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a b s t r a c t

In the last 20 years the applicability of Bayesian inference to the system identification of structurally
dynamical systems has been helped considerably by the emergence of Markov chain Monte Carlo
(MCMC) algorithms – stochastic simulation methods which alleviate the need to evaluate the intractable
integrals which often arise during Bayesian analysis. In this paper specific attention is given to the si-
tuation where, with the aim of performing Bayesian system identification, one is presented with very
large sets of training data. Building on previous work by the author, an MCMC algorithm is presented
which, through combing Data Annealing with the concept of ‘highly informative training data’, can be
used to analyse large sets of data in a computationally cheap manner. The new algorithm is called
Smooth Data Annealing.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. A Bayesian approach

Bayesian inference involves assessing the relative plausibility of
a set of model structures M , ,1 2= { …} – as well as the
parameters Nθ Θ∈ ⊂ θ within each model – using a combination
of one's prior knowledge and a set of training data, . By virtue of
influential papers such as [1] it is now well-established in the
structural dynamics community that both levels of inference
(parameter estimation and model selection) can be addressed via
the sequential application of Bayes’ theorem:
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Evaluation of Eq. (1) requires the definition of the prior, P θ( | ),
and the likelihood, P ,θ( | ). The prior is a subjective probability
distribution which describes one's knowledge of the parameters
before the data was known. The likelihood describes the prob-
ability of witnessing the data according to model, , with
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parameters, θ. As such, the likelihood is defined by a ‘prediction-
error model’ (see [2] for a comprehensive discussion). The de-
nominator of Eq. (1) – the ‘model evidence’ – is a normalising
constant which ensures that P ,θ( | ) integrates to unity. Suc-
cessful evaluation of Eq. (1) gives one the posterior parameter
distribution, which describes the probability of parameter vector,
θ, given the training data, , and the chosen model structure, .

With regard to Eq. (2), P ( ) is a probability mass function
which describes one's prior belief in model , P ( ) is a nor-
malising constant and P M( | ) is equal to the evidence term on the
denominator of Eq. (1). P ( | ) is a distribution describing the
relative probability of different competing model structures con-
ditional on the data, . One of the advantages of the Bayesian
approach to model selection is that overly complex models tend to
be assigned relatively low probabilities, thus preventing over-fit-
ting (see [3–5] for more information). Furthermore, via Eqs (1) and
(2), one is able to quantify and propagate the inevitable un-
certainties involved in the parameter estimation and model se-
lection processes.

1.2. Why MCMC?

It is often the case that one wishes to generate samples from
P ,θ( | ) as part of a Monte Carlo analysis. With the geometry of
the posterior parameter distribution often being fairly complex,
this is usually impossible to achieve using well-known methods
such as inverse transform sampling. Additionally, Monte Carlo
methods such as importance sampling and rejection sampling are
difficult to apply as the density of the posterior parameter dis-
tribution tends to be concentrated in a small region of the
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2 It can also be used to analyse the influence of the data on the relative
probability of competing model structures, although this is not considered directly
in the current work.
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parameter space relative to the prior. Furthermore, the model
evidence – which is found by integrating the posterior parameter
distribution across the entire parameter space – is often difficult to
obtain in a closed-form manner and, due to the large computa-
tional cost involved, cannot usually be evaluated numerically.

Markov chain Monte Carlo (MCMC) methods involve the evo-
lution of an ergodic Markov chain whose stationary distribution is
proportional to the posterior parameter distribution. By allowing
one's Markov chain to become stationary, MCMC can be used to
generate (dependent) samples from P ,θ( | ) while cir-
cumventing the need to calculate the model evidence. ‘Traditional’
methods include the well-known Metropolis [6] and Hybrid
Monte Carlo algorithms [7]. Presently, more advanced MCMC al-
gorithms are available which are able to generate samples from
the posterior parameter distribution and estimate the model evi-
dence/generate samples from the posterior model distribution
simultaneously – these include Reversible Jump MCMC [8], Tran-
sitional MCMC (TMCMC) [9], Nested Sampling [10] and Asymp-
totically Independent Markov Sampling (AIMS) [11]. TMCMC in
particular has become popular within the context of mechanical
engineering, as it is able sample from distributions with complex
geometries and is suitable for parallelisation [12].

Of specific relevance here is the concept of combining MCMC
methods with the well-known Simulated Annealing algorithm
[13]. This involves using MCMC to target a sequence of distribu-
tions defined by

P P j N, , 1, 2, , 3j
jθ θ θπ ( ) ∝ ( | ) ( | ) = … ( )β

β
β

where
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The result is that, by increasing β (the inverse temperature), one is
inducing a gradual transition from the prior to the posterior
parameter distributions. This technique has proved to be ex-
tremely useful and forms a fundamental part of the TMCMC [9]
and AIMS [11] algorithms (as well as many others).

It is important to note that the strictly increasing sequence of β
values – the annealing schedule – is crucial to the success of any
MCMC algorithm which targets the sequence of distributions de-
scribed by Eq. (3).

1.3. Motivation

The current paper is motivated by the situation where, as part
of some collaborative work, one is presented with a very large set
of training data from which the relative probability of various
parameters/models are to be inferred (this is sometimes referred
to as a ‘Big Data’ issue). In such situations one often finds that,
despite the savings that can be achieved via parallelisation, the
computational cost of MCMC dictates that only a small subset of
the ‘full’ data can be utilised.

A possible solution to this problem is to use the Data Annealing
algorithm [14]. Noting that, when employing a variant of Simu-
lated Annealing, one is essentially using β to modulate (and in-
crease) the influence of the data on the target distribution, Data
Annealing achieves a similar result simply via the gradual in-
troduction of data points into the likelihood. This involves tar-
geting the distribution

P P, 5N
1θ θ θπ ( ) ∝ ( | ) ( | ) ( )

where , , ,N
N1 1 2= { … }, using MCMC (a standard Metropolis

update was employed in [14]). Once a sufficient number of sam-
ples have been generated, N can then be increased such that ad-
ditional data points are included in the likelihood. This process is
repeated until the statistical properties of one's parameter
estimates are judged to have converged. To ensure efficient MCMC
performance a proposal density can be chosen whose covariance
matrix (assuming a Gaussian proposal is being utilised) is a frac-
tion of the distribution which was most recently targeted. Alter-
natively, as demonstrated in [14], it is possible to achieve sa-
tisfactory results simply by using a heavy-tailed proposal dis-
tribution. While Data Annealing tends to be fast (as the model
does not have to reproduce the entire set of data every time a
sample is generated), one has little control over the rate at which
the information in the data is introduced into the likelihood.

A second option would be to utilise the approach described in
[15], where the approximate information content of data sets was
measured. This can then allow one to select a small, highly in-
formative subset of data from which to infer parameter estimates.

This is achieved by first writing the posterior parameter para-
meter distribution as

P J, exp 6θ θ( | ) ∝ ( − ( )) ( )

and employing a second order Taylor series expansion about the

most-probable parameter estimate, θ̂ , to gain
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where A J θ= ∇∇ (^) and θ θ θΔ = − ^. From this a Gaussian approx-
imation of the posterior can be obtained
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The information content of this distribution can then be measured
using the Shannon entropy:
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whose properties as an information measure are well known [16].
Eq. (9) can then be used to estimate the influence of the available
training data on the information content of the posterior.2 A
drawback of this method is that it relies on one knowing the lo-

cation of θ̂ before the analysis can begin.
The algorithm proposed in the current paper encompasses

elements from Data Annealing and the concept of highly in-
formative training data. It is designed to overcome the drawbacks
of both the afore-mentioned methodologies and is suitable for
dynamical models (see [17] for a solution which can be applied to
static models).
2. Smooth data annealing

2.1. Basic methodology

As in the previous section, N
1 denotes the data

, , , N1 2{ … }. With Smooth Data Annealing (SDA), one begins
by targeting the distribution:

P P 10
N N
1 1j

jθ θ θπ ( | ) ∝ ( | ) ( ) ( )β
β

where N is a predefined integer, N
1 is a small subset of the

available training data (choice of N is discussed in Section 4) and,
from now on, dependence on model structure is omitted. By in-
creasing β one can then ‘anneal in’ the data N

1 in the usual
manner. Once 1β = then one can choose to add an additional k



Table 1
System identification of a simulated Duffing oscillator: true parameter values and
moments of prior distributions.

Parameter True value Prior mean Prior standard deviation Units

k 100 150 30 N/m
c 0.05 0.02 0.02 N s/m
k3 100,000 40,000 20,000 N/m3

s 0.005 0.0045 0.002 –
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data points and redefine the target distribution as

P P P . 11
N k N

N
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1 1 1j
jθ θ θ θπ ( | ) ∝ ( | ) ( | ) ( ) ( )β
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+
+

(assuming that P N
1 θ( | ) and P N

N k
1 θ( | )+

+ are mutually independent).
This process can then be repeated until certain criteria are met.
SDA therefore has all the advantages of Data Annealing, while also
giving the user complete control of the rate at which the influence
of the data is introduced. The choice of annealing schedule is
discussed in the next section.

2.2. Constant entropy variation

Here it is hypothesised that the optimum annealing schedule is
one in which the information content, measured using the Shan-
non entropy, varies at a constant rate. This allows the concept of
only using highly informative training data [15] to become an in-
herent feature of SDA – data which has little influence with regard
to one's parameter uncertainty is annealed in quickly, thus al-
lowing the algorithm to focus on the data which is ‘information
rich'.

For the remaining part of this section it is advantageous for the
target PDF (Eq. (11)) to be written in the following form:
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and JP is the negative log-prior.3 Furthermore, the target dis-
tribution is written as Z/π π= ⁎ such that Z is the normalising
constant of the unnormalised distribution π⁎.

Before further discussion it is convenient to first derive the
following properties:
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(see Appendix A). The Shannon entropy of the target distribution
is
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such that the task is to evaluate
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(noting the JP is not a function of βj). Using the properties in Eq.
(14), the first term in Eq. (16) can be evaluated as follows:

d
d

J J
d

d
J dE E

17j
j L L j

j
L( ) ∫ θ

β
β β

β
π[^ ] = [^ ] + ^

( )

d
d

J J J JE E E E
18j

j L L j L L
2 2( ) ( )β

β β[^ ] = [^ ] + [ ] − [ ]
( )

d
d

J J JE E Var .
19j

j L L j L( )β
β β[^ ] = [^ ] − (^ )

( )

The second term in Eq. (16) is
3 Working with the log-likelihood and log-prior is not only mathematically
convenient but also allows one to avoid the numerical overflow/underflow issues
which frequently arise when one is analysing large data sets.
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where J JCov ,L L( ^ ) is the covariance between JL and JL
^ . Finally, the

third term in Eq. (16) is
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Combining Eqs. (19), (23) and (25) one finds that
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Consequently, if the algorithm is currently using the value βj and
one wishes to ‘anneal in’ new data with a constant change in the
Shannon entropy, SΔ , then βjþ1 should be selected according to

S
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.
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If one considers the initial stages of the algorithm (where only the
first set of data is being annealed) then Eq. (27) simplifies to

S
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.

28
j j

j L

1β β
β

= − Δ

(^ ) ( )
+

It is important to note that, to avoid numerical issues, it is often
beneficial to initiate the annealing schedule by selecting a value of
β which is close to, but not equal to zero. By choosing a small
initial β one is ensuring that the geometry of the first target dis-
tribution is similar to that of the prior (this will allow efficient
sampling from the target using MCMC). A more sophisticated
approach could involve using the methods described in [15] to
estimate the Shannon entropy of this first target distribution, thus
ensuring that this initial choice of β has not led to a large change in
the Shannon entropy. Throughout this work it was found that
initially setting 1 10 4β = × − yielded acceptable results.
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Fig. 1. Training data for the system identification of a simulated Duffing oscillator. Dashed lines indicate the segments of data which were used in the SDA algorithm. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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2.3. Does data reduce entropy ?

Typically one would choose SΔ to be negative because, as the
influence of the data is increased, one wishes to see a reduction in
parameter uncertainty. Referring to Eq. (28) it is clear that, when
the algorithm is initialised, βjþ1 must always be larger than βj as

SΔ is negative. However, in the general case (Eq. (27)), if the

covariance between JL and JL
^ is negative then by imposing that

S 0Δ < one can actually select a value βjþ1 which is lower than βj.
This prompts one ask whether the addition of new data will ne-
cessarily reduce parameter uncertainty.

Intuitively the answer appears to be no – parameter un-
certainty could increase in the situation where the new data
contradicts the information in the old data (which is also when

J JCov ,L L( ^ ) will be negative). To address this issue one can use the
well-known result

E Var Var Var E 29θ θ θ[ ( | )] = ( ) − ( [ | ]) ( )

which states that, on average, the variance of the posterior must be
less than that of the prior. Consequently, if new data does con-
tradict the information in the old data, one can simply allow the
Shannon entropy to increase (safe in the knowledge that, on
average, the increasing influence of more data must ultimately
lead to a decrease in parameter uncertainty). The key is to ensure
that the Shannon entropy always remains between some pre-
defined limits, such that the transition from prior to posterior is
still conducted in a gradual manner.

To be specific, βjþ1 should be selected according to

S

J J JVar Cov , 30
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but subject to the conditions that
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where SlimΔ is defined by the user.
3. Algorithm

The method by which SDA anneals in the data N
N k

1+
+ is sum-

marised here using pseudo-code:

� Set j¼1, j initialβ β=
� While 1jβ <

○ Generate samples , , N1 sθ θ{ … }( ) ( ) from JexpN k
j L1j θπ β( | ) ∝ ( − ^

β
+

J JL P− − ) using MCMC

○ Estimate JVar L(^ ) and J JCov ,L L(^ )

○ Set j j
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Δ
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subject to the conditions that

1j j 1β β< ≤+ and S S Slim lim−Δ < Δ < Δ
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○ j j 1= +
� End
� If Stopping criteria met

○ Terminate algorithm
� else

○ Add more data by setting N N k= +
� End

It should be noted that when samples are being generated from
N k
1j θπ ( | )β

+ , any MCMC algorithm can be employed. While the
Metropolis algorithm was utilised in the current paper, it should
be relatively easy to incorporate more advanced MCMC methods
as part of SDA. One could, for example, combine SDA with TMCMC
[9].
4. Example 1 – simulated data

As an initial example, a time history of displacement data x was
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Fig. 9. Schematic of rotational energy harvester.

P.L. Green / Probabilistic Engineering Mechanics 42 (2015) 54–63 59
created by simulating the response of a Duffing oscillator:

mx cx kx k x F , 323
3¨ + ̇ + + = ( )

where F was a Gaussian white noise force. The time history was
then artificially corrupted with Gaussian measurement noise of
standard deviation s. The mass m was set equal to 0.1 and was
assumed to be known. The parameters c, k, k3 and s were left as
parameters to be estimated. Throughout this example Gaussian
distributions, truncated at zero, were used as priors. To study the
convergence properties of SDA, the mean values of the priors were
deliberately set to be different from the true parameter values (see
Table 1).

The ‘full’ set of training data consisted of 1000 displacement
measurements – this is shown in Fig. 1. Of this set, the data was
introduced to SDA in segments of 50 points at a time (these seg-
ments of data are separated by dashed red lines in Fig. 1).

Setting S 1limΔ = the SDA algorithm was run, generating 1000
samples at each iteration. Fig. 2 shows the resulting variation in β
and SΔ . It should be noted that a new segment of data is in-
troduced every time β has reached a value of one. Each point on
the horizontal axis of Fig. 2 therefore represents an iteration of the
algorithm (not the introduction of a new segment of data). It is
clear that, after 35 iterations (where 350 points have been ana-
lysed), the remaining data appears to be relatively uninformative
and the desired change in Shannon entropy can be realised by
instantly setting 1β = . It is interesting to observe that, in the al-
gorithm's 48th iteration (marked with a red circle in Fig. 2), a
slight increase in Shannon entropy occurred. For the most part
however, for this simple example, it appears that the introduction
of more data has consistently reduced parameter uncertainty.

As mentioned previously, one can simply allow the SDA algo-
rithm to run until certain criteria are met (so long as training data
is still available). Fig. 3 shows how the posterior mean estimates of
each parameter converged to their true values while, in Fig. 4, one
can see how the posterior standard deviation of each parameter
estimate reduced while additional data was being analysed. Fur-
thermore, as MCMC can be used to approximate the posterior
parameter covariance matrix [18], one can also track parameter
correlations as data is added. Fig. 5 shows how, as training data is
annealed in, the well-known negative correlation between the
linear and nonlinear stiffnesses becomes apparent.

This same data set was then analysed using the original Data
Annealing algorithm, such that the relative performance of the
two methods could be assessed. The same prior and segments of
data were used. Figs. 6 and 7 show how the posterior mean and
standard deviation estimates evolved as more data was analysed.
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Fig. 10. Training data for the system identification of a rotational energy harvester. Dashed red lines indicate the segments of data which were used in the SDA algorithm.
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

Table 2
System identification of rotational energy harvester: moments of prior
distributions.

Parameter Prior mean Prior standard deviation Units

c 170 50 N s/m
Fc 10 5 N
α 100 100 s/m
s 0.07 0.03 –
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Fig. 12. Parameter estimation of a rotational energy harvester: convergence of
posterior mean parameter estimates as SDA algorithm is run.
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While these results look promising, it was found that they were
based on relatively few independent samples of θ. This is because
the algorithm was unable to appropriately adapt the size of its
proposal density as the geometry of the posterior altered – this
resulted in the acceptance ratio dropping to below 10% once all
1000 data points were being analysed (see Fig. 8 for example). The
crucial point here is that Data Annealing can be a very efficient
algorithm, just so long as it is tuned appropriately. Choosing
smaller segments of data could, for example, have allowed the
algorithm to realise a higher acceptance ratio. The advantage of
SDA is that it is relatively insensitive to this sort of tuning. If very
small segments of data are used then, as they will contain less
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Fig. 11. Parameter estimation of a rotational energy harvester: variation of (a) inverse temperature and (b) the change in Shannon entropy as training data is added to the
SDA algorithm.
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Fig. 14. Parameter estimation of a rotational energy harvester: histograms of SDA results.
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information, SDA will move through them quickly. If very large
segments of data are used then SDA will ensure that the in-
formation contained within will be introduced slowly, and no
dramatic changes in the geometry of the posterior will occur.4 This
property therefore gives the user great flexibility when selecting
the size of each data segment. Throughout this paper segments
were chosen on the basis that they appeared to capture some of
the system's dynamic behavior – this led to satisfactory results in
both examples.
5. Example 2 – experimental data

In this section SDA is applied to experimentally obtained data.
4 If a single segment is used (which contains all available data), SDA essentially
becomes a standard Simulated Annealing algorithm whose annealing schedule will
result in constant variations in the Shannon entropy of the target distribution.
The system in question is a vibrational energy harvesting device
which, via a ball-screw mechanism, is able to convert low fre-
quency translational motion into high frequency rotational mo-
tion. Originally tested at the University of Southampton's Institute
of Sound and Vibration Research, only a very brief description of
the device and experimental procedure is given here – more in-
formation can be found in the references [19,20]. It should be
noted that the data from this experiment can be found in the
electronic supplementary material of the paper [22].

A schematic of the energy harvester is shown in Fig. 9. As the
device experiences base motion, the mass, m, oscillates relative to
the outer frame. This translational motion is then converted into
rotational motion via a ball screw. The response of device is
strongly affected by friction (as a result of the coupling between
the mass and the ball screw). Building on other work on rotational
energy harvesters [21], the hyperbolic tangent model was used to
model friction effects in the device. Defining z x y= − as the re-
lative displacement between the mass and the base, the proposed
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equation of motion is therefore

Mz b z kz F z mytanh 33m c α¨ + ̇ + + ( )̇ = − ¨ ( )

where
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⎠M m J
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2
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34m m

2 2π π= + =
( )

J is the moment of inertia of the system and l is the ball-screw lead.
The parameters to be estimated were c, Fc, α and s where, as be-
fore, s is the likelihood standard deviation.

The ‘full’ training data consisted of 2000 points of relative ac-
celeration time history ( z̈). This was ‘fed’ into SDA in segments of
50 points at a time (as shown in Fig. 10). The parameters of SDA
were the same as in the previous example while, again, Gaussian
priors truncated at zero were utilised (see Table 2). The prior was
selected based on several static tests which had already been
conducted – see [20] for more details.

The variation of β and Shannon entropy is shown in Fig. 11. It is
clear that, relative to the previous example, this problemwas more
challenging (as many more positive values of Shannon entropy
were realised). It is also interesting to note that, between the 31st
and 63rd iterations of the algorithm, a large amount of time has
been spent annealing in a single segment of data. This was actually
the 9th subset of data which, as can be seen from from Fig. 10, is
where the relatively high amplitude portion of the training data
begins.

For the sake of completeness the convergence of the mean and
standard deviation parameter estimates is shown in Figs. 12 and 13
while Fig. 14 shows histograms of the resulting MCMC samples.
Using the MCMC samples to propagate parameter uncertainties,
Monte Carlo simulations were conducted to compare the model
response with a new set of test data. Fig. 15 shows that the model
is able to replicate the data accurately.
6. Conclusions

Presented here is a novel MCMC algorithm – Smooth Data
Annealing (SDA) – which is designed to be used in situations
where one is conducting Bayesian system identification of dyna-
mical models using large sets of training data. The algorithm is
designed to ‘absorb’ data in a smooth and continuous manner,
ensuring that the resulting change in the Shannon entropy of one's
target distribution remains within predefined limits. This allows
the algorithm to quickly move through training data which is re-
latively uninformative, and concentrate on that which has a
greater influence on one's parameter estimates.
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Appendix A. Deriving Eq. (14)

Recalling that
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This allows the second property to be derived by
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Finally then, the third property can be derived by
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