the 3 local regions as shown in Figure 7–15). 

It is found that the greatest uncertainty appears at point c, close to the loading point. 

The strain at point b at mid-span and on the neutral axis is the most confidently 

predicted. 

7.5 Discussion 

As shown in Figure 7–13 and Figure 7–14, applying the proposed local Kriging 

regression method to the displacement data obtained by the classical subset-based 

DIC significantly improves the accuracy of the estimated displacement and strain 

fields. Also, the Gaussian process, which forms part of the Kriging model, allows 

for UQ on estimated displacement and strain fields. There is, however, a penalty to 

be paid for such improvements, in terms of computational cost. This might be 

reduced by using the two fast algorithms, FMLE and FSV [191] as discussed in 

Section 5.3.3, to accelerate the optimisation process in the Kriging local method 

without loss of accuracy.  
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(a) Test 1 

 

(b) Test 2 

Figure 7–12. RMSE on the mean Kriging estimate of the displacement field (y-

direction): (a) Test 1; (b) Test 2. 

For the second case study (constant strain and Gaussian noise), the calculated strain 

results based on the Kriging gradients were found to be better than the strain results 

based on local-fitting gradients when a small strain calculation window, smaller than 

9×9, was chosen, but slightly worse for large strain calculation windows greater than 

9×9. There were found to be small, not very significant differences observed in the 

strain results calculated by Kriging gradients and locally fitted gradients for the 

experimental cantilever-beam case study (Figure 7–13(c) and (d) and Figure 7–14(c) 

and (d)).  
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Table 7–2: Concordance correlation coefficient based on Tchebichef shape 

decomposition for the strain fields in x-x 

 Test 1  Test 2 

Subset-based DIC 

PLS 21×21 strain window 
0.9131 0.9327 

Kriging global method 

PLS 21×21 strain window 
0.9579 0.9520 

Kriging local method 

PLS 21×21 strain window 
0.9733 0.9783 

Kriging local method 

using Kriging gradients 
0.9703 0.9795 

 

 

 

(a)                                                              (b) 

 

(c)                                                              (d) 

Figure 7–13. Test 1 x-x strain field: (a) subset-based DIC using 21×21 strain window; 

(b) Kriging global method using 21×21 strain window; (c) Kriging local method 

using 21×21 strain window. (d) Kriging local method using Kriging gradients 
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(a)                                                              (b) 

 

(c)                                                             (d)  

Figure 7–14. Test 2 x-x strain field: (a) subset-based DIC using 21×21 strain window; 

(b) Kriging global method using 21×21 strain window; (c) Kriging local method 

using 21×21 strain window. (d) Kriging local method using Kriging gradients 

 

 

Figure 7–15. 3 local regions (A, B and C) are chosen on the beam in Test 2; each 

region contains 6×6 sample points shown as red ‘o’ markers and other 1030 

uniformly distributed new predicted points shown as blue ‘+’ markers; a, b and c are 

the points chosen from the same location of the 3 regions 
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(a)                                                       (b) 

 

(c)                                                    (d) 

 

(e)                                                  (f) 

Figure 7–16. Displacement STD (x direction) shown in (a), (c) and (e) and Strain 

STD (x-x direction) shown in (b), (d) and (f) based on 10,000 random samples of the 

displacement field in Test 2, from top to bottom: Region A, Region B and Region C 
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Figure 7–17. The probability density for the strains and 95% confidence interval of 

the 3 chosen points in the 3 regions respectively 

7.6 Closure 

A subset-by-subset approximation of DIC measurement error is derived and 

introduced into the leading-diagonal terms of the Kriging correlation matrix. This 

leads to a Kriging regression with local error estimation based on diagonal elements 

of the inverse Hessian matrix and SSD residual, for the post-processing of measured 

data produced by the subset-based DIC. Unlike spline or other interpolation methods, 

the proposed approach not only allows for regression of the model upon the 

measured data, but also incorporates a Gaussian process that enables RMSEs and 

STDs to be determined on the estimated displacement and strain fields. The 

methodology is supported by both numerical and experimental case studies. All the 

case studies show that the proposed Kriging local method out-performs the Kriging 
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global method and is able to improve the accuracy of measured subset-based DIC 

data and achieve more accurate strain results. 
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8 

8 Conclusions and Future Studies 

8.1 Conclusions 

In this thesis, the problem of DIC error reduction and uncertainty quantification is 

addressed. As a non-contact optical full-field measurement technique, DIC 

measurement accuracy is subject to various kinds of error sources and experimental 

setups. The research presented in this thesis attempts to apply the Kriging regression 

method to deal with DIC measurement errors. It aims to develop methods that are 

capable of including measurement errors for a global optimum and quantifying 

measurement uncertainty. Accordingly, two useful applications of Kriging 

regression method in DIC are developed, they are, a new global DIC algorithm 

known as Kriging-DIC and a Kriging-based method for uncertainty quantification of 

the subset-based DIC measurement.  

i. Kriging-DIC method:  In order to formulate full-field displacement in a 

more accurate realisation of unknown true displacement field, a Kriging 

regression model is integrated into the global DIC framework as a full-field 
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shape function. The lack of knowledge of true displacement field is actually 

modelled by a Gaussian random process resulting in a Kriging model as a 

best linear unbiased prediction. Considering the measurement errors of 

control points, a regularisation technique in a global sense is utilized to 

further improve the accuracy of Kriging model, which also yields an 

approximation method to quantify displacement errors of control points. In 

addition, a strategy of self-adaptive control grid updating was developed 

based on the estimated MSE produced by the Kriging formula for properly 

distributing control points and causing the control grid to converge to an 

optimal density. This self-adaptive strategy also enables the Kriging-DIC 

method to become an unsupervised and versatile method, which eliminates 

the need to select DIC parameters (e.g. subset size, number of control points). 

Compared with other global DIC methods (e.g. FE-DIC and Spline-DIC), 

Kriging-DIC applies a more flexible control grid that is not necessarily 

regular or uniform, which gives Kriging-DIC greater adaptability for 

measurement on complex geometries.  

The robustness of Kriging DIC is demonstrated using experimental and 

numerically-produced data in four case studies. In the first case study, a 

comparison is made between Kriging DIC and the classical subset-based 

DIC in terms of displacement resolution and spatial resolution. It is found 

that Kriging DIC achieves superior displacement resolution than subset-

based DIC for the same spatial resolution. It is particularly well suited to low 

spatial frequency deformation where good displacement resolution is 

required. For higher spatial frequencies, the resolution of the imaging system 

(camera resolution) should be improved. By using experimental data from 
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DIC Challenge 2D database in the second case study, Kriging-DIC is shown 

to outperform Q4-FE DIC and Cubic Spline DIC in a full-field displacement 

measurement. In the third case study Kriging DIC is found to be robust to the 

number and location of initially-chosen control points and to speckle-pattern 

variations. Furthermore, Kriging DIC is shown to be favourably superior to a 

commercial subset-based DIC system through an experimental example 

based on an I-section beam test.  

 

ii.  Kriging-based uncertainty quantification method: The global error 

regularisation technique adopted in Kriging-DIC method accounts for the 

measurement error that is assumed to be independent and identically 

distributed across the entire RoI, which offers excellent error reduction 

properties but is still limited in respect to the fact that measurement errors 

are generally different from location to location. This limitation is then 

overcome by developing a more sophisticated local error regularisation 

technique incorporating Kriging regression in a post-processing approach 

using a local error estimate derived from the DIC algorithm. Inspired by the 

studies of subset-based error estimate due to Gaussian image noise, a more 

general expression for the local error estimate due to various error sources is 

derived as a function of the inverse of the Hessian matrix and the residual of 

SSD criterion. Based on the subset-based DIC measurement, the Kriging 

regression method was developed to account for the local error estimate and 

further quantify the uncertainty of the measured displacement field and strain 

field. The local error regularisation technique is implemented by using an 

error factor to formulate the measurement error in a local sense (subset by 
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subset) and introducing an error factor into the leading diagonal terms of 

Kriging correlation matrix. The results of numerical studies show that 

displacement accuracy has been significantly improved based on the 

proposed method. 

In regard to strain calculations, a method is proposed by using the gradients 

calculated directly from the Kriging regression model known as Kriging 

gradients. It is shown that strain results computed by the Kriging gradients 

are comparable to those computed by a state-of-the-art local fitting algorithm, 

namely the PLS algorithm, with an optimal size of strain window.  

The displacement field uncertainty can be directly quantified as the root 

mean square error (RMSE) based on the Kriging regression model. However, 

the quantified displacement uncertainty is difficult to be propagated in order 

to determine the strain uncertainty, since strain results are calculated from 

displacement gradients. As the Kriging regression model can be deemed as a 

multivariate Gaussian process, it is possible to carry out a sampling process 

of the displacement field to estimate the strain uncertainty, which was 

developed based on Cholesky decomposition of the covariance matrix 

extracted from the Kriging formula. Additional uncertainty may be 

introduced by the gradient calculation, and is reduced by using a classical 

Finite Difference (FD) technique that can be justified scientifically. Finally 

the standard deviation (STD) and 95% confidence interval (CI) are 

determined to illustrate the strain uncertainty. The performance of the 

proposed method is verified by both numerical and experimental case studies. 

All the case studies show that the proposed Kriging regression method with 

local error estimate out-performs the Kriging method with global error 
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estimate and is able to improve the accuracy of displacement and strain 

results of the subset-based DIC and quantify the corresponding displacement 

and strain uncertainties. 

In summary, the Kriging-DIC method is a promising global DIC algorithm 

incorporating the regularisation of measurement error and a self-adaptive grid 

updating strategy. It is able to achieve an excellent performance in noise robustness 

and error reduction. On the other hand, Kriging-based uncertainty quantification 

method offers a new way to integrate the local measurement error of subset-based 

DIC into a global uncertainty quantification model. This post-processing technique 

not only improves the measurement accuracy of subset-based DIC but also 

quantifies the corresponding displacement and strain uncertainties.  

8.2 Future studies 

Although the proposed methods in this thesis have shown the effectiveness to reduce 

DIC measurement errors and quantify the uncertainties, there are still some 

deficiencies that restrain the methods to be used for a wide range of applications. 

Therefore, a further study into the limitations of the proposed methods could lead to 

an improvement in prospective applications. In the following, three main 

complements to the existing study in this thesis might be recommended and should 

be beneficial for further research: 

i. Extension to 3D DIC and Digital Volume Correlation (DVC): So far, the 

developed Kriging-DIC method and Kriging-based uncertainty quantification 

method are still limited to 2D-DIC. However, there is no difficulty to extend 

the current methods to three dimensions since basic concepts and algorithms 
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are exactly the same in 3D-DIC. Digital images of a common object region 

in 3D-DIC are recorded from two or more viewpoints by a typical stereo-

vision system that employs two or more cameras. The Kriging-DIC method 

can be used to perform cross-camera subset matching under a stereo-vision 

calibration procedure. However, it is noted that extra uncertainty introduced 

by 3D calibration should be quantified and combined with the uncertainty 

quantified by the Kriging-based method in the application of 3D-DIC. 

Similarly, the Kriging methods can also be developed to Digital Volume 

Correlation (DVC). DVC primarily requires an imaging system capable of 

acquiring 3D digital images of a specimen. For this purpose, X-ray 

tomography, Confocal Microscopy (CM), and Scattered Light are normally 

popular techniques used in the literature [213]. However, problems related to 

image acquisition, image storage and computation in DVC have non-trivial 

effect on the DIC accuracy [18]. Thus further research needs to be carried 

out to fully consider these above practical issues in order to successfully 

extend the Kriging methods to DVC.  

 

ii.  Adaptation to discontinuities and high spatial frequency deformations:  

The developed Kriging-DIC approach was based on a continuous 

formulation for the measuring displacement field. In addition, the correlation 

function applied in the Kriging regression is Gaussian in this thesis, which 

relies on the assumption that the displacement field to be measured is smooth 

without significant discontinuities e.g. fractures and cracks. Thus the 

resulting displacement measurements are not reliable in the vicinity of a 

discontinuity. In practical applications, extra criterion could be added to 
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Kriging-DIC to identify discontinuities and allow the control grid to be 

accordingly adjusted. Penalty functions can be employed to detect 

discontinuities, for example, (1) by measuring the distance between the 

estimated displacement field and its projection [108]; (2) by using an 

equivalent strain [10] on the detection of intense shear; (3) by utilising the 

poor correlation coefficients [97]. On the other hand, adjustments can be 

conducted to account for the discontinuous displacement field once some 

discontinuities are identified. Specifically, it might be implemented by 

separating the control grid at discontinuous locations to exclude the 

discontinuous areas and adding extra DoF to Kriging shape function.  

Moreover, high spatial frequency displacement fields are challenging for 

Kriging-DIC. For example, in the testing of carbon-fibre-reinforced 

composite material, the displacement field normally is not smooth but 

significantly irregular. In that case, other types of correlation functions 

instead of Gaussian might be applied to adapt to this specific displacement 

behaviour. 

 

iii.  Extension of the Kriging uncertainty quantification method through 

Bayesian framework: Kriging regression method applied in this thesis 

stems from Universal Kriging (UK) obtained by an optimisation process and 

equivalent to a Bayesian formulation with non-informative priors and 

Gaussian posterior [194]. Though this assumption is generally reasonable for 

most cases and frequently correct, it may slightly underestimate the 

uncertainty of measurement results for some cases. However, other types of 

prior distributions can also be employed, whereas the Bayesian Kriging [169, 
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194] is actually utilized to carry out a more sophisticated uncertainty analysis. 

In this sense, improvement could be made through choosing proper priors for 

Kriging parameters with respect to a specific application, by which 

measurement uncertainty might be quantified more accurately. Also it 

normally requires a Markov Chain Monte Carlo (MCMC) simulation to 

sample the posterior distributions of all Kriging parameters, which however 

inevitably increases the computational cost compared with the usage of 

Universal Kriging.  

To summarise, the introduction of Kriging regression to DIC turns out to be a 

meaningful attempt to deal with DIC measurement error and uncertainty especially 

in both global and local senses. Future developments of this application should 

continue to focus on improving its performance in challenging applications and 

adaptability for a wide range of practical problems. 
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Appendix A 

Intensity Interpolation Scheme 

Since the grey values at the non-integer locations are normally required in the DIC 

process, it is necessary to utilise a grey-intensity interpolation method. In this part, 

the classical 4×4 bi-cubic interpolation algorithm is introduced. Alternatively more 

sophisticated interpolation schemes may be found in [37]. 

With the purpose of reconstructing a continuous 2-D grey signal ( )* ,x yλ  

( * , ,x yλ ∈ℝ ) based on its discrete samples at integer locations ( )* ,s tλ  ( ,s t∈ℕ ), 

image interpolation may be implemented through the convolution [37, 74] of the 

discrete image samples with the continuous 2-D impulse response ( )2 ,D x yψ  of a 

reconstruction filter [37].  

 ( ) ( ) ( )* 2 *, , ,D
s t

x y x s y t s tλ ψ λ= − − ⋅∑∑  (A-1) 

In order to reduce the computational complexity, symmetrical and separable 

interpolation kernels are applied, resulting in: 

 ( ) ( ) ( )2 ,D x y x yψ ψ ψ= ⋅
 (A-2) 
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The 4×4 bi-cubic interpolation is implemented by interpolating the point ( ),x y  in a 

4×4 neighbourhood. The following 1-D kernel functions ( )0bψ  and derivative 

kernel functions ( )0bψ ′  are actually employed: 

 ( )
( ) ( )3 2

0 0 0 0 0

3 2

0 0 0 0 0 0 0 0 0

2 3 1  1

5 8 4  1< 2

0

a b a b for b

b a b a b a b a for b

otherwise

ψ

 + − + + ≤
= − + − ≤



  (A-3) 

 ( )
( ) ( )

( ) ( )

2
0 0 0 0 0 0

2
0 0 0 0 0

2
0 0 0 0 0 0

2
0 0 0 0 0 0

3 10 8  -2 <-1

3 2 2 3  -1 <0

3 2 2 3  0 1

3 10 8  1 2

0

a b a b a for b

a b a b for b

b a b a b for b

a b a b a for b

otherwise

ψ

 − + − ≤
− + + + ≤′ = + − + ≤ ≤
 − + < ≤


  (A-4) 

where 0b  denotes the location coordinate in x- or y-direction within the 4×4 

neighbourhood. Also it has been shown that cubic interpolation with 0 0.5a = −  can 

reconstruct any second-degree polynomial [37], which is optimal for most digital 

images [214]. Thus 0 0.5a = −  is used in this application. 

As explained in Section 4.2.3, 2 [ ]s s su v=τ  and 1 [ ]s d du v=τ  respectively 

represent the integer parts and the fractional parts of the interpolated location sτ  

including both x- and y-directional components. ( )* sλ τ  denotes the interpolated 

displacement value at sτ  while ( )2
* sλ τ  is the vector including grey values of the 

pixels at the neighbouring 4×4 integer locations. Then the 4×4 bi-cubic interpolation 

can be expressed in terms of the convolution kernels [ ]1 2 3 4x x x x xψ ψ ψ ψ=ψ  

and 1 2 3 4y y y y yψ ψ ψ ψ =  ψ  in x- and y-directions respectively: 
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( ) ( ) ( )
( )

( ) ( )
( )

( )
( )

( )

* * *

*1 T 1
*

* * 4 4

*

*

*

1 1 1 2 1 3 2 1 4 4

*

*

1, 1 , 1 2, 1

1,
( ) ( ) ( )

1, 2 2, 2

1, 1

1,

1, 1

      

, 1

2,

s s s s s s

s s
s x s y s

s s s s

s s

s s

s s

x y x y x y x y x y

s s

s

u v u v u v

u v

u v u v

u v

u v

u v

u v

u v

λ λ λ
λ

λ

λ λ

λ
λ

λ
ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

λ

λ

×

− − − + − 
 − = ⋅
 
 

− + + +  

− −
−

− +
 =  

−

+

τ ψ τ ψ τ

⋯

⋮

⋮ ⋱

⋯

⋯ ⋯ ⋮

⋮

( )
( )1 2

*

2

       ( )

s

s s

 
 
 
 
 
 
 
 
 
 + 

= ⋅ψ τ λ τ

 (A-5) 

where 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1

2 2

3 3

4 4

1 1

1 1

2 2

x d y d

x d y d

x d y d

x d y d

u v

u v

u v

u v

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ ψ ψ ψ
ψ ψ ψ ψ

= + = +
= =

= − = −
= − = −

. 

Similarly the grey gradients * ( )sλ ′ τ  at sτ  in x- and y-directions can be derived by 

using the derivative kernel functions as: 

 
( )
( )

1 2
*

* 1 2
*

( )
( )

( )

x s s

s

y s s

λ
 ′ ⋅′ = 

′ ⋅

ψ τ λ τ
τ

ψ τ λ τ
  (A-6) 

where 

1
1 1 1 2 1 3 2 1 4 4

1
1 1 1 2 1 3 2 1 4 4

( )

( )

x s x y x y x y x y x y

y s x y x y x y x y x y

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ

 ′ ′ ′ ′ ′ ′ =  


′ ′ ′ ′ ′ ′ =  

ψ τ

ψ τ

⋯ ⋯

⋯ ⋯
 with  

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 1

2 2

3 3

4 4

1 1

1 1

2 2

x d y d

x d y d

x d y d

x d y d

u v

u v

u v

u v

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ ψ ψ ψ
ψ ψ ψ ψ

′ ′ ′ ′= + = +
′ ′ ′ ′= =

′ ′ ′ ′= − = −
′ ′ ′ ′= − = −
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According to Equation (A-5) and (A-6), the terms 1 2 2( )x s N ζη σ⋅τ  and 1 2 2( )y s N ζη σ⋅τ   

shown in Equation (4-27) can be derived from the related terms shown in Equation 

(4-26). For the sake of simplicity, only the necessary terms are extracted from 

Equation (4-26) to produce the derivation expressed as: 

 

( ) ( )

( ) ( )

( ) ( )( )
( ) ( )( )

1 2 1 2

1

1 2 1 2

1

2T1 1 2

1

2T1 1 2

1

1 2 2

1 2 2
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E
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E
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η σ
η σ
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=

×
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×

=
×

=

 ′ ⋅ ⋅ ⋅ 
 
 ′ ⋅ ⋅ ⋅ 
 

 ′ ⋅ ⋅ 
 ≅
 ′ ⋅ ⋅ 
 

 ⋅
≅   ⋅ 

∑

∑

∑

∑

g g

g g

g

g

ψ τ ζ τ ψ τ ζ τ

ψ τ ζ τ ψ τ ζ τ

ψ τ ψ τ ζ τ
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  (A-7) 
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