
Chapter 18

The Influence of Earthquake Magnitude
on Hazard Related to Induced Seismicity

Benjamin Edwards

Abstract An increased focus on seismic hazard related to induced seismicity

means that state-of-the-art approaches for earthquake monitoring and hazard esti-

mation associated to tectonic earthquakes are now being applied at smaller and

smaller scales. This chapter focuses on a specific issue related to this shift of focus

to relatively small earthquakes in close proximity to urban areas. In tectonic

earthquake hazard analyses we typically rely on a simple power-law scaling

relating earthquake magnitude and recurrence. It is known, however, that for

smaller earthquakes, the scaling between different magnitude types is not neces-

sarily linear – meaning that a power law cannot be maintained over all magnitude

types. Extrapolation to estimate the recurrence of earthquakes not yet recorded at

the study site is therefore non-trivial. For earthquake hazard, the moment magni-

tude is typically used as input as it is easy to relate to ground motion through

empirical equations or simulation approaches. However, for earthquake monitoring,

maintaining a complete catalogue including moment magnitude of small events is

technically difficult. Instead, a point-measure based magnitude, such as the local

magnitude is usually determined. In the following the impact of the non-linear scaling

between the magnitude of choice for local monitoring – the local magnitude – and

that used for hazard analysis – the moment magnitude – is explored.

18.1 Introduction

Ground shaking from induced seismicity associated with stimulation and exploita-

tion of the near-surface, for example, related to geothermal reservoirs, shale oil or

gas extraction and CO2 storage increases the risk exposure of the local population.

For instance, an enhanced deep-geothermal project in Basel, Switzerland, triggered
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an ML3.4 (Mw3.2) earthquake at a depth of less than 5 km below the city (Baer

et al. 2007). Along with thousands of aftershocks (Deichmann and Giardini 2009),

the event led to insurance claims relating to non-structural damage (e.g., hairline

cracks) of more than $7.5 M with total costs of $9 M (pers. Comm. Geo Explorers

Ltd., 2012; Giardini 2009).

A growing body of evidence, while still inconclusive, suggests that seismicity

related to injection induced earthquakes is increasing. For example, Ellsworth

(2013) showed that “within the central and eastern United States, the earthquake

count has increased dramatically over the past few years”. This, in turn, means that

“regions where the rate increased may be more hazardous than forecast by the 2008

version of the U.S. National Seismic Hazard Map” (Ellsworth 2013). Although

direct causality between increasing seismicity and projects related to the exploita-

tion of the shallow crust is not clear in all cases, what is important is that the

potential for increased hazard related to induced seismicity (and consequently risk)

should be assessed prior to, and during, such operations. Two primary components

drive estimates of seismic hazard (and its uncertainty): seismicity rates and ground-

motion prediction. In the following chapter, the issues surrounding the determina-

tion of seismicity rates are discussed with a focus on the influence of earthquake

magnitude assessment, as routinely carried out during seismic monitoring.

Seismicity is typically modelled in probabilistic seismic hazard analyses

(PSHAs) using the Gutenberg-Richter (1944, hereafter G-R) relation, with the

cumulative number of events (with magnitude greater than M), N, given by:

log10 Nð Þ ¼ a� bM M � MMax

N ¼ 0 M > MMax
ð18:1Þ

with a maximum magnitude MMax (Smith 1976) defined by a probability density

function. In practice the truncated exponential G-R relation is used (Cornell and

Vanmarcke 1969). This relation is used to characterize faults or source zones based

on observed seismicity in terms of overall activity rate (a) and the proportion of

large to small events (b) (e.g., Wiemer and Wyss 2002). While the a-value can be

thought of as a measure of the overall seismicity, the b-value has been previously

linked to factors such as changes in differential-stress, for example, due to: asper-

ities (Wiemer and Wyss 1997), different faulting regimes (Schorlemmer et al.
2005) or due to source depth (Spada et al. 2013). a- and b-values can be directly

estimated for a given source zone or fault based on observed (and historical)

seismicity above a time-dependent completeness threshold Mc. Maximum-

likelihood approaches (Aki 1965; Utsu 1965; Bender 1983) are normally used to

determine a- and b-values, along with their confidence intervals. While based on

simple observational statistics, the estimation of G-R parameters is subject to

uncertainties due to determined magnitudes (Kijko 1985; Tinti and Mulargia

1985) and due to catalogue completeness (Lee and Brillinger 1979; Weichert 1980).

Given a source model, PSHAs estimate the probability of exceedance for a given

ground-motion using a Ground Motion Prediction Equation (GMPE) (Cornell

1968). Moment magnitude (Mw) is the magnitude of choice for seismic hazard
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based on tectonic seismicity: it does not saturate and is compatible with palaeoseis-

mological and geological estimates of ancient earthquakes and maximum earth-

quake magnitude. This is because it is based on the seismic moment (M0), of which

the contributing factors are fault area and slip (assuming constant rigidity). In

addition, and of importance to GMPEs developed for induced seismicity is the

possibility to base time-series simulations directly on Mw. For instance, Douglas

et al. (2013) presented GMPEs using 36 simulation models based on various source

(Mw, stress-drop), path (regional Q) and local site conditions (local attenuation κ0).
As a result of these advantages, GMPEs in the literature are predominantly devel-

oped using Mw and I will use it as the ‘reference’ magnitude for this discussion.

Clearly, in order to maintain consistency in PSHA, magnitudes used in the

source model and the GMPE should be the same. If a G-R based source model

was developed using, for example, local magnitude (Richter 1935) – typically

routinely determined at seismological observatories – then a magnitude conversion

would be required between estimating the rate (based on ML) and computing the

associated ground-motion (based on Mw). In the ideal case, a G-R source model can

be developed entirely using Mw (i.e., for tectonic activity in seismically active

areas). However, Mw cannot always be calculated for small events due to ambient

noise. Furthermore, depending on the frequency content analysed, estimation of Mw

for small events may introduce systematic bias due to high frequency effects such

as site-amplification and attenuation (Stork et al. 2014). In order to obtain complete

earthquake catalogues (critical for measuring the cumulative number of events in

Eq. 18.1) local monitoring network operators therefore typically estimate magni-

tudes based on simple-to-measure parameters such as peak-amplitude (ML) or

signal duration (Md). These catalogues are then supplemented with Mw in the

case that it is available (e.g., Fäh et al. 2011) and conversion equations (e.g.,

Mw ¼ f(ML)) are used to estimate Mw of small events.

It is logical to reason that an earthquake has a single ‘magnitude’, and that while
some scatter may be apparent, each measure (Mw, Md, ML. . .) should lead to the

same broadly consistent value for properly calibrated scales. However, this is not

the case: independent estimates of different earthquake properties can lead to

systematic differences between different scales, particularly at extremes of magni-

tudes (either very small or very large) relative to where the initial magnitude scale

calibration was made. For instance, Hanks and Boore (1984) showed that the

observed curvature of ML versus MW data over an extended magnitude range of

Californian earthquakes (0 � ML � 7) could be explained by a frequency-

dependent interaction of the earthquake source, attenuation and instrument response

of the Wood-Anderson Seismometer. In this case, determination of a linear scaling

between ML and Mw would lead to a systematic underestimation of Mw (Hanks and

Boore 1984). Edwards et al. (2010) used the same simulation method to model and

explain, in terms of source, path, site, and instrument-effects, the observed curvilin-

ear scaling of Swiss earthquake magnitudes over a range 1.4 � ML � 5.5.

Subsequently, Goertz-Allmann et al. (2011) developed a ML to Mw scaling relation

for Switzerland by collecting independent estimates of Mw and ML over a range of

0.2 � ML � 5.5 and found similar scaling to a model developed based on a Europe-
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wide dataset (Grünthal et al. 2009). In the range 3�ML� 6 the models tend to show

that Mw � ML – 0.3. However, below ML 3 the models deviate from 1:1 scaling

systematically: with a decrease of 1 unit in ML corresponding to only a ~0.6–0.7 unit

decrease in Mw.

There is no guarantee that different magnitudes scale 1:1. Indeed, such compar-

isons extend to many different magnitude scales (e.g., Bormann et al. 2009).
Careful initial calibrations nevertheless ensure that over a broad region of interest,

earthquake magnitudes using different scales are consistent. For instance, Choy and

Boatwright (1995) defined the energy magnitude ME to be consistent to the surface

wave magnitude (MS) in the range 5.5 < Ms � 8.2. In the past, earthquakes of

‘interest’ have focussed on those easily recordable on national networks (e.g.,

M≳ 3) or teleseismic networks (e.g., M≳ 5). This then corresponds to where

magnitude scales tend to be broadly consistent (i.e., M≳ 3–5). In terms of moni-

toring induced seismicity, and the estimation of seismic hazard based on these

observations, we must therefore fully consider not only the influence of measured

earthquake magnitude, but also the magnitude scale itself.

18.2 Influence of ML on G-R a- and b-Values

In the following the focus is placed on ML as it is the most commonly routinely

determined magnitude at seismological observatories or local monitoring networks.

The computation of ML at small scale monitoring networks can be usually consid-

ered complete down to even ML� 1 or even lower. For example, a small scale

monitoring network (consisting of seven stations with inter-station spacing on the

order of a few km) related to a deep geothermal project in St. Gallen, Switzerland,

had a magnitude of completeness ML��1. Catalogue completeness levels at such

low magnitude levels was achieved by implementing cross-correlation techniques

and single borehole-station magnitude determination (Edwards et al. 2015). While

the G-R relation was initially determined based on the analysis of ML data in

California, common usage tends to make the assumption that it is Mw (and

consequently log(M0) and its constituents: fault area and slip) that scales as a

power law with the cumulative number of events. As an example of the impact of

curvilinear scaling between ML and Mw on seismic hazard estimation I therefore

show in the following section its impact on Gutenberg-Richter (G-R) a – and b-
values using simulated earthquake catalogues.

18.2.1 Simulation Method

I generate a synthetic earthquake catalogue consisting of events with seven differ-

ent moment magnitudes (Mw 1–7), with each event recorded at seven locations

(10, 20, 30, 50, 70, 100 and 200 km). The occurrence of events follows an arbitrary

G-R relation with a¼ 3.0 and b¼ 1.0. For each recording a stochastic seismogram
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is generated (Hanks and Boore 1984; Boore 2003), which can in turn be used to

determine ML of the event by measuring the peak amplitude on a synthesized

Wood-Anderson Seismometer.

The synthetic stochastic seismograms are generated from a simple model of the

Fourier acceleration spectrum (FAS), comprising of the far-field representation of

the displacement source (Brune 1970, 1971):

E fð Þ ¼ M0C

R 1þ f
f c

� �2
� � ð18:2Þ

with M0 the seismic moment (in SI units), and C a constant which accounts for the

free-surface, average radiation pattern, slip velocity and density. Geometrical

spreading is accounted for using the hypocentral distance, R. The moment magni-

tude scale is defined by M0:

Mw ¼ 2

3
log10 M0 � 6:0 _3 ð18:3Þ

(Hanks and Kanamori 1979). Assuming a circular crack model (Eshelby 1957) the

source corner-frequency ( fc) can be calculated using:

f c ¼ 0:4906β
Δσ

M0

� �1
3

; ð18:4Þ

where Δσ is the stress drop of the earthquake (SI units) and β is the shear-wave

velocity (β¼ 3,500m/s). In order to account for anelastic attenuation along the

source-receiver path an exponential decay function is used:

B fð Þ ¼ e�π f R
βQ; ð18:5Þ

(Knopoff 1964) withQ the quality factor and R the hypocentral distance (in m). The

full synthetic stochastic acceleration time-series can be calculated based on the FAS

(E( f )B( f )) and a given duration model. For the duration model we adopt a simple

model based on source magnitude and distance from the source:

T ¼ 1

f c
þ 0:05R; ð18:6Þ

(Herrmann 1985). The Local Magnitude is calculated using an adapted from of the

original relation used by the Swiss Seismological Service:

ML ¼ log10Aþ 0:0180Rþ 1:87 forR � 60km
ML ¼ log10Aþ 0:0038Rþ 2:72 forR > 60km

ð18:7Þ
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with R in km and A the peak displacement (in mm) of the ground-motion convolved

with the response of a Wood-Anderson Seismograph. In practice, since ML is based

on a peak measure (A) of the Wood-Anderson seismogram with natural period 0.8 s

and damping of 0.69, random-vibration theory [RVT, (Cartwright and Longuet-

Higgins 1956)] can be used to directly calculate A using the duration model adapted

to account for the Wood-Anderson oscillator response (Liu and Pezeshk 1999) and

the FAS (Hanks and Boore 1984).

18.3 Results: G-R a- and b-Values from ML

Across the various simulation models with different source (Δσ, Mw) and attenua-

tion terms (Q) it is apparent, as expected, that the a- and b-values obtained using ML

are different from those obtained using Mw. This fact is of course, consistent with

the fact that the ML to Mw scaling relation is curvilinear. The exact difference is

driven by the source properties (Δσ), the attenuation (Q), and the interaction of the

earthquake spectrum and the Wood-Anderson Seismometer used to compute ML.

This was originally shown by Hanks and Boore (1984) to be the driving force

behind the ML to Mw scaling behaviour and therefore directly propagates into the

G-R relation. As a result of the curvilinear scaling, the magnitude range over which

the G-R relation is calculated also has a significant impact on the differences found

by using different magnitude scales.

18.3.1 Influence of Stress-Drop

The reference G-R relation using Mw with b¼ 1.0 is shown in Fig. 18.1 along with

four simulated catalogues for which ML is used instead of Mw. In this case only

geometrical (not anelastic) attenuation was applied. For each of the four catalogues

a different stress drop is used: 0.1, 1, 5 and 10 MPa. The resulting differences show

the influence of the stress-drop on ML and consequently a- and b-values. In

Fig. 18.1a it can be immediately seen that the largest deviation from the G-R

relation is apparent at higher magnitudes. This is due to the saturation of the ML

scale: at some point, despite increasing the moment of the earthquake in equal steps,

the increase in ML slows (and eventually stops). This is a well-known phenomenon

typically considered to occur around M6-7, however, an interesting aspect to

consider is that the point at which saturation begins is controlled by the stress-

drop. For low values (e.g., Δσ¼ 0.1 MPa to 1 MPa), even ML > 4 events show the

beginning of saturation: an effect that artificially increases the b-value. As a general

observation, systematically low stress-drop events tend to increase the apparent

b-value when using ML in the high magnitude range. This effect should not be

particularly problematic since we can observe a departure from the linear G-R law,

and consequently limit the fitting range to below where the effect starts.
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Furthermore, for the larger events susceptible to saturation, it is likely that direct

computations of Mw will be available.

Avoiding the saturation effect, which is not particularly relevant for induced

seismicity, and instead focusing on the lower magnitudes (Fig. 18.1b) we never-

theless still see a systematic variation of the b-value depending on the stress-drop

used in the simulations. Generally (apart from the lowest stress-drop catalogue), the

b-value is artificially decreased. For the Δσ¼ 10 MPa catalogue, the b-value is

Fig. 18.1 G-R relation using Mw and ML for the synthetic catalogues. (a) For all events; (b) for
events with Mw �5
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0.86; for Δσ¼ 5 MPa, b¼ 0.89; for Δσ¼ 1 MPa, b¼ 0.94 and for Δσ¼ 0.1 MPa

b¼ 1.05. These values are computed over the range 1�Mw � 5, limiting the upper

magnitude to 4 may slightly decrease the values further.

18.3.2 Influence of Attenuation

In the previous analysis the influence of the stress-drop was isolated by neglecting

anelastic attenuation. However, in reality a complex interaction between the stress-

drop, attenuation and the instrument response all play a role in the ML assigned to a

particular event (Hanks and Boore 1984). A further reason that anelastic attenuation

is important is apparent if we consider that the ML relation (Eq. 18.7) only accounts

for frequency independent attenuation (i.e., the + αR term).

Taking the catalogue with Δσ ¼ 5 MPa I now apply anelastic attenuation

(Fig. 18.2). For Q¼ 1,000 the b-value is further reduced from b¼ 0.89 without

attenuation to b¼ 0.82, and using Q¼ 500 I obtain b¼ 0.79. Such variations in the

b-value seem quite strong, however, if we look only in the range 3�Mw� 5, where

such statistics are often calculated (e.g., for seismic hazard), the smallest effect on

the b-value is observed (Fig. 18.3). Interestingly, the a-value is increased in this

example, consistent with the aforementioned difference between Mw and ML of 0.3

in this range (Goertz-Allmann et al. 2011; Grünthal et al. 2009). As a result, if using
magnitudes of interest for tectonic seismic hazard (3� Mw� 5), and applying a

simple linear conversion (e.g., Mw¼ML-0.3), one would observe similar a- and
b-values to if one had been able to use Mw directly. The effects discussed here may

also be further pronounced if considering the influence of site-amplification on ML

values. Whilst site amplification tends not to affect Mw due to its long-period basis,

ML is computed over a period range where it is common for strong amplification

effects to be present.

18.4 Regional Variability Between ML Values

So far this chapter has focused on the impact of using ML in the standard G-R

relation without accounting for the curvilinear scaling between Mw and ML.

However, a major problem to address in the prediction of ground motion for

induced seismicity is the significant variability of reported earthquake magnitude

from agency to agency (Fäh et al. 2011). Edwards and Douglas (2014) homoge-

neously computed earthquake moment- and local-magnitude for events related to

Enhanced Geothermal Systems (EGSs) in Basel (Switzerland), Soultz (France) and

Cooper Basin (Australia); natural geothermal fields in Geysers (California) and

Hengill (Iceland), and a gas-field in Roswinkel (Netherlands). As shown in previous

studies, published catalogue (ML) magnitudes differed widely with respect to a

common ML–Mw scaling relation, with up to a unit of magnitude difference. Using

non-specific conversions from catalogue magnitudes (e.g., ML) to Mw for use in
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GMPEs would subsequently lead to significant bias. On the other hand, Edwards

and Douglas (2014) showed that given a common magnitude definition (and

corresponding attenuation corrections), the scaling between moment- and local-

magnitude of small induced earthquakes follows a second-order polynomial

(Fig. 18.4) consistent with previous studies of natural seismicity (Goertz-Allmann

et al. 2011; Grünthal et al. 2009). Using both the Southern-California ML scale and

Fig. 18.2 G-R relation using Mw and ML for synthetic catalogues using Δσ¼ 5 MPa and different

attenuation. (a) For all events; (b) for events with Mw � 5

18 The Influence of Earthquake Magnitude on Hazard Related to Induced Seismicity 437



Mequiv (Bommer et al. 2006) Edwards and Douglas (2014) found that the analysed

datasets fell into two subsets offset by 0.5 magnitude units, with well-defined

relation to Mw (Fig. 18.4a, b). Mequiv was shown to correlate 1:1 with ML, albeit

with region-specific offsets.

Fig. 18.3 G-R relation using Mw and ML for synthetic catalogues usingΔσ¼ 5 MPa and different

attenuation for events with 3�Mw � 5. Note that, for this magnitude range, after accounting for a

generic linear conversion (e.g., Mw¼ML-0.3), one would obtain similar a- and b-values to those

for Mw

Fig. 18.4 Comparison of common ML scale versus inverted Mw for all datasets in the study. (a)
Geysers, Hengill and Basel events, along with the Swiss ML:Mw model of (Goertz-Allmann

et al. 2011). (b) Roswinkel and Soultz events plotted along with the Swiss ML:Mw model offset

by 0.5 units. From Edwards and Douglas (2014)
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18.5 Discussion

From the analysis presented here it is clearly important for consistent and

transparent magnitude determination at various stages of seismic hazard analysis.

A key conclusion is that if one assumes that the moment magnitude Mw follows the

G-R relationship, then the ML scale does not. The most significant deviation is for

ML> 5, where we begin to see the effect of magnitude scale saturation, which leads

to locally increased b-values. The magnitude at which this saturation effect occurs

depends on the stress-drop. Very low stress-drop events (e.g., 0.1 MPa) led to

magnitude saturation effects impacting the b-value estimation at M � 4–5.

However, since this effect is most significant in the magnitude range where direct

computation of Mw is typically available, it is not an issue in PSHA. More

importantly for induced seismicity is the fact that at lower magnitudes we noticed

that the b-value is typically reduced (for all but the lowest stress-drop catalogue).

This is related to the fact that for Mw � 3–5, ML values tend to be greater than Mw

for the simulated catalogues (and empirical catalogues), while at lower magnitudes,

the difference reverses (Mw tends to be greater than ML). Attenuation tends to

systematically decrease the b-value computed with ML because it affects increas-

ingly smaller events (with proportionally more high frequency energy) more

strongly. For instance, attenuation can be considered as a low-pass filter: for large

events with little high frequency energy (relative to the low-frequency energy), this

filter has little effect, whereas for smaller events a significant portion of the energy

is cut from the signal. Nevertheless, it is evident that these effects offset one

another, or are minimised to a certain degree when choosing particular magnitude

ranges (e.g., when using 3 � Mw � 5, as often the case in hazard studies related to

tectonic seismicity).

Routine computation of ML is often a requirement in order to have a complete

data catalogue for computing the G-R relation at small magnitudes. Best practice

for recovering b-values should be to convert ML using a quadratic polynomial

(Grünthal et al. 2009) or curvilinear function (Goertz-Allmann et al. 2011)

(Fig. 18.5). The form of this polynomial will depend on:

(a) the local conditions – including source properties (e.g., stress drop or slip

velocity), path attenuation (Q and geometrical spreading) and site effects

(amplification and attenuation) (Edwards et al. 2010);
(b) the form of the ML equation used (Edwards and Douglas 2014).

Since data Mw –ML pairs are rarely available down to small enough magnitudes;

one option to consider is the creation of synthetic catalogues, as used in this chapter.

Different source, path and site modelling terms can then also be used to cover the

epistemic uncertainty of the ML to Mw conversion.

Finally, even when we have a homogenous moment magnitude scale and

consistent G-R source models, analysis by Douglas et al. (2013) highlighted
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considerable variation in source and path parameters (e.g., stress-drops, local

attenuation) among different regions and sites. Both ML to Mw conversions and

ground motion prediction may therefore be region dependent. While the focus here

has been on the computation of magnitude for defining G-R models, consistency

should be ensured between the conversion used for Mw(ML) and the model terms

used for ground motion prediction in PSHA (or deterministic/scenario based haz-

ard). Clearly, when conducting seismic hazard assessment for a given geothermal

project it is not known a priori which source, path and site terms (or equivalent

GMPEs) are most applicable. However, Edwards and Douglas (2013) showed that

as seismograms are recorded at a site, the applicability of particular models

becomes quickly evident using either spectral or residual analysis approaches. It

is therefore important to establish and maintain an optimised and effective moni-

toring network, with broad-band (and if possible, borehole) instrumentation. While

region specific wave-propagation behaviour is initially difficult to define, it has the

advantage that significantly lower values of uncertainty can be observed compared

to previous studies combining small earthquakes from different regions.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution

Noncommercial License, which permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are credited.

Fig. 18.5 G-R determined from ML converted to Mw using a second order polynomial equation.

Note that the G-R fit to the Mw(ML) data points exactly coincides with the reference G-R for the

Mw
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