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Abstract 

Entamoeba histolytica is a parasitic protozoan that infects the human digestive tract. 
Infection results from ingestion of cyst-contaminated food or water. To date, E. histolytica 
infection remains a major worldwide public health problem in worldwide endemic areas. 
The spectrum of clinical manifestations ranges from asymptomatic carrier to mucous and 
bloody diarrhea or even extraintestinal amoebiasis, usually amoebic liver abscess. Several 
molecular studies have been carried out to reveal novel aspects of E. histolytica infection. 
However, the studies focused on genomic-wide analysis comparing between E. histolytica 
strains are still limited. Thus, the aims of this project are to comprehensively study the 
comparative analysis of the whole and small RNA transcriptomes amongst nonvirulent and 
virulent strains of laboratory cultured E. histolytica trophozoites as well as to integrate such 
transcriptomic findings with the genomic data for advanced understanding of the molecular 
pathogenesis and virulence in amoebiasis. 

In this study, genome-wide transcriptome analysis using Illumina RNA-Seq technology 
can illustrate significant expression differences between nonvirulent and virulent                  
E. histolytica strains. Differential gene expression analysis between nonvirulent Rahman 
strain and other three virulent strains (i.e. PVBM08B, HM-1:IMSS and IULA:1092:1) reveals 
that transcripts involved in host cell killing and mucosal invasion, nucleic acid interaction 
and response to oxidative stress are notably upregulated in the virulent trophozoites. 
InterProScan results show the upregulation of genes encoding proteolysis-related domains 
and the co-upregulation of cytoskeleton and actin-modulating domains in the virulent 
strains. Also, process ontologies related to protein degradation, cellular biosynthesis, DNA 
metabolism, repair and recombination, mitotic cell division, actin dynamics and response to 
stress are highly enriched as a core metabolism in the virulent strains, indicating the rapid 
growing and active metabolic state are the main drivers of virulence. However, the striking 
underrepresentation of ontologies involved in signaling and regulatory processes was 
observed in the virulent parasites. It could be inferred that reduced regulation of sensing 
and correctly responding to the environmental stimuli potentially enable the parasites to 
become virulent and subsequently cause the invasive infection. Also, NanoString validation 
reveals the spectrum of virulence-associated gene expression among these four strains, 
reflecting their different degrees of virulence.  

Gene copy number variation (CNV) is widespread among the genomes of the                 
E. histolytica strains, reflecting genomic plasticity and variability in gene family content. 
Herein, this present data show that patterns of CNV contribute to differential expression 
profiles, therefore it can be extrapolated that differences in gene copy number between 
genomes could contribute to the variation in phenotypic attributes, including virulence, 
among E. histolytica strains. Also, genome plasticity can also be seen in Trypanosomes and 
Leishmania, suggesting that CNV is a potentially important mechanism in generating genetic 
diversity and regulating gene expression levels in almost exclusively asexual parasite group. 

For small RNA transcriptomics, the size-fractionated sRNA sequencing data 
demonstrate the inverse relationship between antisense sRNA abundance and target gene 
expression levels, strongly suggesting the sRNA-mediated regulation. Differential sRNA 
regulation in virulence-associated gene expression was found among strains, indicating that 
sRNA-mediated post-transcriptional regulation may be important in shaping the parasite 
virulence. In addition, this study identified the novel putative miRNA from the sRNA 
sequencing data using the biogenesis-based bioinformatic analysis and qPCR validation, 
implying that miRNA potentially play a regulatory role in E. histolytica. In summary, it can be 
inferred that genomic plasticity and sRNA-mediated regulation are important mechanisms 
of virulence modulation in E. histolytica. 
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Chapter One: Introduction  

 
1.1 Amoebiasis 

Human amoebiasis is caused by Entamoeba histolytica, a parasitic protozoan that 

infects the human intestinal tract. Infection results from ingestion of cyst-contaminated food 

or water.  Progression of disease occurs by multiplication and tissue invasion of 

trophozoites into the colon mucosa. Mostly, trophozoites commensally colonise and feed on 

bacteria but can invade the mucosal epithelium, typically resulting in ‘flask-shaped’ ulcers.  

In some cases, parasites penetrate into the intestinal portal vein and spread to other 

extraintestinal organs, including liver, lungs and brain [1].  E. histolytica infection remains a 

major worldwide public health problem and is endemic in many developing countries. As 

transmission is via a feacal-oral route, communities with poor sanitation and nutrition are 

at higher risk. Also, E. histolytica infection has been widely documented in travelers 

returning from amoebiasis-endemic areas and in men who have sex with men [2]. As 

estimated in 1986, E. histolytica affected approximately 10% of the world’s population with 

an associated mortality rate estimated between 40,000 to 110,000 deaths per year [3]. The 

spectrum of disease severity can be manifested from asymptomatic colonisation to mucous 

and bloody diarrhea (dysentery) or even a complication of invasive amoebiasis, usually 

amoebic liver abscess. Interestingly, the majority of cases are asymptomatic carriers whilst 

invasive amoebiasis is rare [3]. There are still many unanswered questions concerning 

amoebic pathogenesis as well as differences of virulence among strains of parasite. So far, 

the studies, focused on genomic and transcriptomic data comparing nonvirulent and 

virulent strains of E. histolytica, are still limited.  
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1.2 The life cycle of Entamoeba histolytica 

The life cycle of E. histolytica consists of an infective cyst stage and a pathogenic 

multiplying trophozoite stage. Typically, infection occurs via the faecal-oral route by 

ingestion of stool-contaminated food and water, or even transmitted from heterosexual and 

homosexual activity. After ingestion into the upper gastrointestinal tract, the excystation is 

triggered by exposure of the encysted parasite to water, bicarbonate and bile [4]. The 

infection occurs in the human colon where trophozoite emerges from the mature cyst. In 

general, especially in asymptomatic individuals, trophozoites commensally colonise the 

colon mucosa by phagocytosing enteric bacteria and multiply by binary fission as explained 

in Figure 1.1. To complete the life cycle, trophozoites re-encyst and are finally released to 

the environment via the stool but the stimuli for this process of encystation in E. histolytica 

is still unknown. These cysts can remain viable and infective in the environment for several 

weeks to months [5,6]. 

Most cases (90%) of the E. histolytica infection are asymptomatic cyst shedders 

[3,6]. The invasive trophozoites which are capable of penetrating the colon and even 

hematogenously spreading to infect other organs are the rare form. Degrees of disease 

severity range from colonic invasion, ulcerative colitis, bloody mucus dysentery to 

extraintestinal spread [1,3,6]. As clinically reported, the invasive trophozoites can spread to 

almost all human body tissues such as liver, lungs, brain, pericardium, peritoneum, 

cutaneous tissue, genitourinary tract and even bone [6]. Most commonly, trophozoites can 

be disseminated to the liver by vascular invasion via the hepatic portal venous system, 

resulting in apoptosis of hepatic immune cells and inflammation. As a result, amoebic liver 

abscess (ALA) is the most common complication of extraintestinal infection. However, 

devastating tissue invasion is not the essential part of the life cycle of the parasite since 

those invasive trophozoites could not develop cysts and complete their life cycle outside the 

colonic mucosa. Therefore, this virulent behaviour is likely to reduce the parasite’s fitness 

because invasive trophozoites have no ability to cause the new infection and therefore are 

no longer to contribute their genetic content to the gene pool of the next generation.  
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Figure 1.1: Life cycle of Entamoeba histolytica. Infection occurs by ingestion of food and 

water contaminated with mature cysts or even transmission from heterosexual and 

homosexual activity.  Parasites undergo excystation by compound stimuli in the small bowel 

and then proliferate by mitotic binary fission in the luminal mucosa of the colon. To 

complete the life cycle, trophozoites encyst again and are finally passed through the stool in 

the cyst form to infect the new host. The figure is reproduced from the Centers for Disease 

Control and Prevention (CDC; 2010) [5]. 
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1.3 Mechanisms of pathogenesis 

In invasive amoebiasis, virulent trophozoites, triggered by unknown stimuli, can 

express several pathogenic factors for mucosal invasion. Degradation of the tissue matrix 

and cytolysis are the hallmarks of parasite invasion. The protective colonic mucous layer, 

consisting mainly of mucin 2 (MUC2) protein, is the first host target for the parasite to 

adhere to and degrade [7]. As recent findings reviewed by Lejeune et al., 2009, the parasite 

uses the Galactose/N-acetylgalactosamine (Gal/GalNAc) lectin for interaction with terminal 

Gal and GalNAc of the MUC2 polymer and secretes cysteine proteinases (EhCPs) for 

depolymerisation of MUC2, resulting in weakening of the mucous layer and providing the 

way for interaction with the host cell [8-10]. Also, the serine-threonine-isoleucine rich 

protein, EhSTIRP, may have a role in concert with the Gal/GalNAc lectin in host cell 

adherence and contact-induced apoptosis [11].  

E. histolytica cysteine proteinases also cleave the tight junctional complex between 

the enterocytes, resulting in the detachment of colonic mucosal epithelium [12].  The 

leukocyte recruitment, especially macrophages, monocytes and neutrophils, occurs due to 

proinflammatory cytokines released from damaged enterocytes, i.e. tumor necrosis factor-

alpha (TNF-), interleukin (IL)-1, IL-6, IL-8 and granulocyte-macrophage colony-

stimulating factor (GM-CSF) [13].  These activated immune cells play important roles in 

preventing parasite invasion by producing reactive oxygen species (ROS), nitric oxide (NO) 

and cytotoxic enzymes, e.g. cathepsinG, to damage trophozoites [14]. To resist these host 

defences, trophozoites can reduce the toxicity of these reactive molecules by surface-bound 

peroxiredoxin, superoxide dismutase (SOD) and NADPH:flavin oxidoreductase [15-19].  

However, ROS and other cytotoxic substances from immune cells cause nonspecific 

destruction and apoptosis in surrounding tissue, resulting in clinical symptoms of diarrhea 

and/or dystentery [8]. Characteristically in colonoscopic and pathological findings, the flask-

shaped ulcers could be found in the colonic mucosa of patients with amoebic colitis due to 

phagocytic activity of E. histolytica trophozoites as shown in Figure 1.2 [8]. 

Rarely, systemic invasion of trophozoites can occur and develop eventually 

extraintestinal amoebiasis in almost all body tissues as mentioned before. The most 

common manifestation of extraintestinal infection is ALA. After reaching the liver by 

hematogenous spread via the hepatic portal vein system, trophozoites trigger periportal 

inflammation and then rapidly lyse acute inflammatory cells and surrounding host 

hepatocytes by release of lytic enzymes. Recently, some virulence factors have been 

characterised for their roles in the pathogenesis of ALA [20-22]. Amoebapore-A, a pore 
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forming peptide, has a crucial role in ALA formation by nonspecific insertion into the host 

cell and pore formation, causing cytolysis [20,23]. More recently, a lysine and glutamic acid 

rich protein (KERP1) has been proposed as a pathogenic factor for its associated 

upregulation in ALA, however it remains to be confirmed [22]. As a consequence of liver 

infection and following inflammation, abscesses are formed with collection of necrotic 

debris and trophozoites could be found, if present, at the rim of the abscess capsule.  

 

 

 

 

Figure 1.2: Histopathological 

preparation of colonic biopsy from 

the patient with amoebic colitis.   

E. histolytica trophozoites and a 

characteristic flask-shaped ulcer are 

identified by the arrows (A) and (B), 

respectively. The neighboring 

inflammation of colonic mucosa can 

be identified by vasodilatation as 

well as red blood cell and neutrophil  

extravasation.   

This histological section was kindly 

offered by Associate Professor Dr. 

Padet Siriyasatien (MD, PhD), 

Department of Parasitology, Faculty 

of Medicine, Chulalongkorn 

University, Bangkok, Thailand.  
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1.4 Genomic structure and organisation 

The genome organisation of E. histolytica has been extensively documented [24,25]. 

The genome sequence of virulent E. histolytica HM-1:IMSS was published in 2005 [24]. After 

genome reassembly and reannotation it was re-published in 2010, its genomic features 

consist of 20.80 megabases in 1,496 scaffolds (data available at 

http://amoebadb.org/amoeba/) [25,26]. The sequence of the genome is AT rich 

(approximately 75%) and contains 8,333 predicted genes [25]. Uniquely, Entamoeba 

transfer RNA (tRNA) genes are organised in arrays, separated by DNA which consists of 

tRNA-linked short tandem repeats (tRNA-linked STRs), possibly acting as telomeres [27]. It 

is interesting that variable arrangements of tRNA gene arrays in Entamoeba species are 

associated with their evolution of species divergences as shown in Figure 1.3A [28]. 

Moreover, these unique tRNA organisations with variable STRs suggest that tRNA genes are 

likely to be the ‘hotspots’ of recombination and genetic diversity in this parasite [28,29]. Due 

to high polymorphisms in their sequences, i.e. number of repeats and arrangement pattern, 

the tRNA-linked STR loci have been used as genetic markers to study the E. histolytica 

population structure as well as the relationship between the parasite lineages and their 

geographical regions [30]. Also, these unusual features have been used to study the possible 

correlation between the parasite genotypes and the clinical outcomes [31-34]. However, 

only few associations with disease outcomes were reported in limited geographical regions 

and not entirely related to the virulence variability. 

Transposable elements (TEs) are abundant in Entamoeba genome, including 

EhLINEs, EhSINEs and Entamoeba-specific repetitive elements [35]. These TEs can affect the 

expression of neighboring genes by several mechanisms, e.g. heterochromatin formation 

and alternative 3’ splice site or promoters [35]. As such, it can be implied that genomic 

location of these TEs may determine the virulence phenotype.   

In addition, the E. histolytica genome reveals remarkable evolutionary 

characteristics concerning secondary gene loss and lateral gene transfer from prokaryotes 

for metabolic adaptation to an anaerobic environment. Its metabolism resembles two other 

amitochondrial parasite, Giardia lamblia and Trichomonas vaginalis in terms of catabolism 

and biosynthesis [36]. However, some points remain to be further investigated. For 

instance, ploidy, haploid chromosome number and chromosome size are variable between 

strains, suggesting considerable genomic size plasticity in E. histolytica [37].  

Previously, E. histolytica has been believed to be a clonal or asexual organism since 

no genotypic change can be observed in in vitro cultivation and long-term animal passages. 

http://amoebadb.org/amoeba/
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The interesting question has been raised whether sexual reproduction occurs in multiploid 

Entamoeba species. However, it has recently been shown that genes involved in meiosis and 

homologous recombination have been identified, implying that sexual reproduction could 

possibly occur and may contribute to their genetic diversity [38,39]. 

 

Figure 1.3: Variable arrangements of tRNA gene arrays. Unique array unit organisations 

of tRNA-Ala, tRNA-Ser and tRNA-Asp in five Entamoeba species (A). The arrows refer to the 

tRNA gene orientation and the amino acid with corresponding anticodon is designated 

inside. The array-based relationships among species were also shown. Of these 

polymorphisms, 17 patterns of tRNA-linked STR organisation in the STGA-D intergenic region 

of E. histolytica were illustrated (B). This figure is reproduced with permission from Tawari 

et al., 2008 [28].  
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1.5 Closely related Entamoeba species relevant to human amoebic research  

There are other two closely related species with identical microscopic morphology: 

Entamoeba dispar and Entamoeba moshkovskii.  Although these three Entamoeba species 

share common morphological features, there are certain genetic divergences among these 

three species. Based on small subunit ribosomal RNA (SSU rRNA) gene sequences retrieved 

from 18 taxa, E. histolytica, E. dispar and E. moshkovskii are phylogenetically clustered 

together within the same group of species producing tetranucleate cysts as shown in Figure   

1.4 [28]. E. histolytica and E, dispar are closely related each other while E. moshkovskii is 

more distantly related. 

Entamoeba dispar 

 E. dispar has been initially proposed by Emile Brumpt in 1925 that it lacked the 

ability to cause the disease in humans and experimental animals [40]. However, Brumpt’s 

nomenclature was disregarded because there is no morphological difference between E. 

dispar and E. histolytica. Also, Entamoeba species clinically isolated from asymptomatic 

individuals could trigger the disease in experimental subjects [41]. In 1973, different lectin 

agglutination profiles between clinical samples isolated from patients and asymptomatic 

individuals were reported as the first biochemical evidence, referring to subgroups within E. 

histolytica. Several evidences showing the existence of E. dispar have been reported 

including isoenzyme analysis [42], antigenic differences [43] and genetic markers [44].  In 

1993, Diamond and Clark validated and redescribed ‘non-pathogenic E. histolytica’ as E. 

dispar, formerly named by Brumpt in 1925. Reported so far, this species has been isolated 

from a wide range of primate hosts including old world monkeys, new world monkeys and 

human [45].   

Compared to the E. histolytica genome, the genome of E. dispar strain SAW760 

contains slightly greater size of 22.96 Mbp in 3,312 scaffolds with 8,748 genes in total [46]. 

Its genomic AT content is high, about 76.5% , very similar to the E. histolytica genome [46].  

As mentioned previously, the similarities of genetic characteristics between these two 

morphologically identical species support that these two sibling species share a recent 

common ancestor as shown in the phylogenetic tree of 18 Entamoeba species using SSU 

rRNA gene sequences (see Figure 1.4). When comparing the transcriptome between E. 

histolytica HM-1:IMSS and E. dispar, a key difference is the lack of members of cysteine 

proteinase gene family (i.e. EhCP1 and EhCP5) and downregulated expression of EhCP8 in E. 

dispar [47-49]. Also, the KERP1 gene encoding surface-associated protein involved in host 

cell adhearence and ALA formation is present in E. histolytica (EHI_098210) but absent  in E. 
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dispar [50]. Furthermore, the activity of the pore-forming peptide amoebapore A, implicated 

in the killing of engulfed bacteria and the host cytolytic reaction, is 25 times more active in 

E. histolytica HM-1:IMSS than E. dispar SAW142 [23]. 

E. dispar has been characterisd as non-pathogenic commensal in the human colon 

and the non-pathogenic E. dispar SAW760 strain has been extensively used for the 

experimental study of differential virulence among Entamoeba species. However, it was 

recently reported by Dolabella et al., 2012 that E. dispar xenic strain ICB-ADO, clinically 

isolated from a non-dysenteric Brazilian patient could cause liver necrosis and liver 

abscesses in a hamster model [51]. Therefore, these findings in xenic strain ICB-ADO 

suggests that E. dispar could potentially exhibit virulent phenotype, resulting in tissue 

destruction, inflammation and even abscess formation in human.  

Previous studies have attempted to elucidate the virulence potential across 

Entamoeba species in relation to the bacterial interplay [52-54]. As published many years 

ago, a change in the zymodeme patterns was found in E. histolytica strain CDC:0784:4 

trophozoites after interacting with bacteria, and associated with their increased capability 

to trigger the destruction of cultured monolayer cells and abscess formation in hamster 

model [54]. Recently, Galván-Moroyoqui et al., 2008 have reported that co-culture of E. 

histolytica HM-1:IMSS with enteropathogenic bacteria increased the expression of 

Gal/GalNAc lectin, the cysteine proteinase activity as well as the cytopathic effect whereas E. 

dispar SAW760 did not show any significant change [52]. In contrast to the findings of 

Dorabella et al., 2012, E. dispar ICB-ADO which was cultured under xenic condition with 

bacterial flora showed the pathogenicity both in vitro and in vivo, suggesting that it is 

possible that the interaction between E. dispar and gut bacteria in the host colon can lead to 

alteration in the regulation of virulence and eventually cause the disease [51].   

 

Entamoeba moshkovskii 

 E. moshkovskii is another Entamoeba species morphologically indistinguishable from 

E. histolytica and E. dispar in both trophozoite and cyst forms. Originally, it has been 

identified to be a free-living and non-pathogenic amoeba in sewage in Moscow, Russia in 

1941 [55]. The Laredo strain of Entamoebic moshkovskii was initially isolated as the first 

case of human infection in Laredo, Texas in 1961 [56].  However, due to its morphology 

identical to E. histolytica, the first isolate was named E. histolytica Laredo strain. Different 

from typical E. histolytica, the Laredo strain can grow at the room temperature, survive in 

osmotic stress conditions and is commonly found in polluted water [57]. Clark and 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Galv%C3%A1n-Moroyoqui%20JM%5BAuthor%5D&cauthor=true&cauthor_uid=18648517
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Diamond, 1991 demonstrated different profiles of the polymerase chain reaction-restriction 

fragment length polymorphism analysis of the SSU rRNA genes or ‘riboprinting’ between the 

Laredo strain and E. histolytica, indicating that the ‘E. histolytica-like’ Laredo strain is truly a 

strain of E. moshkovskii , based on this DNA marker [57].   

E. moshkovskii infection could be found ranging from 1% to 50% of the Entamoeba 

complex parasites (E. histolytica/ E. dispar/ E. moshkovskii) detected in worldwide collected 

stool samples [58]. Recently, Shimokawa et al., 2012 have found that susceptible mice 

inoculated intracaecally with 1x106 trophozoites of E. moshkovskii exhibited diarrhea, colitis 

and weight loss and also reported a longitudinal study in Bangladesh that 42 of 1,426 

diarrheal cases in infants were associated with E. moshkovskii infection [58]. This therefore 

implies that E. moshkovskii has potential pathogenic capacity to cause disease in human.   
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Figure 1.4: Molecular phylogeny of 18 Entamoeba species based on SSU rRNA gene 

sequences across 1,572 nucleotide positions. This tree is rooted with two sequences of E. 

coli and the scale bar represents 0.1 changes per nucleotide position. This tree figure was 

kindly offered by Dr. Graham Clark, Department of Pathogen Molecular Biology, London 

School of Hygiene and Tropical Medicine, London, United Kingdom. 
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1.6 Differential virulence of amoebiasis across E. histolytica strains 

 A wide spectrum of clinical manifestations has been reported in individuals infected 

with E. histolytica ranging from asymptomatic carriers to extraintestinal invasive diseases 

[3]. Nevertheless, most cases, approximately 90%, showed clinical histories of 

asymptomatic infections or mild intestinal symptoms, suggesting that not all Entamoeba 

infections exhibit equally the virulence [3]. Clinical observations have raised the question 

which factors are responsible for a degree of virulence variability of the disease. This 

variation in clinical symptoms could be explained that many cases are indeed infected by 

microscopically indistinguishable E. dispar and/or different strains of E. histolytica as well 

as influenced by different host susceptibility [8,14,59].  

 For the host conditions, the growth of parasites could be affected by intestinal 

micro-environments variable between individual patients including the bacterial flora, ROS, 

protective mucus barrier and secretory immunoglobulin A (sIgA) secretions [14,59,60]. The 

intestinal bacterial flora is a direct nutrient source for the trophozoites and also controls the 

pH and redox potential of the colon. As previously mentioned, releases of nitric oxide and 

ROS including oxygen ions and peroxides by polymorphonuclear cells, monocytes and 

macrophages cause harmful effects to the trophozoites [14]. The sIgA can block the 

adhesion of the trophozoites to the intestinal mucosal cells by neutralising the parasite 

surface molecules and also recruit the complement proteins to promote the opsonisation 

and the lytic pathway [60-62]. The host gender could influence to the virulence of the 

disease since amoebic dysentery and ALA are more frequently found in men than women for 

unknown reasons [63]. Moreover, malnutritional status and leptin receptor mutant are 

associated with the increased susceptibility to the invasive infection [64,65]. Taken 

together, these host conditions vary from individual to individual, resulting in variable 

degree of host susceptibility to the parasite invasion. 

 Regarding the parasites, the relative virulence between different cultured 

strains/clinical isolates can be determined by certain phenotypic parameters of virulence 

such as the rate of destruction of MDCK cell monolayer by the cytopathic effect [66], the 

ability to cause the ALAs in a hamster model [67], the erythrocyte hemolysis and 

phagocytosis rate of the parasites [68] as well as the resistance to complement-mediated 

lysis [62]. A number of E. histolytica strains were isolated and well characterised, i.e. HM-

1:IMSS strain obtained from the colonic biopsy of the dysenteric patient in Mexico in 1971; 

Rahman strain isolated from the feces of asymptomatic sailor in UK in 1964; PVBM08B and 

PVBM08F strains isolated from colonic biopsy and feces of the same patient in Italy in 2007; 



             

             

 
   13 

IULA:1092:1 strain isolated from a symptomatic patient in Venezuela in 1992 [69,70]. The 

genealogic relationships amongst well-characterised E. histolytica strains are estimated 

using 3,696 polymorphic sites as illustrated in Figure 1.5. 

HM-1:IMSS is a virulent strain extensively used as a genomic reference strain and 

characterised as the most virulent strain since it could produce hepatic lesions in 19% of 

newborn hamsters injected with just 20 trophozoites [71] . Conversely, Rahman is 

considered as a ‘nonvirulent’ strain due to its defects in phagocysis and cytopathic activity 

as well as its inability to cause abscess lesions when inoculating a large number of 

trophozoites into hamsters whilst other E. histolytica strains exhibit the virulent 

phenotypes, resulting in amoebic colitis and/or ALAs [72]. Also, the transcriptomic and 

proteomic evidences reported its reduced expression of antioxidative proteins in 

comparison to HM-1:IMSS, indicating the decreased resistance to oxidative and nitrosative 

stresses in Rahman [16,73]. 

 

 

 

Figure 1.5: Phylogenetic relationship of 11 well-characterised E. histolytica strains 

based on 3,696 polymorphic sites. The tree was constructed using distance-based method 

and maximum likelihood with shown bootstrap values in respective order: Distance/ML. 

The bootstrap value less than 50% is designated as an asterisk. This tree figure is 

reproduced with permission from Weedall et al., 2012 [70].  
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 Over a decade ago, after launcing of the complete genome sequence and annotation 

of E. histolytica, it has highlighted the amoebic virulence research in genomic and 

transcriptomic scales. Several genes responsible in amoebic pathogenesis have been 

extensively investigated among E. histolytica strains and E. dispar by genome-wide analyses   

[73-77]. MacFarlane and Singh, 2006 applied the DNA microarray containing 2,110 genes to 

unravel the transcriptional differences among E. histolytica HM-1:IMSS, Rahman and E. 

dispar SAW760 and found that 415 genes in E. dispar, 32 genes in E. histolytica Rahman and 

29 genes in both E. dispar and E. histolytica Rahman were downregulated relative to E. 

histolytica HM-1:IMSS [74]. Among these, 29 lower expressed genes in both nonvirulent 

strain/species involved in stress response and virulence, for instance: Fe hydrogenase, 

peroxiredoxin, lysozyme, sphingomyelinase, a protein with domains homologous to a 

Plasmodium sporozoite threonine-asparagine-rich protein (STARP) and a hemagglutinin.  

Using a 70mer DNA microarray covering 6,242 genes, Davis et al., 2007 showed key 

transcriptomic differences in the expression of virulence-associated genes, i.e. CPs, the light 

chains of the Gal/GalNAc lectin (Lgls) and calmodulin between HM-1:IMSS and Rahman 

[76]. As the sensitivity of this array was increased due to its coverage of more genes 

accounting for ~80% of the current genomic database than the previous study of 

MacFarlane and Singh and its ability to differentiate the paralogous transcripts of the same 

gene family, 353 putative differentially expressed (DE) genes (with fold change greater than 

2) between HM-1:IMSS and Rahman were identified [76]. In this microarray study, a 

number of DE genes involved in pathogenesis and virulence were upregulated in HM-1:IMSS 

including cysteine proteinases (EhCP4, EhCP6 and EhCP7), bacterial interaction/killing 

proteins (AIG1-like family proteins and lysozyme), members of protein kinase family, Rho 

and Ras family GTPases, 70 kDa heat shock protein, BspA-like leucine-rich repeat protein 

and calmodulin [76]. In addition, comparative proteomic study by Davis et al., 2006 

identified two antioxidative proteins, i.e. peroxiredoxin and superoxide dismutase, as 

important virulence determinants in HM-1:IMSS and found that peroxiredoxin 

overexpression in Rahman resulted in increased resistance to the oxidative stress [16].  

Another interesting protein is the light subunit (35 kDa) of the Gal/GalNAc lectin 

complex which functions as a primary adhesive molecule for host cell adhesion and killing 

[78]. As previously published, cDNA representational difference analysis identified the 

under-representation of Lgl1 transcripts in Rahman relative to HM-1:IMSS [79]. Also, 

downregulation of Lgl1 by antisense inhibition and dominant negative N-truncated Lgl1 

expression in HM-1:IMSS were associated with reduced erythrophagocytosis [79,80]. 

Contrastedly, this microarray study showed no significant difference of Lgl1 between two 
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strains but found conversely that Lgl3 was significantly upregulated 22-fold in Rahman                

compared to HM-1:IMSS, leading the interesting question that over-represented Lgl3 in 

Rahman might be associated with its reduced phagocytosis and virulence [76]. 

 As noted above, most previous publications were experimentally designed for in 

vitro transcriptomic studies using axenically cultured strains. However, it was reported 

before that axenisation and long term in vitro cultivation potentially decrease the virulence 

of the parasites as well as reduce their ability to resist the complement lysis [81]. Therefore, 

it is indeed worth studying their gene expression changes during interaction with the colon 

mucosa, both in vivo and ex vivo, to reflect virulence determinants directly responsible for 

their different phenotypes.  

 The first transcriptome in vivo study of the HM-1:IMSS trophozoites isolated from 

the infected CBA/J mice colon compared to those from axenic culture was performed using 

an 25mer Affymetrix array platform covering 9,435 open reading frames by Gilchrist et al., 

2006 [77]. Similar to the previous study of Davis et al., 2007, signaling genes (i.e. 

transmembrane kinases, Ras and Rho family GTPase), EhCP4, AIG1-like family proteins and 

calcium-binding proteins were found to be upregulated in in vivo condition. However, this 

study focused on the transcriptomic responses of the same strain between in vivo and in 

vitro conditions to see the impact of mucosal colonisation and invasion rather than 

exploring the in vivo key differences of transcriptomic profiles between virulent and 

nonvirulent strains.  

More recently, Thibeaux et al., 2013 investigated the comparative transcriptomic 

profiles between E. histolytica Rahman and HM-1:IMSS strains in axenic culture and upon ex 

vivo contact with the intestinal mucus on human colon explants, using whole genome 

microarray analysis [82]. It was found that upon contact with the mucus, a number of genes 

involved in glycolysis (i.e. triosephosphate isomerase and glucose-6-phosphate isomerase) 

and carbohydrate catabolism (i.e. starch-binding protein, -amylase, -galactosidase, -N-

acetylhexosaminidase, 4--glucanotransferase and oligosaccharide-glycosyltransferase) 

were exclusively upregulated in HM-1:IMSS relative to Rahman. 

Interestingly, such upregulated transcripts encodes enzymes, i.e. -galactosidase 

and -N-acetylhexosaminidase, that play a crucial role in MUC2 degradation in conjunction 

with cysteine proteinases by cleaving the oligosaccharide from the protective MUC2 mucin 

layer into UDP-glucose [82]. Surprisingly, the upregulated -amylase absent in human might 

participate in hydrolysing oligosaccharide released from the degraded MUC2 layer into 

glucose-1-phosphate. Altogether, both UDP-glucose and glucose-1-phosphate could be 
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utilised for energy production by glycolytic pathway. This is consistent with the 

upregulation of genes in glycolytic pathway previously mentioned. To prove the possible 

role of -amylase in mucosal invasion, double-stranded RNA (dsRNA)–based knock down 

experiment and histological study of mucus layer degradation were done [82]. The results 

showed significantly reduced -amylase abundance and intact protective mucus layer in 

dsRNA-treated HM-1:IMSS trophozoites, inferring that -amylase deficient parasites could 

not invade the physical mucus barrier and not utilise the MUC2-associated oligosaccharides 

as a carbon source for energy production. The authors also suggested to the possibility to 

develop E. histolytica -amylase as a potential specific therapeutic candidate in invasive 

amoebiasis due to the absence of this enzyme in the human genome [82].   

 To date, endogenous small non-coding RNAs have been reported in many human 

protozoan parasites such as Giardia lamblia, Trichomonas vaginalis, Toxoplasma gondii, 

Trypanosoma brucei and E. histolytica [83-86]. Typically, these small RNAs (sRNAs) can 

modulate the gene expression at post-transcriptional level by complementary base-pairing 

to the target mRNA transcripts and subsequently causing translation repression and mRNA 

cleavage [87-91].  

Two major classes of sRNAs, small interfering sRNAs (siRNAs) and microRNAs 

(miRNAs) have been previously reported for their regulatory roles in E. histolytica 

[85,86,92-94]. Zhang et al., 2008 demonstrated the presence of 27 nt sRNAs with 5’-

polyphosphorylated termini which were associated with an Argonaute protein and play a 

role in the siRNA pathway in E. histolytica [85]. Also, these 5’-polyphosphate sRNAs have 

been identified for their roles in silencing of gene expression at both transcriptional and 

post-transcriptional levels [85,86,92,93]. Recently, the sRNA sequencing data in Rahman 

and HM-1:IMSS strains revealed that these siRNAs regulate the expression of certain genes 

including two virulent EhSTIRP genes in a strain-specific manner [92]. For miRNAs, the 

seventeen putative miRNA candidates were firstly predicted using the computational 

method by De et al., 2006 after the complete genome sequencing of E. histolytica published 

in 2005 [36,95]. Recently, the deep sequencing data of sRNA transcriptome in E. histolytica 

HM-1:IMSS strain revealed a total of 199 potential miRNA candidates predicted from the 

hairpin-forming precursor sequences as well as 66 potential target genes [94]. However, 

biological significance of miRNAs towards the differential virulence among E. histolytica 

strains needs to be elucidated.  

As explained so far, transcriptomic differences in relevance to virulence variability 

between virulent and nonvirulent strains of E. histolytica have been explored. A number of 
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genes implicated for amoebic pathogenicity and virulence have been identified in different 

experimental conditions. To complete the jigsaws of the knowledge, transcriptomic 

networks controlling the degree of parasite virulence in each strain as well as their 

transcriptional regulation need to be investigated more thoroughly. 

1.7 Treatment of amoebiasis 

 Asymptomatic individuals who were found to have E. histolytica cysts in their stool 

specimens are recommended for amoebicide medication [6,61,96]. Luminal amoebicides 

such as diloxanide furoate (Furamide), quinodocholor (Entero Quinol), 

iodochlorhydroxyquin (Vioform) and paromomycin (Humantin) are commonly used to treat 

asymptomatic amoebiasis [61,96]. For invasive cases, metronidazole (Flagyl) is a drug of 

choice and provides the most effective treatment for amoebic colitis and extraintestinal 

amoebiasis including ALA, pleuropulmonary amoebiasis and brain abscesses [61,96]. 

Tinidazole (Tindamax) could be used as an alternative tissue amoebicide for such invasive 

amoebiasis. Also, a course of luminal amoebicide, i.e. diloxanide furoate, is usually 

prescribed in combination with metronidazole to completely eradicate the infection [61,96]. 

For hepatic abscess, surgical drainage might be required to get the clinical improvements 

and reduce the severe systemic complications including rupture into the pleura and the 

pericardial cavity. Emergency drainage is mandatory in case of abscess rupture into the 

pericardial cavity, resulting in cardiac tamponade [6].  

 In addition to such above amoebicide medication, oral rehydration is also essential 

in patients with colitis symptoms since the water reabsorption is affected due to colonic 

mucosal inflammation.  For cases with severe dehydration, intravenous fluid replacement 

will be considered. 
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1.8 Project objectives and methodology 

In this present study, I hypothesised that there should be certain differences in 

expression of genes between virulent and nonvirulent strains of E. histolytica, contributing 

to their virulence phenotype. RNA sequencing (RNA-Seq) is a novel technology for 

transcriptomic studies by using next-generation sequencing technologies to sequence cDNA 

reverse transcribed from RNA. RNA-Seq can provide genome-wide transcriptomic data so 

that researchers can understand biological implications of gene expression. Additionally, no 

previous research has been done for RNA-Seq analyses in axenically cultured strains of E. 

histolytica in relation to their clinical phenotype.  

Therefore, I applied this RNA-Seq technology for whole transcriptomics to explore 

differences in gene expression in relevance to virulence among the four laboratory-cultured 

and well-characterised strains of E. histolytica as described in Chapter 2. Functional 

characterisation and annotation of protein domains found in each set of differentially 

expressed genes between transcriptomes of nonvirulent and virulent parasites were done to 

reveal the biological functions and implications in relevance to virulence and pathogenesis. 

Also, gene ontology (GO) enrichment analysis and summarisation by REVIGO software were 

performed to show comprehensive networks of both overrepresented and 

underrepresented gene ontologies in the transcriptomes of virulent strains. Taken together, 

these transcriptomic analyses can fulfil knowledge of the molecular basis of virulence in E. 

histolytica infection. 

In Chapter 3, novel gene expression analysis system, the NanoString nCounter® 

technology was applied to validate the accuracy of RNA-Seq experiments previously done, 

using a representative set of putative virulence-associated genes. In addition, the obtained 

nCounter data was used to compare transcriptional profiles of such representative genes 

between strains in relation to their differential virulence. 

Single nucleotide polymorphisms (SNPs) and genomic plasticity including gene gain 

or gene loss and gene copy number variation could be found among the genome of E. 

histolytica strains [70]. As such, this genomic variability can potentially cause variation in 

transcriptional levels as well as flexibility in transcriptional regulation, contributing to 

difference in virulence.  To prove this assumption, I correlated the obtained RNA-Seq data 

with the genomic data previously published. The association between sequence 

polymorphisms and transcriptional variation among the strains was explained in Chapter 2.  

Also, the impact of copy number variation on gene expression levels was demonstrated in 

Chapter 4. 
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In addition, I hypothesised that expression of virulence-associated genes might be 

regulated by sRNAs, potentially miRNAs, leading to different clinical phenotypes among 

strains. The miRNA, a small non-coding RNA with 21-23 nucleotides (nt) in length, is well-

conserved among eukaryotic organisms and functions via complementary base-pairing with 

messenger RNA (mRNA) molecules, resulting in mRNA degradation and translation 

repression. As mentioned before, the bioinformatics-based predictions of novel miRNA 

candidates have been previously reported in HM-1:IMSS strain but functional studies 

towards the virulence regulation are still lacking [94,95]. Also, putative miRNAs have been 

recently identified in deep-branching unicellular flagellate parasites, e.g. G. lamblia and T. 

vaginalis [97-100]. So, it is possible for the presence of miRNA regulation system in E. 

histolytica. Hence, in Chapter 5, I designed the experiments using size-selected small RNA-

Seq to investigate whether miRNAs could be found and play a role in regulating the parasite 

transcriptome.  The overall methodology used in this study was schematically outlined in 

Figure 1.6. 

Thus, the main aims of this present study are to comprehensively study the 

comparative analysis of the whole and small RNA transcriptomes amongst nonvirulent and 

virulent strains of axenically cultured E. histolytica trophozoites as well as to integrate such 

transcriptomic findings with the genomic data for better understanding of the pathogenesis 

and virulence in amoebiasis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



             

             

 
   20 

 

 

         
 

 
Figure 1.6:  Overall methodology for transcriptomic characterisation of virulence in E. 

histolytica in this present study.  
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Chapter 2: Exploration of the transcriptomes in the four laboratory-

adapted strains of E. histolytica to identify genes responsible for 

virulence 

 

2.1 Introduction 

 After new assembly and reannotation of the E. histolytica genome republished in 

2010, the big genomic data of this parasite have revolutionised and made both 

transcriptomic and proteomic analyses easier and more comprehensive than ever [25]. As 

reviewed in the previous chapter, many microarray-based expression profilings have 

characterised both in vitro and in vivo molecular differences between E. histolytica strains in 

relevance to their differential virulence [74,76,77,82].  Generally, hybridisation-based 

transcriptomic method, i.e. DNA microarray, requires the synthesis of fluorescently labelled 

probes to detect expressed transcripts. Even though this high-throughput method can be 

applied to quantify the gene expression levels on a genome-wide scale, there are still some 

limitations in transcript detection. The major disadvantages are high background noises due 

to cross hybridisation as well as a narrow dynamic range of quantification caused by signal 

saturation [101,102].  

RNA-Seq technology has recently been developed to explore transcriptomic profiles 

in the samples of interest.  Basicly, the next generation DNA sequencing technologies that 

have been previously developed, e.g. SOLiDTM system (Applied Biosystems), 454 

pyrosequencing (Roche) and Illumina sequencing, can be applied for RNA-Seq to sequence a 

population of cDNA fragments reverse-transcribed from RNA and provide high-throughput 

data for downstream analysis [103-108].  This application provides many benefits over 

other transcriptomic profiling methods [109]. Firstly, RNA-Seq can analyse gene expression 

without limitation of probe design or reliance on genomic reference, required for 

hybridisation-based methods [104,109]. Secondly, there is very low background signal in 

RNA-Seq since most obtained DNA sequence can be mapped to the reference sequence.  

Essentially, RNA-Seq has a very high sensitivity and broad dynamic range greater 

than 9,000-fold, indicating its capability to precisely measure the expression levels of both 

rare and abundant transcripts [109].  In principle, the number of sequenced transcripts 

would represent the level of gene expression. In contrast to RNA-Seq, DNA microarrays 

show low sensitivity and have much limited dynamic range not greater than 150-fold as a 

result of signal saturation, therefore the microarray method is not appropriate in detecting 

rare or very highly expressed transcripts [109].  
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Besides a purpose of transcript quantification, RNA-Seq can be used to reveal novel 

transcripts, novel isoforms, alternative splicing, alleleic expression as well as RNA editing 

[110]. Typically, RNA-Seq requires low amount of initial RNA for library preparation and 

also shows high reproducibility [103,106]. Ultimately, sequencing cost in the post-genomic 

era has continuously decreased. Taken together, such above advantages make RNA-Seq very 

popular for current transcriptomic researches.  

For whole transcriptomics using RNA-Seq, large-sized RNAs such as poly(A)+ RNA 

need to be fragmented into smaller sizes prior to steps of reverse transcription and 

amplification to get highly qualified reads with high Phred quality score [109,110]. Raw 

short reads obtained from RNA-Seq must be trimmed for adaptor sequence and filtered out 

for low-quality reads. Then, high-quality reads after quality assessment will be used for 

transcriptome assembly and alignment to the reference sequence to estimate their 

abundance.  Bioinformatic tools, e.g. Cufflinks, R Bioconductor (edgeR, DEseq), etc., have 

been applied to analyse the mapping results for differential expression analysis [111-115]. 

Conclusively, the key superiority of this sequencing-based method is its capability to reveal 

whole transcriptomic profile of the interested cells or tissues with quantitative and accurate 

measurements.  

As reviewed in Chapter 1, previous studies mainly focused on transcriptomic 

differences between two well characterised E. histolytica strains, i.e. nonvirulent Rahman 

and virulent HM-1:IMSS. However, clinical case reports of E. histolytica infection revealed 

difference in virulence and various pictures of clinical manifestations.  Such broad spectrum 

of disease severity likely reflects the diversity of this parasite in both genomic and 

transcriptomic levels, resulting in varied phenotypes. Recently, Weedall et al., 2012 revealed 

genome diversity among axenically cultured E. histolytica strains, suggesting the differences 

in transcriptomic profiles among such re-sequenced strains [70].  Therefore, it is hoped that 

integration of knowledge in genomics and transcriptomics would give us fresh 

understanding in amoebic virulence better than before. 

In this chapter, I approached the whole transcriptomic analysis of the four axenically 

cultured E. histolytica strains by using the Illumina HiSeq RNA-Seq technology to explain the 

molecular basis of transcriptomic differences among E. histolytica strains. Additionally, 

protein domain signatures of genes with transcriptomic modulation were characterised to 

reveal the biological functions and implications towards virulence and pathogenesis. 

Furthermore, GO enrichment analysis and comprehensive summarisation by the REVIGO 

software were performed to display biologically relevant interconnections of modulated 

gene ontology terms in the transcriptomes of virulent strains. Therefore, these functional 
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and global transcriptomic analyses can provide us the new insights into the molecular and 

evolutionary basis of virulence and pathogenesis in E. histolytica infection. 

 

2.2 Materials and Methods 

2.2.1 Strains of E. histolytica used in this whole transcriptomic study 

Four strains of E. histolytica detailed in Table 2.1 were available in my laboratory 

and used for this transcriptomic study [70]. The experiment was designed in triplicate to 

prevent bias of measurements so 12 samples in total (3 replicate lines for four strains) were 

collected for analysis. Firstly, E. histolytica trophozoites were axenically cultured from 

cryopreserved stocks kept in liquid nitrogen. Trophozoites were then subcultured in 13 ml 

tube of LYI-S-2 medium twice per week. After inoculation in LYI-S-2 medium, the 

trophozoites were cultured at 36 0C and evaluated for the mid-log phase growth (50-70 % 

confluency) under Nikon Diaphot 200 inverted microscope. When they had reached the 

appropriate confluency at 60 hrs of culture, the mid-log phase trophozoites were collected 

by centrifugation and washed in phosphate buffer saline (PBS) solution. Then, these 

harvested trophozoites were immediately used for total RNA isolation. 

 

Table 2.1: Entamoeba histolytica strains used in this study, including country of 

origin, year of collection and clinical manifestation. For Rahman, the UK (*) patient was 

a sailor, so the infection was unknown in origin, probably contracted elsewhere. The 

PVBM08B strain was isolated from an Italian (**) who had a travel history possibly from 

Liberia or Columbia.  

Strain Country of origin Year of collection Clinical manifestation 

Rahman United Kingdom* 1964 Asymptomatic 
 
HM-1:IMSS 

 
Mexico 

 
1971 

Intestinal amoebiasis 
(Amoebic liver abscess in 
inoculated hamster) 

IULA:1092:1 Venezuela 1992 Intestinal amoebiasis 

PVBM08B Italy **(colonic biopsy) 2007 Intestinal amoebiasis 
 

 



             

             

  

 

   24 

   24 

2.2.2 Total RNA isolation, quality assessment and ribosomal RNA depletion 

Total RNA was extracted using the Trizol® plus RNA purification kit (Invitrogen, 

USA). The RNA integrity number (RIN) was verified to determine the quality of each sample 

using an Agilent 2100 Bioanalyser with the Eukaryotic RNA Pico chip (Agilent Technologies, 

USA). Qualified undegraded samples with RIN score greater than or equal to 6.0 were used 

for further steps. Ribosomal RNAs (rRNAs) were then removed by using the RiboZeroTM 

magnetic gold rRNA removal kit. The rRNA-depleted samples were rechecked by the 

Eukaryotic RNA Pico chip to ensure that at least 95 % depletion of 18S and 28S rRNA 

species was successful. These samples were also assessed in quantity using the Qubit® 

fluorometric assay (Invitrogen). Then, the processed RNA samples were kept at -80 oC until 

used for RNA-Seq library preparation. 

2.2.3 ScriptSeqTM v2 RNA-Seq library construction  

Library construction is performed using total rRNA-depleted RNA as a template for 

reverse transcription to provide set of cDNA fragments with average size of 200-500 bp. In 

this work, I used ScriptSeqTM v2 RNA-Seq library preaparation kit (Epicentre, USA) for 

constructing adaptor-tagged RNA-Seq library, ready for deep sequencing technology, i.e. 

Illumina sequencing HiSeq 2000.  

RNA-Seq library construction was performed following carefully the manufacturer’s 

protocol (Epicentre), as overviewed in Figure 2.1. Briefly, 50 ng of rRNA-depleted sample 

obtained from the previous step was fragmented using the RNA fragmentation solution and 

annealed with random-sequence primers to synthesise cDNAs with 5’ tagged end. After 

removal of RNA, terminal-tagging oligo (TTO) was used for annealing to the 3’ end of the 

cDNAs to act as a template for cDNA extension by DNA polymerase. Then, di-tagged cDNAs 

were purified by Agencourt® AMPure XP system (Beckman Coulter, USA). The purified di-

tagged DNAs were amplified by 15 cycles of PCR reaction using PCR primers specific to the 

tagging sequences. For this study, different index primers were used as reverse primers 

individually for each library. Then, obtained cDNA libraries were purified using Agencourt® 

AMPure XP magnetic beads prior to Qubit® fluorometric quantitation. Finally, cDNA 

libraries constructed from each strain were run in a High Sensitivity DNA chip (Agilent 

Technologies) to check the overall profile with range from 100 to 3,000 bp and pooled 

together in equimolar fractions for paired-end sequencing (2x 100 bp) on one lane of the 

Illumina HiSeq 2000 platform with version 3 chemistry at the Centre for Genomic Research 

(CGR), University of Liverpool. 
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Figure 2.1: Comprehensive workflow of the ScriptSeqTM v2 RNA-Seq library 

preparation. (available online at https://www.epicentre.com).   

 

 

 

 

https://www.epicentre.com/
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2.2.4 Bioinformatics Pipeline 

I. Read processing and quality assessment of the raw sequence data  

For the whole transcriptome library, raw data were obtained in the form of Fastq 

formatted files. Cutadapt version 1.2.1 with option ‘-O 3’ was used for trimming the 3’ end of 

any reads matched with adaptor sequences for 3 bp or greater [116]. Then, bases with low 

quality scores were trimmed using Sickle version 1.200 with a minimum window quality 

score of 20. After quality trimming, short reads less than 10 bp were removed. For the 

paired-end library, if both paired–end reads passed the filter, they were designated as R1 

and R2 reads for forward and reverse reads, respectively. The reads where one read was 

filtered out due to poor sequence quality or adaptor contamination were included as R0 

reads. The total number of raw reads as well as the percentage of trimmed reads were 

summarised in Figure 2.2 and Table 2.2, respectively. The distribution of trimmed read 

lengths in all library samples was illustrated in Figure 2.3.         

           

 

Figure 2.2: The total number of reads in millions retrieved from each library of the 

four strains. 
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Table 2.2: Summary of sequence read data before and after adapter removal and low 

Phred score trimming. 

Sample Raw reads Trimmed reads R1/R2 reads R0 reads 
 

Rahman_1 27,628,770 27,441,181  (99.32%) 13,628,234 184,713  (0.67%) 

Rahman_2 23,372,776 23,206,434  (99.29%) 11,521,192 164,050  (0.70%) 

Rahman_3 23,669,456 23,492,355  (99.25%) 11,659,162 174,031  (0.74%) 

PVBM08B_1 28,307,440 28,118,858  (99.33%) 13,967,785 183,288  (0.65%) 

PVBM08B_2 27,996,296 27,786,978  (99.25%) 13,790,563 205,852  (0.74%) 

PVBM08B_3 27,327,270 27,131,353  (99.28%) 13,469,506 192,341 (0.70%) 

HM-1:IMSS_1 27,249,994 27,071,846  (99.35%) 13,448,192 175,462  (0.64%) 

HM-1:IMSS_2 31,279,360 31,068,562  (99.33%) 15,430,699 207,164  (0.66%) 

HM-1:IMSS_3 31,543,100 31,328,023  (99.32%) 15,558,614 210,795  (0.67%) 

IULA:1092:1_1 28,823,354 28,618,907  (99.29%) 14,210,852 197,203  (0.68%) 

IULA:1092:1_2 28,027,418 27,847,442  (99.36%) 13,835,844 175,754  (0.63%) 

IULA:1092:1_3 29,324,306 29,130,281  (99.34%) 14,471,195 187,891  (0.64%) 

 
 
 
 
 

 

Figure 2.3: Read length distributions after adaptor and low base quality trimming. 

The forward, reverse and singlet unpaired reads are represented as R1, R2 and R0 reads 

respectively.  
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II. Mapping of reads to the reference genome sequence 

After getting the quality trimmed reads, TopHat version 2.0.10                                                          

(http://tophat.cbcb.umd.edu) was used as a read alignment software to map R1/R2 reads to 

the E. histolytica HM-1:IMSS reference genome sequence (release 2.0, 

http://AmoebaDB.org/common/downloads/release2.0/EhistolyticaHM1IMSS/fasta/data/

AmoebaDB-2.0_EhistolyticaHM1IMSS_Genome.fasta) [26,111,114,117]. The corresponding 

AmoebaDB-2.0_EhistolyticaHM1IMSS.gff file was used to annotate a total of 8,333 genes in 

the genome [26]. 

TopHat was set for paired-end data with following parameters: -p <number of 

threads> 8; --library-type fr-secondstrand; –G <GTF/GFF3 file> AmoebaDB-

2.0_EhistolyticaHM1IMSS.gff; –r <mean inner distance> 445. The output ‘accepted_hits.bam’ 

file was then used for all downstream analysis. 

  Alignment statistics were calculated using SAMtools with ‘flagstat’ option. The 

number and percentage of total read mapping and uniquely mapped reads are shown in 

Table 2.3. Additionally, Cufflinks version 2.1.1 (http://cufflinks.cbcb.umd.edu) using the 

modified annotation file ‘AmoebaDB-2.0_EhistolyticaHM1IMSS.exon.only.gff’ as the 

reference was used to calculate the comparable normalised values, i.e. Fragments Per 

Kilobase of transcript per Million fragments mapped (FPKM) from the dataset [111]. The 

number and percentage of genes with five different ranges of FPKM values in all four strains 

were summarised in Table 2.4 and Figure 2.4.  

 

 

 

 

 

 

 

 

 

http://tophat.cbcb.umd.edu/
http://amoebadb.org/common/downloads/release2.0/EhistolyticaHM1IMSS/fasta/data/
http://amoebadb.org/common/downloads/release2.0/EhistolyticaHM1IMSS/fasta/data/
http://cufflinks.cbcb.umd.edu/
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Table 2.3: Summary of number and percentage of total and uniquely read alignments 

to the E. histolytica HM-1:IMSS reference genome using TopHat software version 

2.0.10.    

Sample Number of 

total reads 

generated 

Number of 

properly 

paired reads 

mapped to 

reference 

Percentage of 

total read 

mapping  

Number of 

uniquely 

mapped  

reads 

Percentage of 

uniquely 

mapped reads 

Rahman_1 29,346,366 25,963,308 88.47 % 22,441,712 76.47 % 

Rahman_2 24,930,442 21,902,690 87.86 % 19,325,670 77.52 % 

Rahman_3 25,262,009 22,290,760 88.24 % 19,110,836 75.65 % 

PVBM08B_1 26,526,824 22,595,244 85.18 % 19,881,804 74.95 % 

PVBM08B_2 29,509,371 25,086,758 85.01 % 22,501,128 76.25 % 

PVBM08B_3 26,157,558 22,371,072 85.52 % 19,702,578 75.32 % 

HM-1:IMSS_1 28,331,798 25,174,890 88.86 % 20,578,122 72.63 % 

HM-1:IMSS_2 35,210,633 31,709,340 90.06 % 25,319,948 71.91 % 

HM-1:IMSS_3 32,887,888 29,029,556 88.27 % 24,237,370 73.70 % 

IULA:1092:1_1 30,608,590 26,960,566 88.08 % 21,472,782 70.15 % 

IULA:1092:1_2 24,874,054 21,613,244 86.89 % 17,959,660 72.20 % 

IULA:1092:1_3 26,626,517 23,072,116 86.65 % 19,170,672 72.00 % 
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III. Differential gene expression (DGE) analysis  

Differential gene expression (DGE) analyses were carried out using the processed 

HTSeq-count read data and the generalised linear model (glm) approach of the edgeR 

package [117]. Firstly, the alignment file ‘accepted_hits.bam’ of each library sample was 

converted from BAM to SAM file, using SAMtools with ‘view -h’ option. Using the 

accepted_hits.sam file as an input, HTSeq-count (release 0.6.1, http://www-

huber.embl.de/users/anders/HTSeq/doc/count.html) was applied to count only raw sense 

reads per gene with following parameters: -m <mode> intersection-strict;  -i <id attribute> 

Parent;  -t <type> exon;  -s <stranded> yes [119]. The HM-1:IMSS genome annotation file 

(release 2.0, AmoebaDB-2.0_EhistolyticaHM1IMSS.gff file) was used to count raw reads 

aligned to each gene [26]. The raw sense reads for each gene obtained from the HTSeq-

count data would be used for DGE analysis.  

Then, the edgeR Bioconductor package software (available at 

http://www.bioconductor.org/packages/release/bioc/html/edgeR.html) was used to 

explore differential expression profiles in pairwise comparison between two strains of E. 

histolytica [115]. Briefly, genes with zero HTSeq-count in all samples were filtered out and 

then the subset of only expressed genes in each library was analysed for both ‘within-group’ 

and ‘between-group’ variations in form of pairwise scatterplots as shown in Figures 2.5 and 

2.6, respectively. A sample correlation heatmap was construced based on Pearson’s 

correlation coefficients (r) to reveal transcriptomic variability within a sample group and 

between different sample groups in form of colour spectrum as shown in Figure 2.7. Also, 

the two-dimensional principal component analysis (2D-PCA) plots were constructed using 

the log2-transformed FPKM and HTSeq-count values to estimate the overall transcriptomic 

variation among all 12 library samples as demonstrated in Figure 2.8. 

Normalisation factor was calculated for each library using calcNormFactors function 

to correct for differences of library sizes among samples after filtering all zero count. Then, 

the dispersion plot was constructed by fitting to a negative binomial (NB) model to show the 

values of common, trended and tagwise dispersions of all genes among all libraries as 

shown in Figure 2.9.  Tagwise dispersion specific to each gene was applied for significance 

testing in differential gene expression analysis.  

A model matrix was constituted with six pairwise contrasts as follows: Rahman vs 

PVBM08B; Rahman vs HM-1:IMSS; Rahman vs IULA:1092:1; PVBM08B vs HM-1:IMSS; 

PVBM08B vs IULA:1092:1; HM-1:IMSS vs IULA:1092:1. The estimated log2-transformed 

values of fold change (log2FC) for all genes in each contrast were determined for differential 

http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
http://www.bioconductor.org/packages/release/bioc/html/edgeR.html
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expression using a likelihood ratio (LR) test [120]. P-values calculated for each gene were 

corrected for multiple comparisons using the false discovery rate (FDR, Benjamini-

Hochberg) method [121]. Differentially expressed genes were considered statistically 

significant when an FDR-adjusted P-value is less than 0.05. The log2FC values were plotted 

against the average expression levels, represented by log2-transformed values of count per 

million mapped reads (log2CPM) as shown in Figure 2.10. The distribution of P-values for 

each contrast was shown in Figure 2.11. The number of significantly DE genes with 

upregulation and downregulation in each contrast was summarised in Table 2.5.  

Venn diagrams were constructed to show the numbers of upregulated and 

downregulated genes which were exclusively found in one strain or overlapping between 

strains as shown in Figures 2.13-2.16. The most frequent functionally annotated transcripts 

with upregulation and downregulation in the three virulent strains were listed in Tables 2.6 

and 2.8, respectively. Common DE genes with upregulation and downregulation in the three 

virulent strains were categorised, based on their functional categories, as summarised in 

Tables 2.7, 2.9 and Figure 2.17. Also, the modulated transcripts with their functional gene 

annotations in all three virulent strains were listed in Table 2.10. The numbers of 

upregulated and downregulated functional genes with absolute log2FC ≥ 2 in each strain 

were detailed in Appendix Tables 1.1-1.7 and 2.1-2.7, respectively. 

To analyse the pattern of transcriptional differences across the strains, hierarchical 

clustering analyses were performed using the R script ‘mymkheatmap’, generously provided 

by Dr. Yongxiang Fang, a biostatistician of the Centre for Genomic Research, Institute of 

Integrative Biology, University of Liverpool. All 7,024 DE genes showing significant 

expression differences in at least one or more contrast pairs from the previous DGE analysis 

were enrolled for heatmap construction. The package ‘fields’ installed from the 

bioconductor website (http://bioconductor.org/biocLite.R) was applied to cluster these 

7,024 DE genes based on their relative expression pattern (log2FC) across 6 contrast pairs as 

illustrated in Figure 2.18 [122]. Then, the 6th cluster with 98 DE genes showing remarkable 

fold change differences across contrasting pairs were further categorised into 5 subclusters 

as shown in Figure 2.19. The functional annotations, number of genes and AmoebaDB_IDs of 

these 98 DE genes were listed in Table 2.11. 

In order to test the hypothesis that sequence divergence is associated with 

transcriptional variation between strains, the numbers of total SNPs found in 98 DE genes, 

retrieved from the previous 6th cluster, across all strains (see Appendix Table 3) were 

plotted against their transcriptional variability represented by log2-transformed values of 

the ratio of maximum FPKM and minimum FPKM observed in the four strains, as shown in 

http://bioconductor.org/biocLite.R
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Figure 2.20. Also, the correlation analysis between nucleotide polymorphisms and 

transcriptional variation of such 98 DE genes in Rahman relative to HM-1:IMSS was 

conducted as plotted in Figure 2.21. 

IV. Protein domain searching by the InterProScan 

 Two sets of upregulated (n=1,162) and downregulated (n=997) genes commonly 

seen in all three virulent strains, i.e. PVBM08B, HM-1:IMSS and IULA:1092:1, relative to 

Rahman as shown in Venn diagrams (see Figures 2.13 and 2.15) were recruited for scanning 

their putative functional protein domain or motif. Briefly, protein functional analysis was 

performed against the Pfam database by the InterProScan program using the FASTA 

formatted protein sequences of all upregulated or downregulated genes [123]. The 30 most 

prevalent functionally annotated domains in upregulated and downregulated gene sets 

were ranked in order based on their frequency of proteins found, as shown in Figures 2.22 

and 2.23, respectively. 

V. Gene ontology (GO) enrichment analysis and interactive summarisation by 

the REVIGO software 

The upregulated and downregulated gene sets previously used for InterProScan 

were further investigated for their ontologies and biological implications. Briefly, the 

upregulated gene set (n=1,162) and downregulated gene set (n=997) were individually 

applied for GO enrichment analysis in the AmoebaDB website 

(http://amoebadb.org/amoeba/) to explore overrepresentation or underrepresentation of 

ontologies in these two gene sets in comparison to the background. Enrichment was 

considered as statistically significant where an FDR-adjusted P-value is less than 0.05. 

Enrichment analyses for biological process, molecular function and cellular component 

ontologies were summarised in Appendix Tables 4, 5 and 6 for upregulated gene sets and 

Appendix Tables 7 and 8 for downregulated gene sets.  

Summarisation and visualisation of the previous ontology analyses were performed 

using the online REVIGO software (http://revigo.irb.hr/) [124]. Then, ontologies for 

biological process, cellular component and molecular function with associated FDR-

corrected P-values were analysed by simple clustering algorithm to reduce redundant GO 

terms as detailed in Appendix Tables 9, 10 and 11 for upregulated ontologies and in 

Appendix Tables 12 and 13 for downregulated ontologies. Also, the semantic relationships 

of ontology representatives in multidimensional scaling plot, graph-based visualisation and 

treemap were illustrated as shown in Figures 2.24-2.33. Cytoscape software version 3.2.0 

http://amoebadb.org/amoeba/
http://revigo.irb.hr/
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(http://www.cytoscape.org/) was applied to view upregulated/downregulated biological 

networks in the REVIGO interactive graph (see Figures 2.25A, 2.27A, 2.29A, 2.31A and 

2.33A) [125]. 

 

2.3 Results and Discussion 

2.3.1 Transcriptomic profiling of the four E. histolytica strains from axenic 

culture 

            To identify the key differences between three virulent strains (i.e. PVBM08B, HM-

1:IMSS and IULA:1092:1) and nonvirulent Rahman strain, total RNA samples were extracted 

from three biological replicates of the mid-log phase axenicly cultured trophozoites. Quality 

assessment, rRNA depletion as well as RNA-Seq library construction were conducted. 

Twelve samples (three replicates for each strain) with different reverse index primers were 

pooled together for single run sequencing. Paired-end RNA sequencing (2X100 bp) was 

performed by Illumina HiSeq 2000 platform. FPKM values and raw read counts were 

calculated using Cufflinks and HTSeq-count softwares, respectively. Then, comparative 

transcriptomics between strains were explored by DGE tests, GO enrichment analysis as 

well as protein domain searching, discussed later. 

As illustrated in Figure 2.4, the pie charts show the percentage of expressed genes 

with five different ranges of FPKM values. In general, over 90% of all annotated 8,333 genes 

are transcribed since the fragments (FPKM > 0) could be mapped against the annotated 

reference genome. Notably, the majority of genes in all these four strains seem to have leaky 

expression with FPKM values ranging from > 0 to 50, accounting for approximately 70% of 

the whole transcriptome. Compared to RNA-Seq experiment done in higher organisms such 

as Drosophila melanogaster, only 9,995 genes on average from total 12,490 expressed genes 

were expressed in each stage of development (i.e. embryo, larva, pupa and adult), due to the 

tight transcriptional control [126].  Therefore, this finding suggests that E. histolytica 

possesses weak transcriptional control, resulting in leaky transcription that constitutes 

about 70% of the transcriptome. However, low abundance transcripts with FPKM less than 

50 could be normally detected by RNA-Seq due to its very high sensitivity [109].   

 

 

 

http://www.cytoscape.org/
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Table 2.4: Categorisation of all 8,333 E. histolytica genes into five groups based on their 

expression level. All of 8,333 genes are categorised into 5 groups: inactive, low, moderate, high, 

and very high expression levels reflected by different FPKM ranges: FPKM = 0, FPKM < 50, 50 < 

FPKM < 500, 500 < FPKM < 5,000 and FPKM > 5,000, respectively. The number of genes and 

corresponding percentages in each strain are shown below.  

 

             Strain 

 

FPKM 

Rahman PVBM08B HM-1:IMSS IULA:1092:1 
 

No. of 
genes 

 
Percentage 

 
No. of 
genes 

 
Percentage 

 
No. of 
genes 

 
Percentage 

 
No. of 
genes 

 
Percentage 

0 762 9.14 % 654 7.85 % 542 6.51 % 606 7.27 % 

< 50 5,459 65.51 % 5,585 67.02 % 5,849 70.19 % 5,758 69.10 % 

50 – 500 1,766 21.19 % 1,744 20.93 % 1,585 19.02 % 1,627 19.53 % 

500 – 5,000 323 3.88 % 325 3.90 % 326 3.91 % 317 3.80 % 

> 5,000 23 0.28 % 25 0.30 % 31 0.37 % 25 0.30 % 
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Figure 2.4:  Percentage of genes with differential expression levels in Rahman (A), PVBM08B (B), HM-1:IMSS (C) and 

IULA:1092:1 (D). Most of the genes (approximately 70%) in all these four strains are low in expression with FPKM values ranging 

from > 0 to 50 as shown above. 
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2.3.2 Assessment of transcriptional variation in the RNA-Seq data 

Firstly, a DGEList object was constructed using the DGEList function of the edgeR 

package, followed by removing genes which are not transcribed in all library samples to get 

the best performance of the edgeR when fitting the NB model. Then, filtered RNA-Seq data 

would be assessed for the variation of gene expression profiles between biological replicates 

to ensure that their average RNA-Seq data would precisely represent transcriptomic profile 

in each strain. To assess this ‘within-group’ variation, scatterplots were drawn using the 

log10-transformed values of raw read counts per gene to determine a degree of concordance 

among all biological replicate samples within each strain of E. histolytica as illustrated in 

Figure 2.5. Also, average read count per gene in each strain was calculated and plotted 

against each other between strains to show the ‘between-group’ variation as depicted in 

Figure 2.6. Comparing between Figures 2.5 and 2.6, the RNA-Seq data of the samples within 

the same strain have less variation than those between the different strains which contains 

more biological variation due to their dissimilar expression profiles. Strikingly, pairwise 

differences of average read count per gene between nonvirulent Rahman and other three 

virulent strains, i.e. PVBM08B, HM-1:IMSS and IULA:1092:1, are more obvious than those 

compared within these three virulent strains, implying that RNA-Seq has the power to 

distinguish differences of transcript abundance between nonvirulent and virulent strains of 

E. histolytica.   

 In addition to the pairwise scatterplots discussed above, a sample correlation 

heatmap was constructed using Pearson’s correlation matrix based on raw read counts of all 

8,333 E. histolytica genes as shown in Figure 2.7. A bar of colour spectrum represents a 

Pearson’s correlation coefficients (r), ranging from 0.941 to 1.000, to show the degree of 

similarity of expression profiles between the samples. The correlation levels between 

replicate samples within the same group (reddish brown to orange colour spectrum) are 

notably higher than those between different sample groups (aqua blue to deep blue colour 

spectrum), meaning that variations of RNA-Seq data between strains are stronger than 

those within the same strain. Interestingly, the correlation scores are the lowest in two 

clusters comparing Rahman and HM-1:IMSS groups, suggesting that variations in relative 

transcript abundance likely account for different biological behavior of trophozoites 

between nonvirulent and virulent strains.  Taken together, the scatterplots and the 

Pearson’s correlation coefficient-based heatmap reveal that all the RNA-Seq data retrieved 

from total 12 samples of the four E. histolytica strains are of sufficient quality for further 

analysis.  
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Figure 2.5: ‘Within-group’ transcriptomic variation among three biological replicate 

samples in each E. histolytica strain. Both X and Y graph axes represent the logarithm 

(base 10) of raw read count per gene in each replicate. 
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Figure 2.6: ‘Between-group’ transcriptomic variation among the four E. histolytica 

strains. Both X and Y graph axes represent the logarithm (base 10) of average read count 

per gene in each group. In overall, variations between groups of samples are more 

remarkable than those within the same group previously illustrated in Figure 2.5. Stronger 

differences in average read count per gene are also observed between nonvirulent Rahman 

and the other three virulent strains (i.e. PVBM08B, HM-1:IMSS and IULA:1092:1) than 

between within the three virulent strains. 
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Figure 2.7: Agglomerative hierarchical clustering of gene expression profiles within 

and among the four strain groups. The pairwise correlation patterns are shown in 16 

clusters between strains and in 9 sub-clusters among three biological replicates of the same 

strain. The colour spectrum represents the Pearson’s correlation coefficients (r) scoring 

from 0.941 to 1.000. In overall, similarity of whole transcriptomic profiles is more 

pronounced within the same group than that between different sample groups. Intriguingly, 

the lowest correlation score could be observed in a pair of comparison between Rahman 

and HM-1:IMSS groups, suggesting that differences of expression profiles likely link to the 

differential degrees of virulence.   
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2.3.3 Principal component analysis reveals the variation map across all 12 

samples of 4 E. histolytica strains as well as the similarity of transcriptomic 

profiling between two virulent strains: HM-1:IMSS and PVBM08B 

 To estimate the overall variation among all 12 samples, the raw HTSeq-count data 

for all expressed E. histolytica genes on a log2 scale were applied to plot each replicate of the 

four parasite strains in relation to all other samples as shown in Figure 2.8A. In this work, 

filtering out of genes with zero HTSeq-count data in all samples was previously performed 

to keep only expressed genes across samples for downstream analysis. However, HTSeq-

count commands in this analysis were set with the option ‘-m intersection-strict’ to 

eliminate any ambiguous read which shows partial alignment to the reference or can be 

assigned entirely to the two overlapping genes [119]. This HTSeq-count algorithm option 

was designed to reduce ambiguous reads which can interfere with differential expression 

analysis.  

   As such, HTSeq-count would generally provide the read counts lower than the FPKM 

values reported by other softwares such as Cufflinks. To see the correspondence between 

the read values generated from these two software packages with different algorithms,    

PCA plots were constructed individually using these two parameters, i.e. HTSeq-count and 

FPKM. Therefore, the FPKM values of all 8,333 E. histolytica genes previously calculated by 

Cufflinks were log2-transformed and then plotted on two dimensional PCA plots as 

illustrated in Figure 2.8B, in order to determine whether it is congruent with the former PCA 

plot using the normalised HTSeq-count. Herein, the variation across the samples was 

obviously demonstrated between the 2nd component and the 3rd component since the 1st 

component was influenced by differences in library sizes, not providing a clear segregation.  

 The 1st PCA plot using log2(HTSeq-count) shows a clustering of biological replicates 

within the same group as well as a obvious separation across the four strains of E. 

histolytica, indicating that there was no any unusual sample mixed within these expression 

data whereas the 2nd PCA plot using log2(FPKM) exhibits overlapping between one 

PVBM08B library (i.e. PVBM08B_1) and the cluster of three HM-1:IMSS libraries. On both 

plots, it is interesting that sample groups of PVBM08B and HM-1:IMSS were closely plotted 

relative to each other, suggesting the similarity of expression profiles between these two 

strains.  Also, it could be interpreted that both Rahman and IULA:1092:1 show strong 

variation relative to each other since they were widely separated on the plot. Essentially, 

this comparison can point out that HTSeq-count is more suitable for differential gene 

expression analysis than FPKM values since this parameter is able to not only cluster the 
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biological replicates of the same group together but also discriminate between very similar 

two sample groups, i.e. Rahman and IULA:1092:1, which resemble genetically each other.  

              

Figure 2.8: Two dimensional principal component analysis of whole transcriptomes 

in the four E. histolytica strains. The above two PCA plots (A and B) were generated using 

log2(HTSeq-counts) and log2(FPKM) values of all whole transcriptome library samples, 

respectively. It is obvious that HTSeq-count data is a better parameter in this study since it 

shows the clear segregation between PVBM08B and HM-1:IMSS groups, not overlapping as 

shown in the second plot using FPKM. From the plots, it also implies that the transcriptomes 

of two virulent strains, i.e. PVBM08B and HM-1:IMSS, are most similar to each other. 

2.3.4 Normalisation and estimation of dispersions  

 To correct any bias due to sequencing depth and differences in library sizes after 

filtering, normalisation factors were created and applied individually to each library in the 

dataset using the calcNormFactors function. Prior to performing DGE testing, this 

normalised dataset with effective library size would be measured for inter-library variation 

which is an essential parameter for fitting the model and testing for the statistical 

significance.    

  Normally, the number of read counts obtained from each gene would likely follow a 

Poisson distribution [127]. However, all 12 RNA libraries in this study were prepared from a 

different axenic culture and for this reason the extra variability across samples was 

introduced in the dataset. This extra variation between the samples is mainly biological.  In 

this case, the NB model was thus applied to analyse this RNA-Seq dataset which has both 
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biological and technical variations [127]. Additionally, this NB model could reduce the 

number of false-positive DE genes due to Type I Errors in the DGE analysis.  

 To assess the extra variability in this NB model, the dispersion parameter was 

calculated to estimate the degree of variation in tag counts between the libraries. Firstly, it 

could be assumed that all tags have the same relationship between mean and variance, 

referring to the common dispersion across all genes. The common dispersion parameter 

would reflect the average overall variability of the transcriptome across all samples, without 

regard to gene. However, this common dispersion parameter is not practical since in fact, 

dispersion of each tag can vary due to different expression levels. So, the tagwise dispersion 

was estimated using the empirical Bayes method to show gene-by-gene dispersion. Then, 

the tagwise dispersions for all genes were plotted against their transcript abundance, log2-

transformed values of count per million (CPM) as represented in Figure 2.9.  

  Obviously, it can be observed in the dispersion plot (see Figure 2.9) that lowly 

expressed genes show higher tagwise dispersions than highly expressed genes, indicating 

greater variation in genes with low abundance. Taking into consideration, this finding 

implies that higher noise in rare transcripts can restrict the power of the RNA-Seq in 

revealing the real differential expression due to sampling variability, associated with their 

low sequencing depth, as well as biological variability among the samples. 

2.3.5 Fitting the generalised linear model and statistical testing 

 After normalisation and estimation of the tagwise dispersions completed, the 

negative binomial models were fitted and then calculated for statistical parameters, i.e. P-

value and FDR-adjusted P-value, using the glmFit and glmLRT functions of the edgeR 

package, respectively. As shown in Figure 2.11, all histograms for six contrasts show a tall 

peak of P-values approaching zero. This could be interpreted that the majority of enrolled 

genes in each contrast pair have significant differences in transcript levels between two 

contrast members. Venn diagrams were constructed to show the number of upregulated or 

downregulated DE genes, seen in each strain and overlapped between strains. In this study, 

marked upregulation or downregulation is considered when absolute log2FC is greater than 

or equal to 2 or ‘more than or equal to 4-fold change’.  
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Figure 2.9: Relationship of inter-library variation for each gene transcript and its 

corresponding abundance (log2CPM). The aqua blue horizontal line represents the 

common dispersion, equal to 0.0095 across all 12 samples, regardless of gene. The green 

curve line is the trended dispersion varied by transcript abundance. The black spots 

represent the gene-by-gene (tagwise) dispersions. Obviously, higher dispersions could be 

seen in genes with low abundance, implying that the power of RNA-Seq to investigate 

differential expression in rare transcripts can be affected by low sequencing depths and 

biological variation among the samples. 
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Figure 2.10: Relationship of the fold change (log2FC) and the level of expression, i.e. 

average count per million of mapped reads (log2CPM), for each contrast pair. 

Significant DE genes with FDR-adjusted P-value < 0.05 were highlighted in red. Black spots 

represent non-DE genes. Lowly expressed genes with the value of log2CPM < -5 are shown in 

orange spots.   
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Figure 2.11: Distribution of the P-values for each contrast pair. Remarkably, a strong 

spike of very small P-values towards zero could be observed in all histograms, indicating 

several responding genes between strains. However, FDR-corrected P-value less than 0.05 

will be considered instead for identifying the significantly DE genes.  
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Table 2.5: The number of significantly upregulated and downregulated DE genes for each specific contrast. Categories of ‘DE, 

Up’ and ‘DE, Down’ mean the upregulated DE genes and downregulated DE genes with significant FDR-adjusted P-value less than 0.05 

in the 1st strain of each contrast pair, respectively. DE, Up log2FC ≥ 2 refers to the ‘more than or equal to 4-fold’ upregulated genes 

whilst DE, Down log2FC ≤ -2 refers to the ‘more than or equal to 4-fold’ downregulated genes. 

Category Rahman vs       

PVBM08B  

Rahman  vs   

HM-1:IMSS  

Rahman vs 

IULA:1092:1  

PVBM08B vs 

HM-1:IMSS  

PVBM08B vs 

IULA:1092:1 

HM-1:IMSS 

vs 

IULA:1092:1 

DE 4376 4829 5035 3988 4226 4128 

DE, Up 2157 2287 2378 1914 2068 2046 

DE, Down 2219 2542 2657 2074 2158 2082 

DE, Up log2FC ≥ 2 220 161 161 93 158 254 

DE, Down log2FC ≤ -2 269 503 478 324 326 207 
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2.3.6 Transcriptomic profiles of the virulent E. histolytica strains show a core 

set of upregulated DE genes involved in host cell killing and mucosal invasion, 

nucleic acid interaction and oxidative stress response  

Using ExactTest as a tool for DGE analysis, a number of significantly DE genes (FDR-

adjusted P-value less than 0.05) and DE genes with marked upregulation or downregulation 

(FDR-adjusted P-value < 0.05 and absolute value of log2FC ≥ 2) between two strains of 

contrast were as listed in Table 2.5.  Summary of DE genes with marked upregulation or 

downregulation in each virulent strain were also listed in Appendix Tables 1.1-1.7 and 2.1-

2.7, respectively.  

In this study, RNA Seq data of all four strains would be divided into two groups.     

PVBM08B, HM-1:IMSS and IULA:1092:1 strains are representatives of virulent group 

whereas the other strain, Rahman, is a nonvirulent group. Venn diagrams were constructed 

to show overlapping numbers of upregulated DE genes and more than/equal to 4-fold 

upregulated DE genes (with log2FC ≥ 2) in Figures 2.13 and 2.14, respectively for these three 

virulent strains when compared to nonvirulent Rahman.  For downregulated DE genes and  

downregulated DE genes with more than or equal to 4-fold change (log2FC ≤ -2), Venn 

diagrams were performed in the same manner as illustrated in Figures 2.15 and 2.16 .   

As shown in Figure 2.13, 1,162 upregulated DE genes have significantly higher levels 

of mRNA expression in all three virulent strains than those in Rahman. When exploring 

these 1,162 upregulated DE genes, it was found that only 108 genes have log2FC greater 

than or equal to 2. For downregulated DE genes, 997 genes are commonly seen in all these 

three strains but only 23 genes exhibit marked downregulation with log2FC ≤ -2 as shown in 

Figures 2.15 and 2.16. Then, these common upregulated and downregulated DE genes could 

be further assigned to their functional gene categories, i.e. surface-associated, host cell 

killing and mucosal invasion, oxidative stress response, bacterial killing, nucleic acid 

interaction, ribosomal structure, protein folding, signaling, protein degradation, 

miscellaneous and hypothetical, as detailed in Tables 2.7, 2.9 and Figure 2.17. The important 

virulence-related genes in this study are discussed in following paragraphs. 
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I. Leucine-rich repeat proteins (LRRPs), BspA-like family 

 The BspA-like surface protein has been initially characterised in Bacteroides 

forsythus.  This surface protein contains a leucine-rich repeat motif (LRRs) functioning as a 

recognition motif for binding to fibronectin matrix [128].  The BspA-like surface proteins 

found in E. histolytica have unique LRR motifs similar to Treponema pallidum LrrA proteins , 

responsible for host cell adhesion and penetration into deep tissue [25,129,130]. Also, a 50 

amino acid N-terminal domain was found to be conserved in 85 members of this protein 

family. Surprisingly, these LRRPs are localised on the surface of trophozoites but there is no 

classical membrane-targeting signal sequence present in these proteins. Thus, the 

conserved N-terminal domain mentioned above may have an important role in non-classical 

export and anchoring to the membrane [25,130]. After re-assembly of E. histolytica genome, 

Lorenzi et al., 2010 reported that 114 genes were identified as members of this BspA-like 

protein family in the E. histolytica genome [25]. Also, 41 of these 114 genes, accounting for 

35 % of this large protein family, were found a high association with TEs, possibly affecting 

to their expression [25].  

In this present study, thirty-one, twenty-one and twenty-three members of BspA-

like LRRP gene family were significantly upregulated in HM-1:IMSS, PVBM08B and 

IULA:1092:1 respectively compared to Rahman, with absolute log2FC of ≥ 2 as listed in 

Appendix Table 1.1. After intersecting markedly upregulated members of these three 

strains, thirteen genes were commonly identified in all these three strains as listed in Table 

2.7. This could be inferred that this cluster of thirteen BspA-like surface proteins is likely to 

have an important role in pathogenesis of invasive amoebiasis. By nature of virulent 

infection, trophozoites potentially exploit these LRRPs to invade the colonic mucosa, filled 

with extracellular matrix, i.e. collagen, fibronectin and laminin. Fibronectin binding 

mediated by such EhLRRPs results in cytoskeleton rearrangement, motility as well as 

enzyme secretion via G-protein linked receptors and phosphokinase A-dependent signaling 

[131].  

As previously described by Weedall et al., 2012, a total of 512 genes with deep 

coverage in one or more strains of E. histolytica were listed, including 14 members of BspA-

like protein family: EHI_002120, EHI_005660, EHI_008340, EHI_049160, EHI_094080, 

EHI_102380, EHI_113190, EHI_123820, EHI_137910, EHI_147680, EHI_163960, 

EHI_189090, EHI_191510 and EHI_192600, indicating their putative high copy number [70]. 

In this study, 3 of 13 upregulated EhLRRP genes: EHI_049160, EHI_123820 and EHI_191510 

were found to be higher in copy number in these three virulent strains than Rahman (data 

not shown), indicating these three genes are putative high copy number genes. Therefore, 



             

             

  

 

   49 

   49 

higher copy number and consequent higher expression levels of LRRP genes could be 

associated with an increased-virulence phenotype.  

II. Galactose/N-acetylgalactosamine (Gal/GalNAc) lectin 

As previously reported, virulent trophozoites exhibit certain adhesive molecules, 

such as Gal/GalNAc lectin, EhSTIRPs and KERP1, on their surfaces to bind and cause the 

cytopathic effect to the host epithelial cells, resulting in the mucosal invasion 

[8,11,22,38,50,132]. E. histolytica trophozoites undergo contact-dependent cytotoxicity to 

the host cells via the interaction of a lectin molecule localised on the parasite surface with a 

Gal/GalNAc-terminal oligosaccharide of the host cell. Ability of the parasite to adhere and 

kill the host colonic cells, neutrophils, T lymphocytes and macrophages could be impaired 

by the presence of 50 mM Gal or GalNAc in the culture media [66,133-135]. Also, 

trophozoites cannot adhere and trigger the cytopathic effect to the Chinese hamster ovary 

(CHO) cell mutants deficient in N-linked and O-linked glycosylation processes of Gal/GalNAc 

residues [132].  

For the Gal/GalNAc lectin, this complex contains three components: a 170 kDa 

transmembrane heavy subunit (Hgl), a 31/35 kDa glycosylphosphatidylinositol (GPI)-

anchored light subunit (Lgl) and a 150 kDa intermediate subunit (Igl), encoded by different 

gene families [38,135].  The heavy subunit which is encoded by 5 Hgl gene family members 

with 89-95% amino acid identity contains the carbohydrate recognition domain (CRD) 

responsible for binding the host’s galactose residue [38,136]. The light subunit gene family 

contains at least 7 Lgl genes, showing less conserved 79-85% amino acid identity [38]. Both 

31 and 35 kDa light subunits are the dominant isoforms and linked to the CRD of the heavy 

subunit by disulfide bonds [137]. The role of the light subunit is associated with amoebic 

virulence by participating in clustering of lectin complexes which is the first key step prior 

to host cell binding [80,138]. Finally, the intermediate subunit is encoded by two copies of 

Igl genes and non-covalently associated with the Hgl-Lgl lectin heterodimer [78].  

As mentioned before in Chapter 1, cDNA differential display revealed lower 

expression of Lgl1 isoform transcripts in Rahman relative to HM-1:IMSS, indicating that 

downregulation of Lgl expression in Rahman is associated with its decreased virulence [79]. 

Interestingly, overexpression of the Lgl1 isoform in Rahman could not transform Rahman 

into the virulent state, suggesting certain regulations in Rahman [139]. Also, dominant 

negative N-truncated Lgl1 expression or downregulation of Lgl1 by monoxenic cultivation 

or antisense inhibition in HM-1:IMSS was associated with defective erythrophagocytosis 

[79,80,140]. However, this present study reveals no marked upregulation of any lectin 
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subunit gene in all virulent strains but conversely shows more than 4-fold downregulation 

of the three Gal/GalNAc lectin heavy subunit genes in PVBM08B compared to Rahman: 

EHI_042370, EHI_077500 and EHI_133900. Moreover, HM-1:IMSS and IULA:1092:1 show 

more than 4-fold downregulation of the two  Gal/GalNAc light subunit genes: EHI_065330 

and EHI_159870.  

As previously reported by Davis et al., 2007, Lgl3 expression was higher 22-fold in 

Rahman compared to HM-1:IMSS, raising the hypothesis for its possible dominant negative 

mutant-like expression and corresponding reduced virulence [76]. For my RNA-Seq result, it 

is reasonable to state that downregulation of such two Lgl genes (EHI_065330 and 

EHI_159870) in HM-1:IMSS and IULA:1092:1 may be due to allelic preference between 

strains. Alternatively, both Hgl and Lgl isoforms upregulated in Rahman may be dominant 

negative forms, less functional than other isoforms expressed in virulent strains. Also, Katz 

et al., 2002 demonstrated that that overexpression of native Lgl1 gene in HM-1:IMSS 

trophozoites transfected by a constructed plasmid has no influence on their virulence [80]. 

It could be explained that Gal/GalNAc lectin requires the combination of both the heavy and 

light subunits to form a heterodimer, so overexpression of a Lgl1 gene caused misbalance in 

numbers between these two subunit molecules [80].  Based on the basis of its heterodimeric 

structure, it is possible to explain that the upregulation of particular lectin subunit genes in 

Rahman compared to each virulent strain in my RNA-Seq study might not represent the real 

difference in quantity of such heterodimeric lectin molecules.  

III. Serine-threonine-isoleucine rich proteins (EhSTIRPs) 

 Besides the Gal/GalNAc lectin, another important adhesive molecule on the virulent 

trophozoite surface is a serine-threonine-isoleucine rich protein (EhSTIRP). These surface 

proteins are encoded by a multigene gene family containing four members: EHI_004340, 

EHI_012330, EHI_025700 and EHI_073630. Strikingly, most of these protein family 

members exhibit the unusual feature of expression profiles between life cycle stages and 

between strains of parasite. EhSTIRPs were reported to be highly expressed in all virulent 

trophozoites, i.e. HM-1:IMSS, 200:NIH and the invasive trophozoites isolated from infected 

colon, and to be not or very lowly expressed in nonvirulent conditions including E. dispar 

and E. histolytica Rahman and cystic stage of virulent E. histolytica strains [11,74,77,141].  

 Based on the HM-1:IMSS genomic reference and annotation in the AmoebaDB 

database version 4.2, three of four members of EhSTIRP gene family: EHI_004340, 

EHI_012330 and EHI_025700 are similar in a very large size of approximately 8 kb in the 

parasite genome [26]. Interestingly, the other EhSTIRP gene EHI_073630 is indeed the 
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largest annotated gene in the genome with a length of 15.2 kb. All these family members 

contain a single transmembrane domain and a short portion of 34 amino acid cytoplasmic 

tail and show very high conservation at their 3’ end with greater than 99% nucleotide 

identity and less conservation at the 5’ end with 88-94% identity between isotypes [11]. 

 Relevant to their virulent functions, the cytotoxic ability of EhSTIRPs has been 

proven by comparing the release of lactate dehydrogenase from damaged Caco-2 colonic 

monolayer cells treated with wild type HM-1:IMSS and EhSTIRP dsRNA-treated HM-1:IMSS 

trophozoites and found to be drastically reduced to ~55% in EhSTIRP-downregulated 

parasites at all time points [11]. In addition, it was found that EhSTIRP dsRNA-treated HM-

1:IMSS trophozoites showed the decrease in host cell adhesion compared to the wild type 

parasite after incubating on ice and washing [11]. Altogether, EhSTIRPs have putative 

functions in virulent parasites for host cell adhesion and cause subsequent host cell damage.  

 Expectedly, two EhSTIRP gene members in this study: EHI_012330 and EHI_025700 

are markedly upregulated with absolute log2FC ≥ 2 in all three virulent strains whereas 

another member EHI_004340 shows strong upregulation only in HM-1:IMSS and PVBM08B 

as reported in Appendix Table 1.1. For these three EhSTIRP members, HM-1:IMSS and 

PVBM08B have much higher transcript levels (log2FC = 5.10-8.43) than less virulent 

IULA:1092:1 (log2FC = 1.72-2.63), inferring that differential EhSTIRP gene expression 

strongly contributes to virulence variability across virulent strains..  

Conversely, it is interesting that the largest EhSTIRP gene (EHI_073630) was 

significantly downregulated in all these three virulent strains relative to Rahman with 

log2FC = -1.69, -1.52, -0.82 for HM-1:IMSS, PVBM08B and IULA:1092:1, respectively. Based 

on the recent microarray, Thibeaux et al., 2013 recently reported that EhSTIRP transcript 

EHI_073630 was only significantly upregulated in HM-1:IMSS with fold change = 2.5, FDR-

adjusted P-value = 2.70e-22, compared to Rahman in contact with the colon mucus whereas 

other three members showed significant upregulation in HM-1:IMSS both in culture and 

upon contact with the human colon [82]. Also, the authors demonstrated the co-expression 

of other functional transcripts involved in DNA-RNA regulation, cell signaling, stress 

response, proteolysis, translation-protein maturation, subcellular trafficking, cytoskeleton 

and biomolecular metabolism, shown to be upregulated solely during host mucosal contact 

[82]. This could be inferred that the expression of this gene set including this EhSTIRP gene 

EHI_073630 in virulent parasites is not ubiquitous and solely upregulated under the 

invasive condition, e.g. during contact to the mucus. In other words, it may be stated in the 

principle of allocation that virulent trophozoites possibly adapt to allocate their limited 
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energy for their cell division and growth by reducing the production of such nonessential 

transcripts in the non-enriched axenic culture condition.  

 Moreover, Weedall et al., 2012 demonstrated that this EhSTIRP gene EHI_073630 

which locates on scaffold DS571171 exhibits the most polymorphisms in the genome and is 

distantly related to the other three EhSTIRP gene members [70]. Based on SNP data in the 

AmoebaDB database, EHI_073630 contains the highest SNPs across all strains:  total SNPs = 

100, nonsynonymous SNPs = 63, synonymous SNPs = 37 and nonsyn/syn ratio = 1.7 [26]. As 

demonstrated in Figure 2.12, most of the polymorphisms found in this gene show 

homozygous sequence pattern in each strain. Strikingly, it was found that HM-1:IMSS and its 

two derived clones (i.e. HM-1A and HM-1B) have distinctive sequence divergence from the 

other eight strains that resemble each other, consistent with allelic dimorphism found in 

Plasmodium genes encoding merozoite surface proteins [70,142,143]. However, the 

question raising whether the large sequence divergence in HM-1:IMSS is associated with its 

downregulation in axenic condition still needs to be further investigated.  

For three expressed EhSTIRP gene members ubiquitously in virulent strains, it is 

intriguing that these three gene members are conversely very low in expression in Rahman, 

implying that gene silencing exists in the nonvirulent parasite. MacFarlane and Singh, 2007 

found that most of EhSTIRP coding sequences as well as their promoters in Rahman are very 

similar (≥ 98%) to those found in HM-1:IMSS, suggesting that the possible epigenetic 

mechanisms such as DNA methylation and histone deacetylation might be responsible for 

EhSTIRP gene silencing in Rahman [11,144-146]. However, no change in EhSTIRP 

expression was observed after treating Rahman trophozoites with a DNA methyltransferase 

inhibitor, i.e. 5-azacytidine, and a histone deacetylase inhibitor, i.e. trichostatin A [11]. It is 

interesting that EhSTIRP expression could be downregulated in HM-1:IMSS trophozoites 

transfected with a plasmid with construct encoding dsRNA specific to the highly conserved 

3’ end but this dsRNA-based silencing reverted to the normal wide type after one year of 

subculture [11].  

 Recently, an endogenous RNA interference (RNAi) pathway has been identified for 

its role in gene silencing in several human parasites including G. lamblia, T. vaginalis,             

T. gondii, T. brucei and E. histolytica [83-86]. The RNAi pathway in E. histolytica is mediated 

by a population of 27 nt small RNAs and their partners, Argonaute proteins (EhAGOs). 

Zhang et al., 2013 demonstrated the presence of abundant 27 nt sRNAs which antisense 

mapped to the EhSTIRP genes (EHI_025700 and EHI_012330) only in Rahman but were 

absent in HM-1:IMSS [92]. Furthermore, overexpression of a Myc-tagged EhSTIRP1 

construct (EHI_025700) could be achieved in transfected HM-1:IMSS trophozoites but not in 
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Rahman, suggesting that antisense 27 nt sRNAs likely regulate the expression of these 

adhesion molecules in the nonvirulent Rahman strain [92]. More details regarding the 

antisense sRNA-mediated gene silencing in a strain-specific manner will be discussed in 

Chapter 5. 
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Figure 2.12: Sequence polymorphism of EhSTIRP gene EHI_073630 located on scaffold DS571171. The top three rows represent the 

reference HM-1:IMSS and its derivative strains: HM-1A and HM-1B, respectively. Across the full length of the gene, HM-1:IMSS and its 

derivatives exhibit sequence divergence compared to the other strains shown in the lower eight rows: Rahman, 2592100, PVBM08B, 

PVBM08F, IULA:1092:1, HK-9, MS84-1373 and MS27-5030, respectively.  Polymorphic positions are indicated by different colours as 

follows: black for homozygous positions; grey for heterozygous positions; light grey for positions different from the reference; white for 

base not available. This figure is reproduced with permission from Weedall et al., 2012 [70].  
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IV. Cysteine proteinases 

 In invasive amoebiasis, virulent trophozoites release extracellular cysteine 

proteinases to degrade the mucus barrier, i.e. MUC2, as well as the collagen and laminin 

matrix of the colonic epithelium for penetration to the deeper mucosa [8,9].  Additionally, 

these released cysteine proteinases enable parasites to resist the host immune defences 

such as secretory IgA and complement-mediated lysis [10,147-148]. Compared to the 

lysates of noninvasive E. dispar, pathogenic E. histolytica strains could release 10- to 1,000-

fold more proteinases, reflecting their key role in virulence [149]. Initially, Bruchhaus et al., 

1996 identified six cysteine proteinase genes (EhCP-A1 to EhCP-A6) from a genomic library 

prepared from the axenic culture and found that only three genes: EhCP-A1, EhCP-A2 and 

EhCP-A5 constituted approximately 90% of total cysteine proteinase transcripts [47].  EhCP-

A5 (EHI_168240), a key cysteine proteinase gene for MUC2 degradation, is found as a 

pseudogene in E. dispar [46].   

So far, 33 E. histolytica genes encoding cysteine proteinases have been identified in 

the parasite genome, based on their functional annotations in the AmoebaDB database 

version 4.2 [26]. A number of the cysteine proteinase gene family members have been 

identified for their differential expression between nonvirulent and virulent strains and 

between in vitro culture and in vivo infection [47,74,76,77,82,150]. Interestingly, most of the 

EhCP gene family members were not expressed in axenic culture condition and the cysteine 

proteinase activity of the lysates was progressively increased after the inoculation of axenic 

and xenic trophozoites into hamster livers, strongly suggesting their specific role 

responsible for the invasive infection and/or completion of the life cycle [10,47,151]. 

Davis et al., 2007 revealed that a number of EhCPs: EhCP-A4 (EHI_050570), EhCP-A6 

(EHI_151440), EhCP-B1 (EHI_117650) were upregulated ~3-fold in HM-1:IMSS relative to 

Rahman. Additionally, it is worth noting that major cysteine proteinases (EhCP-A1, EhCP-A2 

and EhCP-A5) were relatively abundant in both HM-1:IMSS and Rahman strains, and not 

significantly different in their expression levels between these two strains. Conversely, 

EhCP-A3 (EHI_159610), EhCP-A7 (EHI_039610) and EhCP-B9 (EHI_181230) were higher 

expressed in Rahman than HM-1:IMSS [76].  

In a recent microarray study comparing gene expression profiles between HM-

1:IMSS and Rahman, it was found that there was upregulation of EhCP-A7 in both HM-

1:IMSS and Rahman in response to the human colon contact, compared to those in axenic 

culture. Also, EhCP-A3 (EHI_159160) and EhCP-A8 (EHI_151400) were ubiquitously 

expressed in Rahman and showed higher expression than HM-1:IMSS both in culture and 
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during colon contact whereas EhCP-A4 was upregulated in Rahman solely upon contact with 

the human colon [82].  

Consistent to prior studies, my RNA-Seq data reveals that EhCP-A3 was higher 

expressed in Rahman (log2FC = 5.52) than HM-1:IMSS. EhCP-B8 (EHI_097900) shows high 

upregulation in these three virulent parasites as listed in Table 2.7. Also, other two cysteine 

proteinases: EhCP-A7 was considerably expressed in HM-1:IMSS (log2FC = 4.91) whilst 

EhCP-B6 (EHI_126170) was highly upregulated in IULA:1092:1 (log2FC = 3.42). Taken 

together, these distinctive expression patterns among the virulent strains suggest that such 

cysteine proteinases may possess different non-redundant functions [76]. 

V. AIG1-like family proteins 

AvrRpt2-induced gene-1 (AIG1) family proteins, firstly characterised in Arabidopsis 

thaliana, are small GTPases responsible for bacterial resistance in A. thaliana [152]. 

Interestingly, AIG1-like proteins are found in E. histolytica and encoded by a large gene 

family. The AIG1-like family in E. histolytica contains 29 members physically distributed in 3 

clusters [25].  Of these 29 members, 18 genes are close to TEs, accounting for 62% of 

physical association with repetitive elements [25].   Since E. histolytica trophozoites colonise 

with the colon microbiome and feed on bacteria, AIG1-like proteins may be responsible for 

antibacterial activity.  

Gilchrist et al., 2006 reported the increase of AIG1 mRNA levels in HM-1:IMSS 

trophozoites isolated from a murine model of amoebic colitis using an Affymetrix array, 

indicating a possible important role in defense against intestinal bacteria [77]. Comparative 

DNA microarray studies by MacFarlane et al., 2006 revealed that 415 genes including AIG1-

like proteins and heat shock proteins have significantly lower expression levels in 

nonvirulent Entamoeba dispar SAW760 than in E. histolytica HM-1:IMSS [74]. Following this 

transcriptional difference, it was hypothesised that the association of TEs with these AIG1 

genes could enhance the expression levels of these genes, and contribute to the increase of 

virulence [25]. It was previously reported that EhLINE and EhSINE retrotransposons are 

organised in clusters especially at synthenic break points and contributing to genomic 

evolution via rearrangement and amplification [153]. However, the question whether the 

amplification of this family was promoted by the close proximity of TEs needs to be 

elucidated [25]. 

Contrastedly, it was shown in the current data that there were only two AIG1 genes 

(EHI_176280 and EHI_180390) showing upregulation and two other AIG1 genes 

(EHI_176590 and EHI_176700) showing downregulation with absolute log2FC ≥ 2 in the 
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three virulent strains as listed in Table 2.7 and 2.9, respectively. These modulated 

transcripts possibly suggest allelic differences in such large AIG1 gene family. Also, the 

experiment was designed using axenically cultured laboratory strains which grow without 

bacteria, so it is possible for such virulent parasites to preferably downregulate such AIG1 

transcripts with putative antibacterial function, not essential in the axenic condition [81].  

VI. Peroxiredoxins 

 A major host response in the first stage of infection is the release of NO and ROS by 

host immune effector cells including neutrophils, monocytes, tissue macrophages and 

dendritic cells to kill the parasite [13,14]. Trophozoites can overcome this threat by using 

their surface associated molecules, e.g. peroxiredoxin, SOD and flavin reductase [15-19]. 

Both SOD and flavin reductase play a key role in the production of hydrogen peroxide (H2O2) 

in the presence of oxygen radicals released from the host immune cells. Peroxiredoxin then 

counteracts the toxicity of produced hydrogen peroxides by reducing them into water 

molecule (H2O) [18,154]. In HM-1:IMSS, peroxiredoxin is a surface-associated molecule co-

localised with Gal/GalNAc lectin molecule in the lectin-peroxiredoxin complex at the host 

adhesion site, and plays an important role in ROS degradation against host oxidant attack 

[155].  

In this study, I found that three peroxiredoxin genes (EHI_145840, EHI_001420 and 

EHI_123390) were significantly upregulated and commonly found in all three virulent 

strains but only one single peroxiredoxin gene (EHI_145840) was more than 4-fold 

differentially expressed in all three virulent strains than Rahman as listed in Table 2.7. 

Amongst these three virulent strains, it is interesting that seven peroxiredoxin genes were 

individually upregulated in IULA:1092:1 whereas only single and two peroxiredoxin genes 

were found in PVBM08B and HM-1:IMSS, respectively as detailed in Appendix Table 1.1.  

However, it was found that other two peroxiredoxin genes were downregulated in HM-

1:IMSS (EHI_114010, log2FC = -2.21) and PVBM08B (EHI_183180, log2FC = -3.57) 

respectively, relative to Rahman.  

Based on the HTSeq-count data, it is possible to presume that the virulent parasites 

preferably upregulate a peroxiredoxin (EHI_145840) as a main isoform to counteract the 

host response since this isoform (EHI_145840) shows the highest level of raw expressed 

transcripts relative to other isoforms in all four strains enrolled in this study (data not 

reported). Additionally, it was observed that normalised HTSeq-count of EHI_145840 in 

IULA:1092:1 is 123.86, less than those in PVBM08B (1,798.32) and HM-1:IMSS (398.18). 

This finding is likely to explain that upregulation of other six peroxiredoxin genes in 
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IULA:1092:1 occurs to provide compensatory transcripts for the parasite survival under the 

host oxidative stress. In accordance with previous studies, it was reported that 

peroxiredoxin was more highly expressed in virulent HM-1:IMSS than Rahman in both 

transcriptomic and proteomic levels [16,73]. This current finding promisingly supports that 

these three laboratory-adapted virulent parasites have potential to counteract host reactive 

molecules effectively, resulting in more survival and virulence compared to Rahman. 

VII. C2 domain-containing proteins 

 In E. histolytica, calcium ions (Ca2+) have been proven for their globally regulatory 

functions in many biochemical processes including signaling [156], cell motility [157,158], 

actin dynamics and phagocytic cup formation [159,160], fibronectin adhesion [161], 

transcriptional regulation [158,162,163], host cell lysis [164,165] and developmental stage 

conversion [166,167].  Generally, intracellular Ca2+ concentration is controlled by certain 

calcium-binding proteins containing Ca2+ binding domains such as the C2 domain, EF hand 

motif, grainin [156,168]. The C2 domain possesses 120 amino acid residues responsible for 

phospholipid-binding activity in a Ca2+ dependent manner. Members of the C2 domain 

superfamily have a variety of cellular functions, e.g. signal transduction, vesicular trafficking, 

second messenger production and transcriptional regulation. One of the C2 domain-

containing proteins which was firstly characterised in E. histolytica is a 22 kDa EhC2A 

(EHI_069320), found in amoebic phagosomes [169].  

Moreno et al., 2010 demonstrated that EhC2A interacts and translocates upstream 

regulatory element 3-binding protein transcription factor (URE3-BP) to plasma membrane 

in response to intracellular Ca2+ flux, possibly due to host cell phagocytosis [168]. 

Interestingly, URE3-BP controls the transcriptional levels of certain virulence factors in E. 

histolytica including the heavy subunit of Gal/GalNAc lectin (Hgl5) and ferredoxin genes 

[158]. Therefore, the recruitment of transcription factor URE3-BP to the plasma membrane 

results in modulation of URE3-BP regulated transcripts [168]. Additionally, EhC2B 

(EHI_059860) was found to contain a similar molecular weight with a highly conserved C2 

domain, 75% amino acid identical to EhC2A. However, this EhC2B molecule was not 

coimmunoprecipitated with URE3-BP. It implies that there might be functional divergence 

between these two structurally similar proteins. Since several C2 domain-containing 

proteins have been reported for their function in targeting other proteins including 

transcription factors to cell membranes, EhC2B may have a potential role in acting as a 

molecular scaffold to anchor associated proteins with the membrane [168]. As mentioned 

above, EhC2A-mediated transcriptional regulation in response to the increased intracellular 

Ca2+ flux might affect parasite virulence.  
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 In this study, it was found that both EhC2A and EhC2B were greater than 4-fold 

highly expressed in HM-1:IMSS with log2FC of 4.82 and 6.94, respectively whereas EhC2A 

and the other C2 domain protein EhC2D (EHI_118130) were upregulated with log2FC of 4.27 

and 2.10 in PVBM08B, relative to Rahman. Conversely, these C2 domain proteins showed 

less expression in IULA:1092:1 with log2FC of 0.47 and 1.50 for EhC2A and EhC2B, 

respectively.  

For other calcium-binding proteins, it was found that the grainin-1 paralogue 

(EHI_120360) showed marked upregulation in Rahman with log2FC of 2.01 in relation to 

PVBM08B as listed in Appendix Table 2.6. Consistent with proteomic analysis of Davis et al., 

2006, grainin-1 and grainin-2 show upregulation in Rahman, compared to HM-1:IMSS, and 

marked reduction in grainin expression was also found in HM-1:IMSS trophozoites after 

infecting human intestinal xenografts, suggesting  the association between upregulation of 

grainin and decreased virulence [16]. Also, as shown in Table 2.10, there are common 

transcriptomic modulations of six EF-hand calcium-binding proteins in virulent strains: 

EHI_079290, EHI_096640 and EHI_148810 for upregulation; EHI_016120, EHI_151890 and 

EHI_197510 for downregulation, implying that Ca2+ -dependent regulatory mechanisms in 

virulent trophozoites are selectively controlled by a specific set of such calcium-binding 

proteins. 

Due to the involvement of Ca2+ in a vast variety of cellular processes, this RNA-Seq 

analysis suggests that differences in isoforms and transcript levels of these calcium-binding 

proteins among E. histolytica strains are likely to reflect their varied cellular regulations, 

resulting in differential virulence. 

VIII. Transcription factors 

 Transcriptomic differences between nonvirulent and virulent E. histolytica strains 

have been previously reported both in axenic culture and during host invasion, indicating 

that differences in virulence are likely to be a consequence of transcriptional variability 

among parasite strains [74,76,77,82].  Transcriptional regulation of particular genes in 

eukaryotic organisms including E. histolytica is mediated by specific transcription factors 

(TFs) [162,170-174].  As identified in the complete genomic data, there are fourteen 

superfamilies of specific TFs in E. histolytica, i.e. MYB, bZIP, Cys2His2 Zinc Finger, CBF/NFYA, 

HMG1, AT-hook, Cxc, MADS, GATA, HSF, Homeodomain, WRKY, CENPB and STAT [174].  

As a result of their reduction in genomic size during the evolution of parasitism, 

Entamoeba and Apicomplexan parasites have reduced their proteome sizes and most of TFs, 

compared to their free-living protist lineages [174]. However, particular superfamilies of 
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specific TFs, such as MYB in Entamoeba and AP2 in Apicomplexa, have been evolutionarily 

expanded in a lineage-specific manner in such protozoan parasites to be the majority of 

their transcriptional regulators. In E. histolytica and T. vaginalis, the expanded MYB 

superfamily was predicted to be a major specific TF cluster in their transcriptome 

[24,174,175]. Global diversity of specific TFs among protist parasites due to their gene loss 

and lineage-specific expansions potentially implies the crucial roles of specific TFs in 

regulating the parasite transcriptome related to their particular lifestyle.    

MYB DNA-binding domains (MYB DBD) are approximately 52 amino acids long and 

highly conserved amongst eukaryotic superkingdom including fungi, plants and vertebrates 

[176]. In E. histolytica, 32 different open reading frames encoding proteins with a putative 

MYB DBD were identified with varying sizes ranging from 15 to 83 kDa [177]. Also, such 

MYB DBD-containing proteins can be assigned into three different protein families (Family I, 

II and III) based on the number of repeats found in their MYB DBD structure [177]. A total of 

15 MYB DBD-containing proteins which comprise two repeats (R2 and R3) in their domain 

are classified into EhMybR2R3 Family I. Family II comprises five members of single repeat 

MYB DBDs with telomeric binding function whilst nine members of single repeat proteins 

with a SHAQKYF motif are classified into EhMybSHAQKYF Family III. The other three 

proteins with a single repeat (EHI_000550, EHI_128200 and EHI_142140) are identified as 

MYB-related proteins. 

In T. vaginalis, MYB DBD-containing proteins play an important role in 

transcriptional regulation of the adhesion protein ap65-1 gene responsible for the host 

epithelial cell adhesion [175,178]. In E. histolytica, previous microarray analyses revealed 

the upregulation of certain EhMybR2R3 genes in HM-1:IMSS strain, e.g. EhMyb10 

(EHI_129790) during mice colon infection; EhMyb3 (EHI_012420 and paralogous 

EHI_063550) in response to heat shock stress [77,179].  

In this present study, six members of EhMybR2R3 gene family (EHI_009930, 

EHI_012420, EHI_063550, EHI_098070, EHI_166410 and EHI_168310) and single 

EhMybSHAQKYF gene (EHI_135150) were found to be significantly downregulated in all 

three virulent strains relative to nonvirulent Rahman, irrespective of their log2FC, as listed 

in Tables 2.8 and 2.10. Conversely, these three virulent strains show the upregulation of 

single EhMybSHAQKYF gene (EHI_136420), EhCDC5-like Myb related gene (EHI_000550) 

and seven gene members of Cys2His2 Zinc Finger protein family (EHI_017720, EHI_055640, 

EHI_091050, EHI_096780, EHI_105080, EHI_122760 and EHI_176800). This finding 

suggests that the virulent trophozoites potentially regulate their gene expression with a 

unique set of specific TFs different from the nonvirulent trophozoite.  
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The in silico analysis previously reported by Meneses et al., 2010 demonstrated a list 

of 246 putative E. histolytica genes which were potentially regulated by EhMybR2R3 

transcription factor proteins due to the presence of consensus Myb recognition element 

(MRE) sequence in their gene promoters [177]. Interestingly, the majority of these putative 

genes with the MRE sequence play a role in signaling and vesicular transport (n = 53), DNA 

and RNA regulation (n = 37). As such, sixteen putative kinase genes were found to contain 

the MRE sequence in their promoter regions [177]. This implies that downregulation of 

EhMybR2R3 genes in the trophozoite transcriptome would largely influence such biological 

processes and potentially result in an aberrant behavior of virulent strains.  

In this work, RNA-Seq data and InterProScan protein domain analysis revealed the 

pronounced downregulation of signaling genes, especially for protein kinases in all three 

virulent strains as listed in Table 2.10 and Figure 2.23. Thus, it is possible that the reduction 

of gene transcripts involved in signaling pathways would result from downregulation of 

R2R3 MYB DBD-containing protein gene family. Moreover, the intriguing hypothesis is that 

a distinctive upregulation of six Zn finger gene family members potentially regulates the 

expression of virulence-associated genes in these three virulent strains.  Essentially, these 

findings strongly suggest that diversity of specific TF superfamilies in the parasite genome 

enables the parasites to regulate a distinctive set of genes responsible for their particular 

behavior. 
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Figure 2.13: The number of genes known to be significantly upregulated (FDR-

adjusted P-value < 0.05) in the three virulent strains (i.e. PVBM08B, HM-1:IMSS and 

IULA:1092:1) relative to nonvirulent Rahman. The intersection of gene members in each 

coloured circle is based on AmoebaDB_IDs. A total of 1,162 upregulated genes regardless of 

their log2FC are commonly found in all these three virulent strains. 
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Table 2.6: The 38 most frequent functionally annotated transcripts significantly 

upregulated (FDR-adjusted P-value < 0.05, regardless of log2FC) in all three virulent E. 

histolytica strains.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

group Functional gene annotation 
Number of 

genes 

1. leucine-rich repeat protein, BspA family  16 
2. Rab family GTPase 12 
3. protein kinase domain-containing protein 10 
4. heat shock protein 70, putative 7 
5. WD domain-containing protein  7 
6. zinc finger protein, putative  7 
7. actin, putative  6 
8. proteasome regulatory subunit, putative 6 
9. 26s proteinase regulatory subunit, putative 5 

10. HEAT repeat domain-containing protein 5 
11. Rho guanine nucleotide exchange factor, putative 5 
12. RNA recognition motif domain-containing protein 5 
13. tyrosine kinase, putative 5 
14. long-chain-fatty-acid--CoA ligase, putative 4 
15. phospholipid-transprting P-type ATPase, putative 4 
16. protein kinase, putative 4 
17. Rho GTPase-activating protein, putative 4 
18. 5’-3’ exonuclease domain-containing protein 3 
19. actin-binding protein, cofilin/tropomyosin family 3 
20. ankyrin repeat protein, putative 3 
21. ATP-binding cassette protein, putative 3 
22. C2 domain-containing protein 3 
23. CXXC-rich protein 3 
24. cysteine proteinase, putative 3 
25. DEAD/DEAH box helicase, putative 3 
26. EF-hand calcium-binding domain-containing protein 3 
27. peroxiredoxin 3 
28. protein phosphatase, putative 3 
29. RhoGAP domain-containing protein 3 
30. ribosomal protein L17, putative 3 
31. ribosomal protein S24, putative 3 
32. RNA-binding protein, putative 3 
33. serine-threonine-isoleucine rich protein, putative 3 
34. transporter, major facilitator family 3 
35. UBA/TS-N domain-containing protein 3 
36. ubiquitin-conjugating enzyme family protein 3 
37. ubiquitin carboxyl-terminal hydrolase domain-

containing protein 
3 

38.  zinc finger domain-containing protein 3 
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Figure 2.14: The number of significantly upregulated genes in the three virulent 

strains where log2FC ≥ 2. The intersection of gene members in each coloured circle is 

based on AmoebaDB_IDs. Only 108 of 1,162 genes upregulated in all three virulent strains 

as shown in Figure 2.13 have higher expression levels with log2FC ≥ 2 than Rahman. 
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Table 2.7: Summary of 108 upregulated DE transcripts with log2FC ≥ 2, commonly found in 

three virulent strains, assigned to 11 functional categories with their functional gene 

annotations and AmoebaDB_IDs.  

 

Gene Category Functional gene annotation 
Number 

of genes AmoebaDB_ID 

Surface-

associated 

surface antigen ariel1, putative 1 EHI_123850 

Host cell 

killing and 

mucosal 

invasion 

cysteine proteinase, putative 1 EHI_097900 

serine-threonine-isoleucine rich 

protein 

2 EHI_012330, EHI_025700 

leucine-rich repeat protein, BspA 

family 

13 

 

EHI_015120, EHI_018840, 

EHI_034610, EHI_041470, 

EHI_049160, EHI_070330, 

EHI_095060, EHI_112290, 

EHI_123820, EHI_176480, 

EHI_184260, EHI_191510, 

EHI_199270 

Oxidative 
stress 

response 

peroxiredoxin 1 EHI_145840 

Bacterial 

killing 

AIG1 family protein 2 

 

EHI_176280, EHI_180390 

Nucleic acid 

interaction 

zinc finger protein, putative 2 EHI_091050, EHI_105080 

replication protein, pseudogene, 

putative 

1 EHI_190200 

kinetochore protein Spc25 domain-

containing protein 

1 EHI_181520 

Myb family DNA-binding protein, 

SHAQKYF family 

1 EHI_136420 

regulator of nonsense transcripts, 

putative 

2 EHI_043440, EHI_193520 

Ribosomal 

structure 

60S ribosome subunit biogenesis 

protein NIP7, putative 

1 EHI_031350 

Protein foling heat shock protein, putative 1 EHI_034710 

chaperone clpB, putative 1 EHI_155060 

Signaling protein kinase domain-containing 

protein 

2 

 

EHI_059040, EHI_144590 

 tyrosine kinase, putative 3 EHI_117680, EHI_123840, 

EHI_148550 

 Rap/Ran GTPase-activating protein, 

putative 

1 EHI_108750 
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Table 2.7: Summary of 108 upregulated DE transcripts with log2FC ≥ 2, commonly found in 

three virulent strains, assigned to 11 functional categories. (Continued) 

 

 

Gene Category Functional gene annotation 
Number 

of genes AmoebaDB_ID 

Signaling dedicator of cytokinesis domain-

containing protein 

1 EHI_185270 

Protein 

degradation 

26S proteinase regulatory subunit, 

putative 

1 EHI_053020 

Miscellaneous serine acetyltransferase 1 1 EHI_021570 

 Fe-S cluster assembly protein NifU, 

putative 

1 EHI_049620 

 CXXC-rich protein 2 EHI_050970, EHI_082260 

 PP-loop family protein 1 EHI_108760 

 glutamic acid-rich protein, putative 1 EHI_053200 

 tRNA-Leu (anticodon: CAA) 1 EHI_095430 

 molybdenum cofactor synthesis 

protein3, putative 

1 EHI_118040 

 iron-sulfur flavoprotein, putative 1 EHI_138480 

 Skp1 family protein 1 EHI_174180 

 cdc48-like protein, putative 1 EHI_176970 

 dextranase precursor, putative 1 EHI_182460 

 dentin sialophosphoprotein 

precursor, putative 

1 EHI_188600 

 predicted protein 1 EHI_201420 

Hypothetical N/A 55 EHI_004070, EHI_004410, EHI_005657, 

EHI_010160, EHI_015220, EHI_015980, 

EHI_029500, EHI_034840, EHI_037440, 

EHI_047620, EHI_049820, EHI_051440, 

EHI_054670, EHI_054780, EHI_056110, 

EHI_057950, EHI_059330, EHI_067600, 

EHI_070130, EHI_071210, EHI_075430, 

EHI_080860, EHI_080880, EHI_083380, 

EHI_087110, EHI_087740, EHI_091740, 

EHI_113200, EHI_113950, EHI_118230, 

EHI_119750, EHI_121060, EHI_123120, 

EHI_128800, EHI_133780, EHI_134710, 

EHI_136480, EHI_145610, EHI_146130, 

EHI_151340, EHI_152360, EHI_153050, 

EHI_154160, EHI_160970, EHI_163360, 

EHI_169670, EHI_172000, EHI_174580, 

EHI_180410, EHI_180940, EHI_184500, 

EHI_187800, EHI_188860, EHI_198220, 

EHI_200950 

 Total 108  
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Figure 2.15: The number of genes known to be significantly downregulated (FDR-

adjusted P-value < 0.05) in the three virulent strains relative to nonvirulent Rahman. 

The intersection of gene members in each coloured circle is based on AmoebaDB_IDs. A total 

of 997 genes regardless of their log2FC are commonly downregulated in all these three 

virulent strains. 
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Table 2.8: The 30 most frequent functionally annotated transcripts significantly 

downregulated (FDR-adjusted P-value < 0.05, regardless of log2FC) in all three 

virulent E. histolytica strains.  

 

 

 

group Function gene annotation Number of genes 

1. protein kinase domain-containing protein  18 

2. Rab family GTPase 15 

3. protein kinase, putative 14 

4. RhoGAP domain-containing protein 10 

5. Ras guanine nucleotide exchange factor, putative 9 

6. tyrosine kinase, putative 9 

7. WD domain-containing protein 8 

8. leucine-rich repeat protein, BspA family 7 

9. Rab GTPase-activating protein, putative 7 

10. Myb-like DNA-binding domain-containing protein 6 

11. protein phosphatase domain-containing protein 5 

12. Rho guanine nucleotide exchange factor, putative 5 

13. RNA recognition motif domain-containing protein 5 

14. zinc finger domain-containing protein 5 

15. acetyltransferase, GNAT family 4 

16. AIG1 family protein, putative 4 

17. DnaJ family protein  4 

18. protein tyrosine kinase domain-containing protein 4 

19. Ras family GTPase 4 

20. CDP-alcohol phosphatidyltransferase family protein 3 

21. CXXC-rich protein 3 

22. EF-hand calcium-binding domain-containing 

protein 

3 

23. importin alpha, putative 3 

24. leucine-rich repeat-containing protein 3 

25. LIM zinc finger domain-containing protein 3 

26. ser/thr protein phosphatase family protein 3 

27. TBC domain-containing protein 3 

28. thioredoxin, putative 3 

29. ubiquitin carboxyl-terminal hydrolase domain-

containing protein 

3 

30. WD repeat protein 3 
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Figure 2.16: The number of significantly downregulated genes in the three virulent 

strains where log2FC ≤ -2. The intersection of gene members in each coloured circle is 

based on AmoebaDB_IDs. Only 23 of 997 genes downregulated in all three virulent strains 

as shown in Figure 2.15 show lower expression levels (log2FC ≤ -2) when compared to 

Rahman. 
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Table 2.9: Summary of 23 downregulated DE transcripts with log2FC ≤ -2 commonly found 

in three virulent strains, assigned to 8 functional categories with their functional gene 

annotations and AmoebaDB_IDs.  

 

Gene Category Function gene annotation 
Number 

of genes AmoebaDB_ID 

Surface-

associated 

surface antigen ariel1, putative 1 EHI_172850 

 

Bacterial 

killing 

AIG1 family protein 2 EHI_176590, EHI_176700 

Nucleic acid 

interaction 

Myb-like DNA-binding domain-

containing protein 

1 EHI_063550 

Ribosomal 

structure 

60S ribosomal protein L38, putative 1 EHI_023840 

Signaling protein kinase domain-containing 

protein 

1 EHI_023860 

 WD domain-containing protein 1 EHI_023870 

Protein 

degradation 

ubiquitin-conjugating enzyme 

family protein 

1 EHI_023880 

Miscellaneous metallo-beta-lactamase superfamily 

protein 

1 EHI_115720 

 nuclear movement protein, putative 1 EHI_023890 

 rhodanase-like domain-containing 

protein 

1 EHI_067950 

Hypothetical N/A 

 

12 EHI_006180, EHI_019860, 

EHI_023850, EHI_047110, 

EHI_064440, EHI_069940, 

EHI_072740, EHI_096610, 

EHI_135600, EHI_192530, 

EHI_023900, EHI_095100 

  Total 23  
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Figure 2.17: The number of modulated transcripts in all three virulent strains with log2FC ≥ 2 

for upregulation and log2FC ≤ -2 for downregulation, based on their functional categories in 

Tables 2.7 and 2.9. Strikingly, categories of host cell killing and mucosal invasion, nucleic acid 

interaction as well as signaling are markedly upregulated in such virulent E. histolytica strains. 
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Table 2.10: Functional genes with transcriptomic modulations in all three virulent strains    

(n = 417), regardless of their log2FC. These modulated transcripts can be assigned into 75 

functional annotations as listed below. 

 

 

 

 

 

group Functional gene annotation 
Number of genes 

Total upregulated downregulated 

1. protein kinase domain-containing protein  28 10 18 

2. Rab family GTPase 27 12 15 

3. leucine-rich repeat protein, BspA family 23 16 7 

4. protein kinase, putative 18 4 14 

5. WD domain-containing protein 15 7 8 

6. tyrosine kinase, putative 14 5 9 

7. RhoGAP domain-containing protein 13 3 10 

8. Rho guanine nucleotide exchange factor, putative 10 5 5 

9. RNA recognition motif domain-containing protein 10 5 5 

10. Ras guanine nucleotide exchange factor, putative 10 1 9 

11. heat shock protein 70, putative 9 7 2 

12. Rab GTPase-activating protein, putative 9 2 7 

13. zinc finger protein, putative 8 7 1 

14. zinc finger domain-containing protein 8 3 5 

15. AIG1 family protein, putative 7 3 4 

16. myb-like DNA-binding domain-containing protein 7 1 6 

17. HEAT repeat domain-containing protein 6 5 1 

18. long-chain-fatty-acid--CoA ligase, putative 6 4 2 

19. CXXC-rich protein 6 3 3 

20. EF-hand calcium-binding domain-containing 

protein 

6 3 3 

21. ubiquitin carboxyl-terminal hydrolase domain-

containing protein 

6 3 3 

22. protein phosphatase domain-containing protein 6 1 5 

23. phospholipid-transporting P-type ATPase, 

putative 

5 4 1 

24. ankyrin repeat protein, putative 5 3 2 

25. DEAD/DEAH box helicase, putative 5 3 2 

26. transporter, major facilitator family 5 3 2 

27. ubiquitin-conjugating enzyme family protein 5 3 2 

28. leucine-rich repeat-containing protein 5 2 3 

29. LIM zinc finger domain-containing protein 5 2 3 

30. Rap/Ran GTPase-activating protein, putative 5 2 3 
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Table 2.10: Functional genes with transcriptomic modulations in three virulent strains         

(n = 417), regardless of their log2FC. (Continued) 

 

 

 

 

 

 

group Functional gene annotation 
Number of genes 

Total upregulated downregulated 

31. protein tyrosine kinase domain-containing protein 5 1 4 

32. C2 domain-containing protein 4 3 1 

33. RNA-binding protein, putative 4 3 1 

34. serine-threonine-isoleucine rich protein, putative 4 3 1 

35. leucine-rich repeat / protein phosphatase 2C 

domain-containing protein 

4 2 2 

36.  surface antigen ariel1, putative 4 2 2 

37. TBC domain-containing protein 4 1 3 

38. thioredoxin, putative 4 1 3 

39. WD repeat protein 4 1 3 

40. acetyltransferase, putative 3 2 1 

41. cysteine proteinase, putative 4 3 1 

42. helicase, putative 3 2 1 

43. high mobility group (HMG) box domain-containing 

protein 

3 2 1 

44. phospholipase, patatin family protein 3 2 1 

45. protein tyrosine phosphatase, putative 3 2 1 

46. AAA family ATPase, putative 3 1 2 

47. casein kinase II regulatory subunit family protein 3 1 2 

48. dual specificity protein phosphatase, putative 3 1 2 

49. fatty acid elongase, putative 3 1 2 

50. HAD hydrolase, family IA, variant 3 3 1 2 

51. IBR domain-containing protein 3 1 2 

52. myotubularin, putative 3 1 2 

53. nucleosome assembly protein, putative 3 1 2 

54. Rho family GTPase 3 1 2 

55. serine/threonine-protein kinase, putative 3 1 2 

56. ARF GTPase-activating protein, putative 2 1 1 

57. citrate transporter, putative 2 1 1 

58. dihydrouridine synthase (Dus) family protein 2 1 1 

59. glucosamine 6-phosphate N-acetyltransferase, 

putative 

2 1 1 

60. GTP-binding protein, putative 2 1 1 
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Table 2.10: Functional genes with transcriptomic modulations in three virulent strains          

(n = 417), regardless of their log2FC. (Continued) 

 

 

 

 

 

 

 

 

 

 

group Functional gene annotation 
Number of genes 

Total upregulated downregulated 

61. haloacid dehalogenase-like hydrolase domain-

containing protein 

2 1 1 

62. hydrolase, alpha/beta fold family domain-

containing protein 

2 1 1 

63. inositol polyphosphate 5-phosphatase, putative 2 1 1 

64. leucine-rich repeat and phosphatase domain-

containing protein 

2 1 1 

65. longevity-assurance family protein 2 1 1 

66. Myb family DNA-binding protein, SHAQKYF family 2 1 1 

67. peptidyl-prolyl cis-trans isomerase, putative 2 1 1 

68. PH domain-containing protein kinase, putative 2 1 1 

69. PP-loop family protein 2 1 1 

70. pumilio family RNA-binding protein 2 1 1 

71. receptor protein kinase, putative 2 1 1 

72. RNA polymerase III subunit, putative 2 1 1 

73. Sec1 family protein 2 1 1 

74. Sec7 domain protein 2 1 1 

75. transporter, auxin efflux carrier (AEC) family 2 1 1 
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2.3.7 Cluster analysis of all differentially expressed genes unravels the 

spectrum of co-upregulation pattern of transcript populations in the virulent 

strains, suggesting their potential role in strain-specific virulence  

Besides Venn diagrams, I also tried to explore the pattern of transcriptional 

differences across the strains by hierarchical clustering of 7,024 DE genes based on their 

relative expression pattern (log2FC) across 6 pairs of contrast. In Figure 2.18, all 7,024 

significantly DE genes could be categorised into 9 clusters. The first three columns represent 

three contrast pairs of Rahman vs PVBM08B, Rahman vs HM-1:IMSS and Rahman vs 

IULA:1092:1, respectively. The 4th  and 5th columns represent two pairs of PVBM08B vs HM-

1:IMSS and PVBM08B vs IULA:1092:1, respectively. Lastly, the 6th column represents a pair 

of HM-1:IMSS vs IULA:1092:1. Strikingly, 98 DE genes were grouped together in 6th cluster, 

showing remarkable differences among columns of the heatmap, compared to the other 

clusters.  

In this 6th cluster, the majority of genes in the first two columns are depicted with 

light blue to deep blue colour (average log2FC = -4.63 and -4.42 for 1st and 2nd columns, 

respectively), meaning that this group of DE genes has downregulated expression in 

Rahman, compared to PVBM08B and HM-1:IMSS. Conversely, the last two columns of 6th 

cluster are highlighted with orange (average log2FC = 4.13 and 3.92), indicating higher 

expression in PVBM08B and HM-1:IMSS than IULA:1092:1. For the two middle columns, 

their average log2FC values are -0.50 and 0.22, referring to similar expression between 

Rahman and IULA:1092:1 and between PVBM08B and HM-1:IMSS, respectively. 

 It is likely to imply that this unique cluster represents a set of genes showing 

differential expression across the strains with high transcript levels in the two most virulent 

strains (i.e. PVBM08B and HM-1:IMSS) and low transcript levels in less virulent IULA:1092:1 

and nonvirulent Rahman. To further scrutinise the biological relevance of this 6th cluster, 2nd 

cluster analysis was done and shown in Figure 2.19. All 98 DE genes retrieved from the 6th 

cluster in Figure 2.18 could be cateogorised into five subclusters, as detailed in Table 2.11.  

Based on their relative expression levels, different colour spectra in the first two 

columns of the 1st subcluster clearly indicate that its gene members show higher transcript 

levels in HM-1:IMSS (deep blue, average log2FC = 6.08) than PVBM08B (light blue, average 

log2FC = 4.58), relative to Rahman. Differently, the 2nd subcluster shows greater in average 

transcript levels and number of genes than the 1st subcluster and also displays similar 

expression levels between these two virulent strains relative to Rahman with average 

log2FC = 6.88 for PVBM08B and 6.66 for HM-1:IMSS. In contrast to the 1st subcluster, the 4th 
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subcluster shows a set of genes with higher upregulation in PVBM08B than HM-1:IMSS with 

average log2FC = 5.49 and 1.96, respectively. Also, the same transcriptional differences 

between PVBM08B and HM-1:IMSS could be observed in the last two columns in 

comparison to IULA:1092:1. 

 Essentially, it is interesting that there are different spectra of expression levels of 

such 98 DE genes among these four E. histolytica strains and cluster analysis can categorise 

such genes with similar co-upregulation pattern in the virulent parasites into 5 subclusters. 

From the 1st subcluster, the majority of co-upregulated functional members are BspA-like 

LRRPs (EHI_018840, EHI_034610, EHI_102380 and EHI_105370). Regarding their FDR-

corrected P-values in the previous DGE results (data not shown), three LRRP members 

(EHI_018840, EHI_102380 and EHI_105370) show statistically significant upregulation in 

HM-1:IMSS compared to PVBM08B, indicating that HM-1:IMSS has a greater potential to 

invade the host tissue than PVBM08B. On the contrary, the 4th subcluster reveals the greater 

expression of peroxiredoxin (EHI_145840), DNA polymerase (EHI_018010), multidrug 

resistance-associated protein (EHI_084730) in PVBM08B than HM-1:IMSS. Similarly, 

significant testings reveal corrected P-values less than 0.05 for peroxiredoxin (EHI_145840) 

and multidrug resistance-associated protein (EHI_084730), reflecting the possible higher 

capability to survive and multiply under conditions of host stress, i.e. ROS attack and 

antibiotic inhibition.  

Strikingly, as shown in the 2nd subcluster, all three EhSTIRP gene members 

(EHI_004340, EHI_012330 and EHI_025700) which were found to be upregulated in the 

axenic condition show a similar pattern in upregulation to other virulence-associated genes 

including C2 domain-containing protein (EHI_059860), BspA-like LRRP (EHI_127710), WD 

domain-containing protein (EHI_092070) and 70 kDa heat shock proteins (EHI_021780 and 

EHI_133950). Intriguingly, a similar upregulation pattern are found in such virulence-

associated genes related to pathogenic processes e.g. host cell killing, mucosal invasion and 

stress response. In addition, members of G-protein signaling system, i.e. Ras family GTPase 

(EHI_058520), RhoGAP domain-containing protein (EHI_199570) and Rab GDP dissociation 

inhibitor alpha (EHI_164890), are shown to be upregulated with such above virulence-

associated genes. Therefore, it could be speculated that their expression is potentially 

stimulated through the activation of such G-protein signaling.  

For IULA:1092:1, all these 98 DE genes in the 5th column (logFC_PVBvsIULA) show 

positive log2FC values, indicating higher expression in PVBM08B than IULA:1092:1 and 83 

of such 98 genes show significantly differential expression in the previous DGE test (data 

not shown). Moreover, 96 of 98 DE genes in the last 6th column (logFC_HM1vsIULA) except 
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multidrug resistance-associated protein (EHI_084730) and one hypothetical gene 

(EHI_033450) display positive log2FC values, indicating higher expression in HM-1:IMSS 

than IULA:1092:1 and 82 of these 98 genes show the statistical significance in DGE results. 

One plausible interpretation for this finding is that IULA:1092:1 is less virulent than 

PVBM08B and HM-1:IMSS. This is consistent with the PCA plot in Figure 2.8, showing that 

IULA:1092:1 transcriptome libraries were plotted separately from more virulent PVBM08B 

and HM-1:IMSS transcriptome libraries. Taken together, these explorative analyses can 

comprehensively cluster a core set of DE genes which exhibit distinctive expression profiles 

across six pairs of contrasting strains, suggesting their potential role in strain-specific 

virulence and provide compelling biological interpretations as explained above.  

 In other words, a core set of 98 DE genes identified from the cluster analysis unveils 

a high degree of transcriptional variation among virulent strains, suggesting such 98 DE 

genes are likely to be major virulence-determining factors. Therefore, it might be 

substantially advantageous for development of a novel therapeutic drug to effectively treat 

patients with invasive amoebiasis.  
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Figure 2.18: Agglomerative hierarchical clustering of all DE genes based on their 

relative expression levels across all six contrast pairs. Colour spectrum bar on the left 

represents the relative expression levels (log2FC). The leftmost column indicates clusters 

defined by hierarchical clustering. All of 7,024 DE genes retrieved from six contrast pairs 

can be grouped into nine clusters, based on their pattern of expression levels across all 

strains. Interestingly, 6th cluster demonstrates a group of DE genes with distinctive pattern 

of log2FC across six contrast pairs. Members of DE genes in 6th cluster have high levels of 

expression in two virulent strains, i.e. HM-1:IMSS and PVBM08B, but low expression levels 

in virulent IULA:1092:1 strain and nonvirulent Rahman strain. This 6th cluster are further 

categorised into five subclusters shown in Figure 2.19. 
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Figure 2.19: Agglomerative hierarchical clustering of 98 DE genes retrieved from the 

6th cluster in previous analysis (Figure 2.18). All of these 98 genes can be further 

categorised into five subclusters, based on their pattern of expression levels. Obviously, 

different co-expression patterns of DE genes among the parasite strains are demonstrated. 

The details of each subcluster are summarised in Table 2.11. Interestingly, DE genes in 1st, 

2nd and 3rd clusters show similar expression levels in the middle two (3rd: Rahman vs 

IULA:1092:1 and 4th: PVBM08B vs HM-1:IMSS) columns. 
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Table 2.11: Summary of 2nd cluster analysis results of 98 DE genes retrieved from the 6th 

cluster of the heatmap in Figure 2.18, including functional gene annotation, number of genes 

and AmoebaDB_IDs. 

Sub 

cluster Functional gene annotation 
Number 

of genes AmobaDB_ID 

 

1 

 

leucine-rich repeat protein, BspA family 

 

4 

 

EHI_018840, EHI_034610, EHI_102380, 

EHI_105370 

 AIG1 family protein, putative 2 EHI_119040, EHI_126550 

 heat shock protein 70, putative 1 EHI_150770 

 60S ribosomal protein L6, putative 1 EHI_093580 

 protein kinase domain-containing protein 1 EHI_144590 

 hypothetical protein 7 EHI_011260, EHI_022300, EHI_068610, 

EHI_087110, EHI_087740, EHI_101400, 

EHI_152360 

2 serine-threonine-isoleucine rich protein, 

putative 

3 EHI_004340, EHI_012330, EHI_025700 

 heat shock protein 70, putative 2 EHI_021780, EHI_133950 

 C2 domain-containing protein 1 EHI_059860 

 leucine-rich repeat protein, BspA family 1 EHI_127710 

 WD domain-containing protein 1 EHI_092070 

 Ras family GTPase 1 EHI_058520 

 RhoGAP domain-containing protein 1 EHI_199570 

 P-glycoprotein-2, putative 1 EHI_186600 

 60S ribosome subunit biogenesis protein NIP7, 

putative 

1 EHI_031350 

 peptidyl-prolyl cis-trans isomerase, FKBP-type 

, putative 

1 EHI_051870 

 Rab GDP dissociation inhibitor alpha, putative 1 EHI_164890 

 hypothetical protein 11 EHI_049760, EHI_074080, EHI_077290, 

EHI_079240, EHI_080880, EHI_083380, 

EHI_089460, EHI_097490, EHI_101410, 

EHI_118230, EHI_142680 

3 AIG1 family protein 3 EHI_072850, EHI_102600, EHI_129470 

 leucine-rich repeat protein, BspA family 2 EHI_148530, EHI_161300 

 C2 domain-containing protein 1 EHI_069320 

 surface antigen ariel1, putative 1 EHI_005260 

 heat shock protein 70, mitochondrial, putative 1 EHI_127700 

 coiled-coil domain-containing protein 25, 

putative 

1 EHI_021490 

 

 

 



             

             

  

 

   81 

   81 

Table 2.11: Summary of 2nd cluster analysis results of 98 DE genes retrieved from the 6th 

cluster of the heatmap in Figure 2.18. (Continued) 

Sub 

cluster Functional gene annotation 
Number 

of genes Amobadb_ID 

3 signal recognition particle 54 kDa protein, 

putative 

1 EHI_022730 

 
splicing factor 3B subunit 1, putative 1 EHI_049170 

 HEAT repeat domain-containing protein 1 EHI_050150 

 ethanolamine phosphotransferase, putative 1 EHI_055140 

 pre-mRNA cleavage factor I 25 kDa subunit, 

putative 

1 EHI_077000 

 DNA mismatch repair protein Msh2, putative 1 EHI_123830 

 DNA polymerase, putative 1 EHI_164190 

 Ras family GTPase, pseudogene 1 EHI_058550 

 hypothetical protein 24 EHI_001730, EHI_004460, EHI_017780, 

EHI_028770, EHI_037690, EHI_046150, 

EHI_047510, EHI_062310, EHI_062320, 

EHI_081110, EHI_097750, EHI_099710, 

EHI_104220, EHI_112390, EHI_120250, 

EHI_128800, EHI_142690, EHI_145460, 

EHI_146120, EHI_166040, EHI_192240, 

EHI_193690, EHI_193790, EHI_196070 

 

4 peroxiredoxin 1 EHI_145840 

 DNA polymerase, putative 1 EHI_018010 

 NADPH-dependent FMN reductase domain-

containing protein 

1 EHI_022600 

 multidrug resistance-associated protein, 

putative 

1 EHI_084730 

 calcineurin catalytic subunit A, putative 1 EHI_118600 

 hypothetical protein 3 EHI_033450, EHI_062300, EHI_077510,  

5 U3 small nucleolar ribonucleo protein MPP10, 

putative 

1 EHI_048860 

 endonuclease V, putative 1 EHI_142700 

 hypothetical protein 6 EHI_033890, EHI_039590, EHI_039600, 

EHI_067090 EHI_130550, EHI_145490  

 Total  

(subclusters 1st, 2nd, 3rd, 4th and 5th) 

98  
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2.3.8 Sequence divergence in genes implicated in host-parasite interaction is 

significantly correlated with transcriptional variability across E. histolytica 

strains  

Based on the Red Queen hypothesis raised by Van Valen, 1973, coevolved species 

such as host and parasite can drive the molecular evolution of each other [180].  Both host 

and parasite need to continuously adapt to gain reproductive fitness and survive under 

selective pressures from the changing environment and interacting species [180,181]. 

Molecular evolution of genes involved in host resistance and parasite infectivity should be 

driven faster than others [182,183]. As mentioned above, it is thus hypothesised that an 

exclusive set of E. histolytica genes directly involved in the host-parasite interaction should 

have evolved at a faster rate than other genes, due to the ‘molecular arm races’ for host-

parasite coevolution [180-183].   

It was recently reported by Weedall et al., 2012 that sequence variation among 

genomes of E. histolytica strains was quite low (0.312-0.857 SNPs per kb), different from 

Plasmodium falciparum which shows higher sequence diversity with 1.31 SNPs per kb 

[70,184].  However, it is intriguing that a unique set of genes displays high sequence 

polymorphisms across the sequenced strains. Across all 8,333 E. histolytica genes, a total of 

3,022 genes exhibit intraspecific SNPs and the majority of these genes (1,644 genes, 54.4%) 

encode for hypothetical proteins [70]. Among these 3,022 genes, 53 genes with ≥ 5 

nonsynonymous homozygous SNPs across sequenced strains were identified as highly 

polymorphic genes. It is worth noting that these nonsynomyous SNPs are more common in 

genes associated with the host-parasite interaction such as EhSTIRPs, the intermediate 

chains of Gal/GalNAc lectin Lgl1 and Lgl2, BspA-like LRRPs and AIG1-like family proteins.  

Also, a large number of SNPs could be detected in regulatory genes, i.e. protein kinase 

domain-containing proteins, tyrosine kinases implicated in protein phosphorylation and 

signaling pathways as well as 70 kDa heat shock proteins responsible for stress response 

[70]. 

Therefore, these findings of sequence polymorphisms reported by Weedall et al., 

2012 are consistent with the Red Queen hypothesis of antagonistic coevolution between 

virulent E. histolytica parasites and their human host. Interestingly, these genes are also 

directly implicated for parasite survival and amoebic virulence and likely to exhibit 

differential expression across strains. It would follow that genes that are under positive 

selection (i.e. selection to change) would also be under selective pressure for changes in 

transcript levels, as this is another route to phenotypic variability. It would also follow that 
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the changes in primary DNA sequence would also lead to changes in gene expression as they 

could influence the binding of the transcriptomic machinery and of transcription factors.       

To test this hypothesis, 98 DE genes which are obtained from the previous cluster 

analysis (the 6th cluster, Figure 2.18) and show the remarkable differences in expression 

across the strains were studied to assess whether overall genotypic differences between 

strains are linked to transcriptional variation.  

The details of SNPs in these 98 DE genes across all E. histolytica strains are available 

in the AmoebaDB database version 4.2, as summarised in Appendix Table 3. It is striking 

that average SNP sites per kilobase of these 98 DE genes across all strains are 9.31 SNPs/kb, 

more than 10-fold higher than average value across the genome, previously mentioned. As 

shown in Figure 2.20, the numbers of total SNP sites across all strains were plotted against 

the maximal transcriptional differences across all strains, represented by log2-transformed 

values of the ratio between maximal FPKM and minimal FPKM observed for a particular 

gene.  

The scatterplot shows a strong significant correlation (r = 0.3097, P-value = 0.0019) 

between polymorphisms and transcriptional variablility across these 98 genes, indicating 

that a particular gene with a faster rate of evolution tends to have a more variable 

transcription when compared across all strains. In addition, it is likely that transcriptional 

regulation is less tight in a gene with more variable sequence. In other words, evolutionary 

change of sequence potentially leads to alteration in transcriptional regulation and 

subsequent differential abundance of such polymorphic gene across the parasite strains. 

Essentially, host selective pressures are the key drivers of sequence polymorphisms and 

variable in each region of the E. histolytica genome [185]. Therefore, it could be stated that 

different mRNA levels and flexibility in transcriptional regulation depend on the 

polymorphic levels of genes. 

To confirm the hypothesis in relevance to differential virulence, the correlation 

between sequence variation and transcriptional variability was explored only in a pair of 

nonvirulent Rahman and virulent HM-1:IMSS, as shown in Figure 2.21. Compared to the 1st 

scatterplot in Figure 2.20, slightly less positive correlation with statistical significance (r = 

0.2018, P-value = 0.0464) indicates that genetic variation likely causes transcriptional 

variation, contributing to differential virulence between such nonvirulent and virulent 

strains.  
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In addition, the key consideration is the influence of sequence polymorphisms on the 

mapping of raw read sequences to the genomic reference. The number of polymorphic sites 

in each strain is counted by comparing the sequence of a particular gene with the HM-

1:IMSS genomic reference. Higher number of SNP sites would represent higher sequence 

divergence when compared to the HM-1:IMSS reference. Taking into consideration, I have 

used the HM-1:IMSS genomic sequence as a reference for mapping and annotation in the 

bioinformatic analysis. Additionally, TopHat’s mapping algorithm, by default, allows one or 

two base differences between aligned read and the reference sequence [111,114,118]. As 

such, any read with many mismatches would be disregarded, resulting in underestimation 

of aligned reads. As plotted in Figures 2.20 and 2.21, it is suggested that transcriptional 

difference of genes with high sequence polymorphisms may be partly affected by artefacts 

resulting from mapping to the HM-1:IMSS genomic reference.  

However, transcriptional variation can be indeed a consequence of not only 

sequence polymorphisms but also gene gain or gene loss and gene copy number variation 

among the strains [70]. Also, it was recently reported that antisense sRNAs can regulate 

transcriptional levels of E. histolytica parasites by the endogenous RNAi pathway in a strain-

specific manner [85,86,92]. Essentially, it needs to be further investigated in functional 

studies to determine how the molecular evolution of sequence divergence has an influence 

on the transcriptional control and virulence variability in this parasite.  
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Figure 2.20: Significant positive correlation (r = 0.3097, P-value = 0.0019) between 

levels of single nucleotide polymorphisms and transcriptional variability of 98 DE 

genes among the four E. histolytica strains. Transcriptional variability of a particular gene 

is represented in terms of log2-transformed value of fold change computed by the ratio of 

maximum FPKM and minimum FPKM seen in these four strains. The comparatively high 

degree of sequence divergence is associated with a vast range of transcript levels across all 

strains, most likely reflecting a varied regulation of expression in such DE genes.  
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Figure 2.21: Significant positive correlation (r = 0.2018, P-value = 0.0464) between 

levels of single nucleotide polymorphisms and transcriptional variability of 98 DE 

genes in Rahman relative to HM-1:IMSS.  
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2.3.9 Functional characterisation and annotation of protein domain signatures 

reveals biological cellular functions potentially involved in virulence 

Currently, protein domains and protein sequence motifs can be used as signatures of 

protein families for functional annotation purposes. Several bioinformatic tools have been 

developed to predict functional domains of a particular protein for its functional 

assignments, especially in enzymes which predicted domain(s) and motif(s) would define 

their putative functions. Also, this method is very useful for functional annotation in case of 

proteins with unknown function or hypothetical proteins (HPs) [186].  For E. histolytica, 

whole genomic analyses found 8,333 genes in total which include 4,478 genes encoding HPs, 

accounting for 53.74 % of total genes [25,46]. Therefore, the functional assignment for 

protein domain signatures in group of proteins of interest including HPs will provide a 

better framework of biological functions involved in pathogenesis and virulence in E. 

histolytica as well as prioritise protein candidates for therapeutic purposes. 

Functional characterisation and annotation could be accomplished using several 

public protein domain databases, e.g. Pfam [187], PRINTS [188], PROSITE [189], SMART 

[190], PANTHER [191], TIGRFAMs [192], SUPERFAMILY [193] and PIRSF [194]. Herein, 

IntroProScan was applied to search functionally annotated domains and motifs using 

signature recognition methods of the InterPro Consortium for several databases such as 

Pfam, PRINTS, PROSITES, PANTHER and SMART [123]. In this present study, FASTA 

formatted protein sequences of 1,162 upregulated and 997 downregulated DE genes in the 

three virulent strains were verified against the Pfam database to identify putative functional 

protein domains and motifs in such two sets of DE genes. The functionally annotated protein 

domains and motifs are listed for the top 30 prevalent annotations as illustrated in Figures 

2.22 and 2.23 for upregulated and downregulated groups, respectively. 
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2.3.10 Protein phosphorylation and Ras-regulated G-Protein signaling are the 

key regulatory processes in E. histolytica  

Complete genome sequencing as well as genome-wide transcriptomic studies have 

found that E. histolytica possesses a large number of cell signaling molecules involved in a 

diverse variety of cellular processes [36,76,77]. Prominently, protein kinases (PKs) 

constitute a large fraction of the human protist genomes such as Leishmania major and 

Trypanosoma spp. [195,196]. Anamika et al., 2008 identified a large protein kinase 

repertoire (kinome) consisted of 307 PKs in E. histolytica [197]. Basicly, PKs play an 

important role in almost all major signal transduction pathways of eukaryotic cells. Protein 

phosphorylation catalysed by the kinase activity functions as a regulatory switch for many 

cellular activities, including transcription, metabolism, cytoskeletal rearrangement, cell 

division and cell movement via mechanisms of signal transduction [198].  

In E. histolytica, the interaction between trophozoites and host extracellular matrix 

results in induced signaling which triggers invasion [199]. A large family of over 90 

transmembrane kinases (TMKs) have been identified in E. histolytica and thought to have 

nonredundant functions involved in growth and phagocytosis [200].  Differently, only nine 

putative TMKs were predicted in the free-living sister species, Dictyostelium discoideum, so 

the presence of large TMK gene family in E. histolytica promisingly suggests the 

necessitation of the parasite in sensing and responding to a wider variety of extracellular 

stimuli within the host environment, compared to the free-living condition [201]. Also, 

kinome analysis of E. histolytica revealed that the parasite possesses a complex network of 

protein phosphorylation implicated with several unusual PKs [197].  

The Ras superfamily GTPases have been highly studied in E. histolytica [202]. The 

genome of E. histolytica harbors more than 170 annotated members of Ras superfamily 

GTPases in the AmoebaDB database, indicating an important role in G-protein signaling 

system [26,202]. The Ras superfamily can be categorised into five families: Ras, Rho, Ran, 

Rab and Arf GTPases [203]. The Ras family typically controls cell proliferation and survival. 

The Rho family is responsible for cell morphology, actin filament organisation, cell cycle and 

gene expression. The Ran family involves in nuclear-cytoplasmic transport. Lastly, the Rab 

and Arf families regulate vesicular transport [202,204]. However, experimental studies of 

Ras signaling as well as Ras regulators, i.e. GEFs and GAPs, are still understudied. [202].  

As shown in Figure 2.22, the most prevalent domain found in the cluster of 1,162 

upregulated genes in the three virulent strains is a PK domain (PF00069). Also, the Ras 

family (PF00071) belonging to a Ras superfamily GTPase family as mentioned above is 
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ranked as the top third order (n = 15).  Likewise, for the cluster of 997 downregulated 

genes, PK domain and Ras family are remarkably more prevalent than others, as shown in 

Figure 2.23. As shown in Figures 2.22 and 2.23, downregulated PK (n = 45) and Ras family 

domains (n = 31) are twice in number of proteins consisting of these two domains when 

comparing to those in the upregulated cluster (n = 21 for PK and 15 for Ras family).  

Similarly, the previous DGE tests reveal transcriptomic modulations of genes mostly 

involved in protein phosphorylation and G-protein signaling. As listed in Table 2.10, most of 

the functional gene annotations involved in protein phosphorylation and G-protein signaling 

show higher number of downregulated transcripts than those of upregulated transcripts. In 

agreement with the DGE tests, the InterProScan results show the different distribution of 

these protein domains between upregulated and downregulated clusters. It is striking that 

the PK and Ras family domains were much more obviously downregulated compared to 

other domains in the downregulated cluster as shown in Figure 2.23.  

From this observation, different members of the same conserved family involved in 

phosphorylation and signaling were upregulated or downregulated at the same time. It is 

worth noting that the genome of simple protozoan parasite E. histolytica contains indeed a 

large portion of conserved gene families linked to signaling pathways [197,200]. Therefore, 

the interesting question how parasites can accurately regulate the expression of a subset of 

such large multigene families still needs to be further elucidated, possibly for epigenetic 

mechanisms.  

Besides the Ras family, the Rho family GTPases as well as their two Rho regulators: 

guanine nucleotide exchange factor (RhoGEF) and GTPase-activator protein (RhoGAP) 

primarily regulate the dynamics of actin cytoskeleton and actin filament-based processes in 

E. histolytica, including movement, phagocytosis, tissue invasion as well as surface receptor 

capping for host immune evasion [199,205-207].  Therefore, regulation of actin dynamics 

plays an important role in pathogenesis-related processes as well as trophozoite survival. 

Indeed, 22 Rho family GTPases (EhRhos) were identified in the E. histolytica genome [208]. 

Surprisingly, the InterProScan results do not show any upregulation or downregulation of 

Rho domains of these 22 Rho family GTPase members in this study. However, both RhoGEF 

and RhoGAP domains were found to be upregulated and downregulated as shown in Figures 

2.22 and 2.23, respectively. In the three virulent strains, 7 RhoGEFs and 7 RhoGAPs were 

upregulated but conversely, 12 RhoGEFs and 11 RhoGAPs were downregulated. Essentially, 

it is likely to imply that virulent parasites have a specific molecular switch system that can 

activate or inhibit expression of gene members in signaling pathways including PKs, Ras 

family GTPases, RhoGEFs and RhoGAPs as mentioned above.   
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Similar to previous transcriptomic studies, protein kinases, RhoGAPs and protein 

phosphatases were found to be modulated in both HM-1:IMSS and Rahman in the axenic 

condition, suggesting the possible allele-specific expression between strains [76]. It was also 

reported for the upregulation of PKs, TMKs, Ras and Rho family GTPases in HM-1:IMSS 

trophozoites inoculated to the mice colon, strongly indicating their important role in 

adaptation to the host environment [77]. 

As explained above, a number of these two domains constitute a large fraction of 

both upregulated and downregulated proteomes, reflecting the great impact of signaling in 

regulating diverse cellular processes of this parasite. These two major regulatory pathways, 

i.e. PK-dependent and G-protein signaling pathways, enable trophozoites to interact with a 

vast variety of extracellular signal cues, essential for their survival and host-parasite 

interaction. Therefore, this current study reveals that protein phosphorylation and Ras-

regulated G-Protein signaling are the key essential steps for regulating a wide variety of 

cellular processes and the transcriptional modulations of such major signaling pathways 

potentially result in differences of trophozoite pathogenicity and virulence among E. 

histolytica strains.  

2.3.11 Co-upregulation of actin cytoskeleton and actin-modulating domains 

indicates the increase of actin-filament based processes in virulent parasites 

As previously reported, actomyosin cytoskeleton centrally contributes to E. 

histolytica pathogenesis due to its diverse functions directly involved with reorganisation of 

cellular component, cell movement and morphological changes, cell division, phagocytosis, 

host cell adhesion as well as interaction with host extracellular matrix [206,209].  

Trophozoites with highly active motility would have an advantage for moving from an 

ulcerative lesion site to the bloodstream and subsequent hematogenous spreading to 

extraintestinal organs [209].  Also, the actin cytoskeleton plays a crucial role in maintaining 

structural integrity of the parasite adhesion molecules, i.e. Gal/GalNAc lectins at the host cell 

adherence site [210].  It was evidenced in genetically engineered E. histolytica strain LMM 

that both in vitro and in vivo parasite motility and host cell cytotoxicity were drastically 

reduced by disruption of cytoskeletal myosin II activity, indicating that virulence is 

regulated by the amoebic cytoskeleton [211,212].  

Based on my protein domain data, not only actin (PF00022) but also other actin-

modulating domains were co-upregulated, emphasising the important role of the actin 

cytoskeleton in virulent trophozoites. Other actin-binding domains were also found to be 

upregulated in the InterProScan result, such as calponin homology (CH) domain (PF00307), 



             

             

  

 

   91 

   91 

zinc-binding domain present in Lin-11, Isl-1 & Mec-3 (PF00412), Wiskott-Aldrich syndrome 

homology region 2 (WH2) domain (PF02205), gelsolin repeat (PF00626) and 

cofilin/tropomyosin-type actin-binding protein (PF00241) as demonstrated in Figure 2.22.    

First, many cytoskeletal proteins contain two copies of the CH domain in a tandem 

arrangement [213]. Also, a single CH domain could be found in regulatory proteins of the 

signal transduction pathways [214,215]. The microarray study of Davis et al, 2007 showed 

the significant upregulation of the CH domain-containing protein (XM_652357.1) with 

log2FC = 3.0, P-value = 2.35e-4 in HM-1:IMSS compared to Rahman [76]. Second, LIM domain 

is a cysteine and histidine rich domain containing two zinc fingers. This domain plays a role 

in cytoskeletal reorganisation and protein-protein/protein-DNA interactions [215,216]. 

Differential in-gel 2D electrophoresis of the proteomes of HM-1:IMSS and Rahman, 

performed by Davis et al., 2006 showed the upregulation of six proteins in HM-1:IMSS, 

including a LIM domain-containing protein [16]. Third, WH2 motif and cofilin domain can be 

found in Wiskott-Aldrich syndrome protein (WASP) and suppressor of cAMP receptor 

(SCAR). These WASP/SCAR family proteins function as nucleation-promoting factors in 

concert with the Arp2/3 complex [215,217-219].  

This protein domain data show the consistence with my RNA-Seq result presenting 

the upregulation of six actin genes and three genes encoding actin-binding proteins 

(cofilin/tropomyosin family) in all three virulent strains as listed in Table 2.6.  However, the 

marked upregulation of actin transcripts with log2FC ≥ 2 could be found in only HM-1:IMSS. 

In addition, HM-1:IMSS displays more than 4-fold higher expression of Arp2/3 complex 21 

kDa subunit (EHI_174910) than the other strains, implying its higher capability to trigger 

the actin nucleation and subsequent actin filament-based processes, compared to other 

virulent strains.  

2.3.12 Increase of proteolysis-related transcripts suggests the high protein 

turnover rate and active metabolism in virulent parasite strains 

The proteasomal degradation pathway is important for several cellular processes in 

all cells and tissues of eukaryotic organisms, including control of gene expression, cell cycle, 

development, as well as rapid protein turnover [220,221]. Previously reported by Dustin et 

al., 2013, E. histolytica trophozoites have a remarkable ubiquitin-dependent protein 

degradation system [221]. Proteasome inhibitors can retard trophozoite growth in E. 

histolytica as well as encystation process in E. invadens [222]. Also, transcriptomic changes 

in this protein turnover pathway were reported to be associated with variation of virulence 

among strains [77,82]. Most recently, Thibeaux et al., 2013 demonstrated that there were 
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significantly marked upregulation of ubiquitin (EHI_083410 and EHI_178340) and probable 

proteasome subunit beta type 2 (EHI_078710) in HM-1:IMSS in response to contact with the 

human colonic explant [82]. Herein, proteins with proteasome subunit domain (PF00227) 

and proteasome subunit A N-terminal signature (PF10584) were found to be exclusively 

upregulated (n = 11 and 7, respectively) in the three virulent strains as demonstrated in 

Figure 2.22. Therefore, it seems that upregulation of proteolysis-related genes in the 

transcriptomes of virulent strains would indicate the high protein turnover rate as well as 

the active metabolic state in virulent parasites, potentially contributing to their virulence. 
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Figure 2.22: The 30 most prevalent functionally annotated protein domains/motifs found in 1,162 upregulated DE 

proteins in the three virulent strains (i.e. PVBM08B, HM-1:IMSS and IULA:1092:1). The abbreviations represent as follows: 

Ras = Ras subfamily of RAS small GTPases; AAA = ATPases associated with a variety of cellular activities; CH = Calponin homology; 

WD = Beta-transducin repeat; C2 = Protein kinase C conserved region 2 (CalB); Hsp70 = 70 kilodalton heat shock protein; ABC = 

ATP binding cassette; RhoGEF = Guanine nucleotide exchange factor for Rho/Rac/Cdc42-like GTPases; RhoGAP = GTPase-

activator protein for Rho/Rac/Cdc42-like GTPases; LIM = Zinc-binding domain present in Lin-11, Isl-1 & Mec-3; IBR = In Between 

Ring fingers; WH2 = Wiskott-Aldrich syndrome homology region 2. 
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Figure 2.23: The 30 most prevalent functionally annotated protein domains/motifs found in 997 downregulated DE proteins in 

the three virulent strains. The abbreviations represent as follows: RasGEF = Guanine nucleotide exchange factor for Ras-like small 

GTPases; Rab = Rab subfamily of small GTPases; TBC = Domain in Tre-2, BUB2p, and Cdc16p; TLD = TBC/LysM-associated domain; AIG1 = 

AvrRpt2-induced gene-1; DnaJ = 40 kilodalton heat shock protein; PH = Pleckstrin homology; Sel1 = Sel1-like repeats. 
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2.3.13 GO enrichment analysis  

After getting the list of 1,162 upregulated and 997 downregulated DE genes 

commonly found in three virulent strains of E. histolytica, i.e. PVBM08B, HM-1:IMSS and 

IULA:1092:1 as shown in Figures 2.13 and 2.15, GO enrichment analysis (available at 

http://AmoebaDB.org) was applied for these two sets of DE genes. Given a list of DE genes 

which are upregulated or downregulated as above, the ontology enrichment analysis will 

explore which terms have overrepresentation or underrepresentation compared to the rest 

by calculating a ratio of fold enrichment (the percentage of genes annotated to a GO term of 

interest in the sample divided by the percentage of genes with the identical term in the 

background) [223-225]. These over-represented or under-represented GO terms would 

reflect the predominant ontologies and lead us to better understanding in biology of this 

parasite’s virulence.  

I. GO terms identified in upregulated gene cluster 

For the 1,162 upregulated DE genes, thirty-five gene functional categories could be 

identified for the biological process ontology with significant statistics as shown in 

Appendix Table 4. In general, these DE genes are responsible for several cellular processes, 

i.e. biosynthesis, protein and macromolecule catabolism, DNA metabolism, actin filament-

based process and stress response. Most of these upregulated genes have functions involved 

in cellular and organic substance biosynthetic processes (94 genes for GO:0044249 and 95 

genes for GO:1901576). However, the numbers of genes in the background for these two 

categories are 496 and 504, accounting for the lowest fold enrichment of 1.21 and 1.2 for 

GO:0044249 and GO:1901576, respectively. This indicates that the number of DE gene 

members in each GO term does not reflect the real overrepresentation due to sample size 

bias. In contrast, two sets of GO terms (1st : GO:0044419, GO:0016032, GO:0044764, 

GO:0044403 and GO:0051704; 2nd : GO:0000278, GO:0006020 and GO:0007067) show the 

same number of genes in both the sample and the background (n= 4 for the 1st set and 3 for 

the 2nd set), resulting in 100 % of background genes in the sample and the highest fold 

enrichment of 6.37. It reveals that all DE genes with such GO terms have overrepresentation 

in this gene set, suggesting their possible roles in virulence. 

Obviously, from enrichment analysis, most of upregulated DE genes have GO terms 

involving in key metabolic pathways of the cell. These findings can explain in relevance to 

the virulence of these strains. For instance, five upregulated GO terms (GO:0030029, 

GO:0007015, GO:0030036, GO:0008154 and GO:0007010) are responsible for actin 

filament-based process and cytoskeleton organisation, implying that these three virulent 

http://amoebadb.org/
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strains are likely to have better capability of movement, phagocytosis, tissue invasion and 

surface receptor capping than the nonvirulent Rahman strain. Also, this finding corresponds 

to the InterProScan result showing the upregulation of actin and other actin-binding 

domains. 

It is interesting  that a GO term responsible for ‘viral process’ (GO:0016032) could 

be found in the upregulated gene list, making us hypothesise that intestinal viral infection in 

these virulent strains may help enhance the expression level of this gene set and lead the 

trophozoites to proliferative and virulent state. Also, other four GO terms: GO:0044419, 

GO:0044764, GO:0044403 and GO:0051704, which involve in interspecies interaction and 

parasitism, are also found with 100 % sample frequency and fold enrichment of 6.37, 

supporting the above hypothesis. Alternatively, these axenically cultured virulent strains 

might possess evolutionarily some virus-derived genes, intimately affecting to the genome 

and transcriptome of the parasite and contributing to their pathogenic bahaviour.  

As mentioned in Chapter 1, the invasive trophozoites are prone to be battled by host 

immune defence such as ROS, NO and cytotoxic enzymes [14]. So, it could be explained why 

these virulent strains have high expression levels of proteins responsible for stress response 

(GO:0006950 and GO:0033554), compared to Rahman strain.   

The ontology terms related to protein and macromolecule catabolism: GO:0030163, 

GO:0044257, GO:0043632, GO:0019941, GO:0006511, GO:0051603, GO:0009057 and 

GO:0044265 are listed in the first eight rows of Appendix Table 4 with fold enrichment 

values of 2.17 to 2.57. The overpresentation of these terms reflects the increased protein 

turnover activity in these three virulent strains. This is also consistent with the InterProScan 

result in Figure 2.22, obviously showing the upregulation of proteasome domain as well as 

proteasome subunit A N-terminal signature.  

II. GO terms identified in downregulated gene cluster 

As detailed in Appendix Table 7, a total of 997 downregulated DE genes were 

identified into fourty-four gene functional categories for the biological process ontology 

with significant statistics. Strikingly, 27 of 44 GO terms are involved in regulation of cellular 

pathways such as ‘regulation of response to stress’ (GO:0048583), ‘biological regulation’ 

(GO:0065007), ‘regulation of nucleoside metabolic process’ (GO:0009118), ‘regulation of 

signaling’ (GO:0023051), ‘regulation of cell communication’ (GO:0010646), ‘regulation of 

molecular function’ (GO:0065009), ‘regulation of cellular catabolic process’ (GO:0031329) 

and ‘regulation of phosphate and phosphorus metabolic processes’ (GO:0019220 and 
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GO:0051174). Also, other ontologies are mainly responsible for ‘cell communication’ 

(GO:0007154), ‘signaling’ (GO:0023052), ‘protein phosphorylation’ (GO:0006468), 

‘phosphorus metabolic process’ (GO:0006793), ‘tRNA metabolic process’ (GO:0006399), 

‘macromolecule modification’ (GO:0043412), ‘phosphate containing compound metabolic 

process’ (GO:0006796) and ‘ncRNA metabolic process’ (GO:0034660).  

To assess underrepresentation throughout all downregulated GO terms, it was found 

that fold enrichment values vary from 1.23 (‘macromolecule modification’, GO:0043412) to  

2.27 (‘tRNA processing’, GO:0008033), less variable between terms than the upregulated 

group. Surprisingly in this cluster, gene functional categories could be generally divided into 

two related groups. For instance, ontologies of ‘signaling’ or ‘intracellular signal 

transduction’ (GO:0023052 and GO:0035556) and ‘regulation of signaling’ or ‘regulation of 

intracellular signal transduction’ (GO:0023051 and GO:1902531) could be found together in 

this DE list. Other pairs of associated terms are also found as well, i.e. ‘phosphorylation’ or 

‘protein phosphorylation’ or ‘phosphorus metabolic process’ (GO:0016310, GO:0006468 

and GO:0006793) and regulation of phosphate and phosphorus metabolic processes 

(GO:0019220 and GO:0051174). This observation guides that it seems to have reduced 

expressions of both functional proteins and their associated regulators involved in such 

particular pathways in virulent strains. Almost all downregulated GO terms are implicated 

in key controlling pathways of the parasitic cell. Therefore, it is reasonable to hypothesise 

that less strict cellular control due to reduced expression of such protein members in 

regulatory pathways would be able to lead trophozoites to the virulent state. 

However, there was still redundancy amongst these ontologies since one particular 

protein could be identified by more than one GO term. This can be overcome by a 

specialised software named ‘REVIGO’, capable of clustering similar GO terms into only a 

single representative, enabling comprehensive interpretation in three different 

presentations. 

2.3.14 Summarisation and visualisation of enriched gene ontologies 

To summarise and interpret biological meanings of GO terms, lists of GO terms with 

FDR-adjusted P-values from the previous enrichment analysis were analysed by an online 

web server, ‘REVIGO’. The REVIGO (Reduce and Visualise Gene Ontology) is a web server 

designed with a simple clustering algorithm for summarising long and semantically similar 

list of GO terms into a cluster with a single representative GO term [124,226-228]. Also, the 

REVIGO can visualise these non-redundant cluster representatives into three different ways 

for interpretation, i.e. scatterplot, interactive graph and treemap, discussed further. 
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The clustering algorithm would provide two values of anticorrelated parameters: 

uniqueness and dispensability. The ‘uniqueness’ value refers to a degree of negativeness of 

average similarity of such term to the whole list. It determines whether such GO term of 

interest differs or detaches from all other members of list. By contrast, the ‘dispensability’ 

value represents a degree of redundancy of such term compared to other semantically 

similar terms. To eliminate redundancy, semantically close terms with higher values of 

dispensability would be united into the main cluster represented by a semantically similar 

GO term with less dispensability and more significant adjusted P-value.  

For instance, the two upregulated GO terms: ‘organelle organisation’ (GO:0006996) 

and ‘cellular component organisation’ (GO:0016043) have dispensability values of 0.704 

and 0 with log10(FDR-adjusted P-value) of -2.0768 and -2.5452, respectively. This former 

term ‘organelle organisation’ was found to share relatively high semantic similarity with the 

term ‘cellular component organisation’ which has lower dispensability and more significant 

adjusted P-value as shown in Appendix Table 9. To reduce redundancy, the term ‘cellular 

component organisation’ was therefore chosen as a cluster representative for illustrative 

purposes.  

To determine their closeness, each cluster representative obtained after the 

clustering algorithm finished was assigned for X and Y coordinates in the scatterplot so that 

GO terms with more semantic similarities would be closer. This could be accomplished by 

multidimensional scaling-based visualisation with the pairwise distance matrix. On the plot, 

each cluster is represented in bubble with different colour and size. Additionally, the column 

of frequency as listed in Appendix Tables 9 - 13 refers to the percentage of UniProt proteins 

annotated with a GO term in the underlying Gene Ontology Annotation (GOA) database. The 

user-provided FDR-adjusted P-value and frequency of each GO term are represented by 

bubble colour and size, respectively.   

2.3.15 Many biological process ontologies in protein catabolism, biosynthesis, 

mitotic cell cycle, DNA metabolism, repair and recombination, stress response 

as well as actin dynamics are overrepresented in the transcriptomes of 

virulent strains 

As shown in Figure 2.24 and Appendix Table 9, thirty-five GO terms for the 1,162 

upregulated DE genes were reduced to twenty-one clusters. The larger size of the bubble 

does not display a fold enrichment value or a sample frequency of ontology but particularly 

denotes a higher protein frequency of such GO term in the underlying GOA database, 

indicating a more general term. The level of statistical significance, i.e. log10(FDR-adjusted P-
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value), is demonstrated in a continuous range of colour spectrum (red, orange, yellow, green 

and blue).  Semantic similarities between GO terms are associated to their closeness on the 

scatterplot. For instance, four clusters (light blue and blue bubbles) representing GO terms 

involved in protein and macromolecule catabolism are grouped together (plot_X = -5.841, 

plot_Y = 3.702).  

Notably, there are upregulation of catabolic and anabolic processes in the 

transcriptomes of virulent parasites as shown in Figures 2.24 and 2.25. The interconnection 

between clusters of protein and macromolecule catabolism is consistent with the DGE result 

showing the upregulation of genes encoding ubiquitin-conjugating enzyme family protein in 

virulent strains. Similarly, the InterProScan result in Figure 2.22 also confirms the 

upregulation of proteasome subunit domain (PF00227) and proteasome subunit A N-

terminal signature (PF10584). Correspondingly, the interactive graphs and treemaps of 

component and function ontologies, as shown in Figures 2.27 and 2.29, reveal the 

upregulation of terms representing proteasomal complex and threonine-type 

endopeptidase activity, respectively, strongly supporting the rapid protein turnover in 

virulent parasites.  

As discussed before, phagocytosis is a hallmark process for virulent parasites to 

invade and survive against host immune cells. Also, my RNA-Seq data demonstrate the 

evidence of increased expression of phagocytosis-related genes such as genes encoding C2 

domain-containing proteins, actin and cytoskeleton-associated proteins. Therefore, the 

results suggest that it is highly possible that phagocytosis would be a potential driving 

process for protein and macromolecule catabolism in virulent parasites. Ultimately, the 

interconnection between catabolic and anabolic ontologies in Figure 2.25A suggests that 

such proteolysis and macromolecule degradation would likely drive the parasites for rapid 

growth and proliferation by increasing the rate of translation and biosynthetic processes. 

 It is noticeable that clusters of ontology concerning ‘response to stress’ 

(GO:0006950), ‘DNA repair’ (GO:0006281) as well as ‘DNA recombination’ (GO:0006310) 

were found together in the enrichment analysis, pointing out the prospective relationship 

amongst these terms. Intriguingly, the interactive graph also unveils the close relationship 

of such three clusters. These three clusters are linked as shown in Figure 2.25A, revealing 

that there is a significant relationship among these three upregulated clusters.  

Intestinal parasites are prone to be continuously attacked by host immune response 

and strong environmental factors which could make changes to their genomic integrity and 

stability [229-231].  Structural damage of DNA can cause all types of mutation including 
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point mutation, insertion, deletion and translocation, requiring cellular DNA repair 

machineries. Therefore, overrepresentation of such process ontologies implies that these 

virulent strains have a greater potential to eliminate genomic lesions and maintain their 

genomic stability under stress conditions.  Also, it is apparent that there is upregulation of 

four clusters showing active mitotic cell division in virulent strains as illustrated in Figure 

2.25. Therefore, it seems to explain that upregulated expression of gene clusters involved in 

DNA repair, recombination and DNA metabolism in the transcriptomes of virulent strains 

would potentially enable the parasites to correct unwanted genetic damages caused by 

active mitotic cell division.  

Previous sequence analysis by Weedall et al., 2012 showed the evidence of gene 

conversion in virulence-associated genes transcribed for the Gal/GalNAc lectin complex 

[38]. Gene conversion is the process of non-reciprocal homologous recombination by which 

one DNA region is replaced by its homologous sequence to have identical sequences after 

the recombination event [232]. This gene conversion exists favourably amongst regions of 

multigene family members due to their relatively high sequence homology. So, this finding 

strongly indicates that homologous recombination (HR) can be present and play a biological 

role in the E. histolytica genome, especially driving the molecular evolution of gene families 

potentially involved in virulence variation [38,231]. 

Essentially, HR is a conserved biological mechanism most extensively undergone by 

organisms to precisely repair DNA double strand breaks and to rescue the break point that 

interrupts DNA polymerase during DNA replication [233,234]. Also, HR is an important 

mechanism required for telomere maintenance, meiosis, and sexual reproduction [234-

236], but obvious sexual means in E. histolytica has not yet been demonstrated before 

[230,237]. Despite of difficulties in genetic studies in parasitic protists, characterisation of 

meiotic genes and HR specific genes has been demonstrated in the genome sequence data of 

many species [237-239]. Some meiotic genes such as DMC1; MND1; SPO11 as well as HR 

specific genes such as MLH1; MSH2; RAD21; RAD51 were found in the genomic data of E. 

histolytica, strongly suggesting the possible sex and the key mechanism of DNA repair in this 

species [238,240]. Interestingly, ploidy changes and unscheduled gene amplification 

previously described in Entamoeba species might be driven by the process of DNA 

recombination [37,241,242].  Also, HR can occur in other human parasitic protozoa, i.e. 

Plasmodium, Trypanosoma and Leishmania [243-245]. For T. brucei and P. falciparum, HR 

was found to be critical to parasite survival by generating antigenic diversity implicated for 

evasion of the host immune response [243,244]. 
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Recently, Singh et al., 2013 have proved that expression of meiotic and HR genes 

were upregulated under induced stresses, i.e. serum starvation, heat shock, oxygen stress 

and UV radiation in E. histolytica and during encystation in E. invadens [230]. Also, HR was 

directly evidenced in inverted repeat plasmid-transfected trophozoites following different 

stress conditions in E. histolytica and under stage conversion in E. invadens [230].    

In this study, the close relationships between upregulated clusters involved in DNA 

repair and recombination as well as response to stress in the three virulent strains (i.e. 

PVBM08B, HM-1:IMSS and IULA:1092:1) highlight the capability of virulent trophozoites to 

circumvent their DNA damage under strong stress conditions in the host. Essentially, 

recombinational DNA repair system can improve the fitness of parasites by allowing 

increased survival of descendents with repaired DNA. In addition, it is indeed evolutionarily 

advantageous for parasites because DNA recombination can generate novel genotypes that 

can resist to host negative selective pressures and rapidly disseminate through host 

populations. Taken together with the presence of meiosis-related genes in the E. histolytica 

genome, the overrepresentation of gene ontologies related to DNA repair, recombination 

and stress response emphasises that sex potentially occurs in this parasite.  

The enrichment analysis data also suggests that ‘inositol metabolism’ (GO:0006020) 

might be partly responsible for virulence characteristics. Principally, phosphoinositides, 

phosphorylated forms of phosphatidylinositol (PI), play important roles in a vast variety of 

cellular processes such as proliferation, cytoskeletal rearrangement and membrane 

trafficking [246]. Phosphatidylinositol 3-kinases (PI3Ks) have catalytic functions in 

phosphorylating the inositol ring at D3 hydroxyl group and produce active lipid derivatives 

including phosphatidylinositol 3-phosphate [PI(3)P], phosphatidylinositol 3,4-bisphosphate 

[PI(3,4)P2], phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2] and phosphatidylinositol 

3,4,5-triphosphate [PI(3,4,5)P3]. Towards the biological importance, PI3K signaling is a key 

regulatory pathway for phagocytosis, cell motility and chemotaxis [247,248].  

Blazquez et al., 2008 discovered that chemotaxis towards pro-inflammatory 

cytokine TNF in E. histolytica was inhibited in the presence of PI3K inhibitor, wortmannin 

(Wm) [249]. The Wm-treated trophozoites were unable to migrate towards TNF due to loss 

of ability to reorganise the cytoskeleton through PI3K-dependent pathways during 

chemotaxis. Microarray analysis also revealed the upregulation of the Gal/GalNAc lectin and 

certain cytoskeleton dynamics-related proteins during chemotaxis towards TNF. 

Interestingly, both actin (EHI_159150) and actin modulating proteins such as gelsolin 

repeat protein (EHI_009570) and Cofilin-like protein (EHI_054800) were also 

transcriptionally upregulated during TNF-induced chemotaxis [249]. This is consistent with 
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my InterProScan result showing the upregulation of actin dynamics-related proteins. 

Together with upregulated ontology of inositol metabolism, it is fair to state that the three 

virulent strains have greater potential to initiate directional cell polarisation, motility and 

chemotaxis, compared to the nonvirulent Rahman strain.  

In addition, it was recently found that PI3K-mediated pathways also affect the 

proteolytic activity, the phagocytic capacity as well as the ability to develop amoebic liver 

abscess in vivo [250]. Essentially, this observation also emphasises the predominant role of 

protein kinome and the networks of protein phosphorylation in controlling pathogenesis 

and virulence in E. histolytica.  

Two clusters of actin-filament based process (GO:0030029) and chromosome 

organisation (GO:0051276) are also upregulated in these three virulent parasites, indicating 

the increase of cell motility, phagocytosis and mitotic cell division. This finding is in 

accordance with the InterProScan result in Figure 2.22, showing upregulation of the actin 

cytoskeleton and its modulating proteins. Increased transcription of cytoskeleton-related 

proteins reflects the role of actin dynamics in regulating many cellular processes in the 

virulent parasites. 

It could be summarised for that increase of cell cycle process indicates rapid 

proliferation of the virulent parasites. Concomitantly, upregulation of genes responsible for 

DNA metabolism, repair and recombination might be as a consequence of many mitotic cell 

divisions. Also, increased translation and biosynthetic processes could be driven by 

nutrients and energy derived from increased protein and macromolecule catabolism, 

possibly due to enhanced phagocytosis. Upregulation of actin filament-based process 

reflects the rapid cytoskeletal dynamics served for the increase of cell motility, phagocytosis 

and cell division. Conclusively, as the human host can be infected by multiple parasite 

species and also counteract the parasites with effective immune responses, the 

enhancement of such above catabolic and anabolic biological processes potentially provides 

synergy and competitive advantages to the parasites to be better able to rapidly grow and 

survive under the strong environmental stress in the host. 

 

 

 

 



             

             

  

 

   103 

   103 

2.3.16 Downregulation of process ontologies involved in protein 

phosphorylation, signaling and regulation of response to stimulus indicates 

less stringency in biological regulations in virulent parasites, possibly leading 

to host tissue invasion 

Contrastedly, the interactive graph of downregulated categories as shown in Figure 

2.31A shows the functional network of regulatory process ontologies. Highly similar GO 

clusters involved in phosphorylation, signaling and regulatory processes are interconnected, 

indicating a less strict cellular control in these three virulent strains. In addition, 

phosphotransferase (kinase) function ontologies are found to be downregulated as shown in 

Figures 2.32 and 2.33.  

Essentially, such notable downregulations in regulatory process and kinase function 

ontologies are consistent with the previous DGE result revealing a larger number of 

downregulated genes than upregulated genes for the functional annotations responsible for 

protein phosphorylation and signaling pathways as listed in Table 2.10.  

This elaborate network provides us the new evidence that downregulation of 

ontologies involved in cellular regulatory processes such as protein phosphorylation and 

signaling seems to trigger these three virulent parasite strains to be a tissue invading form 

due to their nonstrict cellular control. It is simply reasonable to explain that the less 

stringency in cellular control enables the parasites to be ‘greedy’ and prioritise the 

expression of genes directly responsible for phagocytosis, macromolecule catabolism, 

biosynthesis, mitotic cell division and DNA metabolism/repair/recombination as shown in 

Figures 2.24 and 2.25. As explained before, such upregulated biological processes can drive 

the virulent parasites to rapidly proliferate and subsequently invade the host tissues. 

In the light of evolution, the expression of aberrant characters in virulent E. 

histolytica parasites corresponds to the short-sighted evolution hypothesis proposed by 

Levin and Bull, 1994 [251]. The gist of this hypothesis is that mutant parasites, which 

possess greater potential to 1) increase their rapid reproduction; 2) invade and proliferate 

in the host tissues where there is low competition from parasite members and co-infecting 

species; 3) escape the host immune response, would gain ‘short-sighted’ local advantage and 

subsequently enhance their virulence in the host, even though their increased virulence 

would, indeed, decrease the chance of dispersal to other new hosts [251,252].  

The classic examples of this proposed evolutionary mode are bacterial meningitis 

caused by Haemophilus influenzae, Streptococcus pneumoniae and Neisseria meningitidis and 
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poliomyelitis caused by the poliovirus [251,252]. Actually, almost all human beings are 

infected by such pathogens, nevertheless only few develop the disease. Normally,                   

H. influenzae, S. pneumoniae and N. meningitidis colonise in the upper respiratory tract and 

can infect the new host via the aerosol droplet whilst the poliovirus multiplies in the host 

digestive tract and disseminate to the new host by ingestion of contaminated food and water 

[253,254]. However, clinical manifestations are developed by their invasion into the central 

nervous system where these pathogens lose their capability to transmit. Intriguingly, Levin, 

1996 reported that parasites with this short-sighted evolution would show genetic 

difference and have higher capability to multiply at invasive sites than their ancestor [252].  

In other words, the nonvirulent Rahman strain possesses more strict biological 

regulations than the other three virulent strains. It seems that tight cellular regulations in 

nonvirulent parasites enable themselves to sense and correctly respond to the 

environmental stimuli and eventually transmit their offsprings to other hosts. This finding 

may promisingly explain why asymptomatic cyst passers are more prevalent 

(approximately 90% of clinical case reports) than invasive cases [3,6]. Correspondingly, the 

‘Commensal Theory’ proposed by Kuenen WA and Swellengrebel NH, 1913 stated that E. 

histolytica normally acts as a gut commensal responsible for multiplication and 

transmission to the new host and certain unknown stimuli can trigger the trophozoites to be 

a invasive form which is not a typical stage of the life cycle and no longer able to cause the 

new infection since cyst production cannot occur within the host tissues [81,255]. Based on 

the trade-off hypothesis, parasites would tend to decrease their virulence in a compromising 

way to ultimately improve their chance to reproduce and spread to a new host [256,257]. 

Therefore, it could be stated that the invasive behaviour of the virulent parasites is not 

evolutionarily advantageous since their atypical behavior actually reduces their overall 

reproductive fitness, like ‘committed suicide’ [81,255].  
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Figure 2.24: 21 cluster representatives of 35 enriched biological process ontologies upregulated in the three virulent E. histolytica 

strains (i.e. PVBM08B, HM-1:IMSS and IULA:1092:1). Blue and light blue coloured clusters represent GO terms with more significant FDR-

adjusted P-values than green coloured ones. A larger sized bubble reflects a more general term than a smaller one. Multidimensional scaling 

was calculated using the pairwise distance matrix. Their closeness on the plot would reflect the semantic similarity. Overall, these 21 

upregulated clusters represent several biological processes including biosynthesis, cellular component organisation, cytoskeleton, protein 

catabolism, cell division and stress response, implying their roles in pathogenesis and virulence. 
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Figure 2.25:  Interconnection of 21 representative process ontologies upregulated in the three virulent E. histolytica strains. Highly 

similar GO clusters are linked together, likely to form two interactomes of protein catabolism and cell division (A). It is reasonable to explain 

that increased cell cycle process is accompanied with DNA metabolism, repair and recombination. Also, increased translation and biosynthetic 

processes could be driven by nutrients and energy derived from increased protein catabolism, possibly due to increased phagocytosis. 

Upregulation of actin filament-based process reflects the rapid cytoskeletal dynamics served for the increase of cell motility, phagocytosis and 

cell division. Different line types represent degrees of semantic similarity. Reddish pink coloured bubbles have more significant FDR-adjusted 

P-values than pink coloured bubbles. As shown in the treemap, the majority of enriched GO clusters are joined into the supercluster of 

‘macromolecule catabolism’, suggesting that catabolic process is favorable in virulent strains (B). Size of each rectangle is adjusted by both its 

FDR-adjusted P-value and the frequency of such GO term in the GOA database.  
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Figure 2.26: 11 cluster representatives of 15 enriched cellular component ontologies upregulated in the three virulent E. histolytica 

strains. Blue and deep green coloured clusters represent GO terms with more significant FDR-adjusted P-values than light green ones. 

Consistently, cellular localisations of these clusters are mainly associated with biological processes described in the previous plots (Figures 

2.24 and 2.25).   
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Figure 2.27: Interconnection of 11 representative component ontologies upregulated in the three virulent E. histolytica strains. 

Consistent with the previous interactive graph (Figure 2.25A), chromosome, ribonucleoprotein complex and proteasome complex are main 

cellular components responsible for mitotic cell division, DNA metabolism/repair/recombination and protein catabolism, respectively (A). 

Correspondingly, two superclusters of ‘chromosome’ and ‘proteasome complex’ in the above treemap indicate high protein catabolism and 

active cell division in the three virulent strains (B).   
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Figure 2.28: 11 cluster representatives of 12 enriched molecular function ontologies upregulated in the three virulent E. histolytica 

strains. Clusters with blue and deep green colours represent GO terms having more significant FDR-adjusted P-value than green coloured 

ones. Upregulated clusters represent ontologies responsible for a variety of functions including structural component of ribosome, enzymatic 

activity, cytoskeleton binding as well as protein-protein interaction.  
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Figure 2.29: Interconnection of 11 representative function ontologies upregulated in the three virulent E. histolytica strains. 

Upregulation of endopeptidase activity, actin and cytoskeletal protein binding functions as well as NAD+ ADP-ribosyltransferase activity, 

responsible for cell signaling, gene regulation and DNA repair, are likely to be the molecular basis implicated in parasite virulence (A). The 

two superclusters in the above treemap contain GO representative clusters responsible for endopeptidase and actin binding activities, 

inferring increased activities of protein catabolism and cytoskeletal dynamics in virulent parasites (B). 
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Figure 2.30: 23 cluster representatives of 44 enriched biological process ontologies downregulated in the three virulent                       

E. histolytica strains. Blue and deep green coloured clusters represent GO terms with more significant FDR-adjusted P-value than green 

coloured ones. Mostly, these 23 downregulated clusters represent several regulatory processes involved in signaling, cell communication, 

nucleoside metabolism, molecular function, cellular catabolism and phosphate metabolism, implying that reduction in the strict cellular 

control is likely to lead trophozoites to the pathogenic or virulent state. 
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Figure 2.31: Interconnection of 23 representative process ontologies downregulated in the three virulent E. histolytica strains. 

Highly similar GO clusters involved in regulatory processes and and signaling are interconnected and tend to form the functional 

interaction network, suggesting less stringent regulations and corresponding incorrect response to the host environmental stimuli in 

virulent strains (A). Notably, two superclusters in the above treemap contain GO representative clusters responsible for regulatory 

processes and protein phosphorylation, implying that the marked downregulation of such regulation transcripts in virulent strains likely 

results in an aberrant behavior of virulent parasites (B). 
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Figure 2.32: 16 cluster representatives of 24 enriched molecular function ontologies downregulated in the three virulent E. 

histolytica strains. Blue coloured clusters represent GO terms with more significant FDR-adjusted P-values than light blue ones. 

Interestingly, the cluster of enzyme activator activity contains ontologies involved with small GTPases (Ras/Rab) activator activity, indicating 

reduced activation of Ras superfamily in the virulent parasites. 
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A                B 

Figure 2.33: Interconnection of 16 representative function ontologies downregulated in three virulent E. histolytica strains. 

Highly similar GO terms responsible for kinase and phosphotransferase activities are linked together, reflecting the reduction of protein 

phosphorylation and signaling in virulent strains (A). Correspondingly, the supercluster of ‘phosphotransferase activity’ in the above 

treemap indicates reduced protein phosphorylation in the three virulent strains (B).    
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2.4 Concluding remarks 

 In this study, genome-wide transcriptomic approaches using the Illumina HiSeq 

RNA-Seq can uncover significant differences in expression profiles between nonvirulent and 

virulent laboratory-adapted E. histolytica strains. Differential gene expression analysis 

between the nonvirulent Rahman strain and three virulent strains, i.e. PVBM08B, HM-

1:IMSS and IULA:1092:1, reveals that transcripts of genes involved in host cell killing and 

mucosal invasion, nucleic acid interaction and response to oxidative stress are prominently 

upregulated in the virulent trophozoites.  

The cluster of 98 DE genes with a high degree of transcriptional variability among 

the four strains was identified by the hierarchical clustering analysis based on their relative 

expression profiles, indicating that this gene cluster is likely to play a role in determining 

virulence in a strain-specific pattern. Moreover, the gene members in this cluster exhibit a 

high frequency of sequence polymorphisms, 9.31 SNPs/kb on average, and show the 

significant positive correlation with their transcriptional variability across the E. histolytica 

strains, reflecting the variable degrees of gene regulation among these polymorphic genes. 

As such, the identification of the exclusive set of rapidly evolved genes exhibiting 

transcriptional variation across the strains enables us to better understand the impact of 

genetic variation on the differential virulence in E. histolytica infection. 

Protein domain signatures identified by InterProScan also indicate the upregulation 

of transcripts encoding proteolysis-related domains as well as the co-upregulation of actin 

cytoskeleton and actin-modulating domains in the virulent strains. Consistently, diverse 

process ontologies related to protein catabolism, cellular biosynthesis, DNA metabolism, 

repair and recombination, mitotic cell division, cytoskeletal dynamics as well as response to 

stress are highly overrepresented as a core metabolism in the virulent strains, indicating the 

rapid proliferation and active metabolic state are the main drivers of virulence.  

Noticeably, the DGE and InterProScan analyses revealed that functionally annotated 

transcripts involved in protein phosphorylation and G-protein signaling were both 

upregulated and downregulated as well as constituted a large fraction of the modulated 

transcripts in the transcriptomes of the virulent strains, indicating the great effect of PK-

dependent and G-protein signaling pathways in regulation of diverse biological processes in 

this parasite. However, the number of signaling-related transcripts is higher in 

downregulation than upregulation, suggesting the less strict cellular regulations compared 

to the nonvirulent Rahman strain. Likewise, the striking underrepresentation of ontologies 

involved in signaling and regulatory processes was observed in the virulent parasites. 
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Altogether, it could be explained that reduced regulation of sensing and correctly 

responding to the environmental stimuli potentially enables the parasites to become 

virulent and subsequently cause the invasive infection.  

 Invasive trophozoites cannot develop cysts to infect other hosts, resulting in a 

reduction of reproductive fitness [81,255]. It is therefore unsurprising that asymptomatic E. 

histolytica infection is much more prevalent, accounting for ~90% of worldwide reported 

cases [3,6]. Hence, it could be argued that the nonvirulent strains are better adapted to their 

host through improved environmental sensing and gene regulation. In conclusion, my 

comparative transcriptomic analysis identified a large number of modulated transcripts 

which potentially contribute to differential virulence among the four laboratory-adapted E. 

histolytica strains. Also, my transcriptomic characterisation can provide a fuller 

understanding in the molecular basis of physiological differences between nonvirulent and 

virulent strains as well as the evolutionary perspectives on the spectrum of disease severity 

in E. histolytica infection. 
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Chapter 3: Analysis of differential gene expression focusing on a 

representative set of putative virulence-associated genes using 

NanoString nCounter® technology  

 

3.1 Introduction 

 In Chapter 2, I carried out the comparative transcriptomics across nonvirulent and 

virulent E. histolytica strains using Illumina RNA-Seq analysis. RNA-Seq can provide high-

resolution transcriptomic landscapes of the E. histolytica parasite strains and catalog the 

gene clusters of upregulation and downregulation in relation to their virulence variability.  

However, current high-throughput sequencers can provide accuracy with good 

Phred quality score for cDNA fragments with partial length of the original transcripts. Due 

to this limitation, cDNA library preparation for RNA-Seq normally requires a step of 

fragmentation, potentially resulting in a set of cDNA fragments with non-uniform 

distribution [108,258,259].  This fragment bias can affect to the accurate measurement of 

transcript abundances. Additionally, several steps during cDNA library preparation such as 

reverse transcription, PCR amplification as well as adapter ligation may introduce sequence-

dependent biases and amplification noises, resulting in the decreased possibility to detect 

rare transcripts [259,260]. To overcome these obstacles, several methods have been 

developed such as NanoString technology that can abolish all involved enzymatic reactions 

mentioned above and apply the specific probes for hybridisation and direct digital detection 

instead [261]. Alternatively, direct RNA sequencing can be applied to minimise such biases 

by skipping the PCR step and directly sequencing the RNA molecule [260]. 

The NanoString nCounter® gene expression (GX) analysis is a novel, robust 

technology recently developed for simultaneous, multiplexed detection and quantitation of 

up to 800 transcripts in a single reaction without amplification [261]. Unlike other 

expression profiling approaches such as genome-wide microarray or quantitative PCR, it 

provides the digital measurement of target mRNA molecules by directly hybridising the 

target with specific colour-coded barcodes as illustrated in Figure 3.1. Each specific colour 

barcode contains a pair of capture and reporter probes with target specific sequences. 

During solution phase hybridisation, barcoding of mRNA molecules is achieved by annealing 

with the reporter probe carrying a unique and target-specific colour code at its 5’ end, 

whereas the capture probe will allow the target-probe complex to be attached on a cartridge 

for downstream data acquisition. After the hybridisation step, the complex is purified from 

excess probes and then immobilised on the nCounter® cartridge, which is subsequently 
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placed in the nCounter® digital analyser for reading barcode-specific fluorescent signals 

and exporting the data in tabulated form. Essentially, the number of times, which the 

specific colour-coded barcode for a particular gene of interest is counted, refers to the 

number of target mRNA molecules.   

In this present work, the NanoString technology has been applied to verify the 

validity of the RNA-Seq data previously obtained in the previous chapter by focusing on a 

representative set of fifty-three virulence-associated genes. As listed in Table 3.1, this 

representative set consists of thirty-three functional genes that show significant differential 

expression between nonvirulent and virulent strains in my RNA-Seq data and the other 

twenty functional genes that were not revealed for expression difference by my RNA-Seq 

analysis but reported for their differential expression in the previous publications and 

mostly characterised for their putative roles in E. histolytica virulence [20-22,262-266]. For 

33 DE genes as mentioned above, 25 and 8 genes were found to be commonly upregulated 

and downregulated in the virulent strains (i.e. PVBM08B, HM-1:IMSS and IULA:1092:1) 

relative to the nonvirulent Rahman strain, respectively.   

Therefore, expression profilings of these 53 representative genes across the four               

E. histolytica strains by the NanoString technology will provide us much more promising 

data without any bias due to fragmentation, PCR amplication or enzymatic reactions and 

enable us to compare the performance and validity with the previous RNA-Seq data.  

Additionally, it is hoped that the evaluation of transcriptional variability across this 

representative set of putative virulence-associated genes would potentially summarise and 

reflect their virulence variation better than the whole transcriptomic scale.  
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Figure 3.1: Principles and procedures of the NanoString nCounter® GX assay 

(available online at http://www.nanostring.com). 

 

http://www.nanostring.com/
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3.2 Materials and Methods 

3.2.1 E. histolytica genes chosen for the NanoString nCounter® GX assay 

 Fifty-three functionally annotated genes and two house-keeping genes: chaperonin-

1 60 kDa (cpn60: EHI_178570) and tubulin gamma chain (TUBG: EHI_008240) as listed in   

Table 3.1 were enrolled for nCounter probe design. Table 3.1 shows the list of these 53 

genes with putative functions, consisting of 25 genes (No. 1-25) shown to be upregulated in 

three virulent strains: PVBM08B, HM-1:IMSS and IULA:1092:1, 8 genes (No. 26-33) 

downregulated in these three strains as well as an additional set of 20 genes (No. 34-53) 

previously described as virulence-associated genes.  

3.2.2 Strains of E. histolytica and total RNA extraction 

 In this chapter, E. histolytica trophozoites were the same strains (i.e. Rahman, 

PVBM08B, HM-1:IMSS and IULA:1092:1) previously used in the RNA-Seq study (Chapter 2). 

The experiment was run in triplicate design to prevent any bias of measurements. Mid-log 

phase trophozoites were collected for 12 samples in total (3 replicate lines for four strains) 

for RNA preparation. Total RNA isolation was performed using the Trizol® plus RNA 

purification kit (Invitrogen). The isolated RNA samples were assessed quantitatively using 

the Qubit® fluorometric assay (Invitrogen) as well as qualitatively using the Agilent 2100 

Bioanalyser (Agilent Technologies). The RNA samples were kept at -80 oC until used for the 

NanoString analysis. 

3.2.3 NanoString nCounter® GX assay and data processing 

To directly detect the mRNA expression levels of 53 chosen E. histolytica genes, 

NanoString nCounter® Gene Expression Analysis (NanoString Technologies, USA) was 

conducted for each sample using a custom designed codeset containing 55 genes including 

two housekeeping genes: cpn60 (EHI_178570) and TUBG (EHI_008240). Briefly, 100 ng of 

total RNA for each sample was used for soluble phase hybridisation by incubating overnight 

with a target-specific codeset of reporter and capture probes as well as 8 pairs of negative 

control and 6 pairs of positive control probes. Then, the tubes were placed onto the 

automated nCounter® Prep Station for steps of excess probe removal and immobilisation of 

target-probe complexes on the nCounter® cartridge. The sample cartridge was transferred 

to the ncounter® Digital Analyser for digital counting and data collection. Finally, 

processing of nCounter data was done using the nSolver™ 2.0 Analysis Software (NanoString 

Technologies).  
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Raw counts of two housekeeping genes: cpn60 and TUBG were used both for data 

normalisation. A mean value of the 8 negative control probes was applied for background 

subtraction in all reactions. A normalisation factor was computed using a geometric mean of 

the 6 positive control probes and the two housekeeping probes.  

3.2.4 Evaluation of concordance between NanoString GX analysis and RNA-Seq 

results  

To assess the performance and validate the normalised NanoString data obtained in 

this experiment, scatterplots and Pearson correlation analyses were performed using R 

Statistics software version 3.1.2 (http://CRAN.R-project.org) to determine whether there is 

concordance of transcript levels between NanoString GX analysis and previous RNA-Seq 

data [267]. Normalised read count and gene expression fold change of 53 representative 

genes retrieved from both NanoString assay and RNA-Seq results were plotted against each 

other as shown in Figures 3.2 and 3.3, respectively. Statistical significance of the Pearson 

correlation test are considered when P-value is less than 0.05. 

3.2.5  Agglomerative hierarchical clustering and comparison of the 

transcriptional profiles between E. histolytica strains 

Then, normalised nCounter data of the four strains were analysed for agglomerative 

hierarchical clustering as shown in Figures 3.4 and 3.5. Significant testing for differential 

expression between two contrasting strains was performed for each contrast using the 

Student’s two tailed t-test and considered statistically significant if an FDR-adjusted P-value 

is less than 0.05.  

To explore the transcriptional variation between strains, normalised transcript 

levels of 53 representative genes in Rahman, PVBM08B and IULA:1092:1 were individually 

plotted against those of HM-1:IMSS as scatter diagrams, as shown in Figures 3.6, 3.7 and 3.8, 

respectively. Gene identifiers were labelled for representative genes that were proven by 

the nSolver™ 2.0 software for their statistically significant upregulation or downregulation 

in relation to HM-1:IMSS. Also, these expression data of representative gene set were 

plotted in multidimensional scaling to explore the transcriptional similarity across the four 

strains as illustrated in Figure 3.9.  

 

  

 

http://cran.r-project.org/package=marmap
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Table 3.1: Details of 55 E. histolytica genes enrolled for direct digital mRNA detection by the NanoString nCounter® GX assay.  

Gene No. 1-25 and Gene No. 26-33 (grey highlight) have been previously shown in RNA-Seq data for their upregulation and 

downregulation in the virulent strains, respectively. In this study, twenty virulence-associated genes formerly reported are also included 

as listed in No. 34-53. Two housekeeping genes: chaperonin-1 60 kDa (EHI_178570) and tubulin gamma chain (EHI_008240) are used as 

references for normalisation. Targ Region = Target Region; Tm_CP = melting temperature of capture probe; Tm_RP = melting temperature 

of reporter probe. 

 

No. Accession Identifier Targ Region Tm_CP Tm_RP Function Note 
1 EHI_199270 LRR-1 266-365 76 74 leucine-rich repeat protein, BspA family A 
2 EHI_180390 AIG1-1 837-936 80 79 AIG1 family protein, putative  
3 EHI_012330 STIRP-1 730-829 75 77 serine-threonine-isoleucine rich protein, putative  
4 EHI_015120 LRR-2 357-456 72 75 leucine-rich repeat protein, BspA family  
5 EHI_025700 STIRP-2 1387-1486 73 81 serine-threonine-isoleucine rich protein, putative  
6 EHI_059860 C2B 313-412 78 84 C2 domain-containing protein  
7 EHI_123850 ARIEL1-1 55-154 75 73 surface antigen ariel1, putative  
8 EHI_144590 PK-1 797-896 78 77 protein kinase domain-containing protein  
9 EHI_050970 CXXC 146-245 77 77 CXXC-rich protein  

10 EHI_182460 DL2 710-809 84 80 dextranase precursor, putative  
11 EHI_004340 STIRP-3 891-990 73 72 serine-threonine-isoleucine rich protein, putative  
12 EHI_191510 LRR-3 966-1065 72 72 leucine-rich repeat protein, BspA family  
13 EHI_185270 DOCK 434-533 80 79 dedicator of cytokinesis domain-containing protein  
14 EHI_022730 SRP54 380-479 79 79 signal recognition particle 54 kDa protein, putative B 
15 EHI_108750 Rap1GAP 11-110 74 74 Rap/Ran GTPase-activating protein, putative  
16 EHI_021570 SAT2 814-913 83 78 serine acetyltransferase 1  
17 EHI_148550 TMK52 1003-1102 81 79 protein tyrosine kinase domain-containing protein  
18 EHI_145840 PRDX 474-573 81 79 peroxiredoxin C 
19 EHI_188600 DSPP 185-284 80 84 dentin sialophosphoprotein precursor, putative D 
20 EHI_049620 NifU 67-166 81 83 Fe-S cluster assembly protein NifU, putative  
21 EHI_138480 ISF 273-372 77 80 iron-sulfur flavoprotein, putative  
22 EHI_105080 Zif 491-590 76 76 zinc finger protein, putative  
23 EHI_176970 Cdc48-like 2084-2183 79 83 cdc48-like protein, putative  
24 EHI_095060 LRR-4 285-384 76 81 leucine-rich repeat protein, BspA family  
25 EHI_117680 TMK10 2979-3078 72 73 tyrosine kinase, putative  
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Table 3.1: Details of 55 E. histolytica genes enrolled for direct digital mRNA detection by the NanoString nCounter® GX assay. (Continued) 

 

No. Accession Identifier Targ Region Tm_CP Tm_RP Function Note 
26 EHI_176590 AIG1-2 776-875 81 79 AIG1 family protein, putative  
27 EHI_023880 UBE2 52-151 78 77 ubiquitin-conjugating enzyme family protein  
28 EHI_023890 NUDC 216-315 78 81 nuclear movement protein, putative  
29 EHI_023840 RPL38 1-100 76 72 60S ribosomal protein L38, putative  
30 EHI_023870 WD40 575-674 80 81 WD domain-containing protein  
31 EHI_063550 MYB-like 21-120 76 75 myb-like DNA-binding domain-containing protein E 
32 EHI_172850 ARIEL1-2 74-173 71 76 surface antigen ariel1, putative  
33 EHI_115720 MBL 510-609 79 79 metallo-beta-lactamase superfamily protein  
34 EHI_025850 MDN 55-154 74 81 midasin  
35 EHI_096770 AT 453-552 79 78 acetyltransferase, putative  
36 EHI_179340 HMG 508-607 79 83 HMG box protein  
37 EHI_079300 LCFA-CoA-L 65-164 80 77 long-chain-fatty-acid--CoA ligase, putative  
38 EHI_060340 CS-3 567-666 81 84 cysteine synthase A, putative  
39 EHI_000900 APPBP1 1096-1195 77 80 ThiF family protein  
40 EHI_164520 ISF-Ps 147-246 77 79 iron-sulfur flavoprotein, putative, pseudogene F 
41 EHI_082590 GARP 6-105 83 84 glutamic acid-rich protein precursor, putative  
42 EHI_168240 CP-A5 628-727 82 80 cysteine proteinase, putative  
43 EHI_050570 CP-A4 511-610 77 78 cysteine proteinase, putative  
44 EHI_012270 Hgl2 835-934 79 75 Gal/GalNAc lectin heavy subunit  
45 EHI_077500 Hgl3 1760-1859 78 75 galactose-specific adhesin 170kD subunit G 
46 EHI_197460 ROM1 29-128 81 84 peptidase S54 (rhomboid) family protein  
47 EHI_098210 KERP1 192-291 80 79 lysine and glutamic acid-rich protein 1 (KERP1)  
48 EHI_159480 AP-A 96-195 81 77 pore-forming peptide ameobapore A precursor, putative  
49 EHI_026420 Rab5 159-258 81 73 Rab family GTPase  
50 EHI_048410 PK-2 1315-1414 80 82 serine/threonine protein kinase, putative  
51 EHI_019390 CP-Ps 38-137 73 74 cysteine proteinase, pseudogene H 
52 EHI_048850 LRR-5 136-235 76 75 leucine-rich repeat-containing protein  
53 EHI_049690 Lgl2 702-801 77 77 galactose-specific adhesin light subunit, putative  
54 EHI_178570 cpn60 1139-1238 78 81 chaperonin-1 60 kDa HK 
55 EHI_008240 TUBG 370-469 83 78 tubulin gamma chain HK 
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Note comments for Table 3.1 

A    = also targets multiple leucine-rich repeat protein BspA family genes (EHI_041470; EHI_102380; EHI_034610; EHI_134140) > 92%  

B    = also targets EHI_004750 putative signal recognition particle protein SRP54 at 100% 

C    = also targets mulitple peroxiredoxins & peroxiredoxin pseudogenes (EHI_139570; EHI_172720; EHI_061980; EHI_123390; 

EHI_121620; EHI_201250; EHI_122310; EHI_114010; EHI_001420) > 92% 

D    = also targets EHI_005260 putative surface antigen ariel1 at 98% 

E    = also targets EHI_012420 myb-like DNA-binding domain-containing protein at 100% 

F    = also targets EHI_189480 putative iron-sulfur flavoprotein at 98% 

G    = also targets EHI_042370 putative galactose-specific adhesin 170 kD subunit at 100% 

H    = also targets EHI_127470 (cysteine proteinase pseudogene) & EHI_046700 (hypothetical protein pseudogene) > 92% 

HK    = Housekeeping gene  
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3.3 Results and Discussion 

3.3.1 Normalised NanoString data show concordance with the previous RNA-

Seq study 

As shown in Table 3.2, normalised mRNA count for each gene of interest was listed 

in comparison among the four different strains of E. histolytica.  Seven negative probes 

except NEG_F show a very low number of detected transcripts, indicating a very low 

background signal in this analysis. To validate the performance of the NanoString analysis in 

comparison with the previous RNA-Seq results, scatterplot analyses of all expression data 

and the Pearson’s correlation tests were conducted using R Statistics software for all 

individual strains as well as six pairwise comparisons across all four strains enrolled in this 

study as illustrated in Figures 3.2 and 3.3, respectively.  

A significant positive correlation was found between NanoString dataset, 

represented by log2(normalised NanoString count) and previous RNA-Seq, represented by 

log2(FPKM), with Pearson’s correlation coefficients (r)  = 0.7759-0.8874 and P-value less 

than 0.05 in all four strains, as shown in Figure 3.2 (A-D). These positive Pearson’s 

correlation coefficients indicate a linear response of normalised NanoString counts (y-axis) 

to increasing FPKM (x-axis). Fundamentally, FPKM values were calculated by Cufflinks 

software (data not shown) to be a comparable parameter and reflect directly to the mRNA 

transcript level of an interested gene. In addition, all 53 functional genes selected for this 

NanoString experiment exhibit different FPKM values that are representative of varying the 

expression levels. Therefore, linearity between log2-transformed values of normalised 

NanoString counts and RNA-Seq FPKM demonstrates that the number of mRNA molecules 

counted by NanoString is promisingly proportional to the expression level of gene encoding 

such mRNAs. 

In addition to a high degree of consistency between NanoString count and FPKM 

obtained from RNA-Seq, the performance of NanoString for differential expression analysis 

was also evaluated. As shown in Figure 3.3 (A-F), high correspondence between two sets of 

gene expression fold change values retrieved from the nSolver™ 2.0 and edgeR analyses can 

be observed in all six contrast pairs with correlation coefficients ranging from 0.7879 to 

0.9179, P-value < 0.05. This siginificantly high concordance between these two 

transcriptomic platforms indicates that the NanoString analysis has precision in digital 

detection of mRNA transcripts as well as can provide reliability in differential gene 

expression analysis for studying comparative transcriptomics across a large range of 

expression and sample types. 
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Table 3.2: Normalised nCounter data from total RNA of the four E. histolytica strains. 

Control probesets includes 6 positive control probe pairs (POS_A - POS_F) and 8 negative 

control probe pairs (NEG_A – NEG_H). All 53 E. histolytica genes as well as two references 

(cpn60 and TUBG) are designated as ‘Endogenous’ and ‘Housekeeping’, respectively. 

Grouped Data Name Identifier Accession Rahman PVBM08B HM-1:IMSS IULA:1092:1 

Positive POS_A ERCC_00117.1 9162 10980 14163 9998 

Positive POS_B ERCC_00112.1 2678 3253 4203 2963 

Positive POS_C ERCC_00002.1 655 813 1058 762 

Positive POS_D ERCC_00092.1 156 213 268 164 

Positive POS_E ERCC_00035.1 31 32 51 33 

Positive POS_F ERCC_00034.1 3 1 5 2 

Negative NEG_A ERCC_00096.1 1 1 1 1 

Negative NEG_B ERCC_00041.1 1 1 1 1 

Negative NEG_C ERCC_00019.1 1 1 1 1 

Negative NEG_D ERCC_00076.1 1 1 1 2 

Negative NEG_E ERCC_00098.1 1 1 1 1 

Negative NEG_F ERCC_00126.1 122 154 124 95 

Negative NEG_G ERCC_00144.1 1 1 1 1 

Negative NEG_H ERCC_00154.1 1 1 1 1 

Housekeeping TUBG EHI_008240 384 697 645 640 

Housekeeping cpn60 EHI_178570 2857 1574 1702 1715 

Endogenous AIG1-1 EHI_180390 1 119 5382 36 

Endogenous AIG1-2 EHI_176590 2189 1 1 1 

Endogenous AP-A EHI_159480 311247 484912 534115 386242 

Endogenous APPBP1 EHI_000900 356 1399 2454 1973 

Endogenous ARIEL1-1 EHI_123850 1 1 142 274 

Endogenous ARIEL1-2 EHI_172850 211 93 202 3 

Endogenous AT EHI_096770 64 392 714 645 

Endogenous C2B EHI_059860 6 14847 11559 17 

Endogenous CP-A4 EHI_050570 10454 13771 25888 4518 

Endogenous CP-A5 EHI_168240 71100 118415 120135 26845 

Endogenous CP-Ps EHI_019390 548 1 45 248 

Endogenous CS-3 EHI_060340 82 237 504 532 

Endogenous CXXC EHI_050970 2 1592 1249 820 

Endogenous DL2 EHI_182460 33 112 730 3904 

Endogenous DOCK EHI_185270 6 872 363 641 

Endogenous DSPP EHI_188600 28 89 137 75 

Endogenous GARP EHI_082590 1783 3365 2315 2662 

Endogenous HMG EHI_179340 944 1783 2545 1664 

Endogenous Hgl2 EHI_012270 35607 25118 14162 13545 

Endogenous Hgl3 EHI_077500 17588 1294 34775 6961 

Endogenous ISF EHI_138480 222 1214 1847 2494 

Endogenous ISF-Ps EHI_164520 344 405 523 1065 
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Table 3.2: Normalised nCounter data from total RNA of the four E. histolytica strains.  

(Continued) 

 

Grouped Data Name Identifier Accession Rahman PVBM08B HM-1:IMSS IULA:1092:1 

Endogenous KERP1 EHI_098210 3857 3455 3036 4365 

Endogenous LCFA-CoA-L EHI_079300 2350 8967 20246 12148 

Endogenous LRR-1 EHI_199270 1 766 1162 1 

Endogenous LRR-2 EHI_015120 1 25964 26299 13495 

Endogenous LRR-3 EHI_191510 1 107 165 105 

Endogenous LRR-4 EHI_095060 37 149 206 125 

Endogenous LRR-5 EHI_048850 641 207 99 98 

Endogenous MBL EHI_115720 600 77 121 56 

Endogenous MDN EHI_025850 13120 24749 22188 18241 

Endogenous MYB-like EHI_063550 18253 7369 4223 2984 

Endogenous NUDC EHI_023890 11490 1569 446 1041 

Endogenous NifU EHI_049620 4462 20753 28066 13586 

Endogenous PK-1 EHI_144590 19 645 757 156 

Endogenous PK-2 EHI_048410 16585 8424 2237 1514 

Endogenous PRDX EHI_145840 241324 481232 253053 686689 

Endogenous ROM1 EHI_197460 4260 4150 4723 3441 

Endogenous RPL38 EHI_023840 148 1 1 4 

Endogenous Rab5 EHI_026420 1494 2131 1703 733 

Endogenous Rap1GAP EHI_108750 13 581 408 370 

Endogenous SAT2 EHI_021570 2 116 238 303 

Endogenous SRP54 EHI_022730 3576 8345 4930 5260 

Endogenous STIRP-1 EHI_012330 24 4237 2810 12 

Endogenous STIRP-2 EHI_025700 1 7811 3791 5 

Endogenous STIRP-3 EHI_004340 4 337 357 11 

Endogenous TMK10 EHI_117680 1 71 107 47 

Endogenous TMK52 EHI_148550 5 158 156 255 

Endogenous UBE2 EHI_023880 25624 3621 1565 2995 

Endogenous WD40 EHI_023870 10453 1421 1239 1282 

Endogenous Zif EHI_105080 538 6401 5847 6664 

Endogenous Cdc48-like EHI_176970 2300 19298 18544 20925 

Endogenous Lgl2 EHI_049690 25962 9338 8980 382 
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Figure 3.2: Correspondence of gene expression levels as measured by RNA-Seq and 

NanoString analysis. A total of 53 genes in each strain are plotted to reveal a significant positive 

correlation between two expression data sets that are obtained from RNA-Seq data (log2FPKM, x-

axis) and NanoString analysis (log2(Normalised NanoString Counts), y-axis). A: Rahman, B: 

PVBM08B, C: HM-1:IMSS and D: IULA:1092:1, respectively. 
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Figure 3.3: High correlation of fold change transcriptional differences between RNA-Seq and NanoString analysis.  

Scatterplots illustrate a significant positive correlation of gene expression differences (log2FC) observed in a representative set of 53 genes 

in each strain contrast, as measured by RNA-Seq (x-axis) and NanoString method (y-axis).  

A: Rahman vs PVBM08B;  B: Rahman vs HM-1:IMSS;    C: Rahman vs IULA:1092:1; 

D: PVBM08B vs HM-1:IMSS; E: PVBM08B vs IULA:1092:1;    F: HM-1:IMSS vs IULA:1092:1 
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3.3.2 Agglomerative hierarchical clustering of the nCounter data reveals        

co-expression of multigene family members  

 To comprehensively understand transcriptomic profiling across the four strains, 

normalised nCounter data of all 53 representative genes were clustered by agglomerative 

hierarchical clustering.  In principle, agglomerative clustering will show an extensive 

hierarchy of clusters that includes a similar pattern of datasets and summarises the 

relationships between datasets in the form of a heatmap with a dendrogram tree as 

illustrated in Figure 3.4.    

 All fifty-three genes could be categorised into two clusters A and B. Thirty-five genes 

which showed upregulation in the three virulent strains, i.e. PVBM08B, HM-1:IMSS and 

IULA:1092:1, relative to Rahman were grouped together into cluster A whilst other 18 

genes which showed downregulation relative to Rahman were categorised into cluster B. 

Consistently, 25 upregulated and 8 downregulated genes (see Table 3.1: No. 1-25 and No. 

26-33, respectively) previously identified in the RNA-Seq analysis were sorted into cluster A 

and B, respectively. 

 Intriguingly, gene family members encoding proteins of related or similar function 

appear to be similar in their expression profiles across the parasite strains. For instance, 

genes encoding E. histolytica serine-threonine-isoleucine rich proteins (STIRP-1, STIRP-2 

and STIRP-3), BspA-like LRRP (LRR-1) and C2 domain-containing protein (C2B) were 

grouped together in the same subcluster as demonstrated in Figure 3.5. As previously 

described in Chapter 2, EhSTIRPs were encoded by members of a multigene family and have 

cytotoxic and adhesive properties associated with virulence. Based on the number of mRNA 

molecules counted as listed in Table 3.2, there was very low or absent expression of these 

three gene family members in nonvirulent Rahman and virulent IULA:1092:1 strains. 

Contrastedly, all these three EhSTIRP gene family members were highly expressed in 

PVBM08B and HM-1:IMSS.  This indicates that EhSTIRP expression is confined to the strains 

with high virulence potential.    

 In addition to EhSTIRPs, this unusual expression profile could be observed in a set of 

genes encoding BspA-like LRRPs such as designated LRR-1 (EHI_199270), LRR-2 

(EHI_015120) and LRR-3 (EHI_191510) in this NanoString study. As listed in Table 3.2, 

these three LRRs were absent (mRNA count =1) in expression in Rahman whereas LRR-5 

(EHI_048850) was conversely higher expressed (mRNA count = 641) than other three 

strains. As discussed above, it is possible to explain that there should be certain regulatory 
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mechanisms for silencing expression of virulence-associated genes in a strain-specific 

manner, especially in the Rahman strain. 

Also, I applied small RNA sequencing to explore expression profiles of sRNAs in E. 

histolytica strains and determine whether such sRNAs contribute to the differential gene 

expression across the strains. Noticeably, the majority of expressed sRNAs are associated 

with reduced or lack of expression of virulence-associated genes in Rahman, including all 

three EhSTIRP members, LRRP members as well as C2B as mentioned above. Therefore, 

sRNA-mediated regulation potentially plays a crucial role in shaping parasite virulence. This 

will be explained later in details of Chapter 5.  
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Figure 3.4:  Agglomerative hierarchical clustering of 53 chosen representative genes 

with differential expression across the four E. histolytica strains. These 53 genes were 

categorised into two main clusters: 35 genes for cluster A and 18 genes for cluster B, based on 

their expression profiles across all four strains.  Red colour and green colour spectra 

represent upregulation and downregulation, respectively. 
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         STIRP-1 

 

  

   STIRP-2             STIRP-3 

 

  

     LRR-1                    C2B 

 

Figure 3.5: Expression levels of five virulence-associated genes in the four E. histolytica 

strains. All these five virulence-associated genes were clustered together in the previous 

heatmap due to their distinctive expression pattern showing remarkable co-upregulation in 

the two most virulent laboratory-adapted strains (i.e. HM-1:IMSS and PVBM08B).   
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3.3.3 Resemblance of expression in HM-1:IMSS and PVBM08B likely reflects 

the close degree of clinical virulence and outcome 

 To compare transcriptional profiles of this representative gene set between strains, 

the log2-transformed nCounter data of each transcript, i.e. log2(Counts), of three strains: 

Rahman, PVBM08B and IULA:1092:1 were plotted on the vertical axis of the scatterplot 

against the horizontal axis represented by those of HM-1:IMSS. As depicted in Figures 3.6-

3.8, the red line running through the red spots of HM-1:IMSS represents the transcript levels 

measured in HM-1:IMSS. Therefore, gene spots of the other strain located above the line 

indicate upregulated genes whereas those below the line represent genes with 

downregulation, relative to HM-1:IMSS. Apparently, the majority of 53 genes with putative 

functions in HM-1:IMSS were plotted higher in position than Rahman, indicating higher 

expression levels of such particular genes than those in Rahman as shown in Figure 3.6. 

However, it is possible to explain that most of the representative genes were chosen based 

on the RNA-Seq data of upregulated genes in virulent strains, potentially resulting in this 

experimental biased finding.  

 Remarkably, most of the PVBM08B gene spots were plotted very close to the red line 

of HM-1:IMSS as shown in Figure 3.7, suggesting that these two virulent strains are likely to 

have relatively similar expression levels, especially in virulence-associated genes. It was 

found that five transcripts: CP-Ps (EHI_019390), ARIEL1-1 (EHI_123850), DL2 

(EHI_182460), AIG1-1 (EHI_180390) and Hgl3 (EHI_077500) show significant 

downregulation in PVBM08B. Interestingly, these 3 of 5 downregulated genes are ARIEL1-1 

which is absent in E. dispar, AIG1-1 implicated for bacterial killing and Hgl3 responsible for 

host cell adhesion, implying that higher levels of these three transcripts in HM-1:IMSS than 

PVBM08B increase the virulence power of HM-1:IMSS trophozoites to survive in 

microbiome environment and to adhere and invade the intestinal mucosa.  

 In case of IULA:1092:1 (see Figure 3.8), a total of 11 virulence-associated genes 

were found to be significantly downregulated in IULA:1092:1 relative to HM-1:IMSS. Of 

these, CP-A4 (EHI_050570) and CP-A5 (EHI_168240) are the key cysteine proteinases for 

MUC2 degradation. Also, two EhSTIRPs and the light and heavy subunits of the Gal/GalNAc 

lectin complex, responsible for host cell adhesion and contact-dependent cytotoxicity, were 

found to be downregulated. These findings suggest that the less virulence potential in 

IULA:1092:1, compared to PVBM08B and HM-1:IMSS, is due to the downregulation of key 

virulence processes. 
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 Originally reported in 1967, HM-1:IMSS was isolated from a colonic biopsy of 

patient with dysentery in Mexico [24,36]. This strain has been extensively studied for 

virulence and pathogenesis of amoebiasis as well as widely used as a reference strain in 

genomic research. In accordance with previous clinical findings, HM-1:IMSS has been 

characterised as the most virulent strains since it could cause the highest prevalence of ALA 

occurring in 19% of newborn hamsters injected with 20 amoebic cells and around 90% of 

hamsters inoculated with 2,000 cells, compared to eleven other strains  [71].   

Intriguingly, based on the expression profiles of a representative gene set, PVBM08B 

and HM-1:IMSS exhibit the closest similarity whereas Rahman and IULA:1092:1 are notably 

different as illustrated in Figure 3.9A. In contrast to their phylogeny in Figure 3.9B, the 

multidimensional scaling plot shows a clear wide separation between Rahman and 

IULA:1092:1 and exhibits resemblance in expression between PVBM08B and HM-1:IMSS. 

This is also consistent with the PCA plot (see Figure 2.8) in Chapter 2, showing a close 

similarity between PVBM08B and HM-1:IMSS and a wide separation between Rahman and 

IULA:1092:1. The null hypothesis would be that the strains (i.e. Rahman and IULA:1092:1) 

that are most similar genetically should have the most similar expression profiles, however 

this data do not support this. Conversely, it would appear that expression profiles of the two 

most virulent strains (i.e. PVBM08B and HM-1:IMSS) are most similar to each other.  
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Figure 3.6: Comparison of the transcriptional profiles between HM-1:IMSS and 

nonvirulent Rahman. Log2-transformed NanoString counts of 53 representative 

transcripts in Rahman were plotted on the Y-axis against the X-axis, represented by those in 

HM-1:IMSS. The red line passing through the red spots means the expression levels of 

transcripts in HM-1:IMSS. Blue spots located above the red line indicate upregulated 

Rahman genes relative to HM-1:IMSS whereas those below the line represent 

downregulated genes. Transcript identifiers were designated for the spots with significantly 

differential expression with different text colours: green for upregulation and black for 

downregulation.  With respect to HM-1:IMSS, 25 and 10 of 53 representative genes in 

Rahman were found to be significantly downregulated and upregulated, respectively. 
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Figure 3.7: Comparison of the transcriptional profiles between HM-1:IMSS and 

PVBM08B. Log2-transformed NanoString counts of 53 representative transcripts in 

PVBM08B were plotted on the Y-axis against the X-axis, represented by those in HM-1:IMSS. 

Sky blue spots located above the red line indicate upregulated PVBM08B genes relative to 

HM-1:IMSS whereas those below the line show PVBM08B genes with downregulation. Five 

genes in black were found to be significantly downregulated in PVBM08B, compared to HM-

1:IMSS. 
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Figure 3.8: Comparison of the transcriptional profiles between HM-1:IMSS and 

IULA:1092:1. Log2-transformed NanoString counts of 53 representative transcripts in 

IULA:1092:1 were plotted on the Y-axis against the X-axis, represented by those in HM-

1:IMSS. Green spots located above the red line indicate upregulated IULA:1092:1 genes 

relative to HM-1:IMSS whereas those below the line represent IULA:1092:1 genes with 

downregulation. With statistical significance, two genes designated with violet (CP-Ps and 

DL2) were upregulated whereas eleven black-highlighted genes involved in key processes of 

virulence were downregulated in IULA:1092:1, compared to HM-1:IMSS. 
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Figure 3.9: Similarity among the four E. histolytica strains, based on the NanoString 

gene expression profiles (A) and the whole genome SNP-based phylogenetic analysis 

(B). This tree figure (B) is reproduced with permission from Weedall et al., 2012 [70].  
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3.4 Concluding remarks 

 In this study, NanoString nCounter® technology was applied to explore the 

expression profiles of 53 representative genes across the four E. histolytica strains. 

Normalised NanoString data exhibit a high correlation with the previous RNA-Seq study in 

terms of normalised count and gene expression fold change, indicating the reliability of this 

highly sensitive and multiplexed hybridisation detection for gene expression analysis. Based 

on hierarchical clustering analysis, gene family members encoding functionally similar or 

related proteins, i.e. EhSTIRPs and BspA-like LRRPs, appear to be similar in their expression 

profiles across the parasite strains. This finding also suggests that these virulence-

associated multigene family members potentially share a common mechanism for 

transcriptional regulation, resulting in their similar relative expression tendencies in each E. 

histolytica strain.  

 Based on this representative gene set, it is obvious that there is a spectrum of 

virulence-associated gene expression among these four strains, reflecting their different 

degrees of virulence. Comparing the representative gene expression profiles between 

strains, the PVBM08B and HM-1:IMSS strains exhibit resemblance in their expression levels, 

likely representing their close degree of virulence and clinical outcome. Additionally, it was 

evidenced that the Rahman and IULA:1092:1 strains which are genetically similar have 

different expression profiles, implying that there are certain regulatory mechanisms which 

shape the transcriptomes of these two genetically similar strains in different directions, 

potentially leading to their different parasite behaviours [70]. 
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Chapter 4: Correlation with the genomic data reveals that gene copy 

number variation (CNV) influences transcriptomic diversity among                    

E. histolytica strains 

 

4.1 Introduction 

To understand genetic diversity among E. histolytica strains, SNPs have been 

recently evaluated in the sequenced genomes of ten E. histolytica strains [70].  In overall, 

sequence divergence from the HM-1:IMSS reference genome is quite low, 0.312-0.857 SNPs 

per kb. Fifty-three genes with five or more nonsynonymous SNPs compared to the HM-

1:IMSS reference were identified as highly polymorphic genes [70]. Interestingly, these 

genes are profoundly involved in the host-parasite interaction, such as EhSTIRP genes, the 

intermediate chain Gal/GalNAc lectin genes Igl1 and Igl2, the light chain Gal/GalNAc lectin 

gene Lgl, genes encoding BspA-like leucine-rich repeat proteins. As discussed before, the 

sequence polymorphisms of virulence-associated genes implicated in host-parasite 

interaction are evolutionarily advantageous for adaptation to the host immune response 

and parasite survival. However, the evidence of SNPs in this parasite could not explain all of 

the genotypic variations in relation to biological differences among E. histolytica strains due 

to low average SNP call in each strain as well as a small number of putative highly 

polymorphic genes. 

The genome recharacterisation by Lorenzi et al., 2010 revealed a total of 897 

protein-coding gene families consisting of 4,564 proteins and constituting ~56% of the E. 

histolytica proteome [25]. The gene families have five members in average, ranging from 2 

to 149 members. Of these, seven large gene families with greater than 50 members were 

identified including families encoding BspA-like LRRPs, kinase domain-containing proteins, 

WD domain-containing proteins, small GTP-binding proteins, RNA recognition motif 

domain-containing proteins, RhoGAP domain-containing proteins and a large family of 

uncharacterised hypothetical proteins. Also, it is noteworthy that TEs account for 

approximately 20 % of the E. histolytica genome. Intriguingly, a considerable number of 

gene families including virulence-associated families were identified with a high physical 

association with TEs [25]. For example, 11 of 31 members of the hsp70 gene family were 

found to be closely associated with TEs within 1 kb upstream or downstream. As previously 

reported in D. melanogaster, the hsp70 promoter regions appear to be hotspots of 

transposition, potentially leading to gene expansion [25,268,269]. Hence, TEs located in 

close proximity to associated genes potentially drive the amplification and expansion of 
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gene copy number, ultimately leading to the increase in transcript expression and 

consequent parasite virulence [25,268,269].  

More recently, large differences in coverage depth of genes were observed through 

the sequenced genomes of E. histolytica strains, indicating gene copy number variation 

(CNV) between strains [70]. Five hundred-fourteen genes in one or more strains were 

determined as putative high copy number genes with a coverage depth two fold or greater 

than the average of HM-1A and HM-1B [70].  Large members of these putative high copy 

number genes are functionally annotated in several biological processes such as 23 

ribosomal protein genes for protein synthesis; 14 members of BspA-like leucine-rich repeat 

protein family implicated for host mucosal invasion; 9 members of AIG1-like protein family 

involved in bacterial killing; 4 peroxiredoxin genes associated with oxidative stress 

response; 5 genes encoding protein kinase domain-containing proteins participated in 

regulatory signaling pathways [70]. It is worth noting that these putative high copy number 

genes also play an important role in parasite virulence. As reported in Chapter 2, members 

of these high copy number genes relevant to virulence also displayed higher differential 

expression in the three virulent strains relative to the nonvirulent Rahman.  

A high coverage region spanning over 12.4 kb (positions 21,000 to 33,380) of 

scaffold DS571330 was also reported and only present in the nonvirulent Rahman strain 

[70]. This high coverage region includes seven protein-coding genes (EHI_023840, 

EHI_023850, EHI_023860, EHI_023870, EHI_023880, EHI_023890 and EHI_023900) flanked 

by TEs as illustrated in Figure 4.7. Therefore, these seven genes are predicted to have 

upregulated expression levels proportional to their additional copies due to the segmental 

genome duplication. In addition, many putative missing genes with underbaseline RPKM 

values (< 1 and < 50% of the reference) were identified among E. histolytica strains, 

indicating that the gene family content is variable among strains [70].  

As such, these genomic findings strongly suggest that amplification and loss of gene 

family members are key dynamic processes for genome plasticity [70]. Essentially, genomic 

plasticity due to differential copy number and gene family content is more pronounced than 

sequence polymorphisms and greatly contributes to the genomic diversity among E. 

histolytica strains [29,46,70]. Moreover, the ploidy, haploid chromosome number and 

chromosome size which are variable under different growth conditions and between life 

cycle stages potentially contribute to considerable genomic size plasticity among strains 

[37].  



             

             

  

 

   144 

   144 

The impact of gene CNVs on the genomic diversity among strains can be seen in 

other human protozoan parasites such as Trypanosoma cruzi, causing Chagas disease in 

Latin America [269]. A large number of gene CNVs have been previously reported, showing 

extensive genotypic diversity among T. cruzi strains [269]. ‘Hotspot regions of CNV’ were 

reported for all chromosomes in T. cruzi. Interestingly, gene CNVs in T. cruzi are widespread 

and likely to be focal in highly repetitive regions including large multigene families encoding 

surface proteins, trans-sialidases, mucins, and mucin-associated proteins. As gene members 

of the surface protein families share relatively high sequence homology and encode the 

surface proteins directly subject to the host immune response, the recombination and 

subsequent variation in gene copy number potentially occur under positive selection due to 

the host immunological pressure [269,270]. Moreover, substantial expansion and variation 

of certain genes have also been reported to be associated with different biological 

characteristics among T. cruzi strains.  For instance, a total of 37 -galactofuranosyl 

transferase genes responsible for the synthesis of complex mucin glycans were found to be 

located in genomic regions of high CNV and their expansion and variation are consistent 

with the heterogeneity in the mucin glycan biosynthesis among T. cruzi strains [271].  

Similar to T. cruzi, E. histolytica exhibits the highly repetitive genomic structure and   

gene CNV is a significant major contributor to a high degree of genomic plasticity among E. 

histolytica strains which exhibit variability in their virulence [70]. Therefore, I hypothesised 

that CNVs may contribute to phenotypic differences and differential clinical virulence 

among E. histolytica strains. To investigate at the genome-wide level whether gene CNVs 

correlate with transcriptomic diversity among strains, the genomic mapped read data of the 

four E. histolytica strains (i.e. Rahman, PVBM08B, HM-1:IMSS and IULA:1092:1) previously 

obtained from SOLiDTM library sequencing were used for the pairwise scatterplot analysis in 

relation the existing transcriptomic data of the four strains in this study.  
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4.2 Materials and Methods 

4.2.1 Whole genomic and transcriptomic data of sequenced strains used in this 

study 

SOLiDTM (Sequencing by Oligonucleotide Ligation and Detection)-based genomic 

HTSeq-count data of all 8,333 genes in the four E. histolytica strains (i.e. Rahman, PVBM08B, 

HM-1:IMSS and IULA:1092:1) were kindly offered by Dr. Gareth Weedall, the Liverpool 

School of Tropical Medicine, Liverpool, UK for this study [70]. Briefly, the Burrows-Wheeler 

Aligner (BWA) software was applied to map SOLiDTM sequenced reads to the HM-1:IMSS 

reference genome sequence with mapping parameters as previously described [70,272]. 

Only uniquely mapped reads were used for downstream analysis. Then, the BAM alignment 

files for all strains were sorted and transformed to SAM files by the SAMtools software 

[273]. The HM-1:IMSS genome annotation file (release 2.0, AmoebaDB-

2.0_EhistolyticaHM1IMSS.gff file), indicating the locations of 8,333 genes in the genome, was 

used to count reads aligned to each gene [26]. HTSeq-count software was applied using the 

sorted SAM files as an input to count reads in features with following options: -m <mode> 

intersection-strict; -i <id attribute> Parent; -t <feature type> exon; -s <stranded> no [119]. 

Finally, the obtained HTSeq-count data for each strain was normalised by millions of total 

HTSeq-count reads generated.  

For whole transcriptome, HTSeq-count data obtained from RNA-Seq experiment 

previously described in the ‘Materials and Methods’ of Chapter 2 were normalised by 

millions of total HTSeq-count reads generated for each strain.  

In this correlation study, the R Statistics software package version 3.1.2 

(http://CRAN.R-project.org) was used to plot the genomic data using log2-transformed 

values of the ratio between genomic reads per million of total SOLiDTM library reads (RPM) 

of two contrasting strains, against the transcriptomic data using log2-transformed values of 

the ratio between HTSeq-counts per million of total Illumina ScriptSeqTM v2 library reads 

(RPM) of the same two strains as shown in Figures 4.1-4.6 [267]. Pearson's product-

moment correlation tests were conducted to determine whether copy number variation 

(CNV) correlates with the differential transcript levels between two contrasting strains. 

Also, percentile rank analysis was performed in each comparison to compare the 

distribution range between the CNV and the relative expression levels.  

 

 

http://cran.r-project.org/package=marmap
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4.3 Results and Discussion 

4.3.1 Scatterplot analysis between genomic and transcriptomic data reveals 

that gene copy number variation is associated with differential expression 

across E. histolytica strains, implying the evolution of virulence 

In Figures 4.1-4.6, all 8,333 E. histolytica genes could be plotted into four quadrants 

where a centre point locates at x-axis = 0 and y-axis = 0. The majority of genes are plotted 

towards the zero values (x = 0, y = 0) within the 10th – 90th percentile range on the 

horizontal axis, inferring that these genes are similar in their gene copy number between 

contrasting strains. However, transcriptional range was found to be variable across the 

strains due to its wider 10th – 90th percentile range on the vertical axis.  

Comparing between Rahman and PVBM08B, a significant positive correlation with 

Pearson’s correlation coefficient (r) = 0.3544, P-value < 2.2e-16 was found, indicating that an 

increase in copy number of a particular gene in Rahman or PVBM08B can upregulate its 

gene expression level, compared to the other strain. Notably, gene spots in the graph area of 

quadrant III [x-axis: log2(Rahman genomic rpm/ PVBM08B genomic rpm] < 0 and y-axis: 

log2(Rahman transcript rpm/ PVBM08B transcript rpm) < 0] represent genes that have 

both lower copy number and lower transcript in Rahman than PVBM08B. In other words, 

these spots in the third quadrant refer to genes with higher copy number and higher 

transcripts in PVBM08B. Likewise, spots plotted in quadrant I [x-axis: log2(Rahman genomic 

rpm/ PVBM08B genomic rpm) > 0 and y-axis: log2(Rahman transcript rpm/ PVBM08B 

transcript rpm) > 0] are designated for genes with higher copy number and higher 

expression in Rahman than PVBM08B. Taken together, these data in quadrants I and III 

represent genes whose CNV positively correlates with their expression difference between 

these two strains and this finding could explain differences in virulence between Rahman 

and PVBM08B, as well as other phenotypic differences. 

Analysing the trend in this scatterplot, it is clear that the linear spread over 10th to 

90th percentile is greater on the y-axis (transcript: P10 = -0.9503, P90 = 1.0374) than that of 

the x-axis (CNV: P10 = -0.4940, P90 = 0.4220) as illustrated in Figure 4.1B. It can be inferred 

that the majority of genes in both Rahman and PVBM08B have a broader range of 

expression than range of gene copy number.  

As shown in Figure 4.2, a positive correlation between CNV and differential 

expression was found (r = 0.3531, P-value < 2.2e-16) between Rahman and HM-1:IMSS. 

Remarkably, a large number of genes were plotted in quadrant III, reflecting the skewed 
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data distribution. This cluster of genes in quadrant III has lower gene copy number and 

corresponding decreased expression in Rahman relative to HM-1:IMSS. However, difference 

in copy number and transcript abundance between these two strains in quadrant III might 

be partly due to the absence of genes (missing genes) and no corresponding transcripts in 

Rahman, resulting in the strong negative variables on both axes. On contrary, only few spots 

are found in quadrant I, referring to a small number of genes with higher copy number and 

corresponding upregulated transcripts in Rahman relative to HM-1:IMSS. Essentially, this 

skewed data representation strongly suggests that genome plasticity largely contributes to 

the transcriptomic difference and phenotypic variability between Rahman and HM-1:IMSS.  

Similar to the previous plot, the expression percentile range on the y-axis (P10 = -

1.1579, P90 = 1.1177) is wider than the CNV percentile range on the x-axis (P10 = -0.6242, P90 

= 0.4719) as shown in Figure 4.2B, indicating that most of the genes in these two strains 

exhibit more variability in expression than that in gene copy number. 

Different from the previous two pairs, the scatterplot in Figure 4.3 shows the 

Pearson’s correlation coefficient towards zero (r = 0.0265, P-value = 0.0153), indicating  no 

correlation was found between gene CNV and differential expression in Rahman and 

IULA:1092:1. Moreover, the majority of genes in these two strains are clustered around the 

central point (x =0, y =0), pointing out that most of the genes in these two contrasting 

strains are similar in their gene copy number and transcript abundance. Consistently, 

difference in the 10th- 90th percentile ranges of the CNV (P10 = -0.8431, P90 = 0.6229) and 

relative expression (P10 = -1.1924, P90 = 1.2521) is narrower than that of the previous pairs, 

supporting the low variation of gene copy number and transcript abundance in these two 

strains.  

In accordance with the genealogical analysis in Figure 1.5 of Chapter 1, Rahman was 

clustered very closely together with IULA:1092:1, based on a total of 3,696 SNP sites 

throughout the genome. This phylogenomic finding reflects the similarity of genomic 

structure between Rahman and IULA:1092:1. However, I demonstrated the marked 

transcriptional variation of 53 representative virulence-associated genes between Rahman 

and IULA:1092:1 as demonstrated in Figure 3.9A of Chapter 3. Altogether, transcriptional 

variation of virulence-associated genes between Rahman and IULA:1092:1 seems to be not 

dominated by gene copy number variation but might be influenced by other regulatory 

elements, e.g. transcription machinery or epigenetic regulations.   

Interestingly, a cluster of seven protein-coding genes (EHI_023840, EHI_023850, 

EHI_023860, EHI_023870, EHI_023880, EHI_023890 and EHI_023900) known to have 
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segmental duplication found only in the Rahman strain was also found to have both higher 

copy number and higher transcript levels in Rahman relative to all other strains as 

highlighted with their AmoebaDB_IDs in Figures 4.1A, 4.2A and 4.3A [70]. In other words, it 

could be stated that the Rahman segmental duplication is a good example of gene CNV 

which contributes to differential expression among strains. The details of this segmental 

genome duplication will be discussed later. 

Comparing between PVBM08B and HM-1:IMSS, CNV was found to be associated 

with transcriptomic variation (r = 0.4051, P-value < 2.2e-16) with a wider percentile 

expression range (P10 = -0.9233, P90 = 0.8369) compared to a CNV range (P10 = -0.4723, P90 = 

0.5488) as shown in Figure 4.4 (A and B). Also, the notable skewed distribution could be 

seen in quadrant III, representing genes with higher copy number as well as higher 

expression in HM-1:IMSS than PVBM08B. This indicates that transcriptomic variation 

between PVBM08B and HM-1:IMSS is dominated by variation of the gene copy number  in 

these two contrasting strains. In other words, phenotypic differences between these two 

virulent strains are determined in part by higher expression of highcopy number genes in 

the HM-1:IMSS strain. 

Likewise, a significant positive correlation between CNV and expression difference    

(r = 0.3587, P-value = 2.2e-16) was found in a contrasting pair of PVBM08B and IULA:1092:1 

as shown in Figure 4.5A. Also, a wider variability of relative expression (P10 = -0.9746, P90 = 

0.9838) was demonstrated in most of the genes, relative to their CNV (P10 = -0.7683, P90 = 

0.6493) as illustrated in Figure 4.5B.  Different from the previous contrast pair, genes whose 

CNV positively correlates with their expression were plotted in both quadrant I and III, 

indicating that copy number expansion has occurred in both these two strains.  

For HM-1:IMSS and IULA:1092:1, CNV positively correlates (r = 0.3788, P-value < 

2.2e-16) with expression difference between these two strains and the skewed data 

distribution could be observed in quadrant I, indicating that expression variability between 

two strains is due to the variation of gene copy number, higher in HM-1:IMSS than 

IULA:1092:1.  It seems to be that variability of relative expression levels between genes in 

these two strains is slightly larger than their CNV due to a small difference between 

expression and CNV percentile ranges as shown in Figure 4.6B. 

As explained in all contrasting pairs, it could be argued that genomic plasticity is a 

main driver of gene expression diversity among E. histolytica strains. The positive 

correlation between CNV and transcriptomic variation could explain phenotypic differences 

including virulence variability among strains. Also, it is interesting that no correlation was 



             

             

  

 

   149 

   149 

found in comparison between Rahman and IULA:1092:1 strains that are very genetically 

similar, however differential expression of virulence-associated genes still exists in these 

two strains. Hence, this finding suggests that there should be other mechanisms of gene 

regulation that contributes to their phenotypic differences in addition to gene CNVs.  
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Figure 4.1:  Positive correlation between CNV and relative expression levels in Rahman and PVBM08B. The Pearson’s correlation 

coefficient (r) and the percentile range are shown in Parts A and B of the figure, respectively. In Part B, the range over 10th to 90th 

percentile on the y-axis (P10 = -0.9503, P90 = 1.0374; in blue) is wider than that on the x-axis (P10 = -0.4940, P90 = 0.4220; in red), inferring 

that most of the genes in these two E. histolytica strains have variable expression levels, compared to a percentile range of gene copy 

numbers. Spots plotted in quadrants I and III obviously represent genes which their CNV correlate positively with their relative 

expression across these two strains. The AmoebaDB_IDs of 7 genes located on scaffold DS571330 with segmental genome duplication as 

illustrated in Figure 4.7 are labelled in quadrant I of Part A, revealing that their high copy number obviously contributes to their high 

transcript level. I = Quadrant I; II = Quadrant II; III = Quadrant III; IV = Quadrant IV. 
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Figure 4.2:  Positive correlation between CNV and relative expression levels in Rahman and HM-1:IMSS. In quadrant III, it 

obviously shows up the skewed data representing a lot of genes with lower copy number and lower expression in Rahman than in HM-

1:IMSS whereas only few spots are found in quadrant I, referring to a small number of genes with higher copy number and corresponding 

upregulated transcripts in Rahman relative to HM-1:IMSS. The AmoebaDB_IDs of 7 genes located on scaffold DS571330 with segmental 

genome duplication as illustrated in Figure 4.7 are also labelled in quadrant I of Part A. In Part B, a wider range of 10th to 90th percentile on 

the y-axis (P10 = -1.1579, P90 = 1.1177; in blue) than that on the x-axis (P10 = -0.6242, P90 = 0.4719; in red) suggests that the majority of 

genes have more variable expression levels than their CNV.  
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Figure 4.3:  No correlation between CNV and relative expression levels in Rahman and IULA:1092:1. In Part A, the Pearson’s 

correlation score is towards zero (r = 0.0265, P-value = 0.0153), meaning no correlation between CNV and expression levels in these two 

strains. As depicted in the plot, the majority of genes are clustered together around the zero value of both the x- and y-axes. This central 

tendency could be inferred that most of the genes in these two strains are likely similar in their copy number and corresponding 

transcript level. Narrower difference between percentile ranges of both two axes reflects slightly more variability of relative expression 

levels between genes relative to their CNV as shown in Part B. The AmoebaDB_IDs of 7 genes located on scaffold DS571330 with 

segmental genome duplication as illustrated in Figure 4.7 are also labelled in quadrant I of Part A. 
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Figure 4.4: Positive correlation between CNV and relative expression levels in PVBM08B and HM-1:IMSS. Remarkably, the skewed 

data could be observed in quadrant III where many spots are located in and represent genes with lower copy number and lower 

expression in PVBM08B than in HM-1:IMSS. In Part B, a wider expression percentile range on the y-axis (P10 = -0.9233, P90 = 0.8369; in 

blue) compared to a CNV range on the x-axis (P10 = -0.4723, P90 = 0.5488; in red) indicates that the majority of genes exhibit a higher 

variability in transcript levels than their CNV.  Lower CNV and relatively downregulated expression of genes found in the third quadrant 

likely contributes to a lower degree of virulence in PVBM08B relative to HM-1:IMSS. 
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Figure 4.5: Positive correlation between CNV and relative expression levels in PVBM08B and IULA:1092:1. As shown in the plots, 

gene spots plotted in quadrants I and III obviously represent genes whose CNV correlates positively with their relative expression across 

these two strains. In Part B, a wider range on the y-axis (P10 = -0.9746, P90 = 0.9838; in blue) than that of the x-axis (P10 = -0.7683, P90 = 

0.6493; in red) suggests that the majority of genes have more variable expression levels than their CNV.  
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Figure 4.6:  Positive correlation between CNV and relative expression levels in HM-1:IMSS and IULA:1092:1. Obviously, several 

gene spots disperse in quadrant I, indicating the skewed data distribution of genes with higher copy number and higher expression in HM-

1:IMSS than in IULA:1092:1.  Excluding these gene spots in the first quadrant, a slight difference between a percentile range (10th to 90th) 

of the y-axis (P10 = -0.8186, P90 = 0.9971; in blue) and the x-axis (P10 = -0.7506, P90 = 0.7643; in red) indicates slightly more variability of 

relative expression levels between genes compared to their CNV as shown in Part B. Thus, it implies that higher CNV and relatively 

upregulated expression of genes found in the first quadrant likely contributes to a higher degree of virulence in HM-1:IMSS compared to 

IULA:1092:1. 
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4.3.2 Expression of genes located in the part of scaffold DS571330 in Rahman 

are enhanced due to the segmental genome duplication process, implying the 

potential of functionality 

After improvement of genome assembly and annotation of E. histolytica by Lorenzi 

et al., 2010, novel features were discovered such as the presence of segmental genome 

duplication of scaffold regions, up to 16 kb, with specific attributes as well as the high 

association of protein families such as BspA-like protein family, AIG1-like family and Hsp 70 

family with repetitive elements [25]. As repetitive elements make up approximately 20% of 

the E. histolytica genome and have a tendency to form large TE clusters, it is likely to 

contribute to genomic instability of this parasite, including partial genome duplication 

[25,153]. Four types of segmental genome duplication (D1-D4) have been previously 

reported in the HM-1:IMSS genome [25]. D1 and D2-types of segmental gene duplication are 

found to be flanked by 2.3 kb and 1.2 kb inverted repeats (IRs) respectively whereas D3 and 

D4-types are in close proximity to TEs, mostly EhLINE1 without any flanking IRs. 

Interestingly, D3 contains a set of genes implicated in a variety of cellular processes, 

suggesting the functionality of this type of duplication [25]. 

As demonstrated in Figure 4.7, independent Rahman SOLiDTM and 454 sequencing 

experiments previously done by Weedall et al, 2012 reveals the presence of an expanded 

region found only in the nonvirulent Rahman strain and spanning over 12.4 kb (positions 

21,000 to 33,380) of scaffold DS571330 [70]. This amplified region includes a cluster of 

seven genes encoding a 60S ribosomal protein L38 (EHI_023840) for protein synthesis, a 

hypothetical protein (EHI_023850), a protein kinase domain-containing protein 

(EHI_023860) implicated for phosphorylation and signaling, a WD domain-containing 

protein (EHI_023870) involved in protein-protein interaction and signal transduction, a 

ubiquitin-conjugating enzyme family protein (EHI_023880) responsible for proteosomal 

degradation, a nuclear movement protein (EHI_023890) and a hypothetical protein 

(EHI_023900). This duplicated segment is also flanked by three repetitive elements: 

Entamoeba repeat element 2 (ERE2) and long interspersed nuclear elements (EhLINE1 and 

EhLINE2 retrotransposons) [70]. It is interesting that repeat clusters, including repetitive 

elements in this case, frequently mark the synthenic breakpoints between E. histolytica and 

E. dispar, reflecting their adaptive role in generating the genomic diversity among 

Entamoeba species and strains [25,70,153]. Also, this putative segmental genome 

duplication in the Rahman strain is similar to the D3 type segmental genome duplication 

previously described in the HM-1:IMSS strain [25].  
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As illustrated in Figure 4.7, the plot shows the profile of coverage depth in log10-

transformed scale across the entire length of scaffold DS571330. The ratio of coverage depth 

between Rahman and HM-1B in both unduplicated and duplicated regions was calculated to 

estimate the copy number of the duplicated region. As expected, the median ratio in the 

duplicated region was 25.0 while in the unduplicated region was just 1.1, indicating that the 

cluster expansion occurred many times in the Rahman strain [70]. However, from this 

genomic observation one can only infer this as evidence of its potential for functionality but 

we can not imply more about its functional role beyond the genomic relevance. 

Integrating this observation with the transcriptomic data in Chapter 2, Table 2.9 

shows significantly lower transcript levels (log2FC ≤ -2, FDR-adjusted P-value < 0.05) of 

these seven genes in PVBM08B, HM-1:IMSS and IULA:1092:1, compared to nonvirulent 

Rahman. Thus, it is likely that this segmental genome duplication of scaffold DS571330 in 

the Rahman strain contributes to its higher expression levels of such genes located in the 

expanded segment than those of the three virulent strains. Consistently, the correlation 

between CNV and mRNA abundance of these seven expanded genes across all four strains as 

shown in Figure 4.8 confirms that higher transcript abundance of these genes in the 

nonvirulent Rahman strain is as a result of higher gene copy number due to the segmental 

genome duplication.   

In E. histolytica, ribosomal RNA repeats exist exclusively in high-copy-number 

circular episomal plasmids with varying sizes (15-25 kb) between E. histolytica strains 

[241,274-277]. Also, coding sequences for hemolysins were found to be within inverted 

rRNA repeats on the episomal plasmid [278]. This finding implies that such hemolysin-

coding sequences are much higher in gene copy number than those if they are located on the 

chromosome and their increased copies potentially result in large amounts of hemolysins, 

which may be associated with increased virulence and amoebic invasion [279]. This 

illustrates how gene copy number variation may contribute to differential phenotypes such 

as virulence via its effect upon the expression of key virulence-associated genes. Therefore, 

very high copy number of the gene cluster on scaffold DS571330 in Rahman might provide 

some selective advantages to the parasite, possibly selected by long-term axenic cultivation. 

Episomal plasmids can play a pivotal role in gene amplification [279]. Whether this, or 

tandem duplication, is the mechanism of expansion of the amplified segment of the Rahman 

genome remains to be determined. 
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Figure 4.7: Segmental genome duplication on scaffold DS571330 in the nonvirulent E. histolytica Rahman strain. High 

coverage region spans over seven genes (EHI_023840, EHI_023850, EHI_023860, EHI_023870, EHI_023880, EHI_023890 and 

EHI_023900) with flanking repetitive transposable elements. The SOLiDTM and 454 coverage data in the Rahman strain are 

represented by the black and dashed lines, respectively. The HM-1B SOLiDTM coverage data represented by the grey line is used as a 

control. This plot is reproduced with permission from Weedall et al., 2012 [70].   
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Figure 4.8: Correspondence between genomic copy number variation and differential 

transcript abundance of seven protein-coding genes located on scaffold DS571330 in 

the four E. histolytica strains. Genomic copy number variation of seven genes 

(EHI_023840, EHI_023850, EHI_023860, EHI_023870, EHI_023880, EHI_023890 and 

EHI_023900) across all four strains are represented by genomic RPKM values as plotted in 

Parts A1, B1, C1, D1, E1, F1 and G1, respectively. Differential transcript abundance of such 

seven genes across strains are represented by transcriptomic FPKM ± standard deviation 

(SD) as plotted in Parts A2, B2, C2, D2, E2, F2 and G2, respectively. Notably, all seven 

expanded genes in the nonvirulent Rahman strain exhibit higher in their gene copy number 

and corresponding transcript level than those in the other strains. 
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4.4 Concluding remarks 

E. histolytica is believed to be almost exclusively asexual through binary fission with 

rare frequency of meiotic recombination but conversely shows the complex multiclonal 

population structure and variable biological features among strains [29,46]. This finding 

raised the hypothesis that biological diversity among parasite strains should be as 

consequences of genomic diversity. SNPs are rather limited throughout the E. histolytica 

genome [46,70]. Conversely, there appears to be a lot of gene CNVs among the genomes of 

the E. histolytica strains, reflecting a high degree of genomic plasticity and variability in gene 

family content [70].  Moreover, this present data show that patterns of CNV contribute to 

differential expression profiles, therefore we can extrapolate that differences in gene copy 

number between genomes could contribute to the variation in phenotypic characteristics, 

including virulence, among parasite strains.  

The high repetitiveness of the E. histolytica genome could lead to genomic structural 

diversity, such as segmental genome duplications, resulting in gene copy number variation.  

Such genome plasticity can also be seen in other human protozoan parasites such as 

Trypanosomes and Leishmania, suggesting that CNV is not uncommon and also is a 

potentially important mechanism of generating genetic diversity and regulating gene 

expression levels in almost exclusively asexual parasite groups [70,241,269,280,281].  
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Chapter 5: Analysis of the small RNA transcriptome and its potential role 

in regulating gene expression, especially of virulence-associated genes 

 

5.1 Introduction 

Gene silencing is an epigenetic cellular process for control of specific gene 

expression found in most eukaryotic organisms [87-91]. RNAi is a key regulatory 

mechanism for post-transcriptional gene silencing that inhibits gene expression in a 

sequence-specific manner [87-91]. This regulatory process is typically due to small 

interfering RNA species (siRNAs) that are double stranded RNA molecules with lengths of 

20-25 bp. These siRNAs play an important role in RNA interference by complementary base 

pairing with expressed mRNA transcripts, causing subsequent mRNA degradation and 

translational inhibition [91,282]. Also, this specific type of small RNA species can function in 

concert with associated proteins to target the genomic loci for transcriptional gene silencing 

[283].  

 In E. histolytica, experimental gene silencing has been achieved by using exogenous 

dsRNA and siRNA, suggesting the presence of a functional sRNA-mediated silencing 

machinery in the parasite [284-287]. Zhang et al., 2008 demonstrated the presence of three 

endogenous sRNA populations with sizes of approximately 27, 22 and 16 nt in E. histolytica 

[85]. The 27 nt endogenous sRNA population constitutes the majority of the overall sRNA 

transcriptome. This distinctive sRNA expression could be commonly found in trophozoites 

of the reptilian parasite E. invadens and the nonvirulent E. dispar, suggesting a conserved 

mechanism that exists throughout the Entamoeba species [85].   

Interestingly, the 27 nt sRNA population possesses 5’-polyphosphate termini and 

was significantly enriched in the sRNA fraction co-immunoprecipitated with E. histolytica 

Argonaute-2 (EhAGO2-2, EHI_125650), indicating the association with Argonaute protein in 

the formation of the RNA-induced silencing complex (RISC), which is responsible for post-

transcriptional gene silencing in concert with siRNA or miRNA [85,93]. The 5’-

polyphosphate termini can be specifically found in secondary siRNAs expressed in 

Caenorhabditis elegans [288].  Essentially, such secondary siRNAs in C. elegans are Dicer-

independent and synthesised by RNA-dependent RNA polymerase (RdRp) incorporating the 

nucleotide with 5’-triphosphate terminus for the first base position whilst other siRNAs are 

processed by RNase III Dicer and exhibit the typical 5’-monophosphate and 3’-hydroxyl 

termini [288,289]. In addition, C. elegans secondary siRNAs were shown to play a role in the 

RNAi mechanism by 5’-biased antisense base-pairing to a target mRNA. Therefore, the 
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structural similarity of 5’-polyphosphorylated sRNAs in E. histolytica suggests that these 

sRNAs might participate in a similar gene regulatory mechanism.  

Likewise, these distinctive sRNAs with 5’-polyphosphate in E. histolytica were shown 

to map predominantly antisense to the 5’ end of target genes and there is a negative 

correlation between their abundance and target gene expression levels, strongly suggesting 

a regulatory role in the siRNA pathway [85,86,92]. Most recently, Zhang et al., 2013 

demonstrated that these 5’-polyphosphorylated sRNAs associated with EhAGO2-2 play an 

important role in regulating virulence-associated gene expression in a strain-specific 

manner [92].  

The miRNAs are small non-coding RNAs with 21-23 nt in length that play a key role 

in regulation of gene expression in cellular proliferation and development [290,291]. These 

miRNA molecules occur in many organisms including animals, plants, and viruses [292,293]. 

These regulatory molecules can recruit the RISC to block mRNA targets with partial 

antisense complementarity and cause translational repression, mRNA degradation and 

mRNA deadenylation [290,291,293]. In contrast to siRNAs, miRNAs, especially in animals, 

can target many different mRNA transcripts with incomplete base pairing whilst siRNAs 

specifically regulate their complementary mRNA transcripts with perfect matches and 

induce gene silencing only in a specific gene target [294].   

Putative miRNAs have been identified in other human protist parasites including     

G. lamblia and T. vaginalis [97-100]. Also, genes encoding proteins involved in miRNA- and 

siRNA-mediated machineries have been identified in the E. histolytica genomic data, 

providing evidences that both siRNA- and miRNA-associated regulatory mechanisms are 

likely to exist in this parasite [95,295]. As previously mentioned, the 27 nt antisense sRNAs 

with 5’-polyphosphate termini have been proven to be the siRNAs responsible for gene 

silencing in E. histolytica trophozoites. Therefore, it is possible for miRNAs to be expressed 

and play a crucial role in post-transcriptional gene silencing in this parasite.  

I hypothesised that differential virulence among E. histolytica strains could be 

potentially regulated by a miRNA-mediated mechanism. Potential miRNA-regulated genes in 

E. histolytica have been reported by De et al., 2006 and Mar-Aguilar et al., 2013 [94,95]. 

However, these studies were performed only in the HM-1:IMSS reference strain. Therefore, 

the previously reported information of novel predicted miRNAs cannot elucidate their 

biological relevance to differential virulence among strains due to lack of miRNA expression 

data in other strains. Therefore, the experiments in this chapter were designed using sRNA 

libraries which were size-selected at 21-23 nt, most likely representing the expected size of 
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miRNAs and prepared from the four E. histolytica strains to enable us to compare the 

difference of sRNA levels between strains. 

Essentially, the aims of this chapter are to explore the differences in the sRNA 

transcriptomic landscapes among the four E. histolytica strains and to investigate the 

possible roles of antisense sRNAs in parasite gene regulation using the deep sequencing 

data of the size-fractionated sRNA libraries. To scrutinise the presence of miRNAs and their 

putative roles in relevance to virulence, novel miRNA candidates were also predicted in all 

size-fractionated sRNA datasets by the specialised miRDeep2 software package. 
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5.2 Materials and Methods 

5.2.1 Strains of E. histolytica and small RNA preparation 

Four strains of E. histolytica used in the RNA-Seq experiment in Chapter 2 were 

revived from cryopreserved stocks and maintained in axenic LYI-S-2 media as described in 

the ‘Materials and Methods’ of Chapter 2.  Briefly, after 60 hrs of culture, the mid-log phase 

trophozoites were harvested and washed in PBS solution. Then, the fresh trophozoites were 

immediately used for small RNA extraction using the mirVanaTM small RNA isolation kit (Life 

Technologies, USA). These sRNA enriched samples were then verified qualitatively using an 

Agilent 2100 Bioanalyser with the Small RNA chip (Agilent Technologies) and quantitatively 

using the Qubit® fluorometric assay (Invitrogen). Samples of qualified sRNA were stored at 

-80 0C until used for small RNA library construction. 

5.2.2 Small RNA library construction, size-selection and single-end sequencing 

Small RNA libraries were constructed following the protocol of the NEBnext® 

multiplex small RNA library preparation kit as described in Figure 5.1, with different NEB 

small RNA index primers to label each of the four strains. Obtained cDNA libraries were 

checked for their profiles using an Agilent 2100 Bioanalyser with the High Sensitivity DNA 

chip (Agilent Technologies). Size selection was then performed at 150 bp using 3% Pippin 

prep at range 125-160 bp. Size-fractionated samples were purified using Agencourt® 

AMPure XP magnetic beads (Beckman Coulter, USA) with final elution in 20 µl of TE buffer. 

Their sizes were confirmed again by the High Sensitivity DNA chip as shown in Figure 5.2. 

Size-selected adaptor-ligated cDNA samples of all four strains were pooled together for 

single-end sequencing (1x50 bp) on the Illumina MiSeq platform. Sequencing was conducted 

at the Centre for Genomic Research (CGR), University of Liverpool.  
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Figure 5.1: Principles and 

procedures of the NEBNext® 

multiplex small RNA library 

preparation for Illumina sequencing 

in this study (available online at 

https://www.neb.com). 

Briefly, freshly extracted sRNA sample 

was ligated with the 3’ SR adaptor. 

After the 3’ ligation reaction, adaptor-

ligated sRNAs were hybridised with the 

reverse transcription primer and 

followed by the 5’ adaptor ligation 

catalysed by T4 RNA Ligase 1.  

Then, 5’ and 3’ adaptor-ligated sRNA 

annealed with the reverse transcription 

primer was used as a template for the 

first strand cDNA synthesis by the 

reaction of SuperScript III reverse 

transcriptase. 

Finally, the reverse transcription 

reaction mix containing adaptor-ligated 

cDNAs of each library sample was 

enriched by PCR amplification using 

the Multiplex SR primer for Illumina 

platform and the Index (X) primer 

specific for each library. The amplified 

cDNA solution was purified and 

subsequently size-fractionated by 3% 

Agarose Pippin Prep. 
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Figure 5.2: The peak of cDNAs at approximately 150 bp in each sRNA library after the 

size selection by 3% Agarose Pippin Prep and in final pooled sample of all sRNA 

libraries. The peaks of approximately 150 bp in all sRNA libraries (graph A-I) are expected 

to contain adaptor-ligated miRNAs as recommended by the NEB protocol. The graph A-I 

represent the following sRNA libraries: A = Rahman_01 sRNA library; B = Rahman_02 sRNA 

library; C = PVBM08B_01 sRNA library; D = PVBM08B_02 sRNA library; E = HM-1:IMSS_01 

sRNA library; F = HM-1:IMSS_02 sRNA library; G = IULA:1092:1_01 sRNA library; H = 

IULA:1092:1_02 sRNA library; I = the final pooled sRNA library sample. 
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5.2.3 Bioinformatics Pipeline 

I. Read processing and quality assessment of the raw sequence data  

Raw sequences were obtained in the form of Fastq formatted files. The 3’ ends of 

reads matching adaptor sequences were trimmed using Cutadapt 1.1. Trimming by Sickle 

version 1.2 with a minimum window quality score of 20 was also done to remove low 

quality sequence. Reads with a length less than 10 bp after trimming were removed. The 

total number of raw reads as well as the percentage of single-end trimmed reads were 

summarised in Figure 5.3 and Table 5.1, respectively. Read lengths after removing adaptor 

and low quality base in all library samples were illustrated in Figures 5.4-5.8. 

 

 

Figure 5.3: The total number of short reads in millions retrieved from each library of 

the four strains. 
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Table 5.1: Summary of short sequence read data before and after adapter removal 

and low Phred score trimming. 

Sample Raw reads Trimmed R1 reads 
 

Rahman_1 838,812 822,633 (98.07%) 

Rahman_2 1,226,260 1,200,153 (97.87%) 

PVBM08B_1 1,362,185 1,342,943 (98.59%) 

PVBM08B_2 845,170 819,213 (96.93%) 

HM-1:IMSS_1 1,337,752 1,322,571 (98.87%) 

HM-1:IMSS_2 1,115,217 1,099,742 (98.61%) 

IULA:1092:1_1 1,368,808 1,339,467 (97.86%) 

IULA_1092:1_2 1,357,693 1,336,227 (98.42%) 
 

 

 
 

Figure 5.4: Read length distributions after adaptor and low base quality trimming. 

Only forward unpaired read is represented as R1 read.  

 

 

 



             

             

  

 

   172 

   172 

 

     

 

Figure 5.5: Sequence length distribution of adaptor-trimmed cDNAs in two Rahman 

biological replicates. The peaks of sequence length are at 23-28 nt and 20-24 nt for the 1st 

and 2nd replicates, respectively. 

  

       

    

Figure 5.6: Sequence length distribution of adaptor-trimmed cDNAs in two PVBM08B 

biological replicates. The peaks of sequence length are at 23-26 nt and 18-24 nt for the 1st 

and 2nd replicates, respectively. 
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Figure 5.7: Sequence length distribution of adaptor-trimmed cDNAs in two HM-1:IMSS 

biological replicates.  The peaks of sequence length are at 23-26 nt and 23-26 nt for the 1st 

and 2nd replicates, respectively. 

 

    

 

Figure 5.8: Sequence length distribution of adaptor-trimmed cDNAs in two 

IULA:1092:1 biological replicates. The peaks of sequence length are at 23-26 nt and 23-26 

nt for the 1st and 2nd replicates, respectively. 
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II. Mapping of reads to the reference genome sequence and statistical testing 

for difference between strains 

Bowtie2 version 2.2.2 (http://bowtie-bio.sourceforge.net/bowtie2/) was used to 

map trimmed reads to the E. histolytica HM-1:IMSS reference sequence (release 2.0, 

http://AmoebaDB.org/common/downloads/release2.0/EhistolyticaHM1IMSS/fasta/data/

AmoebaDB-2.0_EhistolyticaHM1IMSS_Genome.fasta) [296]. The HM-1:IMSS genome 

annotation file (release 2.0, AmoebaDB-2.0_EhistolyticaHM1IMSS.gff file), indicating the 

locations of 8,333 genes in the genome, was used to count reads aligned to each gene [26]. 

The number and percentage of total short read mapping and uniquely mapped reads are 

listed in Table 5.2. 

Aligned read counts were sorted into sense and antisense orientation using HTSeq-

count (release 0.6.1, http://www-huber.embl.de/users/anders/HTSeq/doc/count.html) 

with the following parameters: -m <mode> intersection-strict; -i <id attribute> Parent; -t 

<type> exon; -s <stranded> yes/no: for sense and antisense direction, respectively. The 

percentage of genes with five different ranges of normalised mapped antisense sRNA 

transcripts (antisense sRNA reads per kilobase of exon per million of total mapped reads) in 

all four strains were summarised in Table 5.4 and Figure 5.10. Only antisense sRNA reads 

for each gene obtained from the HTSeq-count data would be used for statistical testing for 

difference between strains by edgeR analysis [115]. 

Then, genes with no mapped antisense sRNA in all library samples were removed 

and the subset of only genes with mapped antisense sRNAs in each library were analysed for 

both ‘within-group’ and ‘between-group’ variations as plotted in Figures 5.11 and 5.12, 

respectively. Also, a sample correlation heatmap was done using Pearson’s correlation 

coefficients (r) to reveal transcriptomic variability within a sample group and between 

different groups as depicted in Figure 5.13. To assess the overall variation among all 8 sRNA 

library samples, the log2-transformed values of raw antisense sRNA reads in all samples 

were applied for the principal component analysis as plotted in Figure 5.14. 

By fitting to the NB model, the dispersion plot was constructed to calculate the 

common, trended and tagwise dispersions as shown in Figure 5.15. The likelihood ratio (LR) 

test was applied to determine the difference between log2FC values of two contrasting 

strains [120]. Smear plots were drawn to unveil the relationship of the fold change 

differences (log2FC) and the average antisense sRNA levels (log2CPM) for each contrast as 

demonstrated in Figure 5.16. The distribution of P-values for each contrast was shown in 

Figure 5.17. Statistical significance was indicated when an FDR-adjusted P-value less than 

http://bowtie-bio.sourceforge.net/bowtie2/
http://amoebadb.org/common/downloads/release2.0/EhistolyticaHM1IMSS/fasta/data/
http://amoebadb.org/common/downloads/release2.0/EhistolyticaHM1IMSS/fasta/data/
http://www-huber.embl.de/users/anders/HTSeq/doc/count.html
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0.05. Also, the number of sRNA target genes showing significant differences in mapped 

antisense sRNA levels in each contrast was summarised in Table 5.5.  

To demonstrate the correlation pattern between target gene expression and sRNA 

abundance in a specific orientation, expression levels of target genes which have normalised 

antisense sRNAs greater than 50 reads per kilobase of exon per million of total mapped 

reads were plotted individually against their mapped sRNA abundance for each strain as 

shown in Figures 5.18A, 5.19A, 5.20A and 5.21A for antisense direction and in Figures 

5.18B, 5.19B, 5.20B and 5.21B for sense direction. The 20 most prevalent functionally 

annotated genes which have normalised antisense sRNAs > 50 were ranked in order for 

each strain as summarised in Tables 5.6-5.9. 

Also, Venn diagrams were constructed to show the number of sRNA target genes 

which exhibited significantly higher levels of mapped antisense sRNAs between Rahman 

and other three strains as depicted in Figures 5.22-5.25 and to assess the contribution of 

sRNAs to their differential gene expression as depicted in Figure 5.26. The sRNA target 

genes which have markedly high antisense sRNA levels in Rahman were summarised in 

Table 5.10. Then, from Table 5.10, the 1st subset of sRNA target genes with higher mRNA 

expression levels in all three virulent strains and the 2nd subset of sRNA target genes with no 

differential mRNA expression among the four strains were detailed in Tables 5.11 and 5.12, 

respectively. Finally, comparison to whole transcriptomic data in the same strain was 

visualised by the Integrative Genomics Viewer (IGV) to explore the biological implications as 

illustrated in Figures 5.27-5.30. 
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Table 5.2: Summary of number and percentage of total and uniquely short read 

alignments to the E. histolytica HM-1:IMSS reference genome using Bowtie2 software 

version 2.2.2.    

Strain_Replicate Number of 

total short 

reads 

generated 

Number of 

total short 

reads 

mapped to 

reference 

Percentage 

of total short 

read 

mapping  

Number of 

uniquely 

mapped 

reads 

Percentage 

of uniquely 

mapped 

reads 

Rahman_1 822,633 436,209 53.03% 332,159 40.38% 

Rahman_2 1,200,153 659,060 54.91% 485,931   40.49% 

PVBM08B_1 1,342,943 1,041,751 77.57% 946,464 70.48% 

PVBM08B_2 819,213 515,166 62.89% 447,296 54.60% 

HM-1:IMSS_1 1,322,571 537,654 40.65% 477,431 36.10% 

HM-1:IMSS_2 1,099,742 749,493 68.15% 612,707 55.71% 

IULA:1092:1_1 1,339,467 267,325 19.96% 203,618 15.20% 

IULA:1092:1_2 1,336,227 349,637 26.17% 294,541 22.04% 
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III. Novel putative miRNA prediction by the the miRDeep2 software 

 In order to explore the existence of miRNAs in the E. histolytica transcriptome, the 

miRDeep2 software (https://www.mdc-berlin.de/8551903/en/) was used to process and 

predict the novel putative miRNA candidates from the small RNA sequencing data with high 

accuracy, based on the miRNA biogenesis as described in Figure 5.9 [297]. Two perl scripts. 

collapse_reads_md.pl and mapper.pl, were applied to process the short read sequence data 

before analysing and scoring by the miRDeep2 core algorithm with miRDeep2.pl, as detailed 

in Table 5.3.  

Briefly, all of the size-selected sRNA read sequences in each library sample obtained 

in the FASTA format were collapsed for their identical read sequences and summarised for 

the number of reads for each unique sequence using the collapse_reads_md.pl script. Then, 

the collapsed read file for each library was aligned against the same E. histolytica HM-1:IMSS 

reference genome sequence used for the whole transcriptomic mapping in Chapter 2, using 

the mapper.pl script. Finally, the output files from the previous two steps were identified for 

both known and novel miRNA candidates in comparison to mature miRNA and stem-loop 

pre-miRNA sequences of the free-living sister species, Dictyostelium discoideum (available at 

http://www.mirbase.org/ftp.shtml) using the miRDeep2.pl script [298]. Novel miRNA 

precursors with multiple loops and/or energetic instability with non-significant randfold P-

value were eliminated [299].  

The details of novel predicted miRNA sequences with estimated probability of true 

positives, significant randfold P-values and genomic coordinates were summarised in Table 

5.13. Predicted secondary structures of potential miRNA precursors with the relative 

nucleotide positions of the mature miRNA strand, star sequence and loop portion as well as 

the number of counts for each portion were demonstrated in Figures 5.31-5.34.  

 

 

 

 

 

 

 

 

 

 

https://www.mdc-berlin.de/8551903/en/
http://www.mirbase.org/ftp.shtml
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Figure 5.9: Principles of putative novel miRNA detection based on the miRNA 

biogenesis.  Typically, the hairpin structure of the primary miRNA transcript is processed 

into a stable stem-loop pre-miRNA molecule in the nucleus by the microprocessor complex 

(Drosha/Pasha) and then transported to the cytosol via the exportin transporter (A) [291]. 

Then, such pre-miRNA precursor is further cleaved by the ribonuclease III enzyme Dicer to 

produce the mature miRNA, more abundant than loop and star sequences. Different from 

the pre-miRNA, non-miRNA transcribed RNA hairpins can provide shorter degraded forms 

without specific pattern by non-Dicer processing or random degradation (B). Based on the 

characteristic miRNA biogenesis, the sequencing reads generated from real miRNAs will 

show high read frequency in mapping to their pre-miRNA precursor, corresponding to its 

Dicer processing.  The figure is redrawn and adapted from Friedländer MR, et al., 2008 

[297]. 
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Table 5.3: Summary of perl scripts and their functions in the miRDeep2 analysis. 

 

 

Perl scripts Input Output Function 

collapse_reads_md.pl reads.fa reads_collapsed.fa Collapse all reads with the same sequence to show only once in 

fasta file.  

The number of reads for each unique sequence will be indicated 

in form of ‘_uniqueNo_xNum’. For example, 1_x20 represents 

sequence no.1 with twenty reads. 

mapper.pl reads_collapsed.fa reads_col_vs_genome.arf Process and map reads to the reference genomic sequence. 

Option used in this chapter:  

-p indexed genome  : map to indexed reference genome  

-t arf file                  : provide output of mapped reads in an arf file 

miRDeep2.pl reads_collapsed.fa 

genome.fa 

reads_col_vs_genome.arf 

mature miRNA.fa* 

other_mature miRNA.fa* 

precursor_miRNA.fa* 

N.B. ‘*’ = optional 

Report.log file consists of 

1. a spreadsheet 

2. a html file 

This perl script possesses the ‘wrapper function’ to identify both 

known and novel miRNAs from deep sequencing data. The 

algorithm provides the results with overall information of the 

predicted miRNA precursors including predicted structure, 

minimal free energy and the total confidence score for all 

parameters as shown in Table 5.13. 
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5.2.4 Validation of the predicted miRNA candidate using qPCR analysis 

 The expression of predicted miRNA obtained from the previous miRDeep2 analysis 

was validated using a quantitative polymerase chain reaction (qPCR) method. In this study, 

predicted miRNA candidate (miR-Rah1) with consensus mature sequence 5’ 

AGAUGGAUUAGAAAAGACGGUUGU 3’ as listed in Table 5.13 was chosen for validation. The 

miRNA-specific forward primer is identical in nucleotide sequence to the predicted miR-

Rah1 as detailed above. Briefly, 1 ng of sRNA-enriched samples previously extracted from 

each E. histolytica strain were directly tagged and reverse transcribed to cDNA using the 

QuantiMirTM Reverse Transcription kit (System Biosciences, USA). Then, obtained 

QauntiMirTM cDNAs were analysed using Power SYBR Green qPCR mastermix (Applied 

Biosystems, USA) with universal reverse and miRNA-specific forward primers. qPCR 

reaction was run in triplicate on the LightCycler® 480 Instrument II (Roche Life Science, 

USA) with the following conditions: 50 0C for 2 min, 95 0C for 10 min and 40 cycles of 95 0C 

for 15 sec and 60 0C for 1 min. Melting curve analysis was conducted after finishing the 

amplification step. The qPCR amplification curve and the details of crossing point in each 

RNA sample were demonstrated in Figure 5.35 and Table 5.14, respectively. 
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5.3 Results and Discussion 

5.3.1 Small RNA transcriptome profiling of the four E. histolytica strains from 

axenic culture 

 To test the hypothesis that sRNAs, and/or miRNAs play a role in post-transcriptional 

gene regulation in E. histolytica, these RNA populations were sequenced using the next-

generation sequencing technology. After adaptor removal and quality trimming, the 

obtained short sequence reads in each sample library were verified for their size 

distribution as demonstrated in Figures 5.5-5.8 for Rahman, PVBM08B, HM-1:IMSS and 

IULA:1092:1, respectively. It shows that the majority of  adaptor-removed cDNAs range 

from 20 to 28 nt in Rahman, 18 to 26 nt in PVBM08B and 23-26 nt in HM-1:IMSS and 

IULA:1092:1, indicating that these cDNA populations are most likely to contain miRNA-

derived cDNA molecules. However, a small peak of 13 nt was also seen in all libraries that 

might be partial degradation fragments of miRNAs generated during library preparation. 

 It was not possible to calculate the percentage of small RNAs with different RPKMs 

or to correlate the small RNA data with the genomic data because there was no available 

miRNA database in E. histolytica to use as a reference for miRNA identification. However, 

after using Bowtie2 to map short sequence reads to the HM-1:IMSS reference genome, 

sRNAs mapped to each gene were counted by the HTSeq-count software and sorted 

individually into sense and antisense orientation. Sense sRNAs could be degraded mRNA 

transcripts, therefore only antisense sRNA reads were analysed for their possible biological 

roles in gene regulation. 

 As shown in Table 5.4 and Figure 5.10, it is noticeable that across the four strains, 

most E. histolytica genes have no mapped antisense sRNA transcript and only a small 

fraction of genes (11.35-28.99 %) showed normalised antisense sRNAs greater than 50 

reads, possibly suggesting that antisense sRNAs might play a role in regulating a particular 

set of genes. 

Differential expression of sRNAs was analysed using the edgeR package for 

difference in the number of antisense sRNAs mapped to a particular target gene between 

strains. In contrast to the inter-library transcriptomic variation, both ‘within-group’ and 

‘between-group’ variations of sRNA transcriptomes among library samples are more 

pronounced as shown in Figures 5.11 and 5.12, respectively. However, sRNA transcriptomes 

within the same strain are less variable than those between different strains, indicating that 

inter-strain differences are greater than biological variation between individuals of the 
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same strain. The Pearson’s correlation-based heatmap in Figure 5.13 reveals a wide range of 

the Pearson’s correlation coefficients (r) from 0.487 to 1.000, reflecting larger differences in 

antisense sRNA transcriptomic profiles among the parasite strains compared to the inter-

library transcriptomic variation in Chapter 2.  

Consistently, the principal component analysis shows the clear separation of all 

sRNA libraries among the four strains, indicating that the inter-strain differences are strong. 

As demonstrated in Figure 5.14, the large intra-strain biological variation could be seen in 

Rahman and HM-1:IMSS strains due to the high difference in total HTSeq-count library size 

between the two replicates of the same strains as represented on the 1st component axis. 

The second component reveals more intra-strain variation in HM-1:IMSS and PVBM08B, 

consistent with the poorer correlation between two replicates demonstrated in the pairwise 

scatterplots in Figure 5.11. 

As shown in Figure 5.15, the dispersion plot exhibits high inter-library variation 

(high tagwise dispersions on the y-axis) especially in a small number of target genes with 

average high antisense sRNA levels (high log2CPM on the x-axis). Also, the common 

dispersion of all sRNA transcriptomes is equal to 0.2796, much higher than that of the whole 

transcriptomes (0.0095) in Chapter 2. One plausible interpretation is that a high variability 

of antisense sRNA transcript levels among samples could be found within genes with high 

tagwise dispersions, implying that such particular target genes were not equally regulated 

across all strains due to very different levels of antisense sRNAs mapped to a particular gene 

in each strain. In other words, it possibly suggests that antisense sRNAs are not equally 

expressed among the strains and there should be a unique set of target genes which are 

potentially regulated by a different set of antisense sRNAs in each strain. 

In contrast to the DGE analysis in Chapter 2, there are a small number of target 

genes showing significant difference in mapped antisense sRNA levels between two strains 

of contrast with a FDR corrected P-value < 0.05 as summarised in Figures 5.16 and 5.17 and 

Table 5.5. In agreement with the previous dispersion plot, it seems to be that differences in 

antisense sRNA levels between strains are present in a unique set of genes in the parasite 

transcriptome, possibly implying that differential expression of such target genes between 

strains might be regulated by these antisense sRNAs. 
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Table 5.4: Categorisation of all 8,333 E. histolytica genes into five groups based on their 

mapped antisense sRNA transcript level. All of 8,333 genes are categorised into 5 groups by 

different ranges of normalised HTSeq-count (antisense sRNA reads per kilobase of exon per million 

of total mapped reads) as follows: zero; low = less than 5; moderate = between 5 and 25; high = 

between 25 and 50; very high = greater than 50, respectively. The number of genes and 

corresponding percentages in each strain are shown below.  

 

             Strain 

normalised  
HTSeq- 
counts 

Rahman PVBM08B HM-1:IMSS IULA:1092:1 
 

No. of 
genes 

mapped 

 
Percentage 

 
No. of 
genes 

mapped 

 
Percentage 

 
No. of 
genes 

mapped 

 
Percentage 

 
No. of 
genes 

mapped 

 
Percentage 

0 2,837 34.05 % 5,317 63.81 % 3,942 47.31 % 4,232 50.79 % 

< 5 236 2.83  % 0 0 % 101 1.21 % 0 0 % 

5-25 2,829 33.95 % 541 6.49 % 1,802 21.62 % 516 6.19 % 

25-50 1,485 17.82 % 882 10.58 % 1,083 13.00 % 1,169 14.03 % 

> 50 946 11.35 % 1,593 19.12 % 1,405 16.86 % 2,416 28.99 % 
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Figure 5.10:  Percentage of genes with different antisense sRNA levels in Rahman (A), PVBM08B (B), HM-1:IMSS (C) and IULA:1092:1(D). Most 

of the genes (34-64%) in all four strains have no mapping with 21-23 nt antisense sRNA molecule as shown above. 
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Figure 5.11: ‘Within-group’ variation of sRNA transcriptomes between two biological 

replicates in each E. histolytica strain. Both X and Y graph axes represent the logarithm 

(base 10) of raw antisense sRNA read count per gene in each replicate. 
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Figure 5.12: ‘Between-group’ variation of sRNA transcriptomes among the four E. 

histolytica strains. Both X and Y graph axes represent the logarithm (base 10) of average 

antisense sRNA read count per mapped gene in each group. In overall, sRNA transcriptomic 

variations between groups of samples are more obvious than those within the same group 

previously illustrated in Figure 5.11.  
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Figure 5.13: Agglomerative hierarchical clustering of sRNA expression profiles within 

and among the four strain groups. The pairwise correlation patterns are shown in 16 

clusters between strains and in 4 sub-clusters between two biological replicates. The colour 

spectrum represents the Pearson’s correlation coefficients (r) scoring from 0.487 to 1.000. 

In overall, sRNA transcriptomes within the same strain are less variable than those between 

different strains. Compared to the inter-library variation of RNA-Seq data in Chapter 2, a 

wider range of correlation scores reflects larger differences in antisense sRNA 

transcriptomic profiles among the strains, suggesting that there are different sets of genes 

mapped to these sRNAs among the strains, implying a regulatory function of these antisense 

sRNAs.     
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Figure 5.14: Two and three dimensional principal component analysis of sRNA 

transcriptomes in the four E. histolytica strains. The log2 mapped antisense sRNA HTSeq-

count data for all 8,333 genes were employed to plot each sRNA library in comparison with 

all others.  The plots show a clear discrimination among the four strains.  The 1st component 

(X %) is dominated by the difference in total library size among replicates. Rahman and HM-

1:IMSS have more variable library sizes among replicates and this is seen in the 1st 

component of variation.  The second component shows more separation between HM-

1:IMSS and PVBM08B replicates than for the other two strains and reflects the poorer 

correlation seen in the pairwise scatterplots in Figure 5.11. 
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Figure 5.15: Relationship of inter-library variation for each sRNA target gene and its 

corresponding abundance (log2CPM). The aqua blue horizontal line represents the 

common dispersion, equal to 0.2796 across all 8 library samples, regardless of gene. The 

green curve line is the trended dispersion varied by transcript abundance. The black spots 

show the gene-by-gene (tagwise) dispersions. Interestingly, higher dispersions could be 

seen in genes with average high levels of antisense sRNA transcripts, indicating a high 

variability of sRNA transcript levels among samples could be found within such genes. 
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Figure 5.16: Relationship of the fold change (log2FC) and the average level of 

antisense sRNAs, i.e. counts per million mapped reads (log2CPM), for each contrast 

pair. Significant DE genes with FDR-adjusted P-value < 0.05 were highlighted in red. Black 

spots represent no significantly differential expression.  
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Figure 5.17: Distribution of the P-values for each contrast pair. Surprisingly, strong 

spikes of P-values are shown ranging from 0.2 to 0.4 in all histograms, indicating that the 

majority of genes between two strains have no significant difference in transcript levels of 

sRNAs which map to them. In other words, the number of genes with small P-values 

towards zero is less than 300 in all histograms, implying that only some genes in each strain 

would show the significantly higher antisense sRNA levels than another strain in a 

contrasting pair.  
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Table 5.5: The number of target genes showing significant difference (SD) in mapped antisense sRNA levels between two 

contrasting strains. Statistical significance was indicated if an FDR-adjusted P-value less than 0.05. Categories of ‘SD, higher in 1st’ and ‘SD, 

higher in 2nd’ mean the number of target genes with significantly higher antisense sRNA levels in 1st strain of contrast and in 2nd strain of 

contrast, respectively. Lower two rows of the table represent the number of target genes with significantly more than or equal to 4-fold higher 

antisense sRNA levels in 1st strain and 2nd strain of contrast pair, respectively.  

 

Category Rahman vs       

PVBM08B  

Rahman  vs   

HM-1:IMSS  

Rahman vs 

IULA:1092:1  

PVBM08B vs 

HM-1:IMSS  

PVBM08B vs 

IULA:1092:1 

HM-1:IMSS 

vs 

IULA:1092:1 

SD 94 120 137 112 52 138 

SD, higher in 1st 66 72 99 47 26 82 

SD, higher in 2nd 28 48 38 65 26 56 

SD, higher in 1st 

log2FC ≥ 2 

62 69 94 46 26 81 

SD, higher in 2nd 

log2FC ≥ 2 

28 47 38 63 26 55 
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5.3.2 Significant negative correlation between mRNA expression and antisense 

sRNA transcript levels suggests a regulatory function of sRNAs 

To investigate the relationship between antisense sRNAs and target gene expression, 

mRNA transcript levels of target genes having mapped antisense sRNAs greater than 50 

reads, represented by log2(normalised transcript HTSeq-counts) on the x-axis were plotted 

against their mapped antisense sRNA abundance, represented by log2(normalised antisense 

sRNA HTSeq-counts) on the y-axis as demonstrated in Figures 5.18A, 5.19A, 5.20A and 

5.21A for Rahman, PVBM08B, HM-1:IMSS and IULA:1092:1, respectively. Scatterplot 

analyses show significant inverse correlation between gene expression and antisense sRNA 

abundance in all the four strains. It is interesting that the Rahman strain exhibits the 

strongest correlation   (r = -0.5018, P-value < 2.2e-16) compared to the others, indicating that 

antisense sRNAs potentially mediate regulation of gene expression.   

 In a similar manner, mRNA transcript levels of target genes previously used, 

log2(normalised transcript HTSeq-counts), were plotted against the levels of sRNA 

transcripts mapped sense to each gene, represented by log2(normalised sense sRNA HTSeq-

counts) for all four strains as shown in Figures 5.18B, 5.19B, 5.20B and 5.21B. The 

scatterplots reveal the low to moderate degree of significant positive correlation (r = 

0.1004-0.3318) between gene expression values and sense sRNA abundance in the four 

strains. One plausible interpretation is that these sense sRNAs are likely to be degradation 

products as highly expressed genes remarkably exhibit high levels of undegraded mRNA 

and corresponding short sense RNA transcripts.  

 Also, the 20 most prevalent functionally annotated genes targeted by antisense 

sRNAs were individually listed for the four strains as shown in Tables 5.6-5.9. Bases on their 

functional gene annotations, it could be found that functional annotated target genes 

encoding BspA-like LRRPs, PKs, PK domain-containing proteins, Rab family GTPases and 

RhoGAP domain-containing proteins are ranked within the top five orders in all four strains. 

Moreover, these top five functional annotations constitute a large fraction of total number of 

target genes. It is interesting that these target genes are members of the multigene families. 

As mentioned in Chapter 2, a total of 114 genes encoding BspA-like LRRPs and 307 PKs 

were reported in the E. histolytica genome [25,197]. Hence, these findings suggest that E. 

histolytica potentially regulates the expression of gene members in the multigene families 

using sRNA-associated mechanisms. 

 Intriguingly, five prevalent functional annotations, i.e. serine-threonine-isoleucine 

rich protein (EhSTIRP), adaptor protein family protein, C2 domain-containing protein, 
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proteasome regulatory subunit and Ras family GTPase, were found only in the nonvirulent 

Rahman as listed in Table 5.6. Of these, EhSTIRPs and C2 domain-containing proteins have 

been previously proven for their functional roles in association with virulence and known to 

be highly expressed in the virulent strains [11,168]. Altogether, the strongest inverse 

correlation and the unique set of virulence-associated target genes in the nonvirulent 

Rahman strain indicate the possible functional role of antisense sRNAs in downregulating 

the expression of virulence-associated genes in the nonvirulent strains. 
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 Figure 5.18: Correlation between mRNA expression levels and abundance of sRNAs mapped to a particular gene in Rahman 

strain. In Part A, the strong inverse correlation (r = -0.5018, P-value < 2.2e-16) is demonstrated in a set of 946 genes with the number of 

antisense sRNA reads > 50. The slightly positive correlation (r = 0.1154, P-value = 0.0003) is observed between mRNA abundance and 

sense sRNA levels, possibly due to the partial mRNA degradation in this gene set, as demonstrated in Part B. The most striking difference 

in correlation coefficients between above two plots strongly suggests the putative role of antisense sRNAs in regulation of gene 

expression in Rahman. 
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Table 5.6: The 20 most frequent functionally annotated genes having antisense sRNA 

transcript levels greater than 50 reads per kilobase of exon per million of total 

mapped reads in Rahman strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

group Functional gene annotation Number 
of genes 

1. leucine-rich repeat protein, BspA family 26 

2. protein kinase domain-containing protein 10 

3. protein kinase, putative 10 

4. Rab family GTPase 8 

5. RhoGAP domain-containing protein 8 

6. DEAD/DEAH box helicase, putative 7 

7. DNA polymerase, putative 5 

8. heat shock protein 70, putative 5 

9. leucine-rich repeat-containing protein 5 

10. ubiquitin-conjugating enzyme family protein 5 

11. WD domain-containing protein 5 

12. deoxyuridine 5'-triphosphate nucleotidohydrolase 

domain-containing protein 

4 

13. serine-threonine-isoleucine rich protein, putative 4 

14. adaptor protein (AP) family protein 3 

15. C2 domain-containing protein 3 

16. myb-like DNA-binding domain-containing protein 3 

17. myotubularin, putative 3 

18. proteasome regulatory subunit, putative 3 

19. Ras family GTPase 3 

20. zinc finger protein, putative 3 
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Figure 5.19: Correlation between mRNA expression levels and abundance of sRNAs mapped to a particular gene in PVBM08B 

strain. In Part A, the significantly inverse correlation (r = -0.2987, P-value < 2.2e-16) is demonstrated in a set of 1,593 genes with the 

number of antisense sRNA reads > 50. The positive correlation coefficient (r = 0.2326, P-value < 2.2e-16) between mRNA levels and sense 

sRNA abundance suggests the partial mRNA degradation in this gene set as shown in Part B. 
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Table 5.7: The 20 most frequent functionally annotated genes having antisense sRNA 

transcript levels greater than 50 reads per kilobase of exon per million of total 

mapped reads in PVBM08B strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

group Functional gene annotation Number of 
genes 

1. Rab family GTPase 20 

2. protein kinase, putative 14 

3. RhoGAP domain-containing protein 13 

4. protein kinase domain-containing protein 12 

5. leucine-rich repeat protein, BspA family 9 

6. WD domain-containing protein 8 

7. zinc finger domain-containing protein 8 

8. protein tyrosine kinase domain-containing protein 7 

9. Rho guanine nucleotide exchange factor, putative 6 

10. acetyltransferase, GNAT family 5 

11. DNA polymerase, putative 5 

12. heat shock protein 70, putative 5 

13. ubiquitin-conjugating enzyme family protein 5 

14. zinc finger protein, putative 5 

15. acetyltransferase, putative 4 

16. ankyrin repeat protein, putative 4 

17. dual specificity protein phosphatase, putative 4 

18. helicase, putative 4 

19. LIM zinc finger domain-containing protein 4 

20. lipid phosphate phosphatase, putative 4 
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Figure 5.20: Correlation between mRNA expression levels and abundance of sRNAs mapped to a particular gene in HM-1:IMSS 

strain. In Part A, the significantly inverse correlation (r = -0.4281, P-value < 2.2e-16) is demonstrated in a set of 1,405 genes with the 

number of antisense sRNA reads > 50. The small agreement between mRNA and sense sRNA levels (r = 0.1004, P-value = 0.0001) is 

observed possibly due to the partial mRNA degradation in this gene set as seen in Part B. 
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Table 5.8: The 20 most frequent functionally annotated genes having antisense sRNA 

transcript levels greater than 50 reads per kilobase of exon per million of total 

mapped reads in HM-1:IMSS strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

group Functional gene annotation Number 
of genes 

1. Rab family GTPase 24 

2. leucine-rich repeat protein, BspA family 12 

3. protein kinase domain-containing protein 12 

4. protein kinase, putative 11 

5. RhoGAP domain-containing protein 10 

6. myb-like DNA-binding domain-containing protein 7 

7. Rho family GTPase 7 

8. RNA recognition motif domain-containing protein 6 

9. ubiquitin-conjugating enzyme family protein 6 

10. zinc finger protein, putative 6 

11. DNA polymerase, putative 5 

12. WD domain-containing protein 5 

13. acetyltransferase, GNAT family 4 

14. calmodulin, putative 4 

15. deoxyuridine 5'-triphosphate nucleotidohydrolase 

domain-containing protein 

4 

16. EF-hand calcium-binding domain-containing protein 4 

17. endonuclease/exonuclease/phosphatase family 

protein 

4 

18. leucine-rich repeat-containing protein 4 

19. LSM domain-containing protein 4 

20. Rab GTPase-activating protein, putative 4 
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 Figure 5.21: Correlation between mRNA expression levels and abundance of sRNAs mapped to a particular gene in IULA:1092:1 

strain. In Part A, the significantly inverse correlation (r = -0.1652, P-value = 2.929e-16) is demonstrated in a set of 2,416 genes with the 

number of antisense sRNA reads > 50 (A). The correlation coefficient between mRNA and sense sRNA levels is rather highly positive (r = 

0.3318, P-value < 2.2e-16), suggesting the remarkable mRNA degradation in this gene set as depicted in Part B. 
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Table 5.9: The 20 most frequent functionally annotated genes having antisense sRNA 

transcript levels greater than 50 reads per kilobase of exon per million of total 

mapped reads in IULA:1092:1 strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

group Functional gene annotation Number of 
genes 

1. protein kinase domain-containing protein  29 

2. protein kinase, putative  27 

3. Rab family GTPase 22 

4. leucine-rich repeat protein, BspA family 20 

5. RhoGAP domain-containing protein  16 

6. WD domain-containing protein 14 

7. tyrosine kinase, putative 13 

8. DEAD/DEAH box helicase, putative 10 

9. RNA recognition motif domain-containing protein  10 

10. Rho guanine nucleotide exchange factor, putative 9 

11. heat shock protein 70, putative  8 

12. Rap/Ran GTPase-activating protein, putative 8 

13. Ras guanine nucleotide exchange factor, putative  7 

14. thioredoxin, putative  7 

15. zinc finger domain-containing protein  7 

16. leucine-rich repeat-containing protein 6 

17. LIM zinc finger domain-containing protein 6 

18. myotubularin, putative 6 

19. protein tyrosine kinase domain-containing protein 6 

20. pumilio family RNA-binding protein 6 
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5.3.3 High abundance of antisense sRNAs in the nonvirulent Rahman strain is 

associated with the downregulation of virulence-associated gene expression 

 As shown in Figure 5.22, Venn diagrams show that a total of 31 target genes exhibit 

significantly higher levels of mapped antisense sRNAs in Rahman than the other three 

strains. These 31 target genes could be categorised into 7 functional groups (i.e. host cell 

killing and mucosal invasion, calcium binding, nucleic acid interaction, protein folding, 

signaling, others and hypothetical) based on their functional annotations as listed in Table 

5.10. It is interesting that the majority of these functional target genes have been 

characterised for their functional roles such as host cell killing and mucosal invasion, 

calcium binding, nucleic acid interaction and signaling as discussed in Chapter 2. Also, 29 of 

these 31 target genes show more than 4-fold higher antisense sRNA levels in Rahman, 

relative to the others as demonstrated in Figure 5.23. This indicates that the majority of 

sRNAs are remarkably different in their expression levels between nonvirulent and virulent 

strains.   

 Most members of these target genes such as genes encoding BspA-like LRRPs, 

DEAD/DEAH box helicases, Hsp70 chaperones, EhSTIRPs and C2 domain-containing 

proteins were found to be prevalent in the 20 most frequent functionally annotated genes 

that were targeted by greater than 50 reads of antisense sRNAs as listed in Table 5.6. It is 

striking that 15 of these 31 sRNA target genes as listed in Table 5.11 show significant 

downregulation in Rahman when compared to the other three strains, indicating that these 

antisense sRNAs play an important role in post-translational gene silencing. Also, this 

finding strongly supports that antisense sRNAs in the nonvirulent Rahman are most likely to 

play a key role in regulation of mRNA transcript levels, especially of virulence-associated 

genes.  

In contrast, no common gene in all three virulent strains shows significantly higher 

antisense sRNA level than Rahman as demonstrated in Figures 5.24 and 5.25, suggesting 

that sRNA-mediated regulation is less pronounced in these three virulent strains. As such, 

these findings are consistent with the 454 sequencing result of the previous study showing 

the large difference in the number of antisense sRNAs mapped to EhSTIRP1 gene 

(EHI_025700) between Rahman and HM-1:IMSS [92]. In other words, less stringency in 

sRNA-mediated regulation of virulence-associated gene expression in the virulent strains 

potentially results in gene overexpression and consequent pathogenic behaviours such as 

host tissue destruction and mucosal invasion. In agreement with the GO enrichment analysis 

in Chapter 2, these experimental findings strongly support that less regulatory stringency in 
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both signaling cascades and sRNA-mediated silencing potentially contribute to the virulence 

in this parasite. 

Screenshots from the Integrative Genomics Viewer (IGV) show sequenced sRNA 

reads and mRNA reads mapped to EhSTIRP gene EHI_004340 responsible for host cell 

adhesion and cytotoxicity as illustrated in Figures 5.26-5.29 for Rahman, PVBM08B, HM-

1:IMSS and IULA:1092:1, respectively. The inverse correlation was observed between gene 

expression and abundance of small RNAs in all four axenic E. histolytica strains. For Rahman 

in Figure 5.26, it shows a high level of sRNA reads (~290 antisense reads) mapped to the 

EhSTIRP gene EHI_004340 but exhibits very low EhSTIRP mRNA expression. Conversely, the 

two strains associated with virulence (i.e. PVBM08B and HM-1:IMSS) have no mapping of 

any small RNA to the EhSTIRP gene but show very high EhSTIRP gene expression. 

Surprisingly, the less virulent strain IULA:1092:1 has very few sRNA reads (~8.5 antisense 

reads) mapped to the EhSTIRP gene but shows the moderate gene expression with marked 

reduction in EhSTIRP mRNA transcripts relative to PVBM08B and HM-1:IMSS, implying that 

antisense sRNAs are very effective in gene silencing. 

In addition, the majority of sRNA transcripts are oriented in the antisense direction 

and predominantly map to the 5’ end of the EhSTIRP gene as shown in blue in the IGV 

alignment. These features have been previously reported in an abundant population of 27 nt 

antisense sRNAs with 5’-polyphosphate termini in E. histolytica and found to be enriched in 

the Argonaute immunoprecipitated sample, first described by Zhang et al., 2008 [85]. 

Furthermore, these 27 nt 5’-polyphosphorylated sRNAs also constitute a large fraction of 

the sRNA transcriptome and possess a biased 5’-G sequence [85]. Zhang et al., 2011 

demonstrated that such sRNAs play a crucial role in long term transcriptional gene silencing 

through a siRNA-mediated pathway in the genetically engineered E. histolytica G3 strain 

[86].  

In this study, the experiment of size selection by 3% Agarose Pippin Prep was 

designed based on the expected sequence length of miRNA molecules (21-23 nt). However, 

the majority of the size-fractionated sRNAs have sequence length distributions at 

approximately 23-26 nt, slightly less than the 27 nt antisense sRNAs previously reported 

[85,86,92]. Taken together, these findings strongly indicate that the 23-26 nt antisense 

sRNAs in this study are not miRNAs as firstly hypothesised, and these antisense sRNAs are 

likely to play a key role in regulating virulence-associated gene expression via the siRNA 

pathway as previously mentioned. 
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Figure 5.22: The number of target genes with significantly higher antisense sRNA 

transcript levels (FDR-adjusted P-value < 0.05) in Rahman than thother three virulent 

strains (i.e. PVBM08B, HM-1:IMSS and IULA:1092:1). A total of 31 target genes 

regardless of their log2FC show higher antisense sRNA levels in Rahman than all the others. 

 

 

 

 

 

 

 

 

 

 

 

 

 



             

             

  

 

   206 

   206 

 

 

Figure 5.23: The number of target genes with significantly more than or equal to 4-

fold higher antisense sRNA transcript levels (log2FC ≥ 2) in Rahman than the others. A 

total of 29 target genes show markedly high levels of antisense sRNA transcripts in Rahman 

with log2FC ≥ 2. 
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Table 5.10: Summary of 31 target genes showing markedly high antisense sRNA levels in 

Rahman (29 members with log2FC ≥ 2 and 2 members (*) with log2FC < 2), assigned to 7 

functional categories with their functional gene annotations and AmoebaDB_IDs.  

 

Gene 

Category 

Functional gene annotation Number 

of genes 

AmoebaDB_ID 

Host cell 

killing and 

mucosal 

invasion 

serine-threonine-isoleucine rich 

protein 

2 

 

EHI_004340, EHI_025700 

leucine-rich repeat protein, BspA 

family 

5 EHI_015120, EHI_095060, 

EHI_100700, EHI_127710, 

EHI_194290 

Calcium 

binding 

C2 domain-containing protein 2 EHI_059860, EHI_069320  

Nucleic acid 

interaction 

DEAD/DEAH box helicase, putative 1 

 

EHI_119620 

 RNA-binding protein, putative 1 EHI_053170 

Protein 

folding 

heat shock protein 70, putative 1 EHI_133950, EHI_150770 

Signaling Rap/Ran GTPase-activating protein, 

putative 

1 EHI_108750 

 dedicator of cytokinesis domain-

containing protein 

1 EHI_185270 

Others acetate kinase 1 EHI_170010(*) 

CXXC-rich protein 1 EHI_050970 

Hypothetical N/A 14 EHI_004560, EHI_010280, 

EHI_012080, EHI_020890, 

EHI_021580, EHI_074080, 

EHI_098720, EHI_113790, 

EHI_119790, EHI_165190, 

EHI_168830(*), EHI_174500, 

EHI_180410, EHI_188910 

 Total  31  
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Figure 5.24: The number of target genes known to have significantly higher antisense 

sRNA transcript levels (FDR-adjusted P-value < 0.05) in the three virulent strains than 

the Rahman. In these three virulent strains, no common target gene shows higher antisense 

sRNA level, compared to Rahman. 
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Figure 5.25: The number of target genes with significantly more than or eqaul to 4-

fold higher antisense sRNA transcript levels (log2FC ≥ 2) in the three virulent strains 

than Rahman. 
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Figure 5.26: The Integrative Genomics Viewer (IGV) showing the population of small RNA transcripts mapped to the 

very lowly expressed EhSTIRP gene EHI_004340 in the nonvirulent Rahman strain. Strikingly, the majority of sRNA 

transcripts are oriented in the antisense direction (blue colour) and predominantly map to the 5’ end of gene. The adjacent gene 

(EHI_004230) encoding guanine nucleotide regulatory protein shows high mRNA expression with very few sense sRNAs, 

probably degraded mRNA fragments. The high level of antisense sRNAs mapped to the EhSTIRP gene EHI_004340 is associated 

with downregulation of the EHI_004340 mRNA transcripts, implying their possible role in gene silencing [92]. 
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 Figure 5.27: The Integrative Genomics Viewer (IGV) showing no sRNA mapping to the highly expressed EhSTIRP gene 

EHI_004340 in the virulent PVBM08B strain. 
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 Figure 5.28: The Integrative Genomics Viewer (IGV) showing no sRNA mapping to the highly expressed EhSTIRP gene 

EHI_004340 in the virulent HM-1:IMSS strain. 
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 Figure 5.29: The Integrative Genomics Viewer (IGV) showing very few antisense sRNA transcripts mapped to the 

moderately expressed EhSTIRP gene EHI_004340 in the virulent IULA:1092:1 strain. 
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5.3.4 Small RNAs partially contribute to genome-wide transcriptomic variation 

between nonvirulent and virulent  E. histolytica strains 

 

 Comparing with the whole transcriptome results in Chapter 2, it was found that only 

31 target genes show significant differences in the number of antisense sRNAs mapped to a 

particular gene between nonvirulent Rahman and the other three virulent strains as listed 

in Table 5.10, whilst a total of 2,159 genes, that comprise 1,162 and 997 genes with 

upregulation and dowregulation in the three virulent strains, exhibit significant modulation 

in their gene expression levels between nonvirulent Rahman and the other three virulent 

strains.  

As shown in Figure 5.30, only 15 genes show significantly higher mRNA levels but 

have lower levels of mapped antisense sRNAs in all three virulent strains relative to Rahman 

whereas the other 16 genes with no significant difference in mRNA expression among the 

four E. histolytica strains exhibit markedly higher antisense sRNA levels in Rahman.  

Interestingly, only approximately 1.29% (15/1,162) of total genes showing lower mRNA 

expression in Rahman have remarkably high antisense sRNA levels, implying antisense 

sRNA molecules partially contribute to differential expression among the four E. histolytica 

strains.   

In summary, these results show that transcriptomic variations among E. histolytica 

strains are affected by diverse gene regulatory elements such as the sRNA-mediated RNAi 

pathway and other genomic factors including copy number variation, segmental genome 

duplication, gene gain or gene loss and even single nucleotide polymorphisms. Besides the 

siRNA-associated silencing, other epigenetic mechanisms, e.g. DNA methylation and histone 

modification, have also been reported to be involved in transcriptional gene silencing in      

E. histolytica [144-146]. Conclusively, my experimental findings with the previously 

published evidences enable us to understand that the parasite exploits many cellular tools 

for regulating their transcriptomes in a synergistic manner in response to the host 

environmental stress and in the long term adaptation [85,86,92,93,144-146]. 
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Figure 5.30: The number of genes having significantly higher mRNA levels and lower 

antisense sRNA levels in all three virulent strains relative to Rahman (n=15) and the 

number of genes having no difference in expression among the four E. histolytica 

strains but showing markedly higher levels of antisense sRNAs in Rahman (n=16). The 

intersection of gene members in each coloured area is based on AmoebaDB_IDs.  

Abbreviations are as follows: R>PHI_sRNA = the number of genes with higher antisense 

sRNA transcripts in Rahman than the other three virulent strains (i.e. PVBM08B, HM-1:IMSS 

and IULA:1092:1); PHI>R_sRNA = the number of genes with higher antisense sRNA 

transcripts in the three virulent strains than Rahman; R>PHI_mRNA = the number of genes 

with higher mRNA expression in Rahman than the others; PHI>R_mRNA = the number of 

genes with higher mRNA expression in the three virulent strains than Rahman. 

 

The details of the two unique gene sets mentioned above are summarised in Tables 5.11 and 

5.12.  
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Table 5.11: Summary of 15 target genes having higher mRNA expression in all three 

virulent strains and showing markedly high antisense sRNA levels in Rahman with log2FC ≥ 

2, assigned to 7 functional categories with their functional gene annotations and 

AmoebaDB_IDs.  

 

Gene 

Category 

Functional gene annotation Number 

of genes 

AmoebaDB_ID 

Host cell 

killing and 

mucosal 

invasion 

serine-threonine-isoleucine rich 

protein  

2 

 

EHI_004340, EHI_025700  

leucine-rich repeat protein, BspA 

family 

2 EHI_015120, EHI_095060 

Calcium 

binding 

C2 domain-containing protein 1 EHI_069320 

Nucleic acid 

interaction 

RNA-binding protein, putative 1 EHI_053170 

Protein 

folding 

heat shock protein 70, putative 2 EHI_133950, EHI_150770 

Signaling Rap/Ran GTPase-activating protein, 

putative 

1 EHI_108750 

 dedicator of cytokinesis domain-

containing protein 

1 EHI_185270 

Others CXXC-rich protein 1 EHI_050970 

Hypothetical N/A 4 EHI_010280, EHI_074080, 

EHI_180410, EHI_188910 

 Total 15  
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Table 5.12: Summary of 16 target genes having no differential expression among the four E. 

histolytica strains but showing markedly high antisense sRNA levels in Rahman (14 

members with log2FC ≥ 2 and 2 members (*) with log2FC < 2) with log2FC ≥ 2, assigned to 5 

functional categories with their functional gene annotations and AmoebaDB_IDs.  

 

Gene 

Category 

Functional gene annotation Number 

of genes 

AmoebaDB_ID 

Host cell 

killing and 

mucosal 

invasion 

leucine-rich repeat protein, BspA 

family 

3 

 

EHI_100700, EHI_127710, 

EHI_194290 

Calcium 

binding 

C2 domain-containing protein 1 EHI_059860 

Nucleic acid 

interaction 

DEAD/DEAH box helicase, putative 1 EHI_119620 

Others acetate kinase 1 EHI_170010(*) 

Hypothetical N/A 10 EHI_004560, EHI_010280,  

EHI_020890, EHI_021580,  

EHI_098720, EHI_113790, 

EHI_119790, EHI_165190, 

EHI_168830(*), EHI_174500 

 Total 16  
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5.3.5 Discovery of novel miRNA candidates by miRDeep2 software suggests the 

existence of regulatory miRNA in E. histolytica  

Based on its biogenesis, miRNAs have remarkably distinctive characteristics in 

structure [290,291,293]. Their precursors called ‘pri-miRNA’ are transcribed by RNA 

polymerase II in the nucleus and fold back into imperfect stem-loop hairpin structures. The 

pri-miRNAs are further processed into resulting pre-miRNAs with approximately 70 nt in 

length by the microprocessor complex mainly consisting of RNase III and Drosha. Then, the 

pre-miRNAs are exported into the cytoplasm through the nuclear pore complex. In the 

cytoplasm, the loop regions are cleaved from the stem portions of the pre-miRNAs by the 

RNase III enzyme Dicer. After Dicer processing, the remaining stem of the pre-miRNAs is 

composed of one strand of mature miRNA with approximately 19-23 nt and the other as a 

star sequence, miRNA*.  

De et al., 2006 previously reported seventeen putative miRNA candidates in E. 

histolytica using a computational method [95]. Briefly, hairpin repeats were identified 

throughout the E. histolytica genome (1,819 contigs). Approximately 15,000 repeats were 

further determined for folding energy, structural filters, i.e. length and gap. Using the 

nucleotide BLAST analysis, the obtained repeats were then eliminated if having homology 

over 97% over the length of 45 nt or more since they would be considered as a part of 

coding DNA sequence. Also, the repeats with less than 60% similarity with the coding mRNA 

were filtered out as they seem unlikely to anneal with the target mRNAs. Finally, 17 

distinctive repeats which only one strand of them aligned with the coding sequence were 

identified as putative miRNA candidates (miR-1 to miR-17) [95].  

Using these seventeen candidates as novel predicted miRNAs, the nucleotide BLAST 

analysis can identify 32 targets allowing for no more than 2 gap mismatches. The majority of 

target genes are identified as ‘hypothetical’ while some are involved in signaling pathways 

and encystation process [95]. Also, several machinery proteins involved in miRNA- and 

siRNA-mediated gene silencing such as AGO, DEAD/DEAH box helicase, RdRp as well as 

RNase III Dicer have been previously identified [95,295]. So, it is highly promising that a 

miRNA machinery might be found in this parasite.   

Mar-Aguilar et al., 2013 reported the potential 199 miRNA candidates that were 

identified from hairpin-forming precursors in the sequenced small RNA dataset and 

validated by microarray analysis in the HM-1:IMSS strain [94]. Also, 9 of 10 selected miRNA 

candidates were amplified by real-time PCR, indicating the reliability of novel miRNA 

prediction [94]. In Mar-Aguilar et al.’s study, a total of 66 miRNA target genes were 
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predicted by the miRanda algorithm and found to be involved in many cellular processes, 

for example: transcriptional regulation, e.g. zinc finger protein; signal transduction, e.g. Ras 

family GTPase, Rap/Ran GTPase-activating protein and protein kinase; calcium-dependent 

regulation, e.g. C2 domain-containing protein; receptor-mediated endocytosis, e.g. clathrin 

adaptor complex small chain [94]. Although this study was the first experimental 

identification using the sRNA sequencing data with filtering reads matched with other types 

of non-coding sRNAs, such 199 novel miRNAs were predicted mainly based on the ability of 

their putative precursor to form the hairpin secondary structure, prone to be contaminated 

with other background hairpins. Therefore, the novel miRNA prediction in this parasite 

needs to be further elucidated. 

Recently, the advance of deep sequencing technology has allowed researchers to 

predict novel miRNAs from small RNA transcriptomes based on the unique characteristics 

of miRNA biogenesis as explained in Figure 5.9. The miRDeep2 package was designed to 

check the compatibility between raw sequenced small RNA reads and predicted pre-miRNA 

precursors using the probabilistic algorithm based on positions, frequencies of sequenced 

reads matched with Dicer cleavage and thermodynamic stability [297]. Therefore, 

miRDeep2 allows users to identify both known and novel predicted miRNAs and also 

provides the false-positive rate and statistical significances of energetic stability. 

In this study, miRDeep2 was applied to predict novel miRNA candidates from the 

sRNA sequencing data obtained from each sRNA library. The processed read FASTA files 

were aligned against the HM-1:IMSS genomic reference in comparison to the known 

miRNAs and precursors of sibling species D. discoideum to identify the novel miRNA 

precursors with probabilistic scoring, secondary structure and minimal free energy as 

detailed in Table 5.13. Only potential precursors that could form a stem-loop hairpin and 

had mapped to short sequence reads in a manner compatible with Dicer cleavage were 

analysed.  A total of three different potential miRNA candidates: miR-Rah1, miR-Rah2 and 

miR-PVB2, as shown in Figures 5.31-5.34 were identified separately from three sRNA 

libraries: Rahman_01, Rahman_02 and PVBM08B_2, respectively.  

Comparing with the previous studies, these three novel miRNA candidates in this 

study do not match with those miRNA candidates previously published [94,95]. This could 

be due to the different algorithms used in the former studies which investigated solely the 

presence of hairpin forming repeats with appropriate folding energy in the genomic DNA 

sequence. Moreover, purely computational analysis might encounter a large number of false 

positive candidates due to background hairpins and needs experimental validations which 

are complicated for rare miRNA transcripts.  
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Differently, the novel miRNA candidates in this study were predicted from the deep 

sequencing data using the probabilistic scoring algorithm as explained before. Essentially, 

the miRDeep software package was designed to use the sequenced reads as a guideline to 

excise the plausible miRNA precursors from the genomic sequences with statistical 

confidence according to a highly characteristic model of miRNA biogenesis. Moreover, deep-

sequencing data can detect the transcripts with a vast dynamic range and also illustrate the 

number of reads assigned to each particular genomic position, enabling us to re-evaluate for 

the appropriate mature and star sequences. Therefore, this expression-based identification 

could provide us much more promising miRNA signatures in E. histolytica, compared to the 

previous reports.  

Using the same genomic HM-1:IMSS reference, however, the prediction data exhibit 

the novel miRNA candidates only for Rahman and PVBM08B libraries, suggesting that such 

particular candidates are variable in expression among the strains. Based on the important 

criteria for miRNA annotation previously published, reliability of miRNA candidates are 

mainly based on the presence of multiple sequenced reads with homogeneity at the 5’ end 

and a two nucleotide overhang at the 3’ end of the pre-miRNA precursor [298,300]. Also, the 

mature sequence reads must be consistent with 5’ processing by starting at the same 

nucleotide position as explained in Figure 5.9. Differently, 16 of the first 22 nt positions in 

the animal miRNAs typically exhibit complementarity with the star sequence whilst the 

plant miRNAs possess more stringent complementary base pairing between miRNA and star 

arms with no more than 4 mismatches. Herein, the miR-Rah1 candidate shows all qualified 

attributes mentioned above as illustrated in Figure 5.32, therefore this predicted miRNA 

candidate was chosen for the validation. The qPCR amplication curve reveals the expression 

of this predicted miRNA in E. histolytica strains, as shown in Figure 5.35 and Table 5.14 

De et al., 2006 reported thirty-two targets of putative predicted miRNAs using the 

nucleotide BLAST analysis, showing base pairing greater than or equal to 21 nt and allowing 

one or two mismatches [95]. In this study, I have tried to identify the potential miRNA 

targets by applying the miR-Rah1 sequence as a query in the nucleotide BLAST (available at 

http://www.ncbi.nlm.nih.gov/BLAST/) and found that a DNA polymerase gene 

(EHI_164190) shows a perfect sense-antisense match with this query, implying the possible 

regulatory role of this putative miRNA. Against the Pfam database, this DNA polymerase 

gene possesses the DNA polymerase type B domain which has significant sequence 

similarity with a known viral polymerase domain [187]. So, this domain sequence hit 

suggests that this putative miRNA potentially plays an adaptive role in inhibiting 

overexpression of virus-derived genes.  However, in animals, one miRNA molecule can have 

http://www.ncbi.nlm.nih.gov/BLAST/
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a vast variety of different mRNA targets by partial complementary base pairing between the 

seed region (6-8 nt) of the 5’ end of miRNA and the target sequence. Moreover, one 

particular target might be regulated by different species of miRNAs [294,301,302]. 

Therefore, this partial complementarity and combinatorial nature of miRNA regulation 

make the miRNA target prediction more complicated than previously thought. 

 Hence, in this study I have identified novel miRNA candidates from the small RNA-

Seq data and demonstrated the presence of one putative miRNA named ‘miR-Rah1’ in the 

transcriptomes of E. histolytica strains using the qPCR analysis. Taken together with the 

evidence of RNAi-associated machinery proteins, these experimental findings suggest that 

miRNA-based regulation exists in E. histolytica and potentially play a role in modulating 

parasite gene expression.  
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Table 5.13: Details of miRNA candidates predicted by the miRDeep2 software. The loop nucleotide sequences are highlighted in the grey box. 

 
 

miRNA candidate 

 
 

miRDeep2  

score 

estimated 

probability 

that the 

miRNA 

candidate 

is a true 

positive 

   
 
  total 
  read  
 count 

 

mature 

read 

count 

 

loop 

read 

count 

 

star 

read 

count 

 
 

significant 

randfold 

P-value 

 

precursor 

coordinate 

 
 

Sequences  

(consensus mature sequence, consensus star sequence and  

consensus precursor sequence) 

Rahman_1 library          
 miR-Rah1 1.4  0.94 ± 0.14 30 30 0 0 yes DS571214: 

 4948-5003 

(+)  

and 

DS571763: 

3032-3087  

(-) 

Consensus mature sequence (24 nt):   

5’ agauggauuagaaaagacgguugu 3’ 

        Consensus star sequence (25 nt):   

5’ uuccaucuuuucauaauccuucuua 3’ 

        Consensus precursor sequence (55 nt): MFE = -73.05  kJ·mol-1 

5’agauggauuagaaaagacgguuguuguuuuuuccaucuuuucauaauccuucuua 3’ 

Rahman_2 library          

miR-Rah2 1.6 0.51 ± 0.50 2 1 0 1 yes DS571259: 

    13503-13548  

(-) 

Consensus mature sequence (20 nt):  

5’ gggcuguaggacuauugacu 3’ 

        Consensus star sequence (20 nt):   

5’ uauauugcugguccuacauc 3’ 

        Consensus precursor sequence (45 nt): MFE = -61.17  kJ·mol-1 

5’ uauauugcugguccuacaucaaguggggcuguaggacuauugacu 3’ 
  PVBM08B_2 library          

  miR-PVB2 0.7  0.63± 0.49 2 1 0 1 yes DS571345: 

 26315-26363  

(+) 

Consensus mature sequence (20 nt):   

5’ ugauagucguaaauguuaua 3’ 

        Consensus star sequence (23 nt):   

5’ caauguuuauggcaugucugaua 3’ 

        Consensus precursor sequence (48 nt): MFE = -49.33  kJ·mol-1 

5’ugauagucguaaauguuauacaaaacaauguuuauggcaugucugaua 3’ 
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Figure 5.31: Predicted secondary structures of the novel miRNA candidate precursors obtained by miRDeep2 

analysis. The relative nucleotide positions of the mature miRNA strand, star sequence and loop portion in the pre-miRNA 

hairpin structure are represented by different colours as illustrated in the figure. The mimimal free energy values are -73.05, 

-61.17 and -49.33 kJ·mol-1 for pre-miRNA hairpins of miR-Rah1, miR-Rah2 and miR-PVB2, respectively. 
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Figure 5.32: The 1st predicted pre-miRNA precursor structure, miR-Rah1, with its 

mature miRNA (red) and star sequences (sky blue).  MiR-Rah1 is 24 nt in length (5’ 

AGAUGGAUUAGAAAAGACGGUUGU 3’) and located on two scaffolds: DS571214: 4948-5003 

(+) and DS571763: 3032-3087 (-). The number of sequencing reads aligned to the particular 

genomic position is reported as above. 
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Figure 5.33: The 2nd predicted pre-miRNA precursor structure, miR-Rah2, with its 

mature miRNA (red) and star sequences (violet).  MiR-Rah2 is 20 nt in length (5’ 

GGGCUGUAGGACUAUUGACU 3’) and located on scaffold DS571259: 13503-13548 (-). The 

number of sequencing reads aligned to the particular genomic position is reported as above. 
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Figure 5.34: The 3rd predicted pre-miRNA precursor structure, miR-PVB2, with its 

mature miRNA (red) and star sequences (violet).  MiR-PVB2 is 20 nt in length (5’ 

UGAUAGUCGUAAAUGUUAUA 3’) and located on scaffold: DS571345: 26315-26363 (+). The 

number of sequencing reads aligned to the particular genomic position is reported as above. 
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Figure 5.35: qPCR amplification curve for validation of miR-Rah1 candidate expression in three E. histolytica strains (i.e. 

Rahman, PVBM08B and HM-1:IMSS). 
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Table 5.14: Details of crossing point (Cp) and standard deviation (SD Cp) in each RNA 

sample group. 

Total RNA sample  Crossing point    

(Cp) 

Mean Cp ± SD Cp 

Rahman 
  

Rahman_1 20.54  

Rahman_2 20.75 20.66 ± 0.11 

Rahman_2 20.69  

PVBM08B 
  

PVBM08B_1 20.2  

PVBM08B_2 20.19 20.17 ± 0.04 

PVBM08B_3 20.13  

HM-1:IMSS 
  

HM-1:IMSS_1 23.2  

HM-1:IMSS_2 22.9 23.09 ± 0.17 

HM-1:IMSS_3 23.17  

IULA:1092:1 
  

IULA:1092:1_1 N/A  

IULA:1092:1_2 N/A N/A 

IULA:1092:1_3 N/A  

 

N.B. IULA samples were not sufficient for this qPCR experiment due to their very low 

concentration.  
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5.4 Concluding remarks 

 

 This present study demonstrates the comparative analysis of small RNA expression 

in the transcriptomes of four laboratory cultured E. histolytica strains using the Illumina 

MiSeq technology. The size-fractionated sRNA sequencing data unveil the contrary 

relationship between target gene expression levels and antisense sRNA abundance, strongly 

suggesting the regulatory function of antisense sRNAs. It is intriguing that members of the 

multigene families, encoding BspA-like LRRPs, PKs, Rab family GTPases and RhoGAP 

domain-containing proteins, constitute a large fraction of total number of sRNA target genes 

in all four strains, implying that antisense sRNAs potentially facilitate in switching on/off 

gene expression of these multigene family members in E. histolytica.  

 Furthermore, I found that the differential sRNA regulation of virulence-associated 

gene expression, i.e. EhSTIRPs, BspA-like LRRPs and C2 domain-containing proteins, occurs 

among E. histolytica strains, indicating that sRNA-mediated post-transcriptional regulation 

may be important in shaping the parasite virulence in E. histolytica. Consistent with 

previous publications, the findings of this study indicate that antisense sRNAs are likely to 

downregulate expression of virulence-associated genes in a strain-specific manner through 

the siRNA pathway [85,86,92]. 

Due to a limited number of sRNA target genes, it can be inferred that substantial 

global transcriptomic variability between E. histolytica strains is as a result of combinatorial 

regulation including gene copy number differences, sequence polymorphisms as well as 

epigenetic processes such as sRNA-mediated silencing, DNA methylation and histone 

modification. In addition, this study identified the novel putative miRNA from the sRNA 

sequencing data using the biogenesis-based bioinformatic analysis and qPCR validation, 

implying that miRNA potentially play a regulatory role in E. histolytica.   
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Chapter 6: Final conclusions and Further work 

 

6.1 Overall perspectives 

Amoebiasis remains to be a challenge of the global public health issues. In 1980s, the 

global mortality was estimated up to 100,000 deaths per year as a third rank after malaria 

and schistosomiasis [3,81]. Recombinant vaccines against the parasite Gal/GalNAc lectin 

have been developed and found to be most promisingly protective against both intestinal 

and hepatic amoebiasis in animal models, however clinical trials for efficacy in humans need 

to be determined [81,303]. As E. histolytica infection occurs worldwide, especially in many 

developing countries and the spectrum of clinical manifestations ranges from asymptomatic 

carriers to extraintestinal amoebic abscess, genome-wide characterisation of virulence-

associated genes and pathways in the E. histolytica strains may advance the understanding 

of molecular mechanisms of virulence modulation which could be applied to predict the 

disease prognosis and improve treatment strategies as well as reduce the transmission rate. 

As such, this project was designed to explore some of genomic and transcriptomic 

differences between E. histolytica strains as well as investigate how the trophozoites 

regulate levels of gene expression towards their differential virulence. 

 In this study, the transcriptomic profilings were done in the four axenically cultured 

laboratory-adapted strains as an axenic parasite culture can provide a substantial amount of 

parasite RNA transcripts, without any bacterial RNA contamination, suitable for 

downstream analysis. Moreover, different parasite strains were cultured with the same 

axenic culture media and conditions, therefore this in vitro study enables us to rule out 

other influencing factors, which are commonly found in the in vivo condition such as 

microbiotic interaction, non-enriched intestinal environment, host immune attack, etc.  

6.2 Modulations of gene expression in in vitro and in vivo are associated 

with differential virulence between E. histolytica strains 

As previously published, the substantial changes in the transcriptome were 

observed in trophozoites isolated from infected colon, compared to in vitro culture [77,82]. 

Capability to adapt in the host intestinal environment was accomplished by increased 

expression of some signaling genes such as transmembrane kinases, Ras and Rho family 

GTPases as well as calcium-binding proteins. Additionally, transcriptional modulations of 

genes involved in energy metabolism, signal transduction, bacterial killing, DNA binding as 

well as virulence were found in trophozoites in the in vivo infection [77,82]. 
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Correspondingly, characterising transcriptomic landscapes of the four laboratory-adapted 

strains by RNA-Seq in this study can reveal considerable differences of expression of gene 

members involved in signal transduction, actin cytoskeleton dynamics, proteasomal 

degradation, DNA binding process as well as response to stress between nonvirulent and 

virulent strains and also provide the evolutionary explanation for the transcriptomic 

diversity in relation to their genetic differences (i.e. SNPs, CNVs and gene gain or gene loss) 

as previously discussed in Chapter 2 and 4.  

Based on functional characterisation, the majority of the upregulated and 

downregulated protein domains in the three virulent strains are considerably different. 

Most members of prevalent upregulated domains are implicated in various functions 

including signal transduction, actin dynamics, protein degradation, protein-protein 

interaction, transcriptional control and phagocytosis whilst downregulated domains are 

mainly involved in signal transduction, protein-protein interaction and transcriptional 

control. As such, the increased virulence phenotype of parasites requires a vast variety of 

cellular functions as well as selectively transcriptional control of genes involved in 

virulence. Also, this implies that different fates of signal transduction as well as protein-

protein interaction seem to be a key determining factor for different networks of cellular 

functions among the strains, resulting in difference in virulence. 

Essentially, the genome-wide analyses in this study can point out that differences in 

constitutive expression profiles among the E. histolytica strains are associated with their 

virulence variability. Therefore, this promising transcriptomic data would enable 

researchers to precisely target virulence-associated genes and associated pathways as well 

as to study the effect of host environmental stimuli in modulating expression of such genes 

by comparing with their constitutive expression levels.  

6.3 Genomic plasticity and sRNA-mediated regulation are important 

mechanisms of virulence modulation in E. histolytica  

 As demonstrated in Chapter 2, it is noteworthy that sequence polymorphisms of 

genes involved in the host-parasite interaction is significantly correlated with the variation 

in expression levels among strains, reflecting that the nucleotide changes under positive 

selection would contribute to the transcriptional variability due to the possible alterations 

in the binding of transcriptional factors and associated regulatory elements. However, it 

seems to be that transcriptional variation due to sequence divergence is limited as overall 

single nucleotide diversity is rather low throughout the parasite genome [70]. 
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 Contrastedly, complete genome sequencing of E. histolytica strains unveiled large 

differences in gene copy numbers among the genomes, suggesting that a high degree of 

genomic plasticity and variation in the number of gene family members potentially result in 

transcriptomic variation across the strains [70]. Expectedly, the genome-wide correlation 

study in Chapter 4 of this study reveals the positive relationship between gene copy number 

variation and transcriptomic variability, strongly suggesting that variation in gene copy 

number is likely to be a key regulation of gene expression levels among the parasite strains. 

Consistently, gene copy number variation is common in other human protozoan parasites 

such as Trypanosomes and Leishmania, and found to be associated with different biological 

attributes among parasite strains, suggesting that copy number variation is a potentially 

important mechanism in generating genomic diversity and transcriptional modulation of 

gene expression in almost exclusively asexual parasite group [269-271,280,281] . 

Besides the effect of genomic diversity, transcriptomic changes are potentially 

determined in part by the host environmental stimuli. As previously in vivo studied by 

Gilchrist et al., 2006, genes accounting for ~5.2% of the genome were found to be modulated 

in the transcriptomes of HM-1:IMSS trophozoites isolated from the mice colon on Days 1 

and 29 after inoculation, implying that trophozoites have regulations of gene expression in 

both short-term and long-term responses to host stimuli [77]. Taken together, it can be 

inferred that global transcriptomic variability in E. histolytica strains are mainly influenced 

in a combinatorial manner by both the genomic variation and the external host stimuli as 

shown in Figure 6.  

 Moreover, the 5th chapter in this study demonstrates the sRNA-mediated gene 

regulation towards differential virulence in E. histolytica strains, indicating that virulence is 

determined in part at the post-transcriptional level. Using the biogenesis-based 

bioinformatic analysis, the novel putative miRNA candidates (miR-Rah1, miR-Rah2 and 

miR-PVB2) were also predicted, suggesting the possible role in regulating parasite gene 

expression. Ultimately, the experimental findings in this present study strongly indicate that 

genomic plasticity and sRNA-mediated regulation are important cellular mechanisms of 

virulence modulation in E. histolytica parasite.  
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6.4 Future plan 

 As previously published, addition of polyadenylated sequence to the 3’ end of 

siRNAs by in vitro transcription can apparently increase their gene silencing activity in  

MCF-7 breast cancer cell line, suggesting a possible role of 3’-polyadenylated sequence in 

the RNAi pathway [304]. Recently, 3’-polyadenylated antisense sRNAs were discovered and 

found to be associated with stronger silencing effect in E. histolytica (personal 

communication, Singh et al.). Consistent with the findings of Singh et al., antisense sRNA 

population of the four strains in this study could be divided into two distinct groups as 

illustrated in Figures 5.18A, 5.19A, 5.20A and 5.21A of Chapter 5. As such, it could be 

postulated that these two subpopulations of antisense sRNAs possibly possess different 

length of 3’-polyadenylated tail, resulting in their different silencing efficiency. However, the 

sRNA libraries in this present study were size-fractionated prior to sequencing, providing a 

narrow peak size of sequenced reads (23 to 28 nt). Thus, the next research project will 

explore the length distribution of 3’-polyadenylated tail in a larger-sized sRNA population 

and determine whether difference in the silencing activity of antisense sRNAs is directly 

related to their 3’ tail length. This investigation will help us understand post-transcriptional 

gene regulatory mechanisms in E. histolytica more throughly. 

This study also identified one novel putative miRNA, i.e. miR-Rah1, expressed in E. 

histolytica strains, suggesting that miRNA-based regulation potentially facilitate 

transcriptomic modulation in this parasite. Interestingly, miR-Rah1 shows perfect 

complementarity with a gene encoding viral-type DNA polymerase (EHI_164190), 

suggesting that E. histolytica potentially has molecular defence mechanisms for inhibiting 

viral replication. However, miRNA target prediction requires a specific tool with specialised 

algorithm due to the complexity of miRNA combinatorial regulation as  mentioned before 

[294,301,302]. Therefore, accurate miRNA target prediction will be another future step that 

can provide the advanced knowledge of post-transcriptional regulation towards the 

pathogenesis and virulence in this parasite.   
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Figure 6: Interrelationship between genome diversity and transcriptomic difference 

and host environmental stimuli. 
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Appendix Table 1.1: Functional genes with transcriptomic upregulation 

(log2FC ≥ 2) in all three virulent strains: HM-1:IMSS (n=395), PVBM08B 

(n=229) and IULA:1092:1 (n=386). These upregulated transcripts can be 

assigned into 41 functional gene annotations as listed below. 

 

 

group Functional gene annotation 
Number of upregulated genes, log2FC ≥ 2 

HM-1:IMSS PVBM08B IULA:1092:1 

1. leucine-rich repeat protein, BspA family 31 21 23 

2. AIG1 family protein 18 7 5 

3. protein kinase domain-containing protein 8 3 6 

4. surface antigen ariel1, putative 6 2 4 

5. regulator of nonsense transcripts, putative 6 2 3 

6. heat shock protein 70, putative 5 3 3 

7. zinc finger protein, putative 3 3 4 

8. serine-threonine-isoleucine rich protein, putative 3 3 2 

9. cysteine proteinase, putative 3 1 3 

10. iron-sulfur flavoprotein, putative 3 1 3 

11. tyrosine kinase, putative 2 2 5 

12. CXXC-rich protein 2 2 3 

13. proteoglycan-4 precursor, putative 2 2 2 

14. DNA polymerase, putative 2 2 1 

15. peroxiredoxin 2 1 7 

16. 26S proteinase regulatory subunit, putative 2 1 3 

17. Skp1 family protein 2 1 2 

18. acetyltransferase, putative 2 1 1 

19. dentin sialophosphoprotein precursor, putative 2 1 1 

20. heat shock protein 70, mitochondrial, putative 2 1 1 

21. predicted protein 2 1 1 

22. RhoGAP domain-containing protein 2 1 1 

23. mucin-like protein 1 precursor, putative 1 1 2 

24. 60S ribosome subunit biogenesis protein NIP7, 

putative 

1 1 1 

25. cdc48-like protein, putative 1 1 1 

26. chaperone clpB, putative 1 1 1 

27. Dedicator of cytokinesis domain-containing 

protein 

1 1 1 

28. dextranase precursor, putative 1 1 1 

29. Fe-S cluster assembly protein NifU, putative 1 1 1 

30. heat shock protein, putative 1 1 1 
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Appendix Table 1.1: Functional genes with transcriptomic upregulation 

(log2FC ≥ 2) in all three virulent strains: HM-1:IMSS (n=395), PVBM08B 

(n=229) and IULA:1092:1 (n=386). (Continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

group Functional gene annotation 
Number of upregulated genes, log2FC ≥ 2 

HM-1:IMSS PVBM08B IULA:1092:1 

31. kinetochore protein Spc25 domain-containing 

protein 

1 1 1 

32. molybdenum cofactor synthesis protein3, putative 1 1 1 

33. Myb family DNA-binding protein, SHAQKYF family 1 1 1 

34. PP-loop family protein 1 1 1 

35. protein tyrosine kinase domain-containing protein 1 1 1 

36. Rap/Ran GTPase-activating protein, putative 1 1 1 

37. replication protein, pseuudogene, putative 1 1 1 

38. serine acetyltransferase 1 1 1 1 

39. tRNA-Leu (anticodon: CAA) 1 1 1 

40. WD domain-containing protein 1 1 1 

41. hypothetical protein 267 149 283 

 Total 395 229 386 
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Appendix Table 1.2: Functional genes with transcriptomic upregulation 

(log2FC ≥ 2), only in two virulent strains: HM-1:IMSS (n=25) and PVBM08B 

(n=23). These upregulated transcripts can be assigned into 20 functional gene 

annotations as listed below. 

 

 

 

 

 

 

group Functional gene annotation 
Number of upregulated 

genes, log2FC ≥ 2 

HM-1:IMSS PVBM08B 

1. Ras family GTPase 3 2 

2. C2 domain-containing protein 2 2 

3. NADPH-dependent FMN reductase domain-

containing protein 2 2 

4. P-glycoprotein-2, putative 2 1 

5. 60S ribosomal protein L6, putative 1 1 

6. 78 kD aglucose-regulated protein homolog 

precursor, putative 1 1 

7. coiled-coil domain-containing protein 25, putative 1 1 

8. DNA mismatch repair protein Msh2, putative 1 1 

9. endonuclease V, putative 1 1 

10. ethanolamine phosphotransferase, putative 1 1 

11. HEAT repeat domain-containing protein 1 1 

12. hydrolase, alpha/beta fold family domain-

containing protein 1 1 

13. peptidyl-prolyl cis-trans isomerase, FKBP-type , 

putative 1 1 

14. pre-mRNA cleavage factor I 25 kDa subunit, 

putative 1 1 

15. protein phosphatase domain-containing protein 1 1 

16. rab GDP dissociation inhibitor alpha, putative 1 1 

17. Ras-like protein 1, putative 1 1 

18. signal recognition particle 54 kDa protein, putative 1 1 

19. splicing factor 3B subunit 1, putative 1 1 

20. U3 small nucleolar ribonucleo protein MPP10, 

putative 1 1 

 Total 25 23 
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Appendix Table 1.3: Functional genes with transcriptomic upregulation 

(log2FC ≥ 2), only in two virulent strains: HM-1:IMSS (n=40) and IULA:1092:1 

(n=39). These upregulated transcripts can be assigned into 31 functional gene 

annotations as listed below. 

 

 

group Functional gene annotation 
Number of upregulated 

genes, log2FC ≥ 2 

HM-1:IMSS IULA:1092:1 

1. P-glycoprotein 5, putative 3 2 

2. endonuclease/exonuclease/phosphatase family 

protein 3 1 

3. glutamic acid-rich protein precursor, putative 2 3 

4. cylicin-2, putative 2 2 

5. Rab family GTPase 2 2 

6. RNA recognition motif domain-containing protein 2 2 

7. cysteine synthase A, putative 2 1 

8. long-chain-fatty-acid--CoA ligase, putative 1 2 

9. serine/threonine kinase, putative 1 2 

10. (2r)-phospho-3-sulfolactate synthase, putative 1 1 

11. actobindin, putative 1 1 

12. ADP-ribosylation factor 1, putative 1 1 

13. alcohol dehydrogenase, putative 1 1 

14. aldose reductase, putative 1 1 

15. D-tyrosyl-tRNA(Tyr) deacylase, putative 1 1 

16. Dopey domain protein, putative 1 1 

17. eukaryotic translation initiation factor 4 gamma, putative 1 1 

18. G-box-binding factor, putative 1 1 

19. GTP-binding protein EhRabX29, putative 1 1 

20. histone H2A, putative 1 1 

21. HMG box protein 1 1 

22. malic enzyme, putative 1 1 

23. mucin-5AC, putative 1 1 

24. myb-like DNA-binding domain-containing protein 1 1 

25. protein kinase, putative 1 1 

26. ribosomal RNA methyltransferase, putative 1 1 

27. serine-rich 25 kDa antigen protein, putative 1 1 

28. ThiF family protein 1 1 

29. TolA-like protein, putative 1 1 

30. transporter, auxin efflux carrier (AEC) family 1 1 

31. trichohyalin, putative 1 1 

 Total 40 39 
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Appendix Table 1.4: Functional genes with transcriptomic upregulation 

(log2FC ≥ 2), only in two virulent strains: PVBM08B (n=8) and IULA:1092:1 

(n=8). These upregulated transcripts can be assigned into 8 functional gene 

annotations as listed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   group Functional gene annotation 
Number of upregulated 

genes, log2FC ≥ 2 

PVBM08B IULA:1092:1 

1. 26S proteinase regulatory subunit S10B, putative 1 1 

2. cysteine surface protein, putative 1 1 

3. dTDP-D-glucose 4,6-dehydratase, putative 1 1 

4. glucosamine 6-phosphate N-acetyltransferase. 

putative 1 1 

5. multidrug resistance-associated protein, putative 1 1 

6. poly(ADP-ribose) polymerase, putative 1 1 

7. protein with DnaJ and myb domains 1 1 

8. Viral A-type inclusion protein repeat, putative 1 1 

 Total 8 8 
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Appendix Table 1.5: Functional genes with transcriptomic upregulation 

(log2FC ≥ 2), only in virulent HM-1:IMSS strain (n=43). These upregulated 

transcripts can be assigned into 40 functional gene annotations as listed 

below. 

 

 

   group Functional gene annotation Number of 

upregulated genes, 

log2FC ≥ 2 

1. actin 3 

2. high mobility group (HMG) box domain-containing 

protein 2 

3. 3' exoribonuclease family protein 1 

4. 60S ribosomal protein L30, putative 1 

5. 60S ribosomal protein L4, putative 1 

6. AIG family protein 1 

7. aldehyde-alcohol dehydrogenase 2, putative 1 

8. ARP2/3 complex 21 kDa subunit, putative 1 

9. ATP-binding cassette, sub-family C, putative 1 

10. bacterial transferase hexapeptide family protein 1 

11. bifunctional short chain isoprenyl diphosphate 

synthase, putative 1 

12. calmodulin, putative 1 

13. cortexillin II, putative 1 

14. cysteine desulfurase, putative 1 

15. deoxyuridine 5'-triphosphate nucleotidohydrolase 

domain-containing protein 1 

16. diacylglycerol kinase, putative 1 

17. DNA methyltransferase, putative 1 

18. DNA mismatch repair protein mutS, putative 1 

19. dual specificity protein phosphatase, putative 1 

20. F-box domain-containing protein 1 

21. formate/nitrite transporter family protein, putative 1 

22. glutamine synthetase, putative 1 

23. heat shock protein 90, putative 1 

24. I/LWEQ domain protein 1 

25. immediate-early protein, putative 1 

26. kinase, PfkB family 1 

27. nucleosome-binding protein 1, putative 1 

28. Nucleotide-binding protein , putative 1 

29. RecF/RecN/SMC domain-containing protein 1 

30. Rho family GTPase 1 
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Appendix Table 1.5: Functional genes with transcriptomic upregulation 

(log2FC ≥ 2), only in virulent HM-1:IMSS strain (n=43). (Continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   group Functional gene annotation Number of 

upregulated genes, 

log2FC ≥ 2 

31. Rho guanine nucleotide exchange factor, putative 1 

32. serine-rich protein C30B4.01c precursor, putative 1 

33. small GTPase RhoA, putative 1 

34. sulfotransferase, putative 1 

35. suppressor protein SRP40, putative 1 

36. transcription initiation factorTFIID subunitTaf73, 

putative 1 

37. transketolase, chloroplast, putative 1 

38. translation initiation factor eIF-1A, putative 1 

39. ubiquitin-conjugating enzyme family protein 1 

40. vacuolar sorting protein 26, putative 1 

 Total 43 
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Appendix Table 1.6: Functional genes with transcriptomic upregulation 

(log2FC ≥ 2), only in virulent PVBM08B strain (n=9). These upregulated 

transcripts can be assigned into 9 functional gene annotations as listed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   group Functional gene annotation Number of 

upregulated genes, 

log2FC ≥ 2 

1. 20 kDa antigen, putative 1 

2. actinin-like protein, putative 1 

3. calcineurin catalytic subunit A, putative 1 

4. casein kinase II regulatory subunit family protein 1 

5. cell division control protein 42, putative 1 

6. glutamic acid-rich protein, putative 1 

7. mannosyltransferase, putative 1 

8. valyl-tRNA synthetase, putative 1 

9. viral IAP-associated factor homolog, putative 1 

 Total 9 
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Appendix Table 1.7: Functional genes with transcriptomic upregulation 

(log2FC ≥ 2), only in virulent IULA:1092:1 strain (n=45). These upregulated 

transcripts can be assigned into 41 functional gene annotations as listed 

below.  

 

 

 

   group Functional gene annotation Number of 

upregulated genes, 

log2FC ≥ 2 

1. cyst wall-specific glycoprotein Jacob 3 

2. 60S ribosomal protein L3, putative 2 

3. zinc finger domain-containing protein 2 

4. Acid sphingomyelinase-like phosphodiesterase, 

putative 1 

5. beta-amylase, putative 1 

6. caldesmon, putative 1 

7. deoxyuridine 5'-triphosphate nucleotidohydrolase, 

mitochondrial precursor, putative 1 

8. DNA repair helicase, putative 1 

9. dynamin-1-like protein, putative 1 

10. dynamin-like protein 1 

11. glycosyltransferase, putative 1 

12. HAD hydrolase, family IA, variant 3 1 

13. heat shock protein70, hsp70A2, putative 1 

14. heat shock transcription factor, putative 1 

15. hemolysin-3, putative 1 

16. histone H3, putative 1 

17. homeobox protein, putative 1 

18. interaptin, putative 1 

19. iron-containing superoxide dismutase 1 

20. malate dehydrogenase, putative 1 

21. midasin, putative 1 

22. mitotic chromosome and X-chromosome-associated 

protein, putative 1 

23. Mob1/phocein family protein 1 

24. molybdenum cofactor sulfurase, putative 1 

25. phospholipase D, putative 1 

26. phospholipid-transporting P-type ATPase, putative 1 

27. PQ loop repeat protein 1 

28. pumilio family RNA-binding protein 1 
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Appendix Table 1.7: Functional genes with transcriptomic upregulation 

(log2FC ≥ 2) in virulent IULA:1092:1 strain (n=45). (Continued) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   group Functional gene annotation Number of 

upregulated genes, 

log2FC ≥ 2 

29. Ras family protein 1 

30. RNA-binding protein, putative 1 

31. rubrerythrin, putative 1 

32. S-adenosylmethionine synthetase, putative 1 

33. serine palmitoyltransferase, putative 1 

34. serine/threonine- protein phosphatase PP-Z, 

putative 1 

35. Signal recognition particle receptor alpha subunit, 

putative 1 

36. syntaxin, putative 1 

37. transitional endoplasmic reticulum ATPase, 

putative 1 

38. transporter, major facilitator family 1 

39. tRNA-Glu (anticodon: TTC) 1 

40. U2 snRNP auxiliary factor small subunit, putative 1 

41. villidin, putative 1 

 Total 45 
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Appendix Table 2.1: Functional genes with transcriptomic downregulation 

(log2FC ≤ -2) in all three virulent strains: HM-1:IMSS (n=120), PVBM08B 

(n=155) and IULA:1092:1 (n=123). These downregulated transcripts can be 

assigned into 16 functional annotations as listed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

group Functional gene annotation 
Number of downregulated genes, log2FC ≤ -2 

HM-1:IMSS PVBM08B IULA:1092:1 

1. AIG1 family protein 4 7 5 

2. myb-like DNA-binding domain-containing protein 3 6 4 

3. WD domain-containing protein 3 3 2 

4. leucine-rich repeat protein, BspA family 3 1 4 

5. protein kinase domain-containing protein 2 2 1 

6. protein tyrosine kinase domain-containing protein 2 1 1 

7. rodhanase-like domain-containing protein 1 2 2 

8. surface antigen ariel1, putative 1 1 4 

9. 60S ribosomal protein L38, putative 1 1 1 

10. longevity-assurance family protein 1 1 1 

11. metallo-beta-lactamase superfamily protein 1 1 1 

12. nuclear movement protein, putative 1 1 1 

13. RhoGAP domain-containing protein 1 1 1 

14. tyrosine kinase, putative 1 1 1 

15. ubiquitin-conjugating enzyme family protein 1 1 1 

16. hypothetical protein 94 125 93 

 Total 120 155 123 
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Appendix Table 2.2: Functional genes with transcriptomic downregulation 

(log2FC ≤ -2), only in two virulent strains: HM-1:IMSS (n=10) and PVBM08B 

(n=9). These downregulated transcripts can be assigned into 6 functional 

gene annotations as listed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

group Functional gene annotation 
Number of downregulated 

genes, log2FC ≤ -2 

HM-1:IMSS PVBM08B 

1. cyst wall-specific glycoprotein Jacob 3 3 

2. Rab family GTPase 3 2 

3. chitinase, putative 1 1 

4. dual specificity protein phosphatase, putative 1 1 

5. Ras GTPase-activating protein, putative 1 1 

6. serine-rich 25 kDa antigen protein, putative 1 1 

 Total 10 9 
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Appendix Table 2.3: Functional genes with transcriptomic downregulation 

(log2FC ≤ -2), only in two virulent strains: HM-1:IMSS (n=15) and IULA:1092:1 

(n=16). These downregulated transcripts can be assigned into 11 functional 

gene annotations as listed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

group Functional gene annotation 
Number of downregulated 

genes, log2FC ≤ -2 

HM-1:IMSS IULA:1092:1 

1. galactose-specific lectin light subunit, putative 2 3 

2. cysteine proteinase, putative 2 2 

3. methionine gamma-lyase 2 1 

4. serine/threonine protein kinase, putative 2 1 

5. heat shock protein 70, putative 1 2 

6. Ras family GTPase 1 2 

7. N-system amino acid transporter 1, putative 1 1 

8. Rap/Ran GTPase-activating protein, putative 1 1 

9. Ribosomal protein S30, putative 1 1 

10. RNA recognition motif domain-containing protein 1 1 

11. TBC domain-containing protein 1 1 

 Total 15 16 
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Appendix Table 2.4: Functional genes with transcriptomic downregulation 

(log2FC ≤ -2), only in two virulent strains: PVBM08B (n=7) and IULA:1092:1 

(n=5). These downregulated transcripts can be assigned into 5 functional 

gene annotations as listed below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   group Functional gene annotation 
Number of downregulated 

genes, log2FC ≤ -2 

PVBM08B IULA:1092:1 

1. acetyltransferase, GNAT family 2 1 

2. thioredoxin, putative 2 1 

3. Brix domain-containing protein 1, putative 1 1 

4. U5 small nuclear ribonucleoprotein subunit, putative 1 1 

5. zinc finger domain-containing protein 1 1 

 Total 7 5 
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Appendix Table 2.5: Functional genes with transcriptomic downregulation 

(log2FC ≤ -2), only in virulent HM-1:IMSS strain (n=16). These downregulated 

transcripts can be assigned into 16 functional gene annotations as listed 

below. 

 

 

 

 

 

 

 

 

   group Functional gene annotation Number of 

downregulated  

genes, log2FC ≤ -2 

1. 1-O-acylceramide synthase precursor, putative 1 

2. ADP-ribosylation factor 1, putative 1 

3. ADP-ribosylation factor, putative 1 

4. aldehyde-alcohol dehydrogenase 2, putative 1 

5. cysteine surface protein, putative 1 

6. EF-hand calcium-binding domain-containing protein 1 

7. heat shock protein 90, putative 1 

8. leucine-rich repeat-containing protein 1 

9. methylene-fatty-acyl-phospholipid synthase, putative 1 

10. nitroreductase family protein 1 

11. peroxiredoxin 1 

12. ser/thr protein phosphatase family protein 1 

13. steroid 5-alpha reductase, putative 1 

14. transporter, major facilitator family 1 

15. tRNA -methyltransferase catalytic subunit, putative 1 

16. tyrosine- protein kinase 2, putative 1 

 Total 16 
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Appendix Table 2.6: Functional genes with transcriptomic downregulation 

(log2FC ≤ -2), only in virulent PVBM08B strain (n=49). These downregulated 

transcripts can be assigned into 44 functional gene annotations as listed 

below. 

 

 

   group Functional gene annotation Number of 

downregulated 

genes, log2FC ≤ -2 

1. galactose-inhibitable lectin 170 kDa subunit, putative 3 

2. mucin-like protein 1 precursor, putative 3 

3. acetyltransferase, putative 2 

4. 40S ribosomal protein S4, putative 1 

5. 60S ribosomal protein L37 1 

6. actin, putative 1 

7. actinin-like protein, putative 1 

8. acyl-CoA synthetase, putative 1 

9. alkyl sulfatase, putative 1 

10. amino acid transporter, putative 1 

11. ATP-binding cassette protein, putative 1 

12. calcineurin catalytic subunit A, putative 1 

13. chitinase Jessie, putative 1 

14. cysteine proteinase, pseudogene 1 

15. diaphanous protein, putative 1 

16. DNA mismatch repair protein mutL, putative 1 

17. dTDP-D-glucose 4,6-dehydratase, putative 1 

18. elongation factor 1-alpha 1 1 

19. elongation factor 2 1 

20. F-actin capping protein subunit beta, putative 1 

21. glucosamine--fructose-6-phosphate aminotransferase, 

putative 1 

22. glycogenphosphorylase, putative 1 

23. grainin, putative 1 

24. heat shock protein 70, mitochondrial, putative 1 

25. heat shock protein, putative 1 

26. hypothetical transmembrane protein 1 

27. inositol polyphosphate kinase, putative 1 

28. NAD-specific glutamate dehydrogenase, putative 1 

29. NADPH-dependent FMN reductase domain-containing 

protein 1 

30. peroxiredoxin, putative 1 
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Appendix Table 2.6: Functional genes with transcriptomic downregulation 

(log2FC ≤ -2), only in virulent PVBM08B strain. (Continued) 

 

 

 

 

 

 

 

 

   group Functional gene annotation Number of 

downregulated  

genes, log2FC ≤ -2 

31. phosphoserine aminotransferase, putative 1 

32. plasma membrane calcium-transporting ATPase, 

putative 1 

33. Ras family GTPase, pseudogene 1 

34. Ras guanine nucleotide exchange factor, putative 1 

35. S1 RNA-binding domain-containing protein 1 

36. serine/threonine protein phosphatase PP2A catalytic 

subunit, putative 1 

37. serine/threonine- protein kinase C823.03, putative 1 

38. sucrose transporter, putative 1 

39. syntaxin, putative 1 

40. transketolase, putative 1 

41. translation initiation factor 4e, putative 1 

42. type A flavoprotein, putative 1 

43. ubiquitin carboxyl-terminal hydrolase domain-

containing protein 1 

44. USP6 N-terminal-like protein, putative 1 

 Total 49 
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Appendix Table 2.7: Functional genes with transcriptomic downregulation 

(log2FC ≤ -2), only in virulent IULA:1092:1 strain (n=17). These 

downregulated transcripts can be assigned into 16 functional gene 

annotations as listed below. 

   group Functional gene annotation Number of 

downregulated 

genes, log2FC ≤ -2 

1. protein kinase, putative 2 

2. calcium-binding protein 1 (EhCBP1) 1 

3. carbohydrate degrading enzyme, putative 1 

4. carbonic anhydrase, putative 1 

5. casein kinase II regulatory subunit family protein 1 

6. cyclin family protein 1 

7. DNA-directed RNA polymerase subunit N, putative 1 

8. endo-1,4-beta-xylanase, putative 1 

9. endonuclease V, putative 1 

10. high-affinity potassium uptake transporter, putative 1 

11. hydrolase, carbon-nitrogen family 1 

12. N-acetylmuraminidase pseudogene 1 

13. NAD(P) transhydrogenase subunit alpha, putative 1 

14. NLI interacting factor-like phosphatase domain-

containing protein 1 

15. Rho family GTPase 1 

16. synapsin, putative 1 

 Total 17 
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Appendix Table 3: Summary of intraspecific single nucleotide polymorphisms (SNPs) found in 98 DE genes retrieved from 

Figure 2.19, across all E. histolytica strains available in the AmoebaDB version 4.2 (http://amoebadb.org/amoeba/)  

 

AmoebaDB_ID Annotation Total 

SNPs 
NonSynonymous 

SNPS 
Synonymous 

SNPs 
Non-coding 

SNPs 
Stop Codon 

SNPs 
Nonsyn/Syn 

SNP ratio 

SNPs  

per kb 

(CDS) 

EHI_012330 serine-threonine-isoleucine rich 

protein, putative 

80 54 26 0 0 2.08 10.14 

EHI_025700 serine-threonine-isoleucine rich 

protein, putative 

61 40 21 0 0 1.9 7.81 

EHI_004340 serine-threonine-isoleucine rich 

protein, putative 

56 42 14 0 0 3 7.89 

EHI_018010 DNA polymerase, putative 32 12 20 0 0 0.6 13.10 

EHI_164190 DNA polymerase, putative 30 14 15 0 1 0.93 7.81 

EHI_150770 heat shock protein 70, putative 30 22 8 0 0 2.75 19.04 

EHI_129470 AIG1 family protein 25 17 8 0 0 2.13 28.53 

EHI_119040 AIG1 family protein, putative 24 19 5 0 0 3.8 25.88 

EHI_018840 leucine-rich repeat protein, BspA 

family 

21 13 8 0 0 1.63 12.5 

EHI_102380 leucine-rich repeat protein, BspA 

family 

21 15 5 0 1 3 19.66 

EHI_072850 AIG1 family protein, putative 20 10 4 6 0 2.5 40.65 

EHI_127710 leucine-rich repeat protein, BspA 

family 

15 9 6 0 0 1.5 10.14 

EHI_133950 heat shock protein 70, putative 12 5 7 0 0 0.71 7.63 

EHI_022600 NADPH-dependent FMN reductase 

domain-containing protein 

12 4 7 0 1 0.57 19.80 

EHI_005260 surface antigen ariel1, putative 12 7 5 0 0 1.4 10.78 

EHI_102600 AIG1 family protein 11 10 1 0 0 10 20.48 

EHI_069320 C2 domain-containing protein  11 3 0 8 0 0 19.40 

EHI_127700 heat shock protein 70, 

mitochondrial, putative 

11 7 3 0 1 2.33 6.12 

EHI_142700 endonuclease V, putative 10 6 3 1 0 2 13.88 

EHI_034610 leucine-rich repeat protein, BspA 

family 

8 8 0 0 0 0 7.51 

http://amoebadb.org/amoeba/
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Appendix Table 3: Summary of intraspecific single nucleotide polymorphisms (SNPs) found in 98 DE genes retrieved from 

Figure 2.19, across all E. histolytica strains. (Continued)     

AmoebaDB_ID Annotation Total 

SNPs 

NonSynonymous 

SNPS 

Synonymous 

SNPs 

Non-coding 

SNPs 

Stop Codon 

SNPs 

Nonsyn/Syn 

SNP ratio 

SNPs  

per kb 

(CDS) 

EHI_105370 leucine-rich repeat protein, BspA 

family 

8 6 2 0 0 3 10.41 

EHI_123830 DNA mismatch repair protein Msh2, 

putative 

7 1 6 0 0 0.17 3.69 

EHI_126550 AIG1 family protein, putative 6 4 1 0 1 4 10.52 

EHI_161300 leucine-rich repeat protein, BspA 

family 

6 6 0 0 0 0 11.36 

EHI_084730 multidrug resistance-associated 

protein, putative 

6 1 5 0 0 0.2 10.25 

EHI_186600 P-glycoprotein-2, putative 6 4 2 0 0 2 4.83 

EHI_058520 Ras family GTPase 6 6 0 0 0 0 10.10 

EHI_055140 ethanolamine phophotransferase, 

putative 

5 2 3 0 0 0.67 12.25 

EHI_058550 Ras family GTPase, pseudogene 5 4 0 0 1 0 8.29 

EHI_050150 HEAT repeat domain-containing 

protein 

4 1 3 0 0 0.33 1.94 

EHI_145840 peroxiredoxin 4 2 1 1 0 2 5.69 

EHI_021780 heat shock protein 70, putative 3 3 0 0 0 0 3.10 

EHI_022730 signal recognition particle 54 kDa 

protein, putative 

3 0 3 0 0 0 3.84 

EHI_031350 60S ribosome subunit biogenesis 

protein NIP7, putative 

2 1 1 0 0 1 3.62 

EHI_059860 C2 domain-containing protein 2 1 1 0 0 1 3.18 

EHI_021490 coiled-coil domain-containing 

protein 25, putative 

2 1 1 0 0 1 3.94 

EHI_164890 Rab GDP dissociation inhibitor alpha, 

putative 

2 1 1 0 0 1 1.51 

EHI_199570 RhoGAP domain-containing protein 2 0 2 0 0 0 1.50 

EHI_049170 splicing factor 3B subunit 1, putative 2 1 1 0 0 1 0.72 
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Appendix Table 3: Summary of intraspecific single nucleotide polymorphisms (SNPs) found in 98 DE genes retrieved from 

Figure 2.19, across all E. histolytica strains. (Continued)     

 

AmoebaDB_ID Annotation Total 

SNPs 
NonSynonymous 

SNPS 
Synonymous 

SNPs 
Non-coding 

SNPs 
StopCodon 

SNPs 
Nonsyn/Syn 

SNP ratio 

SNPs  

per kb 

(CDS) 

EHI_093580 60S ribosomal protein L6, putative 1 1 0 0 0 0 1.62 

EHI_118600 calcineurin catalytic subunit A, 

putative 

1 1 0 0 0 0 0.65 

EHI_051870 peptidyl-prolyl cis-trans isomerase, 

FKBP-type, putative 

1 1 0 0 0 0 0.87 

EHI_077000 pre-mRNA cleavage factor I 25 kDa 

subunit, putative 

1 1 0 0 0 0 1.40 

EHI_048860 U3 small nucleolar ribonucleo protein 

MPP10, putative 

1 1 0 0 0 0 1.54 

EHI_092070 WD domain-containing protein 1 1 0 0 0 0 1.62 

EHI_148530 leucine-rich repeat protein, BspA 

family 

0 0 0 0 0 0 0 

EHI_144590 protein kinase domain-containing 

protein 

0 0 0 0 0 0 0 

EHI_128800 hypothetical protein 67 52 15 0 0 3.47 17.69 

EHI_077290 hypothetical protein, conserved 54 30 24 0 0 1.25 19.39 

EHI_087110 hypothetical protein, conserved 41 38 3 0 0 12.67 47.45 

EHI_130550 hypothetical protein 36 15 21 0 0 0.71 23.62 

EHI_047510 hypothetical protein 30 21 9 0 0 2.33 18.90 

EHI_062320 hypothetical protein 26 16 9 0 1 1.78 18.47 

EHI_028770 hypothetical protein 13 9 4 0 0 2.25 18.59 

EHI_097750 hypothetical protein, conserved 12 4 8 0 0 0.5 11.2 

EHI_001730 hypothetical protein 11 7 4 0 0 1.75 15.60 

EHI_011260 hypothetical protein, conserved 11 8 3 0 0 2.67 15.27 

EHI_193690 hypothetical protein 11 9 2 0 0 4.5 9.96 

EHI_193790 hypothetical protein, conserved 11 5 4 1 1 1.25 16.51 

EHI_017780 hypothetical protein 10 3 7 0 0 0.43 9.36 

EHI_145460 hypothetical protein 10 2 8 0 0 0.25 19.60 
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Appendix Table 3: Summary of intraspecific single nucleotide polymorphisms (SNPs) found in 98 DE genes retrieved from 

Figure 2.19, across all E. histolytica strains. (Continued)  

   

AmoebaDB_ID Annotation Total 
SNPs 

NonSynonymous 
SNPS 

Synonymous 
SNPs 

Non-coding 
SNPs 

StopCodon 
SNPs 

Nonsyn/Syn 
SNP ratio 

SNPs  
per kb 
(CDS) 

EHI_077510 hypothetical protein 10 6 4 0 0 1.5 9.08 

EHI_101410 hypothetical protein 9 4 5 0 0 0.8 13.95 

EHI_033890 hypothetical protein 9 5 4 0 0 1.25 13.95 

EHI_142680 hypothetical protein 8 3 5 0 0 0.6 12.40 

EHI_046150 hypothetical protein 8 3 2 1 2 1.5 23.59 

EHI_142690 hypothetical protein 8 7 1 0 0 7 17.77 

EHI_112390 hypothetical protein 7 4 3 0 0 1.33 12.08 

EHI_033450 hypothetical protein 7 3 3 1 0 1 6.78 

EHI_145490 hypothetical protein 7 6 1 0 0 6 7.77 

EHI_087740 hypothetical protein 6 0 6 0 0 0 2.98 

EHI_089460 hypothetical protein 6 3 2 0 1 1.5 15.03 

EHI_101400 hypothetical protein 5 5 0 0 0 0 11.11 

EHI_081110 hypothetical protein 5 2 3 0 0 0.67 5.86 

EHI_004460 hypothetical protein 4 3 1 0 0 3 5.31 

EHI_166040 hypothetical protein 4 0 4 0 0 0 4.61 

EHI_196070 hypothetical protein 4 3 0 1 0 0 3.68 

EHI_049760 hypothetical protein 3 0 3 0 0 0 2.00 

EHI_037690 hypothetical protein 3 1 2 0 0 0.5 8.47 

EHI_039590 hypothetical protein, conserved 2 1 1 0 0 1 1.37 

EHI_068610 hypothetical protein 2 1 0 0 1 0 7.49 

EHI_080880 hypothetical protein 2 2 0 0 0 0 3.31 

EHI_083380 hypothetical protein, conserved 2 0 2 0 0 0 1.46 

EHI_097490 hypothetical protein 2 1 1 0 0 1 1.56 

EHI_104220 hypothetical protein 2 1 1 0 0 1 2.87 

EHI_120250 hypothetical protein 2 1 1 0 0 1 6.06 

EHI_062300 hypothetical protein 2 1 1 0 0 1 6.11 

EHI_074080 hypothetical protein 1 0 1 0 0 0 3.14 

EHI_079240 hypothetical protein 1 1 0 0 0 0 1.62 

EHI_022300 hypothetical protein, conserved 1 0 1 0 0 0 1.17 
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Appendix Table 3: Summary of intraspecific single nucleotide polymorphisms (SNPs) found in 98 DE genes retrieved from 

Figure 2.19, across all E. histolytica strains. (Continued)     

 

 

 

 

 

 

 

 

 

 

 

AmoebaDB_ID Annotation Total 

SNPs 
NonSynonymous 

SNPS 
Synonymous 

SNPs 
Non-coding 

SNPs 
Stop Codon 

SNPs 
Nonsyn/Syn 

SNP ratio 

SNPs  

per kb 

(CDS) 

EHI_118230 hypothetical protein 1 0 1 0 0 0 2.38 

EHI_099710 hypothetical protein 1 1 0 0 0 0 3.03 

EHI_146120 hypothetical protein 1 1 0 0 0 0 1.57 

EHI_192240 hypothetical protein 1 0 1 0 0 0 2.12 

EHI_067090 hypothetical protein 1 1 0 0 0 0 1.56 

EHI_152360 hypothetical protein 0 0 0 0 0 0 0 

EHI_062310 hypothetical protein 0 0 0 0 0 0 0 

EHI_039600 hypothetical protein 0 0 0 0 0 0 0 
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Appendix Table 4: Gene Ontology Biological Process terms that are enriched in 1,162 upregulated DE transcripts in             

the three virulent E. histolytica strains, i.e. PVBM08B, HM-1:IMSS and IULA:1092:1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                

Term_ID description 

Genes 

in the 

bkgd 

Genes in 

the 

sample 

Percent 

of bkgd 

Genes in 

the result  

Fold 

enrichment 

Odds 

ratio P-value 

FDR-

adjusted      

P-value 

(Benjamini) Bonferroni 

GO:0030163 protein catabolic process 72 29 40.3 2.57 2.63 4.39E-05 1.51E-03 1.54E-03 

GO:0044257 cellular protein catabolic process 65 25 38.5 2.45 2.5 2.59E-04 1.51E-03 9.07E-03 

GO:0043632 

modification-dependent macromolecule 

catabolic process 65 25 38.5 2.45 2.5 2.59E-04 1.51E-03 9.07E-03 

GO:0019941 

modification-dependent protein catabolic 

process 65 25 38.5 2.45 2.5 2.59E-04 1.51E-03 9.07E-03 

GO:0006511 

ubiquitin-dependent protein catabolic 

process 65 25 38.5 2.45 2.5 2.59E-04 1.51E-03 9.07E-03 

GO:0051603 

proteolysis involved in cellular protein 

catabolic process 65 25 38.5 2.45 2.5 2.59E-04 1.51E-03 9.07E-03 

GO:0009057 macromolecule catabolic process 88 30 34.1 2.17 2.22 3.62E-04 1.81E-03 1.27E-02 

GO:0044265 cellular macromolecule catabolic process 68 25 36.8 2.34 2.39 4.49E-04 1.96E-03 1.57E-02 

GO:0006310 DNA recombination 14 10 71.4 4.55 4.6 6.46E-04 2.51E-03 2.26E-02 

GO:0071840 

cellular component organisation or 

biogenesis 173 47 27.2 1.73 1.78 7.76E-04 2.72E-03 2.72E-03 

GO:0016043 cellular component organisation 131 38 29 1.85 1.89 8.97E-04 2.85E-03 3.14E-02 

GO:0006996 organelle organisation 103 30 29.1 1.86 1.89 2.87E-03 8.38E-03 1.01E-01 

GO:0006508 proteolysis 162 39 24.1 1.53 1.56 1.17E-02 2.62E-02 4.09E-01 

GO:0006412 translation 270 59 21.9 1.39 1.43 1.26E-02 2.62E-02 4.42E-01 

GO:0007015 actin filament organisation 17 8 47.1 3 3.02 1.43E-02 2.62E-02 4.99E-01 

GO:0044419 

interspecies interaction between 

organisms 4 4 100 6.37 6.4 1.50E-02 2.62E-02 5.24E-01 

GO:0016032 viral process 4 4 100 6.37 6.4 1.50E-02 2.62E-02 5.24E-01 

GO:0044764 multiorganism cellular process 4 4 100 6.37 6.4 1.50E-02 2.62E-02 5.24E-01 
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Appendix Table 4: Gene Ontology Biological Process terms that are enriched in 1,162 upregulated DE transcripts in  

the three virulent E. histolytica strains. (Continued)                   

Term_ID description 

Genes 

in the 

bkgd 

Genes in 

the 

sample 

Percent    

of bkgd 

Genes in 

the result  

Fold 

enrichment 

Odds 

ratio P-value 

FDR-

adjusted       

P-value 

(Benjamini) Bonferroni 

GO:0044403 symbiosis, encompassing mutualism 

through parasitism 

4 4 100 6.37 6.4 1.50E-02 2.62E-02 5.24E-01 

GO:0051704 multi-organism process 4 4 100 6.37 6.4 1.50E-02 2.62E-02 5.24E-01 

GO:0033554 cellular response to stress 61 18 29.5 1.88 1.9 1.68E-02 2.80E-02 5.89E-01 

GO:0051276 chromosome organisation 43 14 32.6 2.07 2.1 1.76E-02 2.80E-02 6.17E-01 

GO:0006281 DNA repair 58 17 29.3 1.87 1.89 2.08E-02 3.17E-02 7.30E-01 

GO:0007010 cytoskeleton organisation 45 14 31.1 1.98 2 2.36E-02 3.34E-02 8.25E-01 

GO:0030029 actin filament-based process 32 11 34.4 2.19 2.21 2.51E-02 3.34E-02 8.79E-01 

GO:0030036 actin cytoskeleton organisation 32 11 34.4 2.19 2.21 2.51E-02 3.34E-02 8.79E-01 

GO:0006974 cellular response to DNA damage stimulus 60 17 28.3 1.8 1.82 2.66E-02 3.34E-02 9.31E-01 

GO:0008154 actin polymerisation or depolymerisation 12 6 50 3.18 3.2 2.67E-02 3.34E-02 9.36E-01 

GO:0006259 DNA metabolic process 137 32 23.4 1.49 1.51 2.91E-02 3.51E-02 1.00E+00 

GO:0006950 response to stress 66 18 27.3 1.74 1.76 3.04E-02 3.54E-02 1.00E+00 

GO:0000278 mitotic cell cycle 3 3 100 6.37 6.39 3.62E-02 3.84E-02 1.00E+00 

GO:0006020 inositol metabolic process 3 3 100 6.37 6.39 3.62E-02 3.84E-02 1.00E+00 

GO:0007067 mitotic nuclear division 3 3 100 6.37 6.39 3.62E-02 3.84E-02 1.00E+00 

GO:0044249 cellular biosynthetic process 496 94 19 1.21 1.24 4.53E-02 4.66E-02 1.00E+00 

GO:1901576 organic substance biosynthetic process 504 95 18.8 1.2 1.23 4.90E-02 4.90E-02 1.00E+00 
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Appendix Table 5: Gene Ontology Cellular Component terms that are enriched in 1,162 upregulated DE transcripts in   

the three virulent E. histolytica strains.  

Term_ID description 

Genes 

in the 

bkgd 

Genes in 

the 

sample 

Percent of 

bkgd 

Genes in 

the result 

Fold 

enrichment 

Odds 

ratio P-value 

FDR-

adjusted      

P-value 

(Benjamini) Bonferroni 

GO:0000502 proteasome complex 24 15 62.5 3.98 4.04 8.92E-05 1.34E-03 1.34E-03 

GO:0043228 non-membrane-bounded organelle 283 69 24.4 1.55 1.61 6.96E-04 3.48E-03 1.04E-02 

GO:0043232 intracellular non-membrane-bounded 

organelle 

283 69 24.4 1.55 1.61 6.96E-04 3.48E-03 1.04E-02 

GO:0005839 proteasome core complex 19 11 57.9 3.69 3.73 1.25E-03 3.75E-03 1.87E-02 

GO:0030529 ribonucleoprotein complex 223 56 25.1 1.6 1.65 1.25E-03 3.75E-03 1.88E-02 

GO:0032991 macromolecular complex 466 100 21.5 1.37 1.43 2.09E-03 5.23E-03 3.14E-02 

GO:0044424 intracellular part 744 146 19.6 1.25 1.31 4.5E-03 9.82E-03 6.87E-02 

GO:0019773 proteasome core complex, alpha-sububit 

complex 

11 7 63.6 4.05 4.08 6.73E-03 1.21E-02 1.01E-01 

GO:0005840 ribosome 203 48 23.6 1.51 1.54 7.28E-03 1.21E-02 1.09E-01 

GO:0005694 chromosome 39 13 33.3 2.12 2.14 1.89E-02 2.83E-02 2.83E-01 

GO:0005838 proteasome regulatory particle 5 4 80.0 5.1 5.12 2.41E-02 3.01E-02 3.61E-01 

GO:0022624 proteasome accessory complex 5 4 80.0 5.1 5.12 2.41E-02 3.01E-02 3.61E-01 

GO:0043226 organelle 555 105 18.9 1.21 1.24 3.66E-02 3.92E-02 5.49E-01 

GO:0043229 intracellular organelle 555 105 18.9 1.21 1.24 3.66E-02 3.92E-02 5.49E-01 

GO:0015629 actin cytoskeleton 14 6 42.9 2.73 2.74 4.41E-02 4.41E-02 6.62E-01 
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Appendix Table 6: Gene Ontology Molecular Function terms that are enriched in 1,162 upregulated transcripts in          

the three virulent E. histolytica strains.  

Term_ID description 

Genes 

in the 

bkgd 

Genes in 

the 

sample 

Percent of 

bkgd 

Genes in 

the result 

Fold 

enrichment 

Odds 

ratio P-value 

FDR-

adjusted    

P-value 

(Benjamini) Bonferroni 

GO:0005515 protein binding 951 189 19.9 1.27 1.36 5.99E-04 4.99E-03 7.19E-03 

GO:0070003 threonine-type peptidase activity 19 11 57.9 3.69 3.73 1.25E-03 4.99E-03 1.50E-02 

GO:0004298 threonine-type endopeptidase activity 19 11 57.9 3.69 3.73 1.25E-03 4.99E-03 1.50E-02 

GO:0016887 ATPase activity 170 43 25.3 1.61 1.65 4.01E-03 1.20E-02 4.81E-02 

GO:0003735 structural constituent of ribosome 211 50 23.7 1.51 1.55 6.01E-03 1.44E-02 7.22E-02 

GO:0005198 structural molecule activity 226 52 23.0 1.47 1.5 8.35E-03 1.67E-02 1.00E-01 

GO:0003779 actin binding 50 16 32.0 2.04 2.06 1.32E-02 2.26E-02 1.58E-01 

GO:0016874 ligase activity 99 25 25.3 1.61 1.63 2.51E-02 3.77E-02 3.02E-01 

GO:0008092 cytoskeletal protein binding 56 16 28.6 1.82 1.84 2.92E-02 3.89E-02 3.50E-01 

GO:0003950 NAD+ ADP-ribosyltransferase activity 6 4 66.7 4.25 4.26 3.59E-02 4.15E-02 4.31E-01 

GO:0042623 ATPase activity, coupled 130 30 23.1 1.47 1.49 3.81E-02 4.15E-02 4.57E-01 

GO:0005488 binding 2649 440 16.6 1.06 1.15 4.90E-02 4.90E-02 5.88E-01 
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Appendix Table 7: Gene Ontology Biological Process terms that are enriched in 997 downregulated DE transcripts in   

the three virulent E. histolytica strains. 

Term_ID description 

Genes 

in the 

bkgd 

Genes in 

the 

sample 

Percent 

of bkgd 

Genes in 

the result 

Fold 

enrichment 

Odds 

ratio P-value 

FDR-

adjusted   

P-value 

(Benjamini) Bonferroni 

GO:0065007 biological regulation 742 124 16.7 1.36 1.46 4.00E-04 3.66E-03 1.76E-02 

GO:0023051 regulation of signaling 272 55 20.2 1.65 1.72 5.63E-04 3.66E-03 2.48E-02 

GO:0010646 regulation of cell communication 272 55 20.2 1.65 1.72 5.63E-04 3.66E-03 2.48E-02 

GO:0009966 regulation of signal transduction 272 55 20.2 1.65 1.72 5.63E-04 3.66E-03 2.48E-02 

GO:0048583 regulation of response to stimulus 272 55 20.2 1.65 1.72 5.63E-04 3.66E-03 2.48E-02 

GO:0050794 regulation of cellular process 725 120 16.6 1.35 1.44 7.14E-04 3.66E-03 3.14E-02 

GO:0051056 regulation of small GTPase mediated 

signal transduction 

269 54 20.1 1.64 1.7 7.35E-04 3.66E-03 3.23E-02 

GO:1902531 regulation of intracellular signal 

transduction 

269 54 20.1 1.64 1.7 7.35E-04 3.66E-03 3.23E-02 

GO:0050789 regulation of biological process 726 120 16.5 1.35 1.44 7.48E-04 3.66E-03 3.29E-02 

GO:0006793 phosphorus metabolic process 659 110 16.7 1.36 1.45 9.59E-04 3.84E-03 4.22E-02 

GO:0006796 phosphate-containing compound 

metabolic process 

659 110 16.7 1.36 1.45 9.59E-04 3.84E-03 4.22E-02 

GO:0007154 cell communication 396 69 17.4 1.42 1.48 3.86E-03 1.38E-02 1.70E-01 

GO:0035556 intracellular signal transduction 267 50 18.7 1.53 1.58 4.07E-03 1.38E-02 1.79E-01 

GO:0007165 signal transduction 388 67 17.3 1.41 1.46 5.29E-03 1.53E-02 2.33E-01 

GO:0044700 single organism signaling 389 67 17.2 1.4 1.46 5.57E-03 1.53E-02 2.45E-01 

GO:0023052 signaling 389 67 17.2 1.4 1.46 5.57E-03 1.53E-02 2.45E-01 

GO:0007264 small GTPase mediated signal 

transduction 

245 45 18.4 1.5 1.54 8.50E-03 2.17E-02 3.74E-01 

GO:0006468 protein phosphorylation 342 59 17.3 1.41 1.45 8.88E-03 2.17E-02 3.91E-01 

GO:0016310 phosphorylation 355 60 16.9 1.38 1.42 1.20E-02 2.79E-02 5.30E-01 

GO:0046578 regulation of Ras protein signal 

transduction 

135 27 20.0 1.63 1.66 1.58E-02 2.83E-02 6.94E-01 

GO:1900542 regulation of purine nucleotide 

metabolic process 

68 16 23.5 1.92 1.95 1.80E-02 2.83E-02 7.91E-01 
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Appendix Table 7: Gene Ontology Biological Process terms that are enriched in 997 downregulated DE transcripts in    

the three virulent E. histolytica strains. (Continued) 

Term_ID description 

Genes 

in the 

bkgd 

Genes in 

the  

sample 

Percent 

of bkgd 

Genes in 

the result 

Fold 

enrichment 

Odds 

ratio P-value 

FDR-

adjusted    

P-value 

(Benjamini) Bonferroni 

GO:0051336 regulation of hydrolase activity 68 16 23.5 1.92 1.95 1.80E-02 2.83E-02 7.91E-01 

GO:0006140 regulation of nucleotide metabolic 

process 

68 16 23.5 1.92 1.95 1.80E-02 2.83E-02 7.91E-01 

GO:0030811 regulation of nucleotide catabolic 

process 

68 16 23.5 1.92 1.95 1.80E-02 2.83E-02 7.91E-01 

GO:0009118 regulation of nucleoside metabolic 

process 

68 16 23.5 1.92 1.95 1.80E-02 2.83E-02 7.91E-01 

GO:0043087 regulation of GTPase activity 68 16 23.5 1.92 1.95 1.80E-02 2.83E-02 7.91E-01 

GO:0033124 regulation of GTP catabolic process 68 16 23.5 1.92 1.95 1.80E-02 2.83E-02 7.91E-01 

GO:0033121 regulation of purine nucleotide 

catabolic process 

68 16 23.5 1.92 1.95 1.80E-02 2.83E-02 7.91E-01 

GO:0031329 regulation of cellular catabolic process 69 16 23.2 1.89 1.92 2.00E-02 3.01E-02 8.80E-01 

GO:0009894 regulation of catabolic process 70 16 22.9 1.86 1.89 2.22E-02 3.01E-02 9.76E-01 

GO:0008033 tRNA processing 36 10 27.8 2.27 2.29 2.41E-02 3.01E-02 1.00E+0 

GO:0051174 regulation of phosphorus metabolic 

process 

71 16 22.5 1.84 1.86 2.45E-02 3.01E-02 1.00E+0 

GO:0019220 regulation of phosphate metabolic 

process 

71 16 22.5 1.84 1.86 2.45E-02 3.01E-02 1.00E+0 

GO:0050790 regulation of catalytic activity 71 16 22.5 1.84 1.86 2.45E-02 3.01E-02 1.00E+0 

GO:0006399 tRNA metabolic process 65 15 23.1 1.88 1.91 2.46E-02 3.01E-02 1.00E+0 

GO:0032318 regulation of Ras GTPase activity 65 15 23.1 1.88 1.91 2.46E-02 3.01E-02 1.00E+0 

GO:0065009 regulation of molecular function 72 16 22.2 1.81 1.84 2.71E-02 3.22E-02 1.00E+0 

GO:0034660 ncRNA metabolic process 79 17 21.5 1.75 1.78 2.93E-02 3.29E-02 1.00E+0 

GO:0032483 regulation of Rab protein signal 

transduction 

49 12 24.5 2.0 2.02 2.99E-02 3.29E-02 1.00E+0 

GO:0032313 regulation of Rab GTPase activity 49 12 24.5 2.0 2.02 2.99E-02 3.29E-02 1.00E+0 

GO:0034470 ncRNA processing 50 12 24.0 1.96 1.98 3.36E-02 3.60E-02 1.00E+0 
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Appendix Table 7: Gene Ontology Biological Process terms that are enriched in 997 downregulated DE transcripts in   

the three virulent E. histolytica strains. (Continued) 

Term_ID description 

Genes 

in the 

bkgd 

Genes in 

the 

sample 

Percent 

of bkgd 

Genes in 

the result 

Fold 

enrichment 

Odds 

ratio P-value 

FDR-

adjusted   

P-value 

(Benjamini) Bonferroni 

GO:0006464 cellular protein modification process 474 72 15.2 1.24 1.27 4.52E-02 4.62E-02 1.00E+0 

GO:0036211 protein modification process 474 72 15.2 1.24 1.27 4.52E-02 4.62E-02 1.00E+0 

GO:0043412 macromolecule modification 505 76 15.0 1.23 1.26 4.70E-02 4.70E-02 1.00E+0 
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Appendix Table 8: Gene Ontology Molecular Function terms that are enriched in 997 downregulated DE transcripts in 

the three virulent E. histolytica strains. 

Term_ID description 

Genes 

in the 

bkgd 

Genes in 

the 

sample 

Percent 

of bkgd 

Genes in 

the result 

Fold 

enrichment 

Odds 

ratio P-value 

FDR-

adjusted   

P-value 

(Benjamini) Bonferroni 

GO:0005085 guanyl-nucleotide exchange factor 

activity 

119 28 23.5 1.92 1.97 2.13E-03 2.58E-02 5.11E-02 

GO:0030234 enzyme regulator activity 193 39 20.2 1.65 1.7 3.59E-03 2.58E-02   8.62E-02 

GO:0016772 transferase activity, transferring 

phosphorus-containing groups 

529 88 16.6 1.36 1.42 3.62E-03 2.58E-02 8.70E-02 

GO:0008047 enzyme activator activity 182 36 19.8 1.61 1.65 6.77E-03 2.58E-02 1.63E-01 

GO:0016740 transferase activity 730 113 15.5 1.26 1.33 7.86E-03 2.58E-02 1.89E-01 

GO:0016773 phosphotransferase activity, alcohol 

group as acceptor 

403 68 16.9 1.38 1.43 7.93E-03 2.58E-02 1.90E-01 

GO:0016301 kinase activity 411 69 16.8 1.37 1.42 8.29E-03 2.58E-02 1.99E-01 

GO:0004672 protein kinase activity 343 59 17.2 1.4 1.45 9.36E-03 2.58E-02 2.25E-01 

GO:0043167 ion binding 1332 191 14.3 1.17 1.26 9.67E-03 2.58E-02 2.32E-01 

GO:0060589 nucleoside-triphosphatase regulator 

activity 

182 35 19.2 1.57 1.61 1.08E-02 2.60E-02 2.60E-01 

GO:0008270 zinc ion binding 245 44 18.0 1.46 1.5 1.28E-02 2.79E-02 3.07E-01 

GO:0005096 GTPase activator activity 180 34 18.9 1.54 1.57 1.48E-02 2.93E-02 3.56E-01 

GO:0030695 GTPase regulator activity 181 34 18.8 1.53 1.57 1.59E-02 2.93E-02 3.81E-01 

GO:0046914 transition metal ion binding 271 47 17.3 1.41 1.45 1.72E-02 2.96E-02 4.14E-01 

GO:0043169 cation binding 389 62 15.9 1.3 1.34 2.93E-02 3.69E-02 7.02E-01 

GO:0005097 Rab GTPase activator activity 49 12 24.5 2.0 2.02 2.99E-02 3.69E-02 7.18E-01 

GO:0005083 small GTPase regulator activity 67 15 22.4 1.83 1.85 3.02E-02 3.69E-02 7.25E-01 

GO:0008746 NAD(P)+ transhydrogenase activity 4 3 75.0 6.12 6.14 3.24E-02 3.69E-02 7.78E-01 

GO:0008750 NAD(P)+ transhydrogenase (AB-

specific) activity 

4 3 75.0 6.12 6.14 3.24E-02 3.69E-02 7.78E-01 

GO:0030246 carbohydrate binding 22 7 31.8 2.59 2.61 3.29E-02 3.69E-02 7.89E-01 
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Appendix Table 8: Gene Ontology Molecular Function terms that are enriched in 997 downregulated DE transcripts in 

the three virulent E. histolytica strains. (Continued) 

Term_ID description 

Genes 

in the 

bkgd 

Genes in 

the 

sample 

Percent 

of bkgd 

Genes in 

the result 

Fold 

enrichment 

Odds 

ratio P-value 

FDR-

adjusted   

P-value 

(Benjamini) Bonferroni 

GO:0005099 Ras GTPase activator activity 50 12 24.0 1.96 1.98 3.36E-02 3.69E-02 8.06E-01 

GO:0046872 metal ion binding 378 60 15.9 1.29 1.33 3.38E-02 3.69E-02 8.11E-01   

GO:0004849 uridine kinase activity 5 3 60.0 4.89 4.91 4.77E-02 4.77E-02 1.00E+0 

GO:0016652 oxidoreductase activity, acting on 

NAD(P)H, NAD(P) as acceptor 

5 3 60.0 4.89 4.91 4.77E-02 4.77E-02 1.00E+0 
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Appendix Table 9: REVIGO's summarisation of 35 upregulated biological process ontologies in the three virulent 

strains, i.e. PVBM08B, HM-1:IMSS and IULA:1092:1, compared to the nonvirulent Rahman strain. Higher frequency of 

proteins annotated in the UniProt database reflects a more general GO term. Twenty-three cluster representatives 

are shown in black letters and their cluster members are listed in gray italics and indented. The thirty-five terms 

could be summarised into twenty-one clusters and fifteen of which have only a single term.  

                  

  

Term_ID description frequency plot_X plot_Y plot_size log10_FDR uniqueness dispensability 

GO:0006950 response to stress 4.12% 0.53 -0.541 6.312 -1.451 0.84 0 

GO:0009057 macromolecule catabolic process 1.64% -5.841 3.702 5.912 -2.7423 0.722 0 

GO:0016032 viral process 1.74% 3.586 -3.804 5.938 -1.5817 0.758 0 

└ GO:0044764 multi-organism cellular process 2.06% null null 6.01 -1.5817 0.761 0.879 

└ GO:0044403 
symbiosis, encompassing mutualism through 

parasitism 1.78% null null 5.948 -1.5817 0.794 0.979 

└ GO:0044419 interspecies interaction between organisms 1.78% null null 5.948 -1.5817 0.8 0.881 

GO:0016043 cellular component organisation 4.29% 0.238 7.208 6.329 -2.5452 0.733 0 

└ GO:0006996 organelle organisation 0.93% null null 5.666 -2.0768 0.712 0.704 

GO:0051704 multi-organism process 2.77% 5.03 1.372 6.14 -1.5817 0.944 0 

GO:0071840 

cellular component organisation or 

biogenesis 5.43% 1.473 -5.472 6.431 -2.5654 0.945 0 

GO:0030029 actin filament-based process 0.08% -0.89 -6.775 4.582 -1.4763 0.891 0.025 

GO:0006020 inositol metabolic process 0.02% 4.572 -1.271 3.969 -1.4157 0.871 0.064 

GO:0000278 mitotic cell cycle 0.09% 3.404 4.431 4.637 -1.4157 0.863 0.071 

GO:0006310 DNA recombination 1.84% -7.401 -0.095 5.962 -2.6003 0.752 0.185 

GO:0006412 translation 4.70% -6.213 -0.946 6.369 -1.5817 0.653 0.254 

GO:0006259 DNA metabolic process 6.34% -6.351 -0.024 6.499 -1.4547 0.746 0.379 

GO:0044249 cellular biosynthetic process 28.21% -5.393 -5.227 7.147 -1.3316 0.819 0.385 

GO:0030163 protein catabolic process 0.36% -6.804 3.474 5.251 -2.821 0.629 0.442 

└ GO:0044265 cellular macromolecule catabolic process 1.11% null null 5.742 -2.7077 0.6 0.798 
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Appendix Table 9: REVIGO's summarisation of 35 upregulated biological process ontologies in the three virulent 

strains.  (Continued) 

 

 

Term_ID description frequency plot_X plot_Y plot_size log10_FDR uniqueness dispensability 

GO:0006508 proteolysis 3.71% -7.346 1.556 6.266 -1.5817 0.735 0.578 

GO:0051276 chromosome organisation 0.34% 0.637 6.948 5.223 -1.5528 0.668 0.623 

└ GO:0007015 actin filament organisation 0.04% null null 4.285 -1.5817 0.658 0.951 

└ GO:0030036 actin cytoskeleton organisation 0.07% null null 4.559 -1.4763 0.648 0.717 

└ GO:0007010 cytoskeleton organisation 0.15% null null 4.876 -1.4763 0.682 0.76 

└ GO:0008154 actin polymerisation or depolymerisation 0.03% null null 4.141 -1.4763 0.663 0.93 

GO:0006281 DNA repair 1.95% -4.175 0.368 5.988 -1.4989 0.62 0.652 

└ GO:0033554 cellular response to stress 2.34% null null 6.065 -1.5528 0.784 0.795 

└ GO:0006974 cellular response to DNA damage stimulus 1.98% null null 5.993 -1.4763 0.778 0.934 

GO:1901576 organic substance biosynthetic process 28.89% -5.012 -5.487 7.157 -1.3098 0.841 0.663 

GO:0051603 

proteolysis involved in cellular protein 

catabolic process 0.22% -6.643 3.011 5.036 -2.821 0.571 0.687 

└ GO:0019941 modification-dependent protein catabolic process 0.14% null null 4.826 -2.821 0.579 0.983 

└ GO:0044257 cellular protein catabolic process 0.22% null null 5.039 -2.821 0.578 0.916 

└ GO:0006511 ubiquitin-dependent protein catabolic process 0.11% null null 4.741 -2.821 0.584 0.944 

GO:0007067 mitotic nuclear division 0.05% 1.684 6.031 4.367 -1.4157 0.658 0.693 

GO:0043632 

modification-dependent macromolecule 

catabolic process 0.14% -6.217 4.4 4.828 -2.821 0.637 0.699 
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Appendix Table 10: REVIGO's summarisation of 15 upregulated cellular component ontologies in the three virulent 

strains. Eleven cluster representatives are shown in black letters and their cluster members are listed in gray italics 

and indented. The 15 terms could be summarised into 11 clusters and nine of which have only one singleton.  

 

 

term_ID description frequency    plot_X plot_Y plot_size 

 

log10_FDR uniqueness dispensability 

GO:0000502 proteasome complex 0.28% -4.466 -4.87 4.822 -2.8729 0.552 0 

GO:0032991 macromolecular complex 14.46% 1.904 5.059 6.531 -2.2815 0.882 0 

GO:0043226 organelle 16.72% -3.272 3.477 6.594 -1.4067 0.885 0 

GO:0005694 chromosome 0.97% 5.286 -3.642 5.359 -1.5482 0.488 0.089 

GO:0044424 intracellular part 43.66% 1.13 -7.539 7.011 -2.0079 0.693 0.153 

GO:0005839 proteasome core complex 0.14% -5.008 -3.47 4.506 -2.426 0.426 0.367 

└ GO:0005838 proteasome regulatory particle 0.01%           null       null 3.354 -1.5214 0.48 0.739 

└ GO:0022624 proteasome accessory complex 0.02%           null       null 3.738 -1.5214 0.463 0.782 

└ GO:0019773 proteasome core complex, alpha-subunit complex 0.03%           null       null 3.881 -1.9172 0.456 0.8 

GO:0030529 ribonucleoprotein complex 6.09% -2.299 -5.4 6.155 -2.426 0.514 0.382 

GO:0043228 non-membrane-bounded organelle 8.44% 6.254 -2.758 6.297 -2.4584 0.562 0.419 

GO:0015629 actin cytoskeleton 0.15% 5.613 -1.608 4.549 -1.3556 0.545 0.426 

GO:0043232 

intracellular non-membrane-bounded 

organelle 7.68% 4.264 -3.9 6.256 -2.4584 0.41 0.629 

└ GO:0005840 ribosome 5.76%           null       null 6.131 -1.9172 0.285 0.835 

GO:0043229 intracellular organelle 15.79% 3.57 -4.381 6.569 -1.4067 0.444 0.69 
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Appendix Table 11: REVIGO's summarisation of 12 upregulated molecular function ontologies in the three virulent 

strains. Eleven cluster representatives are shown in black letters and their cluster members are listed in gray italics 

and indented. Total 12 terms could be summarised into 11 clusters and only one of which contains two members 

(GO:0042623 and GO:0016887).  

 

 

 

 

 

term_ID description frequency plot_X plot_Y plot_size log10_FDR uniqueness dispensability 

GO:0003735 structural constituent of ribosome 2.61% -5.09 -4.316 6.091 -1.8416 0.831 0 

GO:0004298 threonine-type endopeptidase activity 0.07% -5.922 3.54 4.506 -2.3019 0.677 0 

GO:0005198 structural molecule activity 3.64% -0.759 -5.894 6.236 -1.7773 0.832 0 

GO:0005488 binding 55.59% -1.481 8.137 7.42 -1.3098 0.921 0 

GO:0005515 protein binding 2.48% 6.456 0.109 6.07 -2.3019 0.814 0 

GO:0003950 NAD+ ADP-ribosyltransferase activity 0.01% 4.096 -4.359 3.721 -1.382 0.813 0.014 

GO:0016874 ligase activity 3.87% 0.956 -0.94 6.262 -1.4237 0.811 0.021 

GO:0003779 actin binding 0.08% 4.054 5.232 4.579 -1.6459 0.733 0.048 

GO:0042623 ATPase activity, coupled 2.88% -6.326 1.2 6.134 -1.382 0.637 0.22 

└ GO:0016887 ATPase activity 5.23% null null 6.394 -1.9208 0.636 0.758 

GO:0070003 threonine-type peptidase activity 0.07% -5.194 3.2 4.506 -2.3019 0.677 0.465 

GO:0008092 cytoskeletal protein binding 0.16% 3.518 5.713 4.885 -1.4101 0.733 0.532 
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Appendix Table 12: REVIGO's summarisation of 44 downregulated biological process ontologies in the three virulent 

strains. Twenty-three cluster representatives are shown in black letters and their cluster members are listed in gray 

italics and indented. Total 44 GO terms could be summarised into 23 clusters and 15 of which have only a single term.  

                       

                   

 

 

term_ID description frequency plot_X plot_Y plot_size log10_FDR uniqueness dispensability 

GO:0007154 cell communication 4.36% -3.171 -7.036 6.336 -1.8601 0.838 0 

GO:0023052 signaling 3.84% 5.337 1.818 6.281 -1.8153 0.956 0 

GO:0048583 regulation of response to stimulus 0.69% -7.106 1.529 5.535 -2.4365 0.558 0 

GO:0065007 biological regulation 14.92% 5.057 -1.051 6.87 -2.4365 0.961 0 

GO:0006468 protein phosphorylation 1.21% 1.655 3.465 5.778 -1.6635 0.669 0.037 

└ GO:0036211 protein modification process 2.90% null null 6.158 -1.3354 0.815 0.71 

└ GO:0006464 cellular protein modification process 2.90% null null 6.158 -1.3354 0.769 0.864 

GO:0006793 phosphorus metabolic process 16.89% 3.825 5.903 6.924 -2.4157 0.861 0.092 

GO:0006399 tRNA metabolic process 2.53% 1.308 -4.521 6.1 -1.5214 0.723 0.221 

└ GO:0034470 ncRNA processing 2.26% null null 6.05 -1.4437 0.724 0.892 

└ GO:0008033 tRNA processing 1.59% null null 5.897 -1.5214 0.731 0.851 

GO:0043412 macromolecule modification 5.09% 2.843 -3.917 6.404 -1.3279 0.863 0.225 

GO:0009118 

regulation of nucleoside metabolic 

process 0.17% -4.23 -0.202 4.935 -1.5482 0.541 0.292 

GO:0023051 regulation of signaling 0.38% -7.033 0.421 5.275 -2.4365 0.496 0.313 

└ GO:0044700 single organism signaling 3.84% null null 6.281 -1.8153 0.621 0.96 

└ GO:0035556 intracellular signal transduction 2.72% null null 6.131 -1.8601 0.389 0.912 

└ GO:0007165 signal transduction 3.80% null null 6.277 -1.8153 0.373 0.709 

GO:0010646 regulation of cell communication 0.38% -5.792 -0.486 5.276 -2.4365 0.51 0.313 

GO:0065009 regulation of molecular function 0.84% -5.579 1.169 5.619 -1.4921 0.595 0.332 
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Appendix Table 12: REVIGO's summarisation of 44 downregulated biological process ontologies in the three virulent 

strains.  (Continued) 

term_ID description frequency plot_X plot_Y plot_size log10_FDR uniqueness dispensability 

GO:0019220 
regulation of phosphate metabolic 
process 0.39% -3.916 3.572 5.289 -1.5214 0.379 0.358 

└ GO:0006140 regulation of nucleotide metabolic process 0.18% null null 4.955 -1.5482 0.387 0.931 

GO:0009894 regulation of catabolic process 0.28% -6.266 3.216 5.138 -1.5214 0.379 0.359 

GO:0031329 regulation of cellular catabolic process 0.26% -5.515 2.447 5.116 -1.5214 0.443 0.371 

└ GO:0032318 regulation of Ras GTPase activity 0.08% null null 4.619 -1.5214 0.221 0.965 

└ GO:0030811 regulation of nucleotide catabolic process 0.17% null null 4.933 -1.5482 0.351 0.994 

└ GO:0033124 regulation of GTP catabolic process 0.13% null null 4.822 -1.5482 0.359 0.96 

└ GO:0033121 regulation of purine nucleotide catabolic process 0.17% null null 4.933 -1.5482 0.35 0.979 

└ GO:0032313 regulation of Rab GTPase activity 0.03% null null 4.169 -1.4828 0.254 0.835 

└ GO:1900542 regulation of purine nucleotide metabolic process 0.18% null null 4.951 -1.5482 0.367 0.994 

└ GO:0043087 regulation of GTPase activity 0.13% null null 4.822 -1.5482 0.332 0.935 

└ GO:0032483 regulation of Rab protein signal transduction 0.03% null null 4.169 -1.4828 0.456 0.999 

└ GO:0046578 regulation of Ras protein signal transduction 0.10% null null 4.682 -1.5482 0.426 0.982 

GO:0051174 
regulation of phosphorus metabolic 
process 0.39% -3.686 3.133 5.29 -1.5214 0.517 0.384 

GO:0050790 regulation of catalytic activity 0.65% -6.448 2.528 5.51 -1.5214 0.497 0.388 

└ GO:0051336 regulation of hydrolase activity 0.30% null null 5.173 -1.5482 0.518 0.875 

GO:0006796 
phosphate-containing compound 
metabolic process 16.69% 0.67 6.51 6.919 -2.4157 0.704 0.476 

GO:0050794 regulation of cellular process 13.66% -6.142 1.526 6.832 -2.4365 0.465 0.478 

└ GO:0050789 regulation of biological process 14.47% null null 6.857 -2.4365 0.488 0.825 

GO:0034660 ncRNA metabolic process 3.21% 1.636 -3.836 6.203 -1.4828 0.752 0.482 

GO:1902531 
regulation of intracellular signal 
transduction 0.28% -6.35 -0.03 5.144 -2.4365 0.408 0.547 

└ GO:0009966 regulation of signal transduction 0.36% null null 5.257 -2.4365 0.401 0.966 

└ GO:0051056 
regulation of small GTPase mediated signal 
transduction 0.11% null null 4.746 -2.4365 0.432 0.884 

GO:0007264 
small GTPase mediated signal 
transduction 0.23% 

          
       -6.595 -0.316 5.067 -1.6635 0.476 0.588 

GO:0016310 phosphorylation 6.30% 0.164 7.076 6.496 -1.5544 0.725 0.649 
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Appendix Table 13: REVIGO's summarisation of 24 downregulated molecular function ontologies in the three 

virulent strains. Sixteen cluster representatives are shown in black letters and their cluster members are listed in gray 

italics and indented. Total 24 terms could be summarised into 16 clusters and 13 of which have only a single term.  

                             

term_ID description frequency plot_X plot_Y plot_size log10_FDR uniqueness dispensability 

GO:0005085 guanyl-nucleotide exchange factor activity 0.06% 1.25 1.547 4.462 -1.5884 0.915 0 

GO:0008047 enzyme activator activity 0.12% 2.87 5.583 4.736 -1.5884 0.572 0 

└ GO:0005083 small GTPase regulator activity 0.06% null null 4.469 -1.433 0.532 0.964 

└ GO:0030695 GTPase regulator activity 0.09% null null 4.62 -1.5331 0.541 0.9 

└ GO:0005099 Ras GTPase activator activity 0.04% null null 4.239 -1.433 0.539 0.93 

└ GO:0005097 Rab GTPase activator activity 0.03% null null 4.144 -1.433 0.543 0.917 

└ GO:0005096 GTPase activator activity 0.08% null null 4.547 -1.5331 0.529 0.774 

└ GO:0060589 nucleoside-triphosphatase regulator activity 0.16% null null 4.887 -1.585 0.566 0.82 

GO:0008270 zinc ion binding 3.46% -3.964 -5.458 6.213 -1.5544 0.791 0 

GO:0016773 

phosphotransferase activity, alcohol 

group as acceptor 4.04% 3.944 -5.083 6.281 -1.5884 0.743 0 

└ GO:0016301 kinase activity 5.08% null null 6.381 1.5884 0.74 0.701 

GO:0030234 enzyme regulator activity 0.44% -5.996 3.345 5.315 -1.5884 0.915 0 

GO:0016652 

oxidoreductase activity, acting on 

NAD(P)H, NAD(P) as acceptor 0.09% -2.169 5.3 4.627 -1.3215 0.811 0.022 

GO:0016740 transferase activity 22.12% 5.493 3.294 7.02 -1.5884 0.909 0.048 

GO:0030246 carbohydrate binding 0.83% 6.975 0.34 5.591 -1.433 0.884 0.064 

GO:0043167 ion binding 33.31% -6.112 -0.93 7.197 -1.5884 0.885 0.117 

GO:0043169 cation binding 15.81% -4.986 -3.428 6.874 -1.433 0.825 0.281 

GO:0004849 uridine kinase activity 0.03% 3.122 -6.216 4.134 -1.3215 0.792 0.382 

GO:0016772 

transferase activity, transferring 

phosphorus-containing groups 9.19% 4.657 -4.406 6.638 -1.5884 0.796 0.42 

GO:0008746 NAD(P)+ transhydrogenase activity 0.06% -1.685 5.493 4.433 -1.433 0.785 0.586 

└ GO:0008750 NAD(P)+ transhydrogenase (AB-specific) activity 0.04% null null 4.245 -1.433 0.787 0.913 
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Appendix Table 13: REVIGO's summarisation of 24 downregulated molecular function ontologies in the three 

virulent strains. (Continued) 

 

term_ID description frequency plot_X plot_Y plot_size log10_FDR uniqueness dispensability 

GO:0046872 metal ion binding 15.49% -4.546 -4.326 6.865 -1.433 0.773 0.594 

GO:0004672 protein kinase activity 1.88% 3.805 -5.594 5.948 -1.5884 0.745 0.603 

GO:0046914 transition metal ion binding 7.34% -4.3 -4.815 6.54 -1.5287 0.78 0.694 
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