
Vertex Unique Labelled Subgraph Mining

Thesis submitted in accordance with the requirements of

the University of Liverpool for the degree of Doctor in Philosophy by

Wen Yu

September 2015

Contents

Abstract xi

Acknowledgements xiii

Abbreviations xv

1 Introduction 1

1.1 Overview . 1

1.2 Motivation . 4

1.3 Research Question and Related Issues . 5

1.4 Research Methodology . 6

1.5 Contributions . 8

1.6 Thesis Organization . 9

1.7 Published Work . 9

1.8 Summary . 12

2 Literature Review 13

2.1 Introduction . 13

2.2 Graph Mining . 14

2.2.1 Graph Mining Categorisation . 15

2.2.2 Subgraph Patterns . 16

2.2.3 Graph Isomorphism . 17

2.2.4 Canonical Forms . 18

2.3 Frequent Subgraph Mining . 21

2.3.1 The Downward Closure Property 22

2.3.2 Frequency Counting . 22

2.3.3 The Minimum support threshold σ 24

2.3.3.1 Candidate Generation . 25

2.3.3.2 Frequent Subgraph Mining Algorithms 26

2.4 3D Surface Representation Techniques and Grid Graphs 30

2.5 Classification . 34

2.5.1 Semi-supervised Vertex Classification 35

2.5.2 Supervised Vertex Classification 35

2.5.3 Classification Techniques . 36

2.5.3.1 J48. 36

i

2.5.3.2 Naive Bayes. 37

2.6 Evaluation Criteria . 38

2.6.1 Accuracy, AUC, TCV and SD . 39

2.6.2 Overview of Statistical Performance Comparison 41

2.6.3 Friedman’s Test . 42

2.7 Summary . 44

3 Application Domain and Data Sets 45

3.1 Introduction . 45

3.2 Application Domain One: Asymmetric Incremental Sheet Forming (AISF)
and Springback Prediction . 46

3.2.1 AISF Process . 48

3.2.2 Grid Representation . 49

3.2.3 Springback Measurement . 50

3.2.4 AISF Datasets . 52

3.2.5 AISF Graph Translation . 54

3.2.6 AISF Grid Graph Statistics . 54

3.3 Application Domain Two: Satellite Image Interpretation 55

3.3.1 Satellite Image Graph Translation 60

3.3.2 Satellite Grid Graph Statistics . 62

3.4 Tabular format for Traditional Classification 68

3.5 Summary . 68

4 Formalism for VULS 69

4.1 Introduction . 69

4.2 Formalism . 70

4.3 Examples of undirected VULS . 72

4.4 Examples of directed VULS . 73

4.5 Summary . 76

5 Algorithms for VULS Mining 77

5.1 Introduction . 77

5.2 The compVULSM Algorithm . 78

5.3 Minimal VULS Mining . 83

5.4 Frequent VULS Mining . 87

5.5 Minimal Frequent VULS Mining . 92

5.6 Summary . 95

6 Algorithm for Vertex Classification 97

6.1 Introduction . 97

6.2 Backward-Match-Voting algorithm . 98

6.3 A Working Example Using the Backward-Match-Voting Algorithm 100

6.4 Summary . 103

7 Experimental Results Using The Sheet Metal Forming Application 105

7.1 Introduction . 105

7.2 Comparison of VULS Mining Algorithms Using a Range of max Values
(Objective 1) . 107

ii

7.3 Effect of Grid Size d on Classification Effectiveness (Objective 2) 110

7.4 Effect of |LE | on Classification Effectiveness (Objective 3) 111

7.5 Comparison Between Usage of Grid Graphs and Cross Grid Graphs, and
Directed and Undirected Graphs (Objective 4) 112

7.6 Effect of |LV | on Classification Effectiveness (Objective 5) 113

7.7 Comparison of VULS Vertex Classification Effectiveness (Objective 6) . . 114

7.8 Statistical Comparison of the Proposed VULS Approaches (Objective 7) . 115

7.9 Summary . 122

8 Experimental Results Using The Satellite Image Interpretation Appli-
cation 125

8.1 Introduction . 125

8.2 Comparison of VULS Mining Algorithms Using a Range of max values
(Objective 1) . 127

8.3 Effect of grid size d on Classification Effectiveness (Objective 2) 129

8.4 Classification Effectiveness with Respect to |LE | (Objective 3) 131

8.5 Comparison Between Usage of Grid Graphs and Cross Grid Graphs (Ob-
jective 4) . 131

8.6 Effect of |LV | on Classification Effectiveness (Objective 5) 134

8.7 Comparison of VULS Vertex Classification Effectiveness (Objective 6) . . 135

8.8 Statistical Comparison of the Proposed VULS Approaches on Satellite
Image data (Objective 7) . 137

8.9 Summary . 140

9 Conclusion and Future Research 143

9.1 Introduction . 143

9.2 Summary . 143

9.3 Main Findings . 144

9.4 Future Work . 148

Bibliography 153

A AUC Calculation based on Mann-Whitney-Wilcoxon. 1

A.1 Introduction . 1

B Graph File Format and Raw Data Format 9

C Additional Experimental Results 11

C.1 Introduction . 11

C.2 Comparison of VULS Mining Algorithms Using a Range of max Values
(Objective 1) . 11

C.3 Comparison Between Usage of Grid Graphs and Cross Grid Graphs, and
Directed and Undirected Graphs (Objective 2) 13

C.4 Effect of |LV | on Classification Effectiveness (Objective 3) 14

C.5 Effect of |LE | on Classification Effectiveness (Objective 4) 15

C.6 Comparison of VULS Vertex Classification Effectiveness (Objective 5) . . 16

iii

C.7 Statistical Comparison of the Proposed VULS Approaches (Objective 6) . 17

C.8 Summary . 23

iv

Illustrations

List of Figures

1.1 Example of VULS. 2

1.2 Graph examples of protein networks [210] . 3

1.3 The VULS mining evaluation process using training and test sets 7

2.1 The three main research themes of this thesis: Graph Mining, Vertex Clas-

sification and 3D Surface Representation. 13

2.2 Venn Diagram showing the relationship between VULS, Minimal VULS, Fre-

quent VULS and Minimal frequent VULS . 15

2.3 Depth-First Search Tree and its Forward/Backward Edge Set [229]. Note

that forward edges are represented by solid lines and backward edges dashed

lines. 20

2.4 Patterns with the non-monotonic frequency [138]. 23

2.5 Overlapped embeddings [138]. 24

2.6 k-edge subgraph (k=4). 26

2.7 (k+1)-edge subgraphs generated by right most extension from the k-edge

subgraph given in Figure 2.6. 26

2.8 Apriori-based (BFS). 27

2.9 Pattern-growth (DFS). Only frequent K-edge subgraphs will be grown to

(K + 1)-edge subgraphs. 27

2.10 Triangular mesh representation using j = 3 [134]. 32

2.11 Rectangular mesh representation using j = 4 [134]. 32

2.12 Confusion matrix. 39

2.13 The ROC curve. The solid blue line indicates a good ROC curve that reaches

the upper left corner and the dotted line indicates a random classifier (guess-

ing). 40

44figure.caption.144

3.1 Example AISF machine 1 [129], the work piece is clamped in position while

the tool head “pushes out” the desired shape; on release, springback occurs

as a result of which the final shape is not the desired shape. 47

3.2 Example AISF machine 2, a metal sheet is clamped into a holder and the

desired shape is produced using the continuous movement of a simple round-

headed forming tool. 47

3.3 Square based pyramid (upside down) at the point when it is unclamped after

application of the AISF process. 47

3.4 Square based pyramid (right way up); the markings are used with respect to

the GOM optical measuring tool. 47

3.5 Example grid referenced to a central origin [129]. 50

v

3.6 Coordinate cloud points associated with a grid representation centred on

〈xi, yj〉 (grid spacing = d) [129]. 50

3.7 Cross section at a grid line showing simple vertical springback error calcula-

tion between a before (blue line) and an after (red line) shape [129]. 50

3.8 Error calculation using the line-plane intersection method [129]. 51

3.9 Gonzalo Pyramid [184]. 53

3.10 Modified Pyramid [184]. 53

3.11 Grid representation with “Z” values (left), with corresponding grid graph

where degree=4 (middle) and cross-grid graph where degree =8 (right), fea-

turing “slope” labels on edges. 55

3.12 Example satellite image. 60

3.13 Process of Translating a satellite image into a “grid graph” and a “cross-grid

graph” (the edge colour encoding is for ease of understanding only). 61

3.14 Satellite image represented in terms of three different grid squares using three

different values for d. 62

3.15 Process for translating a grid graph into a tabular format. 68

4.1 Example of an undirected graph G . 72

4.2 One edge subgraphs contained in the example undirected graph G shown in

Figure 4.1 . 73

4.3 Two edge subgraphs contained in the example undirected graph G shown in

Figure 4.1 . 74

4.4 Example of directed graph G . 74

4.5 one edge subgraphs contained in the example directed graph G shown in

Figure 4.4 . 74

4.6 Two edge subgraphs contained in the example directed graph G shown in

Figure 4.4 . 75

5.1 VULS model generation process. 77

5.2 Example graph Gtrain. 78

5.3 Worked example of complete VULS mining where max = 3 82

5.4 Input graph Gtrain, G = Gtrain at the beginning of the algorithm 7 85

5.5 Example of 2-edge minimal VULS c . 85

5.6 G = G− c . 85

5.7 Example of 3-edge minimal VULS which is missed 85

5.8 Worked example of minimal VULS mining where max = 3 86

5.9 Example graph Gtrain. 88

5.10 Example of 2-edge frequent subgraphs extended from the 1-edge infrequent

subgraph 〈 B, red, B 〉 in Figure 5.9. 88

5.11 Worked example of frequent VULS mining where max = 3 91

5.12 Worked example of minimal frequent VULSM mining where max = 3 94

6.1 Schematic for predicting vertex labels given a new 3D surface data set. . . . 97

vi

6.2 Input graph G. 100

6.3 One-edge pre-labelled subgraphs. 100

6.4 Graph without vertex labels. 101

6.5 Four-edge pre-labelled subgraph. 101

6.6 Input graph G = 〈V,E,LE〉, with unlabelled vertices, {V 1, V 2, . . . , V 9} are

vertex identifiers. 101

6.7 Four pre-labelled subgraphs. 101

6.8 Worked example of vertex classification using the pre-labelled subgraphs

given in Figure 6.7 and the vertex-unlabelled graph given in Figure 6.6. . . . 102

6.9 Output graph G = 〈V,E, LE , LV 〉 with predicted vertex label. 102

7.1 Critical difference diagram generated using Nemenyi’s post hoc test with

α = 0.05 for graphs where |LV | = 2 and d = 28 (mm). 118

7.2 Critical difference diagram generated using Nemenyi’s post hoc test with

α = 0.05 for graphs where |LV | = 3 and d = 28 (mm). 121

8.1 Examples of VULS identified in graphs where d = 8 pixels. 136

8.2 Critical difference diagram generated using Nemenyi’s post hoc test with

α = 0.05 for graphs where |LV | = 2 . 139

8.3 Critical difference diagram generated using Nemenyi’s post hoc test with

α = 0.05 for graphs where |LV | = 3 . 140

B.1 An example graph [122]. 10

B.2 GraphML encoding for the graph given in Figure B.1 10

C.1 Critical difference diagram generated using Nemenyi’s post hoc test with

α = 0.05 for graphs where |LV | = 2 and d = 23 (mm). 21

C.2 Critical difference diagram generated using Nemenyi’s post hoc test with

α = 0.05 for graphs where |LV | = 3 and d = 23 (mm). 22

List of Tables

2.1 DFS code for Figure 2.9 (b), (c) and (d) [229] 20

2.2 Frequent subgraph mining algorithm categorisation [122, 140] 28

3.1 Example of raw input data. 54

3.2 Vertex Label distribution for GS1 graph. 56

3.3 Vertex Label distribution for GS2 graph. 56

3.4 Vertex Label distribution for GT1 graph. 57

3.5 Vertex Label distribution for GT2 graph. 57

3.6 Vertex Label distribution for MS1 graph. 58

3.7 Vertex Label distribution for MS2 graph. 58

3.8 Vertex Label distribution for MT1 graph. 59

vii

3.9 Vertex Label distribution for MT2 graph. 59

3.10 Vertex Label distribution of Satellite Image graph 1. 63

3.11 Vertex Label distribution of Satellite Image graph 2. 63

3.12 Vertex Label distribution of Satellite Image graph 3. 64

3.13 Vertex Label distribution of Satellite Image graph 4. 64

3.14 Vertex Label distribution of Satellite Image graph 5. 65

3.15 Vertex Label distribution of Satellite Image graph 6. 65

3.16 Vertex Label distribution of Satellite Image graph 7. 66

3.17 Vertex Label distribution of Satellite Image graph 8. 66

3.18 Vertex Label distribution of Satellite Image graph 9. 67

3.19 Vertex Label distribution of Satellite Image graph 10. 67

7.1 Evaluation Strategy Summary . 106

7.2 Comparison of VULS Mining Algorithms Using max = 4 (Objective 1). . . . 107

7.3 Comparison of VULS Mining Algorithms Using max = 5 (Objective 1). . . . 107

7.4 Comparison of VULS Mining Algorithms Using max = 6 (Objective 1). . . . 108

7.5 Classification Effectiveness with Respect to d (Objective 2). 110

7.6 Classification Effectiveness with Respect to |LE | (objective 3). 111

7.7 Classification Effectiveness with Respect to Graph Types (Objective 4). . . . 112

7.8 Classification Effectiveness with Respect to |LV | (Objective 5). 113

7.9 VULS Vertex Classification Comparison (Objective 6). 114

7.10 Average Rankings of classifiers where |LV | = 2 and d = 28 (mm) 116

7.11 Average Rankings of classifiers where |LV | = 3 and d = 28 (mm) 119

8.1 Evaluation Strategy Summary . 126

8.2 Comparison of VULS Mining Algorithms Using max = 4 (Objective 1). . . . 127

8.3 Comparison of VULS Mining Algorithms Using max = 5 (Objective 1). . . . 128

8.4 Comparison of VULS Mining Algorithms Using max = 6 (Objective 1). . . . 128

8.5 Classification Effectiveness with Respect to d (Objective 2). 130

8.6 Classification Effectiveness with Respect to |LE | (Objective 3). 132

8.7 Classification Effectiveness with Respect to graph types (Objective 4). 133

8.8 Classification Effectiveness with Respect to |LV | (Objective 5). 134

8.9 Classification Effectiveness with Respect to graph types (Objective 6). 135

8.10 Average Rankings of classifiers where |LV | = 2 138

8.11 Average Rankings of classifiers where |LV | = 3 138

A.2 Example data set . 2

A.1 The values (Group ID) of different combinations of R and S based on Hand

et al. [96]. 4

A.3 The MWW(c1|c2) value . 4

A.4 The MWW(c2|c1) value . 4

A.5 The MWW(c1|c3) value . 5

A.6 The MWW(c3|c1) value . 5

viii

A.7 The MWW(c2|c3) value . 6

A.8 The MWW(c3|c2) value . 6

A.9 The overall AUC value for the given data set 7

C.1 Comparison of VULS Mining Algorithms Using max = 4 (Objective 1). . . . 12

C.2 Comparison of VULS Mining Algorithms Using max = 5 (Objective 1). . . . 12

C.3 Comparison of VULS Mining Algorithms Using max = 6 (Objective 1). . . . 12

C.4 Classification Effectiveness with Respect to graph types (Objective 2). 14

C.5 Classification Effectiveness with Respect to |LV | (Objective 3). 15

C.6 Classification Effectiveness with Respect to |LE | (Objective 4). 16

C.7 VULS Classification Comparison where |LV | = 2 (Objective 5). 17

C.8 Average Rankings of classifiers where |LV | = 2 and d = 23 (mm) 18

C.9 Average Rankings of the classifiers where |LV | = 3 and d = 23 (mm) 19

ix

Abstract

This thesis proposes the novel concept of Vertex Unique Labelled Subgraph (VULS)

mining with respect to the field of graph-based knowledge discovery (or graph mining).

The objective of the research is to investigate the benefits that the concept of VULS

can offer in the context of vertex classification. A VULS is a subgraph with a particular

structure and edge labelling that has a unique vertex labelling associated with it within

a given (set of) host graph(s). VULS can describe highly discriminative and significant

local geometries each with a particular associated vertex label pattern. This knowledge

can then be used to predict vertex labels in “unseen” graphs (graphs with edge labels,

but without vertex labels). Thus this research is directed at identifying (mining) VULS,

of various forms, that “best” serve to both capture effectively graph information, while at

the same time allowing for the generation of effective vertex label predictors (classifiers).

To this end, four VULS classifiers are proposed, directed at mining four different kinds

of VULS: (i) complete, (ii) minimal, (iii) frequent and (iv) minimal frequent. The thesis

describes and discusses each of these in detail including, in each case, the theoretical

definition and algorithms with respect to VULS identification and prediction. A full

evaluation of each of the VULS categories is also presented.

VULS has wide applicability in areas where the domain of interest can be represented

in the form of some sort of a graph. The evaluation was primarily directed at predicting

a form of deformation, known as springback, that occurs in the Asymmetric Incremen-

tal Sheet Forming (AISF) manufacturing process. For the evaluation two flat-topped,

square-based, pyramid shapes were used. Each pyramid had been manufactured twice

using Steel and twice using Titanium.

The utilization of VULS was also explored by applying the VULS concept to the

field of satellite image interpretation. Satellite data describing two villages located in

a rural part of the Ethiopian hinterland were used for this purpose. In each case the

ground surface was represented in a similar manner to the way that AISF sheet metal

surfaces were represented, with the z dimension describing the grey scale value. The

idea here was to predict vertex labels describing ground type.

As will become apparent, from the work presented in this thesis, the VULS concept

is well suited to the task of 3D surface classification with respect to AISF and satellite

imagery. The thesis demonstrates that the use of frequent VULS (rather than the other

forms of VULS considered) produces more efficient results in the AISF sheet metal

forming application domain, whilst the use of minimal VULS provided promising results

xi

in the context of the satellite image interpretation domain. The reported evaluation also

indicates that a sound foundation has been established for future work on more general

VULS based vertex classification.

xii

Acknowledgements

This thesis would have not been completed if not for the help I have received from a

number of people whose contribution to my research deserves a special mention. It is a

pleasure to convey my gratitude to them all in this modest acknowledgement.

Of all the fantastic and fabulous people involved, my greatest debt of gratitude must

go to my first supervisor, Professor Frans Coenen, who has given me the chance to

work under his supervision. He has provided me with invaluable assistance, guidance,

constant support, encouragement, constructive criticism, research ideas and excellent

advice throughout the past four years, which has made it one of the most enjoyable

and unforgettable experience of my life. During my PhD study, he also gave me many

opportunities to publish papers and attend conferences which have helped me to broaden

my horizons. I learned a lot from these conferences and workshops, these experiences

remain very valuable to me. Through his extraordinary experience, he has taught me

not only to be a good PhD student but also to be a good researcher and an intellectual

person. He has enlightened me through his inspiration and endless efforts on how to

explain and present academic work simply and clearly. He is the best supervisor any one

could hope for, and more. It has been a pleasure and an honour to have been supervised

by him. He was the perfect resource which inspired me and enriched my experience

making me the person that I am today.

I would also like to express my great gratitude to my second supervisor, Dr. Michele

Zito, who provided valuable insights and reviewed many pieces of my writings. I also

thank him for providing many constructive suggestions and valuable comments concern-

ing my research work.

I am also thankful to my friends and colleagues Subhieh El Salhi and Kwankamon

(Kwan) Dittakan. They have been extremely helpful in providing advice on numer-

ous occasions. I would like to thank Subhieh El Salhi for her valuable collaboration,

especially with respect to the pre-processing of the raw sheet metal data sets used in

my research. I would also like to extend great appreciation to Kwan for supplying the

satellite image data sets used in the research presented here. I can not expect better

friends and colleagues than Subhieh and Kwan. We encouraged each other during our

PhD study. I do not believe I could have got this far without such good friends. I am

also obliged to many other friends who provided encouragement, either directly or indi-

rectly; they are: Maduka Attamah, Eric Schneider, Muhammad Tufail, Esra’a Shdaifat

and Jeffery Raphael.

xiii

The Department of Computer Science at the University of Liverpool has been an

excellent place in which to conduct research, and all members of staff and colleagues

have been encouraging and helpful whenever needed. In particular, I would also like to

extend my gratitude to my “PhD Advisors”: Dr. Russell Martin, Professor Paul Dunne

and Dr. David Grossi for providing me with assistance, suggestions and constructive

feedback at various times. I would also like to thank The Department of Computer

Science at the University of Liverpool for providing me with sufficient financial assistance

to attend a number of conferences/workshops and seminars throughout my study years.

I am grateful for this assistance.

I would also like to extend my thanks to the Tecnalia Corporation (Spain) and the

IBF institute of metal forming (Germany) for providing the before and after sheet metal

forming data that I have used extensively throughout my research.

Fundamental to my being able to conduct this research was the financial support

of the GuangZhou government in China, so I also would like to convey thanks to the

Overseas Study Program of Guangzhou Elite Project (GEP) in China for their financial

support, they have given me the opportunity to pursue my dream of studying overseas.

Without their support I would have not been able to finish my research and write this

thesis.

My deepest and most grateful thanks also go to my family and friends in China.

Their support, trust, encouragement and thoughtfulness have been priceless to me. I

am grateful to Professor Sheng Yi Jiang and Dr. Yanbo (Justin) Wang for their constant

support and encouragement while in the UK, without whom the completion of my Ph.D.

would not have been possible to accomplish.

Finally, I would also like to acknowledge my family and friends for all their love,

motivation and support that has helped me to conduct my PhD studies. Particular

thanks go to my parents A Ming Yu and Fu Ying Deng. Their love provided me with

endless inspiration and was the driving force that allowed me to complete my PhD.

xiv

Abbreviations

k-NN k-Nearest Neighbour.

VULS Vertex Unique Labelled Subgraph(s).

compVULS Set of complete VULS.

minVULS Set of Minimal VULS.

freqVULS Set of Frequent VULS.

minFreqVULS Set of minimal Frequent VULS.

BMV Backward-Match-Voting algorithm.

3D Three Dimensional.

AUC Area Under the receiver operating Curve.

SD Standard Deviation.

DM Data Mining.

FTM Frequent subTree Mining.

FSM Frequent Subgraph Mining.

DCP Downward Closure Property (A graph can only be frequent if all of its

subgraphs are also frequent).

DFS Depth First Search.

BFS Breadth First Search.

DT Decision Tree.

KDD Knowledge Discovery in Databases.

RGB The Red, Green and Blue colour model.

TCV Ten-fold Cross Validation.

AISF Asymmetric Incremental Sheet Forming.

CAD Computer Aided Design.

CAM Computer Aided Manufacturing.

Gtrain An input training graph with vertex and edge labels.

max The maximum size of labelled subgraphs such as VULS.

Gk A collection of k-edge subgraphs.

c A candidate VULS.

S A list of potential labels for the vertices of c.

U A set of labelled subgraphs such as VULS.

|x| The cardinality of a set x.

xv

Chapter 1

Introduction

1.1 Overview

Data Mining (DM) is the process of extracting implicit, previously unknown, and po-

tentially useful information from large amounts of data [95]. DM is an element in the

Knowledge Discovery in Data (KDD) process [74, 75]. The data that data miners wish

to mine comes in many different forms including: images, graphs, text and so on. There-

fore the field of data mining includes sub-fields such as image mining, graph mining, and

text mining. The work described in this thesis is concerned with graph mining. More

specifically the work presented in this thesis proposes the concept of Vertex Unique La-

belled Subgraph (VULS) mining; the identification and extraction of subgraphs (with

specific configurations and edge labelings from a single graph) that have a unique vertex

labelling associated with them. In other words, given a subgraph g with a specific struc-

ture and edge labelling, but no vertex labelling, and one single graph G with labelled

edges and vertices. If wherever g occurs in G it always has the same vertex labelling,

then g is a VULS. The utility of VULS, as will be demonstrated later in this thesis, is

that they can be used to label vertices in previously “unseen” vertex unlabelled graph.

A simple example is given in Figure 1.1 so as to facilitate a better understanding of

the concept of VULS. With reference to input graph G in Figure 1.1, subgraph 1 is

a VULS since the vertex labelling associated with the specific configuration and edge

labelling in the third column is unique in the context of G. Subgraph 2 is not a VULS

since there are two possible vertex labelings (so not unique). It is important to note

when considering whether a subgraph is a VULS or not that it is the vertex labelling

in relation to configuration and edge labelling that needs to be unique, not the vertex

labels in isolation. A VULS can include labels that appear in other VULS and other

subgraphs, it is the relationship between the vertex labels that needs to be unique for

a VULS to exist. The lower limit for the size of a VULS is one edge. The upper limit

is the size of the input graph, in fact the entire input graph will be a VULS (although

with little utility). In practice, as will become apparent later in this thesis, an upper

limit is placed on the size of a VULS to ensure their utility. Further detail concerning

the VULS concept are presented in Chapters 2 and 4 later in this thesis.

1

Chapter 1. Introduction 2

Figure 1.1: Example of VULS.

The essence of graph mining is the extraction of useful knowledge from graph rep-

resented data. There has been a substantial amount of research effort directed at many

aspects of graph mining. This research work can be loosely defined in terms of the

following categorisation: (i) frequent subgraph mining [136], (ii) optimal graph pattern

mining [204], (iii) correlated graph pattern mining [191], (iv) graph pattern summariza-

tion [208], (v) approximate graph pattern mining [240], (vi) graph classification [211],

(vii) graph clustering [185], (viii) graph indexing [231, 232], (ix) graph searching [188]

and (x) vertex classification [80]. The work presented in this thesis falls into the category

of vertex classification. However, to the best knowledge of the author, there has been

no comparable work directed at the concept of VULS mining, or the usage of VULS for

vertex classification, as presented in this thesis.

Graphs are a powerful mechanism for representing structured data, for example graph

vertices can correspond to objects and the edges to relationships or interactions between

those objects. Two examples of the usage of graphs to represent protein networks are

given in Figure 1.2 [210]. In the figures1 the vertices represent the proteins and the

edges represent interactions among proteins. Generally speaking, the vertices and edges

in graphs may be labelled or unlabelled. The edges may be directed or undirected.

Graphs may be cyclic or acyclic. A frequently encountered type of graph structure is

the Directed Acyclic Graph (DAG) structure [35, 72]. Another particular kind of graph

structure, and that of specific relevance with respect to the work presented in this thesis,

is the grid graph [92, 145].

Graph mining has been applied to a great variety of domains. Reported examples

include: (i) chemical informatics [183], (ii) bioinformatics [54, 179], (iii) video indexing

[34, 105], (iv) text retrieval [32, 162, 195], (v) Web mining, XML document mining

[27, 30, 33, 38], (vi) face recognition [234] and (vii) Telecommunication and computer

network analysis [19, 60, 71, 91].

1http://www.liacs.nl/ erwin/dbdm2009/GraphMining.pdf

Chapter 1. Introduction 3

Figure 1.2: Graph examples of protein networks [210]

The application domain at which the research presented in this thesis is directed at

three Dimensional (3D) surface analysis (interpretation). 3D surface data occurs in the

context of many environments. Obvious examples are applications that use map data

such as geological studies [141, 154]; we might wish to predict (say) that a certain region

within some given map features a particular form of geology. A less immediate example

is image analysis, however images can clearly be viewed as 3D surfaces if we consider

the third dimension to be “grey scale” intensity. Other applications where 3D surfaces

are of significance include manufacturing processes where 3D parts are produced. One

example of the latter, and that which is central to motivation for the work presented in

this thesis, is sheet metal forming ([77]). The significance of 3D surface analysis, in the

context of graphs is that 3D surfaces can be represented in terms of a grid, which in turn

can be represented in terms of grid graph where each grid cell centre point is a vertex

and each edge represents an immediate neighbourhood relationship linking adjacent grid

centre points (vertices). Vertices in such grid graphs may then be labelled, for example

with (say) geological labels (as suggested above) or ground surface texture labels. The

central idea presented in this thesis is that given a vertex labelled grid graph, VULS

mining can be applied to identify a set of VULS that can be used to predict the vertex

labelling contained in previously unseen grid graphs (provided they have been drawn

from the same application domain).

The rest of this introductory chapter is organised as follows. A more detailed discus-

sion, than that presented above, of the motivation for the work described is presented

in Section 1.2. Section 1.3 presents the formulation of the main research question to

be addressed by the thesis and also lists the related issues to be addressed to provide

an answer to the research question. The research methodology adopted is presented in

Section 1.4, whilst the research contributions of the work are presented in Section 1.5.

Section 1.6 presents an overview of the organisation of the rest of this thesis. This is

followed by a review of the published work to date, resulting from the research described,

Chapter 1. Introduction 4

in Section 1.7. Finally, this chapter is concluded with a summary presented in Section

1.8.

1.2 Motivation

As noted in the previous section the focus for the work is grid graph vertex classification

with application to 3D surface analysis and more particularly the sheet steel metal

forming application domain. This section elaborates on the motivation for this focus.

The primary motivation for the work presented was a desire to provide a solution to

an open problem in sheet metal forming whereby the produced shape is not the desired

shape due to distortions introduced during the manufacturing process. In the context

of the sheet metal forming motivation for the work presented in this thesis is therefore a

demand for accurate and well formed sheet metal components in a variety of industries

(such as the automotive and aircraft manufacturing industries). To this end there are a

number of manufacturing process that can be adopted. One such process, and that used

for evaluation purposes with respect to the work described in this thesis, is Asymmetric

Incremental Sheet Forming (AISF). In AISF the metal sheet from which the desired

component is to be manufactured is clamped into a “blankholder”, a forming tool then

follows a predefined tool path to “push out” a desired shape [121]. The main advantage

of AISF, over alternative sheet metal forming processes, is that of cost reduction [88, 193]

(it doesn’t require heating). However, a major limitation of techniques such as AISF is

that, as a result of applying the process, deformations called Springback are introduced

whereby the produced shape is not the same as the desired shape. Springback is defined

as the elastic deformation that occurs in a produced shape as a result of the application

of a sheet metal forming process; this deformation only becomes apparent when the

manufactured piece is unclamped. In other words, the produced shape differs from the

desired shape. Springback is a complex physical phenomenon that is related to the local

geometry of the shape to be manufactured. Essentially the shape to be manufactured

can be viewed as a 3D surface which in turn can be represented in terms of a grid graph

with edges representing slope (the δz value between adjacent grid center points). If the

nature of the springback associated with individual grid graph vertices (grid cells) can

be predicted then some form of mitigation can be applied; an idea first proposed in

[65–67, 130]. The VULS concept proposed in this thesis therefore seems idealy suited to

providing a solution to the sheet metal forming springback prediction problem. Given

a manufactured part with known springback, a grid graph can be formulated with each

vertex labelled with a springback value. VULS mining can then be applied and the

result applied to the definition of new shapes to be manufactured.

Other than the application domain motivation described above the work presented

in this thesis was also motivated by the general need for supervised learning techniques

that can be effectively utilised to predict vertex labels in “unseen” graphs. More specif-

ically the desire to investigate an entirely novel approach to vertex label classification.

Chapter 1. Introduction 5

Current work on vertex classification is directed at exploiting the topology of the graphs

considered [17]. Current work is also typically not founded on graph mining techniques

(as in the case of the proposed VULS technique). For example in [189, 242], a clustering

approach is used, whilst in [86] a probabilistic Bayesian network model is applied and

in [56] Markov random walks are used. To the best knowledge of the author the above

sets the work described in this thesis apart from other existing work.

In summary the work presented in this thesis was motivated by the following:

1. A desire to address a real world problem (in the domain of sheet metal forming).

2. The need for more effective vertex classification methods directed at graph repre-

sentations with a focus on grid graphs.

3. The opportunity to research an aspect of graph mining that has not previously

received attention (to the best knowledge of the author).

1.3 Research Question and Related Issues

Given the motivations presented in the previous section, the main research question to

be addressed by this thesis is:

“How best can the proposed VULS mining be conducted so as to achieve

effective vertex classification?”

To provide an answer to this research question we also address the resolution of the

following subsidiary technical research questions:

1. What is the most appropriate mechanism for identifying VULS? Al-

though the fundamental idea of VULS mining seems clear, the practicalities of

VULS mining, because the idea was entirely novel, remained a subject for detailed

investigation.

2. Can efficiency gains be realised by mining some subset of the com-

plete set of VULS? Graph mining, of all forms, is known to be computationally

expensive [108, 225]; typically graph mining requires a substantial amount of iso-

morphism testing [158]. Thus instead of identifying the complete set of VULS, we

can attempt to identify some appropriately descriptive subset of the complete set

of VULS.

3. Given that we can mine a variety of different categories of VULS which

of these are the most useful in terms of effectiveness and efficiency?

Effectiveness and efficiency are important with respect to classification in general

although there is typically a trade-off between the two.

Chapter 1. Introduction 6

4. How do we measure the quality of a set of VULS without applying them

to a test set? One way of testing a set of identified VULS is to apply them in a

vertex classification setting. However, in practice, this opportunity will typically

not be available. An alternative VULS quality measure is thus required.

5. Once a set of VULS have been identified what is the mechanism for uitil-

ising this set of VULS in the context of vertex classification? VULS are

only of benefit if they can be successfully applied with respect to vertex classifica-

tion, how this can best be achieved was a subject for the research.

The research presented in this thesis used sheet metal forming, particularly AISF,

as a focus. There were thus also a number of subsidiary application dependent research

questions that the work needed to address. Namely:

1. How best to generate the desired grid graphs from raw AISF data? In

the sheet metal forming industry desired surfaces are typically specified using CAD

data, while the shapes produced can be defined in terms of a point cloud obtained

using some optical measuring instrument. How grid graphs can be generated from

this data was unclear at the start of the research.

2. What further applications can the VULS concept be applied to? For the

VULS idea to have general utility it needs to have a wide range of applicability. The

nature of these further applications, applications that entail 3D surface analysis of

some kind, was unclear at the commencement of the work.

The overall objective of the work presented in this thesis was thus to provide answers

to the above research questions.

1.4 Research Methodology

The adopted research methodology was to commence by investigating a mechanism for

identifying the complete set of VULS in a given grid graph. The start point for this

work was the well known gSpan algorithm for frequent subgraph mining [229]. The

gSpan algorithm operates in a Depth First Search (DFS) manner and this seemed like

an appropriate strategy to be adopted for VULS mining. The gSpan algorithm also

features a particular canonical form for graph representation and the concept of right

most extension, both of which were adapted for the work described in this thesis.

It was anticipated, as noted above, that the complete VULS algorithm would be

computationally intensive. Alternative, more efficient VULS mining algorithms were

thus seen to be desirable. Three alternative forms of VULS mining were considered:

(i) minimal VULS mining, (ii) frequent VULS mining and (iii) minimal frequent VULS

mining. The four different forms of VULS mining could then be compared in the context

of effectiveness.

Chapter 1. Introduction 7

To conduct the desired evaluation “real life” data sets, describing 3D surfaces that

had been manufactured, were obtained from industry. More specifically data sets were

obtained from the Tecnalia Corporation (Spain) and the IBF institute of metal forming

(Germany) with whom (at time of writing) the Department of Computer Science at The

University of Liverpool had contact within the context of the INnovative MAnufactur-

ing (INMA) Framework 7 European project. The data sets described two flat-topped

pyramid shapes referred to as the Gonzalo and Modified pyramids. In total eight data

sets were obtained each comprising before and after point clouds. For further explo-

ration, and to investigate the more general utility of the VULS mining concept, other

forms of 3D surface were considered. More specifically satellite image data describing

two villages located in a rural part of the Ethiopian hinterland were obtained using the

Google Static Map Service and translated in grid graphs.

The evaluation was conducted predominantly in the context of vertex classification.

The available data sets were divided into appropriate training and test sets. VULS

mining was then applied to the training sets and the resulting set of VULS utilised with

respect to the test sets. This process is illustrated in Figure 1.3. The resulting predicted

vertex labelling could then be compared to the known labelling. The VULS mining

algorithms and prediction algorithm (Backward-Match-Voting algorithm) in Figure 1.3

will be described further in Chapter 5 and Chapter 6 respectively. Standard approaches

in the field of data mining, and more specifically classification, were used (such as Ten-

fold Cross Validation (TCV) [79]) for testing and evaluation purposes. The metrics used

to measure classification performance were accuracy, runtime, and AUC (Area Under

the receiver operating Curve [9, 23, 97]). A number of additional metrics, specific to

VULS mining, were also used; namely: number of VULS and coverage.

Figure 1.3: The VULS mining evaluation process using training and test sets

Comparisons were also conducted using traditional classifiers for vetex classification,

namely the J48 decision tree classifier and Naive Bayes. To determine whether the

results obtained were also statistically significant the Friedman and Nemenyi tests were

applied [29, 81, 143]. Finally, a variant of Dems̆ar’s significance diagrams was used to

visualise the statistical results obtained.

Chapter 1. Introduction 8

1.5 Contributions

The main contributions of the research presented in this thesis are:

1. The concept of VULS, which is entirely novel within the context of graph mining.

2. An alternative approach to vertex label classification that does not use a training

set in the traditional form. Existing wok on vertex classification has typically

adopted a traditional approach that uses a training set, comprised of a set of pre-

labelled subgraphs each featuring a small number of edges and encoded in a tabular

format, which is then used to generate a classifier which can then be applied to

new data. This approach assumes the existence of an appropriate set of subgraphs.

The proposed VULS mining automates the labelled subgraph identification process

(although training data is still required).

3. Four algorithms for mining four types of VULS within a host graph. The algo-

rithms can be used to find the complete set of VULS, only the minimal ones, or

frequent ones, or minimal frequent ones. More specifically:

(a) compVULSM The complete VULS mining algorithm that finds all the VULS

that exist in a given input graph.

(b) minVULSM The minimal VULS mining algorithm which finds the subset

of VULS whose subgraphs are not VULS (but whose supergraphs may be).

The conjecture here was that this would be a more efficient form of VULS

mining (than complete VULS mining) that would still realise an effective set

of VULS.

(c) freqVULSM The frequent VULS mining algorithm which finds the subset of

VULS whose occurrence count is above some predefined threshold. Again the

conjecture here was that this would be more efficient than complete VULS

mining while still providing an effective set of VULS (in terms of vertex

classification).

(d) minFreqVULSM The minimal frequent VULS mining algorithm that finds

the subset of VULS that are both minimal and frequent. The conjecture here

was that minimal frequent VULS mining would combine the advantages of

both minimal and frequent VULS mining.

4. The Backward-Match-Voting (BMV) algorithm for vertex classification.

5. A complete evaluation and statistical analysis of the relative merits of VULS min-

ing in the context of vertex classification with respect to sheet steel forming, the

primary application domain considered.

6. I wider investigation of the application of VULS mining in the context of ver-

tex classification with respect to satellite image interpretation and analysis, the

secondary application domain considered.

Chapter 1. Introduction 9

1.6 Thesis Organization

The organisation of the remainder of this thesis is as follows:

1. Chapter 2 presents the necessary background to the work described together

with a review of related work.

2. Chapter 3 presents a brief description of the AISF and satellite image appli-

cation domains. More specifically the datasets which were used for experimental

purposes. Recall that the AISF application was used as the primary application

focus for the work, while the latter was used to confirm the general applicability

of the proposed VULS techniques. The necessary data preparation and image

pre-processing is also described in this chapter.

3. Chapter 4 provides a formalism for the VULS concept including the four identi-

fied categories of VULS: (i) complete, (ii) minimal, (iii) frequent and (iv) minimal

frequent. The chapter includes simple examples of each.

4. Chapter 5 presents detail of each of the four proposed VULS mining algorithms:

(i) compVULSM, (ii) minVULSM, (iii) freqVULSM and (iv) minFreqVULSM.

5. Chapter 6 describes the prediction algorithm, namely the Backward-Match-

Voting (BMV) algorithm, for applying VULS in the context of vertex classification.

6. Chapter 7 gives a comprehensive experimental analysis of the nature of VULS

in the context of vertex classification with respect to AISF. The chapter includes

a detailed statistical analysis.

7. Chapter 8 presents an experimental analysis of the utility of VULS in the context

of vertex classification with respect to an alternative application domain than sheet

metal forming; specifically satellite image interpretation.

8. Chapter 9 concludes the thesis. The chapter presents a summary of the work

together with the the main findings in terms of the identified research questions

identified above. The chapter also presents a number of potential directions for

future work founded on the research presented in this thesis.

1.7 Published Work

Some of the work described in this thesis is founded on work previously published by

the author in refereed publications. These publications are itemized below, in each case

the relevance with respect to the contents of this thesis is highlighted.

1. Journal Papers:

Chapter 1. Introduction 10

(a) W. Yu, F. Coenen, M. Zito, and S. El-Salhi (2015). Vertex Unique

Labelled Subgraph Based Classification. Submitted for refereeing

to the AI Journal. This journal paper compares the operation of earlier

versions of the complete VULSM and minVULSM algorithms with respect

to four different styles of grid graph: (i) degree 4 undirected, (ii) degree 8

undirected, (iii) degree 4 directed and (iv) degree 8 directed. The reported

experiments indicate that the VULSM algorithm, when applied to directed

grid graphs with a degree of 4, tended to produce best results. The relevance

of this paper with respect to the thesis is that the paper summarised the work

presented here. Note that similar experimental results to those described in

the paper are presented in chapter 7.

2. Conference Papers:

(a) A. Albarrak, F.Coenen, Y.Zheng, W.Yu (2012). Volumetric Image

Mining Based on Decomposition and Graph Analysis: An Appli-

cation to Retinal Optical Coherence Tomography. The 13th IEEE

International Symposium on Computational Intelligence and Infor-

matics (CINTI2012), pp. 263-268. Budapest, Hungary. 20th-22th

November, 2012. This paper considered a method for classifying volu-

metric images using a decomposition and graph analysis based method. In

the paper a hierarchical decomposition techniques was used to incrementally

divide a given 3D volume into sub-volumes according to some critical function

and then to represent the decomposition as a tree. The evaluation was con-

ducted by considering the classification of 3D Optical Coherence Tomography

(OCT) retinal images according to whether they feature Age-related Macu-

lar Degeneration (AMD) or not (AMD is an eye condition that can result in

blindness in old age). A frequent subgraph mining algorithm was applied to

the tree representations and the resulting identified frequent subgraphs used

to define a feature vector encoding which was then fed into a standard clas-

sifier. The significance with respect to the work presented in this thesis is

that the work described, although not directly concerned with vertex classi-

fication, lead the author to the idea of VULS based vertex classification; the

central theme of this thesis.

(b) W. Yu, F. Coenen, M. Zito, and S. El-Salhi (2013). Vertex Unique

Labelled Subgraph Mining. Thirty-third BCS SGAI International

Conference on Artificial Intelligence (BCS SGAI2013), Springer

Berlin Heidelberg, pp. 21-38. Cambridge, UK. 10th-12th Decem-

ber, 2013. This was the first paper published by the author that proposed

the concept of Vertex Unique Labelled Subgraph Mining (VULSM), a new

form of graph mining. The paper presents the Right-most Extension VULS

Mining (REVULSM) algorithm for finding the complete set of VULS in a

Chapter 1. Introduction 11

given input graph. The REVULSM algorithm was a preliminary version of

the compVULSM algorithm presented later in this thesis in Chapter 5. The

reported experimental results demonstrated that the VULS idea is sound and

that the REVULSM algorithm can identify VULS in real data. The evalua-

tion was conducted using the sheet steel forming application data also used

in this thesis.

(c) W. Yu, F. Coenen, M. Zito, and S. El-Salhi (2013). Minimal Vertex

Unique Labelled Subgraph Mining. The 15th International Con-

ference on Data Warehousing and Knowledge Discovery (DaWak

2013), Springer Berlin Heidelberg, pp. 317-326. Prague, Czech Re-

public. 26th-29th August, 2013. This paper built on 2(b) and proposed a

minimal VULS mining algorithm, the Minimum Breadth First Search Right-

most Extension Unique Subgraph Mining (Min-BFS-REUSM) algorithm, to

improve the efficiency of the VULSM process (with respect to the REVULSM

algorithm presented in 2(b)). The Min-BFS-REUSM algorithm was an early

version of the minVULSM algorithm presented later in this thesis in Chapter

5. The reported experimental results indicated that the Min-BFS-REUSM

algorithm could successfully identify all minimal VULS in reasonable time

and with (in some cases) excellent coverage (an important requirement in the

context of the sheet metal forming application used as a focus for the work).

(d) W. Yu, F. Coenen, M. Zito, and S. El-Salhi (2013). Vertex unique

labelled subgraph mining for vertex classification. The 9th In-

ternational Conference on Advanced Data Mining and Applica-

tions (ADMA 2013), Springer Berlin Heidelberg, pp. 542-553.

Hangzhou, China. 14th-16th December, 2013. This paper was the

first to suggest that the VULS concept could be used in the context of vertex

classification and proposed the Match-Voting algorithm for applying sets of

identified VULS in the context of vertex classification. The Match-Voting al-

gorithm was a fore-runner of the Backward-Match-Voting (BMV) algorithm

presented later in this thesis in Chapter 6. Experiments were conducted us-

ing the REVULSM and Min-BFS-REUSM algorithms from papers 2(b) and

2(c), and the sheet metal forming application also used for evaluation pur-

poses in this thesis. The results reported in this paper indicated that minimal

VULS mining is both efficient and effective in term of coverage (at least in

the context of the sheet metal forming application used for the evaluation).

(e) W. Yu, F. Coenen, M. Zito, and K. Dittakan (2014). Classification

of 3D Surface Data Using the Concept of Vertex Unique Labelled

Subgraphs. The 9th International Workshop on Spatial and Spa-

tiotemporal Data Mining (SSTDM), 2014 IEEE International Con-

ference on Data Mining Workshop (ICDMW), pp. 47-54. Shen-

zhen, China. 14th-17th December, 2014. This paper extended the

Chapter 1. Introduction 12

work from 2(b), 2(c) and 2(d) by introducing the idea of frequent and mini-

mal frequent VULSM. The paper included revised versions of the earlier al-

gorithms for complete and minimal VULSM similar to those presented later

in Chapter 5 of this thesis. This paper also presented the Backward Match

Voting (BMV) algorithm for predicting (classifying) vertex labels associated

with “unseen” graphs using a given collection of VULS. An extended version

of the description of the BMV algorithm is presented in Chapter 6 of this the-

sis. Unlike previous papers in this series the evaluation was conducted using

a satellite image interpretation application (earlier papers had all used sheet

metal forming as the evaluation application domain). The satellite data used

describing two villages located in a rural part of the Ethiopian hinterland

data. The collected satellite images were encoded in a grid format which was

then converted into a 3D surface formalism by considering the average grey

scale value for each grid cell as the z value. The idea here was to predict

vertex labels describing ground type. A statistical analysis of the results, us-

ing the Friedman test, was also presented so as to demonstrate the statistical

significance of the VULS based 3D surface regional classification idea. The

results indicate that the VULS concept is also suited to the task of 3D surface

regional classification.

1.8 Summary

In summary, this chapter has provided an overview and background for the research

described in the remainder of this thesis, including details concerning the motivation

for the work and the research question and associated issues. The work is broadly

focused on four different categories of VULS: (i) complete, (ii) minimal, (iii) frequent

and (iv) minimal frequent. The main objective of the work described is to provide an

answer to the research question: “How best can the proposed VULS mining be conducted

so as to achieve effective vertex classification?”. This introductory chapter has also

provided a brief description of the programme of work, the evaluation criteria used and

the contribution of the work. In the following chapter (Chapter 2) a literature review,

intended to provide much more detail regarding the necessary background concerning

the research described in this thesis, is presented.

Chapter 2

Literature Review

2.1 Introduction

This chapter presents a review of the background, related work and the application

domain central to the work described in this thesis. The related work is mainly founded

on three areas of research study (as shown in the Venn diagram presented in Figure 2.1):

(i) Graph mining, (ii) Vertex classification and (iii) 3D surface representation. With

respect to Figure 2.1 the research described in this thesis can be conceptually placed at

the intersection between the three research themes. Each of the themes is considered in

this chapter. We commence the discussion, in Section 2.2, with a review of graph mining

techniques. One particular graph mining technique that is of significant relevance with

respect to VULS mining is Frequent Subgraph Mining (FSM). This is thus considered

in some detail in Section 2.3. We then go on to consider 3D surface representation

and vertex classification techniques in Sections 2.4 and 2.5 respectively. A review of

the evaluation metrics, and their derivation, used with respect to the work described in

this thesis, is then presented in Section 2.6. Finally, this chapter is concluded with a

summary in Section 2.7.

Figure 2.1: The three main research themes of this thesis: Graph Mining, Vertex
Classification and 3D Surface Representation.

13

Chapter 2. Literature Review 14

2.2 Graph Mining

Graph mining is concerned with the discovery of hidden information in graph data. A

graph is a set of vertices and a set of edges connecting pairs of vertices. In this thesis,

and in common with much other work, graphs are also considered to have both vertex

and edge labels. Thus, without loss of generality, each graph G is defined in terms of a

tuple of five elements:

〈V,E, LV , LE , F 〉 (2.1)

where:

1. V is a set of n vertices. The elements of V are denoted by the letters u or v,

occasionally with subscripts if the nature of the collection of vertices is important

with respect to a particular context.

2. E is a set of m edges. The elements of E are usually denoted by the letter e, again

occasionally with subscripts.

3. LV is the set of vertex labels.

4. LE is the set of edge labels.

5. F is a labelling function that defines the mappings V → LV and E → LE .

Each vertex (or edge) of the graph is required to have a single label; the same label can

be assigned to many vertices (or edges) in the same graph. If the labelling is restricted

to the vertices, or the edges, the graph is defined by a four-tuple. If no labelling is

present, the graph is defined by the pair (V,E).

Throughout this thesis the expression |X| denotes the cardinality (number of ele-

ments) of X, if X is a set or an ordered sequence. However, if G is a graph, the size of

G, is normally defined as the number of vertices or the number of edges. In this thesis

|G| = |V | (thus, |E| = O(|V |)).
If E is a collection of sets each formed by two elements of V we say that G is an

undirected graph. If E is a collection of ordered pairs of elements of V then G is a

directed graph. A path P in a graph G is an ordered sequence of vertices v1, v2, . . . , v|P |

such that vi and vi+1 form an edge in G, for each i ∈ {1, . . . , |P | − 1}. The graph G is

connected if every pair of vertices in G are connected by a path.

A subgraph of G is any graph φ ≡ {Vφ, Eφ, LVφ , LEφ , F} with (Vφ ⊂ V , Eφ ⊂ E,

LVφ ⊂ LV and LEφ ⊂ LE). A candidate c of G is a subgraph of G without the vertex

labelling, thus c = {Vc, Ec, LEc , F}. Note that c may appear many times in G, there

may be a number of instances of φ that are equivalent (isomorphic) to c.

Given a candidate c, and a graph G, a set of potential vertex labels Lv can be

associated with each v ∈ Vc by inspecting the labelled occurrences of v in G. We denote

Chapter 2. Literature Review 15

by S′ the collection {Lv : v ∈ Vc}. A VULS of G is a connected subgraph where |Lv| = 1

for each Lv ∈ S′.
Referring back to the introduction to this chapter, other than “standard” VULS as

defined above, we can identify three other kinds of VULS: Minimal VULS, Frequent

VULS and Minimal frequent VULS.

Definition 1: Minimal VULS. A minimal VULS is a VULS such that

none of its subgraphs are VULS.

Definition 2: Frequent VULS. A Frequent VULS (FVULS) is a VULS φ

whose occurrence count, Occurrence(φ), within the input graph G, is greater

than some pre-specified threshold σ.

Definition 3: Minimal frequent VULS. A minimal frequent VULS is a

VULS φ which is both minimal and frequent.

The relationship between the different forms of VULS is illustrated in Figure 2.2. The

relevance of the numbering included in Figure 2.2 will become clear later in chapter 4.

The concept of VULS will be considered in further detail, with some worked examples,

in chapter 4.

Figure 2.2: Venn Diagram showing the relationship between VULS, Minimal VULS,
Frequent VULS and Minimal frequent VULS

This section is organised as follows. Section 2.2.1 presents an overview of the research

domain of graph mining starting with a categorisation of this domain. Graph mining

often involves the identification of patterns (subgraphs or subtrees) in graph data. There

are various forms of graph pattern that may be of interest and these are reviewed in

section 2.2.2. Subgraph isomorphism is a central activity frequently required for graph

mining and this is discussed in section 2.2.3. Another important aspect of graph mining

is the mechanisms whereby graphs are represented so as to facilitate mining; some kind

of canonical form is required, and this is therefore discussed in section 2.2.4.

2.2.1 Graph Mining Categorisation

The domain of graph mining can be categorised in a number of ways, the most straight-

forward is to consider the domain in terms of: (i) transaction graph mining and (ii)

Chapter 2. Literature Review 16

single graph mining. In transaction graph mining [47, 115, 118, 136, 221] the input

comprises a collection of graphs and the objective is to find hidden patterns that exist

across this collection. Transaction graph mining is essentially an extension of frequent

items set mining [2, 21, 93, 94] as used with respect to tabular data. In single graph

mining the input comprises a single large graph and the objective is to find patterns that

exist within this single large graph. An application domain where single graph mining

is often applied is social network analysis [3, 133, 203]. Examples of social networks

include twitter communities, Facebook communities, and co-authoring networks. The

work presented in this thesis belongs to the single graph mining category.

Alternatively, graph mining when used for classification purpose can be divided into

two categories: (i) graph classification and (ii) vertex classification. With respect to the

first category the objective is to use pre-labelled training graphs to produce a classifier

with which to classify previously unseen graphs [128]. From the literature we can identify

a number of graph classification approaches, these include: LEAP [230], gPLS [182],

CORK [205], and COM [123]. With respect to the second category the objective is to

train a classifier, using training data, so as to construct a classifier that can be used

to classify (label) vertices whose labels were previously unknown. Vertex classification

may be conducted within a single graph (where some of the vertices have been pre-

labelled for training purposes) or across a collection of graphs (where the vertices in

some graphs have been pre-labelled for training purposes). The work presented in this

thesis is particularly concerned with the concept of vertex classification and thus the

principles of vertex classification are considered in further detail in Section 2.4 later in

this chapter.

2.2.2 Subgraph Patterns

A central concern of graph mining, either directly or indirectly, is the identification

of patterns (subgraphs) within graph data. We are typically interested in identifying

subgraphs that feature some particular structure. The patterns of interest can be cate-

gorised as follows [46]: (i) topological patterns, (ii) frequent patterns and (iii) relational

patterns. The first has to do with the topology of the subgraphs of interest, subgraphs

that feature a specified topology. Examples include arbitrary subgraphs, induced sub-

graphs, maximal complete subgraph (cliques) and paths [28, 118]. The second category

has to do with frequency of occurrence, thus subgraphs that are frequent, maximal, or

closed. The third category is concerned with the relationships between subgraphs, thus:

various embeddings within discovered patterns, embeddings that can have arbitrary

overlaps, partial overlaps, being vertex- and/or edge-disjoint and coherent substructures

[107]. The particular patterns of interest with respect to this thesis are VULS, which can

be considered to fall within the topological category identified above. If we are talking

about frequent VULS or minimal frequent VULS then the VULS concept can also be

said to fall into the frequent pattern category.

Chapter 2. Literature Review 17

As will become apparent later in this thesis, the proposed VULS mining methods used

in this work, especially frequent VULS and minimal frequent VULS mining, “borrow”

concepts and techniques from the domain of FSM (Frequent Subgraph Mining), thus

VULS mining techniques also fall into the second of the above categories. From the

literature the most common types of frequent subgraph that can be mined include: (i)

“ordinary” frequent subgraphs [109], (ii) closed frequent subgraphs [39, 43, 228], (iii)

maximal frequent subgraphs [106, 207], (iv) approximately frequent substructures [240],

(v) contrast substructure [46], and (vi) discriminative frequent substructures [124, 232].

The first of the above, ordinary frequent subgraphs, is the most relevant to VULS

mining, especially frequent VULS and minimal frequent VULS mining. Because of its

significance with respect to the work presented in this thesis frequent subgraph mining

is discussed in further detail in Section 2.3 later in this chapter.

2.2.3 Graph Isomorphism

Graph isomorphism is concerned with the problem of deciding whether two graphs are

identical or not. In other words, given two graphs, does there exist a one to one mapping

of the vertices in one graph to the vertices in the other such that vertex adjacency is

preserved [78]. Isomorphism testing is computationally expensive. This is particularly

the case with respect to frequent subgraph mining (see below) because of the large num-

ber of graph comparisons that need to be made; graph isomorphism plays an essential

role in determining whether a candidate subgraph exists within a given graph and how

often it exists. Isomorphism testing also plays a significant role with respect to vertex

classification (see section 2.5 below). Subgraph isomorphism with respect to non-regular

graphs is known to be a NP-complete1 problem [78], no algorithm has been found that

can solve the isomorphism testing problem in polynomial time [49, 85]. However, sub-

graph isomorphism with respect to trees, permutation graphs, chordal graphs and grid

graphs (as used in this thesis) is not a NP-complete problem [78]. Note that a tree is a

graph containing no cycles [216], and a grid graph is a node-induced finite subgraph of

the infinite grid [119].

There has been much work on algorithms to enhance the efficiency of isomorphism

testing; examples include: (i) Ullmann’s algorithm [160, 215], (ii) Backtracking algo-

rithm [186], (iii) Nauty [157], (iv) VF and VF2 using a State Space Representation

(SSR) [48, 49] and (v) geometric isomorphism [139]. However, none of these existing

isomorphism detection algorithms are entirely suited to VULS mining, or VULS based

vertex classification, as envisioned in this thesis. The reasons for this are:

1. Most existing isomorphism approaches use vertex invariants (such as the degree

of a vertex, the “twopaths” concept, adjacency triangles, k-cliques, independent

k-sets and distances) to solve the isomorphism problem [78]. However, calculation

1NP-complete: In computational complexity theory, the complexity class NP refers to the set of
decision problems whose solutions can be verified in polynomial time. A decision problem ρ is NP-
complete if ρ is in NP and every other problem in NP is reducible to ρ in polynomial time [50].

Chapter 2. Literature Review 18

of the invariant values, especially with respect to the more complex invariants, is

time consuming; it is also very difficult to determine which invariant is the best

for a particular graph. Instead, what is typically done is to leave the decision

of if and when to use a vertex invariant up to the user (except for degree which

is always used). Given a number of complex graphs, time would be required to

experimentally determine what invariant to use.

2. Most of above isomorphism approaches use adjacency matrixes to represent graphs,

which is not well suited in the context of the VULS mining proposed in this thesis.

Thus the isomorphism testing approach used with respect to the work presented

in this thesis is based on that espoused within the gSpan frequent subgraph mining

algorithm [229]. The gSpan isomorphism approach is to take a single graph G and

apply some function C(G) which returns a canonical label such that C(G) = C(H)

iff G and H are isomorphic. In other words, gSpan addresses the graph isomorphism

problem by comparing the “canonical labellings” of two graphs. If these labellings are

the same, then these graphs are isomorphic. The concept of canonical labelling (forms)

is described in more detail in the next section. The gSpan algorithm is considered in

further detail in Section 2.3 later in this chapter.

2.2.4 Canonical Forms

A canonical form is an agreed way of representing some object (such as a graph). In the

context of graph mining canonical forms are important so that the relevant algorithms

can be both effective and efficient [177, 222]. In the case of isomorphism testing canonical

forms are significant so as to ensure that, given two identical graphs, they are represented

in the same manner (thus simplifying the isomorphism testing). In other words, a

canonical form facilitates isomorphism checking because it ensures that if a pair of graphs

are isomorphic, then their canonical labellings will be identical [20, 117, 136, 177]. In the

case of graph mining algorithms that involve the generation of candidate graphs, such as

the VULS mining algorithms with respect to this thesis, the usage of a canonical form

is important so as to avoid the generation of duplicates (the same graph but expressed

in different ways).

From the literature we can identify a number of canonical labelling strategies such as:

(i) Minimum DFS Coding [229], (ii) the Coding proposed by Akihiro Inokuchi [118], (iii)

Canonical Adjacency Matrix (CAM) encoding [109, 116], (iv) Canonical Representation

of free trees [180], (v) String encodings for rooted ordered trees [152, 171], (vi) Canonical

forms for rooted unordered trees [8, 42], (vii) DFS Label Sequence (DFS-LS) encoding

[236], (viii) Depth-Label Sequence (DLS) encoding [127], (ix) Breadth-First Canonical

String (BFCS) encoding [40], (x) Depth-First Canonical String (DFCS) encoding [43]

and (xi) Consolidated Prüfer Sequence(CPS) encoding[200]. The first, Minimum DFS

Coding differs from the other canonical forms in that it uses a tree representation of

each graph instead of a more traditional adjacency matrix. With respect to the work

Chapter 2. Literature Review 19

described in this thesis, Minimum DFS Coding, was adopted because of its popularity

in the context of frequent subgraph mining.

Depth-First Search (DFS) is an algorithm for traversing or searching tree or graph

data structures. One starts at the root (some arbitrary vertex in the case of a graph)

and explores each branch before backtracking. This requires some ordering of vertex

identifiers; given two branches emanating from a vertex some ordering needs to be

imposed so that one branch is selected before the other. In the case of graphs a similar

mechanism needs to be imposed to select a start vertex.

For one graph G, there are lots of ways to construct different DFS trees by selecting

a different root U and different growing edges. When performing a depth-first search in

a graph, various DFS trees can be constructed each with its own DFS code. In other

words, a lot of DFS codes can be adopted to represent a graph G, to prevent ambiguity

we require a canonical form so that among all these DFS codes, there is only one minimal

DFS code. It is this minimal DFS code that will then be employed to represent G. In

the following, how to generate various DFS codes for graph G is described first. Then

an example is given to illustrate such process and how to choose the minimal one as

the canonical form from the various DFS codes generated is also explained at the same

time.

The DFS code for a graph consists of a sequence of tuples describing the edges in a

given graph G. The tuples are of the form:

〈U, V, LU , LE , LV 〉

where: (i) U is the identifier for the start vertex, (ii) V is the identifier for the end

vertex, (iii) LU is the vertex label for U , (iv) LE is the edge label and (v) LV is the

vertex label for V . The DFS codes for G is generated as follows:

1. Impose an ordering on the vertices (a sequential set of unique vertex identifiers).

Mark all edges as “unread”.

2. Select the first vertex in the ordering as the root (the start point) U .

3. Create an ordered list of edges {e1, e2, . . . , en} emanating from root U . List back-

ward edges prior to forward edges.

4. Process the edge list {e1, e2, . . . , en}, i = 1 (1 6 i 6 n):

(a) If ei is marked as being “unread”, create a code describing the edge and store,

mark the edge as “read” and proceed to (b).

(b) If ei is a forward edge, choose the end vertex of ei as root U , repeat from 3.

(c) Otherwise, ei is a backward edge, increment i (i+ +), and repeat from (a).

Chapter 2. Literature Review 20

Figure 2.3: Depth-First Search Tree and its Forward/Backward Edge Set [229]. Note
that forward edges are represented by solid lines and backward edges dashed lines.

Table 2.1: DFS code for Figure 2.9 (b), (c) and (d) [229]

edge NO. (b) (c) (d)

0 〈0, 1, X, a, Y 〉 〈0, 1, Y, a,X〉 〈0, 1, X, a,X〉
1 〈1, 2, Y, b,X〉 〈1, 2, X, a,X〉 〈1, 2, X, a, Y 〉
2 〈2, 0, X, a,X〉 〈2, 0, X, b, Y 〉 〈2, 0, Y, b,X〉
3 〈2, 3, X, c, Z〉 〈2, 3, X, c, Z〉 〈2, 3, Y, b, Z〉
4 〈3, 1, Z, b, Y 〉 〈3, 0, Z, b, Y 〉 〈3, 0, Z, b,X〉
5 〈1, 4, Y, d, Z〉 〈0, 4, Y, d, Z〉 〈2, 4, Y, d, Z〉

For instance consider the graph G given in Figure 2.3 (a). From this graph various

DFS trees can be generated depending on the choices of the root U among the vertices.

Figure 2.3(b), (c) and (d) give three different DFS trees for the graph in Figure 2.3(a).

If we choose the first “X” in Figure 2.3(a) as the root U , the DFS tree shown in Figure

2.3(b) will be generated. In the same manner, if we choose “Y” or the second “X” as

the root. The trees shown in Figures 2.3(c) and (d) would be generated. Thus G can

be represented as three different ways. Therefore there are three different DFS codes

one per DFS tree as shown in Table 2.1 to represent the same graph G (Figure 2.3(a)).

Note that forward edges are represented by solid lines and backward edges dashed lines.

The question is how to find the minimal DFS codes from these three DFS codes.

The minimum DFS code, as the name suggests, is the minimum code according to

some lexicographic order of the graph edges. In other words, an ordering is imposed on

the element values with respect to five tuples 〈U, V, LU , LE , LV 〉. Thus, in Table 2.1,

edge 0 is compared first with respect to (b), (c) and (d). The first and second elements

are the same (0 and 1). The third element “X” is lexicographic before “Y”, thus DFS

codes (b) and (d) are “smaller” than (c). We need to find the minimal DFS code, thus

(c) is out, (b) and (d) are left so we continue by comparing edge 1; obviously the first

Chapter 2. Literature Review 21

two elements are the same (1 and 2), the third element “X” is before “Y”, thus DFS

code (d) is smaller than (b). Thus, (d) is the minimum DFS code for G and thus it

is the unique canonical form with which to represent G (Figure 2.3(a)). Note that a

subgraph is a duplicate subgraph if and only if its DFS code is not minimum.

Given two graphs G and G′, G is isomorphic to G′ if and only if the minimum

DFS code of G is identical to the minimum DFS code of G′. The isomorphism testing

process is given in algorithm 1. If the minimum DFS codes of two graphs are not the

same, the two graphs are not identical. Thus the problem of mining subgraphs can be

said to be equivalent to analysing their corresponding minimum DFS codes. Note that

the minimal DFS code is dependent upon the global set of labels in an input graph

or set of input graphs. Thus any two subgraphs that subscribe to this global labelling

can still be compared; of course if they do not subscribe to this global labelling then

comparison is not possible. As will become apparent later in section 2.3.3.2, the use of

minimum DFS codes can enhance the process of frequent subgraph mining by comparing

the minimal DFS code of two graphs to do the isomorphism testing. Thus for the VULS

classification proposed in this thesis, minimum DFS coding was adopted for subgraph

matching (subgraph isomorphism) with respect to both the VULS mining and vertex

classification by VULS.

Algorithm 1

1: procedure IsomorphismTest(G, G′)
2: S= the set of minimal DFS codes for graph G
3: S′= the set of minimal DFS codes for graph G′

4: result=true
5: if |S| != |S′| then
6: result=false
7: else
8: for all i from 1 to |S| do
9: if Si 6= S′i then

10: result=false
11: return result
12: end if
13: end for
14: end if
15: return result
16: end procedure

2.3 Frequent Subgraph Mining

Frequent Subgraph Mining (FSM) is, as the phrase suggests, concerned with the identi-

fication of subgraphs that occur frequently in the input data. A good way of perceiving

the FSM process is to conceptualise it as one of searching through a lattice describing

all possible patterns and selecting those that are (in some sense) frequent. The work

Chapter 2. Literature Review 22

presented in this thesis “borrows” ideas from the concept of FSM and especially the well

known gSpan algorithm [229]. More specifically: (i) some general ideas concerning FSM

were incorporated into the proposed VULS mining; and (ii) frequent VULS mining and

minimal frequent VULS mining, a variation of the proposed generic VULS mining, was

founded on the idea of FSM. FSM algorithms, typically operate using a candidate gen-

eration, frequency counting and pruning loop; the proposed VULS mining algorithms

operate in a similar manner although (except in the case of frequent VULS or minimal

frequent VULS mining) without the frequency counting element.

There are a great variety of FSM algorithms. Some of which were developed for

transaction graph mining and have subsequently been used for single graph mining and

others that have been specifically designed for single graph mining. It should also be

noted that many subgraph mining algorithms are extensions of subtree mining algo-

rithms which in turn are often extensions of frequent item set mining algorithms as used

with respect to binary valued tabular data [11, 122]. Recall also that a tree is a special

form of graph that offers advantage in the context of graph mining, namely that can-

didate generation and isomorphism testing is much more straight forward than in the

case of graphs.

In the context of FSM, particularly when applied to transaction graph data, a concept

known as the Downward Closure Property (DCP) or the anti-monotone property of

itemsets is often utilised. This is an important concept with respect to both FSM and

frequent VULS mining, thus is discussed in further detail in Section 2.3.1 below. A

central element of FSM algorithms is the mechanism used to determine the frequency of

subgraphs, this is thus discussed in Section 2.3.2. To determine whether a subgraph is

frequent or not its occurrence count is typically compared with a frequency threshold σ,

the nature of this threshold is discussed in Section 2.3.3. Candidate generation is then

considered in Section 2.3.3.1.

2.3.1 The Downward Closure Property

In the context of transaction FSM, where frequency is counted in terms of one count per

transaction in which some subgraph g appears, the downward closure or anti-monotone

property states that if g is not frequent none of its supergraphs can be frequent. This

is significant with respect to FSM candidate generation as discussed in the following

subsection. In some cases the Downward Closure Property (DCP) may apply in the

context of single graph mining depending on how the frequency counting is conducted

[187, 197, 218]. However, in the context of VULS mining, as will be demonstrated in

Chapters 4 and 5, this does not apply; if g is not a VULS this does not mean that none

of the supergraphs of g are also not VULS.

2.3.2 Frequency Counting

As noted above, mechanisms for conducting frequency counting play an essential role in

FSM, and by extension frequent (and minimal frequent) VULS mining. In FSM the term

Chapter 2. Literature Review 23

Figure 2.4: Patterns with the non-monotonic frequency [138].

support2 is used to describe the occurrence or frequency count of a graph. There are a

variety of ways that support can be defined. In part this is dependent on the nature of

the FSM problem: transaction graph based or single graph based. In transaction graph

mining the options are whether: (i) to consider the presence of a particular subgraph

g in a transaction graph t to represent a count of one regardless of how many times g

actually occurs in t, or (ii) to take into account the occurrences of g in t. We refer to

the second as occurrence counting. In single graph mining the only option is to adopt

occurrence counting and take into account occurrences of g. Given that the focus of this

thesis is on single graph mining the discussion on support counting presented in this

section is directed solely at mechanisms in the context of single large graphs [26, 76].

In general, in the context of single graph mining, there are two possible methods for

determining the frequency of a subgraph. In the first, two embeddings of a subgraph

are considered different, as long as they differ by at least one edge (non-identical). As

a result, arbitrary overlaps of embeddings of the same subgraph are allowed. In the

second, two embeddings are considered different, only if they are edge-disjoint. These

two methods are illustrated in Figures 2.5 and 2.4. In the example presented in Figure

2.5 there are three possible embeddings of the subgraph shown in Figure 2.5(a) in the

input graph given in Figure 2.5(b). Two of these embeddings (shown in Figures 2.5(c)

and (e)) do not share any edges, whereas the second embedding (Figure 2.5(d)) shares

edges with the other two. Thus, if we allow overlaps, the frequency of the subgraph is

3, and if we do not it is 2.

2Support can be defined in general as the proportion of occurrence of a subgraph over a total number
of graph transactions in a transaction graph mining data set.

Chapter 2. Literature Review 24

Figure 2.5: Overlapped embeddings [138].

The above two ways of counting the frequency of a subgraph lead to problems

with dramatically different characteristics. If we allow arbitrary overlaps between non-

identical embedding the DCP (see above) does not hold. This is illustrated in Figure

2.4 where both the 7-edge subgraph G7 and the 6-edge subgraph G6 are subgraphs of

G. The smaller 6-edge subgraph G6 has only one non-identical embedding whilst the

larger 7-edge subgraph G7 has six non-identical embeddings. The occurrence count for

G6 is therefore less than the occurrence count for G7, thus in this case the DCP does

not necessarily hold; if the frequency threshold σ is defined as 6, then G7 is frequent

but its subgraph G6 is not frequent. On the other hand, if we determine the frequency

of each subgraph by counting the maximum number of its edge-disjoint embeddings3,

then the DCP does hold [217].

With respect to the proposed frequent VULS and minimal frequent VULS mining the

first frequency counting method, where two embeddings of a subgraph are considered

different as long as they differ by at least one edge (thus allowing two embeddings

to share some edges), was adopted. Thus the proposed frequent VULS and minimal

frequent VULS mining algorithms presented later in this thesis do not subscribe to the

DCP (see Chapter 5).

2.3.3 The Minimum support threshold σ

As noted in the foregoing subsection a subgraph is considered to be frequent if its support

exceeds a given threshold σ. One option is to fix the value for σ prior to commencing

the FSM. However, it should be noted that: (i) if σ is low we will extract a large number

subgraphs, including many spurious subgraphs; and (ii) if σ is high we may miss many

interesting patterns occurring at low levels of support. Most existing FSM algorithms

3Two embeddings of a subgraph are considered different, as long as they don’t share any edge.

Chapter 2. Literature Review 25

require that σ be pre-specified. These algorithms are then evaluated by considering

a range of values for σ [26, 70, 76]. This is not appropriate with respect to VULS

mining due to two drawbacks noted above. Also by fixing the value of σ in advance, the

occurrence distribution of generated subgraphs is not taken into account. An alternative

is to compute σ dynamically in a self-adaptive manner. Thus, in the context of frequent

VULS and minimal frequent VULS, a bespoke mechanism for calculating σ dynamically

was developed by the author; this will be presented later in Chapter 5.

In the context of the above there are other measures that can be used to identify

“interesting” subgraphs such as all-confidence [170], h-confidence [226], Jaccard similar-

ity measure [44], MiNImum image based (MNI) support metric [26], Harmful Overlap

(HO) support metric [76], and Maximum Independent Sets (MIS) support metric [76].

However, the ordinary support measure is the most frequently used and hence it was

adopted with respect to the work presented in this thesis.

2.3.3.1 Candidate Generation

As noted above, candidate generation forms a central part of FSM as well as the proposed

VULS mining. FSM typically operates in an iterative manner starting with one edge

candidate subgraphs, then two edge candidate subgraphs, and so on. The proposed

VULS mining also operates in this manner. On each iteration the graphs from the

previous iteration are grown by adding a node connected to the previous graph by an

edge. The important issue in candidate generation is to grow subgraphs so that, as

the process continues, duplicate candidate graphs are not generated. This is why it is

important to use a canonical form as described above in Subsection 2.2.4.

From the literature the most representative candidate generation methods that can

be identified are: (i) Right most extension [1, 196, 198], (ii) Equivalence class based ex-

tension [237], (iii) Right-and-left tree join [100], (iv) Extension and join [38, 41, 110, 117],

(v) Level-wise join [136], and (vi) gFSG-join [139]. With respect to the proposed VULS

mining the right most extension mechanism was adopted due to its reported effectiveness

and efficiency [1, 196, 198]. The right most extension mechanism is described in further

detail in the remainder of this subsection.

The right most path extension method is reported to be complete in that all valid

candidates are enumerated once (it is a non-redundant method) [1, 196, 198]. The

right most extension method views candidate graphs in the form of trees. The tree is

“grown” by: (i) adding backward edges from the rightmost vertex, and then (ii) by

attaching new nodes only to the vertices along the “rightmost path”, the dashed lines

indicate the newly added edges. This is illustrated in Figures 2.6 and 2.7. Where the

red vertices indicate the rightmost path. Figure 2.6 gives a current k−edge graph while

Figure 2.7 gives the possible one edge extensions of this graphs to give a sequence of

Chapter 2. Literature Review 26

(k + 1)−edge subgraphs. Note that backward edges4 can only grow from the rightmost

vertex, while forward edges can grow from vertices on the rightmost path.

Figure 2.6: k-edge subgraph (k=4).

Figure 2.7: (k+1)-edge subgraphs generated by right most extension from the k-edge
subgraph given in Figure 2.6.

2.3.3.2 Frequent Subgraph Mining Algorithms

As noted above, FSM can be directed at either: (i) a set of transaction graphs or (ii)

one large single graph. Broadly FSM techniques can also be divided into two categories

according to the search strategy adopted: (i) Breadth First Strategy (BFS) also referred

to as the Apriori approach; and (ii) Depth First Strategy (DFS) also referred to as the

pattern growth approach. These two categories are similar in spirit to their counterparts

found in Association Rule Mining (ARM), namely the Apriori algorithm [4] and the FP-

growth algorithm [93] respectively.

4A forward edge is an edge that extends to a new end node while a backward edge extends to an
existing end node.

Chapter 2. Literature Review 27

Figure 2.8: Apriori-based (BFS).

The Apriori approach is illustrated in Figure 2.8. Note that each node corresponds to

a k-edge subgraph. The figure shows that the search for frequent subgraphs starts with

1-edge subgraphs and then moves on to 2-edge subgraphs and so on in a BFS manner.

The new (k+1)-edge subgraphs are generated by growing the previously identified k-

edge subgraphs by using, for example, right most extension. The frequency of the newly

formed (k+1)-edge subgraphs is then checked and only frequent subgraphs are extended.

The whole process iterates in this manner level by level as k is increased. Essentially, the

Apriori-based approach proceeds in a “generate-and-test” manner using a BFS strategy

to explore the subgraph lattice of the given graphbase.

Figure 2.9: Pattern-growth (DFS). Only frequent K-edge subgraphs will be grown to
(K + 1)-edge subgraphs.

In Figure 2.9 the DFS (pattern growth) approach is shown. Note again that each

node corresponds to a k-edge subgraph. For each discovered subgraph g, using the DFS

strategy, g is extended recursively until all the frequent supergraphs of g have been

discovered [229]. All subgraphs containing g1 (coloured in purple) are generated, then

all subgraphs containing g2 (coloured in blue) are generated excluding these containing

g1 and so on. In this manner the pattern growth approaches can avoid duplicate sub-

graphs efficiently. The approach also requires less memory than the Apriori approach.

Moreover, as opposed to Apriori approaches; pattern growth approaches do not need to

generate all the k-edge subgraphs first so as to explore (k+1)-edge subgraphs. Therefore

a pattern growth approach DFS strategy was adopted for VULS candidates generation

and BFS strategy was adopted for identifying VULS from VULS candidates with respect

to this thesis.

Chapter 2. Literature Review 28

Table 2.2: Frequent subgraph mining algorithm categorisation [122, 140]

Transaction graphs

BFS strategy

AGM [116]
AcGM [117]
FSG [136]
gFSG [139]
Farmer [167]
ISG[206]
MUSE[244]
DPMine [89]

DFS strategy

MoFa [22]
gSpan [229]
ADI-Mine [220]
FFSM [109]
SPIN [111]
TSP[104]
RP-FP[144]
RP-GD[144]
JPMiner[150]
MSPAN[146]
GASTON [168]

Single graph

HSIGRAM [138]
VSIGRAM [138]

FPF [187]
DPMine [89]

SUBDUE [45]
Grew [137]

gApprox [36]
RAM [239]

Table 2.2, taken from [122, 140], gives a categorisation of a range of well known FSM

algorithms according to whether they were intended for transaction graph FSM or single

graph FSM; and in the case of transaction graph FSM, whether they operate in a BFS

or a DFS manner.

The remainder of this section gives a detailed overview of the gSpan algorithm be-

cause of its relevance with respect to the research on VULS mining presented later in

this thesis.

Chapter 2. Literature Review 29

Algorithm 2 gSpan(G,σ).

1: Sort the labels in G by their frequency;

2: Remove infrequent vertices and edges from G;

3: Relabel the remaining vertices and edges in G according to frequency;

4: S = {};
5: S1 ← All frequent 1-edge subgraphs in G;

6: Sort S1 in DFS lexicographic order;

7: S = S ∪ S1;
8: for each edge e ∈ S1 do

9: s = {};
10: s = s ∪ e; /* s is the set of all subgraphs contain e */

11: S = S ∪ Subgraph Mining(G,s); /* Algorithms 3 */

12: G = G− e; /* Remove e from graph dataset G */

13: if The number of graphs in G < σ × |G| then

14: exit;

15: end if

16: end for

Algorithm 3 Subgraph Mining(G,s)

1: if s 6= mininmalDFScode(s) then

2: return null;

3: end if

4: Enumerate s in each graph in G by right most extension new edge to s and count

its children c’s occurrence support(c);

5: for each c do

6: if support(c) > σ then

7: s = s ∪ c;
8: Subgraph Mining(G,s);

9: end if

10: end for

11: return s;

In the context of transaction graph mining, given a database G comprised of a

collection of graphs and a threshold σ (0 < σ ≤ 1); where G = {G1,G2, . . . ,Gn} and

Gi represents a graph in the graph dataset G. The frequency of a subgraph g in G is

defined by Occurrence(g) = |{Gi ∈ G|g⊆ Gi} | . The support of a graph g is defined as

the fraction of the graphs in G to which g is subgraph isomorphic.

support(g) = Occurrence(g)/|G| (2.2)

A subgraph g is frequent if and only if support(g) > σ. The objective of FSM

algorithms such as gSpan (graph-based Substructure pattern mining) algorithm [229] is

Chapter 2. Literature Review 30

to find all frequent subgraphs in G. gSpan is a DFS transaction graph FSM algorithm.

The basic gSpan algorithm is given in Algorithm 2 [229]. The input is a graph dataset

G and a minimum support threshold σ. The output is the set of identified frequent

subgraphs S. Note that the concept of frequency is generic regardless of whether we

are considering FSM with respect to transaction graphs or one single large graph (as

in the case of the proposed VULS mining). In both cases frequency is defined using a

threshold σ. The distinction is in how the threshold is defined. In transaction graph

mining it can be expressed simply as a percentage of the transaction graphs in which a

candidate subgraph needs to exist for it to be frequent. This is not so straightforward

in the context of a single graph mining where σ needs to be calculated in some other

way or user specified.

Returning to Algorithm 2, assume we have a label set of {A,B,C, . . . } for the ver-

tices, and a label set of {a,b,c, . . . } for the edges. In Algorithm 2, lines 8-16, on the

first iteration we will discover all the frequent subgraphs containing an edge 〈A, a,A〉.
On the second iteration we will discover all the frequent subgraphs containing 〈A, a,B〉,
but not 〈A, a,A〉. This procedure repeats until all the frequent subgraphs are discov-

ered. Algorithm 3 is recursively called to grow the graphs and find all their frequent

descendants. Algorithm 3 starts (line 1) with a check whether DFS code of subgraph s is

minimal. If the DFS code of subgraph s is not minimal, s has been discovered before (it

is the duplicate subgraph), thus return null, otherwise keep on generating supergraphs

of s by right most extension. The Subgraph Mining procedure stops searching either

when support of the subgraph is less than σ, or its code is not a minimum code, which

means this subgraph and all its descendants have been discovered before.

The VULS classifiers presented later in this thesis “borrow” three techniques from

gSpan: (i) the use of the canonical form, more specifically minimal DFS coding as de-

scribed in section 2.2.4 above; (ii) the candidate generation mechanism, more specifically

right most extension as described in section 2.3.3.1; and (iii) the DFS strategy as intro-

duced above. Private correspondence with the author (XiFeng Yan) of gSpan confirms

that since gSpan has subgraph isomorphism checking embedded within in it. Thus the

time complexity of gSpan can’t be computed in any meaningful manner.

2.4 3D Surface Representation Techniques and Grid Graphs

This section introduces the concept of surface representation, used with respect to vari-

ous application domains such as: medicine and bioinformatics [54, 179, 209, 235], man-

ufacturing [98, 103] and especially computer graphics in the context of animation and

video gaming [99, 102]. The significance is, that as noted in the introduction to this

thesis, the AISF primary application domain of interest involves 3D surfaces (as does

the secondary satellite image interpretation domain).

There are many ways of representing 3D surfaces. The most straight forward is a

point cloud [134], these can be used in the context of both the sheet metal forming

Chapter 2. Literature Review 31

and the satellite image interpretation applications as will be described in chapter 3.

A point cloud is simply a collection of unordered and unorganised data points, P =

{pi = (xi, yi, zi) |1 6 i 6 n}. A variety of techniques are available to generate such

point clouds, these include: (i) laser and optical scanners, (ii) 3D digitizers (coordinate

measuring machines), (iii) some Computer Aided Design (CAD) and Computer Aided

Manufacturing (CAM) systems and (iv) range data converters5 such as in [5, 214]. In

the case of the work described in this thesis concerning sheet metal forming the clouds of

interested were generated either using a CAD system or an optical measuring system6.

Although point cloud representations are simple there is often a need, depending on

a particular application domain, for a higher level representation. A wide range of 3D

representation techniques have been proposed. An overview of these different represen-

tations is presented in this section. These are categorised as follows: (i) Mathematical

representations (Parametric and Implicit representation)[151, 201, 202], (ii) Mesh (Poly-

gonization) representations (grid graph representation), and (iii) other representations

such as Constructive Solid Geometry (CSG) [223], Boundary Representation (B-Rep)

[178] and Voxel Representation[87, 126].

Most 3D surface representations listed above are directed at visualisation and not

further interpretation. These types of representations are therefore not well suited to

surface representation for springback prediction and satellite image interpretation (the

application focus with respect to this thesis). Note that in the context of the work

described in this thesis we are interested in 3D representations that are not only able

to capture the geometrical information contained in a given surface but also support

the application of classification techniques. Mesh (Polygonization) representations meet

such needs because they provide a useful mechanism for representing 3D surfaces in such

a way that they can be mined (as will be demonstrated later in this thesis). A regular

mesh grid representations, more precisely a square grid representation, was adopted with

respect to this thesis, and hence mesh representations are considered in some further

detail in the remainder of this section.

A Mesh representation, of a given 3D object, is defined in terms of a collection of 0-

dimensional cells (vertices), 1-dimensional cells (edges) and 2-dimensional cells (facets)

in R3. Thus, an object is defined by a pair of ordered lists:

〈P,V〉

where:

• P = {p1, p2, . . . , pm} is a set of polygons described in such a way that pi =

vi1, vi2, . . . , vij is the polygon comprised of j vertices (thus if j = 3 we would

have a triangular polygon [31], see Figure 2.10). The set P is normally used to de-

scribe topological information (information about the connectivity between V). In

5Range data is 2D data where each “pixel” value describes the distance between the points in a 3D
scene (object) to a specific point such as a camera. It is sometimes considered to be a special form of
3D data referred to as “2.5D” data.

6The actual system used was a GOM (Gesellschaft fur Optische Messtechnik).

Chapter 2. Literature Review 32

Figure 2.10: Triangular mesh representation using j = 3 [134].

Figure 2.11: Rectangular mesh representation using j = 4 [134].

other words, the mesh can be seen as unstructured grid. For the work presented in

this thesis, j was set to 4 indicating the usage of square polygons with respect to a

“regular mesh grid” (or square mesh as shown in Figure 2.11) as will be described

further in chapter 3.

• V = {v1, v2, . . . , vn} is a set of n vertices defined in terms of a 3D coordinate system

where vi = (xi, yi, zi).

Constructing a mesh representation from a point cloud is a well known problem in

the field of 3D geometrical modelling referred to as “surface reconstruction”. Surface

reconstruction has been widely investigated in the context of various domains such as

reverse engineering (reconstructing a representation given a visualisation of a 3D object)

and face recognition. Alternatively the polygons that frequently make up mesh represen-

tations can be generated from parametric mathematical representations [135] and from

implicit mathematical representations [169]. Recall that the representation techniques

used with respect to this thesis should facilitate graph translation (as well as VULS ver-

tex classification). Mesh representations inherently support such graph conversion. The

popularity of mesh representations comes from their simplicity and high manageability

Chapter 2. Literature Review 33

in the context of 3D design (easy to define and modify). With respect to the work

described in this thesis, the advantages of the mesh representation are incorporated into

a uniform equal grid representation where the centre points of these grids represent the

set V. Using a regular grid the connectivity information can be easily attained, therefore

the regular grid (mesh) representation adopted in this thesis is considered to be a special

form of the mesh representation without the set P. More specifically a regular (square)

grid representation was adopted because:

1. It was compatible with the CAD/CAM systems used to generate desired shape

descriptions in the context of sheet metal forming.

2. It was simple to generate and process.

3. When combined with other representation forms (such as grid graphs) it readily

supported edge connection (as will be demonstrated later in this thesis).

4. It facilitated the capture of local geometries (again as will be demonstrated later

in this thesis).

5. It provided a useful mechanism whereby geometrical information could be stored

(and subsequently used or reused).

6. It provided flexibility in that it supported translation into other forms such as grid

graphs.

As noted above further detail of the grid (mesh) representation used with respect to

this thesis will be presented in Chapter 3. However, it should be noted here that grid

representations have been used elsewhere, for example with respect to texture analysis

in the context of satellite image processing [87, 126] and terrain analysis in Geographical

Information System (GIS) [153]; thus adding to the case for their adoption with respect

to the work presented in this thesis. Of course the effectiveness of mesh representations

can be influenced by surface complexity. However, in the case of the 3D surfaces consid-

ered in this thesis, surfaces representing objects that can be produced using AISF and

surfaces representing satellite images, this is not an issue.

An additional advantage of regular square grid mesh representations, of specific in-

terest with respect to the VULS mining proposed in this thesis, is that they can easily

be represented as grid graphs. More specifically graphs where each vertex represented a

grid square (with a value associated with it) which is connected to its immediate neigh-

bouring grid squares by edges labelled with slope in each case. The advantage offered

by this representation is that it lends itself to the concept of VULS mining to identify

unique subgraphs that have a particular error pattern (vertex labelling) associated with

them. Given a new shape S the identified VULS can then be used to predict a resulting

shape S′ as a result of applying some process P . Of course good coverage of S is nec-

essary so as to generate effective predictions. Further detail concerning grid graphs will

be presented in Chapters 3 and 4.

Chapter 2. Literature Review 34

Finally, at the end of this section, it should also be noted that there are alternative

mesh representations, to that proposed and utilised in this thesis, that have been adopted

elsewhere with respect to research related to AISF, such as the work presented in [149,

159]. However the work presented in [149, 159] was not directed at using data mining

(vertex classification) techniques to predict springback. It is the view of the author that

usage of a regular square grid mesh is best suited to the derivation of grid graphs to

which VULS mining, and by extension vertex classification, can easily be applied; than

the more complex alternative mesh representations used in [149, 159].

2.5 Classification

A central theme of this thesis is classification, specifically vertex classification. Classi-

fication is concerned with the construction of a “classifier” which can be used to label

previously unseen data. Classification algorithms can be categorised as being: (i) su-

pervised, (ii) unsupervised and (iii) semi-supervised. Supervised learning requires the

availability of (costly) pre-labelled training data with which to build (train) a classifier.

Unsupervised learning requires no training data but tends to produce less accurate clas-

sifiers. Semi-supervised learning is where use is made of both labelled and unlabelled

data for training purposes, typically a small amount of labeled data is used together

with a large amount of unlabelled data. Semi-supervised lies somewhere between un-

supervised learning (without any labelled training data) and supervised learning (with

only labeled training data).

The single graph vertex classification sub-domain can be divided into two application

dependent approaches: (i) semi-supervised learning and (ii) supervised learning. In

the case of semi-supervised learning we consider a single input graph which is partially

labelled and the objective is to build a classifier, using the vertices with known classes, to

predict the labels for the remaining vertices. From the literature there are many reported

techniques directed at semi-supervised learning for vertex classification, such as: (i)

graph regularization [15, 53] (where the graph is represented as a weighted matrix), (ii)

methods based on the amount of “functional flow” through the vertices [164], (iii) global

graph consistency methods [125, 219], (iv) methods that use Markov Random Fields [56],

(v) methods that use Gaussian Random Fields [163, 212] and (vi) more recently, methods

founded on kernelized score functions (for vertex ranking) [175]. Supervised learning,

in turn, is founded on the use of one or more fully vertex pre-labelled training graphs

which are then used to train a classifier to be applied to previously “unseen” graphs

(graphs without vertex labels). So far there is limited research directed at supervised

vertex classification. Existing techniques include: (i) “robust vertex classification” using

a sparse signal representation [37] and (ii) universally consistent vertex classification for

latent position graphs [199]. The work presented in this thesis falls into the supervised

single graph vertex classification category and this is therefore discussed further in this

section.

Chapter 2. Literature Review 35

The rest of this section is organised as follows. As noted above, vertex classification

is typically conducted in either a semi-supervised or supervised manner, the first is

discussed in Section 2.5.1 while the second is discussed in Section 2.5.2. More general

classification, as opposed to vertex classification, is of significance in the context of this

thesis because, for comparison purposes, a number of traditional classifiers are applied

to the vertex classification problem. More specifically J48 and Naive Bayes are used. A

brief overview of these is thus given in Section 2.5.3.

2.5.1 Semi-supervised Vertex Classification

In the context of semi-supervised vertex classification, the problem of labelling a partially

labeled graph is considered. This general problem arises in a number of different settings.

For example, in survey sampling, one has a database of individuals along with their

preference profiles that determines a graph structure based on similarity of preferences.

One wishes to estimate a survey variable (e.g. hours of TV watched, amount of cheese

consumed, etc.). Rather than survey the entire set of individuals every time, which

might be impractical, one may sample a subset of the individuals and then attempt to

infer the survey variable for the rest of the individuals. There has been an increase of

interest in semi-supervised learning recently, because of the increase in the number of

datasets with large amounts of unlabelled examples and only a few labelled ones. For

instances, [53] proposes a non-parametric algorithm using a function induction method

that minimizes a regularization criterion applied to an out-of-sample example.

In label prediction problems vertices represent partially labeled instances and the

edges pairwise similarities among vertices; the aim is then to label the unlabelled part of

the graph by exploiting the topology of the network and the a priori knowledge encoded

in the labelled vertices [17]. A variety of methods have been proposed for vertex label

classification, examples include: (i) algorithms based on the “guilt-by-association” prin-

ciple [156, 176], (ii) methods focused on clustering [189, 242] and (iii) methods based

on random walks [10, 16, 56, 120, 241, 243]. The main differences between the vari-

ous semi-supervised vertex classification algorithms, such as spectral methods, random

walks, graph mincuts and transductive SVM; lie in their way of realizing the assumption

of consistency. Furthermore, some semi-supervised vertex classification techniques may

be adapted to supervised vertex classification.

2.5.2 Supervised Vertex Classification

In the context of supervised vertex classification, classifiers are generated from training

graph data (with both vertex and edge labels). The generated classifiers are then used

to predict class labels of vertices in “unseen” graphs. Exemplar techniques include: (i)

robust vertex classification via sparse signal representation [37], (ii) universally consistent

vertex classification [199], (iii) Bayesian network [86], (iv) Probabilistic Model [56], (v)

Markov random walks [56], (vi) SVM (Support Vector Machines) [212] and (vii) the

random dot product graph model [194]. The work presented in this thesis is directed

Chapter 2. Literature Review 36

at supervised vertex classification. However, most existing vertex classification methods

operate in a very different manner to graph mining (the theme of this thesis). Thus

VULS vertex classification proposed in this thesis thus represents a novel approach to

the vertex classification problem. For the same reason, it is difficult to compare our

VULS classifiers with existing vertex classification methods, therefore, some alternative

existing classification approaches have been chosen with which to compare the proposed

VULS classifiers, this will be discussed further in the next Subsection.

2.5.3 Classification Techniques

As noted above, later in this thesis some comparison is conducted using more standard

forms of classification, typically directed at tabular data. More specifically, the J48

decision tree classification and Naive Bayes classification algorithms are utilised because

these are popular exemplars of “standard” classification algorithms. Some brief details

of these two algorithms is therefore presented in the following two Sections.

2.5.3.1 J48.

The J48 algorithm is a WEKA7 implementation of the ID3 (Iterative Dichotomiser 3)

Decision Tree (DT) algorithm. With respect to the work described in this thesis the J48

algorithm [174] was adopted as it has been considered to be a benchmark DT classifier

throughout the data mining community. J48 uses Information Gain (IG) as the splitting

criteria whereby the attribute with the highest information gain is selected to be used

at the current node. IG(A) is a measure of the difference in entropy from before to after

the set S is split on an attribute A. In other words, how much uncertainty in S was

reduced after splitting set S on attribute A. IG is calculated using Equation 2.3:

IG(A,S) = Entropy(S)−
∑
t∈T

Pt × Entropy(t) (2.3)

where (i) Entropy(S) is the entropy of set S, (ii) T is the subsets created from splitting

set S by attribute A such that S =
⋃
t∈T t, (iii) Pt is the proportion of the number of

elements in t to the number of elements in set S, and (iv) Entropy(t) is the entropy of

subset t. Entropy(D) is a measure of the amount of uncertainty in the (data) set D. It

is calculated using Equation 2.4.

Entropy(D) =

i=|c|∑
i=1

−Pilog2Pi (2.4)

where Pi is the probability of class i ∈ c. Normally, Pi = |Ci,D|
|D| where |Ci, D| is the num-

ber of records corresponding to class i with respect to the entire data set D. Intuitively,

0 6 Entropy(D) 6 1. Entropy is thus a measure of the homogeneity of a given data

set. If Entropy(D)= 0, then all the records belong to the same class and therefore the

7http://data-mining.business-intelligence.uoc.edu/home/j48-decision-tree

Chapter 2. Literature Review 37

outcome is certain. On the other hand, if Entropy(D)= 1 this would mean that the data

set is totally homogeneous and all classes are equally likely. IG is thus a measure of the

expected reduction in the entropy for a given attribute. In other words IG indicates the

“importance” of a given attribute with respect to the DT construction process. In the

context of Equation 2.3 the importance of an attribute is determined by identifying the

entropy value of the attribute before and after splitting. The same calculation is made

for the complete set of attributes and the attribute that maximises information gain is

selected for the DT node in question. The interesting reader can find further detail and

a worked example in [173].

2.5.3.2 Naive Bayes.

Bayesian classifiers are statistical classifiers based on the well known Bayes probability

theorem:

P (H|A) =
P (A|H)P (H)

P (A)
(2.5)

where H is a “hypothesis” and A is an “evidence”. The probability of the hypothesis

H holding given the evidence A is denoted by the conditional probability P (H|A) and

is called the posterior probability. In the context of classification, A is a vector of n

features whereby A = {a1, a2, . . . , an}. Similarly, the conditional probability P (A|H) is

the posterior probability of a given H. P (H) and P (A) are called the prior probability

of the hypothesis H and the feature vector A respectively. The prior probability is the

distribution probability without considering any event, while the posterior probability

considers the event H. Bayes theorem assumes that all the attributes in a feature vector

are independent, this is why it is sometimes referred to as Naive Bayes; however, the as-

sumption simplifies the calculation. Given a training set of n records T = {t1, t2, . . . , tn}
where each ti comprises l attributes ti = {a1, a2, . . . , al}. Suppose that there are m

classes where ti belongs to class k if and only if the posterior probability P (Ck|ti) has

the highest probability value amongst other classes:

P (Ck|ti) > P (Cj |ti),1 6 j 6 m, and j 6= k (2.6)

Recall that P (Ck|ti) is calculated using Equation 2.5. A Bayesian classifier is con-

structed as follows [95].

1. Estimate the prior probability P (Ck) of each class, P (Ck) = |Ck,T |
n , where |Ck, T |

is the number of tuples in T that belongs to class Ck and n is the total number of

tuples in the training set. The prior probability P (H) is constant for all classes.

2. Maximise the posterior probabilityP (ti|ck) by finding the total product of the

posterior probability of each attribute in ti individually as follows8.

8In case of continuous attribute values, the Gaussian distribution is assumed along with a mean µ and

standard deviation σ to be used for the calculation of probability. P (x |Ck) = f(x) = 1√
2πσ

e
−(x−µ)2

2σ2 .

See [94] for more details.

Chapter 2. Literature Review 38

P (ti|Ck) =

l∐
i=1

P (ai|Ck) = P (a1|Ck)×P (a2|Ck)×P (a3|Ck)×· · ·×P (al|Ck) (2.7)

3. Finally, calculate P (ti|Ck)P (Ck) for all m classes. The class Ck that has the

highest P (ti|Ck)P (Ck) value associated with it is selected as the predicted class.

The main limitation of Bayesian classifiers is the Naive Bayes assumption. However,

their main advantages are their simplicity and computational efficiency; they only require

a single scan of the training data and provide a fast classification of new unlabelled cases.

[95].

2.6 Evaluation Criteria

One of the aims of the work presented in this thesis was to investigate the utility of the

proposed VULS mining in terms of vertex classification. As noted in the introduction

to this thesis this investigation was conducted with respect to two application domains

(i) springback prediction in the context of sheet metal forming and (ii) ground type

identification with respect to satellite image interpretation. In the context of vertex

classification the proposed VULS classifiers were evaluated individually and compara-

tively using the following metrics:

• Individually: Using accuracy and Area Under ROC Curve (AUC).

• Comparatively: First by comparing collated AUC values, and then statistically

by applying the Friedman and the Nemenyi tests to demonstrate whether there

was a statistically significant difference between the operation of the proposed

classifiers.

These measures are reviewed in this section. This section is organised as follows. Sub-

section 2.6.1 presents an overview of the evaluation measures used with respect to the

individual evaluations (accuracy and AUC). An overview of statistical significance test-

ing is presented in Subsection 2.6.2. The Freidman Test, the statistical comparison

technique adopted with respect to the work presented in this thesis, is then described

in Subsection 2.6.3.

Chapter 2. Literature Review 39

2.6.1 Accuracy, AUC, TCV and SD

Figure 2.12: Confusion matrix.

There are many mechanisms for assessing the effectiveness of classifiers; as noted above,

with respect to the work presented in this thesis, accuracy and AUC were used because

the usage of these measures is frequently reported in the literature [112, 147]. Alternative

methods include sensitivity and specificity. Accuracy is calculated simply as shown in

Equation 2.8:

accuracy =
number of records correctly classified

total number of records
(2.8)

However, although accuracy provides for an easily understandable measure of the

overall quality of a classifier (hence its usage in this thesis), it does not take into con-

sideration the distribution of the classes. In this respect AUC is a more appropriate

measure [23, 97]. Broadly, the ROC curve concept was originally used in signal de-

tection theory to depict the trade-off between hit rates and false alarm rates. The “hit

rate” is called the True Positive Rate (TPR), benefit or sensitivity; while the “false alarm

rate” is called the False Positive Rate (FPR), or cost. Both are expressed in the form

of a real number ranging from between 0.0 and 1.0. TPR and FPR are calculated using

the concept of what is known as a confusion matrix as shown in Figure 2.12. Confusion

matrices are used with respect to two class problems. With reference to Figure 2.12:

(i) the True Positives (TP) value is the number of instances that are correctly classified

as belonging to the Positive class, (ii) the False Negatives (FN) value is the number

of instances belonging to Positive class that are erroneously predicted as belonging to

Negative class, (iii) the True Negatives (TN) value is the number of instances that are

correctly classified as belonging to Negative class and (iv) the False Positives (FP) value

is the number of instances belonging to Negative class that are erroneously predicted as

belonging to Positive class. Using a confusion matrix TPR and FPR are calculated as

shown in Equations 2.9 and 2.10 respectively. Note that accuracy can also be derived

from a confusion matrix using Equation 2.11.

Chapter 2. Literature Review 40

Figure 2.13: The ROC curve. The solid blue line indicates a good ROC curve that
reaches the upper left corner and the dotted line indicates a random classifier (guessing).

TPR =
TP

TP + FN
= sensitivity (2.9)

FPR =
FP

TN + FP
= 1− specificity (2.10)

accuracy =
TP + TN

TP + TN + FP + FN
(2.11)

A ROC curve is generated by plotting the FPR (False Positive Rate) against the

TPR (True Positive Rate) (with the FPR plotted along the X-axis and the TPR along

the Y-axis). Both TPR and FPR range from 0 to 19. In the ROC space, the best

classification performance exists in the upper left corner (where FPR=0 and TPR=1)

while the diagonal represents random classification (guessing); as shown in Figure 2.13.

Therefore, a “good” ROC curve is one that reaches the upper left corner.

The Area Under a ROC curve (AUC) is a single value frequently used to measure

classifier performance (0 ≤ AUC ≤ 1). In other words AUC is an indicator of the

probability that a classifier will correctly classify instances [9, 113, 148, 161]. Note

that an AUC value of 0.5 indicates a random classifier (guessing). To illustrate the

distinction between accuracy and AUC, consider a 2-class problem where class 1 has

990 instances and class 2 has 10 instances, then the accuracy of the generated model by

simply guessing class 1 would be 990
990+10×100 = 99%; “on the face of it” a good accuracy

value. However, a classifier that does this is clearly not a good classifier as indicated by

the AUC= 0.5 that would describe this situation. Thus the main advantage of AUC is

its ability to deal with unbalanced data sets since it considers the distribution of classes

(TPR and FPR values) [73]. Therefore, AUC was chosen to be the other performance

measure used with respect to the proposed classifiers presented in this thesis because of

9https://www.youtube.com/watch?v=OAl6eAyP-yo

Chapter 2. Literature Review 41

the uneven vertex label distributions within the evaluation datasets. The further detail

of AUC can be found in [147].

However, with respect to the evaluation data sets used these featured more than

two classes, hence the above confusion matrix based approach to AUC calculation was

inappropriate. Instead the Mann-Whitney-Wilcoxon (MWW) statistical method, which

employs a ranking concept based on the signal detection theory proposed by [96], was

used with respect to the work described in this thesis to calculate AUC values10. A full

example on how to calculate the AUC value, based on the MWW statistic, is presented

in Appendix A.

For the presented evaluations Ten Cross Validation (TCV) [192] was adopted, where

appropriate, in order to reduce the likelihood of overfitting [79]. Overfitting mainly

occurs when a generated classifier (model) is fitted to the training data in such a per-

fect manner that the resulting classifier is not suited to classifying anything else (thus

defeating the objective of generating the classifier in the first place). TCV is used in

order to limit the implication of overfitting. TCV is a well established technique for

evaluating the performance of supervised learners whereby the data is divided into ten

parts so that class labels are distributed equally (stratified). Using the TCV technique

the learner is applied ten times, each time to a different 9/10 of the data set, and tested

using the remaining 1/10. On completion, the recorded results of the ten iterations are

used to compute an averaged set of results.

Note that in this thesis, when reporting average values, such as those generated using

TCV, the associated Standard Deviation (SD) is also reported. SD is a measure of how

much variation exists with respect to a given average value. A low SD indicates that

the values are close to the average. A high SD indicates that the values are spread out

over a large range of values.

2.6.2 Overview of Statistical Performance Comparison

Given a collection of classifiers and a particular data set, one will usually produce a

better accuracy and AUC then the others. The question is whether this is statistically

significant or not. There are many techniques for statistical comparison. This section

provides some background concerning the most common (popular) techniques used to

perform the statistical comparison of competing classification techniques, and explain

the reason why the Friedman’s Test (presented in the following Section) was used in this

thesis.

A number of different approaches have been proposed to conduct statistical compar-

ison between the operation of different classifiers. Typically, these approaches can be

categorised as being either: (i) parametric or (ii) non-parametric. The first is used when

the distribution of the data set is drawn from a normal (Gaussian) distribution. The

second makes no assumption about the distribution of the data set (Distribution-Free).

10The AUC/ROC calculation conducted using the well known Weka data mining workbench is also
done using the Mann Whitney statistic [224].

Chapter 2. Literature Review 42

The size of the data sets also has an impact on whether parametric or non-parametric

analysis is conducted. For large data sets, both the parametric and the non parametric

statistical tests have the same implication (in other words, there is no difference between

the parametric and non-parametric tests for large data sets). Several forms of statistical

test have been proposed with respect to both parametric and non-parametric testing.

For comparison between only two classifiers over different data sets, the paired t-test

has been proposed for parametric data, while the Wilcoxon Signed-Rank Test has been

proposed for non-parametric data. For more details and examples concerning theses

tests see [55].

To determine whether there is a statistical difference between the operation of more

than two classifiers the Analysis Of Variance (ANOVA) and Friedman test have been

extensively used [190]. The ANOVA statistical test is based on two assumptions: (i)

the normal distribution of the classification results and (ii) that the data sets used have

equal variance (the homogeneity of variance) [55]. Although both assumptions cannot be

guaranteed, the violation of them would cause a greater effect on any post-hoc testing.

Thus the ANOVA statistical test is not recommended for classification analysis unless

both assumptions are certainly satisfied. However, the Friedman test is mainly directed

at non-parametric testing. The Friedman test offers two advantages over parametric

techniques (such as ANOVA): (i) ease of computation and interpretation and (ii) its

ability to demonstrate the classification performance in terms of ranks rather than vague

averages [84]. The Friedman test was thus chosen to evaluate the performance of the

different proposed techniques with respect to this thesis. In addition to the practical

advantages offered by the Friedman test, it was also chosen because [82, 84, 213]:

• There is no guarantee that the AUC results obtained from the proposed techniques

follow the normal (Gaussian) distribution (the data is thus assumed to be non-

parametric).

• The Friedman statistical test is generally recommended (see for example [55]) for

use with related data sets while the ANOVA test is recommended for unrelated

data sets. With respect to the work described in this thesis the data sets used

were considered to be related data sets (see Chapter 3).

2.6.3 Friedman’s Test

This section describes the operation of the Friedman statistical test [29, 55, 81, 83, 143].

The Friedman test is commenced by ranking each classification technique according to

their performance in ascending order with respect to each data set considered. The

ranking can be done using AUC or accuracy (or any other value of interest), although

AUC is used throughout this thesis. The mean rank of each classifier j, ARj , was then

computed across all the data sets. With D representing the overall number of data sets,

K the overall number of classifiers, and rij the rank of classifier j with respect to data

set i, the Friedman test statistic was then calculated as follows:

Chapter 2. Literature Review 43

χ2
F = 12D

K(K+1))

[∑K
j=1AR

2
j −

K(K+1)2

4

]
(2.12)

ARj = 1
D

∑D
i=1 r

i
j (2.13)

where χ2
F is distributed according to the Chi-Square distribution with K − 1 Degrees of

freedom.

The null hypothesis, H0, being tested was that there was no statistically significant

difference between the operation of the compared classifiers. In other words that the

performance differences observed with respect to (say) the reported AUC results was

not statistically significant different, but simply due to random chance. If the value

of χ2
F is above a given threshold, then the null hypothesis that there is no difference

in the operation of the classifiers can be rejected. The smallest level of significance

that can result in the rejection of the null hypothesis is represented by a threshold value

called the p-value. The p-value not only provides information about whether a statistical

hypothesis test is significant or not, it also indicates “how significant” the result is. Note

also that the smaller the p-value, the stronger the evidence against H0. If H0 can be

rejected, a so-called post hoc test can be applied to detect which specific approaches

differ significantly from the rest. In this respect Dems̆ar [55] recommended the use of

the Nemenyi test. The Nemenyi post-hoc test [166] was thus applied so as to identify

significant differences (if any) between the individual approaches. Using the Nemenyi

post-hoc test the performances of two or more approaches (classifiers) is significantly

different if their average ranks differ by at least a Critical Difference value (CD), given

by:

CD = qα,∞,K

√
K(K + 1)

12D
(2.14)

The value qα,∞,K is based on the “studentized” range statistic and is tabulated in stan-

dard statistical textbooks as shown in Figure 2.14. With respect to the evaluation

presented here the outcome from applying the Friedman test and the Nemenyi post-hoc

tests are presented using a modified version of Dems̆ar’s significance diagrams [55, 143].

These diagrams display the ranked performances of competing classifiers, along with

their critical difference, to clearly indicate those classifiers whose operation is signifi-

cantly different from the other classifiers (in terms of recorded AUC value in the case of

the evaluation reported in this thesis).

Chapter 2. Literature Review 44

Figure 2.14: Critical values for the two-tailed Nemenyi test11.

2.7 Summary

This chapter has presented the background to the work presented in this thesis. The

chapter covered three main areas: (i) Graph mining, (ii) Vertex classification and (iii) 3D

surface representation. An overview of graph mining techniques, especially single graph

based FSM and transaction graphs based FSM were provided. 3D surface representation

techniques, vertex classification techniques and traditional standard classifiers, such as

J48 and Naive Bayes, were also summarised. Finally the criteria used to evaluate the

operation of the proposed classifier was presented. It was noted that two types of

evaluation were conducted: (i) individual evaluation for each proposed classifier using

accuracy and AUC; and (ii) overall performance evaluation using statistical approaches.

Both evaluation mechanisms were reviewed in this chapter. In the next chapter the two

application domains with respect to the evaluation presented later in this thesis will be

considered: (i) sheet metal forming (AISF) and (ii) satellite image interpretation.

11Source : http://www.cin.ufpe.br/~fatc/AM/Nemenyi_critval.pdf

http://www.cin.ufpe.br/~fatc/AM/Nemenyi_critval.pdf

Chapter 3

Application Domain and Data

Sets

3.1 Introduction

This chapter describes the data sets used for evaluation purposes with respect to the

work presented in this thesis. The data sets were drawn from two specific application

domains: (i) sheet metal forming, and (ii) satellite image interpretation. However, it

should be recalled that the primary application focus of the thesis was the sheet metal

forming application, while the purpose of the satellite image application was to consider

the broader applicability of the VULS concept. It should also be recalled that the

identified input to the proposed VULS mining techniques, and the mechanism for using

identified VULS for vertex classification, is a grid graph. Using grid graphs allows for

comparison with more standard classification approaches. However, it should also be

noted, as will become apparent later in this thesis, that the VULS context is applicable

to other forms of graph than grid graphs. This point will be revisited when future work

is discussed in chapter 9.

In the context of grid graphs, theses are extracted from grids (meshes) describing

some 3D surface of interest. Each grid square in such a grid is defined by its centre

point which is in turn defined by an X-Y coordinate pair. Each grid point also has a

“Z” value associated with it. In the case of the sheet metal forming application this was

a height above some reference point. In the case of the satellite image interpretation

application this was a pixel intensity value. With respect to the training data used for

generating VULS, and the test data used for vertex classification evaluation purposes,

each grid cell also had a label of some form associated with it describing some feature

of interest. In the case of the sheet metal forming application this was springback, in

the case of the satellite image application this was ground type.

The raw data sets related to the two application domains were in very different for-

mats (point clouds and images) thus the mechanisms required to translate the raw data

45

Chapter 3. Application Domain and Data Sets 46

sets into the desired grid graph format were also different. Consequently the applica-

tions are considered in two separate sections; Sub-section 3.2 considers the sheet metal

forming application domain while Sub-section 3.3 the satellite image domain.

So as to compare the operation of the proposed VULS techniques with the usage of

more standard (traditional) classification approaches (Naive Bayes and J48) the data

sets used also had to be pre-processed in a different manner. This pre-processing is

described in Sub-section 3.4. It should be noted here that this processing was only

applicable because of the nature of the grid represented raw data under consideration.

Given other forms of input graph data, this process is unlikely to be applicable. The

chapter is concluded with a summary and a “look ahead” in Section 3.5.

3.2 Application Domain One: Asymmetric Incremental

Sheet Forming (AISF) and Springback Prediction

As noted in the introduction to this thesis the exemplar domain at which the work

described in this thesis is directed at sheet metal forming. As described in the intro-

duction to this thesis sheet metal forming is concerned with manufacturing of shapes

from sheet metal. There are various ways whereby this can be achieved, but one such

process, again as noted in the introduction to this thesis, is Asymmetric Incremental

Sheet Forming (AISF). The advantages of AISF are that it is comparatively inexpensive

and does not require heating of the metal (heating introduces potential fracture points

and adds an additional financial overhead). The disadvantage of AISF metal forming,

and similar processes, is that deformation (springback) is introduced as a result of the

application of the process, consequently the intended shape will not be the same as the

actual shape produced. Thus, the AISF process commences with a desired input shape,

sometimes referred to as the CAD shape, defined in terms of a set of 3-D coordinates;

and produces an output shape which, as a result of the process, is a “variation” of the

desired input shape because of the springback that has been introduced. The resulting

output shape can be recorded using an optical measuring system1 to generate a second

set of 3-D coordinates. Thus before and after coordinate clouds (input and output) can

be identified.

The springback prediction problem is well described in [64, 68, 69, 129, 184] where

it is presented as follows. Given a desired shape T , a process P and a resulting shape T ′

it is seen as desirable to be able to predict the correlation A between T and T ′ so that

given a new shape S we can predict the outcome S′ and consequently attempt to redefine

S so as to minimise the springback. A simple answer to the problem can be expressed

as A = T+T ′

2 , where A is the redefined shape. However, the springback introduced

by process P is not evenly spread across the entire output shape; it is conjectured

by domain experts that the nature of the springback may be dependent on a number

1For the work described in this thesis a GOM (Gesellschaft für Optische Messtechnik) optical mea-
suring tool, produced by GOM mbH, was used.

Chapter 3. Application Domain and Data Sets 47

of factors such as tool head shape, tool head speed, tool head pitch, lubricant, blank

holder, type of alloy, sheet thickness, sheet size, shape geometry and the forming process

used. Whatever the case it is generally acknowledged that a key influencing factor is

the geometry of the desired shape. Therefore it can be assumed that the nature of the

springback (correlation) between T and T ′, as a result of the application of the process

P , is localised according to the geometry of T (and by extension T ′). In this thesis it is

suggested that the VULS concept can be used for predicting the springback associated

with local geometries (regional vertex label classification).

Figure 3.1: Example AISF machine 1
[129], the work piece is clamped in posi-
tion while the tool head “pushes out” the
desired shape; on release, springback oc-
curs as a result of which the final shape

is not the desired shape.

Figure 3.2: Example AISF
machine 2, a metal sheet is
clamped into a holder and
the desired shape is pro-
duced using the continuous
movement of a simple round-

headed forming tool.

Figure 3.3: Square based pyramid
(upside down) at the point when it
is unclamped after application of the

AISF process.

Figure 3.4: Square based pyramid
(right way up); the markings are
used with respect to the GOM op-

tical measuring tool.

Chapter 3. Application Domain and Data Sets 48

The rest of this section is structured as follows. In Sub-section 3.2.1 a brief overview

of the AISF process and some related work is presented. In Sub-section 3.2.2 the grid

representation commonly adopted with respect to work on AISF is presented (note

that this description is based on the work of [64, 68, 69, 129, 184]). A mechanism for

measuring the deformation between T and T ′ is then presented in Sub-section 3.2.3

(again the presented description is based on that of [64, 68, 69, 129, 184]). The AISF

data sets used and the adopted translation process are then detailed in Sub-sections

3.2.4 and 3.2.5 respectively. This section is concluded with Sub-section 3.2.6 where

some statistics concerning the generated AISF grid graphs are presented.

3.2.1 AISF Process

When manufacturing parts using AISF a metal sheet is clamped into a holder and the

desired shape is produced using the continuous movement of a simple round-headed

forming tool. Two different AISF machines are shown in Figures 3.1 and 3.2. The

forming tool is provided with a “tool path” generated by a CAD model and the part is

“pressed” out according to the coordinates of the tool path. However, as already noted,

due to the nature of both the metal used and the manufacturing process, springback

occurs; which means that the geometry of the shaped part is different to the geometry

of the desired part (deformation has thus been introduced). Figure 3.3 shows a square

based pyramid shape at the point when it has been unclamped from the AISF machine;

Figure 3.4 shows the same shape “the right way up”. The deformation that has been

introduced can be seen by inspection of the two figures; the edges of the shape in Figure

3.4 are bent-up towards the corners. In [6] the authors consider a number of products

that could potentially be formed using AISF and demonstrated that the accuracy of

the formed part needs to be improved before this process could be used in a large scale

production. In [101] the authors considered two drawbacks of the AISF process relating

to the metal thickness and the geometric accuracy of the resulting shape.

There has been a substantial amount of work on dynamic tool path correction in the

context of laser guided tools (see for example [52] and [62]). However, AISF requires

that the tool path is specified in advance rather than as the process develops. In [12]

a multi-stage forming technique is presented, as opposed to the more standard single

pass by the machine tool, several passes are made so that the process can attempt to

take into account the deformation that is introduced by springback. As a case study a

square based pyramid shape was considered. From [12] it is interesting to note that if the

initial geometry comprises corner radii larger than the desired radii, and if a number of

forming passes are applied, less distortion results then would be encountered otherwise;

in other words, if we have an estimate of springback, we can take this into account when

specifying our CAD shape.

From the literature a number of methods have been proposed for calculating spring-

back. For many years the Finite Element Method (FEM) has been used as an industry

Chapter 3. Application Domain and Data Sets 49

standard for calculating the springback associated with sheet metal in forming pro-

cesses [165]. However, the results of FEM calculations are not very accurate because

of the involvement of complex non-linear factors [227]. Not unsurprisingly data mining

techniques have also been applied in the context of sheet metal forming springback pre-

diction. There are many examples of the use of neural networks to support sheet metal

forming [61, 68, 114, 131, 132, 155, 172, 181]. Considering one example only, in [172]

a neural network was trained to predict springback. Several inputs were used for the

neural network to train on; such as: thickness, radius and springback. It was observed

that the predictions made by the neural networks were very close to the simulation re-

sults. Rule based learning techniques have also been popular. For example in [233] rule

based mining was used to extract knowledge from data generated by Finite Element

Analysis (FEA). Another similar approach was proposed in [238] for the U-draw sheet

metal bending process where a rule based system was used to extract knowledge from

FEA simulation data. The nature of the material, and various process parameters, were

considered with respect to their effect on springback. However, there has been very little

reported work (none) on the use of graph mining techniques to predict AISF springback.

In the context of the above previous work, it should be recalled here that the objective

of the thesis is to identify the most appropriate mechanisms where VULS mining can

be conducted for the purpose of vertex classification. The objective of the thesis is not

necessarily to solve the AISF springback prediction problem. This application domain

was simply used as a “driver” for the work. The above discussion of previous work on

springback has been included here so as to provide the reader with a comprehensive

understanding of the AISF springback issue. Hence in the evaluation presented later

in this thesis comparisons are not made with the above previously proposed prediction

mechanisms; instead the evaluation is directed at vertex classification using the VULS

concept.

3.2.2 Grid Representation

This section considers the grid representation extracted from the AISF data. The de-

scription is based on that previously presented in [64, 68, 69, 129, 184]. From the forego-

ing, processes such as AISF can be defined in terms of: (i) an input “coordinate cloud”

Cin (representing T) and (ii) an output coordinate cloud Cout (representing T ′). Each

coordinate cloud comprises a set of N , 〈x, y, z〉 coordinate triples, such that x, y, z ∈ R.

The number of coordinates per cm2 (within the x, y plane) in each coordinate cloud

varies according to how the data is generated/collected. As already noted above, the

Cin coordinate cloud is typically obtained from a tool path specification generated using

a CAD model, while Cout is collected using an optical measuring system; |Cout| is typi-

cally less than |Cin|. Of course, both coordinate clouds must be registered to the same

reference origin and orientation before any comparison can be conducted. The most

obvious representation to be adopted is a grid representation, and hence this is the start

point for the work presented in this thesis. Figure 3.5 (taken from [129]) shows a grid

Chapter 3. Application Domain and Data Sets 50

where each grid square ci centre is defined by a 〈xi, yj , z〉 coordinate value pair. The

number of grid squares required to represent Cin is defined by the grid spacing value

d (typically defined in mm). Each grid square ci, also has a z value associated with it

calculated by averaging the z values of the cloud points contained in the subset of Cin

that intersect with each ci; this is illustrated in Figure 3.6 [129]. The Cout coordinate

cloud can then be translated using the same grid format so two grids, Gin and Gout, are

produced describing the before and after surfaces (T and T ′).

Figure 3.5: Example grid refer-
enced to a central origin [129].

Figure 3.6: Coordinate cloud points as-
sociated with a grid representation cen-
tred on 〈xi, yj〉 (grid spacing = d) [129].

3.2.3 Springback Measurement

A simple mechanism for establishing the springback value (e) at a particular grid point

is to measure the difference between the z values between corresponding grid squares

in Gin and Gout as shown in Figure 3.7 [129]. However, a more accurate measure is to

determine the distance separating the two surfaces along the surface normal from each

grid point in Gin to the point where it intersects Gout. The distance between any two

three dimensional points can be calculated using the point to point Euclidean distance

formula:

d =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 (3.1)

Figure 3.7: Cross section at a grid line showing simple vertical springback error
calculation between a before (blue line) and an after (red line) shape [129].

Chapter 3. Application Domain and Data Sets 51

However, application of equation 3.1 first requires knowledge of the x, y, z coordinates

of the point where the normal intersects Gout. One method of determining the length

of the normal between two surfaces is to use the line-plane intersection method [63]

to determine the length of the normal between two surfaces. Using this approach we

find the normal to a plane by calculating the cross product of two orthogonal vectors

contained within the plane. Once we have the normal we can calculate the equation

for the line that includes the start and end points of the normal and then determine

the point at which this line cuts Gout. We can then calculate the length of the normal

separating the two planes. The process is well described in [64, 68, 69, 129, 184] and is

as follows (with reference to Figure 3.8 taken from [129]):

Figure 3.8: Error calculation using the line-plane intersection method [129].

1. For each grid point in Gin first identify the four neighbouring grid points in the

X and Y planes as shown in Figure 3.8 (except at edges and corners where three

and two neigbouring grid points will be identified respectively).

2. Define a set of four vectors V = {v1, . . . , v4} = {〈p∅, p1〉, 〈p∅, p2〉, 〈p∅, p3〉, 〈p∅, p4〉},
each described in terms of its x-y-z distance from p∅ (the origin for the vector

system).

3. Using the four vectors in V , four surface normals are calculated, N = {n1 . . . n4},
by determine the cross product between each pair of vectors: v1 × v2, v2 × v3,

v3× v4, v4× v1. (Note that to validate a surface normal ni, the dot product of one

of its associated vectors vj and ni must be equal to zero, ni · vj = 0.)

4. For each normal n1 . . . n4 calculate the local plane equation in Gin that includes P∅

(thus using, in turn, points {P1, P∅, P2}, {P2, P∅, P3}, {P3, P∅, P4} and {P4, P∅, P1}).
The plane equation is given by Equation 3.2.

ax+ by + cz + d = 0 (3.2)

Chapter 3. Application Domain and Data Sets 52

5. For each plane equation identified in (4) determine the parametric equations (a

set of equations/functions which describe the x, y and z coordinates of the graph

of some line in a plane) [63] of the surface normal as a straight line according to

the identities given in equation 3.3:

x = a+ i(t), y = b+ j(t), z = c+ k(t) (3.3)

where t is a constant; a, b and c are the x-y-z coordinates for the point p∅; and i,

j and k are the normal components. The constant t is calculated by substituting

the parametric equations in plane equation 3.2 for x, y and z.

6. Once the parametric equations for each surface normal are found, they are then

used to compute the points of intersection of each normal with Gout.

7. We then use the coordinates for each of the four points of intersection and p∅

to calculate the Euclidean distance (the springback error) between p∅ and each

intersection point to give four springback error values E = {e1 . . . e4}.

8. We then assign each springback error a direction (-ve or +ve) based on the direction

of the springback. If springback is “downwards”, a -ve direction is assigned to the

error. Similarly if the springback is “upwards” a +ve direction is assigned to the

error. Note that for each point the direction for each of the four errors is the same.

9. We now have four springback error values for each grid point (except at the corners

and edges where we will have two or three respectively), we then find the “overall”

error e simply by selecting the minimum error that is nearest to zero. The reason

for selecting the minimal error is that it gives us the nearest point to the before

surface.

3.2.4 AISF Datasets

For the evaluations presented later in this thesis two shapes (3D surfaces) were con-

sidered. Both had been specified and manufactured by the IBF (Institut für Bildsame

Formgebung) institute of metal forming at Aachen University2 and both were flat topped

pyramid shapes; a shape frequently used in the context of AISF research. The two shapes

were referred to as the Gonzalo3 and Modified pyramids and are shown in Figures 3.9

and 3.10 [184]. Inspection of the figures shows that the two pyramids are not entirely

identical (the Gonzalo pyramid has a bulge on one of its side and an indent on the op-

posite side, while the modified pyramid has indents on two adjacent sides). The overall

size of the pyramids was approximately 200 ×200 × 50 mm. The shapes were defined

2At the time when the research described in this thesis was being conducted the Department of
Computer Science at the University of Liverpool was engaged on a European Framework 7 project
which included IBF amongst the partners.

3The name “Gonzalo” is derived from the name of the person at IBF who designed and manufactured
the shape.

Chapter 3. Application Domain and Data Sets 53

in terms of two CAD specifications and each was manufactured four times, twice out of

steel and twice out of titanium. By comparing the CAD specification with the output

shape, using the process described above, springback measures were obtained. In this

manner a total of eight “benchmark”, “real world”, data sets were produced as follows:

1. Gonzalo Steel Version 1 (GS1).

2. Gonzalo Steel Version 2 (GS2).

3. Gonzalo Titanium Version 1 (GT1).

4. Gonzalo Titanium Version 2 (GT2).

5. Modified Steel Version 1 (MS1).

6. Modified Steel Version 2 (MS2).

7. Modified Titanium Version 1 (MT1).

8. Modified Titanium Version 2 (MT2).

Because each shape was manufactured twice using the same material, corresponding

grid graphs could be paired and one used for training purposes and the other for testing

(and vice versa). Later in this thesis the abbreviations: GS, GT, MS and MT are used

to indicate parings.

Figure 3.9: Gonzalo Pyramid
[184].

Figure 3.10: Modified Pyramid
[184].

Thus, in summary, the AISF data sets used for evaluation purposes, in their raw

state, consisted of before and after “coordinate clouds”; the first generated by a CAD

system, the second using an optical measuring system. These were then transformed

into a grid representation with the center points of each grid cell referenced using a

X-Y-Z coordinate system. Each grid cell also had a springback value associated with

it (calculated as described above). A fragment of some grid data, presented in tabular

format, is presented in Table 3.1. The process whereby a grid of the above form was

converted into a grid graph is presented in the following Sub-section.

Chapter 3. Application Domain and Data Sets 54

Table 3.1: Example of raw input data.

x y z springback(error)

0.000 0.000 0.000 0.118
1.000 0.000 0.000 0.469
2.000 0.000 0.000 0.469
3.000 0.000 0.000 0.472
0.000 1.000 0.000 0.471
1.000 1.000 -1.402 0.088
2.000 1.000 -4.502 1.308
3.000 1.000 -4.676 1.907

.

3.2.5 AISF Graph Translation

The next step in the data preparation process was to translate the grid data, captured

as described above, into a grid graph format such that each grid centre point represented

a vertex. Edges were labelled with z difference (δz) values. Note that springback values

were discretinized so that we have a set of springback error labels, LV , to be associated

with vertices (LV = {lv1 , Lv2 , . . . }). Each vertex was then connected to its immediate

neighbours by a sequence of either four or eight edges (except at the edge and corner

locations), thus Degree = 4 or Degree = 8. If Degree = 4 we refer to this as a “grid

graph”, if Degree = 8 we refer to this as a “cross-grid graph”.

A simple example grid and corresponding grid and cross-grid graphs are given in

Figure 3.11. The input grid (lefthand side of Figure 3.11) comprises 9 grid squares.

Each grid centre is defined by a 〈x, y, z〉 coordinate tuple. The number in each grid cell

is the z value. This grid can be represented as a grid graph as shown in the middle of

figure 3.11 or as a cross-grid graph as shown on righthand side of Figure 3.11. The edges

are labelled with “slope” absolute values, the absolute difference in the z coordinate

values associated with the two end vertices. In the case of directed graphs (as in the

case of the graphs shown in Figure 3.11) the direction of the edges is determined by

slope direction, from the lower z value to the higher z value.

3.2.6 AISF Grid Graph Statistics

From the foregoing, the translation of grids into grid graphs utilises a number of param-

eters:

1. The size of the set of vertex labels |LV |.

2. The size of the set of edge labels |LE |.

3. The grid size d.

4. Whether the edges in the graph are directed or undirected.

5. Whether the graph is a “grid” graph (degree 4) or a “cross-grid” graph (degree 8).

Chapter 3. Application Domain and Data Sets 55

4 2 1

4 4 3

1 3 2

P N P

N P N

P N P

2 1

0 1

0 2 2

3 1 1

2

1

P N P

N P N

P N P

2 1

0 1

0 2 2

3 1 1

2

1

0

3

3

2

Figure 3.11: Grid representation with “Z” values (left), with corresponding grid
graph where degree=4 (middle) and cross-grid graph where degree =8 (right), featuring

“slope” labels on edges.

For the evaluation presented later in this thesis a range of values were used for: (i) |LV |,
and (ii) |LE |; namely {2, 3} and {2, 3, 4, 5, 6, 7, 8} respectively. Where |LV | = 2 the

label set was {positive, negative}. Where |LV | = 3 the label set was {positive, neutral,

negative} with the “neutral” label defined in terms of a positive and negative tolerance

value either side of 0; a tolerance value of 0.3 (mm) was chosen so as to achieve some

reasonable balance of the distribution of vertex labels when |LV | = 3. Grid sizes of

d = {28, 23, 18} (mm) were used so as to limit the size of the corresponding grid graphs;

also because, as will become apparent later in this thesis, large grid sizes were found to

perform better. Thus for each of the eight raw AISF data sets (GS1, GS2, GT1, GT2,

MS1, MS2, MT1 and MT2) we have 2× 7× 3× 2× 2 = 168 variations of the associated

grid graph. Thus 168× 8 = 1344 graph sets in total.

Tables 3.2 to 3.9 give some statistics concerning the vertex label distributions in each

case. With respect to the tables it should be noted that the values given in the “Number

of vertices” column is a straight forward function of d.

3.3 Application Domain Two: Satellite Image Interpreta-

tion

The satellite image interpretation application domain is the second application domain

considered in this thesis. The primary focus of this thesis was the AISF domain pre-

sented above. The main purpose was to use satellite image interpretation to investigate

the more general applicability of the VULS concept. For the application a data set

comprising ten (cloud free) satellite images, covering a rural area featuring fields and

some isolated buildings, within the Harro district in the Oramia Region of Ethiopia

(approximately 300 km north-west of Addis Abba) was used. This image set was used

because it was readily available within the department of computer science at the uni-

versity with respect to ongoing research into census estimation [57–59], unrelated to the

work, presented in this thesis. The image set was bounded by the parallels of latitude

9.608874N (top) and 9.573583N (bottom), and the meridians of longitude 37.14022E

Chapter 3. Application Domain and Data Sets 56

Table 3.2: Vertex Label distribution for GS1 graph.

d Number |LV | Vextex Vertex label
(mm) of vertices label distribution(%)

18 100

2
positive 38.00
negative 62.00

3
positive 23.00
neutral 40.00
negative 37.00

23 64

2
positive 43.75
negative 56.25

3
positive 25.00
neutral 34.38
negative 40.63

28 36

2
positive 41.67
negative 58.33

3
positive 27.78
neutral 36.11
negative 36.11

Table 3.3: Vertex Label distribution for GS2 graph.

d Number |LV | Vextex Vertex label
(mm) of vertices label distribution(%)

18 100

2
positive 49.00
negative 51.00

3
positive 19.00
neutral 34.00
negative 47.00

23 64

2
positive 45.31
negative 54.69

3
positive 14.06
neutral 39.06
negative 46.88

28 36

2
positive 52.78
negative 47.22

3
positive 22.22
neutral 33.33
negative 44.44

Chapter 3. Application Domain and Data Sets 57

Table 3.4: Vertex Label distribution for GT1 graph.

d Number |LV | Vextex Vertex label
(mm) of vertices label distribution(%)

18 100

2
positive 31.00
negative 69.00

3
positive 17.00
neutral 20.00
negative 63.00

23 64

2
positive 25.00
negative 75.00

3
positive 14.06
neutral 21.88
negative 64.06

28 36

2
positive 30.56
negative 69.44

3
positive 11.11
neutral 25.00
negative 63.89

Table 3.5: Vertex Label distribution for GT2 graph.

d Number |LV | Vextex Vertex label
(mm) of vertices label distribution(%)

18 100

2
positive 34.00
negative 66.00

3
positive 20.00
neutral 20.00
negative 60.00

23 64

2
positive 29.69
negative 70.31

3
positive 18.75
neutral 23.44
negative 57.81

28 36

2
positive 33.33
negative 66.67

3
positive 22.22
neutral 16.67
negative 61.11

Chapter 3. Application Domain and Data Sets 58

Table 3.6: Vertex Label distribution for MS1 graph.

d Number |LV | Vextex Vertex label
(mm) of vertices label distribution(%)

18 100

2
positive 64.00
negative 36.00

3
positive 45.00
neutral 30.00
negative 25.00

23 64

2
positive 57.81
negative 42.19

3
positive 40.63
neutral 32.81
negative 26.56

28 36

2
positive 55.56
negative 44.44

3
positive 47.22
neutral 13.89
negative 38.89

Table 3.7: Vertex Label distribution for MS2 graph.

d Number |LV | Vextex Vertex label
(mm) of vertices label distribution(%)

18 100

2
positive 46.00
negative 54.00

3
positive 28.00
neutral 36.00
negative 36.00

23 64

2
positive 43.75
negative 56.25

3
positive 25.00
neutral 37.50
negative 37.50

28 36

2
positive 52.78
negative 47.22

3
positive 38.89
neutral 19.44
negative 41.67

Chapter 3. Application Domain and Data Sets 59

Table 3.8: Vertex Label distribution for MT1 graph.

d Number |LV | Vextex Vertex label
(mm) of vertices label distribution(%)

18 100

2
positive 21.00
negative 79.00

3
positive 14.00
neutral 17.00
negative 69.00

23 64

2
positive 17.19
negative 82.81

3
positive 7.81
neutral 20.31
negative 71.88

28 36

2
positive 19.44
negative 80.56

3
positive 11.11
neutral 22.22
negative 66.67

Table 3.9: Vertex Label distribution for MT2 graph.

d Number |LV | Vextex Vertex label
(mm) of vertices label distribution(%)

18 100

2
positive 20.00
negative 80.00

3
positive 10.00
neutral 25.00
negative 65.00

23 64

2
positive 10.94
negative 89.06

3
positive 3.13
neutral 26.56
negative 70.31

28 36

2
positive 13.89
negative 86.11

3
positive 0
neutral 27.78
negative 72.22

Chapter 3. Application Domain and Data Sets 60

(left) and 37.17209E (right). The area covered measured 13.6559(km2). For identifi-

cation purposes the images were numbered from 1 to 10. The satellite imagery was

extracted using the Google Static Map Service4 in 2013. One of the images is shown in

Figure 3.12. Note that the images were in RGB format. The images measured 256×256

pixels.

Figure 3.12: Example satellite image.

The rest of this section is structured as follows. The process for translating the

satellite images to the desired grid-graph format is described in Sub-section 3.3.1. Note

that this is much simpler than the process required to translate AISF data to a grid

graph format described above. Sub-section 3.3.2 then gives some statistics concerning

the resulting grid graphs.

3.3.1 Satellite Image Graph Translation

A number of techniques, such as the cluster and Waxman models [7, 13, 14, 18, 51,

90], have previously been proposed for translating images to graph formats. However,

none of these existing techniques was entirely suited to the specific grid-graph format

required for the application of VULS mining and VULS classification as envisioned in

this thesis. A bespoke mechanism was therefore developed by the author. The nature

of this mechanism is described in this section.

The process for translating a satellite image grid into a grid graph is illustrated in

Figure 3.13. For simplicity only a small 3 × 3 section (highlighted in red) of the input

grid is used for the example given in the figure. The process is commenced by converting

each RGB represent satellite image into a grayscale image. A grid, of grid size d pixels,

4https://developers.google.com/maps/documentation/staticmaps/

Chapter 3. Application Domain and Data Sets 61

was then superimposed over each image. A number of example grids are given in Figure

3.14 using d = 32, d = 16 and d = 8 respectively. For each grid square, the mean

grayscale value of all pixels in the grid square was calculated. This then became the

z value to be associated with each grid center point (the reference point), referred to

as the centre pixel. For training and testing purposes each grid cell was assigned a

label describing the nature of the ground cover. The mean grayscale intensity value and

ground type with respect to a 3 × 3 section is shown in two green tables respectively

included in Figure 3.13.

The grid was then translated into a grid graph in the same manner as described above.

The edge connecting each pair of vertices was again labeled using z difference, although

in this case this was the mean grayscale intensity difference between two vertices. As

before each vertex was then connected using a sequence of either four or eight edges

(except at the edge and corner locations), thus Degree= 4 or Degree= 8. As before the

term “grid graph” is used where Degree= 4 or “cross-grid graph” where Degree= 8 (as

shown in the bottom-left and bottom-right of Figure 3.13 respectively). Again graphs

can be directed or undirected. In the case of directed graphs (as in the case of the graphs

shown in Figure 3.13) the direction of the edges is determined by slope direction, from

low mean grayscale intensity value to high mean grayscale intensity value.

Figure 3.13: Process of Translating a satellite image into a “grid graph” and a “cross-
grid graph” (the edge colour encoding is for ease of understanding only).

Chapter 3. Application Domain and Data Sets 62

Figure 3.14: Satellite image represented in terms of three different grid squares using
three different values for d.

3.3.2 Satellite Grid Graph Statistics

As in the case of the AISF grid graphs the translation of satellite image grids into

grid graphs utilises the same six parameters. For |LV | a range of two values was again

used {2, 3}. Where |LV | = 2, LV = {Field,HouseHold}; where |LV | = 3, LV =

{BrownField,GreenField,HouseHold}. Labels were added to grid squares by hand.

Similarly, for |LE | the range of values {2, 3, 4, 5, 6, 7, 8} was again used. For the value of

d, {8, 16, 32} pixels was used. Thus for each satellite image we have 2×7×3×2×2 = 168

variations of the associated grid graph. Thus 168× 10 = 1680 graph sets in total.

Tables 3.10 to 3.19 present the vertex label distribution for the satellite image grid

graphs (numbered from 1 to 10). Note that the distribution is extremely imbalanced.

In the same manner as in the case of sheet metal forming, the number of grid squares

required to represent a given image will depend on the selected grid size d. The number

of vertices is consequently also dependent on grid size. Using higher values of d produces

fewer grid squares consequently fewer vertices. For example, if a grid size of d = 8 is

used the number of grid cells (vertices) in each row will be 256
d = 32 ; the total number

of grid cells (vertices) will then be 32×32 = 1024. The number of edges when degree= 4

will be 2× 32× (32− 1) = 1984, and 2× n× (n− 1) + 2× (32− 1)× (32− 1) = 3906

when degree= 8. In the same manner, when d = 32 the number of vertices will be 64.

Chapter 3. Application Domain and Data Sets 63

Table 3.10: Vertex Label distribution of Satellite Image graph 1.

d Number |LV | Vertex Vertex label
(pixels) of vertices label distribution (%)

8 1024

2
Field 99.80
HouseHold 0.20

3
BrownField 87.30
HouseHold 0.20
GreenField 12.50

16 256

2
Field 99.61
HouseHold 0.39

3
BrownField 87.11
HouseHold 0.39
GreenField 12.50

32 64

2
Field 98.44
HouseHold 1.56

3
BrownField 85.94
HouseHold 1.56
GreenField 12.50

Table 3.11: Vertex Label distribution of Satellite Image graph 2.

d Number |LV | Vertex Vertex label
(pixels) of vertices label distribution (%)

8 1024

2
Field 98.73
HouseHold 1.27

3
BrownField 68.16
HouseHold 1.27
GreenField 30.57

16 256

2
Field 97.27
HouseHold 2.73

3
BrownField 67.97
HouseHold 2.73
GreenField 29.30

32 64

2
Field 92.19
HouseHold 7.81

3
BrownField 65.63
HouseHold 7.81
GreenField 26.56

Chapter 3. Application Domain and Data Sets 64

Table 3.12: Vertex Label distribution of Satellite Image graph 3.

d Number |LV | Vertex Vertex label
(pixels) of vertices label distribution (%)

8 1024

2
Field 99.41
HouseHold 0.59

3
BrownField 34.38
HouseHold 0.58
GreenField 65.04

16 256

2
Field 98.83
HouseHold 1.17

3
BrownField 34.38
HouseHold 1.17
GreenField 64.45

32 64

2
Field 95.31
HouseHold 4.69

3
BrownField 34.38
HouseHold 4.68
GreenField 60.94

Table 3.13: Vertex Label distribution of Satellite Image graph 4.

d Number |LV | Vertex Vertex label
(pixels) of vertices label distribution (%)

8 1024

2
Field 98.83
HouseHold 1.17

3
BrownField 82.32
HouseHold 1.17
GreenField 16.50

16 256

2
Field 97.66
HouseHold 2.34

3
BrownField 82.03
HouseHold 2.34
GreenField 15.63

32 64

2
Field 92.19
HouseHold 7.81

3
BrownField 79.69
HouseHold 7.81
GreenField 12.50

Chapter 3. Application Domain and Data Sets 65

Table 3.14: Vertex Label distribution of Satellite Image graph 5.

d Number |LV | Vertex Vertex label
(pixels) of vertices label distribution (%)

8 1024

2
Field 99.80
HouseHold 0.20

3
BrownField 91.80
HouseHold 0.20
GreenField 8.00

16 256

2
Field 99.61
HouseHold 0.39

3
BrownField 91.80
HouseHold 0.39
GreenField 7.81

32 64

2
Field 98.44
HouseHold 1.56

3
BrownField 90.63
HouseHold 1.56
GreenField 7.81

Table 3.15: Vertex Label distribution of Satellite Image graph 6.

d Number |LV | Vertex Vertex label
(pixels) of vertices label distribution (%)

8 1024

2
Field 98.83
HouseHold 1.17

3
BrownField 80.66
HouseHold 1.17
GreenField 18.16

16 256

2
Field 96.48
HouseHold 3.52

3
BrownField 79.68
HouseHold 3.52
GreenField 16.80

32 64

2
Field 95.31
HouseHold 4.69

3
BrownField 81.25
HouseHold 4.69
GreenField 14.06

Chapter 3. Application Domain and Data Sets 66

Table 3.16: Vertex Label distribution of Satellite Image graph 7.

d Number |LV | Vertex Vertex label
(pixels) of vertices label distribution (%)

8 1024

2
Field 99.61
HouseHold 0.39

3
BrownField 53.13
HouseHold 0.39
GreenField 46.48

16 256

2
Field 99.22
HouseHold 0.78

3
BrownField 53.13
HouseHold 0.78
GreenField 46.09

32 64

2
Field 98.44
HouseHold 1.56

3
BrownField 53.13
HouseHold 1.56
GreenField 45.31

Table 3.17: Vertex Label distribution of Satellite Image graph 8.

d Number |LV | Vertex Vertex label
(pixels) of vertices label distribution (%)

8 1024

2
Field 99.61
HouseHold 0.39

3
BrownField 59.57
HouseHold 0.39
GreenField 40.04

16 256

2
Field 99.22
HouseHold 0.78

3
BrownField 59.38
HouseHold 0.78
GreenField 39.84

32 64

2
Field 98.44
HouseHold 1.56

3
BrownField 62.50
HouseHold 1.56
GreenField 35.94

Chapter 3. Application Domain and Data Sets 67

Table 3.18: Vertex Label distribution of Satellite Image graph 9.

d Number |LV | Vertex Vertex label
(pixels) of vertices label distribution (%)

8 1024

2
Field 99.61
HouseHold 0.39

3
BrownField 71.88
HouseHold 0.39
GreenField 27.73

16 256

2
Field 99.61
HouseHold 0.39

3
BrownField 71.88
HouseHold 0.39
GreenField 27.73

32 64

2
Field 98.44
HouseHold 1.56

3
BrownField 71.88
HouseHold 1.56
GreenField 26.56

Table 3.19: Vertex Label distribution of Satellite Image graph 10.

d Number |LV | Vertex Vertex label
(pixels) of vertices label distribution (%)

8 1024

2
Field 99.80
HouseHold 0.20

3
BrownField 82.81
HouseHold 0.20
GreenField 16.99

16 256

2
Field 99.61
HouseHold 0.39

3
BrownField 83.59
HouseHold 0.39
GreenField 16.02

32 64

2
Field 96.88
HouseHold 3.12

3
BrownField 81.25
HouseHold 3.12
GreenField 15.63

Chapter 3. Application Domain and Data Sets 68

3.4 Tabular format for Traditional Classification

As noted in the introduction to this chapter, and earlier in this thesis, the operation

of the proposed VULS classification mechanism was compared with the application of

more traditional classification approaches (namely Naive Bayes and J48). It should

be noted here that the reason we can apply J48 and Naive Bayes is because we are

using grid graphs. If we were not using grid graphs, but some other form of graph,

we could not use J48 or Naive Bayes and hence such comparison could not be made.

Traditional classification approaches, such as J48 and Naive Bayes, require the input

data to be in a tabular form. Figure 3.15 illustrates the process of translating a grid

graph, in this case with degree= 4 and undirected edges, into such a tabular format.

From the figure it can be seen that each vertex in the graph corresponds to a record in

the table. The vertex label is then the class label for record. The four edges labels are

the attribute values. Thus the record describing the centre vertex in Figure 3.15 would

be 〈E1, E2, E3, E4, V 1〉. Note that it is only possible to translate grid graphs into this

tabular format because of the regular nature of grid graphs. It would not be possible to

apply this with more general irregular graph formats to which the VULS concept could

also be applied.

Figure 3.15: Process for translating a grid graph into a tabular format.

3.5 Summary

In this chapter an overview of the exemplar problem domains (sheet metal forming

and satellite image interpretation), and the associated data sets, used to evaluate the

proposed VULS mining and vertex classification processes proposed later in this thesis,

have been described. In the case of the sheet metal forming data, a total of 1344 grid

graphs were generated from eight before and after “point clouds” pairings. In the case

of the satellite image interpretation data a total of 1680 grid graphs were generated.

Chapter 4

Formalism for VULS

4.1 Introduction

This chapter considers the concept of Vertex Unique Labelled Subgraphs (VULS) in

detail and presents a formalism for the VULS idea. As already noted, a VULS is a

subgraph, within a single large graph, that has vertex labelling associated with it in a

unique manner. In other words, VULS means, given a configuration with a set of edges

and edge labellings, there is only a fixed set of vertexes matching it, with each vertex

has only one possible label. We can identify different forms (categories) of VULS: (i)

complete (all possible VULS), (ii) minimal, (iii) frequent and (iv) minimal frequent (a

combination of (ii) and (iii)). Each is discussed in this chapter together with examples.

The introduction to this thesis noted that, in the context of VULS mining, there are

two significant challenges. The first, in common with other forms of graph mining, is

that VULS mining is computationally expensive. Thus anything we can do to reduce

the computation overhead associated with VULS mining will be beneficial. The second

is that the identified set of VULS U should describe as wide a range of different con-

figurations as possible. This can be expressed in terms of a metric, coverage, which is

calculated as follows:

coverage =
|V ′|
|V |

(4.1)

where V is the set of vertices in a given graph G, and V ′ is the subset of elements of V

that appear in at least one VULS in a given set of VULS U . Ideally the coverage will be

1. Thus to achieve good coverage a comprehensive training set is required to generate

the set U . As noted above VULS mining is computationally expensive. Thus instead

of identifying all VULS, we can attempt to identify some appropriately descriptive (in

terms of coverage) subset of the complete set of VULS. Hence the three alternative

categories of VULS: (i) minimal VULS, (ii) frequent VULS and (iii) minimal frequent

VULS (as listed above).

The rest of this chapter is organized as follows. Section 4.2 presents a formal defi-

nition of the VULS problem as conceptualized with respect to this thesis. Section 4.3

69

Chapter 4. Formalism for VULS 70

demonstrates the relationship (and distinction) between the four categories of VULS

listed above using an undirected graph example, while in Section 4.4 the relationship is

described in terms of a directed graph example. Finally, in Section 4.5, the chapter is

concluded with a brief summary, some discussion and some conclusions.

4.2 Formalism

With reference to the definitions given in chapter 2, this section presents a formal defi-

nition of the concept of VULS. Recall that labelled graphs are defined as follows:

G(V,E,Lv, LE , fmap)

where:

V is a set of n vertices such that V = {v1, v2, . . . , vn}
E is a set of m edges such that E = {e1, e2, . . . , em}
LV is a set of p vertex labels LV = {lv1 , lv2 , . . . , lvp}
LE is a set of q edge labels LE = {le1 , le2 , . . . , leq}
fmap is some mapping function that maps the vertex and edge labels

on to vertices and edges.

Alternatively we can think of a graph as consisting of a set of k one-edge subgraphs

(pairs of vertices linked by an edge). In which case:

G = {P1, P2, . . . , Pk}

where Pi = 〈va, vb〉 (va, vb ∈ V). The size of a graph G (|G|) can thus be defined

in terms of its one edge subgraphs, we refer to 1-edge, 2-edge and k-edge subgraphs.

For undirected graphs, the edge 〈va, vb〉 is equivalent to 〈vb, va〉. We use the notation

Pi.va and Pi.vb to indicate the vertices va and vb associated with a particular one-edge

subgraph Pi. We indicate the labels associated with Pi.va and Pi.vb using the notation

Pi.va.label and Pi.vb.label (Pi.va.label ∈ LV and Pi.vb.label ∈ LV). We indicate the edge

label associated with Pi using the notation Pi.label (Pi.label ∈ LE). We also assume

that G is connected:

∀Pi ∈ G ∃Pj ∈ G | Pi 6= Pj , Pi.va = Pj.va ∨

Pi.va = Pj.vb ∨ Pi.vb = Pj.va ∨ Pi.vb = Pj.vb

We can impose a canonical ordering on G = {P1, P2, . . . , Pk}, in which case the one edge

subgraphs in G are best expressed as a list:

G = [P1, P2, . . . , Pk]

Chapter 4. Formalism for VULS 71

The one edge subgraphs [P1, P2, . . . , Pk] can be ordered using a minimum Depth First

Search (DFS) code as used in gSpan. We can use the same notation with respect to any

k-edge subgraph gk (1 6 k 6 |G|) of G (gk ⊆ G). By default it is assumed that any

given graph or subgraph (G or gk) are edge labelled but without any vertex labelling.

We can also conceive of vertex unlabelled graphs and subgraphs. With respect to the

work described here we are particularly interested in edge labelled subgraphs. In other

words, we assume that the configuration gk with edge labelling is generated from G

beforehand.

Given an edge labelled subgraph, gk ⊆ G, comprised of k edges, we can define a

function, getV ertexLables, that determines the potential labels that can be assigned to

each vertex in gk with respect to G:

getV ertexLables(gk)→ L

where L = [[Lva1 , Lvb1], [Lva2 , Lvb2], . . . , [Lvak , Lvbk].

To formally define the concept of a vertex unique labelled subgraph we will commence

by defining what we mean by a one-edge vertex unique labelled subgraph and then go

on to consider two-edge and k-edge vertex unique labelled subgraphs.

Returning to the concept of VULS, given an one-edge subgraph, g1 = P1 (g1 ⊆ G),

such that P1.label = l ∈ LE and L = [[Lva , Lvb]], so that Lva ⊆ LV and Lvb ⊆ LV . If

|Lva | = 1 and |Lvb | = 1 then g1 is a one-edge VULS with respect to G because there

is only one possible vertex labelling (the vertex labelling is unique with the particular

edge structure). Given a two-edge edge labelled subgraph g2 = [P1, P2] (where g2 ⊆ G)

such that:

P1.label = l1 ∈ LE
P2.label = l2 ∈ LE

and:

L = [[Lva1 , Lvb1], [Lva2 , Lvb2]]

and the proviso that g2 is connected.

Lva1 ∩ Lva2 ≥ 1 ∨ Lva1 ∩ Lvb2 ≥ 1 ∨ Lvb1 ∩ Lva2 ≥ 1 ∨ Lvb1 ∩ Lvb2 ≥ 1

Then, if ∀li ∈ L, |li| = 1 the two-edge subgraph g2 will be a two-edge VULS with

respect to G. The formal definition of the concept of a VULS is then as follows.

Given a k-edge edge labelled subgraph gk = [P1, P2, . . . , Pk] (gk ⊆ G) where L =

[[Lva1 , Lvb1], [Lva2 , Lvb2], . . . , [Lvak , Lvbk]], and the proviso that gk is connected:

∀[Lvai , Lvbi] ∈ L ∃ [Lvaj , Lvbj] ∈ L | [Lvai , Lvbi] 6= [Lvaj , Lvbj],

Lvai ∩ Lvaj ≥ 1 ∨ Lvai ∩ Lvbj ≥ 1 ∨ Lvbi ∩ Lvaj ≥ 1 ∨ Lvbi ∩ Lvbj ≥ 1

Chapter 4. Formalism for VULS 72

if ∀li ∈ L, |li| = 1 then gk is a k-edge VULS with respect to G.

Referring back to the introduction to this chapter, other than “standard” VULS as

defined above, we can identify three other kinds of VULS: Minimal VULS, Frequent

VULS and Minimal frequent VULS. These we defined in general terms in Chapter 2,

however maybe more formally defined as follows:

Definition 1: Minimal VULS. A minimal VULS is a VULS such that none

of its subgraphs are VULS. In other words, given the set of all VULS T . A

minimal VULS m is a VULS that is in T , thus m ∈ T , and whose subsets

are not in T . Thus given N={ N | all subsets of m }, if ∀n ∈ N,n /∈ T=true,

then n is a minimal VULS.

Definition 2: Frequent VULS. A Frequent VULS (FVULS) is a VULS

φ whose occurrence count, Occurrence(φ), within the input graph G, is

greater than some pre-specified threshold σ. Note that here σ is the oc-

currence count, not the proportion of occurrence of a subgraph over a total

number of graph transactions as used in the context of transaction graph

mining as described in chapter 2. In the research presented in this thesis σ

is determined in a dynamic manner (the precise mechanism for calculating

σ will be presented later in Chapter 5).

Definition 3: Minimal frequent VULS. A minimal frequent VULS is a

VULS φ which is both minimal and frequent.

Figure 4.1: Example of an undirected graph G

4.3 Examples of undirected VULS

Consider the undirected graph G given in Figure 4.1. This graph can be encoded as a set

of five tuples of the form 〈u, v, lu, le, lv〉 where u, v ∈ V , e = (u, v) ∈ E, lu, lv ∈ LV and

le ∈ LE ; u and v can also be seen as “vertex position indicators” in a specific subgraph.

Thus, with reference to Figure 4.1:

LV = {A,B} LE = {black, green, red}

Chapter 4. Formalism for VULS 73

Figures 4.2 and 4.3 show, respectively, the one and two edge VULS candidates that

exist in the example undirected graph. The figures also give the occurrence counts

for each of the identified VULS candidates. The notation “ ” is used to define a ver-

tex without a label (thus a place holder). With reference to Figure 4.2, subgraphs 1

(〈0, 1, , red, 〉) and 3 (〈0, 1, , green, 〉) are VULS because they have unique vertex la-

belings associated with them. Subgraph 2 is not a VULS because it has the same form

(〈0, 1, , black, 〉) but with two potential vertex labelings. In addition if we assume a

threshold of σ = 4 subgraphs 1 and 3 can be said to be frequent VULS (because their

occurrence count is at least σ). Subgraphs 1 and 3 are also minimal VULS because they

do not contain any subgraphs that are themselves VULS. By definition subgraphs 1 and

3 are thus also minimal frequent VULS.

With reference to Figure 4.3 subgraphs 4, 5, 6, 7 and 8 are all VULS. However,

subgraph 9 is not because it has the same configuration but different (non-unique)

vertex labelings. Again, assuming σ = 4, subgraphs 4, 5, 6, 8 are also frequent VULS.

Subgraph 7 is also a minimal VULS because it does not contain any subgraphs that are

also VULS. Figure 4.3 does not feature any subgraph that is a minimal frequent VULS.

Note that the VULS ID (the first column of Figures 4.2 and 4.3) are also included in

Figure 2.2 in red in chapter 2. This confirms the relationship between the four different

categories of VULS. In this case, where the VULS size is less than 2 (recall that VULS

size is measured in terms of the number of edges), the coverage with respect to each

VULS form is: (i) complete=100%, (ii) minimal=100%, (iii) frequent=100%, and (iv)

minimal frequent =7/9=77.78%.

Figure 4.2: One edge subgraphs contained in the example undirected graph G shown
in Figure 4.1

4.4 Examples of directed VULS

In this section, we consider directed graphs. Consider the directed graph G given in

Figure 4.4. We can encode the graph as a set of five tuples of the form 〈u, v, lu, le, lv〉
where u, v ∈ V , e = (u, v) ∈ E, lu, lv ∈ LV and le ∈ LE (again note that u and v can

Chapter 4. Formalism for VULS 74

Figure 4.3: Two edge subgraphs contained in the example undirected graph G shown
in Figure 4.1

Figure 4.4: Example of directed graph G

Figure 4.5: one edge subgraphs contained in the example directed graph G shown in
Figure 4.4

Chapter 4. Formalism for VULS 75

Figure 4.6: Two edge subgraphs contained in the example directed graph G shown
in Figure 4.4

also be seen as “vertex position indicators” in a specific subgraph). Thus, with reference

to Figure 4.4:

LV = {A,B} LE = {green, blue}

Figures 4.5 and 4.6 show respectively the one and two edge VULS candidates that

exist in the example directed graph. As before the Figures include the occurrence

counts for each of the identified VULS candidates. The notation “ ” is again used

to define a subgraph without vertex labels. With reference to Figure 4.5, subgraph 1

(〈0, 1, , blue, 〉) is a VULS, because it has a unique vertex labelling associated with it.

Subgraph 2 is not a VULS because it has two potential vertex labelings. In addition,

assuming a threshold of σ = 2, subgraph 1 can be said to be frequent VULS (because the

occurrence count is greater than the value for σ). Subgraph 1 is also a minimal VULS

because it does not contain subgraphs that are themselves VULS. Again, by definition

subgraph 1 is also a minimal frequent VULS.

With reference to Figure 4.6 subgraphs 3 and 4 are VULS. However, subgraph 5

is not a VULS because different vertex labelings can be applied to this configuration

(the labelling is therefore not unique). Again, assuming σ = 2, subgraph 4 is also

a frequent VULS. However, subgraphs 3 and 4 are not minimal VULS because they

contain subgraphs that are also VULS. Figure 4.6 does not feature any subgraph that

is a minimal frequent VULS.

In this case where the VULS size is less than 2 edges, coverage with reference to each

category of VULS is as follows: (i) complete=5/7=71.43%, (ii) minimal=4/7=57.14%,

(iii) frequent=4/7=57.14%, and (iv) minimal frequent =4/7=57.14%. The above thus

serves to further illustrate the relationship between the four different identified categories

of VULS considered in this thesis (as initially illustrated in Figure 2.2).

Chapter 4. Formalism for VULS 76

4.5 Summary

This chapter has presents a formalisation of the concept of VULS. It has identified and

defined four different categories of VULS: (i) complete, (ii) minimal, (iii) frequent and

(iv) minimal frequent, and illustrated the distinction between these different categories

using a set of examples. The examples were given in terms of both undirected and

directed graphs. This chapter also noted that “coverage” is an important concept in

the context of VULS and presented how this is calculated. The significance of the

coverage concept will become more apparent later in this thesis. In terms of coverage

it is important to note that we can expect the coverage when conducting complete

VULS mining to be greater than when conducting frequent or minimal VULS mining.

Similarly we can expect the obtained coverage when conducting frequent or minimal

VULS mining to be greater than when conducting minimal frequent VULS mining. The

extent of the differences in coverage and the significance of these differences will be

explored further later in this thesis. In the next chapter the VULS mining process, and

associated algorithms, will be considered in detail in terms of each category of VULS.

Chapter 5

Algorithms for VULS Mining

5.1 Introduction

This chapter presents the four VULS mining algorithms proposed in this thesis: (i) com-

pVULSM, (ii) minVULSM, (iii) freqVULSM and (iv) minFreqVULSM. Each is directed

at one of the four different categories of VULS identified in the previous chapter. A

schematic of the VULS model generation process is given in Figure 5.1. The process

commences with the provision of pre-labelled raw 3D surface training data. The assump-

tion is that this is not in the appropriate graph format and thus needs to be translated

into this format. This is the case with respect to the sheet metal forming and satellite

image applications used for evaluation purposes later in this thesis, but of course it may

also be the case that the input data is already in the required graph format in which

case the preprocessing step can be omitted. Whatever the case the graph training data

is passed on to the mining stage where one of the proposed algorithms is applied (de-

pending on whether we want to find the complete set of VULS, minimal VULS, frequent

VULS, or minimal frequent VULS). The result is a “VULS model” which can then be

used to predict vertex labels in unlabelled graph data. The process of predicting vertex

labels using a “VULS model” will be described in the next chapter.

Figure 5.1: VULS model generation process.

The rest of this chapter is organized as follows. The pseudo codes for each VULS

mining algorithms are presented in Sections 5.2 to 5.5 respectively. In each case the

description of the algorithm includes a Worked example using the graph depicted in

Figure 5.2. Finally, in Section 5.6, the chapter is concluded with a brief summary.

77

Chapter 5. Algorithms for VULS Mining 78

Figure 5.2: Example graph Gtrain.

5.2 The compVULSM Algorithm

This section presents the compVULSM algorithm for mining the complete set of VULS

contained in the input graph. Mining the complete set of VULS entails traversing the

entire search space starting with k = 1 edge subgraphs and continuing until some user

specified maximum number of edges (max) is reached. Recall that in the context of

VULS vertex classification very large VULS are unlikely to be of much use as they will

tend to be “overfitted” to the training set and therefore unlikely to appear in any unseen

data. Note also that if a k-edge subgraph is not a VULS this does not necessarily mean

that its (k + 1)-edge super-graphs will also not be VULS (and vice versa). Thus the

process for finding the complete set of VULS is exhaustive, involving exponential time

complexity as the size of the input (training) graph increases. Consequently complete

VULS mining is computationally expensive.

The high level pseudo code for the compVULSM algorithm is presented in Algorithm

4. The input is a labelled (training) graph Gtrain and a value max for the maximum

size of any identified VULS. Note that the input graph Gtrain is encoded using minimal

Depth First Search (DFS) lexicographical ordering; as noted in Section 2.2.4 this is also

the canonical form used by the well known gSpan algorithm [229]. The output is a

complete set of identified VULS U . Note that we limit the size of the searched-for VULS

using the constant max; if we do not do this the entire input graph may ultimately be

identified as a VULS. As already noted, for vertex classification purposes, large VULS

are undesirable. At the commencement of the compVULSM algorithm, the set U will

be empty (line 4). Note also that max ≤ |EG|, where EG is the set of edges in Gtrain, as

otherwise we will attempt to generate candidate VULS that are bigger than the input

graph. We proceed in a breadth first manner commencing with one edge candidate

VULS, then two edge candidate VULS, and continuing until max edge candidate VULS

are arrived at. On each iteration we first identify the k-edge VULS contained in the set

of candidate VULS Gk (line 6), using the genV ULS procedure, and include them in the

set U , then we continue and generate the k + 1 edge candidate VULS (line 7) using the

subgraph Mining procedure (Algorithm 6), and so on.

Chapter 5. Algorithms for VULS Mining 79

Algorithm 4 The compVULSM algorithm

1: procedure main(Gtrain, max)
2: k = 1
3: Gk =the set of k-edge subgraphs in Gtrain (candidate VULS)
4: U = ∅
5: while (k < max) do
6: U = U ∪ genVULS(k,Gk)
7: Gk+1= subgraph Mining(Gtrain, k + 1)(Algorithm 6)
8: k = k + 1
9: end while

10: end procedure

11: procedure genV ULS(k,Gk)
12: U ′ = ∅
13: for all c ∈ Gk do
14: if isVULS(c) then /* Algorithm 5 */
15: U ′ = U ′ ∪ c
16: coverage = compute coverage using Equ (4.1)
17: if coverage == 100% then
18: exit
19: end if
20: end if
21: end for
22: return U ′
23: end procedure

Algorithm 5 isVULS procedure

1: procedure isVULS(c)
2: isaV ULS = true
3: F (c) → S′ /* The vertex label list S′ of subgraph c for each vertex Vi in Vc is

drawn from LV and mapped using the function F according to input graph Gtrain*/
4: for all Lvi ∈ S′ do
5: if |Lvi | 6= 1 then
6: isaV ULS = false
7: break
8: end if
9: end for

10: return isaV ULS
11: end procedure

Chapter 5. Algorithms for VULS Mining 80

Algorithm 6 subgraph Mining, return a set of k-edge subgraphs Gk. Gtemp is a local
variable represents set of subgraphs generated so far, Gtemp = ∅ at the beginning.

1: procedure subgraph Mining(Gtrain, k)
2: Gk = ∅
3: G1=the set of one-edge subgraphs in Gtrain
4: sort G1 in DFS lexicographic order
5: for each edge e ∈ G1 do
6: Gk = Gk∪ subgraph(e,1,k)
7: Gtrain = (Gtrain − e) (remove e from Gtrain)
8: end for
9: Return Gk

10: end procedure

11: procedure subgraph(e, size, k)
12: if size == k then
13: return Gtemp
14: end if
15: generate all e’s potential extension subgraphs g with one edge growth by right

most extension in Gtrain
16: for each g do
17: if g is minimal DFSCode then
18: Gtemp = Gtemp ∪ g
19: subgraph(Gtemp,size+1,k)
20: end if
21: end for
22: end procedure

The genV ULS procedure takes as input a set of k edge candidate VULS (Gk) and

returns a set U ′ of discovered k-edge VULS (if any). Each candidate subgraph c in

Gk is processed in turn (line 14). Note that each subgraph c in Gk has the form

〈Vg, Eg, LEg , F 〉 (no specified vertex labels). If a candidate graph c is identified as a

VULS it is appended to the set U ′ (line 15). To determine whether a candidate VULS

c is a VULS or not the isVULS procedure is called.

The isVULS procedure is given in Algorithm 5. In line 3 a list of sets of possible

labels for each vertex in the current candidate VULS c is determined (as already noted

previously in Chapter 4, each subgraph c in Gk has the form 〈Vc, Ec, LEc , F 〉; no specified

vertex labels). The vertex label list S′ of subgraph c for each vertex Vi in Vc is drawn

from LV and mapped using the function F according to input graph Gtrain: F (c)→ S′;

thus there is a one to one correspondence between the vertex sets in Vc and the vertices’

labels LV in S′. If the size of any of the sets in S′ is greater then one, then c is not

unique (line 5) and thus c is not a VULS and the procedure returns false. Otherwise

the procedure returns true. The proposed subgraph Mining procedure is presented in

algorithm 6. This procedure is similar to that found in gSpan except that we are finding

all subgraphs up to a size k, as opposed to only frequent subgraphs (the anti-monotone

property does not apply when mining VULS). We commence (line 4) by sorting all

Chapter 5. Algorithms for VULS Mining 81

the one-edge subgraphs, from input graph Gtrain, into DFS lexicographic order and

storing them in G1. Then (lines 5-8), for each one edge subgraph e in G1, the subgraph

procedure is called (line 6), which finds all supergraphs for each one edge graph e up

to size k, and stores the result in Gk (line 6). As we proceed, each subgraph e, whose

supergraphs have all been found, is removed from graph Gtrain so as to avoid duplicate

supergraph generation.

The subgraph(e, size, k) procedure generates all the supergraphs of the given one

edge subgraph e by growing e by adding edges using the right most extension principle

as already described previously in Chapter 2. For each candidate subgraph g, if g is

described by a minimal DFS Code (line 17), the super graph of e is stored in Gtemp (line

18). The process continues in this recursive manner until the number of edges in the

supergraphs to be generated (size) is greater than k (line 13).

A Worked example of the process of generating the complete set of VULS using the

compVULSM algorithm, with max = 3 is given in Figure 5.3. The input to the Worked

example is the training graph presented in Figure 5.2. Figure 5.3 is organised in a tabular

format with the rows representing iterations and the columns representing: (i) VULS

candidates, (ii) labelled candidates and (iii) whether each candidate is a VULS or not.

Recall that the input graph Gtrain is encoded using minimal Depth First Search (DFS)

lexicographical encoding. Recall also that a candidate VULS is a subgraph without

vertex labelling.

The numbers attached to vertices in the candidate VULS column in Figure 5.3 are

simply vertex position indicators. Before considering the figure in more detail, with

respect to the discussion below. The notation “ ” is used to define a vertex without a

label (thus a place holder indicated by vertex label list S′ later).

On the first iteration where K=1 (second row in Figure 5.3), two one-edge candidate

VULS were identified (the set G1): 〈 0, 1, , green, 〉 and 〈 0, 1, , blue, 〉. For

each of these candidates a vertex label list, S′, was generated according to function

F (c) → S′ applied to Gtrain. Using the set S′, three vertex labelled candidate VULS

were identified: 〈 0, 1, A, green, A 〉, 〈 0, 1, A, green, B 〉 and 〈 0, 1, B, blue, B 〉. Thus

〈 0, 1, , green, 〉 is not a VULS because it has two potential vertex labelings (〈 0, 1,

A, green, A 〉, 〈 0, 1, A, green, B 〉); while 〈 0, 1, B, blue, B 〉 is a VULS because it has

a unique vertex labelling associated with it.

As K is increased to 2 (coverage is not 100% and the max value for k has not been

reached), on the second iteration (K=2), three two-edge candidate VULS are generated

from G1 by right most extension. In the same manner as before, for all c ∈ G2 the

vertex label list S′ was generated according to function F (c)→ S′ applied to Gtrain. In

this case, the following set of labelled candidate VULS were identified:

(〈 0, 1, A, green, B 〉, 〈 1, 2, B, blue, B 〉),
(〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, A 〉),
(〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, B 〉), and

(〈 0, 1, B, blue, B 〉, 〈 1, 2, B, blue, B 〉).

Chapter 5. Algorithms for VULS Mining 82

Iteration	
number	

Candidate	 VULS	 Labeled	 candidate	
VULS	 	 	

VULS	 	
Yes/No	 ?	

K=1	
	
	 	

	 	 	
Not	 VULS	
	
	 	

	

	 	
VULS	

K=2	
	
	 	

Candidate	 VULS	 	 	 Labeled	 candidate	
VULS	 	 	

VULS	 	
Yes/No	 ?	

	 	
VULS	 	 	

	
	

Not	 VULS	

	

	 	
VULS	

K=3	
	 	 	

Candidate	 VULS	 	 	
	

Labeled	 candidate	
VULS	 	 	

VULS	 	
Yes/No	 ?	

	 	

VULS	

	 	

Not	 VULS	

	

	 	

VULS	

	 	

VULS	

	 Figure 5.3: Worked example of complete VULS mining where max = 3

Chapter 5. Algorithms for VULS Mining 83

Of these (〈 0, 1, , green, 〉, 〈 0, 2, , green, 〉) is not a VULS because it has the

same structure but two potential vertex labelings; (〈 0, 1, A, green, B 〉, 〈 1, 2, B, blue,

B 〉) and (〈 0, 1, B, blue, B 〉, 〈 1, 2, B, blue, B 〉) are VULS because they have unique

vertex labellings associated with them.

We then move on to k=3 (coverage was not yet 100% and the max value has not yet

been reached), a set of four three-edge candidate VULS (G3) will be generated from G2

by right most extension. Vertex labels were again generated as before to give:

(〈 0, 1, A, green, B 〉, 〈 1, 2, B, blue, B 〉, 〈 2, 3, B, blue, B 〉),
(〈 0, 1, A, green, B 〉, 〈 1, 2, B, blue, B 〉, 〈 0, 3, A, green, B 〉),
(〈 0, 1, A, green, B 〉, 〈 1, 2, B, blue, B 〉, 〈 0, 3, A, green, A 〉),
(〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, A 〉, 〈 0, 3, A, green, B 〉), and

(〈 0, 1, B, blue, B 〉, 〈 1, 2, B, blue, B 〉, 〈 2, 3, B, blue, B 〉).

Of these (〈 0, 1, , green, 〉, 〈 1, 2, , blue, 〉, 〈 0, 3, , green, 〉) is not a VULS

because it has the same structure, but two potential vertex labelings:

(〈 0, 1, A, green, B 〉, 〈 1, 2, B, blue, B 〉, 〈 0, 3, A, green, B 〉), and

(〈 0, 1, A, green, B 〉, 〈 1, 2, B, blue, B 〉, 〈 0, 3, A, green, A 〉).

The rest of the three-edge VULS candidates are VULS because they do have unique

vertex labellings. K has now reached the maximum pre-specified value of max = 3, thus

the algorithm stops, the complete set of VULS of size less than or equal to 3 have been

identified.

5.3 Minimal VULS Mining

The main issue with the compVULSM algorithm, as described above, is the significant

computational overhead required to identify the complete set of VULS (as will be demon-

strated later in Chapter 7). Since the process of identifying the complete set of VULS

is slow and time-consuming, one solution to this is to find a subset of the complete set

of VULS that requires less computational cost but still gives good coverage. One idea is

to find the set of minimal VULS. The intuition here was that the set of minimal VULS

will be suitably representative of the complete set of VULS because every VULS in the

complete set will either contain at least one minimal VULS or will be a minimal VULS

itself. Recall that a minimal VULS φ is one where none of its subgraphs are VULS (but

its supergraphs may be). The advantage offered by the minimal VULS approach is that

when we proceed in a breadth first manner, starting with one edge candidate graphs,

we do not need to grow the (k+ 1)-edge candidate subgraphs from the identified k-edge

minimal VULS. In the context of coverage it is conjectured that good coverage will still

be maintained because at least one minimal VULS must appear in any non-minimal

VULS.

The pseudo code for the minVULSM algorithm is presented in Algorithm 7. The

input is again a labelled graph Gtrain and a value max. The output is a set of minimal

Chapter 5. Algorithms for VULS Mining 84

Algorithm 7 minVULSM algorithm

1: procedure main(Gtrain, max)
2: k = 1
3: G = Gtrain (Part of input graph not covered by minimal VULS)
4: Gk =the set of k-edge subgraphs in G (candidate VULS)
5: Tk = ∅ (the set of k-edge subgraphs which are not VULS)
6: U = ∅
7: while (k < max) do
8: U = U ∪ genMinVULS(k,Gk)
9: Gk+1= subgraph Mining(G, k + 1)(Algorithm 6 where e ∈ Tk)

10: k = k + 1
11: end while
12: end procedure

13: procedure genMinV ULS(k,Gk)
14: U ′ = ∅
15: for all c ∈ Gk do
16: if isVULS(c) then /* Algorithm 5 */
17: U ′ = U ′ ∪ c
18: coverage = compute coverage using Equ (4.1)
19: if coverage == 100% then
20: exit
21: end if
22: G = G− c
23: else
24: Tk = Tk ∪ c
25: end if
26: end for
27: if Tk == ∅ then
28: exit
29: end if
30: return U ′
31: end procedure

VULS U . Note that the algorithm is similar to algorithm 4 (presented above) for mining

the complete set of VULS, except that on each iteration we capture the current set of

k-edge VULS in a set U (line 8) and remove the identified k edge VULS from Gtrain to

give G from which the following (k + 1)-edge subgraphs will be generated (line 9). In

other words, we only extend the set of k edge non-VULS to generate the next (k + 1)-

edge VULS candidates on each iteration. Note that the isV ULS and Subgraph Mining

procedures were reused as presented earlier (Algorithms 5 and 6).

Continuing with Algorithm 7, the genMinV ULS procedure takes as input the cur-

rent graph size k (where k is the number of edges) and the set of k-edge subgraphs

contained in the set Gk as pruned so far. The procedure returns the set of k-edge min-

imal VULS U ′. On each call the procedure genMinV ULS loops through the input set

of k-edge subgraphs and (line 15) for each subgraph c in Gk determines whether it is a

Chapter 5. Algorithms for VULS Mining 85

VULS or not by calling Algorithm 5 described earlier. If c is a VULS it is added to the

set U ′ (line 17). We then (line 18) calculate the coverage so far, if it has reached 100%

we have found the complete set of minimal VULS and we exit (line 20). Note that if

coverage is equal to 100%, the input set G will now be empty. Otherwise, if the coverage

is not 100%, we continue processing and (line 22) remove c from the global set G. If c

is not a VULS we add it to Tk (line 24), Tk is the set of k-edge subgraphs which will

be extended to form Gk+1, the set of (k + 1)-edge subgraphs, ready for the next level

of processing. Eventually all c in Gk will have been processed. If, at this stage Tk is

empty there will be no more subgraphs that can be generated and the process will exit

(line 28). Otherwise control will return to the main procedure at line 8 and the set of

(k + 1)-edge subgraphs will be generated from Tk (the set of k-edge subgraphs that are

not VULS) using right most extension coupled with isomorphism checking (using the

subgraph Mining procedure described previously). We continue in this manner until

the maximum value for k is reached or coverage reaches 100%.

Figure 5.4: Input graph Gtrain,
G = Gtrain at the beginning of the

algorithm 7

Figure 5.5: Example of 2-
edge minimal VULS c

Figure 5.6: G = G− c

Figure 5.7: Example of 3-
edge minimal VULS which is

missed

Note that as the procedure progresses the identified minimal VULS were “marked up”

in the input graph G so that they would not be used further in the VULS identification

process. However, this sometimes resulted in the input graph becoming fragmented

(disconnected). Fragments that were smaller than the current value for k could be safely

Chapter 5. Algorithms for VULS Mining 86

ignored, but the remainder still had to be considered during the VULS identification

process. It was also found that, given a particular configuration, some VULS were

missed. For example where a three edge and a two edge minimal VULS share a one

edge subgraph that was not a VULS, in this case if the two edge occurrences in c were

marked up, the three edge minimal VULS might never be identified. This is illustrated

with a Worked example in Figures 5.4 to 5.7. Figure 5.4 gives the input graph Gtrain,

G = Gtrain at the beginning of algorithm 7. A two-edge VULS c (as shown in Figure 5.5)

is identified from G, as the algorithm proceeds, this two-edge VULS c will be marked

and the associated edges will be removed from G as shown in Figure 5.6. In this case,

the three-edge VULS (as shown in Figure 5.7), which shares the one-edge subgraph 〈 A,

Black,B 〉 with c, can not be identified from G in Figure 5.6.

Iteration	
number	

Candidate	 VULS	 	 Labeled	 candidate	
VULS	 	

Minimal	 VULS	 	
Yes/No	 ?	

K=1	
	
	 	

	 	 	
Not	 VULS	

	

	 	
Minimal	 VULS	

K=2	
	
	 	

Candidate	 VULS	 	
	

Labeled	 candidate	
VULS	 	 	

Minimal	 VULS	 	
Yes/No	 ?	

	 	

	 	
Not	 VULS	

	
K=3	
	 	 	

Candidate	 VULS	 	
	

Labeled	 candidate	
VULS	 	 	

Minimal	 VULS	 	
Yes/No	 ?	

	 	

Minimal	 VULS	

	

Figure 5.8: Worked example of minimal VULS mining where max = 3

A Worked example for the process of identifying all minimal VULS using the min-

VULSM algorithm (Algorithm 7), with max=3, is given in Figure 5.8. The input to

the Worked example is the training graph presented previously in Figure 5.2. On the

first iteration where K=1 (second row in Figure 5.8), two one-edge candidate VULS

were identified: 〈0, 1, , green, 〉 and 〈 0, 1, , blue, 〉 as before, for each of these

candidates a vertex label list S′ was generated according to function F (c)→ S′ applied

to Gtrain. Using the set S′, three vertex labelled candidate VULS were identified: 〈 0,

1, A, green, A 〉, 〈 0, 1, A, green, B 〉 and 〈 0, 1, B, blue, B 〉. Of these 〈 0, 1, , green,

Chapter 5. Algorithms for VULS Mining 87

〉 is not a VULS because it has two potential vertex labelings (〈 0, 1, A, green, A 〉, 〈 0,

1, A, green, B 〉); 〈 0, 1, B, blue, B 〉 is a minimal VULS because it has a unique vertex

labelling associated with it, and it does not contain any subgraphs that are themselves

VULS. This minimal VULS 〈 0, 1, B, blue, B 〉 will be marked up in G (G = Gtrain) so

that it won’t be extended further. As K is increased to 2 (coverage is not 100% and the

max value for k has not been reached), one two-edge candidate VULS (G2) is generated

from the set of non-VULS G1 by right most extension. In the same manner as before,

for all c ∈ G2 the vertex label list S′ was generated, to give the following set of labelled

candidate VULS:

(〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, A 〉), and

(〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, B 〉).

Of these (〈 0, 1, , green, 〉, 〈 0, 2, , green, 〉) is not a VULS because it has the

same structure but two potential vertex labelings:

(〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, A 〉), and

(〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, B 〉).

We then move on to k=3 (coverage is not yet 100% and the max value has not been

reached); in this case, one three-edge candidate VULS (G3) is generated from the set of

non-VULS G2 by right most extension. Vertex labels were again generated as before to

give: (〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, A 〉, 〈 0, 3, A, green, B 〉). This subgraph

is a minimal VULS since it does not contain any subgraphs that are themselves VULS.

K has now reached the specified maximum value of max = 3, thus the algorithm stops.

All minimal VULS of size less than or equal to 3 have been identified.

Clearly fewer VULS candidates are generated using minimal VULS mining than

when mining the complete set of VULS; thus mining minimal VULS is more efficient

than when mining the complete set of VULS as will be confirmed by the evaluation

presented later in chapters 7 and 8.

5.4 Frequent VULS Mining

An alternative way to reduce the complexity of VULS is to mine only frequent VULS. An

idea taken from the concept of frequent subgraph mining [115, 118, 136] and indirectly

from the concept of frequent item set mining [2, 21]. As noted in Chapter 4 a frequent

VULS is one whose occurrence count exceeds some threshold value σ. Note that the

anti-monotone property utilised in frequent subgraph mining (and frequent item set

mining) where if a subgraph is infrequent none of its super graphs will be frequent does

not apply.

Chapter 5. Algorithms for VULS Mining 88

Figure 5.9: Example graph Gtrain.

Figure 5.10: Example of 2-edge fre-
quent subgraphs extended from the 1-
edge infrequent subgraph 〈 B, red, B 〉

in Figure 5.9.

The fact that the anti-monotone property does not hold is illustrated by example in

Figures 5.9 to 5.10. Figure 5.9 gives an example input graph while Figure 5.10 shows

a 2−edge subgraph extracted from the example graph. If we set threshold σ as 4.

In Figure 5.9, the one edge subgraph 〈 B, red, B 〉 occurrs only once, obviously not

frequent. However, the frequent two edge subgraph (as shown in Figure 5.10), extended

from the infrequent subgraph 〈 B, red, B 〉, occurs 5 times, more than threshold σ.

Thus for the Frequent VULS Mining algorithm both frequent and infrequent subgraphs

will be extended further. The motivation for frequent VULS mining was that it was

anticipated that it would be more computationally efficient than complete VULS mining

while at the same time coverage would still be good because we would be identifying

commonly occurring VULS. Whether frequent VULS mining would be more effective

and/or efficient than minimal VULS mining was initially unclear (this is explored further

in Chapters 7 and 8).

An issue with any form of frequent pattern mining is the nature of the thresh-

old σ. Recall from Chapter 2, that in the case of frequent subgraph mining (trans-

action graph mining) [47, 115, 118, 136, 221] we express σ in terms of a propor-

tion of the number of transaction graphs under consideration (a subgraph is then fre-

quent if it appears in x% of the available set of transaction graphs). In single graph

mining this is not so straight forward, σ can of course be predefined in terms of a

fixed value but this does not take account of the different numbers of graphs that

might be found on each iteration. With respect to the work presented in this the-

sis the value σ is calculated dynamically in terms of the average Occurrence (occur-

rence count) values for the complete set of candidate VULS identified on each iteration

as shown in Equation 5.1 where gi ∈ Gk and Occurrence is a function that returns

the occurrence count of gi. For example, there are 5 4-edge subgraphs g1, g2, g3, g4,

g5 in G4 on the fourth iteration, thus |G4|=5. The occurrence count of each sub-

graph is: Occurrence(g1)=1, Occurrence(g2)=5, Occurrence(g3)=3, Occurrence(g4)=2,

Occurrence(g5)=4. Then, according to equation 5.1, σ on this iteration will be calcu-

lated as σ = (1 + 5 + 3 + 2 + 4)/5 = 3. Note that this mechanism for calculating σ is

one of the author’s own contributions with respect to this thesis.

Chapter 5. Algorithms for VULS Mining 89

σ =

∑i=|Gk|
i=1 Occurrence(gi)

|Gk|
(5.1)

Algorithm 8 freqVULSM algorithm

1: procedure main(Gtrain, max)
2: k = 1
3: Gk =the set of k-edge subgraphs in Gtrain (candidate VULS)
4: U = ∅
5: while (k < max) do
6: U = U ∪ genFVULS(k,Gk)
7: Gk+1= subgraph Mining(Gtrain, k + 1)(Algorithm 6)
8: k = k + 1
9: end while

10: end procedure

11: procedure genFV ULS(k,Gk)
12: /* Calculate σ */
13: Sup = Array of length |GK | to hold occurrence counts
14: total = 0
15: for each g ∈ Gk do
16: Sup[g] = Occurrence count of g in Gtrain
17: total = total + sup[g]
18: end for
19: σ = total

|Gk| (Equation (5.1))

20: /* Identify frequent candidate VULS */
21: G′k = ∅
22: for each edge g ∈ Gk do
23: if Sup[g] ≥ σ then
24: G′k = G′k ∪ g
25: end if
26: end for
27: U ′ = ∅
28: for all c ∈ G′k do
29: if isV ULS(c) then /* Algorithm 5 */
30: U ′ = U ′ ∪ c
31: coverage = compute coverage using Equ (4.1)
32: if coverage == 100% then
33: exit
34: end if
35: end if
36: end for
37: return U ′
38: end procedure

The pseudo code for the freqVULSM algorithm is presented in Algorithm 8. As

before, the algorithm describes an iterative process. On each iteration five steps are

undertaken: (i) calculation of the threshold σ using Equation (5.1), (ii) pruning of the

Chapter 5. Algorithms for VULS Mining 90

set of candidate VULS according to σ, (iii) identification of VULS, (iv) coverage check

and (v) calculation of the follow on set of candidate VULS. During the calculation of

σ (lines 12 to 19) the support for each subgraph g in Gk (the candidate set of VULS)

is calculated. This requires an isomorphism checking procedure (not explicitly shown)

which, given a reasonably sized input graph Gtrain, will be computationally expensive.

Once the support counts for each g in Gk has been calculated, each g in Gk whose

support count is greater than σ is added to G′k (lines 22 to 26) to give a set of candidate

k-edge frequent VULS. Next, using the candidate set G′k, the k sized VULS are identified

in the same manner as before using Algorithm 5. After which a check for coverage is

conducted. If the input graph Gtrain is fully covered by the frequent VULS identified

so far the algorithm exits. Otherwise the next set of candidate (k + 1)-edge VULS are

generated in the same manner as before using Algorithm 6. Then we proceed to the next

iteration and repeat the process until either: (i) the maximum size of VULS is reached

(indicated by the input max), (ii) 100% overage is reached, or (iii) no more frequent

subgraphs (candidate VULS) can be generated.

A Worked example of the process of generating frequent VULS using Algorithm 8,

with max = 3 is given in Figure 5.11. As in the case of the previous examples, the

input to the Worked example is the training graph presented in Figure 5.2. On the first

iteration where K=1 (second row in Figure 5.11), two one-edge candidate VULS were

identified: 〈 0, 1, , green, 〉 and 〈 0, 1, , blue, 〉. For each of these candidates a

vertex label list, S′, was generated according to function F (c) → S′ applied to Gtrain.

Using the set S′, three vertex labelled candidate VULS were identified: 〈 0, 1, A, green,

A 〉, 〈 0, 1, A, green, B 〉 and 〈 0, 1, B, blue, B 〉.
Meanwhile, threshold σ is calculated using Equation 5.1 as 2; 〈 0, 1, , green, 〉 is

not a VULS because it has two potential vertex labelings (〈 0, 1, A, green, A 〉, 〈 0, 1,

A, green, B 〉) and is thus not a frequent VULS. 〈 0, 1, B, blue, B 〉 is a frequent VULS

because it has a unique vertex labelling and the occurrence count of 3 exceeds σ = 2.

As K is increased to 2 (coverage is not 100% and the max value for K has not been

reached), on the second iteration (K=2), three two-edge candidate VULS are generated

from G1 by right most extension. In the same manner as before, for all c ∈ G2 the

vertex label list, S′, was generated according to function F (c) → S′. In this case, the

following set of labelled candidate VULS were identified:

(〈 0, 1, A, green, B 〉, 〈 1, 2, B, blue, B 〉),
(〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, A 〉),
(〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, B 〉), and

(〈 0, 1, B, blue, B 〉, 〈 1, 2, B, blue, B 〉).

σ is calculated as 1.25. (〈 0, 1, A, green, B 〉, 〈 1, 2, B, blue, B 〉) is a VULS but not a

frequent VULS since the occurrence count (1) is less than σ (1.25). (〈 0, 1, B, blue, B

〉, 〈 1, 2, B, blue, B 〉) is a frequent VULS because it has a unique vertex labelling and

the occurrence count (2) exceeds σ (1.25).

Chapter 5. Algorithms for VULS Mining 91

Iteration	 	
Number	 (𝜎)	

Candidate	 VULS	 	 	 Labeled	 candidate	 VULS	 	 	
(Occurrence	 count)	

Frequent	 VULS	 	
Yes/No	 ?	

K=1	
	
(𝜎 =
!!!!!

!
=2)	

	 	 1	
Not	 VULS	

2	

	 3	
Frequent	 	 	 VULS	

K=2	
	
(𝜎 =
!!!!!!!

!
=1.25)	

Candidate	 VULS	 	 	 Labeled	 candidate	 VULS	
(Occurrence	 count)	

Frequent	 VULS	 	
Yes/No	 ?	

	 1	
VULS	 	 but	 not	
frequent	 VULS	

	 1	

Not	 VULS	

1	

	 2	
Frequent	 VULS	

K=3	
(𝜎 =
!!!!!!!!!

!
=1)	

Candidate	 VULS	 	 	 Labeled	 candidate	 VULS	
(Occurrence	 count)	

Frequent	 VULS	 	
Yes/No	 ?	

	 1	

Frequent	 VULS	

	 1	

Not	 VULS	

1	

	 1	

Frequent	 	 VULS	

	 1	

Frequent	 	 VULS	

	
Figure 5.11: Worked example of frequent VULS mining where max = 3

Chapter 5. Algorithms for VULS Mining 92

We then move on to K=3 (coverage is not yet 100% and the max value has not been

reached.) In this case, a set of four three-edge candidate VULS G3 is generated from

G2 by right most extension. Vertex labels were again generated as before to give:

(〈 0, 1, A, green, B 〉, 〈 1, 2, B, blue, B 〉, 〈 2, 3, B, blue, B 〉),
(〈 0, 1, A, green, B 〉, 〈 1, 2, B, blue, B 〉, 〈 0, 3, A, green, B 〉),
(〈 0, 1, A, green, B 〉, 〈 1, 2, B, blue, B 〉, 〈 0, 3, A, green, A 〉),
(〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, A 〉, 〈 0, 3, A, green, B 〉), and

(〈 0, 1, B, blue, B 〉, 〈 1, 2, B, blue, B 〉, 〈 2, 3, B, blue, B 〉).

σ is calculated as 1. Thus:

(〈 0, 1, A, green, B 〉, 〈 1, 2, B, blue, B 〉, 〈 2, 3, B, blue, B 〉),
(〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, A 〉, 〈 0, 3, A, green, B 〉), and

(〈 0, 1, B, blue, B 〉, 〈 1, 2, B, blue, B 〉, 〈 2, 3, B, blue, B 〉)

are frequent VULS because they have unique vertex labellings and their occurrence

count of 1 is greater than or equal to σ = 1. K has now reached the maximum value of

max = 3, thus the algorithm stops. All frequent VULS of size less than or equal to 3

have been identified.

Unlike when mining minimal VULS, the number of candidate VULS generated is not

reduced when mining frequent VULS. However, fewer frequent VULS are identified than

mining for the complete set of VULS. This will be confirmed in the next two Chapters

7 and 8, where some experimental results will be presented.

5.5 Minimal Frequent VULS Mining

The idea behind the concept of minimal frequent VULS mining is that the time complex-

ity advantages of both minimal and frequent VULS mining can be combined. However,

it was anticipated that fewer VULS would be discovered than when finding only minimal

or only frequent VULS, and thus coverage might be adversely affected (this is explored

further in Chapter 7 and 8). As in the case of the minVULSM algorithm we can pro-

ceed in a breadth first manner and exclude subgraphs who have a parent graph that is

a minimal VULS.

The pseudo code for the minFreqVULSM algorithm is presented in Algorithm 9. The

algorithm is almost identical to Algorithm 8 except that, on each iteration, we store the

identified non-minimal VULS in a set Tk (line 39) and then use this set to generate the

following set of k + 1 edge subgraphs Gk+1 (line 9).

Chapter 5. Algorithms for VULS Mining 93

Algorithm 9 minFreqVULSM algorithm

1: procedure main(Gtrain, max)
2: k = 1
3: G = Gtrain(Part of input graph not covered by minimal VULS)
4: Gk =the set of k-edge subgraphs in G (candidate VULS)
5: Tk = ∅(the set of k-edge subgraphs which are not VULS)
6: U = ∅
7: while (k < max) do
8: U = U ∪ genFminVULS(k,Gk)
9: Gk+1= subgraph Mining(G, k + 1)(Algorithm 6 where e ∈ Tk)

10: k = k + 1
11: end while
12: end procedure

13: procedure genFminV ULS(k,Gk)
14: /* Calculate σ */
15: Sup = Array of length |GK | to hold occurrence counts
16: total = 0
17: for each g ∈ Gk do
18: Sup[g] = Occurrence count of g in G
19: total = total + sup[g]
20: end for
21: σ = total

|Gk| (Equation 5.1)

22: /* Identify frequent candidate VULS */
23: G′k = ∅
24: for each edge g ∈ Gk do
25: if Sup[g] ≥ σ then
26: G′k = G′k ∪ g
27: end if
28: end for
29: U ′ = ∅
30: for all c ∈ G′k do
31: if isVULS(c) then /* Algorithm 5 */
32: U ′ = U ′ ∪ c
33: coverage = compute coverage using Equ (4.1)
34: if coverage == 100% then
35: exit
36: end if
37: G = G− c
38: else
39: Tk = Tk ∪ c
40: end if
41: end for
42: if Tk == ∅ then
43: exit
44: end if
45: return U ′
46: end procedure

Chapter 5. Algorithms for VULS Mining 94

Iteration	 	
Number	 (𝜎)	

Candidate	 VULS	 	 Labeled	 candidate	 VULS	
(Occurrence	 count)	

Minimal	 frequent	
VULS	 	
Yes/No	 ?	

K=1	
	
(𝜎 =
!!!!!

!
=2)	

	 	 2	
Not	 VULS	

1	

	 3	
Minimal	 frequent	
VULS	

K=2	
	
(𝜎 = !!!

!
=1)	

Candidate	 VULS	 	
	

Labeled	 candidate	 VULS	
(Occurrence	 count)	

Minimal	 frequent	
VULS	 	
Yes/No	 ?	

	 1	

Not	 VULS	

1	
K=3	
(𝜎 = !

!
=1)	

Candidate	 VULS	
	

Labeled	 candidate	 VULS	
(Occurrence	 count)	

Minimal	 frequent	
VULS	 	
Yes/No	 ?	

	 1	

Minimal	 frequent	
VULS	

	
Figure 5.12: Worked example of minimal frequent VULSM mining where max = 3

A Worked example of the process of generating all minimal frequent VULS using

Algorithm 9, with max = 3, is given in Figure 5.12. The input to the Worked example

is again the training graph presented in Figure 5.2. On the first iteration where K=1

(second row in Figure 5.12), two one-edge candidate VULS were identified: 〈 0, 1, ,

green, 〉 and 〈 0, 1, , blue, 〉, For each of these candidates a vertex label list, S′,

was generated using the function F (c) → S′. Using the set S′ three vertex labelled

candidate VULS were identified: 〈 0, 1, A, green, A 〉, 〈 0, 1, A, green, B 〉 and 〈 0,

1, B, blue, B 〉. Meanwhile, threshold σ is calculated using equation 5.1 as 2. 〈 0, 1,

B, blue, B 〉 is a minimal frequent VULS because it has a unique vertex labelling, it

does not contain any subgraphs that are themselves VULS and its occurrence count of 3

exceeds the threshold σ = 2. Then the minimal frequent VULS 〈0, 1, B, blue, B〉 will be

removed from G (G = Gtrain) so that it won’t be extended further. As K is increased to

2 (coverage is not 100% and the max value for K has not been reached), on the second

iteration (K=2), one two-edge candidate VULS is generated from the set of non-VULS,

G1, by right most extension. In the same manner as before, for all c ∈ G2 the vertex

label list, S′, was generated using the function F (c) → S′. In this case, the following

Chapter 5. Algorithms for VULS Mining 95

set of labelled candidate VULS were identified: (〈 0, 1, A, green, B 〉, 〈 0, 2, A, green,

A 〉), and (〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, B 〉).
The threshold σ is calculated as 1. (〈 0, 1, , green, 〉, 〈 0, 2, , green, 〉) is not

a VULS because it has the same structure but two potential vertex labelings:

(〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, A 〉), and

(〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, B 〉).

and thus it can’t be minimal frequent VULS. We then move on to K=3 (coverage is not

yet 100% and the max value has not been reached.) In this case, one three-edge candidate

VULS (G3) is generated from the set of non-VULS, G2, by right most extension. Vertex

label lists were again generated as before to giving:

(〈 0, 1, A, green, B 〉, 〈 0, 2, A, green, A 〉, 〈 0, 3, A, green, B 〉).

This is a minimal frequent VULS since it does not contain any subgraphs that are

themselves VULS and the occurrence count of 1 is greater than or equal to σ = 1. K

has reached the specified maximum value of max = 3, and thus the algorithm stops. All

minimal frequent VULS of size less than or equal to 3 have been identified.

It should be noted that the value for σ is not necessarily the same when mining

frequent VULS and minimal frequent VULS, although it is computed using the same

equation, as the calculation depends on the occurrence count distribution of the gener-

ated candidate subgraphs on each iteration, hence slightly different sets of VULS may

be generated and consequently slightly different coverage results obtained with respect

to frequent VULS and minimal frequent VULS as will be demonstrated later in Chapter

7.

As in the case of mining minimal VULS, fewer VULS candidates will be generated

when mining minimal frequent VULS than when mining the complete set of VULS.

Thus mining minimal frequent VULS is likely to be more efficient than when mining the

complete set of VULS as will be confirmed by the evaluation presented in Chapters 7

and 8.

5.6 Summary

This chapter has described the theory and operation of four different algorithms for

finding the four different identified categories of VULS. The algorithms were as follows:

1. compVULSM for finding the complete set of VULS.

2. minVULSM for finding minimal VULS.

3. freqVULSM for finding frequent VULS.

4. minFreqVULSM for finding minimal frequent VULS.

In the next chapter, the Backward-Match-Voting algorithm for vertex classification will

be presented and illustrated using a work example.

Chapter 6

Algorithm for Vertex

Classification

6.1 Introduction

In the previous chapter the generation (mining) of VULS was considered. In this short

chapter their utility (in the context of vertex classification) is considered. This chap-

ter presents the Backward-Match-Voting algorithm for vertex classification using pre-

labelled subgraphs such as the VULS identified using the VULS mining algorithms pre-

sented in the previous chapter. A schematic of the vertex classification process is given

in Figure 6.1. Similar to the VULS training process presented in the previous chapter,

with respect to Figure 6.1, it is again assumed that the new 3D surface data is not in

the appropriate graph format (as in the case of the sheet metal forming and satellite

image applications) and thus requires translation. Once in the correct grid graph format

pre-labelled subgraphs, such as VULS, can be applied to this new graph data so that

the labels of the vertices in the new graph can be predicted (labelled).

Figure 6.1: Schematic for predicting vertex labels given a new 3D surface data set.

Using the presented Backward-Match-Voting (BMV) algorithm labels will be at-

tached to as many vertices in the new graph as possible. In the case of vertices that

97

Chapter 6. Algorithm for Vertex Classification 98

are still unlabelled, a default label can be applied or alternatively the most frequently

occurring label that features in the pre-labelled subgraphs used for training purposes

can be used. The BMV algorithm is intended for application using collections of iden-

tified VULS, but this does not have to be the case, it can be used with respect to other

subgraph collections.

The rest of this chapter is organized as follows. The BMV algorithm for vertex label

classification (prediction) is presented in Section 6.2. A Working Example illustrating

how the BMV algorithm operates is presented in Section 6.3. Section 6.4 then concludes

the chapter with a brief summary.

6.2 Backward-Match-Voting algorithm

As noted in the above introduction, the idea is to use pre-labelled subgraphs, such as sets

of identified VULS, to label the vertices in an unseen graph G by matching the individual

pre-labelled subgraphs with subgraphs in G. A general issue with this approach is that

vertices in G may be matched to more than one vertex in the given set of pre-labelled

subgraphs, possibly with different vertex labels. In this case the conflicting labelling

needs to be resolved. We can identify a potential number of mechanisms for doing

this, but propose a voting mechanism here. A variety of voting mechanisms also exist,

including: (i) majority voting and (ii) weighted voting. We adopted the first as the

most appropriate weighting mechanisms to use was difficult to determine. We refer to

the proposed vertex classification approach as the Backward-Match-Voting mechanism

because: (i) we work “backwards” from the maximum value of k = max to k = 1

(because this is more efficient as potentially a larger number of vertices in G will be

covered increasing the likelihood of reaching 100% coverage early on in the process), (ii)

we “match” graph structures and edge labellings of pre-labelled subgraphs to G so as to

label the vertices in G using the labels from pre-labelled subgraphs, and (iii) where more

than one vertex label is assigned to a vertex in G we use a majority “voting” scheme.

The Backward-Match-Voting algorithm is presented in Algorithm 10. The algorithm

takes as input a collected set U of pre-labelled subgraphs (such as a set of VULS gen-

erated as described in the previous chapter) and a new graph G which has known edge

labels but unknown vertex labels. The algorithm also utilises the parameter max as the

maximum size of the pre-labelled subgraphs in U so that the algorithm does not try to

find matches beyond this maximum size. In the case of using a set of VULS as the pre-

labelled subgraphs, max is set the same value as used by the VULS mining algorithm

used to generate the VULS. The output is a vertex labelled graph G. The algorithm

starts with pre-labelled subgraphs of size max and iteratively proceeds with pre-labelled

subgraphs of decreasing size until one edge pre-labelled subgraphs are reached or 100%

coverage of the vertices in G is obtained, whichever happens first. At the beginning

of the algorithm, a set of vertex labels LV is initialized (line 11) to hold vertex labels

Chapter 6. Algorithm for Vertex Classification 99

Algorithm 10 : Backward-Match-Voting algorithm to predict vertex labels in a vertex-
unlabelled graph

1: Input:
2: U = a set of pre-labelled subgraphs (such as VULS)
3: G = 〈V,E, LE〉, Edge labelled graph (with unlabelled vertices),
4: max = The maximum size of an element of U
5: L = default vertex label
6: Output:
7: Graph G with labelled vertices

8: procedure main(G , max, U , L)
9: coverage=0

10: k = max
11: LV = φ
12: while (k ≥ 1) do
13: G′ = the set of all subgraphs in G.
14: for all c ∈ U where |c| ≡ k do
15: for each g ⊆ G′ isomorphic to c do
16: add (v, lv) to LV , for each v in g with lv equal to the label of v in c
17: end for
18: end for
19: coverage = compute the coverage of G using Equation 4.1
20: if coverage ≡ 100% then
21: exit
22: end if
23: k = k − 1
24: end while
25: for all v in G do
26: if v occurs in LV then
27: set the label of v in G to the most frequent label of v in LV
28: end if
29: end for
30: Set the label of any remaining unlabelled vertex in G to L
31: end procedure

extracted from relevant pre-labelled subgraphs in U . Note that each element of LV cor-

responds to a vertex in G that does not yet have a label associated with it (so all vertices

in G on start up). We then, on each iteration, process each pre-labelled subgraph c of

size k; if a k-edge subgraph g within the input graph G is isomorphic to c, each vertex

in g will be labelled according to vertex labelling in c. In this manner, part of LV will

be populated on each iteration. Once all k-edge subgraphs in U have been processed the

coverage is calculated (line 19), if coverage is equivalent to 100% the process stops (line

21), otherwise we continue with the (k − 1)-edge subgraphs. Once all items in U have

been processed, we then process each vertex v in graph G. If a vertex v has more than

one label associated with it, the voting mechanism is invoked and the most popular label

assigned to the corresponding vertex v in G. It may be the case that some elements in

Chapter 6. Algorithm for Vertex Classification 100

LV are still set to null indicating that the corresponding vertex has not been covered

by any pre-labelled subgraph. In this case a default label is assigned. In case of the

evaluation presented later in this thesis, the most frequent vertex label from the training

data is used as the default label (lines 30).

Note that Backward-Match-Voting algorithm start with the largest pre-labelled sub-

graphs (pre-labelled subgraphs of size max) moving down to pre-labelled subgraphs of

size 1. The reason for doing this, is that larger pre-labelled subgraphs are better at

predicting vertex labels than smaller pre-labelled subgraphs because larger pre-labelled

subgraphs define a more specific structure than smaller pre-labelled subgraphs. In other

words it is easier to match small pre-labelled subgraphs to subgraphs in G, often result-

ing in an incorrect vertex labelling, than it is to match larger pre-labelled subgraphs.

Hence the “backwards” in the Backward-Match-Voting algorithm. The above is illus-

trated by the example given in Figures 6.2 to 6.5. Figure 6.2 shows an unlabelled graph

that features LE ={black, green, red}. Figures 6.3 to 6.5 show a set of labelled one-edge

subgraphs and a labelled four-edge subgraph. The one-edge and four-edge pre-labelled

subgraphs is shown in Figure 6.3 and 6.5 respectively. The set {V 1, V 2, . . . , V 9} in

Figure 6.4 indicates the identifiers for the vertices in Figure 6.2. Using the largest four-

edge pre-labelled subgraph (Figure 6.5) the vertex labelling for the new graph will be:

LV 1 = {A}, LV 2 = {C}, LV 4 = {D}, LV 6 = {D}, LV 8 = {B}. While using the one-

edge VULS (Figure 6.3) the vertex labelling will be: LV 1 = {A,B,C,D}, LV 2 = {A,C},
LV 4 = {A,D}, LV 6 = {A,D}, LV 8 = {A,B}. This example clearly indicates that the

vertex’s labelling becomes more complicated when using (small) one-edge VULS than

when using (large) four-edge VULS.

Figure 6.2: Input graph G.

Figure 6.3: One-edge pre-
labelled subgraphs.

6.3 A Working Example Using the Backward-Match-Voting

Algorithm

This section presents a working example using a directed graph, to illustrate the opera-

tion of the BMV algorithm with max=4.

Chapter 6. Algorithm for Vertex Classification 101

Figure 6.4: Graph without vertex la-
bels.

Figure 6.5: Four-edge pre-
labelled subgraph.

Figure 6.6: Input graph G = 〈V,E,LE〉, with unlabelled vertices, {V 1, V 2, . . . , V 9}
are vertex identifiers.

Figure 6.7: Four pre-labelled subgraphs.

Chapter 6. Algorithm for Vertex Classification 102

Figure 6.8: Worked example of vertex classification using the pre-labelled subgraphs
given in Figure 6.7 and the vertex-unlabelled graph given in Figure 6.6.

Figure 6.9: Output graph G = 〈V,E, LE , LV 〉 with predicted vertex label.

The input graph G for the example is presented in Figure 6.6. The input set

of pre-labelled subgraphs is given in Figure 6.7. Figure 6.8 is organised in a tabu-

lar format with the rows representing k−edge pre-labelled subgraph iterations and the

columns representing: (i) the relevant k−edge pre-labelled subgraphs, (ii) the vertices

in G covered by the k−edge pre-labelled subgraphs, and (iii) vertex label allocation for

G. On the first iteration where K=4 (second row in Figure 6.8), the four-edge pre-

labelled subgraph is matched to input graph G and vertices V5, V6, V8 and V9 are

labelled (covered): LV 5 = {A,D,A,D}, LV 6 = {D,A,D,A}, LV 8 = {D,A,D,A}, and

LV 9 = {A,D,A,D}. Coverage is now 44.44%. On the second iteration (K=3), the two

Chapter 6. Algorithm for Vertex Classification 103

three-edge pre-labelled subgraphs are matched to the input graph G, vertices V1, V2,

V3, V4, V5, V6, V7 are labelled: LV 1 = {A,A}, LV 2 = {C}, LV 3 = {C}, LV 4 = {B,B},
LV 5 = {A,D,A,D,A,A,C}, LV 6 = {D,A,D,A,D,D}, and LV 7 = {A}. Note that LV 8

and LV 9 were covered on the previous iteration so are not considered here. The coverage

has now reached 100%, thus the process stops and the one edge pre-labelled subgraph

〈B, red,B〉 will not be considered. At the end of this stage, where a vertex is labelled

with more than one label, the majority voting mechanism is applied. Note that given

an “equal votes situation”, a “first come first serve” strategy is used. For example, if

LV 8 = {D,A,D,A}, (equal votes for A and D), V8 will be assigned the label D because

it appeared first. The final output graph G, with vertex labelings, is illustrated in Figure

6.9.

6.4 Summary

This chapter has described the theory and operation of the BMV prediction algorithm

for vertex classification using pre-labelled subgraphs. The algorithm was presented in

detail and its operation is illustrated using an example. The experimental analysis and

evaluation of all the algorithms proposed in this and the previous chapter, using the

data sets introduced in Chapter 3 from the application domains of sheet metal forming

(more specifically AISF) and satellite image interpretation, is presented in the following

two chapters respectively.

Chapter 7

Experimental Results Using The

Sheet Metal Forming Application

7.1 Introduction

Chapter 5 presented a sequence of algorithms for mining four different categories of

VULS: (i) complete, (ii) minimal, (iii) frequent and (iv) minimal frequent. The previous

Chapter 6 presented the Backward-Match-Voting algorithm for applying the identified

VULS in the context of vertex classification. This chapter presents an evaluation of these

algorithms in the context of the sheet metal forming application introduced previously in

Chapter 3 (evaluation using the satellite image interpretation application is considered

in the following chapter). The principal objectives of the evaluation were as follows:

1. To compare the operation of the proposed VULS mining algorithms, using a range

of max values, in terms of coverage, number of identified VULS and runtime.

2. To investigate the effect of using different values for the grid size d.

3. To investigate the effect of using different values for |LE |.

4. To compare the distinction between the usage of grid graphs and cross grid graphs,

and the usage of directed and undirected graphs.

5. To investigate the effect of using different values for |LV |.

6. To compare the effectiveness of the identified VULS, with respect to vertex classi-

fication, and with respect to more standard approaches (J48 and Naive Bayes).

7. To investigate whether there is a statistically significant difference between the

results obtained.

Each of these objectives is considered in a separate section below (Sections 7.2 to 7.8).

A summary and some conclusions are presented in Section 7.9. All the proposed VULS

algorithms were implemented using the JAVA programming language. All the reported

105

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 106

experiments were conducted using a 2.7 GHz Intel Core i5 with 4 GB 1333 MHz DDR3

memory, running OS X 10.8.1 (12B19).

The strategy adopted for reporting the outcomes with respect to the first six of the

above objectives, given the large number of possible parameter combinations, was to only

vary the parameter(s) of interest with respect to each individual objective, while fixing

the remaining parameters. For ease of understanding Table 7.1 gives an overview of this

strategy. In the table the columns reference the first six of the above listed objectives

while the rows reference the different parameters to be considered. An “F” in a table

cell indicates that a fixed value was used for the indicated parameter with respect to the

indicated evaluation objective. Where a range of values is given in a table cell this is

the range of parameter values reported on with respect to the experiments directed at

the indicated objective. Recall that the max parameter is used to limit the size of the

VULS to be mined, while the remaining parameters are used to define the grid graphs

to be used. It should be noted that |LV | and d (grid size) will typically be application

dependent and thus user specified. All experiments reported on in this chapter used

d = 28 (cm) since as demonstrated in Section 7.3 this tends to produce the best results.

Further experiments were conducted using d = 23 (cm) with similar outcomes to those

reported in this chapter; for completeness, the results from these additional experiments

are reported in Appendix C. Note from the Table that for objective 6 (comparison of

VULS classification effectiveness) only fixed parameter settings were used.

Table 7.1: Evaluation Strategy Summary

Parameter
Objective

1 2 3 4 5 6

max {4, 5, 6} F F F F F

d F {18, 23, 28} F F F F

|LE | F F {2, 4, 6, 8} F F F

Degree F F F {4, 8} F F

Directed? F F F {Y,N} F F

|LV | F F F F {2, 3} F

With respect to the last of the above objectives (object 7) the Friedman statistical

test was applied to evaluate the performance of the classifiers to determine whether the

results produced were truly significant or not with respect to the AUC measure. On

completion of the Friedman test, where appropriate Nemenyi test was used to identify

the “critical distances” between the techniques so as to identify where the differences

actually occurred. Recall that both the Friedman and the Nemenyi test were described

in Chapter 2.

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 107

7.2 Comparison of VULS Mining Algorithms Using a Range

of max Values (Objective 1)

This section provides a comparative evaluation of the four different VULS mining al-

gorithms presented in this thesis with respect to a range of max parameter values. As

indicated in Table 7.1 the remaining parameters were kept constant at |LV | = 2, |LE | = 8

and Degree = 4. All the graphs considered featured directed edges.

The results are presented in Tables 7.2 to 7.4 corresponding to max parameter set-

tings of 4, 5 and 6 respectively. In each table the VULS mining algorithms are listed

along the top (CompVULS, Mimimum VULS, Frequent VULS and Minimal frequent

VULS). The data sets (graphs) considered are represented by the rows. Note that, be-

cause the raw AISF data sets available were paired, the evaluation was conducted by

training on one data set and testing on the other. For example in the case of the Gon-

zalo Steel AISF data, the classifier was trained using GS1 and tested using GS2. The

different data sets are indicated using the following notation: GS (Gonzalo Steel), GT

(Gonzalo Titanium), MS (Modified Steel) and MT (Modified Titanium) (see chapter 3).

For each algorithm coverage, number of identified VULS and run time are presented.

Each table also records the average coverage, number of VULS and run time for each

algorithm and the associate SD. Note that Standard Deviation (SD) is a measure of how

much variation exists from the average. A low standard deviation indicates that the

data points tend to be very close to the mean. A high standard deviation indicates that

the data points are spread out over a large range of values. The colour coding used in

the tables is simply for ease of comparison.

Table 7.2: Comparison of VULS Mining Algorithms Using max = 4 (Objective 1).

Graph
Comp.VULS Min. VULS Freq. VULS Min. freq. VULS

Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time

GS 100.00 122.00 0.36 100.00 9.00 0.17 100.00 121.00 0.22 100.00 6.00 0.17

GT 100.00 127.00 0.23 100.00 20.00 0.15 100.00 111.00 0.24 100.00 7.00 0.17

MS 100.00 86.00 0.32 100.00 20.00 0.20 97.22 169.00 0.31 88.89 24.00 0.28

MT 97.22 257.00 0.36 91.67 16.00 0.19 97.22 185.00 0.36 86.11 8.00 0.20

Average 99.31 0.32 97.92 0.18 98.61 0.28 93.75 0.21

Table 7.3: Comparison of VULS Mining Algorithms Using max = 5 (Objective 1).

Graph
Comp.VULS Min. VULS Freq. VULS Min. freq. VULS

Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time

GS 100.00 122.00 0.19 100.00 9.00 0.17 100.00 121.00 0.21 100.00 6.00 0.16

GT 100.00 127.00 0.19 100.00 20.00 0.15 100.00 111.00 0.24 100.00 7.00 0.16

MS 100.00 86.00 0.16 100.00 20.00 0.18 97.22 471.00 0.60 94.44 35.00 0.38

MT 97.22 700.00 0.75 91.67 16.00 0.25 97.22 465.00 0.59 86.11 8.00 0.28

Average 99.31 0.32 97.92 0.19 98.61 0.41 95.14 0.25

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 108

Table 7.4: Comparison of VULS Mining Algorithms Using max = 6 (Objective 1).

Graph
Comp.VULS Min. VULS Freq. VULS Min. freq. VULS

Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time

GS 100.00 122.00 0.21 100.00 9.00 0.20 100.00 121.00 0.23 100.00 6.00 0.21

GT 100.00 127.00 0.20 100.00 20.00 0.17 100.00 111.00 0.22 100.00 7.00 0.17

MS 100.00 86.00 0.18 100.00 20.00 0.23 97.22 1245.00 0.98 94.44 44.00 0.78

MT 97.22 1814.00 1.49 91.67 16.00 0.21 97.22 1162.00 0.85 86.11 8.00 0.35

Average 99.31 0.52 97.92 0.20 98.61 0.57 95.14 0.38

From Tables 7.2 to 7.4 the following can be noted with respect to coverage, number

of VULS identified and run time:

• Coverage.

1. When finding Complete VULS, minimal VULS, frequent VULS and minimal

frequent VULS, 100% coverage can be obtained in some cases regardless of

the max value used.

2. When finding minimal VULS 100% coverage was obtained in three out of

the four graphs considered. Where 100% coverage was not obtained this was

always with respect to the MT graph. In the same manner, When finding

frequent VULS and minimal frequent VULS respectively, 100% coverage was

obtained in two out of the four graphs considered.

3. On average, when finding minimal VULS, coverage was always worse than

when finding frequent VULS.

4. The worst recorded coverage values were obtained when finding minimal fre-

quent VULS.

5. The relationship between the different VULS algorithms in terms of coverage

fits with the more general relationship between the four different categories

of VULS illustrated previously in Figure 2.2 of chapter 4.

6. As the max parameter increased from 4 to 6 we can anticipate that more

VULS will be identified and hence coverage will also increase. This trend

becomes more apparent when d = 23 (cm) is used as shown in Appendix C.

In the case of d = 28 (cm) as used with respect to the experiments presented

in this chapter, this trend is not so apparent because if the coverage when

max = 4 is 100% this cannot be improved upon. In most graphs, 100% has

already been reached when max = 4. In the case of the Complete VULS,

minimal VULS or frequent VULS results, when max = 5 and max = 6, the

recorded coverage values were the same; this was because no additional VULS

which cover new vertices could be found by increasing max = 5 to max = 6.

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 109

• Number of VULS.

1. As anticipated many more VULS are discovered when mining for Complete

VULS than when mining for any of the other forms of VULS considered

(minimal, frequent, minimal frequent). The total number of VULS that exist

in a given graph will be greater than the number of minimal VULS that can

be found in the same graph. Similarly the total number of VULS will be

greater than the number of frequent VULS that can be found in the same

graph. Of course the number of minimal frequent VULS that can be found

will be less than the number of frequent VULS that can be found.

2. Generally speaking, with respect to the average number of VULS discovered

in each case, we can expect: (i) VULS > minimal VULS > minimal frequent

VULS; and (ii) VULS > frequent VULS > minimal frequent VULS. However,

from the tables we can see that the number of frequent VULS identified

is sometimes greater than the number identified using the Complete VULS

algorithm, this is because the Complete VULS algorithm stops mining further

VULS when the coverage reaches 100%.

3. Not withstanding point 2 above, the recorded results again confirm the rela-

tionship between the four different categories of VULS illustrated previously

in Figure 2.2 of Chapter 4.

4. With respect to the max parameter, as this was increased from 4 to 6, the

number of identified VULS was expected to also increases. This is confirmed

by the results recorded in the table (except where 100% coverage was reached

using a lower value of max as noted in point 2 above).

• Run time.

1. As the max parameter was increased from 4 to 6, the required run time for

identifying VULS (with respect to all four categories) also increased (as was

to be expected).

2. The frequent VULS mining algorithm required more run time than the Com-

plete VULS and Minimal VULS algorithms because of the additional candi-

date graph counting (isomorphism testing) that had to be conducted.

From the above, the number of minimal VULS (or frequent VULS) is low (in com-

parison with the total number of VULS), however coverage is still good. Furthermore,

it is interesting to note that good coverage is still obtained using small numbers of min-

imal VULS or frequent VULS. For example, with respect to the GS directed graphs,

the coverage when mining either Complete VULS, minimal VULS, frequent VULS or

minimal frequent VULS is always 100% regardless of the max value used. However,

when using Complete VULS mining we identify 122 VULS, while when using minimal

VULS mining we identify only 9; similarly when using frequent VULS mining we identify

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 110

121 VULS while when using minimal frequent we identify only 6. For ease of consistent

consideration and analysis of the effects of varying the remaining parameters max = 4

was used with respect to the following reported evaluations, because in most cases 100%

coverage had already been reached when using max = 4 and when this was not the case

coverage did not increase dramatically as max increased from 4 to 6.

7.3 Effect of Grid Size d on Classification Effectiveness

(Objective 2)

The parameter considered with respect to the evaluation presented in this section is the

grid size d. In this section we consider the effect on classification when d = {18, 23, 28}
respectively. For the experiments |LV | = 2, |LE | = 8 and max = 4 were again used.

Only directed grid graphs were considered. The results are presented in Table 7.5.

Table 7.5: Classification Effectiveness with Respect to d (Objective 2).

d Graph
Comp.VULS Min. VULS Freq. VULS Min.freq VULS

Acc. AUC Acc. AUC Acc. AUC Acc. AUC

18

GS 0.65 0.64 0.48 0.47 0.77 0.77 0.50 0.49

GT 0.68 0.53 0.80 0.71 0.67 0.51 0.79 0.69

MS 0.74 0.76 0.57 0.60 0.77 0.79 0.70 0.72

MT 0.78 0.53 0.80 0.50 0.77 0.52 0.80 0.50

Average 0.71 0.62 0.66 0.57 0.75 0.65 0.70 0.60

SD 0.06 0.11 0.16 0.11 0.05 0.15 0.14 0.12

23

GS 0.75 0.77 0.59 0.63 0.75 0.77 0.59 0.63

GT 0.72 0.53 0.77 0.62 0.72 0.53 0.77 0.62

MS 0.81 0.83 0.58 0.63 0.78 0.81 0.56 0.61

MT 0.88 0.55 0.88 0.55 0.88 0.55 0.88 0.55

Average 0.79 0.67 0.71 0.61 0.78 0.67 0.70 0.60

SD 0.07 0.15 0.15 0.04 0.07 0.15 0.15 0.04

28

GS 0.89 0.88 0.58 0.56 0.89 0.88 0.61 0.59

GT 0.69 0.77 0.53 0.65 0.69 0.77 0.44 0.58

MS 0.94 0.94 0.72 0.71 0.97 0.97 0.94 0.94

MT 0.86 0.67 0.89 0.68 0.86 0.67 0.89 0.60

Average 0.85 0.82 0.68 0.65 0.85 0.82 0.72 0.68

SD 0.11 0.12 0.16 0.06 0.12 0.13 0.24 0.18

From Table 7.5, it can be seen that classification effectiveness tends to increase as

the grid size d increases from 18 to 28. As noted above the value for d is application

domain dependent. In the context of sheet metal forming, if the grid size d is small,

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 111

Table 7.6: Classification Effectiveness with Respect to |LE | (objective 3).

|LE | Graph
Comp.VULS Min. VULS Freq. VULS Min.freq VULS J48 Naive Bayes
Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

2

GS 0.44 0.46 0.53 0.55 0.44 0.46 0.53 0.55 0.47 0.50 0.56 0.71
GT 0.67 0.50 0.64 0.56 0.67 0.50 0.67 0.58 0.67 0.50 0.67 0.75
MS 0.53 0.55 0.89 0.88 0.86 0.87 0.92 0.91 0.83 0.72 0.83 0.77
MT 0.86 0.50 0.86 0.50 0.86 0.50 0.86 0.50 0.86 0.50 0.86 0.80

Average 0.63 0.50 0.73 0.62 0.71 0.58 0.75 0.64 0.71 0.56 0.73 0.76

SD 0.18 0.04 0.17 0.17 0.20 0.19 0.18 0.19 0.18 0.11 0.14 0.04

4

GS 0.58 0.60 0.50 0.52 0.58 0.60 0.50 0.52 0.47 0.50 0.83 0.79
GT 0.69 0.56 0.67 0.50 0.72 0.58 0.67 0.50 0.67 0.50 0.69 0.82
MS 0.92 0.91 0.83 0.82 0.97 0.97 0.97 0.97 0.94 0.91 0.94 0.98
MT 0.86 0.67 0.89 0.68 0.86 0.67 0.92 0.70 0.86 0.50 0.89 0.95

Average 0.76 0.69 0.72 0.63 0.78 0.71 0.77 0.67 0.74 0.60 0.84 0.89

SD 0.16 0.16 0.18 0.15 0.17 0.18 0.22 0.22 0.21 0.21 0.11 0.09

6

GS 0.75 0.76 0.42 0.44 0.75 0.76 0.42 0.44 0.47 0.50 0.75 0.83
GT 0.69 0.54 0.69 0.54 0.69 0.54 0.69 0.54 0.67 0.50 0.67 0.79
MS 0.94 0.94 0.89 0.88 0.94 0.94 0.94 0.94 0.94 0.91 0.89 0.98
MT 0.86 0.67 0.89 0.68 0.86 0.67 0.89 0.60 0.86 0.50 0.86 0.88

Average 0.81 0.73 0.72 0.64 0.81 0.73 0.74 0.63 0.74 0.60 0.79 0.87

SD 0.11 0.17 0.22 0.19 0.11 0.17 0.24 0.22 0.21 0.21 0.10 0.08

8

GS 0.89 0.88 0.58 0.56 0.89 0.88 0.61 0.59 0.47 0.50 0.75 0.88
GT 0.69 0.77 0.53 0.65 0.69 0.77 0.44 0.58 0.67 0.50 0.72 0.87
MS 0.94 0.94 0.72 0.71 0.97 0.97 0.94 0.94 0.83 0.77 0.89 0.99
MT 0.86 0.67 0.89 0.68 0.86 0.67 0.89 0.60 0.86 0.50 0.86 0.90

Average 0.85 0.82 0.68 0.65 0.85 0.82 0.72 0.68 0.71 0.57 0.81 0.91

SD 0.11 0.12 0.16 0.06 0.12 0.13 0.24 0.18 0.18 0.14 0.08 0.05

such as 18 (mm), the grid graphs tend to be flat which in turn means that the geometry

can not be effectively captured, thus the performance tends to deteriorate. Moreover, if

the grid size d is too small, it might lead to overfitting.

7.4 Effect of |LE| on Classification Effectiveness (Objective

3)

Although the size of the edge label set LE will in many case be dictated by the nature of

the application domain the effect that the size of LE has on classification effectiveness,

in terms of accuracy and AUC, is considered in this section. The discussion is founded

on a sequence of experiments conducted using a range of values for |LE | from 2 to 8

increasing in steps of 2. Note that the VULS classification was again conducted using

the raw data set pairings whereby one raw data set could be used for training while the

other could be used for testing. For the experiments max = 4 and |LV | = 2 were used.

All the graphs considered were grid graphs (Degree=4) and featured directed edges. The

results are presented in the table 7.6. The table is organised in a similar manner to the

previous results tables presented in this chapter.

From Table 7.6 it can be seen that average accuracy and AUC tends to increase as

|LE | is increased from 2 to 8 regardless of the form of VULS mining adopted (Complete

set of VULS, Minimal VULS, Frequent VULS, Minimal Frequent VULS mining) in most

cases. The conjectured reason for this is that as number of edge label |LE | increased, the

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 112

edge labels become more diverse, more distinctive VULS can be identified, thus more

accurate vertex label prediction results.

7.5 Comparison Between Usage of Grid Graphs and Cross

Grid Graphs, and Directed and Undirected Graphs

(Objective 4)

In Chapter 3 it was noted that VULS mining, as envisioned in this thesis, could be

applied to a variety of different types of grid graph: (i) directed grid graphs, (ii) undi-

rected grid graphs, (iii) directed cross-grid graphs, (iv) undirected cross-grid graphs.

Recall that the distinction between a grid graph and a cross grid graph is that the first

has a degree of 4, while the second has a degree of 8 (except in the part of the graph

where the 3D surface edges and corners are represented). In this section the distinction

between these different types of grid graph are considered in terms of classification effec-

tiveness (using accuracy and AUC), again using the raw data pairings used previously.

For the comparison max = 4, |LV | = 2 and |LE | = 8 was used. The later because earlier

experiments, reported in Section 7.4 above, had demonstrated that this produced the

best result. The results from the conducted experiments are presented in Table 7.7.

Table 7.7: Classification Effectiveness with Respect to Graph Types (Objective 4).

Graph Category Graph
Comp.VULS Min. VULS Freq. VULS Min.freq VULS J48 Naive Bayes

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

directed grid

GS 0.89 0.88 0.58 0.56 0.89 0.88 0.61 0.59 0.47 0.50 0.75 0.88

GT 0.69 0.77 0.53 0.65 0.69 0.77 0.44 0.58 0.67 0.50 0.72 0.87

MS 0.94 0.94 0.72 0.71 0.97 0.97 0.94 0.94 0.83 0.77 0.89 0.99

MT 0.86 0.67 0.89 0.68 0.86 0.67 0.89 0.60 0.86 0.50 0.86 0.90

Average 0.85 0.82 0.68 0.65 0.85 0.82 0.72 0.68 0.71 0.57 0.81 0.91

SD 0.11 0.12 0.16 0.06 0.12 0.13 0.24 0.18 0.18 0.14 0.08 0.05

undirected grid

GS 0.56 0.57 0.47 0.50 0.53 0.55 0.47 0.50 0.47 0.50 0.75 0.88

GT 0.69 0.60 0.67 0.50 0.75 0.63 0.67 0.5 0.67 0.50 0.72 0.87

MS 0.89 0.89 0.81 0.8 0.94 0.94 0.56 0.53 0.83 0.77 0.89 0.99

MT 0.92 0.7 0.92 0.7 0.92 0.7 0.86 0.50 0.86 0.50 0.86 0.90

Average 0.77 0.69 0.72 0.63 0.79 0.71 0.64 0.51 0.71 0.57 0.81 0.91

SD 0.17 0.14 0.19 0.15 0.19 0.17 0.17 0.02 0.18 0.14 0.08 0.05

directed cross-grid

GS 0.64 0.65 0.69 0.71 0.69 0.71 0.56 0.58 0.47 0.50 0.75 0.88

GT 0.67 0.50 0.67 0.50 0.67 0.50 0.69 0.54 0.67 0.50 0.72 0.87

MS 0.94 0.94 0.89 0.88 0.94 0.94 0.94 0.94 0.83 0.77 0.89 0.99

MT 0.86 0.50 0.86 0.50 0.86 0.50 0.86 0.50 0.86 0.50 0.86 0.90

Average 0.78 0.65 0.78 0.65 0.79 0.66 0.76 0.64 0.71 0.57 0.81 0.91

SD 0.15 0.21 0.11 0.18 0.13 0.21 0.17 0.20 0.18 0.14 0.08 0.05

undirected cross-grid

GS 0.47 0.49 0.58 0.60 0.61 0.63 0.39 0.41 0.47 0.50 0.75 0.88

GT 0.67 0.50 0.67 0.50 0.67 0.50 0.67 0.50 0.67 0.50 0.72 0.87

MS 0.89 0.89 0.94 0.94 0.94 0.94 0.89 0.88 0.83 0.77 0.89 0.99

MT 0.86 0.50 0.86 0.50 0.86 0.50 0.86 0.50 0.86 0.50 0.86 0.90

Average 0.72 0.60 0.76 0.64 0.77 0.64 0.70 0.57 0.71 0.57 0.81 0.91

SD 0.19 0.20 0.17 0.21 0.16 0.21 0.23 0.21 0.18 0.14 0.08 0.05

From Table 7.7 it can be seen that, regardless of the form of VULS used (Complete

VULS, minimal VULS, frequent VULS or minimal frequent VULS) more effective results

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 113

are produced using directed graphs than undirected graphs, and grid graphs than cross-

grid graphs. More specifically, in most cases, the VULS classifiers’ performance (in

terms of accuracy and AUC) shows the trends: (i) directed grid > undirected grid; (ii)

directed cross-grid > undirected cross-grid; (iii) directed grid >directed cross-grid; and

(iv) in some cases, undirected grid >undirected cross-grid. The results indicate that

VULS classifiers perform better on directed graphs than undirected graphs, because

when using directed graphs a greater number of VULS are identified than when using

undirected graphs consequently the vertex classification is more specific and as a result a

better overall classification results. However, VULS classifiers tended to perform better

when dealing with grid graphs where vertices have a degree of 4 than cross-grid graph

where vertexes have a degree of 8. This is probably because when using degree=8 a

greater number of edges are included in the input graph which in turn results in more

VULS; as a result the likelihood of more than one label being assigned to a vertex

is increased, and consequently the allocation (despite the adopted voting mechanism)

tends to be less effective.

7.6 Effect of |LV | on Classification Effectiveness (Objective

5)

The parameter considered with respect to the evaluation presented in this section is

|LV |. As noted above the value for |LV | is application domain dependent. However, for

completeness, in this section we consider the effect on classification when |LV | = 2 and

|LV | = 3 (the nature of the labelling in each case was discussed in Chapter 3). For the

experiments |LE | = 8 and max = 4 were used. Only the results obtained using directed

grid graphs are presented here. The results are presented in Table 7.8.

Table 7.8: Classification Effectiveness with Respect to |LV | (Objective 5).

|LV | Graph
Comp.VULS Min. VULS Freq. VULS Min.freq VULS J48 Naive Bayes

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

2

GS 0.89 0.88 0.58 0.56 0.89 0.88 0.61 0.59 0.47 0.50 0.75 0.88

GT 0.69 0.77 0.53 0.65 0.69 0.77 0.44 0.58 0.67 0.50 0.72 0.87

MS 0.94 0.94 0.72 0.71 0.97 0.97 0.94 0.94 0.83 0.77 0.89 0.99

MT 0.86 0.67 0.89 0.68 0.86 0.67 0.89 0.60 0.86 0.50 0.86 0.90

Average 0.85 0.82 0.68 0.65 0.85 0.82 0.72 0.68 0.71 0.57 0.81 0.91

SD 0.11 0.12 0.16 0.06 0.12 0.13 0.24 0.18 0.18 0.14 0.08 0.05

3

GS 0.31 0.40 0.25 0.35 0.31 0.40 0.25 0.35 0.36 0.56 0.50 0.75

GT 0.72 0.51 0.61 0.33 0.72 0.51 0.61 0.33 0.61 0.50 0.64 0.70

MS 0.78 0.67 0.78 0.67 0.78 0.67 0.78 0.67 0.64 0.75 0.72 0.84

MT 0.72 0.62 0.75 0.61 0.72 0.62 0.75 0.61 0.72 0.50 0.67 0.82

Average 0.63 0.55 0.60 0.49 0.63 0.55 0.60 0.49 0.58 0.58 0.63 0.78

SD 0.22 0.12 0.24 0.18 0.22 0.12 0.24 0.18 0.16 0.12 0.09 0.06

From Table 7.8, as might be expected, better accuracy and AUC tend to be achieved

when the number of vertex labels is small (|LV | = 2). This is because as the number

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 114

of vertex labels is increased, for example to |LV | = 3, the graph labelling becomes more

diverse; as a result, the classification performance tends to deteriorate. This observation

is true for classification in general, the more class labels that need to be considered the

more challenging the classification.

7.7 Comparison of VULS Vertex Classification Effective-

ness (Objective 6)

This section reports on the comparative evaluation conducted with respect to VULS

vertex classification in general. This section includes a comparison with using more

traditional forms of classification, namely J48 and Naive Bayes (as implemented in the

Waikato Environment for Knowledge Analysis (WEKA) machine learning workbench1).

For usage with J48 and Nave Bayes the data sets were processed as described in chapter

3. For the results presented in the Table 7.9, max = 4, |LE | = 8 and |LV | = 2 were

used. All the graphs considered were grid graphs (degree= 4) and featured directed

edges. The results are presented in Table 7.9. The table is laid out in a similar manner

to those included in the previous sections.

Table 7.9: VULS Vertex Classification Comparison (Objective 6).

Graph
Comp.VULS Min. VULS Freq. VULS Min. freq. VULS J48 Naive Bayes

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

GS 0.89 0.88 0.58 0.56 0.89 0.88 0.61 0.59 0.47 0.50 0.75 0.88

GT 0.69 0.77 0.53 0.65 0.69 0.77 0.44 0.58 0.67 0.50 0.72 0.87

MS 0.94 0.94 0.72 0.71 0.97 0.97 0.94 0.94 0.83 0.77 0.89 0.99

MT 0.86 0.67 0.89 0.68 0.86 0.67 0.89 0.60 0.86 0.50 0.86 0.90

Average 0.85 0.82 0.68 0.65 0.85 0.82 0.72 0.68 0.71 0.57 0.81 0.91

SD 0.11 0.12 0.16 0.06 0.12 0.13 0.24 0.18 0.18 0.14 0.08 0.05

From Table 7.9 it can be seen that, in terms of the VULS algorithms considered,

using Complete VULS and frequent VULS produced the most effective results in terms

of average accuracy (0.85) and average AUC (0.82). Comparing with the Nave Bayes

and J48 classifiers using Complete VULS and frequent VULS still produced the most

effective results in terms of average accuracy (0.85), while Nave Bayes produced the most

effective results in terms of AUC (0.91). J48 produced the worst vertex classification

performance in terms of AUC.

Note that the above demonstrated VULS mining does not always work as well as

Naive Bayes. However, the experiments reported here are in the context of grid graphs

and not more general graphs formats to which Naive Bayes could not be applied.

1http://www.cs.waikato.ac.nz/ml/weka/

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 115

7.8 Statistical Comparison of the Proposed VULS Approaches

(Objective 7)

This section reports on a statistical comparison of the vertex classification effectiveness

of the proposed VULS mining by considering a range of classifiers defined in terms of:

(i) the nature of the edges (directed or undirected), (ii) the vertex degree (4 or 8), (iii) a

range of alternative values for max {4, 5, 6}, and (iv) the VULS types (Complete VULS,

MinVULS, freqVULS or minFreqVULS). Thus 48 (2×2×3×4) forms of VULS classifiers

were considered. The adopted naming convention for each form of VULS classifiers, used

in this section, is:

< d, ‘−′, ‘Degree′, e, ‘−′, ‘max′,m, ‘−′, V >

where d is the nature of the edges (directed or undirected), e is the vertex degree value

(4 or 8), m is the max parameter (range of {4, 5, 6}) and V is the VULS types (Complete

VULS, MinVULS, freqVULS, minFreqVULS). For example, “Directed-Degree4-max5-

minFreqVULS” indicates a minimal frequent VULS classifier, generated using max = 5

and a directed grid graph with degree = 4. In addition standard Naive Bayes and J48

classification was included in the experimentation, hence a total of 50 forms of classifier

were considered.

Two separate sets of experiments were conducted, one using |LV | = 2 and one using

|LV | = 3. For each of the 48 different forms of VULS classifier noted above, 28 graphs

were generated by considering the four possible graph data pairings (GS, GT, MS, MT)

and a range of seven values for LE ({2, 3, 4, 5, 6, 7, 8}), 7× 4 = 28.

The average ranking of the classifiers, with respect to |LV | = 2 and |LV | = 3,

is presented in Tables 7.10 and 7.11 respectively, where the “AR” column gives the

average AUC ranked performance and the “AR+CD” column the average AUC ranked

performance plus the calculated critical difference. Recall that the performance of two

classifiers is significantly different if the corresponding Average Ranks (AR) differ by at

least the Critical Difference (CD). In other words the values in the “AR+CD” column

should be interpreted as indicating that the operation of any other classifier with a

rank outside of the AR to AR+CD range is significantly different from the classifier in

question.

With respect to Table 7.10, and in the context of the Freidman test, recall that K

is the number of classifiers, and D is the number of data sets. Thus with respect to

the statistical evaluation presented in this section k = 50 (48 VULS classifiers, plus J48

and Naive Bayes) and D = 28. Consequently the chi-squared (χ2
F) Friedman test value

calculated using (K − 1)× (D − 1) = (50− 1)× (28− 1) = 1323 degrees of freedom, is

as follows:

χ2
F = 12×28

50×(51)

[
35335.78316326532− 50×(51)2

4

]
=0.13176470588235295 ×2823.283163265318

=372.0090756302537

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 116

The p-value (threshold) was then 1.574E − 10 and the corresponding F-distribution,

F (49, 1323), was 10.044. The critical value for F (49, 1323), with a critical difference

level of α = 0.05, is 1.364. Thus the p-value (1.574E − 10) is significantly smaller than

0.005 and that the F-distribution (10.044) is larger than the corresponding F-distribution

critical value of 1.364. Therefore we can reject the null hypothesis H0 (that the observed

performance differences among the classifiers is simply a matter of chance). Referring

back to Table 7.10 the average rank results for the different VULS classifiers proposed in

this thesis were significant (p < 0.005). A Nemenyi post-hoc test was therefore deemed

to be applicable to determine which particular classifiers differ significantly from the

others. The significance diagram is presented in Figure 7.1. The figure displays the

AUC performance rankings for the classifiers, along with Nemenyi’s Critical Difference

(CD) tail. The CD value for the diagram is equal to 10.997 calculated as follows:

CD =qα,∞,50

√
50×51
12×28

=3.992 ×2.755

=10.997

The critical difference diagram given in 7.1 shows classifiers listed in ascending or-

der of their ranked AUC performance along the y-axis; whilst the mean ranked AUC

performance value, across all 28 datasets, is displayed on the x-axis. Two red vertical

dashed lines have been inserted in the figure to clearly identify the end of the best per-

forming classifier’s tail and the start of the next significantly different approach. From

the figure it can be seen that with respect to graphs where |LV | = 2 and d = 28 (mm),

the best performing classifier was Naive Bayes (a recorded AR value of 4.5). Indicated

in blue in the figure: whilst the Directed-Degree4-max4-freqVULS, Directed-Degree4-

max6-minFreqVULS and Degree4-max5-minFreqVULS classifiers produced statistically

comparable performances to Naive Bayes. From the figure it can also be noted that all

the classifiers highlighted in grey “before” the Directed-Degree8-max5-freqVULS classi-

fier (highlighted in red) perform statistically better than J48.

Table 7.10: Average Rankings of classifiers where |LV | = 2 and d = 28 (mm)

Classifier AR AR+CD

NaiveBayes 4.500 15.497

Directed-Degree4-max5-minFreqVULS 13.518 24.515

Directed-Degree4-max6-minFreqVULS 15.143 26.140

Directed-Degree4-max4-freqVULS 15.250 26.247

Undirected-Degree4-max6-compVULS 16.125 27.122

Directed-Degree4-max5-compVULS 16.464 27.461

Undirected-Degree4-max5-compVULS 16.518 27.515

Directed-Degree4-max5-minVULS 17.286 28.283

Directed-Degree4-max6-freqVULS 17.482 28.479

Undirected-Degree4-max6-freqVULS 17.696 28.693

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 117

Directed-Degree4-max5-freqVULS 17.875 28.872

Directed-Degree4-max4-compVULS 18.304 29.301

Directed-Degree4-max6-minVULS 18.536 29.533

Undirected-Degree4-max5-freqVULS 18.768 29.765

Directed-Degree4-max6-compVULS 18.911 29.908

Directed-Degree4-max4-minFreqVULS 19.643 30.640

Undirected-Degree4-max4-compVULS 21.607 32.604

Directed-Degree8-max4-freqVULS 22.196 33.193

Directed-Degree8-max5-compVULS 23.036 34.033

Directed-Degree8-max5-freqVULS 23.625 34.622

Directed-Degree8-max4-compVULS 23.946 34.943

Directed-Degree4-max4-minVULS 24.054 35.051

Undirected-Degree4-max6-minVULS 24.804 35.801

Undirected-Degree4-max4-freqVULS 25.054 36.051

Directed-Degree8-max6-freqVULS 25.393 36.390

Directed-Degree8-max6-compVULS 26.393 37.390

Directed-Degree8-max6-minFreqVULS 28.679 39.676

Undirected-Degree8-max5-minVULS 28.768 39.765

Undirected-Degree8-max6-freqVULS 28.893 39.890

Undirected-Degree4-max5-minVULS 29.393 40.390

Undirected-Degree8-max6-minVULS 29.589 40.586

Undirected-Degree8-max5-freqVULS 29.821 40.818

Undirected-Degree8-max4-minVULS 30.036 41.033

Directed-Degree8-max5-minFreqVULS 30.571 41.568

Directed-Degree8-max4-minFreqVULS 31.286 42.283

Directed-Degree8-max6-minVULS 31.357 42.354

Directed-Degree8-max5-minVULS 31.464 42.461

Undirected-Degree8-max6-compVULS 31.911 42.908

Undirected-Degree4-max6-minFreqVULS 31.964 42.961

Undirected-Degree8-max5-compVULS 32.304 43.301

Undirected-Degree8-max6-minFreqVULS 32.393 43.390

Undirected-Degree4-max4-minVULS 32.607 43.604

Undirected-Degree8-max4-freqVULS 32.768 43.765

Undirected-Degree8-max4-compVULS 33.000 43.997

Directed-Degree8-max4-minVULS 34.589 45.586

J48 34.893 45.890

Undirected-Degree4-max5-minFreqVULS 35.571 46.568

Undirected-Degree8-max5-minFreqVULS 35.911 46.908

Undirected-Degree8-max4-minFreqVULS 37.446 48.443

Undirected-Degree4-max4-minFreqVULS 37.661 48.658

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 118

	
Undirected-Degree4-max4-minFreqVULS
Undirected-Degree8-max4-minFreqVULS
Undirected-Degree8-max5-minFreqVULS
Undirected-Degree4-max5-minFreqVULS
J48
Directed-Degree8-max4-minVULS
Undirected-Degree8-max4-compVULS
Undirected-Degree8-max4-freqVULS
Undirected-Degree4-max4-minVULS
Undirected-Degree8-max6-minFreqVULS
Undirected-Degree8-max5-compVULS
Undirected-Degree4-max6-minFreqVULS
Undirected-Degree8-max6-compVULS
Directed-Degree8-max5-minVULS
Directed-Degree8-max6-minVULS
Directed-Degree8-max4-minFreqVULS
Directed-Degree8-max5-minFreqVULS
Undirected-Degree8-max4-minVULS
Undirected-Degree8-max5-freqVULS
Undirected-Degree8-max6-minVULS
Undirected-Degree4-max5-minVULS
Undirected-Degree8-max6-freqVULS
Undirected-Degree8-max5-minVULS
Directed-Degree8-max6-minFreqVULS
Directed-Degree8-max6-compVULS
Directed-Degree8-max6-freqVULS
Undirected-Degree4-max4-freqVULS
Undirected-Degree4-max6-minVULS
Directed-Degree4-max4-minVULS
Directed-Degree8-max4-compVULS
Directed-Degree8-max5-freqVULS
Directed-Degree8-max5-compVULS
Directed-Degree8-max4-freqVULS
Undirected-Degree4-max4-compVULS
Directed-Degree4-max4-minFreqVULS
Directed-Degree4-max6-compVULS
Undirected-Degree4-max5-freqVULS
Directed-Degree4-max6-minVULS
Directed-Degree4-max4-compVULS
Directed-Degree4-max5-freqVULS
Undirected-Degree4-max6-freqVULS
Directed-Degree4-max6-freqVULS
Directed-Degree4-max5-minVULS
Undirected-Degree4-max5-compVULS
Directed-Degree4-max5-compVULS
Undirected-Degree4-max6-compVULS
Directed-Degree4-max4-freqVULS
Directed-Degree4-max6-minFreqVULS
Directed-Degree4-max5-minFreqVULS
Naive Bayes

10 20 30 40 50 0

Figure 7.1: Critical difference diagram generated using Nemenyi’s post hoc test with
α = 0.05 for graphs where |LV | = 2 and d = 28 (mm).

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 119

Similarly, with respect to Table 7.11 (|LV | = 3), the chi-squared (χ2
F) Friedman test

value, with K − 1 = 50− 1 = 49 degrees of freedom, was calculated as follows:

χ2
F = 12×28

50×(51)

[
35368.0593112245− 50×(51)2

4

]
=0.13176470588235295 ×2855.559311224497

=376.26193277311023

The associated p-value (threshold) was then 1.344E − 10. The F-distribution with

K − 1 = 49 and(K − 1) ∗ (D − 1) = (50 − 1) ∗ (28 − 1) = 1323 degrees of freedom,

F (49, 1323), is 10.20. The critical value for F (49, 1323), with a critical difference level

of α = 0.05, is 1.364. Thus, as in the case of |LV | = 3, it can be noted that the p-

value (1.344E − 10) is less than 0.005 and that the F-distribution (10.20) is larger than

the corresponding F-distribution critical value (1.364). Therefore we can again reject

the null hypothesis H0 (that there is no statistical difference in operation between the

classifiers). Note also that, referring back to Table 7.11, the average rank results were

all significant (p < 0.005). Consequently a Nemenyi post-hoc test was deemed to be

applicable to detect which particular classifiers differ from each other in a statistically

significant manner.

The significance diagram is presented in Figure 7.2. As in the case where |LV | =

3, the figure shows the AUC performance rankings for the classifiers, along with the

Nemenyi’s Critical Difference (CD) tail in each case. As before, the CD value for the

diagram is equal to 10.997.

Table 7.11: Average Rankings of classifiers where |LV | = 3 and d = 28 (mm)

Classifier AR AR+CD

NaiveBayes 1.768 12.765

J48 12.179 23.176

Directed-Degree4-max4-freqVULS 16.518 27.515

Directed-Degree4-max4-compVULS 17.625 28.622

Undirected-Degree4-max6-compVULS 19.107 30.104

Directed-Degree4-max5-compVULS 19.661 30.658

Directed-Degree4-max5-freqVULS 19.875 30.872

Directed-Degree4-max6-minVULS 20.018 31.015

Undirected-Degree4-max5-freqVULS 20.089 31.086

Directed-Degree8-max5-minFreqVULS 20.482 31.479

Directed-Degree8-max6-minFreqVULS 20.625 31.622

Directed-Degree4-max6-minFreqVULS 20.946 31.943

Undirected-Degree4-max6-freqVULS 21.304 32.301

Directed-Degree8-max5-freqVULS 21.643 32.640

Directed-Degree4-max5-minFreqVULS 21.804 32.801

Directed-Degree8-max5-compVULS 21.875 32.872

Directed-Degree4-max6-freqVULS 21.893 32.890

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 120

Directed-Degree4-max5-minVULS 22.107 33.104

Directed-Degree4-max6-compVULS 22.161 33.158

Directed-Degree8-max6-compVULS 22.393 33.390

Directed-Degree8-max6-freqVULS 22.519 33.515

Directed-Degree8-max4-compVULS 22.714 33.711

Directed-Degree4-max4-minFreqVULS 22.929 33.926

Directed-Degree4-max4-minVULS 23.143 34.140

Directed-Degree8-max4-freqVULS 23.179 34.176

Undirected-Degree4-max5-compVULS 23.268 34.265

Directed-Degree8-max5-minVULS 23.554 34.551

Directed-Degree8-max6-minVULS 23.590 34.586

Undirected-Degree8-max5-compVULS 24.768 35.765

Directed-Degree8-max4-minVULS 24.946 35.943

Undirected-Degree8-max4-compVULS 25.161 36.158

Undirected-Degree4-max4-compVULS 25.679 36.676

Undirected-Degree8-max6-compVULS 25.750 36.747

Undirected-Degree4-max4-freqVULS 27.179 38.176

Directed-Degree8-max4-minFreqVULS 27.304 38.301

Undirected-Degree8-max5-freqVULS 28.375 39.372

Undirected-Degree8-max6-freqVULS 29.268 40.265

Undirected-Degree8-max4-freqVULS 32.339 43.336

Undirected-Degree8-max5-minVULS 32.768 43.765

Undirected-Degree8-max4-minVULS 32.929 43.926

Undirected-Degree8-max6-minVULS 33.857 44.854

Undirected-Degree4-max5-minVULS 34.089 45.086

Undirected-Degree4-max6-minVULS 34.982 45.979

Undirected-Degree4-max4-minVULS 35.339 46.336

Undirected-Degree8-max6-minFreqVULS 36.625 47.622

Undirected-Degree4-max6-minFreqVULS 38.125 49.122

Undirected-Degree4-max5-minFreqVULS 38.643 49.640

Undirected-Degree8-max5-minFreqVULS 38.911 49.908

Undirected-Degree8-max4-minFreqVULS 39.446 50.443

Undirected-Degree4-max4-minFreqVULS 39.554 50.551

From Figure 7.2 it can be seen that with respect to graphs where |LV | = 3 (and

d = 28 (mm)) the best performing classifier was again Naive Bayes (a recorded AR value

of 1.768). In this case performing significantly better than the proposed VULS classifiers,

whilst J48 achieved a comparable performance to Naive Bayes. The VULS classifiers

highlighted in grey, before the Directed-Degree8-max4-freqVULS classifier (highlighted

in red) achieve statistically comparable performances to J48.

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 121

	
Undirected-Degree4-max4-minFreqVULS
Undirected-Degree8-max4-minFreqVULS
Undirected-Degree8-max5-minFreqVULS
Undirected-Degree4-max5-minFreqVULS
Undirected-Degree4-max6-minFreqVULS
Undirected-Degree8-max6-minFreqVULS
Undirected-Degree4-max4-minVULS
Undirected-Degree4-max6-minVULS
Undirected-Degree4-max5-minVULS
Undirected-Degree8-max6-minVULS
Undirected-Degree8-max4-minVULS
Undirected-Degree8-max5-minVULS
Undirected-Degree8-max4-freqVULS
Undirected-Degree8-max6-freqVULS
Undirected-Degree8-max5-freqVULS
Directed-Degree8-max4-minFreqVULS
Undirected-Degree4-max4-freqVULS
Undirected-Degree8-max6-compVULS
Undirected-Degree4-max4-compVULS
Undirected-Degree8-max4-compVULS
Directed-Degree8-max4-minVULS
Undirected-Degree8-max5-compVULS
Directed-Degree8-max6-minVULS
Directed-Degree8-max5-minVULS
Undirected-Degree4-max5-compVULS
Directed-Degree8-max4-freqVULS
Directed-Degree4-max4-minVULS
Directed-Degree4-max4-minFreqVULS
Directed-Degree8-max4-compVULS
Directed-Degree8-max6-freqVULS
Directed-Degree8-max6-compVULS
Directed-Degree4-max6-compVULS
Directed-Degree4-max5-minVULS
Directed-Degree4-max6-freqVULS
Directed-Degree8-max5-compVULS
Directed-Degree4-max5-minFreqVULS
Directed-Degree8-max5-freqVULS
Undirected-Degree4-max6-freqVULS
Directed-Degree4-max6-minFreqVULS
Directed-Degree8-max6-minFreqVULS
Directed-Degree8-max5-minFreqVULS
Undirected-Degree4-max5-freqVULS
Directed-Degree4-max6-minVULS
Directed-Degree4-max5-freqVULS
Directed-Degree4-max5-compVULS
Undirected-Degree4-max6-compVULS
Directed-Degree4-max4-compVULS
Directed-Degree4-max4-freqVULS
J48
Naive Bayes

10 20 30 40 50 0

Figure 7.2: Critical difference diagram generated using Nemenyi’s post hoc test with
α = 0.05 for graphs where |LV | = 3 and d = 28 (mm).

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 122

7.9 Summary

This chapter has presented an evaluation of the proposed VULS mining and vertex

classification processes in the context of the AISF grid graph data sets. From the

reported evaluation the following overall observations can be made:

1. With respect to the VULS mining the best coverage was produced using the Com-

plete VULS mining algorithm.

2. The most effective VULS mining algorithms, in the context of vertex classification,

were the Complete VULS and Frequent VULS mining algorithms in terms of both

accuracy and AUC.

3. Frequent VULS mining is more efficient than Complete VULS mining since fewer

VULS were generated when considering only frequent VULS.

4. There is no significant difference between the VULS classifiers with respect to the

max parameter settings (at least when max = {4, 5, 6}). However, using max = 4

is more efficient in the context of VULS mining (and in some cases produces a

better classification result).

5. The set of VULS produced using directed grid graphs resulted in the most effective

vertex classification (in terms of AUC).

6. With respect to the comparison with more traditional classifiers, Naive Bayes

produced the best performance. However VULS vertex classification tended to

outperform J48 (in terms of AUC) when using larger values of |LE | and |LV | = 2.

7. When considering different values for |LE |, the higher the |LE | (for example when

|LE | = 8) the more significant the VULS that can be identified, thus a better

vertex classification performance (in terms of AUC) can be achieved.

8. VULS classifiers tend to perform better when dealing with “grid” graphs (degree=

4) than “cross-grid” graphs (degree= 8).

9. Relatively speaking, VULS classifiers tend to perform better when dealing with

directed graphs than undirected graphs.

10. With respect to the size of |LV |, as the number of vertex labels increases from

2 to 3, the graph labelling becomes more diverse; as a result, the classification

performance tends to deteriorate.

11. With respect to the grid size d, as d increases from 18 to 28, the classification

performance tends to increase as well.

This completes the evaluation of the proposed VULS concept with respect to the

sheet metal forming application used as the primary application focus for the work

Chapter 7. Experimental Results Using The Sheet Metal Forming Application 123

described. The following chapter reports on the evaluation of the VULS concept in the

context of the satellite image interpretation application, the secondary application focus

for the work described in this thesis.

Chapter 8

Experimental Results Using The

Satellite Image Interpretation

Application

8.1 Introduction

In this chapter, an alternative application for VULS vertex classification is investigated.

More specifically the labelling of objects in satellite images using the graph data sets

presented previously in Chapter 3. The motivation for this second group of experiments

was to investigate an alternative application for the concept of VULS mining. More

specifically to analyse the operation of the proposed VULS mining in a different context,

but with the same set of objectives as the AISF experiments presented in Chapter 7.

For completeness these objectives were as follows:

1. To compare the operation of the proposed VULS mining algorithms, using a range

of max values, in terms of coverage, number of identified VULS and runtime.

2. To investigate the effect of using different values for the grid size d.

3. To investigate the effect of using different values for |LE |.

4. To compare the distinction between the usage of grid graphs and cross grid graphs.

5. To investigate the effect of using different values for |LV |.

6. To compare the effectiveness of the identified VULS, with respect to vertex classi-

fication, and with respect to more standard approaches (J48 and Naive Bayes).

7. To investigate whether there is a statistically significant difference between the

results obtained.

As before, each of these objectives is considered in a separate section (Sections 8.2 to

8.8). A summary and some conclusions are presented in Section 8.9. Note that only

125

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 126

directed graphs are considered in this chapter. This is because the AISF experimental

results presented in the previous chapter, in the context of sheet metal forming, had

demonstrated that usage of directed graphs for vertex classification produced better

results than when using undirected graphs. Some preliminary experiments, not reported

here, with respect to the satellite graph data, also demonstrated this to be the case. Thus

the discussions presented in this chapter are all directed at the usage of directed graphs.

The strategy adopted for reporting the outcomes with respect to the first six of the

above objectives, given the large number of possible parameter combinations, is the same

as in the previous chapter. Thus for each objective directed at analysing the effect of

a particular parameter (Objectives 1 to 5 above) a range of values were considered for

the parameter of interest while a static value was used for the remaining parameters as

shown in Table 8.1. For objective 6, only fixed parameters were used. Unlike in the case

of the AISF experiments presented in Chapter 7, where pairings of graphs were used for

training and testing, in the case of the experiments presented in this chapter Ten Cross

Validation (TCV) (as described in subsection 2.6.1 of chapter 2) was adopted. Thus

results are reported for each 10 fold together with the overall average result.

Table 8.1: Evaluation Strategy Summary

Parameter Objective

1 2 3 4 5 6

max {4, 5, 6} F F F F F

d F {8, 16, 32} F F F F

|LE | F F {2, 4, 6, 8} F F F

degree F F F {4, 8} F F

|LV | F F F F {2, 3} F

Directed? F F F F F F

With respect to the last objective (objective 7), investigation of the statistical sig-

nificance of the outcomes, the Friedman statistical test was again applied to determine

whether the results produced were statistically significant or not. On completion of the

Friedman test, the Nemenyi test was then again used to identify the “critical distances”

between the techniques so as to identify where differences actually occurred.

The naming convention used for the satellite image graphs was as follows: 〈 ‘SId’,d,

‘E’,e, ‘V’,v 〉; where: (i) d is the grid size (measured in pixels in this case as opposed

to mm in the case of the AISF graphs), (ii) e is the number of edge labels (|LE |) and

(iii) v is the number of vertex labels (|LV |). For example, “SId8E2V2” indicates a graph

derived from a satellite image with grid size d of 8 pixels using |LE | = 2 and |LV | = 2.

Before considering the experimental results obtained it should also be recalled that

both the vertex and edge labelling distributions for the satellite image graphs (as de-

scribed in section 3.3.2 of Chapter 3) was extremely imbalanced. The results presented

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 127

in this chapter should thus be viewed in the context of the unbalanced nature of the

data sets used.

8.2 Comparison of VULS Mining Algorithms Using a Range

of max values (Objective 1)

This section provides a comparative evaluation of the four different VULS mining al-

gorithms presented in this thesis in the context of the satellite image interpretation

application and with respect to a range of max parameter values. The remaining pa-

rameters were kept constant (as indicated in Table 8.1: |LV | = 2, |LE | = 4, d = 32 and

degree = 4 (grid graphs)). As noted in the introduction to this chapter all the graphs

considered featured directed edges. |LV | = 2 was chosen because this had been shown

to works well in the case of the AISF experiments presented in chapter 7. |LE | = 4 was

chosen because this was a good median value.

The comparative evaluation with respect to objective 1 was undertaken in terms of:

(i) coverage, (ii) number of identified VULS and (iii) run time of ten folds. As noted

above, because we used TCV to evaluate the VULS classifiers, the result for each fold

is presented with respect to coverage and number of identified VULS. The recorded run

time is the total time take for all ten folds together. The results are presented in Tables

8.2 to 8.4 corresponding to max parameter settings of 4, 5 and 6 respectively. Coverage

is computed in terms of the training set as in the case of AISF data. The colour coding

used in the tables with respect to coverage is for ease of comparison.

Table 8.2: Comparison of VULS Mining Algorithms Using max = 4 (Objective 1).

Fold
Comp.VULS Min. VULS Freq. VULS Min. freq. VULS

Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time

1 100.00 76

2.29

98.44 13

1.77

100.00 86

2.72

98.44 6

1.51

2 98.44 196 98.44 21 98.44 61 90.63 6

3 100.00 368 9.38 1 100.00 26 9.38 1

4 98.44 296 100.00 11 98.44 145 98.44 6

5 100.00 94 98.44 30 100.00 28 96.88 25

6 100.00 60 82.81 9 100.00 19 81.25 4

7 100.00 68 98.44 9 100.00 23 96.88 4

8 100.00 274 100.00 22 100.00 14 100.00 5

9 100.00 235 98.44 56 23.44 71 98.44 50

10 100.00 299 100.00 13 100.00 28 100.00 7

Average 99.69 196.60 88.44 18.50 92.03 50.10 87.03 11.40

SD 0.66 114.25 28.25 15.49 24.11 41.38 27.88 15.06

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 128

Table 8.3: Comparison of VULS Mining Algorithms Using max = 5 (Objective 1).

Fold
Comp.VULS Min. VULS Freq. VULS Min. freq. VULS

Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time

1 100.00 76

2.54

98.44 13

1.85

100.00 86

4.09

98.44 13

3.19

2 98.44 861 98.44 21 98.44 377 95.31 10

3 100.00 368 9.38 1 100.00 26 9.38 1

4 98.44 917 100.00 11 98.44 145 98.44 21

5 100.00 94 100.00 226 100.00 28 100.00 221

6 100.00 60 98.44 88 100.00 19 96.88 32

7 100.00 68 98.44 9 100.00 23 96.88 34

8 100.00 274 100.00 22 100.00 14 100.00 5

9 100.00 235 98.44 81 40.63 197 98.44 57

10 100.00 299 100.00 13 100.00 28 100.00 7

Average 99.69 325.20 90.16 48.50 93.75 94.30 89.38 40.10

SD 0.66 316.69 28.39 69.38 18.68 117.27 28.15 65.81

Table 8.4: Comparison of VULS Mining Algorithms Using max = 6 (Objective 1).

Fold
Comp.VULS Min. VULS Freq. VULS Min. freq. VULS

Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time

1 100.00 76

7.69

98.44 13

2.30

100.00 86

18.13

98.44 13

3.96

2 98.44 3257 98.44 21 98.44 1531 95.31 10

3 100.00 368 9.38 1 100.00 26 9.38 1

4 98.44 2100 100.00 11 98.44 145 98.44 22

5 100.00 94 100.00 226 100.00 28 100.00 221

6 100.00 60 98.44 88 100.00 19 96.88 32

7 100.00 68 98.44 9 100.00 23 96.88 34

8 100.00 274 100.00 22 100.00 14 100.00 5

9 100.00 235 98.44 145 60.94 596 98.44 121

10 100.00 299 100.00 13 100.00 28 100.00 7

Average 99.69 683.10 90.16 54.90 95.78 249.60 89.38 46.60

SD 0.66 1091.88 28.39 75.40 12.26 483.96 28.15 70.53

In the context of Tables 8.2 to 8.4 the following can be observed with respect to

coverage, number of VULS identified and run time:

• Coverage.

1. Excellent coverage was obtained, greater than 99.69% with respect to all

VULS categories with max of 4.

2. Although there is little difference between the coverage results, best overall

coverage was obtained when using Complete VULS (this was also the case

with respect to the AISF experiments reported previously).

3. The coverage results confirm the relationship between the four different cat-

egories of VULS illustrated previously in Figure 2.2 of Chapter 4.

• Number of VULS.

1. As in the case of the AISF experiments, many more VULS were discovered

when using the Complete VULS algorithm than when using any of the other

proposed algorithms (Minimal, Frequent, or Minimal Frequent). Recall that

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 129

the total number of VULS that exist in a given graph will typically be greater

than the number of minimal VULS that can be found in the same graph.

Similarly the total number of VULS will typically be greater than the number

frequent VULS that can be found in the same graph. Of course the number

of minimal frequent VULS that can be found will typically be less than (or

possibly equal to) the number of frequent VULS.

2. Again as in the case of the AISF experiments, and as might be expected, as

max is increased from 4 to 6 more VULS will be identified, thus coverage also

increases. Although, if the coverage when max = 4 is 100%, this can not be

improved upon as max is increased further from 4 to 6. In most graphs, 100%

coverage had already been reached when max = 4 with respect to Complete

VULS mining.

• Run time.

1. As the max parameter was increased from 4 to 6 the required time for identi-

fying VULS also increased (as expected), thus confirming the runtime result

observed when using the AISF graph data.

Overall, with respect to the AISF results presented in Section 7.2 in Chapter 7 the

results presented above confirm the results obtained previously.

8.3 Effect of grid size d on Classification Effectiveness (Ob-

jective 2)

The parameter considered with respect to the evaluation presented in this section is

grid size d. In this section we consider the effect on classification when d = {8, 16, 32}
respectively. For the experiments |LV | = 2 and |LE | = 4 were again used; max = 4 was

used because this tended to produce effective results as demonstrated in the preceding

section. The results are presented in Table 8.5.

From Table 8.5 it can be seen that, as opposed to the sheet metal forming application

considered in the previous chapter, classification effectiveness tends to deteriorate as the

grid size d increases from 8 to 32. The conjectured reasons for this are as follows:

• When images are translated into graphs with larger grid sizes (d = 16 or d = 32

pixels) different ground types are likely to be incorporated into the individual grid

squares. Consequently the average grayscale intensity value of the grid squares

tends to become confused which will in turn effect the edge labelling. Hence the

identified VULS become less effective at discriminating between classes. When

using smaller grid sizes, such as d = 8 pixels, each grid square is much more likely

to comprise only one ground type.

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 130

Table 8.5: Classification Effectiveness with Respect to d (Objective 2).

d Fold
Comp.VULS Min. VULS Freq. VULS Min.freq VULS
Acc. AUC Acc. AUC Acc. AUC Acc. AUC

8

1 100.00 1.00 99.90 0.75 99.80 0.50 99.80 0.50
2 99.41 0.77 99.02 0.62 98.73 0.50 98.73 0.50
3 99.61 0.67 99.61 0.67 99.41 0.50 99.41 0.50
4 99.41 0.79 99.22 0.67 98.83 0.50 98.83 0.50
5 99.90 0.75 99.90 0.75 99.80 0.50 99.80 0.50
6 99.22 0.67 98.93 0.54 98.83 0.50 98.83 0.50
7 99.80 0.75 99.61 0.50 99.61 0.50 99.61 0.50
8 99.80 0.75 99.71 0.63 99.61 0.50 99.61 0.50
9 99.80 0.75 99.80 0.75 99.61 0.50 99.61 0.50
10 99.71 0.75 99.90 0.75 99.80 0.50 99.80 0.50

Average 99.67 0.77 99.56 0.66 99.40 0.50 99.40 0.50

SD 0.25 0.09 0.37 0.09 0.44 0 0.44 0

16

1 99.61 0.50 99.61 0.50 99.61 0.50 99.61 0.50
2 97.27 0.50 97.27 0.50 97.27 0.50 97.27 0.50
3 98.83 0.50 98.83 0.50 98.83 0.50 98.83 0.50
4 98.05 0.58 98.05 0.58 97.66 0.50 97.66 0.50
5 99.61 0.50 100.00 1.00 99.61 0.50 99.61 0.50
6 96.48 0.50 96.48 0.50 96.48 0.50 96.48 0.50
7 99.22 0.50 99.22 0.50 99.22 0.50 99.22 0.50
8 99.22 0.50 99.22 0.50 99.22 0.50 99.22 0.50
9 99.61 0.50 99.61 0.50 99.61 0.50 99.61 0.50
10 99.22 0.50 99.22 0.50 99.61 0.50 99.61 0.50

Average 98.71 0.51 98.75 0.56 98.71 0.50 98.71 0.50

SD 1.09 0.03 1.13 0.16 1.15 0 1.15 0

32

1 98.44 0.50 98.44 0.50 98.44 0.50 98.44 0.50
2 92.19 0.50 92.19 0.50 92.19 0.50 92.19 0.50
3 95.31 0.50 95.31 0.50 95.31 0.50 95.31 0.50
4 92.19 0.50 92.19 0.50 92.19 0.50 92.19 0.50
5 98.44 0.50 98.44 0.50 98.44 0.50 98.44 0.50
6 95.31 0.50 95.31 0.50 95.31 0.50 95.31 0.50
7 98.44 0.50 98.44 0.50 98.44 0.50 98.44 0.50
8 98.44 0.50 98.44 0.50 98.44 0.50 98.44 0.50
9 98.44 0.50 98.44 0.50 98.44 0.50 98.44 0.50
10 96.88 0.50 96.88 0.50 96.88 0.50 96.88 0.50

Average 96.41 0.50 96.41 0.50 96.41 0.50 96.41 0.50

SD 2.56 0 2.56 0 2.56 0 2.56 0

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 131

• When using larger values of d the resulting grid graphs become relatively sparse, to

the extent that useful geometric information is hard to capture, hence the VULS

classification effectiveness tends to deteriorate.

Overall when using smaller grid sizes, such as 8 pixels, each grid square is more likely to

include only one ground type, the above issues can thus be relieved to some extent by

using small grid sizes (but at the cost of additional run time). This is why the VULS

classifiers when applied in the context of satellite image interpretation tend to perform

better with smaller grid sizes.

8.4 Classification Effectiveness with Respect to |LE| (Ob-

jective 3)

In this section the effect that the size of the edge label set LE has on classification

effectiveness, in terms of accuracy and AUC, is discussed. The discussion is founded

on a sequence of experiments conducted using a range of values for |LE | from 2 to 8

increasing in steps of 2. Recall that the same range of values was used with respect to the

AISF experiments. For the remaining parameters the following was used: max = 4 and

|LV | = 2. The first was chosen because the previously reported experiments had already

demonstrated that good coverage (more than 99.69%) was reached when max = 4. The

second so as to be consistent with the experiments associated with Objective 1. All the

graphs considered were grid graphs (degree=4) featuring directed edges, and used grid

size d = 8 as the previous section had demonstrated that small grid sizes produce better

results. The results are presented in Table 8.6.

From Table 8.6 it can be observed that, with respect to AUC, there was no significant

difference between the recorded values regardless of the value used for |LE |. However,

Complete VULS mining using |LE | = {4, 6, 8} can achieve AUC of 1 (highlighted in

green in the table), indicating that VULS classifiers have potential in the context of

satellite images. This will be explored further in the next three sections.

With respect to the above, and in contrast to the results obtained using the AISF

grid graphs as reported in the previous chapter, the selected value of |LE | did not have

a remarkable effect on classification effectiveness. Recall that in the case of the AISF

data accuracy and AUC tended to increase as |LE | increased.

8.5 Comparison Between Usage of Grid Graphs and Cross

Grid Graphs (Objective 4)

This section focuses on the distinction between the usage of grid graphs (degree 4) and

cross grid graphs (degree of 8) in terms of classification effectiveness. For the experiments

the following parameters were used: max = 4, |LV | = 2, d = 8, and |LE | = 4. The

results are presented in Table 8.7.

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 132

Table 8.6: Classification Effectiveness with Respect to |LE | (Objective 3).

|LE | Fold
Comp.VULS Min. VULS Freq. VULS Min.freq VULS
Acc. AUC Acc. AUC Acc. AUC Acc. AUC

2

1 98.93 0.99 99.90 0.75 99.80 0.50 99.80 0.50
2 99.22 0.69 99.02 0.62 98.73 0.50 98.73 0.50
3 99.61 0.67 99.61 0.67 99.41 0.50 99.41 0.50
4 99.51 0.79 99.32 0.71 98.83 0.50 98.83 0.50
5 99.90 0.75 99.90 0.75 99.80 0.50 99.80 0.50
6 99.12 0.63 99.02 0.58 98.83 0.50 98.83 0.50
7 99.80 0.75 99.80 0.75 99.61 0.50 99.61 0.50
8 99.71 0.75 99.61 0.62 99.61 0.50 99.61 0.50
9 99.80 0.75 99.71 0.63 99.61 0.50 99.61 0.50
10 99.51 0.75 99.90 0.75 99.80 0.50 99.80 0.50

Average 99.51 0.75 99.58 0.68 99.40 0.50 99.40 0.50

SD 0.32 0.10 0.34 0.07 0.44 0 0.44 0

4

1 100.00 1.00 99.90 0.75 99.80 0.50 99.80 0.50
2 99.41 0.77 99.02 0.62 98.73 0.50 98.73 0.50
3 99.61 0.67 99.61 0.67 99.41 0.50 99.41 0.50
4 99.41 0.79 99.22 0.67 98.83 0.50 98.83 0.50
5 99.90 0.75 99.90 0.75 99.80 0.50 99.80 0.50
6 99.22 0.67 98.93 0.54 98.83 0.50 98.83 0.50
7 99.80 0.75 99.61 0.50 99.61 0.50 99.61 0.50
8 99.80 0.75 99.71 0.63 99.61 0.50 99.61 0.50
9 99.80 0.75 99.80 0.75 99.61 0.50 99.61 0.50
10 99.71 0.75 99.90 0.75 99.80 0.50 99.80 0.50

Average 99.67 0.77 99.56 0.66 99.40 0.50 99.40 0.50

SD 0.25 0.09 0.37 0.09 0.44 0 0.44 0

6

1 100.00 1.00 99.90 0.75 99.80 0.50 99.80 0.50
2 99.41 0.77 99.22 0.69 98.73 0.50 98.73 0.50
3 99.61 0.67 99.51 0.58 99.41 0.50 99.41 0.50
4 99.41 0.79 99.41 0.75 98.83 0.50 98.83 0.50
5 99.90 0.75 99.90 0.75 99.80 0.50 99.80 0.50
6 99.02 0.58 99.02 0.58 98.83 0.50 98.83 0.50
7 99.80 0.75 99.80 0.75 99.61 0.50 99.61 0.50
8 99.71 0.63 99.71 0.63 99.61 0.50 99.61 0.50
9 99.71 0.63 99.71 0.63 99.61 0.50 99.61 0.50
10 99.80 0.75 99.90 0.75 99.80 0.50 99.80 0.50

Average 99.64 0.73 99.61 0.69 99.40 0.50 99.40 0.50

SD 0.29 0.12 0.31 0.07 0.44 0 0.44 0

8

1 100.00 1.00 99.90 0.75 99.80 0.50 99.80 0.50
2 99.32 0.73 98.83 0.54 98.73 0.50 98.73 0.50
3 99.61 0.67 99.61 0.67 99.41 0.50 99.41 0.50
4 99.51 0.79 99.12 0.63 98.83 0.50 98.83 0.50
5 99.90 0.75 99.90 0.75 99.80 0.50 99.80 0.50
6 99.12 0.63 99.02 0.58 98.83 0.50 98.83 0.50
7 99.80 0.75 99.61 0.50 99.61 0.50 99.61 0.50
8 99.71 0.63 99.71 0.63 99.61 0.50 99.61 0.50
9 99.80 0.75 99.71 0.63 99.61 0.50 99.61 0.50
10 99.80 0.75 99.90 0.75 99.80 0.50 99.80 0.50

Average 99.66 0.75 99.53 0.64 99.40 0.50 99.40 0.50

SD 0.27 0.11 0.40 0.09 0.44 0 0.44 0

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 133

Table 8.7: Classification Effectiveness with Respect to graph types (Objective 4).

Graph Category Fold
Comp.VULS Min. VULS Freq. VULS Min.freq VULS
Acc. AUC Acc. AUC Acc. AUC Acc. AUC

directed grid

1 100.00 1.00 99.90 0.75 99.80 0.50 99.80 0.50
2 99.41 0.77 99.02 0.62 98.73 0.50 98.73 0.50
3 99.61 0.67 99.61 0.67 99.41 0.50 99.41 0.50
4 99.41 0.79 99.22 0.67 98.83 0.50 98.83 0.50
5 99.90 0.75 99.90 0.75 99.80 0.50 99.80 0.50
6 99.22 0.67 98.93 0.54 98.83 0.50 98.83 0.50
7 99.80 0.75 99.61 0.50 99.61 0.50 99.61 0.50
8 99.80 0.75 99.71 0.63 99.61 0.50 99.61 0.50
9 99.80 0.75 99.80 0.75 99.61 0.50 99.61 0.50
10 99.71 0.75 99.90 0.75 99.80 0.50 99.80 0.50

Average 99.67 0.77 99.56 0.66 99.40 0.50 99.40 0.50

SD 0.25 0.09 0.37 0.09 0.44 0 0.44 0

directed cross-grid

1 100.00 1.00 100.00 1.00 99.80 0.50 99.80 0.50
2 99.51 0.81 99.41 0.77 98.73 0.50 98.73 0.50
3 99.71 0.75 99.61 0.67 99.41 0.50 99.41 0.50
4 99.61 0.87 99.41 0.79 98.83 0.50 98.83 0.50
5 99.90 0.75 99.90 0.75 99.80 0.50 99.80 0.50
6 99.02 0.58 99.12 0.63 98.83 0.50 98.83 0.50
7 99.80 0.75 99.80 0.75 99.61 0.50 99.61 0.50
8 99.90 0.88 99.71 0.63 99.61 0.50 99.61 0.50
9 99.80 0.75 99.80 0.75 99.61 0.50 99.61 0.50
10 99.90 0.81 99.90 0.75 99.80 0.50 99.80 0.50

Average 99.72 0.80 99.67 0.75 99.40 0.50 99.40 0.50

SD 0.29 0.11 0.28 0.11 0.44 0 0.44 0

From Table 8.7 it can be observed that, regarding Complete VULS and minimal

VULS, cross-grid graphs produced more effective vertex classification results than when

grid graphs were used. Recall that the opposite tended to be observed with respect to

the sheet metal forming experiments reported in Chapter 7. It is conjectured that the

reasons for this is because:

• the vertex label distribution of graphs in the context of the satellite image data set

is extremely imbalanced and relatively balanced in the context of the AISF data

set (see chapter 3).

• during the image to graph translation process, we divide each image into grid

squares evenly, some grid squares might contain more than one ground type but

are labelled with a single ground type, as a result, some ground type information

is lost during the translation process. Thus using cross grid graphs with degree 8

can compensate for this information loss to some extent (more edges).

• when using degree 8 a greater number of edges are included in the input graph

which in turn results in more VULS, and with the direction restriction, a more

comprehensive (effective) set of VULS are generated.

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 134

Table 8.8: Classification Effectiveness with Respect to |LV | (Objective 5).

|LV | Fold
Comp.VULS Min. VULS Freq. VULS Min.freq VULS
Acc. AUC Acc. AUC Acc. AUC Acc. AUC

2

1 100.00 1.00 100.00 1.00 99.80 0.50 99.80 0.50
2 99.51 0.81 99.41 0.77 98.73 0.50 98.73 0.50
3 99.71 0.75 99.61 0.67 99.41 0.50 99.41 0.50
4 99.61 0.87 99.41 0.79 98.83 0.50 98.83 0.50
5 99.90 0.75 99.90 0.75 99.80 0.50 99.80 0.50
6 99.02 0.58 99.12 0.63 98.83 0.50 98.83 0.50
7 99.80 0.75 99.80 0.75 99.61 0.50 99.61 0.50
8 99.90 0.88 99.71 0.63 99.61 0.50 99.61 0.50
9 99.80 0.75 99.80 0.75 99.61 0.50 99.61 0.50
10 99.90 0.81 99.90 0.75 99.80 0.50 99.80 0.50

Average 99.72 0.80 99.67 0.75 99.40 0.50 99.40 0.50

SD 0.29 0.11 0.28 0.11 0.44 0 0.44 0

3

1 10.74 0.42 86.23 0.67 87.30 0.33 87.79 0.35
2 34.47 0.44 69.43 0.56 68.16 0.33 67.29 0.34
3 23.14 0.44 36.62 0.50 34.38 0.33 33.69 0.32
4 43.16 0.47 81.74 0.59 82.32 0.33 79.98 0.34
5 2.73 0.18 91.41 0.50 91.80 0.33 91.80 0.33
6 27.93 0.24 79.69 0.39 80.66 0.33 80.37 0.35
7 22.17 0.31 54.20 0.51 53.13 0.33 53.42 0.34
8 39.06 0.50 60.74 0.51 59.57 0.33 59.57 0.33
9 31.15 0.45 73.14 0.60 71.88 0.33 73.63 0.37
10 41.70 0.55 80.57 0.67 82.81 0.33 80.18 0.34

Average 27.63 0.40 71.38 0.55 71.20 0.33 70.77 0.34

SD 13.27 0.12 16.69 0.09 17.82 0 17.70 0.01

8.6 Effect of |LV | on Classification Effectiveness (Objective

5)

As noted previously, the value for |LV | is usually application domain dependent. How-

ever, for completeness, in this section we consider the effect on classification when

|LV | = 2 and |LV | = 3 (the nature of the labelling in each case was discussed in

Chapter 3). For the experiments |LE | = 4, d = 8, and max = 4 were used. Only

cross-grid graphs were considered because the previous experiments, reported in Section

8.5, indicated that these tended to produce the best results. The results are presented

in Table 8.8.

From Table 8.8, as expected, better accuracy and AUC can be achieved when the

number of vertex labels is small (|LV | = 2). When the number of vertex labels is

increased to 3, the classification performance tends to deteriorate dramatically (AUC

values of less than 0.5 were recorded). Similar, but less dramatic, results were observed

with respect to the AISF experiments reported in the previous chapter. The reason will

be further explored in the next section.

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 135

Table 8.9: Classification Effectiveness with Respect to graph types (Objective 6).

Graph
Comp.VULS Min. VULS Freq. VULS Min.freq VULS J48 Naive Bayes
Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

SIh8E2V2 0.90 0.76 0.99 0.82 0.99 0.50 0.99 0.50 0.99 0.87 0.99 0.87
SIh8E3V2 0.99 0.81 0.99 0.60 0.99 0.50 0.99 0.50 0.99 0.98 0.99 0.98
SIh8E4V2 0.99 0.81 0.99 0.75 0.99 0.50 0.99 0.50 0.99 0.99 0.99 0.99
SIh8E5V2 0.99 0.78 0.99 0.68 0.99 0.50 0.99 0.50 0.99 0.99 0.99 0.99
SIh8E6V2 0.99 0.76 0.99 0.69 0.99 0.50 0.99 0.50 0.99 0.99 0.99 0.99
SIh8E7V2 0.99 0.75 0.99 0.69 0.99 0.50 0.99 0.50 0.99 0.99 0.99 0.99
SIh8E8V2 0.99 0.70 0.99 0.71 0.99 0.50 0.99 0.50 0.99 0.99 0.99 0.99
SIh16E2V2 0.99 0.50 0.99 0.67 0.99 0.50 0.99 0.50 0.99 0.75 0.99 0.86
SIh16E3V2 0.99 0.56 0.99 0.71 0.99 0.50 0.99 0.50 0.99 0.90 0.99 0.97
SIh16E4V2 0.99 0.61 0.99 0.61 0.99 0.55 0.99 0.50 0.99 0.95 0.99 0.96
SIh16E5V2 0.99 0.61 0.99 0.56 0.99 0.60 0.99 0.50 0.99 0.97 0.99 0.97
SIh16E6V2 0.99 0.61 0.99 0.62 0.99 0.60 0.99 0.50 0.99 0.98 0.99 0.98
SIh16E7V2 0.99 0.61 0.99 0.66 0.99 0.55 0.99 0.50 0.99 0.99 0.99 0.98
SIh16E8V2 0.99 0.69 0.99 0.61 0.99 0.61 0.99 0.50 0.99 0.94 0.99 0.99
SIh32E2V2 0.96 0.50 0.96 0.50 0.96 0.50 0.96 0.50 0.98 0.62 0.97 0.86
SIh32E3V2 0.96 0.50 0.97 0.55 0.96 0.50 0.96 0.50 0.98 0.70 0.97 0.94
SIh32E4V2 0.96 0.50 0.96 0.55 0.96 0.50 0.96 0.50 0.98 0.74 0.97 0.95
SIh32E5V2 0.96 0.50 0.96 0.50 0.96 0.50 0.96 0.50 0.99 0.88 0.98 0.98
SIh32E6V2 0.96 0.50 0.97 0.55 0.96 0.50 0.96 0.50 0.98 0.77 0.98 0.98
SIh32E7V2 0.96 0.50 0.96 0.50 0.97 0.55 0.96 0.50 0.98 0.64 0.98 0.99
SIh32E8V2 0.96 0.50 0.97 0.55 0.96 0.50 0.96 0.50 0.98 0.69 0.98 0.99

Average 0.98 0.62 0.98 0.62 0.98 0.52 0.98 0.50 0.99 0.87 0.99 0.96

SD 0.02 0.12 0.01 0.09 0.01 0.04 0.01 0 0.01 0.13 0.01 0.04

8.7 Comparison of VULS Vertex Classification Effective-

ness (Objective 6)

This section reports on the comparative evaluation conducted with respect to VULS ver-

tex classification. This section includes a comparison with using more traditional forms

of classification, namely J48 and Naive Bayes (as implemented in the Waikato Environ-

ment for Knowledge Analysis (WEKA) machine learning workbench1). For usage with

J48 and Nave Bayes the data sets were processed as described in Chapter 3. For the

results presented in Table 8.9, max = 4, |LE | = {2, 3, 4, 5, 6, 7, 8} and |LV | = 2. All the

graphs considered were cross grid graphs (degree= 8) and featured directed edges. The

results are presented in Table 8.9. The table is laid out in a similar manner to those

included in the previous sections except that in this case only the average results from

the TCV are reported.

With reference to Table 8.9, the VULS based vertex classification did not work as well

as expected. The main reasons why VULS based vertex classification did not perform

as well as in the context of sheet metal forming are as follows:

• Minimal VULS can produce as good a result as when using the complete set of

VULS. This was not the case with respect to the AISF application; where frequent

VULS produce as good a result as when using the complete set of VULS. This

is probably because minimal VULS are good at capturing significant geometric

patterns with rare vertex labellings, recall that the vertex label distribution is

1http://www.cs.waikato.ac.nz/ml/weka/

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 136

Figure 8.1: Examples of VULS identified in graphs where d = 8 pixels.

extremely imbalanced in the context of the satellite image data set as noted in

Chapter 3. Thus minimal VULS can achieve as good a performance as when using

the complete set of VULS in unbalanced graphs.

• As noted above, the vertex label distribution within the satellite image graph

data was extremely imbalanced. This in turn has an effect on classifier training

(lack of examples with respect to infrequent vertex labels) and consequently the

application of the classifier.

• The grayscale intensity of each ground type (“BrownField”, “GreenField” and

“HouseHold”) varies, but the grayscale intensity difference (represented as an edge

label) between pairs of vertices might be identical, which in turn may lead to the

proposed Backward-Match-Voting algorithm being unable to identify the correct

vertex labelling. For example, Figure 8.1 shows a number of VULS identified using

d = 8 pixels. Recall that vertex label BF represents “BrownField”, GF represents

“GreenField” and HH represents “HouseHold”. From the figure it can be seen that

labelling of the vertices associated with edge label ‘a’ would be hard to distinguish.

Similarly the end vertex labels for edges labelling with ‘b’ cannot be distinguished.

However, it should of course be appreciated that if a vertex labelling associated

with an edge is not unique we would not have a VULS in the first place.

In the image to graph translation process, if we group pixels using some clustering

technique, instead of grid squares, the grayscale intensity difference (represented as edge

labels) between vertex pairs might produce a better result, however, this is an issue

for future study. For the current research presented here, if the grid size d is small

enough to ensure each grid square only contains one ground type and the ground types

of neighbouring grid squares are more distinctive, the above issue can be relieved slightly.

Thus our proposed VULS classifiers are more likely to perform well using small grid sizes

as already demonstrated in section 8.3.

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 137

8.8 Statistical Comparison of the Proposed VULS Approaches

on Satellite Image data (Objective 7)

This section reports on the statistical comparison of the operation of the proposed VULS

mining with respect to classification effectiveness (AUC) in the context of the satellite

image application. For the experiments both grid and cross grid graphs were considered

(degree 4 and 8). A value of max=4 was used throughout. All 4 VULS algorithms

(compVULS, MinVULS, freqVULS, and minFreqVULS) were considered. Thus eight

different kinds of VULS classifiers in total (using degree = 4 and degree = 8). As

in the case of the AISF statistical comparison reported in Chapter 7, more traditional

classification techniques J48 and Naive Bayes were also considered. Thus a total of 10

different classifiers.

Two separate sets of experiments were conducted, one using |LV | = 2 and one using

|LV | = 3. For each of the ten different kinds of classifier, identified in the previous

paragraph, 21 individual classifiers were generated by considering: (i) a range of seven

values for LE ({2, 3, 4, 5, 6, 7, 8} and (ii) a range of three values for d ({8, 16, 32}); giving

a total of 7× 3 = 21 different classifiers of each type.

The average ranking of the classifiers, with respect to |LV | = 2 and |LV | = 3, are

presented in Tables 8.10 and 8.11 respectively. In the tables the “AR” column gives

the average AUC ranked performance value and the “AR+CD” gives the average AUC

ranked performance value plus the calculated Critical Difference (CD). Recall that the

values in the “AR+CD” column can be used to identify classifiers whose operation is

statistically different from others (this is the case if its AR value is outside of the range

AR to AR+CD).

With respect to Table 8.10, where |LV | = 2, the Friedman test value, using K − 1 =

10− 1 = 9 degrees of freedom, is as follows:

χ2
F = 12×21

10×(11)

[
355.83106575963734− 10×(11)2

4

]
=2.29090909 ×53.33106575

=122.17662337662372

Recall that K is the number of classifiers, 10 in this case (8 VULS classifiers, together

with J48 and Naive Bayes), D is the number of data sets (21 as noted above). The

p-value (threshold) is then 9.916E−11. The F-distribution with 9 (K−1 = 10−1 = 9)

and 180 ((K − 1) ∗ (D − 1) = (10 − 1) ∗ (21 − 1) = 180) degrees of freedom, F (9, 180),

is 36.57. The critical value for F (9, 180), with a critical difference level of α = 0.05, is

1.932. Thus, from the foregoing, we can note that the p-value (9.916E− 11) is less than

0.005 and that the F-distribution (36.57) is larger than the corresponding F-distribution

critical value (1.932). Therefore we can reject the null hypothesis H0 that there is no

statistically significant difference in the observed performance differences among the

classifiers considered. Thus a Nemenyi post-hoc test was deemed to be applicable to

detect which particular classifiers differed in a statistically significantly manner from

the others.

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 138

The resulting significance diagram, corresponds to the information presented in Table

8.10, is presented in Figure 8.2. The classifiers are listed along the Y axis in ascending

order of their ranked AUC performance. The AUC performance rankings, along with

the Nemenyi’s Critical Difference (CD) tail, are presented along the X axis. The CD

value for the diagram is equal to 2.09 calculated as follows:

CD =qα,∞,10

√
10×11
12×21

=3.164 ×0.66068

=2.090415

The two vertical dashed lines included in the figure indicate the end of the best per-

forming classifier’s tail and the start of the next statistically different classifier. From

the figure it can be seen that with respect to graphs where |LV | = 2, the best perform-

ing classifier was Naive Bayes (a recorded AR value of 1.262), J48 achieved comparable

performance whilst VULS classifiers perform significantly worse than Naive Bayes and

J48. Relatively speaking, minimal VULS with degree 8 produced the best performance

amongst the VULS classifiers, whilst Complete VULS and minimal VULS performed

significantly better than frequent VULS and minimal frequent VULS regardless of the

degree value used.
Table 8.10: Average Rankings of classifiers where |LV | = 2

Algorithm AR AR+CD

Directed-Degree4-max4-compVULS 5.905 7.995

Directed-Degree4-max4-minVULS 6.048 8.138

Directed-Degree4-max4-freqVULS 7.571 9.662

Directed-Degree4-max4-minFreqVULS 7.976 10.067

J48 1.738 3.829

Naive Bayes 1.262 3.352

Directed-Degree8-max4-compVULS 4.952 7.043

Directed-Degree8-max4-minVULS 4.452 6.543

Directed-Degree8-max4-freqVULS 7.024 9.114

Directed-Degree8-max4-minFreqVULS 8.071 10.162

Table 8.11: Average Rankings of classifiers where |LV | = 3

Algorithm AR AR+CD

Directed-Degree4-max4-compVULS 7.071 9.162

Directed-Degree4-max4-minVULS 5.286 7.376

Directed-Degree4-max4-freqVULS 7.4045 9.495

Directed-Degree4-max4-minFreqVULS 7.976 10.067

J48 1.381 3.471

Naive Bayes 1.619 3.709

Directed-Degree8-max4-compVULS 5.190 7.281

Directed-Degree8-max4-minVULS 3.952 6.043

Directed-Degree8-max4-freqVULS 7.786 9.876

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 139

Directed-Degree8-max4-minFreqVULS 7.333 9.424

With respect to Table 8.11 (|LV | = 3), the chi-squared (χ2
F) Friedman test value,

with K − 1 = 10− 1 = 9 degrees of freedom, was calculated as the follows:

χ2
F = 12×21

10×(11)

[
357.8798185941044− 10×(11)2

4

]
=2.29090909 ×55.37981859410439

=126.870129870

The associated p-value (threshold) was then 6, 246E − 11. The F-distribution with

K − 1 = 9 and (K − 1) ∗ (D − 1) = (10 − 1) ∗ (21 − 1) = 180 degrees of freedom,

F (9, 180), was then 40.84. The critical value for F (9, 180), with a critical difference

level of α = 0.05, is 1.932. As in the case of |LV | = 2, the p-value is less than 0.005 and

the F-distribution is larger than the corresponding F-distribution critical value (1.932).

Therefore, as before, the null hypothesis H0 can be rejected. Consequently a Nemenyi

post-hoc test was deemed to be appropriate. The significance diagram is presented in

Figure 8.3. As in the case of the |LV | = 2 results, the figure shows the AUC performance

rankings for the classifiers, along with the Nemenyi Critical Difference (CD) tail in each

case. As before, the CD value for the diagram is equal to 2.09 calculated as shown above.

From Figure 8.3 it can again be seen that, with respect to graphs where |LV | = 3,

the best performing classifier was Naive Bayes (a recorded AR value of 1.619), J48

achieved comparable performance whilst the VULS classifiers performed significantly

worse than Naive Bayes and J48. As before, and relatively speaking, minimal VULS

with degree 8 produced the best performance amongst the VULS classifiers considered,

whilst minimal VULS and Complete VULS with degree 8 perform significantly better

than frequent VULS and minimal frequent VULS regardless of degree.

Figure 8.2: Critical difference diagram generated using Nemenyi’s post hoc test with
α = 0.05 for graphs where |LV | = 2 .

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 140

Figure 8.3: Critical difference diagram generated using Nemenyi’s post hoc test with
α = 0.05 for graphs where |LV | = 3 .

8.9 Summary

This chapter has presented an evaluation of the proposed VULS mining and vertex clas-

sification processes in the context of satellite image interpretation. From the evaluation

the following main findings can be made:

1. Minimal VULS mining when applied to directed cross-grid graphs (graphs of degree

8) produced the most effective results with respect to the satellite image application

domain.

2. There is no significant difference in classification effectiveness, measured in terms of

accuracy and AUC, between VULS classifiers built using different max parameter

settings (at least in the range of {4, 5, 6}). However, using max = 4 is more

efficient in the context of VULS mining (and in some cases produces a slightly

better classification result).

3. The set of VULS produced using directed cross-grid graphs resulted in the most

effective vertex classification (in terms of AUC).

4. The VULS classifiers performed better on graphs that featured a small grid size,

such as d = 8 pixels, than graphs that featured a larger grid size such as d = 16

and d = 32 pixels.

5. With respect to the size of |LV |, as the number of vertex labels increases from

2 to 3, the graph labelling becomes more diverse; as a result, the classification

performance tended to deteriorate.

6. When the operation of the VULS classifiers, in terms of accuracy and AUC, was

compared with operation of more standard (traditional) classifiers, namely J48 and

Nave Bayes, the latter were unfortunately found to produce a better performance.

7. Referring back to chapter 7 the evaluated VULS classifiers produced better results

with respect to the sheet metal forming AISF application domain than the satellite

Chapter 8. Experimental Results Using Satellite Image Interpretation Application 141

image interpretation domain. It was conjectured that this was largely because the

vertex label distribution of the satellite image graphs was extremely unbalanced.

This chapter concludes the evaluation of the proposed VULS mining concept consid-

ered in this thesis. The thesis is concluded in the following chapter with a summary of

the work presented, along with the main findings in the context of the research objectives

presented in Chapter 1, and some suggestions for future work.

Chapter 9

Conclusion and Future Research

9.1 Introduction

This concluding chapter presents an overall summary of the work described in this

thesis along with the main findings and contributions. This chapter also provides some

suggestions for future work. The chapter is organised as follows. In Section 9.2 an overall

summary of the thesis is presented. The main findings and contributions are reported in

Section 9.3. Finally, some suggested ideas for future work are presented in Section 9.4

in the context of further potential research based on the work described in this thesis.

9.2 Summary

This section presents an overall summary of the work presented. The thesis commenced

in Chapter 2 with a review of previous work, and then went on to consider the data

sets used in Chapter 3. Two application domains were considered. The first, and the

main focus of the work, was a sheet metal forming application, namely the prediction of

a phenomena known as springback. In this context the data sets used were generated

using a process known as Asymmetric Incremental Sheet Forming (AISF), and were

supplied by the IBF (Institut für Bildsame Formgebung) institute of metal forming at

Aachen University. The second application domain considered was a satellite image

interpretation application where the aim was to identify ground types. This second

application was not the main focus for the work, but was intended to illustrate the

wider applicability of the VULS idea. In both cases the raw data was translated into

a grid format from which grid graphs, where each node represented a grid square, were

generated. In the case of the AISF application the vertex labels were springback values;

in the case of the satellite image interpretation the labels were ground types. The

advantage offered by this representation was that the VULS Mining concept could be

applied in a relatively straight forward manner.

The formalism for the proposed VULS concept was established in Chapter 4, where

four different categories of VULS were also defined: (i) Complete VULS, (ii) Minimal

VULS, (iii) Frequent VULS and (iv) Minimal Frequent VULS. In Chapter 5 four VULS

143

Chapter 9. Conclusion and Future Research 144

mining algorithms were proposed, one for each of the identified categories. The main

issues these algorithms sought to address were:

1. The need to identify a sufficiently comprehensive set of VULS (a collection of

VULS that will ensure good “coverage” with respect to unseen data).

2. The large number of potential VULS that can be contained in a reasonably sized

graph (the identification process thus needed to be efficient).

Chapter 6 proposed the Backward Match Voting algorithm for using pre-labelled sub-

graphs (such as VULS generated using VULS mining algorithms presented in Chapter

5) to predict vertex labels. The main issues here were how best to address the situa-

tions where, with respect to a specific vertex in an unseen data set, either: (i) several

competing VULS can be used to label the vertex, or (ii) no appropriate VULS can cover

the vertex.

The evaluation of the proposed VULS algorithms was presented in Chapters 7 and 8

in the context of AISF springback prediction and satellite image ground type prediction

respectively. The evaluation was conducted mostly in the context of vertex classification

and with respect to a number of input parameters (max, |LV |, LE and d). Evaluation

was also conducted comparing the usage of graphs with degree four and eight; and, in the

case of the AISF data, comparing the usage of directed and undirected graphs. In addi-

tion some overall evaluation was conducted with respect to classification effectiveness,

including comparison with Naive Bayes and J48. The recorded evaluation unfortunately

indicated that Naive Bayes produced the best performance, while the proposed VULS

classifiers could achieve a comparable performance to J48, and sometimes a better per-

formance, depending on the vertex label distribution of the input graph. However, it

should be noted that the Naive Bayes and J48 classifiers could only be used because of

the particular, very structured, nature of the grid (and cross grid) graphs considered,

they could not be easily applied in the case of more unstructured input graph data

where the VULS concept would still be applicable. In terms of efficiency the evalua-

tion reported in Chapters 7 and 8 indicated that the Frequent VULS mining algorithm

was the fastest in the case of the sheet metal forming AISF application, whilst the

Minimal VULS mining algorithm was the fastest in the context of the satellite image

interpretation application (the reasons for this were discussed in the relevant chapters).

Both chapters 7 and 8 were concluded with a statistical analysis of the results using the

Friedman and the Nemenyi post-hoc tests. .

9.3 Main Findings

This section revisits the overriding research question and the subsidiary technical and

application dependent research questions presented in Chapter 1 (Section 1.3) and de-

scribes how each was resolved in terms of the “main findings” of the research presented

in this thesis. The section is organised by considering each of the subsidiary technical

Chapter 9. Conclusion and Future Research 145

and application research questions in turn and then returning to the overriding research

question. The technical research sub-questions postulated in the introduction to this

thesis are considered first as follows.

1. What is the most appropriate mechanism for identifying VULS? The work con-

ducted suggested that the most appropriate mechanism for identifying VULS was

to adopt a candidate generation and test approach along the lines used in the well

established gSpan algorithm. Right most extension was selected for the purpose

of candidate VULS generation without duplication. The most appropriate mech-

anism for defining VULS was considered to be the usage of some canonical form.

This was seen as important because it allowed graphs to be represented in a unique

manner thus allowing for straight forward isomorphism testing. More specifically

minimal Depth First Search (DFS) lexicographic encoding was adopted.

2. Can efficiency gains be realised by mining some subset of the complete set of VULS?

The presented evaluation clearly indicated that efficiency gains can be made by, in-

stead of mining the complete set of VULS, mining only frequent VULS or minimal

VULS. More specifically, recall that VULS mining is computationally expensive.

Thus instead of identifying the complete set of VULS, we can attempt to identify

some appropriately descriptive (in terms of coverage) subset of the complete set of

VULS: (i) minimal VULS, (ii) frequent VULS or (iii) minimal frequent VULS. The

relationship between these four VULS categories can be expressed as: (i) VULS

⊇ minimal VULS ⊇ minimal frequent VULS; and (ii) VULS ⊇ frequent VULS

⊇ minimal frequent VULS. For minimal VULS and minimal frequent VULS, only

the k-edge subgraphs that were found not to be VULS were extended to generate

(k+1)-edge VULS candidates for the next iteration so as to reduce the number

of over all VULS candidates and improve the VULS mining efficiency. Above all,

the number of minimal VULS, frequent VULS and minimal frequent VULS were

typically less than the complete set of VULS. As a consequence VULS classifiers

using these categories of VULS required less run time. The evaluation of the

proposed techniques indicated that minimal frequent VULS in some cases, and

frequent VULS, could produce more efficient results in the case of the AISF sheet

metal forming application domain, whilst minimal VULS demonstrated promising

results in the context of the satellite image interpretation application domain. In

order to statistically differentiate between the operation of the proposed VULS

classifiers, a statistical evaluation based on the Friedman and Nemenyi statistical

tests was performed. This confirmed the results obtained.

3. Given that we can mine a variety of different categories of VULS which of these

are the most useful in terms of effectiveness and efficiency? As noted above, it

was found that there was no definite answer to this question. Usage of each VULS

entailed both advantages and disadvantages. The answer depends on the appli-

cation domain under consideration. Frequent VULS and minimal frequent VULS

Chapter 9. Conclusion and Future Research 146

were found to perform well on graphs featuring a balanced vertex label distribu-

tion, such as in the context of the AISF sheet metal forming application. Minimal

VULS were found to produce promising results on graphs featuring unbalanced ver-

tex label distributions, such as in the context of the satellite image interpretation

application. Complete VULS can perform effectively in most application domains,

however, this is computationally expensive. Thus instead of using the complete

set of VULS, it was found that a subset of VULS (such as: (i) minimal VULS,

(ii) frequent VULS or (iii) minimal frequent VULS) could be successfully applied

to improve efficiency while still producing an effective performance regardless of

vertex distribution.

4. How do we measure the quality of a set of VULS without applying them to a test

set? One way of testing the quality of a set of identified VULS is to apply

them within the context of a vertex classification setting. However, in practice,

this opportunity may not available. An alternative VULS quality measure was

thus considered to be necessary. To this end the coverage metric was proposed.

Coverage was thus used as one of the measures to compare the operation of the

proposed VULS mining algorithms. To obtain good coverage the identified set of

VULS should describe as wide a range of different configurations as possible; the

more vertices with various configurations the better.

5. Once a set of VULS have been identified what is the most appropriate mechanism

for uitilising this set of VULS in the context of vertex classification? In other

words, how best to predict vertex labels in a previously unseen graph, G, using an

identified set VULS. The first issue here was the matching process to be adopted,

this was addressed by using the same canonical form and isomorphism testing

strategy proposed in the context of VULS mining. The second was resolved using

a voting mechanism. A variety of voting mechanisms could have been adopted,

including: (i) majority voting and (ii) weighted voting. The first was adopted. The

proposed vertex classification algorithm was termed the Backward-Match-Voting

algorithm because: (i) it operates in a “backwards” manner from the maximum

value for k, thus k = max, to k = 1; (ii) it “matches” graph structures and edge

labelings in the identified set of VULS with graph structures and edge labelling inG

so as to label the vertices in G using the labels from the VULS; and (iii) where more

than one vertex label was assigned to a vertex in G a majority “voting” scheme

was applied. The evaluation indicated that a good performance could be achieved

using the Backward-Match-Voting algorithm. Note also that the application of

the algorithm is not limited to VULS it can be used in other situations where we

wish to conduct vertex classification using a set of pre-labelled subgraphs.

The application research sub-questions were addressed as follows:

1. How best to generate grid graphs given a 3D surface? In other words, how best to

translate “point cloud” raw data, expressed in terms of a set of x-y-z coordinates,

Chapter 9. Conclusion and Future Research 147

to the desired graph format in a simple, easy and effective manner so that the

proposed VULS classifiers can be built? The foundation for this part of the work

was taken from [65–67, 130, 184]. The given “point clouds” (in the case of the

sheet metal forming application) or pixel sets (in the case of the satellite image

interpretation application) were first converted into a grid format. The centre

point for each grid square was then considered to represent a vertex within a grid

graph and labelled with a vertex class label (springback or ground type). Each

vertex could be connected by an edge to its neighbours in a number of manners,

a logical approach was to consider either the four cardinal, or eight cardinal and

sub-cardinal neighbours. Each edge was labelled using a “slope” categorical label

(because the proposed VULS vertex classification could only operate using such

labels); equal width discretisation was adopted. Edges could be directed or undi-

rected. In total 32 different raw data sets with respect to the sheet metal forming

application, and 10 with respect to satellite image data, were generated in this

manner. Experiments were conducted using a variety of values for: (i) the size of

the vertex (class) label set LV , (ii) the size of the edge label set LE and (iii) grid

size d. The conducted experimental analysis established that VULS based vertex

classification performed better using: (i) directed graphs than undirected graphs,

(ii) graphs of degree 4 in the context of sheet metal forming and degree 8 in the

context of satellite image interpretation.

2. What further applications can the VULS concept be applied to? In other words,

how could the proposed VULS based vertex classification mechanism be usefully

adopted in the broader context? With respect to the work presented in this thesis

the main application domain was sheet metal forming. The secondary application

domain was satellite image interpretation. More generally the VULS concept has

wider applicability in all areas where the domain of interest can be represented in

the form of some sort of a graph. This is explored further in the following future

work section.

Returning to the main research question:

“How best can the proposed VULS mining be conducted so as to achieve

effective grid graph vertex classification?”

From the foregoing a number of alternative mechanism for mining VULS were consid-

ered founded on four different categories of VULS: Complete VULS, Minimal VULS,

Frequent VULS and Minimal Frequent VULS. From the evaluation conducted each of

these provided different advantages. Best coverage tended to be produced using Com-

plete VULS. The most efficient was frequent VULS in the context of graphs with a

balanced vertex label distribution, and minimal VULS in the context of graphs with an

imbalanced vertex label distribution. Note that frequent VULS can capture significant

VULS which occur commonly, and thus will from the most representative set of VULS;

Chapter 9. Conclusion and Future Research 148

whilst Minimal VULS can capture significant geometric patterns including patterns re-

lated to rare vertex labels. In the context of vertex classification the Backward Match

Voting algorithm was proposed. The reported evaluation indicated that by using this

algorithm effective classification could be conducted. More specifically that frequent

VULS was the most effective in the context of the AISF application and minimal VULS

in the satellite image application.

9.4 Future Work

The work presented in this thesis has demonstrated that, in the context of sheet metal

forming and satellite image interpretation, vertex classification can be effectively achieved

using VULS. Despite the results produced, enhancements and improvements can be envi-

sioned. This concluding section suggests some potential areas for future work as follows:

1. Application to alternative forms of graph. Only grid graphs were considered

with respect to the work presented in this thesis. This was because of the AISF

sheet metal forming application domain, that acted as the main motivation for the

work, where the 3D shapes to manufactured are frequently considered in terms of

a 2D grid. Translation into grid graphs is therefore an obvious step to take. How-

ever, the regular structure of grid graphs is such that, as demonstrated, the graph

information can be simply translated into a feature vector format to which stan-

dard (tabular data) classifier generators can be applied. As a consequence, and as

also demonstrated in the thesis, classifiers such as Naive Bayes were found to some-

times outperform the proposed VULS vertex classification approach. However, it

would not be so easy to apply such standard classification techniques to unstruc-

tured graphs. The VULS concept is clearly applicable to non-regular graphs. A

suggested fruitful direction for future investigations into the utility of VULS is thus

their application to non-regular graphs. In the future, running experiments where

VULS classifiers are applied to more complex graphs could be interesting. Such

as: (i) geometric networks built on point clouds, and (ii) “Variable resolution”

networks (similar in nature to quad-trees) so that less informative parts of the 3D

surface under investigation could be modelled by coarse grids and others by fine

grids.

2. KNN Graphs. Following on from the previous item one mechanism for generat-

ing an alternative to grid graphs is to produce KNN graphs [142]. A KNN graph

is constructed by considering a set of records to be set as vertices. Vertices are

connected by edges if they are in some sense similar. The parameter K is then

the maximum number of permitted connections. An alternative is to use some

similarity threshold to connect graphs. We can then label the vertices using a

class label and then generate a set of VULS, as envisioned in this thesis, which can

then be applied to previously unseen data. Of course this approach will only be

Chapter 9. Conclusion and Future Research 149

applicable to data that can be conceived of as a set of independent records. In the

context of the AISF sheet metal forming application, one way this could simply

be achieved is by considering individual grid squares as records.

3. Alternative Graph formats for image data using pixel clustering. In the

context of the evaluation using the satellite image interpretation application the

intention behind the evaluation was to investigate how well the VULS concept

could perform in the context of vertex classification with respect to an alternative

application domain than the AISF domain used as the central focus for the re-

search. The reported results indicated that, although the VULS concept worked

well in the context of the AISF sheet metal forming, the performance was not

as good in the context of the satellite image interpretation application. It was

conjectured that this was because, during the preprocessing of the satellite images

into grid graphs, pixel intensity information was lost as a result of the process of

simply dividing the images into even grid squares. It was not an objective of the

work described in this thesis to consider techniques for translating image data into

a grid graph format, however, the manner in which this is conduced will clearly

have some influence on the final VULS classifiers’ performance. An alternative

mechanism for generating grid graphs therefore seems an appropriate avenue for

further work. One idea is to use clustering techniques to group connected pixels

with similar intensity values. In this manner a given image will be divided into a

collection of clusters instead of grid squares. Each cluster can then be represented

as a vertex in a graph with edges linking neighbouring clusters. As before edges

can be labelled using grayscale intensity difference. By adopting this approach it

might be possible to improve VULS classifier performance, not only with respect to

the satellite image interpretation application considered in this these, but also in

the context of alternative image interpretation applications. It is thus anticipated

that the use of clustering techniques will improve the performance of the proposed

VULS classifiers, this is thus anticipated to be another fruitful avenue for future

work.

4. Pixel Clustering for AISF data. To improve the application of the VULS

concept with respect to the AISF application the pixel clustering idea identified

above can equally well be applied in the context of AISF data. In this case, instead

of pixels, some atomic point formalism will need to be considered. This will mean

that different size areas in a 3D surface to be manufactured, that feature constant

springback, can be considered in terms of a single vertex. The result of course will

be an irregular graph, however, better springback prediction might result.

5. Additional evaluation. To date the VULS concept has only been applied to the

AISF sheet metal forming and the satellite image interpretation applications con-

sidered in this thesis. Much wider evaluation seems desirable. Even in the context

of the satellite image interpretation application the images used were limited to a

Chapter 9. Conclusion and Future Research 150

rural area; urban areas should also be considered. With respect to the KNN graph

idea presented above it would be possible to consider benchmark datasets such as

those available within the UCI machine learning repository1.

6. VULS pruning. Not all generated VULS are equally significant in the context

of vertex classification. This is why the proposed Backward-Match-Voting (BMV)

algorithm prioritises “large” VULS. Using some form of principal component anal-

ysis it may be possible to identify the most discriminating VULS with respect to

some identified set of class labels. Consequently it might be possible to prune the

set of identified VULS to reduce there overall number, which might have an impact

on efficiency. Alternatively it might be possible to rank the VULS so that the most

discriminating VULS are applied first. This will also necessitate an alternative to

the proposed backward match voting algorithm, however, it is suggested that this

might enhance the overall performance of VULS vertex classification.

7. Graph Classification and Clustering Using The VULS Concept. In this

thesis VULS have only been used for vertex classification. However, VULS can

also be used for graph classification and clustering. More specifically the VULS

identified within a transaction graph set can be used to construct a feature space

which can then be used to encode a set of class labelled transaction graphs. The

features (VULS) that are frequent for one class may be infrequent for other classes

and serve as highly discriminative features (VULS). The identified features can

then be used construct a classifier using standard classification approaches which

can then be used to classify previously unseen transaction graphs. Various classifi-

cation approaches may be adopted, for example SVM (Support Vector Machines),

Naive Bayes and associative classification. Similarly, cluster analysis can be ex-

plored using mined VULS patterns. Sets of graphs that share a large number of

similar VULS patterns could be considered to be highly similar and thus grouped

into a single clusters.

8. Transaction graph mining. So far the usage of VULS has been limited to single

graph mining, but it can be easily adapted to transaction graphs. This was partly

done with respect to the satellite image interpretation image data, but for future

work it might be interesting to consider more extensive (larger) transaction graph

sets.

9. Candidate VULS generation Method. The well known gSpan algorithm com-

bines subgraph extension and isomorphism testing into one procedure; thus it can

achieve competitive, and in some cases better performance than other frequent

subgraph mining algorithms in terms of run time. However, gSpan does not work

well when the size of the graphs considered are large. For the proposed VULS

1http://archive.ics.uci.edu/ml/

Chapter 9. Conclusion and Future Research 151

algorithms the gSpan data structure was borrowed, thus the efficiency of the pro-

posed VULS mining algorithms might meet a similar “bottleneck” when it comes

to very large graphs. Exploring more efficient data structures and techniques for

generating candidate VULS, that will permit the processing of very large graphs,

would therefore be beneficial.

10. Frequency measures. The proposed frequent VULS and minimal frequent

VULS mining algorithms rely on a support-based pruning strategy to prune the

combinatorial search space. The threshold σ plays a significant role in this strat-

egy, especially when it comes to graphs with skewed support distributions. In-

stead of dynamically setting σ according to the average occurrence of subgraphs

on each iteration, as proposed in this thesis, the usage of other measures, such as

h-confidence [226] might be usefully explored.

11. Comparison with other vertex classification methods. As noted in the

literature review presented in chapter 2 there are a variety of mechanisms whereby

vertex classification can be conducted. Although none of these mechanisms use the

graph based approach considered in this thesis. It would be interesting to conduct

a comparison between the VULS approach presented in this thesis and a number

of these alternative mechanisms.

Overall the research work on the generation and usage of VULS for vertex classi-

fication, in the context of sheet metal forming and satellite image interpretation, as

presented in this thesis, has produced some interesting outcomes and provided a sound

foundation for future work.

Bibliography

[1] Kenji Abe, Shinji Kawasoe, Tatsuya Asai, Hiroki Arimura, and Setsuo Arikawa.

Optimized substructure discovery for semi-structured data. In Principles of Data

Mining and Knowledge Discovery, pages 1–14. Springer, 2002.

[2] Ramesh C. Agarwal, Charu C. Aggarwal, and V.V.V. Prasad. A tree projection

algorithm for generation of frequent item sets. Journal of Parallel and Distributed

Computing, 61(3):350 – 371, 2001.

[3] Charu C Aggarwal. An introduction to social network data analytics. In Charu C.

Aggarwal, editor, Social Network Data Analytics, pages 1–15. Springer US, 2011.

[4] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association

rules in large databases. In Proceedings of the 20th International Conference on

Very Large Data Bases, VLDB ’94, pages 487–499, San Francisco, CA, USA, 1994.

Morgan Kaufmann Publishers Inc.

[5] A. Albarrak, F. Coenen, and Yalin Zheng. Classification of volumetric retinal

images using overlapping decomposition and tree analysis. In Computer-Based

Medical Systems (CBMS), 2013 IEEE 26th International Symposium on, pages

11–16, June 2013.

[6] J. M. Allwood, G. P. F. King, and J. Duflou. A structured search for applications of

the incremental sheet-forming process by product segmentation. Proceedings of the

Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,

219(2):239–244, 2005.

[7] Karl-Heinrich Anders, Monika Sester, and Dieter Fritsch. Analysis of settlement

structures by graph-based clustering. Semantische Modellierung, pages 41–49,

1999.

[8] Tatsuya Asai, Hiroki Arimura, Takeaki Uno, and Shin-ichi Nakano. Discovering

frequent substructures in large unordered trees. In Gunter Grieser, Yuzuru Tanaka,

and Akihiro Yamamoto, editors, Discovery Science, volume 2843 of Lecture Notes

in Computer Science, pages 47–61. Springer Berlin Heidelberg, 2003.

153

Bibliography 154

[9] K. Ataman, W.N. Street, and Yi Zhang. Learning to rank by maximizing auc with

linear programming. In Neural Networks, 2006. IJCNN ’06. International Joint

Conference on, pages 123–129, 2006.

[10] Arik Azran. The rendezvous algorithm: Multiclass semi-supervised learning with

markov random walks. In Proceedings of the 24th international conference on

Machine learning, pages 49–56. ACM, 2007.

[11] Emna Bahri and Stéphane Lallich. Pruning for extracting class association rules

without candidate generation. In Proceedings of The 2009 International Con-

ference on Data Mining, DMIN 2009, July 13-16, 2009, Las Vegas, USA, pages

11–17, 2009.

[12] M. Bambach, B. Taleb Araghi, and G. Hirt. Strategies to improve the geometric

accuracy in asymmetric single point incremental forming. Production Engineering

Research and Development, 3(2):145–156, 2009.

[13] Michael J. Barnsley and Stuart L. Barr. Distinguishing urban land-use categories

in fine spatial resolution land-cover data using a graph-based, structural pattern

recognition system. Computers, Environment and Urban Systems, 21(34):209 –

225, 1997. Remote Sensing of Urban Systems.

[14] Th Bauer and K Steinnocher. Per-parcel land use classification in urban areas

applying a rule-based technique. GeoBIT/GIS, 6:24–27, 2001.

[15] Mikhail Belkin, Irina Matveeva, and Partha Niyogi. Regularization and semi-

supervised learning on large graphs. In Learning theory, pages 624–638. Springer,

2004.

[16] Mikhail Belkin and Partha Niyogi. Using manifold structure for partially labeled

classification. In Advances in neural information processing systems, pages 929–

936, 2002.

[17] Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. Label Propagation and

Quadratic Criterion, page 193216. MIT Press, 2006.

[18] Ursula C Benz, Peter Hofmann, Gregor Willhauck, Iris Lingenfelder, and Markus

Heynen. Multi-resolution, object-oriented fuzzy analysis of remote sensing data

for gis-ready information. ISPRS Journal of photogrammetry and remote sensing,

58(3):239–258, 2004.

[19] Khalida binti Oseman, Norazrina Abu Haris, and Faizin bin Abu Bakar. Data min-

ing in churn analysis model for telecommunication industry. Journal of Statistical

Modeling and Analytics Vol, 1(19-27), 2010.

[20] Christian Borgelt. Canonical forms for frequent graph mining. In Reinhold Decker

and Hans-J. Lenz, editors, Advances in Data Analysis, Studies in Classification,

Bibliography 155

Data Analysis, and Knowledge Organization, pages 337–349. Springer Berlin Hei-

delberg, 2007.

[21] Christian Borgelt. Frequent item set mining. Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, 2(6):437–456, 2012.

[22] Christian Borgelt and Michael R Berthold. Mining molecular fragments: Finding

relevant substructures of molecules. In Data Mining, 2002. ICDM 2003. Proceed-

ings. 2002 IEEE International Conference on, pages 51–58. IEEE, 2002.

[23] Andrew P. Bradley. The use of the area under the {ROC} curve in the evaluation

of machine learning algorithms. Pattern Recognition, 30(7):1145 – 1159, 1997.

[24] Andrew P Bradley. The use of the area under the roc curve in the evaluation of

machine learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

[25] U Brandes, M Eiglsperger, M Kaufmann, J Lerner, and C Pich. The graphml file

format. 2000.

[26] Bjrn Bringmann and Siegfried Nijssen. What is frequent in a single graph? In

Takashi Washio, Einoshin Suzuki, KaiMing Ting, and Akihiro Inokuchi, editors,

Advances in Knowledge Discovery and Data Mining, volume 5012 of Lecture Notes

in Computer Science, pages 858–863. Springer Berlin Heidelberg, 2008.

[27] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-

jagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure

in the web. Computer Networks, 33(16):309 – 320, 2000.

[28] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an undirected

graph. Commun. ACM, 16(9):575–577, September 1973.

[29] Iain Brown. An experimental comparison of classification techniques for imbal-

anced credit scoring data sets using sas. In SAS Global Forum 2012,Data Mining

and Text Analytics, 2012.

[30] Gregory Buehrer and Kumar Chellapilla. A scalable pattern mining approach to

web graph compression with communities. In Proceedings of the 2008 International

Conference on Web Search and Data Mining, WSDM ’08, pages 95–106, New York,

NY, USA, 2008. ACM.

[31] Richard J. Campbell and Patrick J. Flynn. A survey of free-form object represen-

tation and recognition techniques. Comput. Vis. Image Underst., 81(2):166–210,

February 2001.

[32] Claudio Carpineto and Giovanni Romano. Using concept lattices for text retrieval

and mining. In Formal Concept Analysis, pages 161–179. Springer, 2005.

Bibliography 156

[33] Deepayan Chakrabarti and Christos Faloutsos. Graph mining: Laws, generators,

and algorithms. ACM Comput. Surv., 38(1), June 2006.

[34] Hyun Sung Chang, Sanghoon Sull, and Sang Uk Lee. Efficient video indexing

scheme for content-based retrieval. Circuits and Systems for Video Technology,

IEEE Transactions on, 9(8):1269–1279, 1999.

[35] Gary Chartrand and Ping Zhang. A first course in graph theory. Courier Corpo-

ration, 2012.

[36] Chen Chen, Xifeng Yan, Feida Zhu, and Jiawei Han. gapprox: Mining frequent

approximate patterns from a massive network. In Data Mining, 2007. ICDM 2007.

Seventh IEEE International Conference on, pages 445–450. IEEE, 2007.

[37] L. Chen, J. Vogelstein, and C. Priebe. Robust Vertex Classification. ArXiv e-

prints, November 2013.

[38] Yun Chi, Richard Muntz, Siegfried Nijssen, and Joost Kok. Frequent subtree

mining–an overview. Fundamenta Informaticae, 21:1001–1038, 2001.

[39] Yun Chi, Yi Xia, Yirong Yang, and Richard R Muntz. Mining closed and maximal

frequent subtrees from databases of labeled rooted trees. Knowledge and Data

Engineering, IEEE Transactions on, 17(2):190–202, 2005.

[40] Yun Chi, Yirong Yang, and Richard R. Muntz. Indexing and mining free trees. In

Data Mining, 2003. ICDM 2003. Third IEEE International Conference on, pages

509–512, Nov 2003.

[41] Yun Chi, Yirong Yang, and Richard R. Muntz. Hybridtreeminer: an efficient al-

gorithm for mining frequent rooted trees and free trees using canonical forms. In

Scientific and Statistical Database Management, 2004. Proceedings. 16th Interna-

tional Conference on, pages 11–20, June 2004.

[42] Yun Chi, Yirong Yang, and Richard R Muntz. Mining frequent rooted trees and

free trees using canonical forms. Knowledge and Information Systems, 2004.

[43] Yun Chi, Yirong Yang, Yi Xia, and Richard R. Muntz. Cmtreeminer: Mining both

closed and maximal frequent subtrees. In In The Eighth Pacific Asia Conference

on Knowledge Discovery and Data Mining (PAKDD’04, 2003.

[44] E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J.D. Ullman,

and C. Yang. Finding interesting associations without support pruning. Knowledge

and Data Engineering, IEEE Transactions on, 13(1):64–78, Jan 2001.

[45] Diane J. Cook and Lawrence B. Holder. Substructure discovery using minimum

description length and background knowledge. Journal of Artificial Intelligence

Research, pages 231–255, 1994.

Bibliography 157

[46] Diane J. Cook and Lawrence B. Holder, editors. Mining graph data. Hoboken,

N.J. Wiley-Interscience, 2007.

[47] R. Cooley, B. Mobasher, and J. Srivastava. Grouping web page references into

transactions for mining world wide web browsing patterns. In Knowledge and

Data Engineering Exchange Workshop, 1997. Proceedings, pages 2–9, Nov 1997.

[48] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. An improved algorithm

for matching large graphs. In In: 3rd IAPR-TC15 Workshop on Graph-based

Representations in Pattern Recognition, Cuen, pages 149–159, 2001.

[49] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, Francesco Tortorella, and Mario

Vento. Graph matching: a fast algorithm and its evaluation. In Pattern Recogni-

tion, 1998. Proceedings. Fourteenth International Conference on, volume 2, pages

1582–1584. IEEE, 1998.

[50] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, Third Edition. The MIT Press, 3rd edition, 2009.

[51] J-P de Almeida, JG Morley, and IJ Dowman. Graph theory in higher order

topological analysis of urban scenes. Computers, environment and urban systems,

31(4):426–440, 2007.

[52] G. Dearden, S.P. Edwardson, E. Abed, K. Bartkowiak, and K.G. Watkins. Correc-

tion of distortion and design shape in aluminium structures using laser forming. In

25th International Congress on Applications of Lasers and Electro Optics(ICALEO

2006), pages 813–817, 2006.

[53] Olivier Delalleau, Yoshua Bengio, and Nicolas Le Roux. Efficient non-parametric

function induction in semi-supervised learning. In Proceedings of the Tenth Inter-

national Workshop on Artificial Intelligence and Statistics, pages 96–103, 2005.

[54] Konstantinos K Delibasis, Aristides Kechriniotis, and Ilias Maglogiannis. A novel

tool for segmenting 3d medical images based on generalized cylinders and active

surfaces. Computer methods and programs in biomedicine, 111(1):148–165, 2013.

[55] J. Demšar. Statistical comparisons of classifiers over multiple data sets. The

Journal of Machine Learning Research, 7:1–30, 2006.

[56] Minghua Deng, Ting Chen, and Fengzhu Sun. An integrated probabilistic model

for functional prediction of proteins. Journal of Computational Biology, 11(2-

3):463–475, 2004.

[57] Kwankamon Dittakan, Frans Coenen, and Rob Christley. Towards the collection

of census data from satellite imagery using data mining: A study with respect to

the ethiopian hinterland. In Max Bramer and Miltos Petridis, editors, Research

Bibliography 158

and Development in Intelligent Systems XXIX, pages 405–418. Springer London,

2012.

[58] Kwankamon Dittakan, Frans Coenen, and Rob Christley. Satellite image mining

for census collection: A comparative study with respect to the ethiopian hinter-

land. In Petra Perner, editor, Machine Learning and Data Mining in Pattern

Recognition, volume 7988 of Lecture Notes in Computer Science, pages 260–274.

Springer Berlin Heidelberg, 2013.

[59] Kwankamon Dittakan, Frans Coenen, Rob Christley, and Maya Wardeh. Popula-

tion estimation mining using satellite imagery. In Ladjel Bellatreche and MukeshK.

Mohania, editors, Data Warehousing and Knowledge Discovery, volume 8057 of

Lecture Notes in Computer Science, pages 285–296. Springer Berlin Heidelberg,

2013.

[60] Paul Dokas, Levent Ertoz, Vipin Kumar, Aleksandar Lazarevic, Jaideep Srivas-

tava, and Pang-Ning Tan. Data mining for network intrusion detection. In Proc.

NSF Workshop on Next Generation Data Mining, pages 21–30, 2002.

[61] S. Dunston, S. Ranjithan, and E. Bernold. Neural network model for the auto-

mated control of springback in rebars. IEEE Expert: Intelligent Systems and Their

Applications, pages 45–49, 1996.

[62] S.P. Edwardson, K.G. Watkins, G. Dearden, and J. Magee. Generation of 3D

shapes using a laser forming technique. In Proceedings of ICALEO’2001, pages

2–5, 2001.

[63] P.A. Egerton and W W. Hall. Computer graphics: Mathematical first steps. Simon

and Schuster International, 1998.

[64] S. El-Salhi, F. Coenen, C. Dixon, and M. Khan. Identification of correlations

between 3d surfaces using data mining techniques: Predicting springback in sheet

metal forming. In Proc. AI 2012, page To appear. Springer, 2012.

[65] Subhieh El-Salhi, Frans Coenen, Clare Dixon, and M. Sulaiman Khan. Identifica-

tion of correlations between 3d surfaces using data mining techniques: Predicting

springback in sheet metal forming. In Research and Development in Intelligent

Systems XXIX, Incorporating Applications and Innovations in Intelligent Systems

XX: Proceedings of AI-2012, The Thirty-second SGAI International Conference

on Innovative Techniques and Applications of Artificial Intelligence, Cambridge,

England, UK, December 11-13, 2012, pages 391–404, 2012.

[66] Subhieh El-Salhi, Frans Coenen, Clare Dixon, and M. Sulaiman Khan. Predicting

features in complex 3d surfaces using a point series representation: A case study in

sheet metal forming. In Advanced Data Mining and Applications, 9th International

Bibliography 159

Conference, ADMA 2013, Hangzhou, China, December 14-16, 2013, Proceedings,

Part I, pages 505–516, 2013.

[67] Subhieh El-Salhi, Frans Coenen, Clare Dixon, and M. Sulaiman Khan. Predicting

”springback” using 3d surface representation techniques: A case study in sheet

metal forming. Expert Syst. Appl., 42(1):79–93, 2015.

[68] Subhieh El-Salhi, Frans Coenen, Clare Dixon, and Muhammad Sulaiman Khan.

Identification of correlations between 3d surfaces using data mining techniques:

Predicting springback in sheet metal forming. In Springer,Research and Develop-

ment in Intelligent Systems XXIX, pages 391–404, 2012.

[69] Subhieh El-Salhi, Frans Coenen, Clare Dixon, and Muhammad Sulaiman Khan.

Predicting features in complex 3d surfaces using a point series representation: A

case study in sheet metal forming. Springer, Advanced Data Mining and Applica-

tion, 9th International Conference ADMA 2013 Proc, 8346:505–516, 2013.

[70] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kalnis.

GRAMI: frequent subgraph and pattern mining in a single large graph. PVLDB,

7(7):517–528, 2014.

[71] William Hill Clement Skorupka Lisa M. Talbot Jonathan Tivel Eric Bloedorn,

Alan D. Christiansen. Data mining for network intrusion detection: How to get

started. Technical report, The MITRE Corporation, 2001.

[72] Shimon Even. Graph algorithms. Cambridge University Press, 2011.

[73] Tom Fawcett. An introduction to {ROC} analysis. Pattern Recognition Letters,

27(8):861 – 874, 2006. {ROC} Analysis in Pattern Recognition.

[74] Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From data min-

ing to knowledge discovery in databases. AI magazine, 17(3):37, 1996.

[75] Usama M Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, et al. Knowledge

discovery and data mining: Towards a unifying framework. In KDD, volume 96,

pages 82–88, 1996.

[76] Mathias Fiedler and C. Borgelt. Subgraph support in a single large graph. In Data

Mining Workshops, 2007. ICDM Workshops 2007. Seventh IEEE International

Conference on, pages 399–404, Oct 2007.

[77] M. Firat, B. Kaftanoglu, and O. Eser. Sheet metal forming analyses with an em-

phasis on the springback deformation. Journal of Materials Processing Technology,

196(1-3):135–148, 2008.

[78] Scott Fortin. The graph isomorphism problem. Technical report, The University

of Alberta, 1996.

Bibliography 160

[79] Eibe Frank and Ian H. Witten. Making better use of global discretization. In

Proc. of the Sixteenth International Conference on Machine Learning, pages 115–

123, 1999.

[80] Marco Frasca, Alberto Bertoni, Matteo Re, and Giorgio Valentini. A neural net-

work algorithm for semi-supervised node label learning from unbalanced data.

Neural Networks, 43(0):84 – 98, 2013.

[81] Milton Friedman. A comparison of alternative tests of significance for the problem

of m rankings. The Annals of Mathematical Statistics, 11(1):86–92, 1940.

[82] S. Garca, A. Fernndez, J. Luengo, and F. Herrera. A study of statistical tech-

niques and performance measures for genetics-based machine learning: accuracy

and interpretability. Soft Computing, 13(10):959–977, 2009.

[83] Salvador Garca and Francisco Herrera. An extension on ”statistical comparisons

of classifiers over multiple data sets” for all pairwise comparisons. Journal of

Machine Learning Research, 9(12):2677–2694, 2008.

[84] Salvador Garca, Daniel Molina, Manuel Lozano, and Francisco Herrera. A study

on the use of non-parametric tests for analyzing the evolutionary algorithms be-

haviour: acase study onthecec2005 special session onreal parameter optimization.

Journal of Heuristics, 15(6):617–644, 2009.

[85] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide

to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,

1990.

[86] Maxime Gasse, Alex Aussem, and Haytham Elghazel. A hybrid algorithm for

bayesian network structure learning with application to multi-label learning. Ex-

pert Systems with Applications, 41(15):6755–6772, 2014.

[87] Dan Gordon and R. Anthony Reynolds. Image space shading of 3-dimensional

objects. Computer Vision, Graphics, and Image Processing, 29(3):361 – 376, 1985.

[88] Alexander Göttmann, Jö Diettrich, Georg Bergweiler, Markus Bambach, Gerhard

Hirt, Peter Loosen, and Reinhart Poprawe. Laser-assisted asymmetric incremental

sheet forming of titanium sheet metal parts. Production Engineering, 5(3):263–271,

2011.

[89] Ehud Gudes, Solomon Eyal Shimony, and Natalia Vanetik. Discovering frequent

graph patterns using disjoint paths. Knowledge and Data Engineering, IEEE

Transactions on, 18(11):1441–1456, 2006.

[90] Cigdem Gunduz, Bülent Yener, and S Humayun Gultekin. The cell graphs of

cancer. Bioinformatics, 20(suppl 1):i145–i151, 2004.

Bibliography 161

[91] Şimşek Gürsoy and Umman Tuğba. Customer churn analysis in telecommunication

sector. Journal of the School of Business Administration, Istanbul University,

39(1):35–49, 2010.

[92] FO Hadlock. A shortest path algorithm for grid graphs. Networks, 7(4):323–334,

1977.

[93] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate

generation. In Proceedings of the 2000 ACM SIGMOD International Conference

on Management of Data, SIGMOD ’00, pages 1–12, New York, NY, USA, 2000.

ACM.

[94] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent patterns

without candidate generation: A frequent-pattern tree approach. Data Mining

and Knowledge Discovery, 8(1):53–87, 2004.

[95] J.W. Han and M. Kamber. Data Mining: Concepts and Techniques 2nd edition.

China Machine Press, 2006.

[96] David J Hand and Robert J Till. A simple generalisation of the area under the roc

curve for multiple class classification problems. Machine learning, 45(2):171–186,

2001.

[97] J A Hanley and B J McNeil. The meaning and use of the area under a receiver op-

erating characteristic (roc) curve. Radiology, 143(1):29–36, 1982. PMID: 7063747.

[98] Wang Hao and Stephen Duncan. Optimization of tool trajectory for incremental

sheet forming using closed loop control. In Automation Science and Engineering

(CASE), 2011 IEEE Conference on, pages 779–784. IEEE, 2011.

[99] Gabor T Herman. Fundamentals of computerized tomography: image reconstruc-

tion from projections. Springer Science & Business Media, 2009.

[100] S. Hido and H. Kawano. Amiot: induced ordered tree mining in tree-structured

databases. In Data Mining, Fifth IEEE International Conference on, pages 8 pp.–,

Nov 2005.

[101] G. Hirt, J. Ames, M. Bambach, R. Kopp, and R. Kopp. Forming strategies and

process modelling for cnc incremental sheet forming. CIRP Annals - Manufactur-

ing Technology, 53(1):203–206, 2004.

[102] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuet-

zle. Surface reconstruction from unorganized points, volume 26. ACM, 1992.

[103] A. S. M. Hoque, P. K. Halder, M. S. Parvez, and T. Szecsi. Integrated manufac-

turing features and design-for-manufacture guidelines for reducing product cost

under cad/cam environment. Comput. Ind. Eng., 66(4):988–1003, December 2013.

Bibliography 162

[104] Hsun-Ping Hsieh and Cheng-Te Li. Mining temporal subgraph patterns in het-

erogeneous information networks. In Social Computing (SocialCom), 2010 IEEE

Second International Conference on, pages 282–287. IEEE, 2010.

[105] Weiming Hu, Nianhua Xie, Li Li, Xianglin Zeng, and Stephen Maybank. A survey

on visual content-based video indexing and retrieval. Systems, Man, and Cyber-

netics, Part C: Applications and Reviews, IEEE Transactions on, 41(6):797–819,

2011.

[106] J. Huan, W. Wang, J. Prins, and J. Yang. SPIN: mining maximal frequent sub-

graphs from graph databases. In Proceedings of the 10th ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, pages 581–586,

2004.

[107] J Huan, W Wang, A Washington, J Prins, R Shah, and A Tropsha. Accurate

classification of protein structural families using coherent subgraph analysis. In

Proceedings of the Ninth Pacific Symposium on Biocomputing (PSB), pages 411–

422, 2003.

[108] Jun Huan, Wei Wang, and J. Prins. Efficient mining of frequent subgraphs in

the presence of isomorphism. In Data Mining, 2003. ICDM 2003. Third IEEE

International Conference on, pages 549–552, Nov 2003.

[109] Jun Huan, Wei Wang, and Jan Prins. Efficient mining of frequent subgraphs in

the presence of isomorphism. In Data Mining, 2003. ICDM 2003. Third IEEE

International Conference on, pages 549–552. IEEE, 2003.

[110] Jun Huan, Wei Wang, and Jan Prins. Efficient mining of frequent subgraphs in

the presence of isomorphism. In Data Mining, 2003. ICDM 2003. Third IEEE

International Conference on, pages 549–552. IEEE, 2003.

[111] Jun Huan, Wei Wang, Jan Prins, and Jiong Yang. Spin: mining maximal frequent

subgraphs from graph databases. In Proceedings of the tenth ACM SIGKDD in-

ternational conference on Knowledge discovery and data mining, pages 581–586.

ACM, 2004.

[112] Jin Huang and C.X. Ling. Using auc and accuracy in evaluating learning algo-

rithms. Knowledge and Data Engineering, IEEE Transactions on, 17(3):299–310,

March 2005.

[113] Jin Huang and C.X. Ling. Using auc and accuracy in evaluating learning algo-

rithms. Knowledge and Data Engineering, IEEE Transactions on, 17(3):299–310,

March 2005.

[114] M. Inamdar, P.P. Date, K Narasimhan, S.K. Maiti, and U.P. Singh. Development

of an articial neural network to predict springback in air vee bending. International

Journal of Advanced Manufacturing Technology, 16(5):376–381, 2000.

Bibliography 163

[115] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. An apriori-based algo-

rithm for mining frequent substructures from graph data. In DjamelA. Zighed,

Jan Komorowski, and Jan ytkow, editors, Principles of Data Mining and Knowl-

edge Discovery, volume 1910 of Lecture Notes in Computer Science, pages 13–23.

Springer Berlin Heidelberg, 2000.

[116] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. An apriori-based algo-

rithm for mining frequent substructures from graph data. In Principles of Data

Mining and Knowledge Discovery, pages 13–23. Springer, 2000.

[117] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. A fast algorithm for

mining frequent connected subgraphs. In Research Report RT0448, IBM Research,

Tokyo Research Laboratory. 2002.

[118] Akihiro Inokuchi, Takashi Washio, and Hiroshi Motoda. Complete mining of fre-

quent patterns from graphs: Mining graph data. Machine Learning, 50(3):321–354,

2003.

[119] Alon Itai, Christos H Papadimitriou, and Jayme Luiz Szwarcfiter. Hamilton paths

in grid graphs. SIAM Journal on Computing, 11(4):676–686, 1982.

[120] Martin Szummer Tommi Jaakkola and Martin Szummer. Partially labeled clas-

sification with markov random walks. Advances in neural information processing

systems (NIPS), 14:945–952, 2002.

[121] J. Jeswiet, F. Micari, G. Hirt, A. Bramley, and J. Duflou andJ. Allwood. Asymmet-

ric single point incremental forming of sheet metal. CIRP Annals Manufacturing

Technology, 54(2):88–114, 2005.

[122] Chuntao Jiang. Frequent subgraph mining algorithms on weighted graphs. PhD

thesis, University of Liverpool, 2011.

[123] Ning Jin, Calvin Young, and Wei Wang. Graph classification based on pattern

co-occurrence. In Proceedings of the 18th ACM conference on Information and

knowledge management, pages 573–582. ACM, 2009.

[124] Ning Jin, Calvin Young, and Wei Wang. Gaia: graph classification using evo-

lutionary computation. In Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data, pages 879–890. ACM, 2010.

[125] Ulas Karaoz, TM Murali, Stan Letovsky, Yu Zheng, Chunming Ding, Charles R

Cantor, and Simon Kasif. Whole-genome annotation by using evidence integration

in functional-linkage networks. Proceedings of the National Academy of Sciences

of the United States of America, 101(9):2888–2893, 2004.

[126] Arie Kaufman. Voxels as a computational representation of geometry. The Com-

putational Representation of Geometry. SIGGRAPH?94 Course Notes, 1994.

Bibliography 164

[127] ABE Kenji, Shinji Kawasoe, Hiroshi SAKAMOTO, Hiroki Arimura, and Setsuo

Arikawa. Efficient substructure discovery from large semi-structured data. IEICE

TRANSACTIONS on Information and Systems, 87(12):2754–2763, 2004.

[128] Nikhil S Ketkar, Lawrence B Holder, and Diane J Cook. Empirical comparison of

graph classification algorithms. In Computational Intelligence and Data Mining,

2009. CIDM’09. IEEE Symposium on, pages 259–266. IEEE, 2009.

[129] M. Sulaiman Khan, Frans Coenen, Clare Dixon, and Subhieh El-Salhi. Finding

correlations between 3-d surfaces: A study in asymmetric incremental sheet form-

ing. Machine Learning and Data Mining in Pattern Recognition Lecture Notes in

Computer Science, 7376:366–379, 2012.

[130] M. Sulaiman Khan, Frans Coenen, Clare Dixon, and Subhieh El-Salhi. Finding cor-

relations between 3-d surfaces: A study in asymmetric incremental sheet forming.

In Machine Learning and Data Mining in Pattern Recognition - 8th International

Conference, MLDM 2012, Berlin, Germany, July 13-20, 2012. Proceedings, pages

366–379, 2012.

[131] D.J. Kim and B.M. Kim. Application of neural network and fem for metal forming

processes. International Journal of Machine Tools and Manufacture, 40(6):911–

925, 1999.

[132] B. Kinsey, J. Cao, and S. Solla. Consistent and minimal springback using a stepped

binder force trajectory and neural network control. Journal of Engineering Mate-

rials and Technology, 122(1113):113–118, 2000.

[133] Jon M. Kleinberg. Challenges in mining social network data: Processes, privacy,

and paradoxes. In Proceedings of the 13th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’07, pages 4–5, New York, NY,

USA, 2007. ACM.

[134] Leif Kobbelt and Mario Botsch. A survey of point-based techniques in computer

graphics. Computers & Graphics, 28(6):801–814, 2004.

[135] Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense polygon

meshes. In Proceedings of the 23rd Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’96, pages 313–324, New York, NY, USA,

1996. ACM.

[136] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In Data Mining,

2001. ICDM 2001, Proceedings IEEE International Conference, pages 313–320,

2001.

[137] Michihiro Kuramochi and George Karypis. Grew-a scalable frequent subgraph

discovery algorithm. In Data Mining, 2004. ICDM’04. Fourth IEEE International

Conference on, pages 439–442. IEEE, 2004.

Bibliography 165

[138] Michihiro Kuramochi and George Karypis. Finding frequent patterns in a large

sparse graph*. Data mining and knowledge discovery, 11(3):243–271, 2005.

[139] Michihiro Kuramochi and George Karypis. Discovering frequent geometric sub-

graphs. Information Systems, 32(8):1101–1120, 2007.

[140] K Lakshmi. Frequent subgraph mining algorithms-a survey and framework for

classification. 2012.

[141] J-F Lalonde, Ranjith Unnikrishnan, Nicolas Vandapel, and Martial Hebert. Scale

selection for classification of point-sampled 3d surfaces. In 3-D Digital Imaging

and Modeling, 2005. 3DIM 2005. Fifth International Conference on, pages 285–

292. IEEE, 2005.

[142] Daniel T. Larose. k-Nearest Neighbor Algorithm, pages 90–106. John Wiley Sons,

Inc., 2005.

[143] Stefan Lessmann, Bart Baesens, Christophe Mues, and Swantje Pietsch. Bench-

marking classification models for software defect prediction: A proposed frame-

work and novel findings. IEEE Trans. Software Eng., 34(4):485–496, 2008.

[144] Jianzhong Li, Yong Liu, and Hong Gao. Efficient algorithms for summarizing graph

patterns. Knowledge and Data Engineering, IEEE Transactions on, 23(9):1388–

1405, Sept 2011.

[145] Xiang Li, Christophe Claramunt, and Cyril Ray. A grid graph-based model for

the analysis of 2d indoor spaces. Computers, Environment and Urban Systems,

34(6):532 – 540, 2010. GeoVisualization and the Digital City Special issue of the

International Cartographic Association Commission on GeoVisualization.

[146] Yuhua Li, Quan Lin, Gang Zhong, Dongsheng Duan, Yanan Jin, and Wei Bi. A

directed labeled graph frequent pattern mining algorithm based on minimum code.

In Multimedia and Ubiquitous Engineering, 2009. MUE’09. Third International

Conference on, pages 353–359. IEEE, 2009.

[147] Charles X. Ling, Jin Huang, and Harry Zhang. Auc: a better measure than

accuracy in comparing learning algorithms. In IN PROC. OF IJCAI03, pages

329–341. Springer, 2003.

[148] CharlesX. Ling, Jin Huang, and Harry Zhang. Auc: A better measure than accu-

racy in comparing learning algorithms. In Yang Xiang and Brahim Chaib-draa,

editors, Advances in Artificial Intelligence, volume 2671 of Lecture Notes in Com-

puter Science, pages 329–341. Springer Berlin Heidelberg, 2003.

[149] RA Lingbeek, W Gan, RH Wagoner, T Meinders, and J Weiher. Theoretical verifi-

cation of the displacement adjustment and springforward algorithms for springback

compensation. International Journal of Material Forming, 1(3):159–168, 2008.

Bibliography 166

[150] Yong Liu, Jianzhong Li, and Hong Gao. Jpminer: Mining frequent jump patterns

from graph databases. In Fuzzy Systems and Knowledge Discovery, 2009. FSKD

’09. Sixth International Conference on, volume 5, pages 114–118, Aug 2009.

[151] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d

surface construction algorithm. In ACM siggraph computer graphics, volume 21,

pages 163–169. ACM, 1987.

[152] Fabrizio Luccio, Antonio Mesa Enriquez, P Olivares Rieumont, and Linda Pagli.

Bottom-up subtree isomorphism for unordered labeled trees. 2004.

[153] David J. Maguire. The raster gis design model: A profile of erdas. Comput.

Geosci., 18(4):463–470, May 1992.

[154] Jason Mah, Claire Samson, Stephen D McKinnon, and Denis Thibodeau. 3d laser

imaging for surface roughness analysis. International Journal of Rock Mechanics

and Mining Sciences, 58:111–117, 2013.

[155] K. Manabe, M. Yang, and S. Yoshihara. Artificial intelligence iidentification of

process parameters and adaptive control system for deep drawing process. Journal

of Materials Processing Technology, 80-81:421–426, 1998.

[156] Edward M Marcotte, Matteo Pellegrini2, Michael J Thompson, Todd O Yeates,

and David Eisenberg. A combined algorithm for genome-wide prediction of protein

function. Proc. Natl Acad. Sci. USA, 93:4787–4792, 1996.

[157] Brendan D. McKay. Nauty users guide (version 1.5). In Technical Report Techni-

cal Report, TR-CS-90-02, Department of computer Science, Australian National

University, 1990.

[158] Brendan D McKay et al. Practical graph isomorphism. Department of Computer

Science, Vanderbilt University, 1981.

[159] T Meinders, IA Burchitz, MHA Bonte, and RA Lingbeek. Numerical product de-

sign: springback prediction, compensation and optimization. International Jour-

nal of Machine Tools and Manufacture, 48(5):499–514, 2008.

[160] Bruno T Messmer and Horst Bunke. A new algorithm for error-tolerant subgraph

isomorphism detection. Pattern Analysis and Machine Intelligence, IEEE Trans-

actions on, 20(5):493–504, 1998.

[161] Charles E. Metz. Basic principles of {ROC} analysis. Seminars in Nuclear

Medicine, 8(4):283 – 298, 1978.

[162] Manuel Montes-y Gómez, Aurelio López-López, and Alexander Gelbukh. Informa-

tion retrieval with conceptual graph matching. In Database and Expert Systems

Applications, pages 312–321. Springer, 2000.

Bibliography 167

[163] Sara Mostafavi, Debajyoti Ray, David Warde-Farley, Chris Grouios, and Quaid

Morris. GeneMANIA: a real-time multiple association network integration algo-

rithm for predicting gene function. Genome biology, 9 Suppl 1(Suppl 1):S4+,

2008.

[164] Elena Nabieva, Kam Jim, Amit Agarwal, Bernard Chazelle, and Mona Singh.

Whole-proteome prediction of protein function via graph-theoretic analysis of in-

teraction maps. Bioinformatics, 21(suppl 1):i302–i310, 2005.

[165] N. Narasimhan and M. Lovell. Predicting springback in sheet metal forming an

explicit to implicit sequential solution procedure. Finite Elements in Analysis and

Design, 33(1):29–42, 1999.

[166] P. Nemenyi. Distribution-free Multiple Comparisons. Princeton University, 1963.

[167] Siegfried Nijssen and Joost Kok. Faster association rules for multiple relations. In

Proceedings of the 17th International Joint Conference on Artificial Intelligence

- Volume 2, IJCAI’01, pages 891–896, San Francisco, CA, USA, 2001. Morgan

Kaufmann Publishers Inc.

[168] Siegfried Nijssen and Joost N. Kok. A quickstart in frequent structure mining

can make a difference. In Proceedings of the Tenth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, KDD ’04, pages 647–652,

New York, NY, USA, 2004. ACM.

[169] Paul Ning and Jules Bloomenthal. An evaluation of implicit surface tilers. Com-

puter Graphics and Applications, IEEE, 13(6):33–41, 1993.

[170] Edward R Omiecinski. Alternative interest measures for mining associations in

databases. Knowledge and Data Engineering, IEEE Transactions on, 15(1):57–69,

2003.

[171] Fabrizio Luccio Antonio Mesa Enriquez Pablo, Olivares Rieumont, and Linda

Pagli. Exact rooted subtree matching in sublinear time. 2001.

[172] K.K. Pathak, S. Panthi, and N. Ramakrishnan. Application of neural network in

sheet metal bending process. Defence Science Journal, 55(2):125–131, 2005.

[173] J. R. Quinlan. C4.5: programs for machine learning. Morgan Kaufmann Publishers

Inc., 1993.

[174] J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

[175] Matteo Re and Giorgio Valentini. Cancer module genes ranking using kernelized

score functions. BMC bioinformatics, 13(Suppl 14):S3, 2012.

[176] Matteo Re and Giorgio Valentini. Cancer module genes ranking using kernelized

score functions. BMC bioinformatics, 13(Suppl 14):S3, 2012.

Bibliography 168

[177] Ronald C Read and Derek G Corneil. The graph isomorphism disease. Journal of

Graph Theory, 1(4):339–363, 1977.

[178] A. Ricci. A constructive geometry for computer graphics. The Computer Journal,

16(2):157–160, 1973.

[179] Jordan Ringenberg, Makarand Deo, Vijay Devabhaktuni, Omer Berenfeld, Brett

Snyder, Pamela Boyers, and Jeffrey Gold. Accurate reconstruction of 3d cardiac

geometry from coarsely-sliced mri. Comput. Methods Prog. Biomed., 113(2):483–

493, February 2014.

[180] Ulrich Rückert and Stefan Kramer. Frequent free tree discovery in graph data. In

Proceedings of the 2004 ACM symposium on Applied computing, pages 564–570.

ACM, 2004.

[181] R. Rufni and J. Cao. Using neural network for springback minimization in a

channel forming process. Journal of Materials and Manufacturing, 107(5):65–73,

1998.

[182] Hiroto Saigo, Nicole Krämer, and Koji Tsuda. Partial least squares regression for

graph mining. In Proceedings of the 14th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 578–586. ACM, 2008.

[183] Hiroto Saigo and Koji Tsuda. Graph mining in chemoinformatics. Chemoin-

formatics and Advanced Machine Learning Perspectives: Complex Computational

Methods and Collaborative Techniques, pages 95–128, 2010.

[184] S. El Salhi, F. Coenen, C. Dixon, and M.S. Khan. Predicting springback using

3d surface representation techniques: A case study in sheet metal forming. Expert

Systems with Applications, 42(1):79 – 93, 2015.

[185] Satu Elisa Schaeffer. Graph clustering. Computer Science Review, 1(1):27–64,

2007.

[186] Douglas C. Schmidt and Larry E. Druffel. A fast backtracking algorithm to test

directed graphs for isomorphism using distance matrices. J. ACM, 23(3):433–445,

July 1976.

[187] Falk Schreiber and Henning Schwöbbermeyer. Frequency concepts and pattern

detection for the analysis of motifs in networks. In Transactions on computational

systems biology III, pages 89–104. Springer, 2005.

[188] Paul D Seymour and Robin Thomas. Graph searching and a min-max theorem

for tree-width. Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993.

[189] Roded Sharan, Igor Ulitsky, and Ron Shamir. Network-based prediction of protein

function. Molecular systems biology, 3(1), 2007.

Bibliography 169

[190] D. J. Sheskin. Handbook of parametric and nonparametric statistical procedures.

In Chapman Hall/CRC, 2007.

[191] Arlei Silva, Wagner Meira, Jr., and Mohammed J. Zaki. Structural correlation

pattern mining for large graphs. In Proceedings of the Eighth Workshop on Mining

and Learning with Graphs, MLG ’10, pages 119–126, New York, NY, USA, 2010.

ACM.

[192] Mervyn Stone. Cross-validatory choice and assessment of statistical predictions.

Journal of the Royal Statistical Society. Series B (Methodological), pages 111–147,

1974.

[193] Matteo Strano. Technological representation of forming limits for negative incre-

mental forming of thin aluminum sheets. Journal of Manufacturing Processes,

7(2):122 – 129, 2005.

[194] D.L. Sussman, Minh Tang, and C.E. Priebe. Consistent latent position estimation

and vertex classification for random dot product graphs. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 36(1):48–57, Jan 2014.

[195] Ah-Hwee Tan et al. Text mining: The state of the art and the challenges. In Pro-

ceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced

Databases, volume 8, pages 65–70, 1999.

[196] H. Tan, T. Dillon, L. Feng, E. Chang, and F. Hadzic. X3-miner: Mining patterns

from xml database. In Data Mining VI: Data Mining, Text Mining and their

Business Applications, volume 35 of Information and Communication Technolo-

gies, pages 287–296, Ashurst, Southampton, UK, 2005. WIT Press.

[197] Henry Tan, Tharam S Dillon, Fedja Hadzic, Elizabeth Chang, and Ling Feng.

Imb3-miner: mining induced/embedded subtrees by constraining the level of em-

bedding. In Advances in Knowledge Discovery and Data Mining, pages 450–461.

Springer, 2006.

[198] Henry Tan, Tharam S. Dillon, Fedja Hadzic, Ling Feng, and Elizabeth Chang. Mb3

miner: mining embedded sub-trees using tree model guided candidate generation.

In In Proc. of the 1st International Workshop on Mining Complex Data, held in

conjunction with ICDM?05, 2005.

[199] Minh Tang, Daniel L. Sussman, and Carey E. Priebe. Universally consistent vertex

classification for latent positions graphs. Ann. Statist., 41(3):1406–1430, 06 2013.

[200] Shirish Tatikonda, Srinivasan Parthasarathy, and Tahsin Kurc. Trips and tides:

New algorithms for tree mining. In Proceedings of the 15th ACM International

Conference on Information and Knowledge Management, CIKM ’06, pages 455–

464, New York, NY, USA, 2006. ACM.

Bibliography 170

[201] Gabriel Taubin. Estimation of planar curves, surfaces, and nonplanar space curves

defined by implicit equations with applications to edge and range image segmen-

tation. IEEE Trans. Pattern Anal. Mach. Intell., 13(11):1115–1138, November

1991.

[202] Alexandru C Telea. Data visualization: principles and practice. CRC Press, 2014.

[203] Mike Thelwall, David Wilkinson, and Sukhvinder Uppal. Data mining emotion

in social network communication: Gender differences in myspace. Journal of the

American Society for Information Science and Technology, 61(1):190–199, 2010.

[204] Marisa Thoma, Hong Cheng, Arthur Gretton, Jiawei Han, Hans-Peter Kriegel,

Alexander J Smola, Le Song, S Yu Philip, Xifeng Yan, and Karsten M Borgwardt.

Near-optimal supervised feature selection among frequent subgraphs. In SDM,

pages 1076–1087. SIAM, 2009.

[205] Marisa Thoma, Hong Cheng, Arthur Gretton, Jiawei Han, Hans-Peter Kriegel,

Alexander J Smola, Le Song, S Yu Philip, Xifeng Yan, and Karsten M Borgwardt.

Near-optimal supervised feature selection among frequent subgraphs. In SDM,

pages 1076–1087. SIAM, 2009.

[206] Lini Thomas, S Valluri, and Kamalakar Karlapalem. Isg: Itemset based subgraph

mining. Technical report, Citeseer, 2009.

[207] Lini T Thomas, Satyanarayana R Valluri, and Kamalakar Karlapalem. Margin:

Maximal frequent subgraph mining. In Data Mining, 2006. ICDM’06. Sixth In-

ternational Conference on, pages 1097–1101. IEEE, 2006.

[208] Yuanyuan Tian, Richard A Hankins, and Jignesh M Patel. Efficient aggregation

for graph summarization. In Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, pages 567–580. ACM, 2008.

[209] Gabriella Tognola, Marta Parazzini, Giorgio Pedretti, Paolo Ravazzani, Cesare

Svelto, Michele Norgia, and Ferdinando Grandori. Three-dimensional reconstruc-

tion and image processing in mandibular distraction planning. Instrumentation

and Measurement, IEEE Transactions on, 55(6):1959–1964, 2006.

[210] Amy Hin Yan Tong, Becky Drees, Giuliano Nardelli, Gary D Bader, Barbara Bran-

netti, Luisa Castagnoli, Marie Evangelista, Silvia Ferracuti, Bryce Nelson, Serena

Paoluzi, et al. A combined experimental and computational strategy to define pro-

tein interaction networks for peptide recognition modules. Science, 295(5553):321–

324, 2002.

[211] Koji Tsuda. Graph classification methods in chemoinformatics. In Henry Horng-

Shing Lu, Bernhard Schlkopf, and Hongyu Zhao, editors, Handbook of Statistical

Bioinformatics, Springer Handbooks of Computational Statistics, pages 335–351.

Springer Berlin Heidelberg, 2011.

Bibliography 171

[212] Koji Tsuda, Hyunjung Shin, and Bernhard Schölkopf. Fast protein classification

with multiple networks. Bioinformatics, 21(suppl 2):59–65, 2005.

[213] Shusaku Tsumoto and Shoji Hirano. Contingency matrix theory i: Rank and sta-

tistical independence in a contigency table. In MarinaL. Gavrilova, C.J.Kenneth

Tan, Yingxu Wang, Yiyu Yao, and Guoyin Wang, editors, Transactions on Com-

putational Science II, volume 5150 of Lecture Notes in Computer Science, pages

161–179. Springer Berlin Heidelberg, 2008.

[214] Akadej Udomchaiporn, Frans Coenen, Marta Garca-Fiana, and Vanessa Sluming.

3-d mri brain scan feature classification using an oct-tree representation. In Hiroshi

Motoda, Zhaohui Wu, Longbing Cao, Osmar Zaiane, Min Yao, and Wei Wang,

editors, Advanced Data Mining and Applications, volume 8346 of Lecture Notes in

Computer Science, pages 229–240. Springer Berlin Heidelberg, 2013.

[215] Julian R Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM

(JACM), 23(1):31–42, 1976.

[216] Maarten Van Steen. Graph theory and complex networks.

[217] N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns

from semistructured data. In Proceedings of the 2002 IEEE International Confer-

ence on Data Mining, ICDM ’02, pages 458–, Washington, DC, USA, 2002. IEEE

Computer Society.

[218] Natalia Vanetik, Solomon Eyal Shimony, and Ehud Gudes. Support measures for

graph data*. Data Mining and Knowledge Discovery, 13(2):243–260, 2006.

[219] Alexei Vazquez, Alessandro Flammini, Amos Maritan, and Alessandro Vespignani.

Global protein function prediction from protein-protein interaction networks. Na-

ture biotechnology, 21(6):697–700, 2003.

[220] Chen Wang, Wei Wang, Jian Pei, Yongtai Zhu, and Baile Shi. Scalable mining

of large disk-based graph databases. In Proceedings of the tenth ACM SIGKDD

international conference on Knowledge discovery and data mining, pages 316–325.

ACM, 2004.

[221] Takashi Washio and Hiroshi Motoda. State of the art of graph-based data mining.

SIGKDD Explor. Newsl., 5(1):59–68, July 2003.

[222] Takashi Washio and Hiroshi Motoda. State of the art of graph-based data mining.

SIGKDD Explor. Newsl., 5(1):59–68, July 2003.

[223] Michael A. Wesley, Tomas Lozano-Perez, Lawrence I. Lieberman, Mark A. Lavin,

and David D. Grossman. A geometric modeling system for automated mechanical

assembly. IBM Journal of Research and Development, 24(1):64–74, 1980.

Bibliography 172

[224] Ian H Witten and Eibe Frank. Data Mining: Practical machine learning tools and

techniques. Morgan Kaufmann, 2005.

[225] Marc Wrlein, Thorsten Meinl, Ingrid Fischer, and Michael Philippsen. A quan-

titative comparison of the subgraph miners mofa, gspan, ffsm, and gaston. In

AlpioMrio Jorge, Lus Torgo, Pavel Brazdil, Rui Camacho, and Joo Gama, editors,

Knowledge Discovery in Databases: PKDD 2005, volume 3721 of Lecture Notes in

Computer Science, pages 392–403. Springer Berlin Heidelberg, 2005.

[226] Hui Xiong, Pang-Ning Tan, and Vipin Kumar. Hyperclique pattern discovery.

Data Mining and Knowledge Discovery, 13(2):219–242, 2006.

[227] J. Xu, Z. Zhang, and Y. Wu. Application of data mining method to improve the

accuracy of springback prediction in sheet metal forming. Journal of Shanghai

University (English Edition), 8(3):348–353, 2004.

[228] X. Yan and J. Han. Close Graph: mining closed frequent graph patterns. In

Proceedings of the 9th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, pages 286–295, 2003.

[229] X. Yan and J.W. Han. gSpan: Graph-based substructure pattern mining. In

Proceedings of the 2002 International Conference on Data Mining, pages 721–724,

2002.

[230] Xifeng Yan, Hong Cheng, Jiawei Han, and Philip S. Yu. Mining significant graph

patterns by leap search. In Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’08, pages 433–444, New York, NY,

USA, 2008. ACM.

[231] Xifeng Yan, Philip S Yu, and Jiawei Han. Graph indexing: a frequent structure-

based approach. In Proceedings of the 2004 ACM SIGMOD international confer-

ence on Management of data, pages 335–346. ACM, 2004.

[232] Xifeng Yan, Philip S Yu, and Jiawei Han. Graph indexing based on discriminative

frequent structure analysis. ACM Transactions on Database Systems (TODS),

30(4):960–993, 2005.

[233] J.L. Yin and D.Y. Li. Knowledge discovery from finite element simulation data.

In Proceedings of 2004 International Conference on Machine Learning and Cyber-

netics, pages 1335–1340, 2004.

[234] Lijun Yin, Xiaochen Chen, Yi Sun, T. Worm, and M. Reale. A high-resolution

3d dynamic facial expression database. In Automatic Face Gesture Recognition,

2008. FG ’08. 8th IEEE International Conference on, pages 1–6, Sept 2008.

[235] Dong-Jin Yoo. Three-dimensional surface reconstruction of human bone using a

b-spline based interpolation approach. Computer-Aided Design, 43(8):934–947,

2011.

Bibliography 173

[236] Mohammed J. Zaki. Efficiently mining frequent trees in a forest. In Proceedings of

the Eighth ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, KDD ’02, pages 71–80, New York, NY, USA, 2002. ACM.

[237] Mohammed J. Zaki. Efficiently mining frequent embedded unordered trees. Fun-

dam. Inf., 66(1-2):33–52, November 2004.

[238] S. Zhang, C. Luo, Y.H. Peng, D.Y. Li, and H.B. Yang. Study on factors affecting

springback and application of data mining in springback analysis. Journal of

Shanghai Jiaotong University, E-8(2):192–196, 2003.

[239] Shijie Zhang and Jiong Yang. Ram: Randomized approximate graph mining. In

Scientific and Statistical Database Management, pages 187–203. Springer, 2008.

[240] Shijie Zhang, Jiong Yang, and V Cheedella. Monkey: Approximate graph mining

based on spanning trees. In Data Engineering, 2007. ICDE 2007. IEEE 23rd

International Conference on, pages 1247–1249. IEEE, 2007.

[241] Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston, and Bern-

hard Schölkopf. Learning with local and global consistency. Advances in neural

information processing systems, 16(16):321–328, 2004.

[242] Wei Zhu, Jingyu Hou, and Yi-Ping Phoebe Chen. Semantic and layered protein

function prediction from ppi networks. Journal of theoretical biology, 267(2):129–

136, 2010.

[243] Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-supervised learning

using gaussian fields and harmonic functions. In ICML, volume 3, pages 912–919,

2003.

[244] Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. Mining frequent sub-

graph patterns from uncertain graph data. Knowledge and Data Engineering,

IEEE Transactions on, 22(9):1203–1218, Sept 2010.

Appendix A

AUC Calculation based on

Mann-Whitney-Wilcoxon.

A.1 Introduction

This Appendix presents a full example of the process of AUC calculation using the

Mann-Whitney-Wilcoxon (MWW) statistical method. The Mann-Whitney-Wilcoxon

(MWW) statistical method1 was proposed in [96] to estimate AUC values based on a

ranking concept as shown in Equation A.1 where c is the number of classes. In Equation

A.1 Ai,j is calculated based on the MWW values obtained with respect to class i and

class j as shown in Equation A.2. The MWW value is calculated based on the Man-

Whitney-Wilcoxon (MWW) statistic (or rank sum) [24]. The ranking concept used in

this context is mainly based on signal detection theory [96], and hence the actual value

of an attribute is denoted by (signal S) and the predicted value is denoted by (response

R) with respect to a binary classification. Thus the MWW value of class i with respect

to class j is calculated as shown in Equation A.3 where: (i) n1 denotes the number

of positive examples2 with respect to class i, (ii) n2 denotes the number of negative

examples3 with respect to class j and (iii) ri is the sum rank for the positive examples

with respect to class i. The rank for a given record of class i and with respect to class

j is obtained from a value obtained according the combinations of R and S.

AUC =
2

c(c− 1)

∑
i<j

Ai,j (A.1)

Ai,j =
MWW (i|j) +MWW (j|i)

2
(A.2)

1The Wilcoxon rank sum test makes no assumption about the probability distributions and is com-
pletely based on the scores (rank) of the tuples.

2Positive examples are the number of records that are actually labelled with class i with respect to
j and this means that S = 1.

3Negative examples are the number of records that are actually not labelled with class i with respect
to j and this means that S = 0.

1

Appendix A. AUC Calculation based on Mann-Whitney-Wilcoxon. 2

The MWW value is calculated by first drawing up a MWW ranked table comprising two

columns (sometimes referred to as vectors). The first column is the response column

(R), and the second the signal column (S). The rows are numbered from 1 to N where

N is the number records to be considered with respect to the MWW calculation (see

examples below). The ranking is as follows (in ascending order): false positives (Ri=0,

Si=1), true negatives (Ri=0, Si=0), false negatives (Ri=1, Si=0), true positives (Ri=1,

Si=1). The calculation is then as follows:

MWW (i|j) =

∑
ri − n1(n1+1)

2

n1n2
(A.3)

Where
∑
ri is the sum of the rankings of the single values (column S); n1 is the sum

of the response values (1s) in the signal column and n2 is the sum of the noise values

(0s) in the signal column. Responses can be signal values or noise values, 1 or 0. Signal

values (1) are given a higher ranking than noise values (0).

Table A.1 presents the values (denoted as a group ID in this example) of the different

potential combinations of R and S. The group ID value associated with each record is

used to order the records sequentially starting from group ID 1 to group ID 4 and

consequently all the records of group ID 1 will be followed by all the records of group

ID 2 and so on. Then a sequential number (rank) is given to records starting from the

first record in group ID 1 to the last record in group ID 4.

An example of estimating the AUC values using the ranking process for 51 records

using three classes c1, c2 and c3 is presented below. The actual and the predicted label

of the data set, that are denoted using the S and R variables respectively, are indicated

by a value of 1 with respect to the set of classes c1, c2 and c3 as shown in Table A.2. The

MWW value of c1 with respect to class c2 is presented in Table A.3 and the MWW value

of c2 with respect to class c1 is presented in Table A.4. Both tables show the associated

group ID and the rank values. The numbering starts with the first record in group ID

1 to last record in group ID 4 sequentially. According to the given ranks, the last rows

in Tables A.3 and A.4 indicate the number of positive and negative records, the sum of

ranks and the MWW values with respect to class c1 and c2 respectively.

Similarly, Tables A.5 and A.6 presents the MWW value of class c1 with respect to

class c3 and class c3 with respect to class c1; while Tables A.7 and A.8 presents the

MWW values of class c2 with respect to class c3 and c3 with respect to class c2. Finally

Table A.9 presents the calculation of the overall AUC value using Equation A.3 which

is based on the MWW values calculated with respect to classes c1, c2 and c3.
Table A.2: Example data set

Records
S R

c1 c2 c3 c1 c2 c3

1 1 0 0 1 0 0

2 1 0 0 1 0 0

3 1 0 0 1 0 0

4 0 1 0 0 1 0

5 0 1 0 0 1 0

Appendix A. AUC Calculation based on Mann-Whitney-Wilcoxon. 3

6 0 1 0 0 1 0

7 0 1 0 0 1 0

8 0 1 0 0 1 0

9 0 1 0 0 1 0

10 0 1 0 0 1 0

11 0 1 0 0 1 0

12 0 1 0 0 1 0

13 0 1 0 0 1 0

14 0 1 0 0 1 0

15 0 1 0 0 1 0

16 0 1 0 0 0 1

17 0 1 0 0 0 1

18 0 1 0 0 0 1

19 0 0 1 0 0 1

20 0 0 1 0 0 1

21 0 0 1 0 0 1

22 0 0 1 0 0 1

23 0 0 1 0 0 1

24 0 0 1 0 0 1

25 0 0 1 0 0 1

26 0 0 1 0 0 1

27 0 0 1 0 0 1

28 0 0 1 0 0 1

29 0 0 1 0 0 1

30 0 0 1 0 0 1

31 0 0 1 0 0 1

32 0 0 1 0 0 1

33 0 0 1 0 0 1

34 0 0 1 0 0 1

35 0 0 1 0 0 1

36 0 0 1 0 0 1

37 0 0 1 0 0 1

38 0 0 1 0 0 1

39 0 0 1 0 0 1

40 0 0 1 0 0 1

41 0 0 1 0 0 1

42 0 0 1 0 0 1

43 0 0 1 0 0 1

44 0 0 1 0 0 1

45 0 0 1 0 0 1

46 0 0 1 0 0 1

47 0 0 1 0 0 1

48 0 0 1 0 0 1

49 0 0 1 0 0 1

50 0 0 1 0 0 1

51 0 0 1 0 0 1

Appendix A. AUC Calculation based on Mann-Whitney-Wilcoxon. 4

Table A.1: The values (Group ID) of different combinations of R and S based on
Hand et al. [96].

R S Group ID

0 1 1

0 0 2

1 0 3

1 1 4

Table A.3: The MWW(c1|c2) value

S R group ID ranks

0 0 2 1
0 0 2 2
0 0 2 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2 7
0 0 2 8
0 0 2 9
0 0 2 10
0 0 2 11
0 0 2 12
0 0 2 13
0 0 2 14
0 0 2 15
1 1 4 16
1 1 4 17
1 1 4 18

n1=3
n2=15 MWW(c1|c2) =51−6

45 = 1∑
ri=51

Table A.4: The MWW(c2|c1) value

S R group ID ranks

1 0 1 1
1 0 1 2
1 0 1 3
0 0 2 4
0 0 2 5
0 0 2 6
1 1 4 7
1 1 4 8
1 1 4 9
1 1 4 10
1 1 4 11
1 1 4 12
1 1 4 13
1 1 4 14
1 1 4 15
1 1 4 16
1 1 4 17
1 1 4 18

n1=15
n2=3 MWW(c2|c1) =156−120

45 = 0.80∑
ri=156

Appendix A. AUC Calculation based on Mann-Whitney-Wilcoxon. 5

Table A.5: The MWW(c1|c3) value

S R group ID ranks

0 0 2 1
0 0 2 2
0 0 2 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2 7
0 0 2 8
0 0 2 9
0 0 2 10
0 0 2 11
0 0 2 12
0 0 2 13
0 0 2 14
0 0 2 15
0 0 2 16
0 0 2 17
0 0 2 18
0 0 2 19
0 0 2 20
0 0 2 21
0 0 2 22
0 0 2 23
0 0 2 24
0 0 2 25
0 0 2 26
0 0 2 27
0 0 2 28
0 0 2 29
0 0 2 30
0 0 2 31
0 0 2 32
0 0 2 33
1 1 4 34
1 1 4 35
1 1 4 36

n1=3
n2=33 MWW(c1|c3) =105−6

99 = 1∑
ri=105

Table A.6: The MWW(c3|c1) value

S R group ID ranks

0 0 2 1
0 0 2 2
0 0 2 3
1 1 4 4
1 1 4 5
1 1 4 6
1 1 4 7
1 1 4 8
1 1 4 9
1 1 4 10
1 1 4 11
1 1 4 12
1 1 4 13
1 1 4 14
1 1 4 15
1 1 4 16
1 1 4 17
1 1 4 18
1 1 4 19
1 1 4 20
1 1 4 21
1 1 4 22
1 1 4 23
1 1 4 24
1 1 4 25
1 1 4 26
1 1 4 27
1 1 4 28
1 1 4 29
1 1 4 30
1 1 4 31
1 1 4 32
1 1 4 33
1 1 4 34
1 1 4 35
1 1 4 36

n1=33
n2=3 MWW(c3|c1) =660−561

99 = 1∑
ri=660

Appendix A. AUC Calculation based on Mann-Whitney-Wilcoxon. 6

Table A.7: The MWW(c2|c3) value

S R group ID ranks

1 0 1 47
1 0 1 48
1 0 2 1
1 0 2 2
1 0 2 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2 7
0 0 2 8
0 0 2 9
0 0 2 10
0 0 2 11
0 0 2 12
0 0 2 13
0 0 2 14
0 0 2 15
0 0 2 16
0 0 2 17
0 0 2 18
0 0 2 19
0 0 2 20
0 0 2 21
0 0 2 22
0 0 2 23
0 0 2 24
0 0 2 25
0 0 2 26
0 0 2 27
0 0 2 28
0 0 2 29
0 0 2 30
0 0 2 31
0 0 2 32
0 0 2 33
0 0 2 34
0 0 2 35
0 0 2 36
1 1 4 37
1 1 4 38
1 1 4 39
1 1 4 40
1 1 4 41
1 1 4 42
1 1 4 43
1 1 4 44
1 1 4 45
1 1 4 46

n1=15
n2=33 MWW(c2|c3) =516−120

495 = 0.8∑
ri=516

Table A.8: The MWW(c3|c2) value

S R group ID ranks

0 0 2 1
0 0 2 2
0 0 2 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2 7
0 0 2 8
0 0 2 9
0 0 2 10
0 0 2 11
0 0 2 12
0 1 3 13
0 1 3 14
0 1 3 15
1 1 4 16
1 1 4 17
1 1 4 18
1 1 4 19
1 1 4 20
1 1 4 21
1 1 4 22
1 1 4 23
1 1 4 24
1 1 4 25
1 1 4 26
1 1 4 27
1 1 4 28
1 1 4 29
1 1 4 30
1 1 4 31
1 1 4 32
1 1 4 33
1 1 4 34
1 1 4 35
1 1 4 36
1 1 4 37
1 1 4 38
1 1 4 39
1 1 4 40
1 1 4 41
1 1 4 42
1 1 4 43
1 1 4 44
1 1 4 45
1 1 4 46
1 1 4 47
1 1 4 48

n1=33
n2=15 MWW(c3|c2) =1056−561

495 = 1∑
ri=1056

Appendix A. AUC Calculation based on Mann-Whitney-Wilcoxon. 7

Table A.9: The overall AUC value for the given data set

MWW(i,j) MWW(j,i) A(i,j)

MWW(c1, c2)=1 MWW(c2, c1)=0.8 A(c1|c2) = 1+0.8
2 = 0.9

MWW(c1, c3)=1 MWW(c3, c1)=1 A(c1|c3) = 1+1
2 = 1

MWW(c2, c3)=0.8 MWW(c3, c2)=1 A(c2|c3) = 0.8+1
2 = 0.9

AUC=2×2.8
3×2 = 0.93

Appendix B

Graph File Format and Raw Data

Format

For the work described in this thesis the GraphML format was employed as the stan-

dard format for describing grid graphs. The raw data for the AISF sheet metal forming

application was provided in a “point cloud” format in terms of a set of “X-Y-Z” coordi-

nates which was converted into grids and then into grid graphs. The raw data sets for

the satellite image interpretation application were provided directly in the form a grids

from which grid graphs could be generated. In both cases, prior to further processing,

the graphs were presented in GraphML format [25]. For completeness this format is

presented in this appendix.

GraphML is an XML based file format originally proposed by the graph analysis

community so as to provide a suitable file exchange format for graph data. Figure

B.2 presents an encoding of the graph presented in Figure B.1 using GraphML. With

respect to Figure B.2, lines 1 to 5 define a common header, line 7 to 15 define graph

vertex information, and line 16 to 25 define graph edge information. In GraphML there is

no required ordering for the node and edge elements. More advanced features offered by

the GraphML format can be found in the GraphML Primer available from the GraphML

website1.

1http://graphml.graphdrawing.org/primer/graphml-primer.html

9

Appendix B. Graph File Format and Raw Data Format 10

Figure B.1: An example graph [122].

Figure B.2: GraphML encoding for the graph given in Figure B.1

Appendix C

Additional Experimental Results

C.1 Introduction

In this appendix some additional experimental results to those given in Chapter 7,

in the context of VULS based vertex classification, are presented. More specifically

results obtained using a grid size d = 23 (mm) for the sheet metal forming AISF data is

presented. Recall that in Chapter 7 only results using d = 28 (mm) were considered; this

was because of of space restrictions within the main body of this thesis. For completeness

these additional results are thus presented here. The objectives of the evaluation were

the same as before, namely:

1. To compare the operation of the proposed VULS mining algorithms, using a range

of max values, in terms of coverage, number of identified VULS and runtime.

2. To compare the distinction between the usage of grid graphs and cross grid graphs,

and the usage of directed and undirected graphs.

3. To investigate the effect of using different values for |LV |.

4. To investigate the effect of using different values for |LE |.

5. To compare the effectiveness of the identified VULS, with respect to vertex classi-

fication, and with respect to more standard approaches (J48 and Naive Bayes).

6. To investigate the statistical significance of the outcome.

This appendix is organised in the same manner as Chapter 7 since the objectives

above are the same. Each of these objectives is considered in a separate section below

(Sections C.2 to C.7).

C.2 Comparison of VULS Mining Algorithms Using a Range

of max Values (Objective 1)

In this section the additional results obtained, using d = 23 (mm), to compare the

operation of the four proposed VULS mining algorithms, are presented. As previously,

11

Appendix C. Additional Experimental Results 12

the results are considered in terms of coverage, number of identified VULS and run time.

The results are listed in Tables C.1 to C.3, corresponding to max parameter settings of

4, 5 and 6 respectively. As before |LV | was set to 2 and |LE | was set to 8. All the graphs

considered were grid graphs (Degree=4) and featured directed Edges.

Table C.1: Comparison of VULS Mining Algorithms Using max = 4 (Objective 1).

Graph
Comp.VULS Min. VULS Freq. VULS Min. freq. VULS

Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time

GS 100.00 192.00 0.39 100.00 52.00 0.33 100.00 173.00 0.31 100.00 48.00 0.39

GT 87.50 1044.00 0.65 84.38 53.00 0.47 87.50 1009.00 0.81 82.81 38.00 0.49

MS 100.00 79.00 0.30 96.88 18.00 0.40 100.00 50.00 0.28 93.75 11.00 0.74

MT 79.69 455.00 0.53 78.13 40.00 0.41 79.69 278.00 0.62 73.44 31.00 0.38

Average 91.80 442.50 0.47 89.85 40.75 0.40 91.80 377.50 0.51 87.50 32.00 0.50

SD 9.99 430.83 0.15 10.32 16.28 0.06 9.99 431.19 0.25 11.76 15.64 0.17

Table C.2: Comparison of VULS Mining Algorithms Using max = 5 (Objective 1).

Graph
Comp.VULS Min. VULS Freq. VULS Min. freq. VULS

Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time

GS 100.00 192.00 0.28 100.00 52.00 0.42 100.00 173.00 0.32 100.00 48.00 0.47

GT 87.50 3621 1.55 84.38 65.00 0.45 87.50 3586.00 1.22 82.81 50.00 0.55

MS 100.00 79.00 0.29 96.88 37.00 0.50 100.00 50.00 0.28 93.75 30.00 0.79

MT 79.69 1475.00 1.24 78.13 78.00 0.44 79.69 844.00 0.98 76.56 53.00 0.50

Average 91.80 1341.75 0.84 89.85 58.00 0.45 91.80 1163.25 0.70 88.28 45.25 0.58

SD 9.99 1646.13 0.65 10.32 17.57 0.03 9.99 1652.43 0.47 10.56 10.37 0.15

Table C.3: Comparison of VULS Mining Algorithms Using max = 6 (Objective 1).

Graph
Comp.VULS Min. VULS Freq. VULS Min. freq. VULS

Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time Cov. # VULS Time

GS 100.00 192.00 0.34 100.00 52.00 0.23 100.00 173.00 0.31 100.00 48.00 0.53

GT 87.50 11541.00 4.30 87.50 187.00 0.73 87.50 11506.00 1.77 87.50 172 1.30

MS 100.00 79.00 0.26 96.88 50.00 0.84 100.00 50.00 0.32 93.75 43.00 1.21

MT 92.19 4648.00 2.38 78.13 105.00 0.67 92.19 2488.00 1.62 76.56 80.00 0.85

Average 94.92 4115.00 1.82 90.63 98.50 0.62 94.92 3554.25 1.01 89.45 85.75 0.97

SD 6.17 5388.53 1.92 9.88 64.26 0.27 6.17 5418.48 0.80 10.00 59.79 0.35

From Tables C.1 to C.3 the following can be noted with respect to coverage, number

of VULS identified and run time:

• Coverage.

1. When finding all VULS, minimal VULS, frequent VULS and minimal frequent

VULS, 100% coverage can be obtained in some cases regardless of the max

value used.

2. On average, when finding minimal VULS coverage was always worse than

when finding frequent VULS.

3. The worst recorded coverage values were obtained when finding minimal fre-

quent VULS.

Appendix C. Additional Experimental Results 13

4. The relationship between the different VULS algorithms in terms of coverage

fits with the more general relationship between the four different categories

of VULS illustrated previously in Figure 2.2 of chapter 4.

5. As the max parameter is increased from 4 to 6 we can anticipate that more

VULS will be identified and hence coverage would be expected to increase

(as indicated by the results).

• Number of VULS.

1. Many more VULS are discovered when mining for all VULS than when mining

for any of the other forms of VULS considered (minimal, frequent, minimal

frequent).

2. Generally speaking, with respect to the average number of VULS identified,

we can expect: (i) VULS > minimal VULS > minimal frequent VULS; and

(ii) VULS > frequent VULS > minimal frequent VULS.

3. Not withstanding point 2 above the recorded results again confirm the rela-

tionship between the four different categories of VULS illustrated previously

in Figure 2.2 of chapter 4.

4. With respect to the max parameter, as this was increased from 4 to 6, the

number of identified VULS increased (as expected).

• Run time.

1. As the max parameter was increased from 4 to 6, the required run time for

identifying VULS (with respect to all four categories) also increased (as was

to be expected).

2. The frequent VULS mining algorithm required more run time than the Complete

VULS and Minimal VULS algorithms because of the additional candidate graph

counting (isomorphism testing) that had to be conducted.

Comparing these results with the results presented in Section 7.2 of Chapter 7, it can

be seen that as grid size d decreased from 28 (mm) to 23 (mm), more VULS (regardless

of the VULS form) were generated, but coverage did not increase as expected, and more

run time was consumed.

C.3 Comparison Between Usage of Grid Graphs and Cross

Grid Graphs, and Directed and Undirected Graphs

(Objective 2)

In this section results are presented from experiments, using d = 23 (mm), comparing

the operation of VULS based vertex classification with respect to the four different

Appendix C. Additional Experimental Results 14

types of grid graph identified in this thesis: (i) directed grid graphs, (ii) undirected grid

graphs, (iii) directed cross-grid graphs, (iv) undirected cross-grid graphs. Recall that the

distinction between a grid graph and a cross grid graph is that the first has degree = 4

and the second degree = 8. As before the experiments were conducted using AISF grid

graph pairings. Note also that |LV | = 2, |LE | = 8 and max = 4 was used. The results

are presented in Table C.4.

Table C.4: Classification Effectiveness with Respect to graph types (Objective 2).

Graph Category Graph
Comp.VULS Min. VULS Freq. VULS Min.freq VULS J48 Naive Bayes

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

directed grid

GS 0.75 0.77 0.59 0.63 0.75 0.77 0.59 0.63 0.83 0.77 0.78 0.74

GT 0.72 0.53 0.77 0.62 0.72 0.53 0.77 0.62 0.70 0.50 0.73 0.90

MS 0.81 0.83 0.58 0.63 0.78 0.81 0.56 0.61 0.83 0.92 0.80 0.99

MT 0.88 0.55 0.88 0.55 0.88 0.55 0.88 0.55 0.89 0.50 0.89 0.72

Average 0.79 0.67 0.71 0.61 0.78 0.67 0.70 0.60 0.81 0.67 0.80 0.84

SD 0.07 0.15 0.15 0.04 0.07 0.15 0.15 0.04 0.08 0.21 0.07 0.13

undirected grid

GS 0.52 0.49 0.45 0.41 0.50 0.47 0.55 0.50 0.83 0.77 0.78 0.74

GT 0.70 0.50 0.70 0.50 0.70 0.50 0.70 0.50 0.70 0.50 0.73 0.90

MS 0.91 0.92 0.75 0.78 0.89 0.90 0.72 0.75 0.83 0.92 0.80 0.99

MT 0.89 0.50 0.83 0.59 0.89 0.50 0.89 0.50 0.89 0.50 0.89 0.72

Average 0.76 0.60 0.68 0.57 0.75 0.59 0.72 0.56 0.81 0.67 0.80 0.84

SD 0.18 0.21 0.16 0.16 0.19 0.21 0.14 0.13 0.08 0.21 0.07 0.13

directed cross-grid

GS 0.45 0.42 0.50 0.47 0.56 0.54 0.50 0.47 0.83 0.77 0.78 0.74

GT 0.70 0.50 0.72 0.53 0.70 0.50 0.70 0.50 0.70 0.50 0.73 0.90

MS 0.94 0.94 0.77 0.79 0.95 0.95 0.84 0.86 0.83 0.92 0.80 0.99

MT 0.89 0.50 0.89 0.50 0.89 0.50 0.89 0.50 0.89 0.50 0.89 0.72

Average 0.75 0.59 0.72 0.57 0.78 0.62 0.73 0.58 0.81 0.67 0.80 0.84

SD 0.22 0.24 0.16 0.15 0.18 0.22 0.17 0.19 0.08 0.21 0.07 0.13

undirected cross-grid

GS 0.50 0.47 0.47 0.44 0.55 0.52 0.48 0.45 0.83 0.77 0.78 0.74

GT 0.70 0.50 0.70 0.50 0.70 0.50 0.70 0.50 0.70 0.50 0.73 0.90

MS 0.94 0.94 0.86 0.87 0.92 0.93 0.66 0.69 0.83 0.92 0.80 0.99

MT 0.89 0.50 0.89 0.50 0.89 0.50 0.89 0.50 0.89 0.50 0.89 0.72

Average 0.76 0.60 0.73 0.58 0.77 0.61 0.68 0.54 0.81 0.67 0.80 0.84

SD 0.20 0.23 0.19 0.20 0.17 0.21 0.17 0.11 0.08 0.21 0.07 0.13

From Table C.4 it cam be seen that, regardless of the form of VULS used (Complete

VULS, minimal VULS, frequent VULS or minimal frequent VULS) more effective results

were obtained using directed graphs than undirected graphs, and using grid graphs than

cross-grid graphs in most cases. More specifically, in most cases VULS classification

performance (in terms of accuracy and AUC) featured the following trends: (i) directed

grid > undirected grid, (ii) directed cross-grid > undirected cross-grid and (iii) directed

grid >directed cross-grid. This trend is consistent with that found in section 7.5 of

Chapter 7 where grid size d = 28 (mm).

C.4 Effect of |LV | on Classification Effectiveness (Objective

3)

The third parameter considered in this appendix is |LV |. The effect on classification

when |LV | = 2 and |LV | = 3 was considered. For the experiments |LE | = 8 and

Appendix C. Additional Experimental Results 15

max = 4 were used. As before all graphs were directed. The results are presented in

Table C.5. From the Table, as expected, better accuracy and AUC can be achieved

when the number of vertex labels is small (|LV | = 2). As the number of vertex labels

increases to 3, the graph labelling becomes more diverse; as a result, the classification

performance tends to deteriorate. This trend is consistent with that found in section 7.6

of Chapter 7 where experiments using a grid size d = 28 (mm) were considered.

Table C.5: Classification Effectiveness with Respect to |LV | (Objective 3).

|LV | Graph
Comp.VULS Min. VULS Freq. VULS Min.freq VULS J48 Naive Bayes

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

2

GS 0.75 0.77 0.59 0.63 0.75 0.77 0.59 0.63 0.83 0.77 0.78 0.74

GT 0.72 0.53 0.77 0.62 0.72 0.53 0.77 0.62 0.70 0.50 0.73 0.90

MS 0.81 0.83 0.58 0.63 0.78 0.81 0.56 0.61 0.83 0.92 0.80 0.99

MT 0.88 0.55 0.88 0.55 0.88 0.55 0.88 0.55 0.89 0.50 0.89 0.72

Average 0.79 0.67 0.71 0.61 0.78 0.67 0.70 0.60 0.81 0.67 0.80 0.84

SD 0.07 0.15 0.15 0.04 0.07 0.15 0.15 0.04 0.08 0.21 0.07 0.13

3

GS 0.47 0.37 0.38 0.32 0.47 0.37 0.38 0.32 0.58 0.74 0.69 0.73

GT 0.61 0.40 0.58 0.33 0.61 0.40 0.58 0.33 0.58 0.50 0.67 0.89

MS 0.58 0.63 0.28 0.36 0.58 0.63 0.27 0.35 0.58 0.75 0.50 0.81

MT 0.73 0.38 0.72 0.37 0.73 0.38 0.70 0.35 0.70 0.50 0.67 0.69

Average 0.60 0.45 0.49 0.35 0.60 0.45 0.48 0.34 0.61 0.62 0.63 0.78

SD 0.11 0.12 0.20 0.02 0.11 0.12 0.19 0.02 0.06 0.14 0.09 0.09

C.5 Effect of |LE| on Classification Effectiveness (Objective

4)

In this section further results concerning classification effectiveness, obtained using d =

23 (mm), and a range of values for LE from 2 to 8, increasing in steps of 2, are presented

in terms of accuracy and AUC. Note that the VULS classification was again conducted

using the AISF data pairings whereby one graph was used for training purposes, while

the other was used for testing purposes. As before |LV | was set to 2 and the max was

set to 4; all the graphs considered were grid graphs (degree = 4) and featured directed

edges only. The results are presented in the Table C.6

Appendix C. Additional Experimental Results 16

Table C.6: Classification Effectiveness with Respect to |LE | (Objective 4).

|LE | Graph
Comp.VULS Min. VULS Freq. VULS Min.freq VULS J48 Naive Bayes

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

2

GS 0.53 0.50 0.58 0.54 0.53 0.50 0.55 0.50 0.69 0.65 0.66 0.74

GT 0.70 0.50 0.70 0.50 0.70 0.50 0.70 0.50 0.70 0.50 0.70 0.65

MS 0.44 0.47 0.44 0.50 0.44 0.50 0.44 0.50 0.67 0.82 0.67 0.87

MT 0.89 0.50 0.89 0.50 0.89 0.50 0.89 0.50 0.89 0.50 0.89 0.52

Average 0.64 0.49 0.65 0.51 0.64 0.50 0.65 0.50 0.74 0.62 0.73 0.70

SD 0.20 0.02 0.19 0.02 0.20 0 0.20 0 0.10 0.15 0.11 0.15

4

GS 0.56 0.53 0.42 0.39 0.56 0.53 0.42 0.39 0.81 0.77 0.75 0.78

GT 0.70 0.50 0.70 0.50 0.70 0.50 0.70 0.50 0.70 0.50 0.72 0.85

MS 0.70 0.74 0.69 0.72 0.67 0.71 0.55 0.60 0.86 0.91 0.75 0.96

MT 0.89 0.50 0.89 0.50 0.89 0.50 0.89 0.50 0.89 0.50 0.89 0.67

Average 0.71 0.57 0.68 0.53 0.71 0.56 0.64 0.50 0.82 0.67 0.78 0.82

SD 0.14 0.12 0.19 0.14 0.14 0.10 0.20 0.09 0.08 0.20 0.08 0.12

6

GS 0.53 0.49 0.47 0.43 0.53 0.49 0.47 0.43 0.67 0.74 0.77 0.73

GT 0.70 0.50 0.69 0.55 0.70 0.50 0.69 0.55 0.70 0.50 0.72 0.85

MS 0.80 0.82 0.73 0.76 0.80 0.82 0.70 0.74 0.86 0.92 0.81 0.98

MT 0.88 0.55 0.88 0.55 0.88 0.55 0.89 0.56 0.89 0.50 0.89 0.72

Average 0.73 0.59 0.69 0.57 0.73 0.59 0.69 0.57 0.78 0.67 0.80 0.82

SD 0.15 0.16 0.17 0.14 0.15 0.16 0.17 0.13 0.11 0.20 0.07 0.12

8

GS 0.75 0.77 0.59 0.63 0.75 0.77 0.59 0.63 0.83 0.77 0.78 0.74

GT 0.72 0.53 0.77 0.62 0.72 0.53 0.77 0.62 0.70 0.50 0.73 0.90

MS 0.81 0.83 0.58 0.63 0.78 0.81 0.56 0.61 0.83 0.92 0.80 0.99

MT 0.88 0.55 0.88 0.55 0.88 0.55 0.88 0.55 0.89 0.50 0.89 0.72

Average 0.79 0.67 0.71 0.61 0.78 0.67 0.70 0.60 0.81 0.67 0.80 0.84

SD 0.07 0.15 0.15 0.04 0.07 0.15 0.15 0.04 0.08 0.21 0.07 0.13

From Table C.6 it can be seen that the average accuracy and AUC tends to rise

as |LE | is increased from 2 to 8 with respect to each of the VULS form considered

(Complete VULS, minimal VULS, frequent VULS, minimal frequent VULS). This trend

is consistent with that found in section 7.4 of Chapter 7.

C.6 Comparison of VULS Vertex Classification Effective-

ness (Objective 5)

This section reports on the comparative evaluation conducted with respect to VULS

vertex classification when d = 23 (mm). As before the comparison includes results

obtained when using J48 and Naive Bayes. For the experiments the following parameter

settings were used: |LE | = 8 and |LV | = 2. All the graphs considered were grid graphs

(degree = 4) and featured directed Edges. The results are presented in Table C.7. From

the table it can be seen that out of the VULS algorithms considered, using Complete

VULS and frequent VULS produced comparable results as obtained using J48, in terms

of average AUC (0.67). Naive Bayes produced the best vertex classification performance

in terms of AUC (0.84).

Appendix C. Additional Experimental Results 17

Table C.7: VULS Classification Comparison where |LV | = 2 (Objective 5).

Graph
Comp.VULS Min. VULS Freq. VULS Min. freq. VULS J48 Naive Bayes

Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC Acc. AUC

GS 0.75 0.77 0.59 0.63 0.75 0.77 0.59 0.63 0.83 0.77 0.78 0.74

GT 0.72 0.53 0.77 0.62 0.72 0.53 0.77 0.62 0.70 0.50 0.73 0.90

MS 0.81 0.83 0.58 0.63 0.78 0.81 0.56 0.61 0.83 0.92 0.80 0.99

MT 0.88 0.55 0.88 0.55 0.88 0.55 0.88 0.55 0.89 0.50 0.89 0.72

Average 0.79 0.67 0.71 0.61 0.78 0.67 0.70 0.60 0.81 0.67 0.80 0.84

SD 0.07 0.15 0.15 0.04 0.07 0.15 0.15 0.04 0.08 0.21 0.07 0.13

C.7 Statistical Comparison of the Proposed VULS Ap-

proaches (Objective 6)

The statistical comparison of the above results is presented in this section. The Friedman

statistic derived from the recorded AUC values for the 28 graphs considered (using

different parameter settings) are summarized in Tables C.8 to C.9 respectively where, as

before, the “AR” column gives the average AUC ranked performance and the “AR+CD”

column gives the average AUC value plus the calculated critical difference. Table C.8

shows the average ranking of each classifier on graphs where |LV | = 2 and d = 23 (mm).

In this case the Friedman test value, calculated using K − 1 = 50 − 1 = 49 degrees

of freedom, was 216.91. The corresponding p-value (threshold) was 9.823E − 11; and

the F-distribution with 49 and 1323 degrees of freedom, F (49, 1323), was 5.07. The

critical value for F (49, 1323), with a critical difference level of α = 0.05, was 1.364.

Thus the p-value (9.823E − 11) is less than 0.005 and that the F-distribution (5.07)

is larger than the corresponding F-distribution critical value (1.364); therefore we can

reject the null hypothesis H0. Referring back to Table C.8 the average rank results for

the different VULS classifiers considered were all significant (p < 0.005), and thus a

Nemenyi post-hoc test was deemed to be applicable to detect which particular classifiers

differed significantly from each other. The significance diagram, corresponding to the

information presented in Table C.8, is presented in Figure C.1. The CD value for the

diagram is equal to 10.997.

From Figure C.1 it can be seen that, with respect to graphs where |LV | = 2 (and

d = 23 (mm)) the best performing classifier was Naive Bayes (a recorded AR value

of 1.679); its performance was significantly better than all the other classifiers. In the

diagram the classifiers highlighted in grey achieved comparable performance with J48.

Similar results were obtained using d = 28 (mm) as reported in Chapter 7. However,

as noted in Chapter 7, it should be high-lighted that although in the first instance it

would appear that standard classifiers outperform the proposed VULS based classifiers,

and this is indeed the case with respect to grid graphs, such classifiers would be difficult

to apply in the case of un-regular graphs. However, VULS classifiers can be applied to

any graphs regardless of their form (grid or non-grid).

Appendix C. Additional Experimental Results 18

Table C.8: Average Rankings of classifiers where |LV | = 2 and d = 23 (mm)

Algorithm AR AR+CD

NaiveBayes 1.679 12.676

Undirected-Degree4-max6-VULS 15.661 26.658

Undirected-Degree4-max6-freqVULS 17.625 28.622

Undirected-Degree4-max5-VULS 19.250 30.247

J48 19.339 30.336

Directed-Degree8-max5-freqVULS 21.589 32.586

Directed-Degree8-max5-VULS 21.607 32.604

Undirected-Degree4-max5-freqVULS 21.696 32.693

Directed-Degree4-max6-freqVULS 21.911 32.908

Directed-Degree8-max6-freqVULS 22.214 33.211

Directed-Degree8-max6-minFreqVULS 22.500 33.497

Directed-Degree8-max6-VULS 22.571 33.568

Directed-Degree4-max6-VULS 22.589 33.586

Directed-Degree4-max4-VULS 22.607 33.604

Undirected-Degree4-max4-VULS 22.661 33.658

Directed-Degree8-max4-VULS 22.750 33.747

Directed-Degree4-max5-VULS 22.982 33.979

Directed-Degree4-max6-minVULS 23.036 34.033

Directed-Degree4-max5-freqVULS 23.232 34.229

Directed-Degree8-max5-minFreqVULS 23.357 34.354

Directed-Degree4-max6-minFreqVULS 23.500 34.497

Directed-Degree4-max5-minVULS 23.714 34.711

Directed-Degree8-max4-freqVULS 23.893 34.890

Directed-Degree4-max4-freqVULS 23.964 34.961

Directed-Degree8-max4-minFreqVULS 24.125 35.122

Directed-Degree4-max5-minFreqVULS 25.179 36.176

Undirected-Degree8-max6-freqVULS 25.286 36.283

Undirected-Degree8-max6-VULS 25.732 36.729

Directed-Degree4-max4-minVULS 26.018 37.015

Undirected-Degree8-max5-VULS 26.054 37.0506

Directed-Degree8-max4-minVULS 27.161 38.158

Undirected-Degree8-max5-freqVULS 27.946 38.943

Undirected-Degree4-max6-minVULS 28.357 39.354

Directed-Degree4-max4-minFreqVULS 28.375 39.372

Undirected-Degree8-max4-VULS 28.679 39.676

Undirected-Degree4-max4-freqVULS 28.732 39.729

Directed-Degree8-max5-minVULS 29.036 40.033

Directed-Degree8-max6-minVULS 29.286 40.283

Undirected-Degree8-max4-freqVULS 29.768 40.765

Appendix C. Additional Experimental Results 19

Undirected-Degree4-max5-minVULS 29.857 40.854

Undirected-Degree4-max4-minVULS 30.339 41.336

Undirected-Degree4-max5-minFreqVULS 32.036 43.033

Undirected-Degree4-max6-minFreqVULS 32.107 43.104

Undirected-Degree8-max6-minVULS 32.179 43.176

Undirected-Degree8-max4-minVULS 33.196 44.193

Undirected-Degree8-max6-minFreqVULS 33.696 44.693

Undirected-Degree4-max4-minFreqVULS 33.750 44.747

Undirected-Degree8-max4-minFreqVULS 33.839 44.836

Undirected-Degree8-max5-minVULS 34.161 45.158

Undirected-Degree8-max5-minFreqVULS 34.179 45.176

Similarly, Table C.2 show the average ranking of each classifier on graphs where

|LV | = 3 and d = 23. The Friedman test value on this case was 263.83, whilst the

p-value (threshold) was 1.138E − 10. The F-distribution with 49 and 1323 degrees

of freedom, F (49, 1323), was 6.428. The critical value for F (49, 1323), with a critical

difference level of α = 0.05, was 1.364. Thus, from the foregoing we can note that the

p-value (1.138E − 10) is smaller than 0.005 and that the F-distribution (6.428) is larger

than the corresponding F-distribution critical value (1.364). Therefore we can reject

the null hypothesis H0 (that the observed performance differences among classifiers

is simply a matter of chance). The significance diagram is presented in Figure C.2.

The CD value for the diagram was 10.997. From the diagram it can be seen that

the best performing classifier was Naive Bayes (a recorded AR value of 1.286), whilst

J48 achieved a comparable performance. Classifiers highlighted in grey in the diagram

indicate classifiers that achieved a comparable performance. Again similar results were

reported in Chapter 7, and again the same observation with respect to grid graphs and

the use of more standard classification techniques applies.

Table C.9: Average Rankings of the classifiers where |LV | = 3 and d = 23 (mm)

Algorithm AR AR+CD

NaiveBayes 1.286 12.283

J48 3.446 14.443

Directed-Degree4-max6-VULS 20.143 31.140

Undirected-Degree4-max6-freqVULS 20.339 31.336

Undirected-Degree8-max5-freqVULS 20.500 31.497

Undirected-Degree8-max6-freqVULS 20.536 31.533

Directed-Degree4-max5-VULS 20.893 31.890

Undirected-Degree8-max6-VULS 21.661 32.658

Directed-Degree4-max4-VULS 21.929 32.926

Undirected-Degree8-max5-VULS 21.946 32.943

Directed-Degree8-max5-VULS 22.125 33.122

Directed-Degree4-max6-freqVULS 22.500 33.497

Appendix C. Additional Experimental Results 20

Directed-Degree8-max6-VULS 22.821 33.818

Undirected-Degree8-max5-minVULS 23.071 34.068

Directed-Degree4-max5-freqVULS 23.161 34.158

Directed-Degree4-max4-freqVULS 23.446 34.443

Directed-Degree8-max4-VULS 23.589 34.586

Undirected-Degree8-max4-VULS 23.696 34.693

Directed-Degree4-max5-minVULS 24.321 35.318

Directed-Degree4-max6-minVULS 24.625 35.622

Undirected-Degree4-max6-VULS 24.625 35.622

Directed-Degree8-max6-freqVULS 24.732 35.729

Directed-Degree4-max6-minFreqVULS 25.000 35.997

Undirected-Degree4-max5-freqVULS 25.036 36.033

Directed-Degree8-max4-freqVULS 25.071 36.068

Directed-Degree8-max5-minVULS 25.286 36.283

Directed-Degree8-max4-minVULS 25.357 36.354

Directed-Degree8-max5-freqVULS 25.464 36.461

Directed-Degree4-max5-minFreqVULS 25.554 36.551

Undirected-Degree4-max4-VULS 26.679 37.676

Undirected-Degree4-max5-VULS 27.232 38.229

Directed-Degree8-max6-minVULS 27.304 38.301

Directed-Degree8-max5-minFreqVULS 27.714 38.711

Undirected-Degree8-max6-minVULS 28.393 39.390

Directed-Degree4-max4-minVULS 28.857 39.854

Directed-Degree8-max6-minFreqVULS 29.304 40.301

Directed-Degree8-max4-minFreqVULS 29.429 40.426

Undirected-Degree4-max4-freqVULS 29.679 40.676

Undirected-Degree8-max4-freqVULS 30.018 41.015

Undirected-Degree4-max6-minFreqVULS 30.286 41.283

Undirected-Degree8-max5-minFreqVULS 30.482 41.479

Directed-Degree4-max4-minFreqVULS 31.179 42.176

Undirected-Degree8-max6-minFreqVULS 31.214 42.211

Undirected-Degree8-max4-minVULS 31.571 42.568

Undirected-Degree4-max5-minFreqVULS 32.071 43.068

Undirected-Degree4-max5-minVULS 32.661 43.658

Undirected-Degree8-max4-minFreqVULS 33.804 44.801

Undirected-Degree4-max4-minVULS 34.179 45.176

Undirected-Degree4-max6-minVULS 34.482 45.479

Undirected-Degree4-max4-minFreqVULS 36.304 47.301

Appendix C. Additional Experimental Results 21
	
Undirected-Degree8-max5-minFreqVULS
Undirected-Degree8-max5-minVULS
Undirected-Degree8-max4-minFreqVULS
Undirected-Degree4-max4-minFreqVULS
Undirected-Degree8-max6-minFreqVULS
Undirected-Degree8-max4-minVULS
Undirected-Degree8-max6-minVULS
Undirected-Degree4-max6-minFreqVULS
Undirected-Degree4-max5-minFreqVULS
Undirected-Degree4-max4-minVULS
Undirected-Degree4-max5-minVULS
Undirected-Degree8-max4-freqVULS
Directed-Degree8-max6-minVULS
Directed-Degree8-max5-minVULS
Undirected-Degree4-max4-freqVULS
Undirected-Degree8-max4-compVULS
Directed-Degree4-max4-minFreqVULS
Undirected-Degree4-max6-minVULS
Undirected-Degree8-max5-freqVULS
Directed-Degree8-max4-minVULS
Undirected-Degree8-max5-compVULS
Directed-Degree4-max4-minVULS
Undirected-Degree8-max6-compVULS
Undirected-Degree8-max6-freqVULS
Directed-Degree4-max5-minFreqVULS
Directed-Degree8-max4-minFreqVULS
Directed-Degree4-max4-freqVULS
Directed-Degree8-max4-freqVULS
Directed-Degree4-max5-minVULS
Directed-Degree4-max6-minFreqVULS
Directed-Degree8-max5-minFreqVULS
Directed-Degree4-max5-freqVULS
Directed-Degree4-max6-minVULS
Directed-Degree4-max5-compVULS
Directed-Degree8-max4-compVULS
Undirected-Degree4-max4-compVULS
Directed-Degree4-max4-compVULS
Directed-Degree4-max6-compVULS
Directed-Degree8-max6-compVULS
Directed-Degree8-max6-minFreqVULS
Directed-Degree8-max6-freqVULS
Directed-Degree4-max6-freqVULS
Undirected-Degree4-max5-freqVULS
Directed-Degree8-max5-compVULS
Directed-Degree8-max5-freqVULS
J48
Undirected-Degree4-max5-compVULS
Undirected-Degree4-max6-freqVULS
Undirected-Degree4-max6-compVULS
Naive Bayes

10 20 30 40 50 0

Figure C.1: Critical difference diagram generated using Nemenyi’s post hoc test with
α = 0.05 for graphs where |LV | = 2 and d = 23 (mm).

Appendix C. Additional Experimental Results 22
	
Undirected-Degree4-max4-minFreqVULS
Undirected-Degree4-max6-minVULS
Undirected-Degree4-max4-minVULS
Undirected-Degree8-max4-minFreqVULS
Undirected-Degree4-max5-minFreqVULS
Undirected-Degree8-max4-minVULS
Undirected-Degree8-max6-minFreqVULS
Directed-Degree4-max4-minFreqVULS
Undirected-Degree8-max5-minFreqVULS
Undirected-Degree4-max6-minFreqVULS
Undirected-Degree8-max4-freqVULS
Undirected-Degree4-max4-freqVULS
Directed-Degree8-max4-minFreqVULS
Directed-Degree8-max6-minFreqVULS
Directed-Degree4-max4-minVULS
Undirected-Degree8-max6-minVULS
Directed-Degree8-max5-minFreqVULS
Directed-Degree8-max6-minVULS
Undirected-Degree4-max5-compVULS
Undirected-Degree4-max4-compVULS
Directed-Degree4-max5-minFreqVULS
Directed-Degree8-max5-freqVULS
Directed-Degree8-max4-minVULS
Directed-Degree8-max5-minVULS
Directed-Degree8-max4-freqVULS
Undirected-Degree4-max5-freqVULS
Directed-Degree4-max6-minFreqVULS
Directed-Degree8-max6-freqVULS
Directed-Degree4-max6-compVULS
Undirected-Degree4-max6-compVULS
Directed-Degree4-max6-minVULS
Directed-Degree4-max5-minVULS
Undirected-Degree8-max4-compVULS
Directed-Degree8-max4-compVULS
Directed-Degree4-max4-freqVULS
Directed-Degree4-max5-freqVULS
Undirected-Degree8-max5-minVULS
Directed-Degree8-max6-compVULS
Directed-Degree4-max6-freqVULS
Directed-Degree8-max5-compVULS
Undirected-Degree8-max5-compVULS
Directed-Degree4-max4-compVULS
Undirected-Degree8-max6-compVULS
Directed-Degree4-max5-compVULS
Undirected-Degree8-max6-freqVULS
Undirected-Degree8-max5-freqVULS
Undirected-Degree4-max6-freqVULS
Directed-Degree4-max6-compVULS
J48
Naive Bayes

10 20 30 40 50 0

Figure C.2: Critical difference diagram generated using Nemenyi’s post hoc test with
α = 0.05 for graphs where |LV | = 3 and d = 23 (mm).

Appendix C. Additional Experimental Results 23

C.8 Summary

This appendix has presented an evaluation of the proposed VULS mining and VULS

classification processes in terms of AISF grids where d = 23. From the evaluation the

following overall observations can be made:

1. With respect to the VULS mining the best coverage was produced using Complete

VULS.

2. The most effective VULS mining algorithms were the Complete VULS and frequent

VULS mining algorithms in terms of accuracy and AUC.

3. Frequent VULS mining is more efficient than Complete VULS mining.

4. There is no significant difference in terms of classification effectiveness between

the VULS classifiers built with max parameter settings in the range of {4, 5, 6}.
However, using max = 4 is more efficient in the context of VULS mining.

5. The set of VULS produced using directed grid graph resulted in the most effective

vertex classification (in terms of AUC).

6. With respect to the comparison with more traditional classifiers, Naive Bayes pro-

duced the best performance.

7. When considering different values for |LE |, when using higher values for |LE | more

significant VULS can be identified, thus a better vertex classification performance

(in terms of AUC) can be achieved.

8. VULS classifiers tend to perform better when dealing with “grid” graphs (degree =

4) than “cross-grid” graphs (degree = 8).

9. Relatively speaking, VULS classifiers tend to perform better when dealing with

directed graphs than undirected graphs.

10. With respect to the size of |LV |, as the number of vertex labels increases from 2

to 3, the graph labelling becomes more diverse and as a result the classification

performance tends to deteriorate.

11. VULS vertex classification tended to deteriorate when using d = 23 (mm) compared

with results obtained using d = 28 (mm) as reported in chapter 7.

Broadly the above findings corroborate the results obtained using d = 28 (mm) as

reported in Chapter 7.

	Abstract
	Acknowledgements
	Abbreviations
	1 Introduction
	1.1 Overview
	1.2 Motivation
	1.3 Research Question and Related Issues
	1.4 Research Methodology
	1.5 Contributions
	1.6 Thesis Organization
	1.7 Published Work
	1.8 Summary

	2 Literature Review
	2.1 Introduction
	2.2 Graph Mining
	2.2.1 Graph Mining Categorisation
	2.2.2 Subgraph Patterns
	2.2.3 Graph Isomorphism
	2.2.4 Canonical Forms

	2.3 Frequent Subgraph Mining
	2.3.1 The Downward Closure Property
	2.3.2 Frequency Counting
	2.3.3 The Minimum support threshold
	2.3.3.1 Candidate Generation
	2.3.3.2 Frequent Subgraph Mining Algorithms

	2.4 3D Surface Representation Techniques and Grid Graphs
	2.5 Classification
	2.5.1 Semi-supervised Vertex Classification
	2.5.2 Supervised Vertex Classification
	2.5.3 Classification Techniques
	2.5.3.1 J48.
	2.5.3.2 Naive Bayes.

	2.6 Evaluation Criteria
	2.6.1 Accuracy, AUC, TCV and SD
	2.6.2 Overview of Statistical Performance Comparison
	2.6.3 Friedman's Test

	2.7 Summary

	3 Application Domain and Data Sets
	3.1 Introduction
	3.2 Application Domain One: Asymmetric Incremental Sheet Forming (AISF) and Springback Prediction
	3.2.1 AISF Process
	3.2.2 Grid Representation
	3.2.3 Springback Measurement
	3.2.4 AISF Datasets
	3.2.5 AISF Graph Translation
	3.2.6 AISF Grid Graph Statistics

	3.3 Application Domain Two: Satellite Image Interpretation
	3.3.1 Satellite Image Graph Translation
	3.3.2 Satellite Grid Graph Statistics

	3.4 Tabular format for Traditional Classification
	3.5 Summary

	4 Formalism for VULS
	4.1 Introduction
	4.2 Formalism
	4.3 Examples of undirected VULS
	4.4 Examples of directed VULS
	4.5 Summary

	5 Algorithms for VULS Mining
	5.1 Introduction
	5.2 The compVULSM Algorithm
	5.3 Minimal VULS Mining
	5.4 Frequent VULS Mining
	5.5 Minimal Frequent VULS Mining
	5.6 Summary

	6 Algorithm for Vertex Classification
	6.1 Introduction
	6.2 Backward-Match-Voting algorithm
	6.3 A Working Example Using the Backward-Match-Voting Algorithm
	6.4 Summary

	7 Experimental Results Using The Sheet Metal Forming Application
	7.1 Introduction
	7.2 Comparison of VULS Mining Algorithms Using a Range of max Values (Objective 1)
	7.3 Effect of Grid Size d on Classification Effectiveness (Objective 2)
	7.4 Effect of |LE| on Classification Effectiveness (Objective 3)
	7.5 Comparison Between Usage of Grid Graphs and Cross Grid Graphs, and Directed and Undirected Graphs (Objective 4)
	7.6 Effect of |LV| on Classification Effectiveness (Objective 5)
	7.7 Comparison of VULS Vertex Classification Effectiveness (Objective 6)
	7.8 Statistical Comparison of the Proposed VULS Approaches (Objective 7)
	7.9 Summary

	8 Experimental Results Using The Satellite Image Interpretation Application
	8.1 Introduction
	8.2 Comparison of VULS Mining Algorithms Using a Range of max values (Objective 1)
	8.3 Effect of grid size d on Classification Effectiveness (Objective 2)
	8.4 Classification Effectiveness with Respect to |LE| (Objective 3)
	8.5 Comparison Between Usage of Grid Graphs and Cross Grid Graphs (Objective 4)
	8.6 Effect of |LV| on Classification Effectiveness (Objective 5)
	8.7 Comparison of VULS Vertex Classification Effectiveness (Objective 6)
	8.8 Statistical Comparison of the Proposed VULS Approaches on Satellite Image data (Objective 7)
	8.9 Summary

	9 Conclusion and Future Research
	9.1 Introduction
	9.2 Summary
	9.3 Main Findings
	9.4 Future Work

	Bibliography
	A AUC Calculation based on Mann-Whitney-Wilcoxon.
	A.1 Introduction

	B Graph File Format and Raw Data Format
	C Additional Experimental Results
	C.1 Introduction
	C.2 Comparison of VULS Mining Algorithms Using a Range of max Values (Objective 1)
	C.3 Comparison Between Usage of Grid Graphs and Cross Grid Graphs, and Directed and Undirected Graphs (Objective 2)
	C.4 Effect of |LV| on Classification Effectiveness (Objective 3)
	C.5 Effect of |LE| on Classification Effectiveness (Objective 4)
	C.6 Comparison of VULS Vertex Classification Effectiveness (Objective 5)
	C.7 Statistical Comparison of the Proposed VULS Approaches (Objective 6)
	C.8 Summary

